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Read, in the Name of your Lord Who created-
created humans from a clinging clot.
Read! And your Lord is the Most Generous,
Who taught by the pen-
taught humanity what they knew not.

The Qur’an, 96:1-5
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Abstract
The offshore monopile decommissioning demand will become definite in the coming years. Our

responsibility is to ensure the rights and duties of other legitimate uses by completely removing the
ageing monopile from the seabed to continuously redeveloping offshore wind farms within the same
location. The growing number of past, present, and future monopile installations opens up the chal-
lenges and opportunities to be responsible and lead the decommissioning market. With the goal of
complete removal, a novel GDP technique can be the win-win solution for offshore wind operators and
contractors to extract the monopiles completely from the seabed using torsional and axial vibration.

This thesis seeks to understand the torque and normal force to safely clamp a monopile during a
torsional vibration so that the monopile continuously slips over the soil. Gradual soil failure along the
pile-soil interface’s full depth due to the monopile’s torsional motion is a possible theory to explain the
failure mechanism. When an upper part of the pile successfully moves relative to the soil, kinetic friction
occurs until the soil resistance is larger than the shearing at one point. If more shearing is added by
adding more torque, more layers below will be broken while the upper part keeps sliding due to lower
friction than static friction. While the linear elastic theory of solid and thin shell bodies is used within
a 3D FE modelling in Ansys to couple the soil and pile, the clamping force due to the GDP shaker is
decoupled from the analysis. Failure criterion is defined outside the simulation so that the gradual soil
failure is done through several simulations assuming discrete soil layers.

The FE model is constructed and verified by analytical calculation through the semi-infinite cavity-
pile-soil, wave reflection, and finite cavity-pile-soil-spring-dashpot problems. Several cases of gradual
soil failure are simulated and show that the torque amplitudes form a distribution. Firstly, a probabilistic
sense is proposed to interpret the torque amplitude and search for the optimum depth of the soil failure.
Secondly, a convergence check is made with the help of an analytical shell-spring by considering more
soil elements by virtue of good correlation of the shear stress between the analytical and FE model.
It eventually suggests that a convergence of the torque amplitude can be achieved, which reinforces
the theory of gradual soil failure. The interpretation suggests that the current GDP shaker is one step
closer for a monopile extraction test with typical monopile dimensions that correspond to 𝐷𝑜 = 1𝑚. A
first approximation of the required torque and clamping force is then proposed to benefit the analytical
model for larger diameters up to 𝐷𝑜 = 6𝑚.

iv



Contents

1 Introduction 6
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Significance of monopiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Today’s mindset on the monopile extraction . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Complete monopile extraction using vibration . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Conventional vibratory hammer: axial vibratory extraction . . . . . . . . . . . . . . 8
1.4.2 Gentle Driving of Piles: torsional and vibratory extraction . . . . . . . . . . . . . . 9

1.5 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Scope of work and approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Idealized monopile 12
2.1 Environment during a monopile decommissioning . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Material and geometrical properties of the monopile . . . . . . . . . . . . . . . . . . . . . 13
2.3 Monopile as a homogeneous, isotropic, linear elastic shell . . . . . . . . . . . . . . . . . 14

3 Soil mechanics framework: idealization and failure criterion 16
3.1 Soil material properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Class, saturated soil, unit weight, density, and effective stress . . . . . . . . . . . 16
3.1.2 Ground types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Soil drainage and consolidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.4 Horizontal stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Soil failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Shear strength, friction, and Coulomb criterion . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Mohr-Coulomb failure criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Soil behavior under dynamic loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Ideal soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Soil as a homogeneous, isotropic, linear elastic solid . . . . . . . . . . . . . . . . 20
3.4.2 Mohr-Coulomb failure criterion for dynamic loading . . . . . . . . . . . . . . . . . 21
3.4.3 Assumptions on the soil failure for the overall pile-soil system. . . . . . . . . . . . 22

3.5 Input data acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Interpreting Ansys Mechanical and the amplitude of the torque and clamping force 25
4.1 Harmonic analysis: the amplitude and phase of the steady-state response. . . . . . . . . 25
4.2 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Pre-stressed harmonic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 The amplitude of the torque and clamping force . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Computing the required power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Analytical model 29
5.1 Modeling framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Developing analytic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Undamped torsional motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Forced torsional motion in a semi-infinite pile-soil . . . . . . . . . . . . . . . . . . 31
5.3.2 Finding the non-reflective coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.3 Forced torsional motion in a finite pile-soil-boundary . . . . . . . . . . . . . . . . . 39
5.3.4 Test case 0 (TC0): semi-infinite versus finite domain in Maple. . . . . . . . . . . . 40

v



vi Contents

5.4 Damped torsional motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4.1 Forced vibration with a distributed viscous damping in the medium . . . . . . . . . 41

5.5 Calibrating the damping ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 Non-reflective coefficient for torsional motion propagating in longitudinal direction . . . . . 44
5.7 Torsional motion of a thin shell on (visco)-elastic elements . . . . . . . . . . . . . . . . . 44

6 2D FE modeling, result, and discussion 48
6.1 Modeling under plane strain assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Summary of the test cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 TC1: verifying the non-reflective coefficient and damping ratio . . . . . . . . . . . . . . . 49
6.4 TC2: Effect of inner soil and mesh sensitivity check . . . . . . . . . . . . . . . . . . . . . 54

7 3D FE modeling, result, and discussion 56
7.1 3D modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2 TC3: Effect of finite depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 TC4: Effect of an additional soil layer below the pile tip . . . . . . . . . . . . . . . . . . . 58
7.4 TC5: Effect of soil layering around the monopile . . . . . . . . . . . . . . . . . . . . . . . 59
7.5 TC6: Effect of gravity without and with the monopile above the soil surface . . . . . . . . 60
7.6 Finding the torque amplitude and the clamping force. . . . . . . . . . . . . . . . . . . . . 61
7.7 The required power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.8 Inquiring the shear stress in the pile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.9 Toward validation against field experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.10 Questioning the displacement at the pile top . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.11 Searching for a convergence through a more simplified analytical model . . . . . . . . . . 69

8 Conclusions and recommendations for future research 74
8.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A Monopiles dimensions 77

B Equation of motion 79
B.1 Torsional motion under a plane strain assumption . . . . . . . . . . . . . . . . . . . . . . 80
B.2 One-dimensional torsional motion propagating in 𝑧-direction . . . . . . . . . . . . . . . . 81

C Snips of Ansys simulation 82

D Comparison with a prediction by Georgiadis and Saflekou for an offshore steel pipe pile 84

E Comparison with an experiment by Stoll discussed by Guo and Randolph for a steel
pipe pile 87

F Comparison with a prediction by Nielsen 88



List of Figures

2.1 Dismantling of OWT’s RNA and tower in Lely OWF (Bonsink, 2018) . . . . . . . . . . . 12
2.2 Dismantling of a monopile in Lely OWF (Bonsink, 2018) . . . . . . . . . . . . . . . . . . 13
2.3 Analyzed data of installed monopiles in Europe . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 The assumed failure criteria for sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Overall pile-soil system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 𝑓𝑜-𝑁𝑜 relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Semi-infinite model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Plane waves in Cartesian and cylindrical coordinates . . . . . . . . . . . . . . . . . . . . 34
5.3 Illustration of a steady state wave field due to torsional action with the wavefront ap-

proaches dashpot elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 |𝐶𝑑𝑝|(𝜔) − 𝑏 relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5 Illustration of a steady state torsional wave with the wavefront approaches spring and

dashpot elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6 𝐾𝑑𝑝(𝜔) and 𝐶𝑑𝑝(𝜔) − 𝑏 relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.7 Finite model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.8 Solution to the semi-infinite and finite model for 𝑏 = 12.5𝑚 . . . . . . . . . . . . . . . . 41
5.9 Significance of the outer boundary at large 𝑏 . . . . . . . . . . . . . . . . . . . . . . . . 41
5.10 Significance of the outer boundary at small 𝑏 . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Workflow in Ansys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Summary of the test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Significance of outer boundary conditions for 𝑏 = 12.5𝑚 . . . . . . . . . . . . . . . . . . 51
6.4 Significance of outer boundary conditions for 𝑏 = 5𝑚 . . . . . . . . . . . . . . . . . . . 51
6.5 Significance of outer boundary conditions for 𝑏 = 2.5𝑚 . . . . . . . . . . . . . . . . . . 52
6.6 Comparison of the displacement amplitude and phase response . . . . . . . . . . . . . 53
6.7 |𝜏𝑟𝜃(𝑟)| (𝑃𝑎) for different 𝜁 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.8 Effect of inner soil and mesh sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 54
6.9 Mesh sensitivity study around the pile-soil interface for Δ𝑙, 𝑠 ≤ 0.45𝑚 . . . . . . . . . . 55
6.10 Effect of inner soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1 Effect of finite depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Effect of finite depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Effect of soil layering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4 The initial vertical stress without and with the monopile above the soil . . . . . . . . . . 60
7.5 The assumed Weibull distribution of the maximum force amplitudes 𝑓𝑜 . . . . . . . . . . 63
7.6 Maximum shear stress at the pile-soil interface . . . . . . . . . . . . . . . . . . . . . . . 64
7.7 Maximum shear stress at the pile-soil interface . . . . . . . . . . . . . . . . . . . . . . . 64
7.8 Summary of the force amplitude to fail the soil layer 𝑓𝑜,𝑙 . . . . . . . . . . . . . . . . . . 64
7.9 Amplitude of the shear stress along the monopile . . . . . . . . . . . . . . . . . . . . . . 65
7.10 3D FE analysis versus 1D shell-spring-dashpot model . . . . . . . . . . . . . . . . . . . 66
7.11 Displacement 𝐹𝐸𝐴 𝑙1 versus 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙1. From left to right: 1. 𝑅𝑒 (𝑈𝜃) 2. 𝐼𝑚 (𝑈𝜃) 3. |𝑈𝜃| 68
7.12 3D FE analysis versus 1D shell-spring-dashpot versus 1D shell-spring model . . . . . . 69
7.13 Torque amplitude of the cases with uniform soil discretization . . . . . . . . . . . . . . . 70
7.14 Flow chart to check for a convergence of the torque amplitude . . . . . . . . . . . . . . 70
7.15 Torque according to the gradual soil failure assumption based on the shell-spring model

and FE analysis assuming six discrete layers . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



viii List of Figures

7.16 Convergence study of the torque amplitude for 𝐷𝑜 = 1𝑚 . . . . . . . . . . . . . . . . . . 71
7.17 A first approximation of the torque and clamping force to twist the monopile for decom-

missioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.18 Nomenclature of the 3D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.1 𝐷𝑎𝑡𝑎2 (Negro et al., 2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2 𝐷𝑎𝑡𝑎1 (Meijer, 2022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.1 Equilibrium of forces in 𝜃-direction of a solid element cut . . . . . . . . . . . . . . . . . . 79

C.1 Pile-soil meshing and location of loading input . . . . . . . . . . . . . . . . . . . . . . . . 82
C.2 Pile-soil meshing of the first two layers in 2D 𝑟 − 𝑧 plane . . . . . . . . . . . . . . . . . . 82
C.3 Normalized shear stress amplitude distribution with different depth of the pile-soil contact

in 2D 𝑟 − 𝑧 plane (1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
C.4 Normalized shear stress amplitude distribution with different depth of the pile-soil contact

in 2D 𝑟 − 𝑧 plane (2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

D.1 Predicted offshore pile response (Georgiadis & Saflekou, 1990) . . . . . . . . . . . . . . 84
D.2 Transfer function of the 1𝑠𝑡 and 2𝑛𝑑 layer failure . . . . . . . . . . . . . . . . . . . . . . 85
D.3 Transfer function of the 3𝑟𝑑 and 4𝑡ℎ layer failure . . . . . . . . . . . . . . . . . . . . . . 85
D.4 TF for 𝑧𝑏𝑒𝑑 = 15𝑚 and the proposed computation scheme . . . . . . . . . . . . . . . . 86

E.1 Transfer fucntion and the proposed computation scheme . . . . . . . . . . . . . . . . . 87

F.1 Monopile dimensions (Nielsen, 2022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
F.2 Soil properties (Nielsen, 2022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
F.3 Soil properties (Nielsen, 2022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



List of Tables

2.1 The assumed parameters for establishing the monopile’s geometries . . . . . . . . . . . 13

3.1 Ground type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Compactness of sands in terms of 𝐷𝑟 and 𝜑 . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Material, geometrical, and external load properties for plotting dashpot coeffcient . . . . 37
5.2 Material, geometrical, and external load properties for the Test cases . . . . . . . . . . . 40
5.3 Horizontal extent of the soil domain and the dashpot coefficient . . . . . . . . . . . . . . 41

6.1 Horizontal extent of the soil domain, the non-reflective coefficient, and the mesh size . . 50
6.2 Error in the displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Error in the shear stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Correlation of the displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.5 Correlation of the shear stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.6 Error and correlation of the shear stress for different 𝜁 . . . . . . . . . . . . . . . . . . . 54

7.1 Material, geometrical, and external load properties for the 3D test cases . . . . . . . . . 57
7.2 Geometrical properties for finding the torque amplitude . . . . . . . . . . . . . . . . . . . 61
7.3 Material and external load properties for finding the torque amplitude . . . . . . . . . . . 61
7.4 Summary of the output for 𝐷𝑜 = 1.0𝑚 (1/2) . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.5 Summary of the output for 𝐷𝑜 = 1.0𝑚 (2/2) . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.6 Displacement 𝐹𝐸𝐴 𝑙1 versus 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

D.1 Geometrical and material properties discussed by Georgiadis and Saflekou . . . . . . . 84

E.1 Geometrical and material properties discussed by Guo and Randolph . . . . . . . . . . 87

ix



Nomenclature
2D Two dimensional

3D Three dimensional
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𝛽 Soil wavenumber ( 𝑟𝑎𝑑𝑚 )

𝛽𝑑 Damped soil wavenumber ( 𝑟𝑎𝑑𝑚 )

Δ𝑙 Element size (𝑚)

Δ𝑙𝑠𝑜𝑖𝑙 Soil element size around the pile-soil interface (𝑚)

𝛿() Dirac delta function (−)

𝛿 Angle of external friction (∘)

𝛾 Soil shear strain (𝑚/𝑚)

𝛾𝑠,𝑤𝑒𝑡 Wet unit weight of soil ( 𝑁𝑚3 )

𝛾′𝑠 Effective unit weight of soil ( 𝑁𝑚3 )

𝛾𝑤 Wet unit weight of water ( 𝑁𝑚3 )

𝑜 Ratio of soil horizontal over vertical stress (−)

𝜆 Wavelength (𝑚)

𝜇 Poisson’s ratio of soil (−)

𝜇𝑒𝑥,𝑠𝑠 External friction coefficient of steel-steel contact (−)

𝜇𝑒𝑥 External friction coefficient (−)

𝜇𝑖𝑛 Internal friction coefficient (−)

𝜔 Angular frequency ( 𝑟𝑎𝑑𝑠 )

Φ Phase angle (𝑟𝑎𝑑)

𝜌 Mass density of soil ( 𝑘𝑔𝑚3 )

𝜌𝑝 Mass density of pile ( 𝑘𝑔𝑚3 )

𝜌𝑤 Mass density of water ( 𝑘𝑔𝑚3 )

𝜎�̄�𝑟 Standard deviation of relative error (−)

𝜎′𝑎𝑣 Soil average normal effective stress ( 𝑁𝑚2 )

1



2 Nomenclature

𝜎′ℎ Soil effective horizontal stress ( 𝑁𝑚2 )

𝜎𝑛 Normal stress ( 𝑁𝑚2 )

𝜎𝑟𝑐 Standard deviation of correlation coefficient (−)

𝜎𝑣 Soil vertical stress ( 𝑁𝑚2 )

𝜎′𝑣 Soil effective vertical stress ( 𝑁𝑚2 )

𝜎′𝑥 Effective normal stress in 𝑥-direction ( 𝑁𝑚2 )

𝜎𝑧𝑧 Normal stress in 𝑧-direction on a plane normal to 𝑧-direction ( 𝑁𝑚2 )

𝜎′𝑧 Effective normal stress in 𝑧-direction ( 𝑁𝑚2 )

𝜏𝑒𝑥 Coulomb external shear stress at failure ( 𝑁𝑚2 )

𝜏∗𝑒𝑥 Mohr-Coulomb external shear stress at failure ( 𝑁𝑚2 )

𝜏𝑖𝑛 Coulomb internal shear stress at failure ( 𝑁𝑚2 )

𝜏∗𝑖𝑛 Mohr-Coulomb internal shear stress at failure ( 𝑁𝑚2 )

𝜏𝑜 Amplitude of uniformly distributed fictitious force per unit longitudinal and circumferential length
( 𝑁𝑚2 )

𝜏𝑟𝜃 Shear stress in the 𝜃-direction on the plane normal to 𝑟 ( 𝑁𝑚2 )

𝜏𝑥𝑧 Shear stress in 𝑧-direction on a plane normal to 𝑥-direction ( 𝑁𝑚2 )

𝜃 Cylindrical coordinate in the circumferential direction (𝑚)

�̃�𝜃,𝑝,1,𝑧 First derivative with respect to 𝑧 of pile circumferential displacement of segment 1 in the 𝜉
domain ( 𝑃𝑎𝑁/𝑚 )

�̃�𝜃,𝑝,1 Pile circumferential displacement of segment 1 in the 𝜉 domain ( 𝑃𝑎𝑁/𝑚 )

𝜀∗𝑛𝑠 Relative error in an arbitraty number of simulation (−)

𝜑 Angle of internal friction (∘)

𝜉 Fourier domain (2𝜋𝑓)

𝜁 Damping ratio (−)

𝜁𝑝 Damping ratio of pile (−)

𝑎 Coordinate of pile-soil interface (𝑚)

𝑎𝑠 Soil adhesion ( 𝑁𝑚2 )

𝐴𝑖 Airy function Ai (−)

𝑏 Coordinate of Soil outer boundary (𝑚)

𝐵𝑖 Airy function Bi (−)

𝑐 Soil cohesion ( 𝑁𝑚2 )



Nomenclature 3

𝑐2 Shear wave speed in soil (𝑚𝑠 )

𝑐2,𝑝 Shear wave speed in pile (𝑚𝑠 )

𝐶𝑑𝑝 Complex-valued coefficient of dashpot elements ( 𝑁𝑠𝑚3 )

𝑐𝑑𝑝 Coefficient of dashpot elements ( 𝑁𝑠𝑚3 )

𝑐𝑑𝑝 Coefficient of distributed dashpot ( 𝑁𝑠𝑚3 )

𝐷𝑜 Outer diameter of pile (𝑚)

𝐷𝑝 Bending stiffness of pile (𝑁𝑚)

𝐷𝑟 Relative density (%)

𝑑𝑤 Water depth (𝑚)

𝐸 Soil elasticity modulus ( 𝑁𝑚2 )

𝐸𝑝 Pile elasticity modulus ( 𝑁𝑚2 )

𝐹 Force (𝑁)

𝑓 Frequency (𝐻𝑧)

𝑓𝑟 Body force in the radial direction (𝑁)

𝐹𝜃 Time harmonic force in the circumferential direction (𝑁)

𝑓𝜃 Body force in the circumferential direction (𝑁)

𝑓𝑜 Amplitude of force in the circumferential direction (𝑁)

𝑓𝑧 Body force in the longitudinal direction (𝑁)

𝐺 Soil shear modulus ( 𝑁𝑚2 )

𝑔 Constant gravity acceleration (≈ 9.81 𝑚
𝑠2 )

𝐺𝑝 Pile shear modulus ( 𝑁𝑚2 )

𝐻() Heaviside step function (−)

𝐻(1)1 () First (1)𝑠𝑡 order Hankel function of the first 1 kind (−)

𝐻1,𝜏 Transfer function of the shear stress ( 𝑃𝑎𝑁/𝑚 )

𝐽1() Bessel function of the first kind (−)

𝐾𝑝 Membrane stiffness of pile ( 𝑁𝑚 )

𝑘𝜃 Coefficient of distributed spring ( 𝑁𝑚 )

𝐾𝑑𝑝 Non-reflective coefficient of spring elements ( 𝑁𝑚3 )

𝑘𝑑𝑝 Coefficient of spring elements ( 𝑁𝑚3 )

𝑘𝑃𝑎 Kilo Pascal (103 × 𝑁
𝑚2 )

𝑘𝑊 Kilo Watts (103 ×𝑊)



4 Nomenclature

𝐿𝑝 Total length of pile (𝑚)

𝐿𝐾𝑑𝑝 Coefficient of the non-reflective LK boundary elemets ( 𝑁𝑠𝑚3 )

𝑀𝑝 Total mass of pile (𝑘𝑔)

𝑚𝑝 Mass of pile per unit longitudinal and circumferential length ( 𝑘𝑔𝑚2 )

𝑛𝑑 Damping factor (−)

𝑛𝑠 Number of simulation (𝑛𝑢𝑚𝑏𝑒𝑟)

𝑃 Instantaneous power (𝑊)

𝑃𝑝 Embedded/penetration/driving length of pile (𝑚)

𝑝𝑝 Perimeter of pile 𝑚)

𝑃𝜃 Time harmonic uniformly distributed fictitious force per unit longitudinal and circumferential
length ( 𝑁𝑚2 )

𝑃𝑎𝑣𝑒 Average power (𝑊)

𝑃𝑥 Time harmonic uniformly distributed pressure ( 𝑁𝑚2 )

𝑟 Cylindrical coordinate in the radial direction (𝑚)

𝑟𝑀 Radius of Mohr circle (𝑚)

𝑅𝑝 Radius of the pile mid-surface (𝑚)

𝑠𝑢 Undrained shear strength of clay ( 𝑁𝑚2 )

𝑠𝑢𝐷 Dynamic undrained shear strength of clay ( 𝑁𝑚2 )

𝑡 Time (𝑠)

𝑇𝑜 Amplitude of torque with respect to the longitudinal direction (𝑁𝑚)

𝑢𝑜 Amplitude of displacement (𝑚)

𝑢𝑟 Displacement in the radial direction (𝑚)

𝑈𝜃 Amplitude of displacement in the 𝜃-direction in the frequency domain (𝑚)

𝑢𝜃 Displacement in the circumferential direction (𝑚)

𝑢𝑧 Displacement in the longitudinal direction (𝑚)

𝑣 Velocity (𝑚𝑠 )

𝑌1() Bessel function of the second kind (−)

𝑧 Cylindrical coordinate in the longitudinal direction (𝑚)

𝑧∗ Cylindrical coordinate in the opposite of 𝑧 (𝑚)

A-FRF Amplitude-Frequency response function

API American Petroleum Institute

ASTM American Society for Testing and Material Standards

AVH Axial vibratory hammer

BS British Standard



Nomenclature 5

CDF Cumulative distribution function

CPT Cone Penetration Test

EN European Norm

FE Finite element

FEM Finite element method

GDP Gentle Driving of Piles

ISO International Standard Organization

LK Lysmer-Kuhlemeyer

OCR Overconsolidation ratio

ODE Ordinary differential equation

OWF Offshore wind farm

OWT Offshore wind turbine

PDE Partial differential equation

PDF Probability distribution function

PGA peak ground acceleration

PPV peak particle velocity

PVE Name of Dieseko’s vibrator

RAO Response amplitude operator

ROV Remotely operated vehicle

SDOF Single degree of freedom system

SPT Response amplitude operator

T Loading time or period

T𝐹 Loading rate

TC Test case

TF Transfer function

TRL Technology readiness level

VLT Vibro-lifting-tool

WFS Wind Farm Site



1
Introduction

1.1. Challenges
Offshore wind farms (OWF) must be decommissioned and removed at the end of their operational

life. International1 and regional2 regulations (Gourvenec, 2018; Vugts, 2016) require unused offshore
installations or structures on any continental shelf or in any exclusive economic zone to be removed,
with the main idea of complete removal, to ensure the safety of navigation, protection of the marine en-
vironment, and other legitimate rights and duties of the sea. In the Netherlands, wind farm owners must
decommission their OWF after 40 years (Wind & water works, 2022). For this reason, the complete
removal concept has to be borne in mind by whoever deals with the decommissioning of OWF.

A first generation3 offshore wind turbine (OWT) support structure, thus the first generation OWF, is
typically planned for a design lifetime of 20 to 30 years (DNVGL, 2016). Neglecting the possibility of
repowering, an extended, or underachieved lifetime, thousands of OWT have to be removed between
2020 and 2050, ranging between 20 MW and 3700 MW annual capacity in the southern North Sea
(Meulen et al., 2020). Along with that, the installation of OWF is growing rapidly in Europe as part of the
European Union’s objective of 300 GWof power fromwind to achieve climate targets in 2050 (European
Comission, 2021). The demands of OWT decommissioning are thus inevitable and becoming a critical
issue in the region in the coming years.

In addition to the large volumes of the current and coming OWT decommissioning activities, the
industry experiences are still very limited to a relatively small size of OWT, according to a few prece-
dences. The experiences from the offshore oil and gas industry or onshore wind farms may not neces-
sarily be adopted fully. Generally speaking, similar to an offshore installation, offshore decommission-
ing is site-specific and demands proper planning, not to mention the complexity of safety, environmen-
tal, technical, societal, and economic assessment. However, unlike an offshore installation, which is
one of the governing factors, offshore decommissioning is often not addressed in the early engineering
due to the lack of alternative options (Gourvenec, 2018). Therefore, the offshore wind industry is urged
to concentrate on the OWT decommissioning agenda.

1.2. Significance of monopiles
About 80% of the total installed OWT in the North Sea is supported by monopiles, mostly in less

than 40 m water depth with diameters between 2.1 m and 7 m (Negro et al., 2017). Despite the growing
development of the other type of support structures, monopiles are seemingly the favourite ones for
larger water depth, proved by the trends showing that the installed monopile diameters are increasing
with the wind turbine size and water depth in recent years (Meijer, 2022). Besides, when discussing
1Geneva Convention 1958, London Dumping Convention (LDC) 1972, United Nations Convention on the Law of the Sea (UNC-
LOS) 1982, International Maritime Organization (IMO) Resolution A.672 1989, and London Convention Protocol (1996 Protocol)

2OSPAR: Convention for the Protection of the Marine Environments of the North-East Atlantic
3First generation wind turbines are those installed before 2016. After 2016, they are called second generation wind turbines,
which is typically designed for 40 to 50 years lifetime (Meijer, 2022).
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1.3. Today’s mindset on the monopile extraction 7

monopile decommissioning, among the preparation and post-removal, the operation stage is the main
contributor to the total decommissioning cost of an OWT founded on a monopile (Milne et al., 2021;
Topham et al., 2016). Therefore, the operation stage of the monopile decommissioning is of great
importance to be discussed.

The operation is dictated by removing the monopile from the seabed, which is governed by the soil
resistance. The soil resistance has been predicted to be as low as 15𝑀𝑁 and as high as 210𝑀𝑁
using standard computation of shaft resistance (Meijer, 2022; Nielsen, 2022). Large soil resistance
has been the leading cause of difficulties in complete removal of a monopile. The weight and geometry
of the monopile also add the complexity to the overall operation, considering their relation to the lifting
process and the available transport vessel (Shafiee & Adedipe, 2022). Compared with the other OWT’s
components such as transition piece and tower, monopile removal is the majority of a decommissioning
operation, which accounts for 77% of the total materials (Meulen et al., 2020). These bring out the
significance of monopile in the decommissioning operation. Hence one should naturally prioritise how
the monopile will be removed.

1.3. Today’s mindset on the monopile extraction
In contrast to the base case of complete removal of monopiles, today’s practices show partial re-

moval has been preferred, such as in Thanet and Lincs OWF, by cutting the monopile a few meters
below the seabed, thus leaving the remaining monopile in the seabed (Topham et al., 2016). One con-
cluded that the required force to pull out the entire monopile is too large and time-consuming (Meulen
et al., 2020). Others concluded that the penetration depth and its weight create complexity, thus being
extremely risky to the offshore personnel and disturbing to the environment when deeper excavation
is done for a complete removal (Topham et al., 2016). Partial removal is allowed by international reg-
ulation if the risk of the potential harmful effects on the safety of navigation, marine environment, and
personnel are so high and if the technicality and the costs are not practicable (IMO, 1989). Neverthe-
less, the existing cutting methods carry several disadvantages relating to safety, environmental impact,
and costs.

Cutting takes a relatively long time because multiple tools are used, such as dredging or jetting
tools for preparation (Hinzmann et al., 2018). A diamond wire cutting, one of the common cutting tools,
may be problematic due to wire breakage. The breakage is caused by loose wire or displaced grinding
segments, which can be deadly for the surroundings and stop the operation (Denkena et al., 2021),
leaving the monopile with an unfinished cut. The unfinished cut may also occur due to inaccurate jet
cutting from the inner side of the monopile (Hinzmann et al., 2018). Therefore, extra safety measures
are necessary to assure a safe tool recovery to the sea surface and back underwater to continue the
operation and keep the unfinished cut pile at the position, which will consume more offshore time.

If not with the help of divers, the method typically requires a remotely operated vehicle (ROV) for
monitoring (Topham et al., 2016), meaning only a special class of support vessels with diving chambers
or ROV and dredgers on board can do the operation (Metrikine et al., 2021). Also, regardless of
the cutting methods, due to its abrasive nature, the cutting discharges debris which will pollute the
water column. The pollution is just intensified because of the discharge from the dredging equipment.
Furthermore, the remaining monopile can be exposed to the seabed environment, which endangers
fishers during bottom sea trawling and may become obstacles to future offshore activities (Hinzmann et
al., 2018). Therefore, the cutting operation are not environmentally friendly if no mitigations are taken.

In addition to eliminating the practical problem of cutting, the complete removal can also be seen
as promoting a circular economy through recycling, as one can reclaim as much as possible the steel
value, which, in the long run, promotes a more sustainable development (Maio & Rem, 2015). If one
would scrap the steel metal, although there is a challenge with the price volatility, recycling the monopile
has been estimated to be significant. It could pay nearly 20% of the total costs of OWF decommission-
ing together with other recoverable components (Topham et al., 2019). Besides, one may consider
exploring the possibilities for reuse of the recovered monopile for new structural elements combined
with the newly-built one (Pongiglione & Calderini, 2014). Therefore, the entire monopile extraction of-
fers both environmental and economical value-added through omitting cutting problems, recycling, and
reuse, which eventually relieves the decommissioning costs.
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1.4. Complete monopile extraction using vibration

The most advanced method for complete removal of monopile foundation today is the so-called
vibro-lifting-tool (VLT) which combines axial vibratory extraction and upending4. A method with a sep-
arate stage between vibratory extraction and upending is also available on the market. Other than
that, most of the methods are not commercial yet, i.e. under development. Among them are: bottom
founded removal tool and axial vibratory hammer (Stapel, 2021), overpressure and vibratory pile (Hinz-
mann et al., 2021), hydraulic presses and floating panels (Lehn et al., 2020), hydraulic and pneumatic
overpressure (Hinzmann et al., 2020), hydraulic extraction (Coronel, 2020), and vessel motion (Meijer,
2022). The mentioned techniques will not be discussed here. Instead, a new method borrowing the
technology from the so-called GDP shaker5 will be the focus of the study. The method stands on the
same ground as a conventional vertical vibratory hammer. However, the GDP shaker uses torsional
vibration in addition to vertical vibration.

1.4.1. Conventional vibratory hammer: axial vibratory extraction
The axial vibratory pile6 extraction comes naturally together with its ability for installation. Hypothet-

ically, during pile installation, the pile vibration reduces the soil friction due to repetitive relative motion
between the soil particles and the pile. Due to the reduced soil friction, the pile moves downward be-
cause of gravity. During pile extraction, the pile selfweight and the reduced soil friction is opposed by a
static pull from a crane. (ISO, 2002; Jonker, 1987; Warrington, 1989). The offshore wind industry has
set up a swift growth of the technology since CAPE Holland (CAPE-H) installed the monopiles for the
Riffgat OWF offshore Germany in 2012. The monopile was driven to a stable depth before eventually
hammered with impact to the final depth with additional noise mitigation. The fast development was
due to rigid restrictions on noise emission (Vugts, 2016).

In 2015, CAPE-H invented a VLT that can clamp a monopile through all stages of pile installation,
including upending, lifting, and driving to the final depth in one go without the aid of a guide frame.
Using a separate tool for lifting and upending will lead to a longer offshore time. In 2018, a monopile
with a 6.5 m diameter and 40.5 m length weighing 330 mt was installed using a tandem of CV-320
VLT-U 640 kgm – 210 Mt from a crane barge within 15 minutes net driving time to the final depth of
24 m in sandy soil at Maasvlakte (CAPE Holland, 2020). In 2016, Dieseko Group’s vibro-hammer is
used to aid the extraction of four piles of 27 m length with 3.7 m diameter weighing 84 tonne within 45
minutes each using PVE 500M 500 kgm – 10.748 kN with additional lifting and upending equipment as
part of the Lely OWF decommissioning program (Dieseko, 2016).

Three basic components of vibro-hammers are eccentric masses to generate vibration, suppressors
with dampers to isolate energy transfer to a crane, and clamps to fix the hammer to the pile. The
hammer is operated close to the natural frequency of the pile-hammer system, which is typically at 20
to 30 Hz7 (Jonker, 1987). Given the modern hydraulic impact hammer, the basic advantages of the
vibro-hammers, excluding lifting and upending capability, are: the driving is usually fast with a low level
of noise, the driving mechanism can be extended for pile extraction, the cyclic stress accumulation is
small which is favourable for structural fatigue, rigid connection between pile and hammer makes it
simple for handling and minimise the risk of pile run, flexible for a range of diameters and applicable for
tandem combination, and there is no need for guide frame during driving (CAPE Holland, 2022; Jonker,
1987).

4Upending is often used when discussing installation. The term upending here is actually the reverse of upending during the
decommissioning, which means the monopile is upended from the vertical position, after being removed from the seabed, to its
horizontal position on the decommissioning vessel.

5The term shaker will be used interchangeably with vibratory hammer, vibro-hammer, and hammer.
6The term pile will be used interchangeably with monopile. The pile is more general than the monopile, which is a single steel
pipe pile system.

7The standard and high frequency vary from 20 to 30 Hz and 30 to 40 Hz, respectively (Holeyman et al., 2002).



1.5. Problem statement 9

1.4.2. Gentle Driving of Piles: torsional and vibratory extraction
Gentle Driving of Piles (GDP)8 uses a high frequency9 and small amplitude torsional vibration about

the longitudinal axis of a monopile as the primary mechanism to ensure soil friction reduction together
with a low frequency and low intensity axial vibration (Metrikine et al., 2021). In the case of a conven-
tional vibrator, the vibration provides shearing at the pile-soil interface along the longitudinal direction,
reducing the soil friction at the pile-soil interface. The same consequence is assumed on the torsional
vibration. However, the shearing is along the pile circumference. For this reason, it is expected that
by using torsional and axial vibration, the monopile penetration will be faster than the axial vibratory
hammer (AVH) due to more shearing and more frequent loading, which subsequently reduce the soil
friction faster.

GDP technique is intended to emit less noise and seabed disturbance than the axial vibrator be-
cause the radial expansion of the pile during the driving is small, which leads to negligible energy
transmission to the surrounding water and soil. On the contrary, a significant energy transmission from
the compression wave, due to Poisson’s effect, induced by an AVH, propagates to the water column
and ocean floor, which create noise and seabed disturbance (Metrikine et al., 2021; Tsouvalas, 2015).
So, it is favourable to limit the use of vertical vibration. Only a low intensity is expected within the GDP
framework when the axial vibration is employed. Less noise and seabed disturbance mean the GDP
is safe for the underwater species and neighbouring structures10.

Apart from continuous tests in the laboratory using a small shaker (Segeren, 2019), large-scale
tests was accomplished in 2019 to test the performance of the GDP shaker against other techniques
such as axial vibration. Different overall dynamic responses have been observed during the installation,
which indicates different dynamic responses of the pile-soil system after the installation (Segeren, 2019;
Tsetas et al., 2020). The performance is compared, among other things, concerning the efficiency of
the driving process. A novel procedure called energy flux approach defines the efficiency according to
the cumulative energy flux normalized by the energy input. The larger the ratio between the cumulative
energy flux over the energy input, the more efficient is a vibrator. The approach indicates that the GDP
shaker excels the AVH’s efficiency. This is due to a minor impedance contrast at the pile-soil interface
predominantly at the pile tip during the vibration (Gómez et al., 2022).

The GDP shaker appears to become a future win-win solution amidst other techniques to solve
the problem of the OWT decommissioning attributed to the partial removal of monopile: technically
feasible, safe for the environment, and acceptable costs. Therefore, extending the potency of the GDP
shaker from installation to extraction of monopiles is of interest. This study stands on the ground of
utilizing the GDP shaker for monopile extraction. However, the Technology Readiness Level (TRL) of
the GDP shaker is still between five and six (Metrikine et al., 2021).

1.5. Problem statement
To further advance the TRL, thus the commercialization, of the GDP shaker a modification of shaker-

pile connection or clamping system is needed so that the shaker can grip the monopile in an efficient
manner. The clamp is fundamental to the GDP shaker so that the monopile is safely held during the
vibration and extraction without slip. It can hold the monopile if the connection is rigid, which means
that the displacement continuity is ensured at all time moment during the operation. On the other hand,
it needs to be cost effective such that it requires a small preparation time to clamp the monopile. In
fact, during the experimental campaign in 2019, the shaker used bolted connection, which requires a
flange at the top of the monopile. Bolting demands more time and increases the safety risk of personnel
working overboard, consequently increasing the decommissioning costs.

8GDP was the first GROW project supported by Dutch RVO (Netherlands Enterprise Agency) and TKI Wind op Zee. TU Delft
leads the project consortium with GROW partners: Boskalis, Deltares, DOT, Eneco, Sif, TNO, ECN, Shell, IHC, SHL, and Van
Oord, aiming for a win-win solution for reducing the required impact load and the noise emission during pile driving without
trading-off the pile driving time and the resistance capacity, especially in welcoming the use of large diameter monopile for
OWT, for which the use of impact hammer is expected to be inefficient and dangerous for aquatic life.

9High frequency here is justified by the fact that the GDP shaker is designed to operate above the typical operating frequency
of conventional vibrators.

10It can be brought into a broader context than a remote offshore environment and a wind turbine foundation. Neighbouring
structures can be of coastal structures such as dykes near Irene Vorrink wind farm (Adnan Durakovic, 2022)
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The application of the VLT for monopile extraction, as described in the previous section, manifests
the leading position of the VLT in the market. Recalling that the GDP shaker shares a similar concept
with the VLT, the clamping capabilities of the VLT may naturally be set as the benchmark. These
capabilities are clamping for vibratory extraction and upending. This thesis will focus to answer the
former. During the vibratory extraction, two stages are distinguished, which are the motion during the
vibration and the extraction. It is the motion during the vibration that will be discussed here. Moreover,
only the torsional motion that will be considered. Then, a research question is formulated How much
is the required clamping force to slip a monopile from the soil using a GDP shaker? In order to
answer the question, the second research question is brought up. How much is the required torque
to slip the monopile from the soil? To start answering the question, preliminary assumptions are
introduced to bound the context.

1.6. Scope of work and approach
Various terms are used in the literature to speak of decommissioning of offshore structures, such as

removal, retirement, abandonment, dismantling, withdrawal from service, to make inoperative, planned
shut-down or removal of a structure or facility from operation or usage, to remove or retire from active
service, cessation of production, making the platform safe (Gourvenec, 2018; Vugts, 2016), and so
forth. The restriction is on the decommissioning process of a monopile of an OWT, which is defined
here as the extraction of a monopile from the seabed. The other part of OWT structures, such as
the rotor nacelle assembly, blades, and tower (Negro et al., 2017), are not discussed and assumed to
have been removed. Boat landing, platform, and J-tubes11 are also assumed to have been removed.
These effectively leave the monopile and the transition piece12. The effect of the transition piece will be
neglected as a first approximation. In sandy soils, scour protection is often installed near the monopile
to prevent the formation of scour at the seabed surface. The effect of scour protection will also be
neglected13 due to its small thickness compared to the soil around the embedded pile.

To answer the research questions, two ways can be chosen (Tsouvalas, 2015). The first is to pull
out a monopile in a set of physical experiments immediately so that primary data are obtained by mea-
suring the response of the monopile, shaker, and soil. Immediate measurements tend to be expensive
and time-consuming. They are aggravated by the nature of the parametrization of experiments. Pa-
rameterization is vital to get a general idea of the physical phenomena of the system. The second is
to create reasonable three-dimensional models in a computer so that computer experiments are simu-
lated to mimic real-world scenarios. Simulation measurements tend to ease parametric study and are
less time-consuming, thus leads to cost-effectiveness. The simulation approach, to model a monopile
extraction is thus chosen in this thesis. Three-dimensional finite element method (3D FEM) in ANSYS
Mechanical 2022 R2, using two main toolboxes: Harmonic Response and Static Structural, will be used
in this case.

When using 3D FEM simulation to model soil, one will face a problem of defining its geometry.
Also, one needs to verify and validate the result to be confident of the simulation results (Oñate, 2009;
Wellens, 2021). To address the problem of soil geometrical modeling and verification, an analytical
model will be developed. This is because a relevant14 and validated 3D analytical solution for torsional
problem is not yet available (Dong Guo & Randolph, 1996; Georgiadis & Saflekou, 1990; Karasudhi
et al., 1984; Li et al., 2021; Luco, 1976; Nghiem & Chang, 2019; Novak & Sachs, 1973; Reissner &
Sagoci, 1944; Veletsos & Dotson, 1987; Wang et al., 2008; Wu et al., 2016). Therefore, this study
will assume a simplified 2D semi-infinite torsional problem where analytical solution can be obtained.

11Boat landing enables access of maintenance crew from a vessel to the platform (Male, 2021; Schachner, 2004).
12Transition piece has been one of the fundamental parts of OWT, which ensures the connectivity between the support structure
and the tower. Several types of transition piece connections exist, such as grout, bolted, slip-joint, integrated, and wedge
connections (Meijer, 2022). The type of connection adds the geometrical complexity, affecting the local stiffness and the mass
around the connection.

13A scour protection can increase the lateral capacity of a pile in loose and dense sands, which is associated with the densification
of sand and the increase of effective stress around the pile (Askarinejad et al., 2022). The increase of effective stress should
also contribute to the shearing resistance in the axial and circumferential direction.

14Relevant here is defined as the one that considers vibrator-pile-soil system, that corresponds to offshore monopile dimensions,
as a shell-solid that considers the soil as an infinite domain (e.g. both in the 𝑟 and 𝑧-direction by assuming a cylindrical
coordinate system) within dynamic analysis.



1.7. Outline 11

This analytical solution is thus assumed as the exact solution. A 2D FE model with a close proximity
will stand on the exact solution, so that the 2D FE solution is verified. From this point onward, the 2D
FE model is constructed progressively, on the ground of the exact solution, until eventually finding the
solution to the 3D FE model on which the best way to evaluate its correctness is by validation through
laboratory or field experiments.

Three admissible motions, in the axial direction, during vibratory pile installation have been sug-
gested, which can be the pile motion as a rigid body at the time of penetration due to gravity at a
frequency lower than the vibrator frequency, the pile motion as a continuous or flexible body at the
vibrator frequency, and the pile motion as both rigid and flexible body at the frequency higher than
the vibrator frequency (Tsetas et al., 2022). In the case of extraction, a static pull-out is the one that
makes the pile moves as a rigid body. Despite the same three motions may not appear in the torsional
direction, a similar notion can be referred to one of those. It is the pile motion as a flexible body at
the frequency of the vibrator frequency that is considered in this study. The static pull-out force is not
considered.

Finally, a frequency of 80𝐻𝑧 will be the main focus of this study by considering the GDP shaker’s
frequency during the experimental campaign in 2019, which is around three times higher than its axial
counterpart that is operated at 23𝐻𝑧 (Gómez et al., 2022). The choice of high frequency is associated
with its short wavelengths in the soil so that the soil shearing resistance is mobilized locally around
the pile shaft and small impact to the post-installation lateral response (Tsetas et al., 2023). For the
study of monopile extraction, other frequencies can be more favorable, for example due to less required
power or to avoid resonance. When the model is proven to be reliable, other frequency input should
not be a problem. Secondly, using the same frequency and other similar system parameters with the
experimental campaignmay give an insight into whether the sameGDP shaker can be directly extended
for a monopile extraction test.

1.7. Outline
This thesis comprises eight chapters in which Chapter 1 to 4 are essentially literature research.

Chapter 1 covers the problem background, definition, and the choice of approach. The fundamental
assumptions on the material, geometrical, and overall pile-soil system are introduced in Chapter 2 and
3. While Chapter 4 investigates how to read the results in Ansys, Chapter 5 presents the analytical
model to build the geometrical model of soil and verify the FE model. Chapter 6 evaluates the plane
strain model as the starting point to model the complete system. Chapter 7 explains the 3D FEmodeling
and discuss the results. It concludes the answer to the research question and followed by an initiation
of finding the optimum depth of soil failure. If the chapter is not clear immediately, the conclusions in
Chapter 8 should be sufficient to back up. Conclusions are then wrapped up by recommendations for
further research.



2
Idealized monopile

2.1. Environment during a monopile decommissioning
Offshore environment is often referred to the atmosphere, ocean, and seabed condition. They

embody multiple physical phenomena such as winds, water depth, tides, waves, currents, air and sea
temperature, snow and ice, and seabed condition (Vugts, 2013). In what follows, only the water depth
and the seabed is considered. Usually, during installation, thus the decommissioning, engineers look
for the time window where the metocean condition1 is reasonably calm2, which allow for a safe offshore
operation using a specific vessel and its equipments. Hence, it can be assumed that during a monopile
extraction, the effect of the metocean condition on the monopile is negligible.

An example of an OWT decommissioning is shown in Figure 2.1 and Figure 2.2. Figure 2.1 shows a
reverse installation for the RNA and the tower part and Figure 2.2 captures a moment when a vibratory
hammer is being used to aid a monopile extraction. The latter is the focus of this study while the former
is not. The dashed rectangle in Figure 2.2.b is the battery limit of this study. As Section 1.6 defines to
what extent the monopile will be considered, Figure 2.2 clarifies the assumption that it is sufficient to
examine only the monopile up to a certain height above the sea surface. To start working out a specific
decommissioning problem, a general definition of relevant material and geometrical properties of the
monopile as well as the soil need to be established.

1An abbreviation of meteorological and oceanographic.
2The weather must be favourable for the foreseeable future before sailing to the offshore site is made. During this period, a
specific vessel must work within the limit of its motion response due to excitation from winds, waves, and currents (Schreier,
2021; Vugts, 2016).

(a) Dismantling of an OWT’s RNA (b) Dismantling of an OWT’s tower

Figure 2.1: Dismantling of OWT’s RNA and tower in Lely OWF (Bonsink, 2018)

12
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(a) Dismantling of a monopile (b) Engineering drawing of a monopile dismantling

Figure 2.2: Dismantling of a monopile in Lely OWF (Bonsink, 2018)

2.2. Material and geometrical properties of the monopile
Hereafter, it will be assumed that the monopile in this study is made of structural steel S355, as per

EN10025-1, which has a minimum yield strength of 355𝑀𝑃𝑎 and an ultimate tensile strength between
470𝑀𝑃𝑎 and 630𝑀𝑃𝑎 (CEN, 2004b; Igwemezie et al., 2018). European structural steels, thus the
monopiles, are typically standardized through Eurocode 1, which have mass density 𝜌𝑝 = 7850𝑘𝑔/𝑚3
and through Eurocode 3, which have modulus elasticity 𝐸𝑝 = 210𝐺𝑃𝑎, Poisson’s ratio 𝜈𝑝 = 0.3. The
corresponding shear modulus is approximately 𝐺𝑝 = 𝐸𝑝/ (2(1 + 𝜈𝑝)) = 81𝐺𝑃𝑎 (CEN, 2002, 2004c).

Next to the the material properties is the geometries. Recent studies have gathered data of the
installed monopiles in Europe (Meijer, 2022; Negro et al., 2017). This data are adopted and analyzed
in a simplified manner in terms of dimensionless ratios with respect to the monopile’s diameter. This
step will be advantageous for preliminary design when smaller diameter are desired, but still having
its relevance with the existing data. The outer diameter 𝐷𝑜,𝑛, water depth 𝑑𝑤,𝑛, total length 𝐿𝑝,𝑛3, em-
bedded/penetration/driving length 𝑃𝑝,𝑛, and total mass 𝑀𝑝,𝑛, are assumed as the primary input, where
𝑛 = 1, 2. Table 2.1 summarizes the average of the ratio of the water depth over the outer diame-
ter 𝑑𝑤,𝑛/𝐷𝑜,𝑛, the total length over the outer diameter 𝐿𝑝,𝑛/𝐷𝑜,𝑛, the penetration depth over the outer
diameter 𝑃𝑝,𝑛/𝐷𝑜,𝑛, and the outer diameter over the wall thickness 𝐷𝑜,𝑛/𝑤𝑡𝑛.

All ratios, except 𝐷𝑜,𝑛/𝑤𝑡𝑛, are first computed from the collected data and then averaged, without
a weighing due to the number of foundations. The wall thickness, thus 𝐷𝑜,𝑛/𝑤𝑡𝑛, is obtained by

𝑀𝑝,𝑛 =
𝜋
4(𝐷

2
𝑜,𝑛 − (𝐷𝑜,𝑛 − 2𝑤𝑡𝑛)

2) 𝐿𝑝,𝑛 𝜌𝑝

𝑤𝑡𝑛 =
1
2 (𝐷𝑜,𝑛 −√𝐷

2𝑜,𝑛 −𝑀𝑝,𝑛
4

𝜋 𝐿𝑝,𝑛 𝜌𝑝
)

(2.1)

where 𝑀𝑝,1 = 213.28𝐷𝑜,1 − 629.7, and 𝑀𝑝,2 = 200.72𝐷𝑜,2 − 548.73 following the linear regressions
shown in Figure 2.3.a.

Data 𝑑𝑤,𝑛/𝐷𝑜,𝑛 𝐿𝑝,𝑛/𝐷𝑜,𝑛 𝑃𝑝,𝑛/𝐷𝑜,𝑛 𝐷𝑜,𝑛/𝑤𝑡𝑛
𝐷𝑎𝑡𝑎1 (Meijer, 2022) 4.5 10.5 6.0 100

𝐷𝑎𝑡𝑎2 (Negro et al., 2017) 4.0 10.5 7.0 99

Table 2.1: The assumed parameters for establishing the monopile’s geometries

It is observed from Table 2.1 that each data agrees to each other in terms of average ratios. A 𝐷𝑜,𝑛
versus 𝑀𝑝,𝑛 plot in Figure 2.3.a also shows an agreement in terms of their linear regression. For these
3The total length will be assumed to include the height of the air gap above the elevation of the sea surface 𝑧𝑤 (see Figure 7.18).
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two reasons and since 𝐷𝑎𝑡𝑎1 refers to more OWF than 𝐷𝑎𝑡𝑎2, 𝐷𝑎𝑡𝑎1 is chosen. Having known the
relevant geometrical ratios from 𝐷𝑎𝑡𝑎1, a synthetic 𝐷𝑜, thus 𝑑𝑤, 𝐿𝑝, and 𝑃𝑝 are generated using the
known ratios.

An additional step is shown, to reason the use of linear regression, by plotting 𝐷𝑜 versus 𝐷𝑜/𝑤𝑡𝑛 and
𝐷𝑜/𝑤𝑡𝐴𝑃𝐼 in Figure 2.3.b, where𝑤𝑡𝐴𝑃𝐼 is the wall thickness based on the API’s formula that is commonly
used in studies related to monopiles. Figure 2.3.b shows that 𝐷𝑜/𝑤𝑡 seems to level off around 90 when
using 𝑤𝑡𝐴𝑃𝐼4. Instead, according to 𝐷𝑎𝑡𝑎1 and 𝐷𝑎𝑡𝑎2, 𝐷𝑜/𝑤𝑡 climbs with the diameter5. Larger 𝐷𝑜/𝑤𝑡
means the monopile’s cross-section becomes more slender, which in the next section becomes one
of the rationale on deciding its structural idealization. Large diameter and slenderness of a monopile
introduce the significance of shell model rather than classical rod model (Tsetas et al., 2021).

(a) Diameter-weight relationship (b) Diameter-diameter over wall thickness relationship

Figure 2.3: Analyzed data of installed monopiles in Europe

2.3. Monopile as a homogeneous, isotropic, linear elastic shell
Due to the second nature of steel production, monopile can be assumed as a homogeneous and

isotropic material as far as micro-structure is not concerned. It is justified by the fact that the steel
for producing the monopiles are standardized as described in Section 2.2. It will be assumed that the
resultant stresses in the monopile, during the soil failure, will be much lower than its yield strength. It
will also be assumed that the monopile will be stable during the torsional vibration such that no local
buckling occurs due to large 𝐷/𝑤𝑡. These two statements are subject for further research, since it is
possible that yielding around an inflection point emerges when the embedded length of the monopile
is deep enough to allow a fixation, from which the shear stress near the fixation will be maximum and
only increase if the torque is increased until the monopile yields. The emergence of an inflection point
can be deducted from the existing knowledge regarding bending moment in the pile subjected to lateral
loading (Vugts, 2016).

According to Love-Timoshenko’s thin shell theory, the force equilibrium in a thin shell happens at
the middle surface so that the two-dimensional model represents a three-dimensional structure. Love
assumes for small displacements of thin shells (Leissa, 1973), which in the case of circular cylindrical
shell that is used in this study: 1. the ratio of shell thickness over the radius the pile and over the length
of the pile is small, 2. only the first order quantities of the strain and displacement is considered due
to its significance compared with their higher order ones, 3. the transverse normal stress is neglected
because it is dominated by the normal stresses in the circumferential and longitudinal direction, and 4.
A straight line normal to the mid-surface remains straight, normal, and not elongated after deformation
due to Kirchhoff’s hypothesis.
4The API’s formula for minimum wall thickness 𝑤𝑡𝐴𝑃𝐼 = 6.35 + 𝐷𝑜/100, where 𝑤𝑡𝐴𝑃𝐼 and 𝐷𝑜 are in 𝑚𝑚, are designated for a
range of pile diameter between 610𝑚𝑚 and 3048𝑚𝑚.

5It has been studied that 𝐷𝑜/𝑤𝑡 for offshore wind monopiles can be as high as 160 (Liu, 2021).
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Membrane and bending stiffness are the main restoring force of a thin shell, which under the Love-
Timoshenko’s thin shell theory (Timoshenko & Woinowsky-Krieger, 1959), for an axisymmetric circular
cylindrical shell (Tsetas et al., 2021) reads

𝐾𝑝
𝜕2𝑢𝑧
𝜕𝑧2 − 𝐾𝑝

𝜈𝑝
𝑅𝑝
𝜕𝑢𝑟
𝜕𝑧 = 𝜌𝑝 𝑤𝑡

𝜕2𝑢𝑧
𝜕𝑡2

𝐾𝑝
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2
𝜕2𝑢𝜃
𝜕𝑧2 = 𝜌𝑝 𝑤𝑡

𝜕2𝑢𝜃
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𝑅𝑝
𝜕𝑢𝑧
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𝑅2𝑝
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𝜕𝑧4 = 𝜌𝑝 𝑤𝑡

𝜕2𝑢𝑟
𝜕𝑡2

(2.2)

where 𝑅𝑝 is the radius of the pile mid-surface, 𝐾𝑝 = 𝐸𝑝 𝑤𝑡/ (1 − 𝜈2𝑝) is the membrane stiffness, and

𝐷𝑝 = 𝐸𝑝 𝑤𝑡3/ (12 (1 − 𝜈2𝑝)) is the bending stiffness (Soedel, 2004). For a purely torsional vibration,
only the second of (2.2) is of importance. To the contrary, the first and third of (2.2) will govern the
equilibrium due to gravity to determine the initial state of stress. Note that the latter assumes no inertia
effect from the pile (i.e. 𝜕2𝑢𝑧/𝜕𝑡2 = 0 and 𝜕2𝑢𝑟/𝜕𝑡2 = 0) and the first of (2.2) must include −𝜌𝑝𝑤𝑡𝑔
to account for the constant gravitational acceleration 𝑔. (2.2) is written to show the significance of the
membrane and bending stiffness to avoid incorrect modeling for the FE analysis later on.



3
Soil mechanics framework: idealization

and failure criterion

3.1. Soil material properties
3.1.1. Class, saturated soil, unit weight, density, and effective stress

The classification of soil differs from one and the other standards such as in ISO1, BS2, and ASTM3.
Similarly to the Unified Classification System, they classify soil based on particle-size distribution and
plasticity. A major difference between the standards is the grain-size bounds and the extent to which
plasticity is considered. According to the grain size, they are classified into coarse-grained and fine-
grained soil. Coarse-grained soils are commonly grouped into gravels and sands. The soil plasticity
groups fine-grained soils into silts and clays based on the Atterberg limit test (Fugro et al., 2016).
However, often they are grouped into non-cohesive soils and cohesive soils due to their practicality in
civil and mechanical engineering, especially when describing their failure mechanism (Miedema, 2014;
Vugts, 2016). Non-cohesive soils range from gravels to silts, which will be further defined as sands.
Therefore, it leaves clays as cohesive soils.

Soil is a porous material that either water or air fills the pores between the soil grains. As far as
offshore soil is considered, it is reasonable to assume that it is filled only with seawater. Therefore, it is
fully saturated. Consequently, due to Archimedes’ law, the soil submerged unit weight 𝛾′𝑠 , also called
the soil effective unit weight, is relevant here and defined as (Vugts, 2016)

𝛾′𝑠 = 𝛾𝑠,𝑤𝑒𝑡 − 𝛾𝑤 (3.1)

where 𝛾𝑠,𝑤𝑒𝑡 is the wet unit weight of soil, 𝛾𝑤 is the unit weight of water, and the unit weight is, in general,
the density of soil 𝜌 or water 𝜌𝑤 multiplied by the gravitational constant 𝑔. Because of the presence of
pore water, the total weight of the soil is distributed in both the soil grains and pores. Only the stress in
the soil, or the effective stress, influences the soil shearing resistance. Soil vertical effective stress at
one point below the seafloor due to its self-weight can be computed as (Terzaghi, 1943)

𝜎′𝑣 = 𝛾𝑠,𝑤𝑒𝑡 𝑧 − 𝛾𝑤 𝑧 (3.2)

where 𝑧 is the height of the soil layer above a particular point.

3.1.2. Ground types
A primary interest in discussing soil properties for monopile extraction is its failure parameters. The

failure parameters are the shear modulus, Poisson’s ratio, angle of friction for sands, and cohesion for
1International Standard Organization 14688-1:2002 (Geotechnical Investigation and Testing - Identification and Classification of
Soil: Identification and Description) and International Standard Organization 14688-2:2004 (Principles for a Classification)

2British Standard 5930:1999 on Description of soils
3American Society for Testing and Materials Standards D 2487-11 and D 2488-09a

16
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clays (Bowles, 1997)4. The measure of relative density defines whether cohesionless soil is very loose,
loose, medium dense, dense, or very dense, which eventually defines its friction angle. In cohesive
soils, they are classified as whether the profile is very soft, soft, firm, stiff, very stiff, hard, or very hard
clays according to its undrained cohesive shear strength (Fugro et al., 2016). A concise soil profiling
can be of ground types in Eurocode 85 (CEN, 2004a), which will be referred to hereafter.

Ground type Description of stratigraphic profile 𝑐2,30(𝑚/𝑠) 𝑠𝑢(𝑘𝑃𝑎)
A Rock or other rock-like geological formation, including at

most 5 m of weaker material at the surface > 800 −

B
Deposits of very dense sand, gravel, or very stiff clay, at
least several tens of metres in thickness, characterised by
a gradual increase of mechanical properties with depth

360 − 800 > 250

C
Deep deposits of dense or medium-dense sand, gravel or
stiff clay with thickness from several tens to many hun-
dreds of metres

180 − 360 70 − 250

D
Deposits of loose to medium cohesionless soil (with or
without some soft cohesive layers), or of predominantly
soft-to-firm cohesive soil

< 180 < 70

S1
Deposits consisting, or containing a layer at least 10𝑚
thick of soft clays/siltswith a high plasticity index (𝑃𝐼 > 40)
and high water content

< 100 (in-
dicative) 10 − 20

Table 3.1: Ground type

where 𝑐2,30 is the average shear wave velocity of the top 30𝑚 soil layer and 𝑠𝑢 is the undrained
shear strength of soil. The link between the description of non-cohesive soil and its internal friction
angle is shown in Table 3.2 (Fugro et al., 2016; Vugts, 2016)

Description of non-cohesive soil Relative density 𝐷𝑟 (%) Angle of internal friction 𝜑 (∘)
Very dense 85 − 100 > 45
Dense 65 − 85 40 − 45

Medium dense 35 − 65 35 − 40
Loose 15 − 35 30 − 35

Very loose < 15 < 30

Table 3.2: Compactness of sands in terms of 𝐷𝑟 and 𝜑

3.1.3. Soil drainage and consolidation
When soil is loaded, the load is first resisted by the pore water and then transferred to the soil

grains. The pressure gradient created by the load makes the pore water flows to the point with the
lower pressure. If the soil is permeable enough, the pore water flows quickly, quicker or at about the
same time as the loading rate. This loading situation is called a drained condition. On the contrary,
in low permeable soil, the pore water can not escape as quickly as the rate of loading, and the pore
water pressure will increase. This situation is called an undrained condition. The undrained condition
is unstable and temporary. The excess pore water will eventually drain away, and the soil will stabilize.
This capability of the soil to adapt is called consolidation (Vugts, 2016). Due to its low permeability,
clay is often assumed to behave in an undrained manner.

The consolidation process can take years or even age for low-permeable soil such as clays. Due
to this duration, soil can be normally-, over-, and under-consolidated. It is over-consolidated when
the pre-consolidation pressure exceeds the current overburden pressure. In other words, the over-
consolidation ratio is larger than unity 𝑂𝐶𝑅 > 1. It is normally consolidated when they are equal
𝑂𝐶𝑅 = 1. Else, it is under-consolidated 𝑂𝐶𝑅 < 1. Due to its prominent effect in clays, the state of
4Bowles originally used term strength parameters. Failure here is used to avoid getting lost in discussing the shear strength and
friction.

5Eurocode 8 must be consulted for complete list of ground types.
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consolidation is often associated with clays only. Most offshore foundations are installed on normally-
and over-consolidated. In the North Sea, over-consolidation is due to historical melting ice. In what
follows, only overconsolidated clays will be considered for this type of soil, which is justified by its larger
influence on the shear strength (Vugts, 2016). The appearance of overconsolidated clays in the North
Sea is also justified by other works (Bond et al., 1997; Gourvenec & Randolph, 2011).

3.1.4. Horizontal stress
The effective vertical stress induces effective horizontal stress 𝜎′ℎ, which is usually not the same. It

can be attributed to the nature of the soil mass and its geological history (Terzaghi, 1943). The in situ
effective vertical stress 𝜎′𝑣 may be calculated with some accuracy, but the in situ effective horizontal
stress 𝜎′ℎ is generally unknown. The ratio between the vertical and horizontal (effective) stress is a
function of internal friction angle 𝜑 and called the coefficient of earth pressure at rest 𝐾𝑜 = 𝜎′ℎ/𝜎

′
𝑣

(Fugro et al., 2016). Different formulations have been proposed due to the effect of the state of stress
and consolidation.

Due to its reliability against experiments in normally-consolidated soils, the 𝐾𝑜 formulation by Jaky
(Bowles, 1997; Mesri & Hayat, 1993; Vugts, 2016) is often referred

𝐾𝑜 = 1 − sin(𝜑) (3.3)

For over-consolidated clays, a higher 𝐾𝑜 is expected through Mayne and Kulhawy’s suggestion

𝐾𝑜 = (1 − sin(𝜑))𝑂𝐶𝑅sin(𝜑) (3.4)

In sands,
𝐾𝑜 = 0.4√𝑂𝐶𝑅 (3.5)

In fact, laboratory studies cannot fully capture in situ behavior such as 𝐾𝑜, especially if ageing and cyclic
loading are taking place. In situ 𝐾𝑜 is limited between 𝐾𝑜 = 0.5 and 𝐾𝑜 = 1.5. At large depth, 𝐾𝑜 < 1
is assumed in many situations. In practice, 𝐾𝑜 = 1 should be the limit for large depth as suggested
by Jamiolkowski and his colleagues (Fugro et al., 2016). Standards such as API and ISO recommend
𝐾𝑜 = 0.8 for designing open-ended piles in sands and no 𝐾𝑜 in clays. (Vugts, 2016).

3.2. Soil failure
3.2.1. Shear strength, friction, and Coulomb criterion

Shear strength is a property of cohesive soil independent of the normal stress 𝜎𝑛. In clays, it is due
to the sticky effect or bonding forces between the particles. Cohesion 𝑐 keeps two clay particles intact,
and adhesion 𝑎𝑠 keeps clay and another material in contact. Friction, or Coulomb friction, is a property
of non-cohesive soil6 dependent on 𝜎𝑛. Internal friction depends on the normal stress between two
sand grains, and external friction on the normal stress between the sand grains and another material.
The internal and external friction is denoted by the angle of internal friction 𝜑 and the angle of external
friction 𝛿, where the latter is often taken as 𝛿 = 𝜑 − 5∘. Sometimes friction-related properties are
expressed as the internal friction coefficient 𝜇𝑖𝑛 = tan(𝜑) and external friction coefficient 𝜇𝑒𝑥 tan(𝛿).

When the cohesive and non-cohesive soils are mixed in the earth layer, both shear strength and
friction contribute to their shear resistance. If the shear resistance is surpassed, the soil fails or starts
to slide against each other or another material. Therefore, it is possible to define shear resistance
as a failure criterion. This failure criterion is often called Coulomb criterion7. Following the Coulomb
criterion, the shear stress at failure of a soil-soil 𝜏𝑖𝑛 and soil-other material interface 𝜏𝑒𝑥 can be written
as (Miedema, 2014; Terzaghi, 1943; Vugts, 2016).

𝜏𝑖𝑛 = 𝑐 + 𝜎𝑛 tan(𝜑)
𝜏𝑖𝑛 = 𝑐 + 𝜎𝑛 𝜇𝑖𝑛

(3.6)

6It is valid as long as it is dry because wet sands have some cohesion.
7𝜎𝑛 is assumed as the magnitude of the compressive stress in this case.
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𝜏𝑒𝑥 = 𝑎𝑠 + 𝜎𝑛 tan(𝛿)
𝜏𝑒𝑥 = 𝑎𝑠 + 𝜎𝑛 𝜇𝑒𝑥

(3.7)

For saturated soils in this study, according to Section 3.1.3, the corresponding shear strength due
to cohesion 𝑐 is the undrained shear strength 𝑠𝑢. Thus the Coulomb criterion, can be written as

𝜏𝑖𝑛 = 𝑠𝑢 + 𝜎𝑛 tan(𝜑) (3.8)

𝜏𝑒𝑥 = 𝛼𝑠 𝑠𝑢 + 𝜎𝑛 tan(𝛿) (3.9)

where 𝛼𝑠 is a coefficient to relate the cohesion and adhesion in the undrained condition.

3.2.2. Mohr-Coulomb failure criterion
According to Mohr, a material failure is due to the resultant of all the stress components, be it normal

stress or shear stress. The resultant stresses, where the shear stresses are zero at a special angle,
are called the principal stresses. They can be derived to produce a circle with the centre point as the
average normal stress 𝜎𝑎𝑣 and the radius 𝑟𝑀. For soil, this is the average effective normal stress 𝜎

′
𝑎𝑣.

(Miedema, 2014; Vugts, 2016)

𝜎′𝑎𝑣 =
𝜎′𝑥 + 𝜎

′
𝑧

2 (3.10)

𝑟𝑀 = √(
𝜎′𝑥 − 𝜎′𝑧
2 )

2

+ 𝜏2𝑥𝑧 (3.11)

where 𝜎′𝑥 and 𝜎′𝑧 equal 𝜎′ℎ and 𝜎′𝑣, respectively, and 𝜏𝑥𝑧 are the shear stress defined in Cartesian
coordinates and in a two-dimensional stress state. Mohr circle shows that soil failure takes place when
the circle touches the line of the Coulomb criterion. This failure is often defined as the Mohr-Coulomb
failure criterion. The shear stress at failure 𝜏∗𝑖𝑛, thus 𝜏∗𝑒𝑥, following Mohr-Coulomb criterion can be
computed as (Brinkgreve, 2019; Miedema, 2014)

𝜏∗𝑖𝑛 = 𝑠𝑢 cos𝜑 + 𝜎
′
𝑎𝑣 sin𝜑 (3.12)

𝜏∗𝑒𝑥 = 𝛼 𝑠𝑢 cos𝜑 + 𝜎
′
𝑎𝑣 sin 𝛿 (3.13)

3.3. Soil behavior under dynamic loading
In this section, a literature survey on soil behavior under dynamic loading is discussed qualitatively

by first introducing the idea of dynamic loads. Dynamic problems are distinguished from static ones by
the inclusion of the inertia force effect. The inertia force becomes prominent as the frequency increases.
For harmonic motion, the inertia force is proportional to the square of the frequency. Studies on soil
dynamics are usually rooted in the study of the force exerted by nature, such as earthquakes, traffic
loads, and wave-induced loads in the ocean. Earthquake impulses exert load at a frequency around
0.3 to 10𝐻𝑧 (Ishihara, 1996), wind-generated surface gravity waves in the ocean at a frequency around
0.03 to 4𝐻𝑧 (Holthuijsen, 2007), and traffic loads at a frequency around 30 Hz8. Besides, studies on
man-made vibration, other than the vibratory pile installation, also exist, such as on the foundations for
machines, which may deal with an operating frequency in the order of 160𝐻𝑧 (Arya et al., 1979).9

Significance of strain rate, number of cycles, and type of dynamic loads
Three main discussions regarding soil behavior under dynamic loading consist of the effect of rapid

loading or strain rate, the effect of the number of cycles, and the effect of the forcing amplitude. First
of all, the strain rate may actually be referred to the effect of frequency since the strain rate is the first
derivative of the strain in time. Before further discussing the strain rate, it is best to make a reference
8According to EN 12697-24, fatigue test of asphalt pavement is conducted at this frequency.
9These range of frequency loads may assist the literature review in addition to the literature about the vibratory pile installation
since the GDP shaker is aiming for optimizing the operating frequency.
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frame regarding the loading rate. The loading rate or loading timewill be approximated here as a quarter
of the loading period 𝑇𝐹 = 0.25𝑇 (Ishihara, 1996), that is roughly the required time of a harmonic load
in a sine form to reach its amplitude from zero forcing.

Based on rate process theory, it is hypothesized that the soil cohesion 𝑐 and the internal friction
angle tan(𝜑), and thus their external counterpart, increases linearly with the logarithm of the strain
rate (Sathialingam & Kutter, 1989). Studies clarified that the strength of clays is greater in rapid loading
than in slow loading. One of the earliest investigations of the strain rate effect is due to Casagrande. It
is qualitatively due to the viscous nature of the soil, by assuming the Kelvin model, which gives smaller
strain with the increasing loading speed (Ishihara, 1996). A more recent study shows that the resis-
tance factor of a very soft clay increased by 9% for each 10 − 𝑓𝑜𝑙𝑑 increase in T-bar the penetration
rate (Nanda et al., 2017). On the contrary, other studies suggested that only a slight increase of ef-
fective stress, and negligible effect on friction angle, may occur in saturated sands. It is because with
increasing strain rate, saturated sands are forced to increase in volume, but at the same time, want to
maintain the constant volume, which results in the increase of effective stress (Sathialingam & Kutter,
1989).

Unlike the effect of strain rate, clay’s strength decreases as the loading cycles increase. In sand,
the relationship between the shear stress at failure and the number of cycles at increasing cycles are
essentially the same in clay. These cases of decreasing strength with the increase of cycles may be
attributed to pore pressure build-up (Ishihara, 1996). Other authors in vibratory installation suggest
fatigue and liquefaction to describe the effect of the number of cycles in clays and sands, respectively
(Holeyman et al., 2002; Jonker, 1987; Vugts, 2016). As the pore pressure builds up, the effective stress
tends to decrease as the total stress tends to stay the same, at one point, from one cycle to another
cycle. Why does the pressure build up affect the strength of clay, which, on the basis of the Coulomb
criterion, is independent of the effective stress? The answer will be that the undrained shear strength
is, in fact, dependent on effective stress as documented by Ladd and Foot (Pisanò, 2021a).

Finally, different types of dynamic loads impart different effects on the soil strength (Ishihara, 1996).
It is sometimes referred to as the effect of the average and cyclic shear stresses (Andersen, 2009;
Pisanò, 2021b). They are the combined effect of a non-oscillating forcing function and the oscillating
one, respectively, in time. While the non-oscillating amplitude can be monotonically increasing or con-
stant in time, the oscillating one can be regular or irregular. Usually, only the regular harmonic load
is discussed when describing laboratory test results. Two basics combination can be categorized as
either a two-way cyclic or one-way cyclic loading. Two-way cyclic load means that the soil is loaded
in a constant amplitude oscillating load, such as the same magnitude of compression and extension.
When a non-oscillating amplitude is added such that the soil is loaded only in either compression or
extension, it becomes a one-way loading. Conditions in between the two basic conditions can be a
biased two-way, biased one-way, monotonic-cyclic, cyclic-monotonic, monotonically increasing cyclic
loading, and so forth (Ishihara, 1996; Pisanò, 2021b).

In sands, the final effect seems to be the decrease of the shear stress at failure. However, in clays,
the combination effect of strain rate and the number of cycles somewhat counteract each other. One
study suggested that the concluding effect is the product of each effect (Lefebvre & LeBoeuf, 1987).
The higher strength due to the loading rate tends to disappear as the number of cycles increases
because the repetition effect becomes more prominent (Ishihara, 1996). Notably, these arguments are
based on the laboratory test results, which were conducted at a frequency range lower than 15 Hz,
meaning that it is lower than the standard vibrator frequency range. Therefore, they are only indicative
for the study of the GDP shaker.

3.4. Ideal soil
3.4.1. Soil as a homogeneous, isotropic, linear elastic solid

As discussed in the preceding sections, the behavior of sands and clays is so complex that a rigorous
mathematical analysis seems too complicated. Furthermore, it is exaggerated by the fact that the
knowledge of the physical properties and boundaries between soil layers is always inadequate. This
work then proceeds to replace sands and clays as described above with hypothetical materials referred
to as ideal sands and ideal clays, which to some extent, can be characterized by their elastic properties,
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shear strength, and friction(Terzaghi, 1943).
As for the case of modeling the monopile, a soil material model must be established to describe the

mechanical behavior of the soil. The linear elastic theory will be used in this study because of its engi-
neering practicality and ample references regarding linear elasticity theory. Therefore, error checking
and improvement will be straightforward in the future. Furthermore, using the linear elasticity theory will
minimize the complication of problem-solving. Also, as only a little research has been performed for
the purpose of monopile extraction, it may serve as an insight into more advanced constitutive models.

For soil to be homogeneous, isotropic, and linear elastic material, the Navier equations govern the
soil behavior, which in the 𝑟, 𝜃, and 𝑧 coordinates read (Howell, 2017)

𝜌𝜕
2𝑢𝑟
𝜕𝑡2 = 𝑓𝑟 + (𝜆 ∗ +𝐺)

𝜕
𝜕𝑟 (∇ ⋅ u) + 𝐺 (∇

2𝑢𝑟 −
𝑢𝑟
𝑟2 −

2
𝑟2
𝜕𝑢𝜃
𝜕𝜃 )

𝜌𝜕
2𝑢𝜃
𝜕𝑡2 = 𝑓𝜃 +

1
𝑟 (𝜆 ∗ +𝐺)

𝜕
𝜕𝜃 (∇ ⋅ u) + 𝐺 (∇

2𝑢𝜃 −
𝑢𝜃
𝑟2 −

2
𝑟2
𝜕𝑢𝑟
𝜕𝜃 )

𝜌𝜕
2𝑢𝑧
𝜕𝑡2 = 𝑓𝑧 + (𝜆 ∗ +𝐺)

𝜕
𝜕𝑧(∇ ⋅ u) + 𝐺∇

2𝑢𝑧

(3.14)

where 𝑢𝑟, 𝑢𝜃, and 𝑢𝑧 are the radial, circumferential, and longitudinal displacements, respectively. 𝑓𝑟,
𝑓𝜃, and 𝑓𝑧 are body forces in the radial, circumferential, and longitudinal direction, respectively. 𝜆∗ =

𝐸𝑣
(1+𝑣)(1−2𝑣) and 𝐺 = 𝐸

2(1+𝑣) are the Lamé constants, ∇ ⋅ u = 1
𝑟
𝜕
𝜕𝑟 (𝑟𝑢𝑟) +

1
𝑟
𝜕𝑢𝜃
𝜕𝜃 + 𝜕𝑢𝑧

𝜕𝑧 , and ∇
2𝑢𝑘 =

1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑢𝑘
𝜕𝑟 ) +

1
𝑟2
𝜕2𝑢𝑘
𝜕𝜃2 +

𝜕2𝑢𝑘
𝜕𝑧2 , 𝑘 = 𝑟, 𝜃, 𝑧.

Nevertheless, soil is not an ideal elastic material because stress and strain are not linearly related.
Strains are not fully reversible on reduction in stress, and strains are time-dependent (Poulos & Davis,
1980). Except for steel subject to stresses within the elastic range, there is no construction material
whose real mechanical properties are simple enough to be accepted as a basis for theoretical analysis.
(Terzaghi, 1943). The same reasoning regarding the practicality holds to assume the soil as a homo-
geneous and isotropic material, which in reality, soil is likely inhomogeneous and anisotropic due to the
sedimentation process. Inhomogeneous means the soil structure is not distributed uniformly across
soil layers, and anisotropic means the soil mechanical properties are not the same in all directions. An
example of these properties is shown in the result of the GDP shaker’s experimental campaign, where
the shear wave velocity is reported to be non-uniform within the radius of only 16𝑚 and depth of 8𝑚
(Gómez et al., 2022).

3.4.2. Mohr-Coulomb failure criterion for dynamic loading
For the soil to be an elastic material, the soil obeys Hooke’s Law, meaning that the soil deformation

will be reversible. It implies that there is no limit to the amount of stress that the soil can carry. At this
point, the Mohr-Coulomb failure criterion will be employed. It should be pointed out that this criterion
will not enter the equation of motion. To account for the effect of dynamic loading, a dynamic undrained
shear strength 𝑠𝑢𝐷 may be introduced in the Mohr-Coulomb criterion to consider its possible increase
due to strain rate effect as discussed in Section 3.3. The dynamic undrained shear strength may be
defined as 𝑠𝑢𝐷 = 2𝑠𝑢. The factor 2 is obtained by averaging the ratio of the cohesion under dynamic
loading over the cohesion under static loading of clay soils based on research onshore Japan (Ishihara,
1996).

However, taking this factor can be problematic because of the following reasons. Firstly, the tests
are performed on only three samples of soft clays and on land. The maximum static cohesion is in
the order of 32 𝑘𝑃𝑎, which is less than half of 70 𝑘𝑃𝑎 being the limit of firm clay in Table 3.1. It is
much smaller than the shear strength of the soil, which will be referred to in this work. As will be
shown later, soil data from Borssele OWF is adopted, which has a much larger cohesion in the order
of 200 − 600𝑘𝑃𝑎. All in all, there is a little reference about the behavior of clay under high frequency
load that is accessible publicly, which means future research on this topic is demanded. This section
concludes that the same failure criterion is assumed for the dynamic loading as in (3.12) and (3.13).

The pile-soil interface is the critical location to define the failure. Firstly, the shear stress away from
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the pile is generally smaller due to the decaying behavior of cylindrical waves. Secondly, it is because
𝜏∗𝑒𝑥 < 𝜏∗𝑖𝑛 due to 𝛿 < 𝜑 and 𝑎 < 𝑐. Therefore, 𝜏∗𝑒𝑥 will be discussed. This study will first consider the
failure criterion for sand. Following API and ISO in Section 3.1.4, 𝐾𝑜 = 0.8 is used, and the failure
criteria of sand becomes

𝜏∗𝑒𝑥,𝑠𝑎𝑛𝑑 =
𝛾′𝑠𝑧 + 𝐾𝑜𝛾

′
𝑠𝑧

2 sin(𝛿) (3.15)

where 𝛿 = 45∘ − 5∘ and 𝐾𝑜 = 0.8 as described in Table 3.2 and Section 3.1.4. The former considers
very dense sand based on Section 3.5, which also leads to 𝛾′𝑠 = 2022 × 9.81 × 𝑧. Hence, the failure
criteria of sand can be plotted as in Figure 3.1. To verify Figure 3.1, an example of calculation for the
1𝑚 depth is made and reads

𝜎′𝑣(𝑧 = 1) = (2022 − 1025) × 9.81 × | − 1| ≈ 9781𝑃𝑎
𝜎′ℎ(𝑧 = 1) = 0.8 × 9781 ≈ 7825𝑃𝑎

𝜎′𝑎𝑣(𝑧 = 1) =
9781 + 7825

2 × sin (40∘) = 5658𝑃𝑎
(3.16)

which shows an error of 2𝑃𝑎 and deemed negligible. Therefore, the figure matches the formulation.

Figure 3.1: The assumed failure criteria for sand

3.4.3. Assumptions on the soil failure for the overall pile-soil system
Recalling Section 1.6 on the use of 3D FEM, Section 2.2 and Section 2.3 on the monopile idealiza-

tion, and Section 3.4 on the soil idealization, the overall system is shown in Figure 3.2 or 7.18. The
following assumptions on pile-soil behavior are described, which are suggested by Metrikine 10 and
closely related to previous research regarding torsional pile responses (Dong Guo & Randolph, 1996)
(Poulos, 1975) where a discretized soil layer act independently from the adjacent layers. The pile-soil
system assumes a homogeneous, isotropic, and linear elastic material for both the pile and soil and
perfectly bonded contact between the interfaces. The steady state response to the harmonic excitation
due to the vibrator at the pile top is assumed. Two soil layers are distinguished based on the presence
of the monopile, which are the upper layer that shares the same depth with the embedded length of
the monopile and the lower layer or the additional soil layer where no monopile is embedded across
this depth. The top layer assumes discrete layers, which in Figure 3.2 is shown by three soil layers.

The governing equations of the overall 3D pile-soil system will be (2.2) and (3.14) where 𝑓𝑟 = 𝑓𝜃 =
0 and 𝑓𝑧 = 𝜌𝑔. Assuming perfectly bonded contacts between the pile-soil and soil-soil interfaces,
10(A. Metrikine, personal communication, 5 September, 2022)
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displacement and stress continuity are prescribed. Dashpot (and spring) elements are assigned at the
outer boundary both for the solution that propagates in 𝑟 and 𝑧 and a harmonic external load 𝐹𝜃 is
excited at the pile top. Finally, the governing equations and the boundary condition will be solved by
Ansys. The remaining task is to interpret the output, which is elaborated in the next chapter.

The goal is to find the soil failure at the outer part of the pile-soil interface in the vicinity of the
monopile. The model assumes that the inner soil or usually called the soil plug, does not govern the
soil failure. That is the pile will slide over the soil when the outer soil-pile interface fails. With three
distinct top layers, three pile-soil contacts are the consequences. Pile-soil contact assumes a bonded
contact, which enforces the continuity of both the displacement and stress. It is hypothesized that the
failure takes place starting from the uppermost layer 𝑙 = 1. The force 𝑓𝑜,1 will be defined as the minimum
amplitude that fails the first layer 𝑙 = 1, which is governed by the failure criterion described in Section
3.2.2. Generally, 𝑓𝑜 can be determined by means of iteration.

It is hypothesized that every time the maximum shear surpasses the failure criterion, the contact
between the pile and the soil fails. At each targeted depth, the simulation is tuned in such a way that the
maximum shear stress of the soil outside the monopile exceeds the failure criterion defined in Section
3.4.2. If the pile-soil contact of the first layer fails, only the soil resistance from the remaining lower layers
holds. At this point, the stress state from the last simulation is not accounted for as a perturbation to
the next simulation. The iteration is done for each layer till all of the force amplitudes are materialized.
For example, referring to Figure 3.2, three force amplitudes must be found (i.e. 𝑓𝑜,1, 𝑓𝑜,2, 𝑓𝑜,3 ). If
more discrete layers are assumed, combinations due to the number of layers are conceivable, which
leads to few hypothetical cases being examined and presented. By observing the results from each
simulation, one can analyze the relation between the force amplitude of each simulation. To reduce the
uncertainty of the results, a statistical sense will be assumed as a tool to analyze the relation between
the discovered force amplitudes.

Figure 3.2: Overall pile-soil system

3.5. Input data acquisition
A geotechnical report that is made publicly available by the Netherlands Enterprise Agency is re-

ferred to determine the soil properties. The goal is to get an insight into real data, especially that is
located in the North Sea, where the concern of monopile decommissioning is concentrated at. The
report, produced by Fugro Engineers B.V. and reviewed by DNV GL, describes the in situ soil investi-
gation for the Borssele Wind Farm Site (WFS) IV in the Dutch Sector of the North Sea. The interpreted
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Cone Penetration Test (CPT)11 logs from the seafloor at 24 locations, which are performed to depths
ranging between 8.6𝑚 and 49.6𝑚 below the seafloor, will be the subject matter here. From this report,
only soil density and soil type are exploited. The density of the soil is quantitatively computed by av-
eraging the data so that 𝜌 = 2022 𝑘𝑔/𝑚3. Considering the worse condition for extraction, very dense
sand and hard clay can be concluded as the composition of the soil layers. As the starting point, the
soil layer will assume a very dense sand first. Other parameters are then derived from the qualitative
soil descriptions using tables in the previous sections.

11Based on 𝐷𝑎𝑡𝑎1, the penetration depth at this wind farm is 47𝑚. However, from the geotechnical report, it is impossible to
penetrate the soil down to this depth in all locations. This statement is supported by the fact that several locations provide the
CPT log data until the depth that is less than 47𝑚 due to the stopping criterion is exceeded. For example, at CPT_WFS4_11,
the CPT data below 37𝑚 is not available. Therefore, 𝐷𝑎𝑡𝑎1 is an approximation or not exact.
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Interpreting Ansys Mechanical and the
amplitude of the torque and clamping

force

4.1. Harmonic analysis: the amplitude and phase of the steady-
state response

Ansys Harmonic Response assumes the equation of motion as

Mü+ Cu̇+Ku = f (4.1)

where M, C, and K are the mass, damping, and stiffness matrices, respectively. ü, u̇, u, and f are
the acceleration, velocity, displacement, and force vectors, respectively. WhileM, C, and K are known
due to the geometry, material input, and the boundary or interface conditions. f is known due to the
prescribed force. The only unknown is u, from which the first and second derivative in time gives u̇
and ü. For a harmonic analysis, the force vector is in the form of

f = (fo exp(𝑖𝜓)) exp(𝑖𝜔𝑡) (4.2)

where fo, 𝜓, 𝜔, and 𝑡 are the force amplitude, initial phase angle, angular frequency, and time. For
a straightforward interpretation during post-processing, 𝜓 = 0 is put every time the simulation is run.
Therefore,

f = fo exp(𝑖𝜔𝑡) (4.3)

The steady-state response to the above forcing input will oscillates in the same frequency 𝜔, which
Ansys searched for in the form

u = (uo exp(𝑖𝜙)) exp(𝑖𝜔𝑡) (4.4)

where uo and 𝜙 are the displacement amplitude and its phase angle. Substituting (4.3) and (4.4) to
(4.1) leads to

(K̃ũ = fo) exp(𝑖𝜔𝑡) (4.5)

where the complex displacement response ũ = uo exp(𝑖𝜙) and the complex stiffness K̃ = (−𝜔2M+ 𝑖𝜔C+K).
The latter can also be written as K̃ = Ko exp(𝑖Φ), whereKo is the stiffness amplitude andΦ is its phase
angle. Therefore,

25
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uo =
fo
Ko

exp (−𝑖(𝜙 + Φ)) (4.6)

Substituting (4.6) to (4.4) yields

u = ( foKo
exp (−𝑖(𝜙 + Φ)) exp(𝑖𝜙)) exp(𝑖𝜔𝑡)

= fo
Ko

exp (𝑖(𝜔𝑡 − Φ))
(4.7)

Note that the use of complex exponential form here is an auxiliary thanks to Euler as in (5.4). Physically,
the forcing input can be either in a co-sinusoidal or sinusoidal form, which oblige the user to take either
the real or imaginary part. So does the displacement response. From (4.3) and (4.7), this work assumes
a force in the form f = fo cos (𝜔𝑡) that leads to the response in the form u = uo cos (𝜔𝑡 − Φ). uo and
Φ are related to u by

uo = √𝑅𝑒(u)
2 + 𝐼𝑚(u)2 (4.8)

and

Φ = arctan(
𝐼𝑚(u)
𝑅𝑒(u)

) (4.9)

where Φ is determined in [−𝜋, 𝜋] by the four-quadrant inverse tangent. With these, the interpretation
of the real and imaginary part of the displacement from Ansys harmonic analysis is closed.

4.2. Static analysis
In order to take into account the effect of gravity, the Static Structural toolbox in Ansys is utilized.

In what follows, Figure 7.18 is referred and a cylindrical coordinate system in the figure is assumed.
The effect of gravity will be assumed such that the vertical stress follows the hydrostatic pressure
distribution, which reads 𝜎𝑣 = 𝜎𝑧𝑧 = 𝛾𝑠,𝑤𝑒𝑡𝑧, by doing two procedures. The boundary condition at the
outer radius is set as 𝑢𝑟(𝑏, 𝜃, 𝑧, 𝑡) = 0, that is to prescribe zero displacements in the 𝑟-direction. Next to
that, the boundary condition at the bottom boundary assumes a fixed boundary so that 𝑢𝑟(𝑟, 𝜃, 𝑧Ω, 𝑡) =
𝑢𝜃(𝑟, 𝜃, 𝑧Ω, 𝑡) = 𝑢𝑧(𝑟, 𝜃, 𝑧Ω, 𝑡) = 0.

4.3. Pre-stressed harmonic analysis
The so-called pre-stressed harmonic analysis is used to consider the effect of the initial stress due

to the self-weight. In the Ansys Workbench, the Static Structural toolbox is first dragged and dropped
on the Project schematic. Secondly, the Harmonic Response toolbox is also dragged and dropped
on the Model of the Static Structural that is already in the project schematic. The first verification on
this task is to open the Harmonic Response toolbox and make sure that the word Pre-stress appears
above the Analysis settings. Afterwards, the Harmonic Response toolbox simulation is understood by
the comprehension in Section 4.1. One way to verify the pre-stressed simulation result is to compare
it with a simplified analytical solution, which will be shown in the test cases.

4.4. The amplitude of the torque and clamping force
For a given force amplitude 𝑓𝑜 at the pile top that fails the soil layer as introduced in Section 3.4.3,

the required torque 𝑇𝑜 reads
𝑇𝑜 = 𝑓𝑜𝑅𝑝 (4.10)
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where the radius of the monopile 𝑅𝑝 is approximated as the half of the monopile diameter 𝑅𝑝 ≈ 𝐷𝑜/2.
The force amplitude 𝑓𝑜 is also directly related to the clamping force 𝑁𝑜 following the Coulomb criterion
as in Section 3.2.1 and illustrated in Figure , which must be provided normal to 𝜃-direction (i.e. in the
𝑟-direction) and reads

𝑁𝑜 =
𝑓𝑜

𝜇𝑒𝑥,𝑠𝑠
(4.11)

Figure 4.1: 𝑓𝑜-𝑁𝑜 relation

where 𝜇𝑒𝑥,𝑠𝑠 is the static external friction coefficient of a steel-steel contact. The use of 𝜇𝑒𝑥,𝑠𝑠 stands
on the ground of the following assumptions1. The clamping tools are made of a hardened steel much
like the monopile’s steel. A static friction coefficient holds due to no slip criteria and constant during the
vibration. Since the ocean environment is concerned and the distance between the pile top and the
sea surface is close, the pile-clamp connection will tend to slide due to wet condition if one assumes
flat surfaces between the two. A mechanical connection between the clamp and monopile is assumed
to reduce the chance of slip, which can be done by configuring teeth on the clamp’s surface so that
the clamp can penetrate the monopile. Therefore, a relatively high friction coefficient can be obtained
between 𝜇𝑒𝑥,𝑠𝑠 = 0.7 and 𝜇𝑒𝑥,𝑠𝑠 = 0.8 to grip the monopile due to the mechanical connection. Finally, 𝑁𝑜
is the minimum normal force for the mechanical connection and not necessarily the force to penetrate
the monopile.

4.5. Computing the required power
At the end of this study, the required power is calculated to indicate whether the current GDP shaker

operating power, which is around 200 𝑘𝑊, meets the demand or not. The instantaneous power 𝑃 is
defined as the rate 𝑑/𝑑𝑡 of the work done𝑊, which in this study reads2 (Grote & Hefazi, 2021)

𝑃(𝑡) = 𝑑𝑊
𝑑𝑡 =∑𝐹(𝑡)𝑣(𝑡) (4.12)

where ∑𝐹(𝑡) and 𝑣(𝑡) must be defined as the total applied force and the resulting velocity at the pile
top in the 𝜃-direction. For a co-sinusoidal load, from Section 4.1, the instantaneous power reads

𝑃(𝑡) = 𝑅𝑒 (𝑓𝑜 exp(𝑖𝜔𝑡)) 𝑅𝑒 (𝑖𝜔𝑢𝑜 exp(𝑖Φ) exp(𝑖𝜔𝑡))
= 𝑓𝑜 cos(𝜔𝑡) (−𝜔)𝑢𝑜 sin (𝜔𝑡 − Φ)

= 1
2𝑓𝑜𝜔𝑢𝑜(− sin(2𝜔𝑡 − Φ) + sin(Φ))

(4.13)

1(S.C.H. van der Burg, personal communication, 14 February, 2023)
2(A. Tsetas, personal communication, 6 February, 2023)
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where 𝑓𝑜 and 𝑢𝑜 are the force and displacement amplitude at the pile top. It is useful to address the
power in terms of average power over one period3 𝑇 = 2𝜋/𝜔 (Wolf, 1985), which can be computed as

𝑃𝑎𝑣𝑒 =
1
𝑇 ∫

𝑇

0
𝑃(𝑡)𝑑𝑡

= 𝜔
2𝜋 ∫

2𝜋
𝜔

0
𝑓𝑜 cos(𝜔𝑡) (−𝜔)𝑢𝑜 sin (𝜔𝑡 − Φ) 𝑑𝑡

= 1
2𝑓𝑜𝜔𝑢𝑜 sin(Φ)

(4.14)

(4.14) shows that the average power has no 𝑡 anymore due to integration and it is maximum when
the phase of the output velocity is 𝜋/2 with respect to the phase of the input force. With these, for a
given output of both the real and imaginary part of the displacement at the pile top due to an applied
harmonic load, the power can be determined.

3(S.S. Gómez, personal communication, 13 February, 2023) (A.V. Metrikine, personal communication, 20 February, 2023)



5
Analytical model

5.1. Modeling framework
Geometrical model of soil and minimizing error

A general method through which an infinite system may be approximated by an FE model is with
the use of viscous elements at the outer boundary. The viscous boundary is a damping force that is
assumed to be proportional with the velocity at the boundary. Theoretically, in the one-dimensional
analysis of wave propagation, when a disturbance encounters this element, it is possible to adjust the
damping force in such a way that no reflection occur. When such adjustment is made, the viscous
boundary is called a non-reflective or absorbing element/boundary (Deeks & Randolph, 1994; Lysmer
& Kuhlemeyer, 1969; Metrikine & Vrouwenvelder, 2021). It is to prevent excessive errors of the solution1
in the interior domain due to reflection. Reflection occurs when other types of boundary are used such
as kinematic/essential boundaries2 or dynamic/natural boundaries3, which will result in a standing wave
field. The standing wave field indicates that the energy is kept in the interior domain. When the material
damping is sufficiently low, which is common in engineering systems, this will lead to an erroneous
results.

Concerning erroneous results, three sources of error in FE modeling consists of modeling error,
discretization error, and numerical error, since FE modeling is by definition an approximation (Oñate,
2009). Modeling error comes from the continuum model and its boundary, because these two are
defined separately but together define the displacement solution. In the continuum, defining an ideal
soil is seen as the main source of modeling error because this is not complete to model real soils. This
error can be minimized, if not overcome, by introducing a more representative constitutive models.

The first of modeling the boundary is about its general geometries such as whether the soil domain
is rectangular cubical or circular cylindrical. It is recommended to employ a circular boundary to avoid
concentrated solutions (i.e. displacement, stress, etc.) at the corners of rectangular domain due to
wave reflection at the boundary 4. The second is about the use of viscous boundary, which is introduced
earlier. Therefore, both the use of the circular domain and the viscous boundary are seen as two ways
of minimizing modeling error at the boundaries. A proper definition of the viscous elements, thus the
magnitude of the damping force, is crucial to minimize the modeling error.

The discretization5 error is mitigated mainly by using a sufficiently fine element size Δ𝑙. In dynamic
analysis, it is treated by applying aminimumof 10 elements per wavelength Δ𝑙 = 𝜆/10 as a rule of thumb
and a finer mesh up to Δ𝑙 = 𝜆/20 is recommended to obtain more accurate results 6. Other authors
recommend Δ𝑙 = 𝜆/8 to Δ𝑙 = 𝜆/10 (Vacareanu et al., 2019) and Δ𝑙 ≤ 𝜆/12 (Lysmer & Kuhlemeyer,
1In this study, the solution is in terms of displacement and shear stresses will be the main focus.
2Fixed or free boundary
3Element of mass or spring
4(A. Metrikine, personal communication, 5 September, 2022)
5Only the spatial discretization is considered due to the steady state assumptions.
6(A. Tsetas, personal communication, 7 October, 2022)
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1969). Following the subject-matter experts, Δ𝑙 ≤ 𝜆/10 is taken as a moderate choice for the starting
point. The numerical error is usually significance when discontinuites of material properties exists
(Oñate, 2009), which matters at the pile-soil interface. To minimize this error, mesh conformity 7 is
applied at best by contact sizing and contact matching. Since the pile element seems governing in this
case, a convergence check must be performed for different element sizes of the pile. Therefore, two
mesh criterion should be satisfied, the first one is to minimize the discretization error, and the second
one is to minimize the numerical error.

Benchmarking
Before continuing with the application of the viscous boundary, a frame reference is made to Figure

7.18, from now on, to guide the discussion on the overall modeling. Figure 7.18 features the circular
cylindrical monopile, soil domain, coordinates, and their corresponding nomenclatures. Two questions
arise when discussing the soil geometries for the FE modeling: To what extent the soil domain needs
to be modeled? Considering the ability of the absorbing boundary, it is thus favorable to truncate the
soil domain as small as possible to ease the computational effort, but what is the limit?

A study offered relationships to define an optimum lateral extent 𝐷Ω of a soil domain based on
FE analyses of soil structure interaction due to earthquakes in OpenSEES. The study employed a
pressure dependent constitutive model with 2% Rayleigh damping in the continuum and the so-called
Lysmer-Kuhlemeyer (LK) viscous dashpot or the standard viscous boundary8. The FE model are veri-
fied against another numerical study in the literature. These relationships show that 𝐷Ω must increase
with the peak ground acceleration (PGA) and width of the structures/foundations 𝐷𝑜. Also, it indicates
that the effect of 𝐷Ω becomes small, if a minimum of 𝐷Ω = 10𝐷𝑜 is applied, based on comparing three
cases of 𝐷𝑜 including 15𝑚, 27𝑚, and 45𝑚 (Sharma et al., 2020). No information available on the
optimum vertical extent 𝐻Ω, but it assumes a bedrock boundary 30𝑚 below the ground surface. It is
concluded to hold the suggestion on 𝐷Ω = 10𝐷𝑜 and to leave behind the suggested PGA relationships
because this thesis applies no PGA input.

Another study, on the vibratory pile installation, suggested that the vibration influence at 33.3𝐻𝑧,
in terms of peak particle velocity (PPV), measured from the monopile’s outer diameter, extends up to
around 𝐿Ω𝑝 = 5.6𝐷𝑜 or 𝐷Ω = 5.6 × 2 + 1 = 12.2𝐷𝑜, which is not sensitive to different centrifugal force
inputs 225 𝑘𝑁, 270 𝑘𝑁, and 315 𝑘𝑁. Unlike the previous reference, the second literature employed an
elastic-plastic constitutive model with 10% damping ratio, and the so-called truncation boundary with
𝐷Ω = 30𝑚 and 𝐻Ω = 20𝑚 in FLAC3D. The FE analysis are validated against field tests, which show
that the deviation of the PPV are negligible at 𝐿Ω𝑝 ≥ 5𝐷𝑜 (Wei et al., 2022). Albeit no clear conclusion
is made about the vibration influence below the pile tip, it gives a clue that at around 𝐻Ω𝑝 = 13𝐷𝑜,
the vibration becomes negligible. It can be perceived that the two studies deduce a roughly similar
horizontal far-field location from the monopile at 𝐿Ω𝑝 = 0.5×10𝐷𝑜 −0.5×𝐷𝑜 = 4.5𝐷𝑜 and 𝐿Ω𝑝 = 5.6𝐷𝑜.
The latter study suggests a vertical far-field location at 𝐻Ω𝑝 = 13𝐷𝑜. It is then decided to take 𝐿Ω𝑝 =
5.6𝐷𝑜 thus 𝐿Ω𝑝 = 6𝐷𝑜 by rounding up and 𝐻Ω𝑝 = 13𝐷𝑜9 as the starting point for evaluating the FE
analysis later on.

The need for verification and validation
Verification and validation are the primary methods to assess the confidence into the FE analy-

sis results. Validation is often associated with comparison with either laboratory or field experiments,
which means creating a relationship between the FE analysis with the real world. On the other hand,
verification does not build a direct FE analysis-real world relation. It constitutes the relation between
the FE analysis versus the conceptual model, in which the conceptual model stands on the grounds
of real world physics. In other words, while verification proves that the FE analysis solves a prob-
lem accurately, validation proves that the FE analysis solves the right problem (CEN, 2015; Oñate,
2009). Verification can be done by comparison with an established accurate numerical model or with

7(C. Kasbergen, personal communication, 21 December, 2022)
8The LK boundary suggests two coefficients of viscous boundary in the form 𝜎𝑑𝑝 = 𝑎𝑑𝑝𝜌𝑐1�̈�𝑛𝑜𝑟𝑚𝑎𝑙 and 𝜏𝑑𝑝 = 𝑏𝑑𝑝𝜌𝑐2�̈�𝑡𝑎𝑛𝑔𝑒𝑛𝑡
where 𝑐1 and 𝑐2 are the speed of P- and S-waves, respectively. �̈�𝑛𝑜𝑟𝑚𝑎𝑙 and �̈�𝑡𝑎𝑛𝑔𝑒𝑛𝑡 are the velocities normal- and tangent to
the boundary, respectively. Most of the time 𝑎𝑑𝑝 = 1 and 𝑏𝑑𝑝 = 1. So, the coefficient of the dashpot elements are 𝑐𝑑𝑝,𝑛𝑜𝑟𝑚𝑎𝑙 =
𝑎𝑑𝑝𝜌𝑐1 and 𝑐𝑑𝑝,𝑡𝑎𝑛𝑔𝑒𝑛𝑡 = 𝑏𝑑𝑝𝜌𝑐2 (Lysmer & Kuhlemeyer, 1969).

9This is because little information is obtained from the literature, which performed dynamic analysis with considerably high
frequency load and conclude this type of information.
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benchmark problems derived from exact analytical solutions (Oñate, 2009; Wellens, 2021). This study
focuses only on the verification by comparing with analytical solutions. However, exact analytical solu-
tions are often available only for simplified problems, which is exemplified in the following sections. After
all, they can be used as a starting point for guiding the thinking process down to the future validation.

5.2. Developing analytic model
To tackle problems in Section 5.1, an analytical model is developed in Maple and Mathematica.

The analytical model illustrates a cylindrical soil cavity that is perfectly bonded with a rigid ring at the
inner boundary, under a plane strain and linear elastic assumption 10. The appearance of cavity is
not realistic, because the soil inside the monopile exists in reality. It is intended to avoid mathemati-
cal complications when solving the conditions at the origin radius. The effect of the vibrator mass is
first neglected because it acts only at the top. To achieve a conservative result, a perfectly bonded
assumption at the pile-soil interface is made.

In order to make apples to apples comparison, the FE analysis will be broken down into smaller
steps, in which it begins with a model that is as close as possible to the analytic model 11. It starts with
the 2D plane strain model. By applying this technic, a more complicated phenomena may be identified
step by step when the FE model is tailored from the 2D model to the 3D model.

A plane strain assumption is made by assuming that 𝐿𝑝 ≫ 𝐷𝑜, which is plausible for monopiles in this
study. Whenever there is a load perpendicular to the longitudinal elements and it does not vary along the
length12, it is assumed that all cross sections are in the same condition (Timoshenko & Goodier, 1951).
Additionally, as introduced in Section 3.4.1, this study will employ linear elastic theory despite elastic
bodies are generally governed by nonlinear equations for their three-dimensional motions. However,
an examination of a problem based on linearized equations often leads to considerable insight into the
actual physical situation. By linear equations, the system will be easier to understand and the principle
of superposition applies (Achenbach, 1975). Therefore, the linearized theory of wave propagation in
elastic bodies is used.

Furthermore, the solution is sought in the form of steady state solution to a harmonic load. It is
because the GDP shaker or pile vibrator generally employs a harmonic excitation. Provided that the
system is stable, the steady state condition is the condition where the transient regime ended due to
energy dissipation from the distributed damping, leaving only the response due to the external force.
The steady state response is independent of the initial conditions. Therefore, it is sufficient to only
consider the particular solution. One may think that the problem should be considered as a transient
problem, where, for example, a modal analysis would be more appropriate to capture the short term
responses. The answer to this question is unknown, thus, subject for future research.

5.3. Undamped torsional motion
5.3.1. Forced torsional motion in a semi-infinite pile-soil

Consider a semi-infinite media in cylindrical coordinates, as shown in Figure 5.1, that is bounded
by a rigid ring at 𝑟 = 𝑎. Shaded area, bold circle, and dashed circle depicts the cavity, rigid ring, and
the infinite extend of the medium at large 𝑟, respectively. While the media represents a soil continuum
having mass density 𝜌 and shear modulus 𝐺, the ring represents a monopile. The rigid ring assumption
is justified because the rigidity of steel is much larger than the soil 𝐺𝑝 ≫ 𝐺. This is by limiting the
analysis up to the soil characterized by the shear wave velocity of 360𝑚/𝑠, which corresponds to
the upper limit of medium dense sand and stiff clay in accordance with Eurocode 8 (CEN, 2004a).
Under a plane strain assumption, only coordinate 𝑟 and 𝜃 are referred. The system is subjected to a
torsional excitation in the form of harmonic time function with a constant amplitude, that is assumed
to be distributed symmetrically along the monopile top. A symmetrically distributed load results in an

10(A. Metrikine, personal communication, 26 June, 2022)
11(S.S. Gómez, personal communication, 4 October, 2022) (C. Kasbergen, personal communication, 16 December, 2022)
12In fact, harmonic variation due to the exerted harmonic torsion at the pile top will be generated. By assuming linearity, the
effect of variation may be obtained as a superposition of the same stresses with different phases.
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axially symmetric stress distribution along the monopile’s cross-section. The change of strains in 𝜃 and
𝑧 direction are thus zero (i.e. 𝜕/𝜕𝜃 = 0 and 𝜕/𝜕𝑧 = 0).

Figure 5.1: Semi-infinite model

The equation of motion for small amplitude displacement 𝑢𝜃(𝑟, 𝑡), in the absence of body force 𝑓𝜃,
gravitational field, and energy dissipation, as derived in Appendix B, reads

𝑢′′𝜃 +
1
𝑟𝑢

′
𝜃 −

1
𝑟2𝑢𝜃 =

1
𝑐22
�̈�𝜃 , 𝑎 < 𝑟 < ∞ (5.1)

where the displacement in the 𝜃 direction is a function of radius and time 𝑢𝜃(𝑟, 𝑡), the superscript

′, ′′, and accent ̈ denote 𝜕/𝜕𝑟, 𝜕2/𝜕𝑟2, and 𝜕2/𝜕𝑡2, respectively, and 𝑐2 = √𝐺/𝜌 is the shear wave
propagation speed13. Initial conditions are not formulated following the steady state assumption. Two
other conditions are required to complete the problem statement of this second order partial differential
equation (PDE). Firstly, the boundary condition at 𝑟 = 𝑎 reads

{𝑚𝑝�̈�𝜃 = 𝑃𝜃 + 𝜏𝑟𝜃}𝑟=𝑎 (5.2)

where the torsional excitation is defined as 𝑃𝜃(𝑡) = 𝜏𝑜 cos(𝜔𝑡). The pile’s mass 𝑚𝑝 = 𝜌𝑝 𝑤𝑡, where 𝜌𝑝
is the mass density of the pile and 𝑤𝑡 is the pile’s thickness. By inspection, the boundary condition at
𝑟 = 𝑎 has a unit of stress. Secondly, the radiation condition holds for which inward-propagating waves
must not exist.

Because the forcing input 𝑃𝜃(𝑡) is harmonic with an angular frequency 𝜔, the excited shear wave
of the soil will also be harmonic having the same angular frequency 𝜔 (Metrikine & Vrouwenvelder,
2021). Also, it is assumed that the spatial and temporal solution is separable. With these assumptions,
a straightforward way to solve the problem at hand is by assuming a solution in the form

𝑢𝜃(𝑟, 𝑡) = 𝑅𝑒(𝑈𝜃(𝑟) exp(𝑖𝜔𝑡)), 𝑖 = √−1 (5.3)

where 𝑈𝜃(𝑟) is an unknown function, which depends on 𝑟, may depend on 𝜔, is independent of 𝑡, and
to be determined from the boundary conditions. The exp(𝑖𝜔𝑡) is the complex form of a harmonic wave,
which according to Euler

exp(𝑖𝜔𝑡) = cos(𝜔𝑡) + 𝑖 sin(𝜔𝑡) (5.4)

where 𝑖 is the imaginary unit as in (5.3). The Euler’s formula in (5.4) stores both the cosine and sine
function, with angular frequency 𝜔, in time 𝑡, in one formula. This capability helps the analysis when
the external load is either in cosine or sine form. 𝑅𝑒 means taking the real part of the complex solution
inside the bracket () in (5.3) because the excitation is defined in the form 𝑃𝜃(𝑡) = 𝜏𝑜 cos(𝜔𝑡). If the
13The subscript follows Graff’s notation for 𝑐1 is the compression wave speed and 𝑐2 is the shear wave speed
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external load is in the form 𝑃𝜃(𝑡) = 𝜏𝑜 sin(𝜔𝑡), then 𝐼𝑚 should be used to take the imaginary part of
the complex solution (Metrikine & Vrouwenvelder, 2021).

Substituting (5.3) into the governing equations (5.1) and (5.2) reads

(𝑈′′𝜃 +
1
𝑟𝑈

′
𝜃 −

1
𝑟2𝑈𝜃 = −

𝜔2
𝑐22
𝑈𝜃) exp(𝑖𝜔𝑡) (5.5)

{−𝜔2𝑚𝑝𝑈𝜃 − 𝐺 (
𝑑𝑈𝜃
𝑑𝑟 − 𝑈𝜃𝑟 ) = 𝜏𝑜}𝑟=𝑎

exp(𝑖𝜔𝑡), (5.6)

for non-trivial solutions (i.e. the existence of periodic amplitude)

𝑈′′𝜃 +
1
𝑟𝑈

′
𝜃 + (𝛽2 −

1
𝑟2)𝑈𝜃 = 0, 𝛽 = 𝜔

𝑐2
(5.7)

{−𝜔2𝑚𝑝𝑈𝜃 − 𝐺 (
𝑑𝑈𝜃
𝑑𝑟 − 𝑈𝜃𝑟 ) = 𝜏𝑜}𝑟=𝑎

(5.8)

the equation of motion (5.7) is in the𝜔 domain and has the form of Bessel equations with the wavenum-
ber 𝛽. The general solution to this equation is (Bowman, 1958; Graff, 1975; Maplesoft, 2022)

𝑈𝜃(𝑟) = 𝐴1𝐻(1)1 (𝛽𝑟) + 𝐴2𝐻(2)1 (𝛽𝑟) (5.9)

where 𝐴1 and 𝐴2 are the two unknown contants to be determined from the two conditions. These
constants are sufficiently small but not zero and sufficiently large but not infinity. 𝐻(1)1 (𝛽𝑟) and 𝐻(2)1 (𝛽𝑟)
are the first order Hankel function of the first kind and the first order Hankel function of the second kind,
respectively. They are defined as

𝐻(1)1 (𝛽𝑟) = 𝐽1(𝛽𝑟) + 𝑖 𝑌1(𝛽𝑟)
𝐻(2)1 (𝛽𝑟) = 𝐽1(𝛽𝑟) − 𝑖 𝑌1(𝛽𝑟)

(5.10)

where 𝐽1(𝛽𝑟) is the Bessel function of the first kind, 𝑌1(𝛽𝑟) is the Bessel function of the second kind.
Notice that the first of (5.10) has a similar form with (5.4). The next step is to substitute the general
solution into the boundary and radiation condition. Firstly, the radiation condition is investigated. Before
solving the radiation condition, the proportionality of the asymptotic expansions of the Hankel functions
at large 𝑟 are first noted (Wolfram Alpha, 2022a, 2022b).

𝐻(1)1 (𝛽𝑟) ∼ √2
√𝜋𝛽𝑟

exp(𝑖 (𝛽𝑟 − 3𝜋4 ))

𝐻(2)1 (𝛽𝑟) ∼ −𝑖 √2
√𝜋𝛽𝑟

exp(−𝑖 (𝛽𝑟 − 3𝜋4 ))
(5.11)

(5.11) shows that 𝐻(1)1 (𝛽𝑟) gives inward-propagating waves when multiplied with the time function
exp(𝑖𝜔𝑡) as in (5.3)14. Therefore, to satisfy the radiation condition, 𝐴1 must be set to zero (Graff, 1975;
Metrikine & Vrouwenvelder, 2021). Now (5.9) becomes

𝑈𝜃(𝑟) = 𝐴2𝐻(2)1 (𝛽𝑟) (5.12)

Secondly, (5.12) is substituted into the boundary condition in (5.8) to give

1
𝑎 (−𝛽𝑎𝐺𝐴2 (𝐻

(2)
0 (𝛽𝑎) − 𝐻

(2)
1 (𝛽𝑎)
𝛽𝑎 ) + (−𝑎𝜔2𝑚𝑝 + 𝐺)𝐴2𝐻(2)1 (𝛽𝑎) − 𝜏𝑜𝑎) = 0 (5.13)

14The outward-propagating waves are formed if the argument of the exponential function of space and time have different sign,
such as exp(𝑖(−𝛽𝑟 + 𝜔𝑡)). As a wave tends to keep its constant phase, 𝑟 must increase with 𝑡.
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Solving for 𝐴2 leads to

𝐴2 =
𝜏𝑜𝑎

−𝑎𝜔2𝑚𝑝𝐻(2)1 (𝛽𝑎) − 𝛽𝑎𝐺𝐻(2)0 (𝛽𝑎) + 2𝐺𝐻(2)1 (𝛽𝑎)
(5.14)

Therefore,

𝑢𝜃(𝑟, 𝑡) = 𝑅𝑒 (
𝜏𝑜𝑎

(−𝑎𝜔2𝑚𝑝 + 2𝐺)𝐻(2)1 (𝛽𝑎) − 𝛽𝑎𝐺𝐻(2)0 (𝛽𝑎)
𝐻(2)1 (𝛽𝑟) exp(𝑖𝜔𝑡)) (5.15)

On the basis of the uniqueness theorem, it is the solution if it satisfies the prescribed displacement or
stress (Achenbach, 1975). (5.15) implies that the soil response is linearly proportional to the amplitude
of the forcing 𝜏𝑜, which makes sense due to the assumptions on linear PDE. However, the influence
of the other parameters coming from the mechanical properties of both the pile, soil, and forcing fre-
quency are not readily explainable because they show up both in the numerator and denominator, after
rationalization is made and taking the real part. An important behavior due to 𝐻(2)1 (𝛽𝑟) is that the soil
response decays with the increase of radius. The amplitude decay is naturally attributed to cylindrical
waves that propagate outward because the same amount of total energy 𝐸𝐾𝑉 is distributed across the
increasing area due to increasing perimeter. It decays proportionally to 1/√𝑟 as can be seen in (5.11)
15. Note that this is not a decay due to damping whatsoever, since energy dissipation in the continuum
is not introduced in this particular case.

Figure 5.2: Plane waves in Cartesian and cylindrical coordinates

Figure 5.2 illustrates qualitatively the logic behind the decaying amplitude of cyclindrical waves.
Let plane waves, in Cartesian coordinates, be generated due to energy from a uniformly distributed
harmonic load 𝑃𝑥(𝑡) at 𝑥 = 𝑎 along the red dotted line 𝑙𝑎. The total energy given is proportional to the
square of the displacement amplitude at the source 𝐸𝐾𝑉 ∼ 𝐴2𝑎 16 (Graff, 1975). The energy density, the
total energy over an area, is thus Ε𝑘𝑣 ∼ 𝐴2𝑎/(𝑙𝑎ℎ𝑎) or Ε𝑘𝑣 ∼ 𝐴2𝑎/𝑙𝑎, since the thickness ℎ is constant.
15(A. Metrikine, personal communication, 29 November, 2022)
16(A. Metrikine, personal communication, 29 November, 2022)
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If the energy and area are constants, the amplitude of the energy density will also be constant when
it propagates to larger 𝑥, that is Ε𝑘𝑣 ∼ 𝐴2𝑎/𝑙. In cylindrical coordinates, the energy density at 𝑎 is thus
Ε𝑘𝑣 ∼ 𝐴2𝑎/(2𝜋𝑟𝑎). The area increases with 𝑙 as the wavefront propagates to larger 𝑟, where 𝑙 = 2𝜋𝑟. For
the energy to be constant, at 𝑟 > 𝑎, the energy density decreases as Ε𝑘𝑣 ∼ 𝐴2𝑎/𝑟 (Jr. Roger Easton,
2004). Therefore, in the displacement amplitude sense, the wavefront amplitude must decrease as
𝐴(𝑟) = 𝐴𝑎/√𝑟.

5.3.2. Finding the non-reflective coefficient
Section 5.3.1 has established the steady-state wave motion without distributed damping in the soil

medium as a consequence of distributed torsional action at radius 𝑟 = 𝑎. Imagine that the correspond-
ing wave field is shown in Figure 5.3, where the waves have propagated away from the perturbation
radii at 𝑟 = 𝑎, depicted by a dashed circle. If viscous elements 𝑐𝑑𝑝 are attached to one of the medium
end at radius 𝑟 = 𝑏, the system becomes finite.

The equation that governs the torsional motion reads

𝑢′′𝜃 +
1
𝑟𝑢

′
𝜃 −

1
𝑟2𝑢𝜃 =

1
𝑐22
�̈�𝜃 , 𝑎 < 𝑟 < 𝑏 (5.16)

(5.16) is in general has the same form with (5.1) except that (5.16) physically works only in the range
of 𝑎 < 𝑟 < 𝑏. For the system to be finite ended by dashpot elements at 𝑟 = 𝑏, the force equilibrium at

Figure 5.3: Illustration of a steady state wave field due to torsional action with the wavefront approaches dashpot elements

𝑟 = 𝑏 reads
{𝑐𝑑𝑝�̇�𝜃 = −𝜏𝑟𝜃}𝑟=𝑏 (5.17)

(5.17) is the boundary condition that supersedes the radiation condition of the semi-infinite problem in
Section 5.3. At the other end, at 𝑟 = 𝑎, the same boundary condition with (5.2) holds

{𝑚𝑝�̈�𝜃 = 𝑃𝜃 + 𝜏𝑟𝜃}𝑟=𝑎
Assuming a solution in the form (5.3), the governing equations, for non-trivial solutions, become

𝑈′′𝜃 +
1
𝑟𝑈

′
𝜃 + (𝛽2 −

1
𝑟2)𝑈𝜃 = 0, 𝛽 = 𝜔

𝑐2

{−𝜔2𝑚𝑝𝑈𝜃 − 𝐺 (
𝑑𝑈𝜃
𝑑𝑟 − 𝑈𝜃𝑟 ) = 𝜏𝑜}𝑟=𝑎

(5.18)
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{𝑖𝜔𝑐𝑑𝑝𝑈𝜃 + 𝐺 (
𝑑𝑈𝜃
𝑑𝑟 − 𝑈𝜃𝑟 ) = 0}𝑟=𝑏

(5.19)

The general solution to the first of (5.18) is (5.9). To derive the non-reflective coefficient, the the
substitution of the known constant 𝐴2 in (5.14) into the general solution (5.9) is not necessary. Instead,
to arrive at the least mathematical formulation, (5.9) is noted down once again before substituted to the
boundary condition at 𝑟 = 𝑏 (5.19).

𝑈𝜃(𝑟) = 𝐴1𝐻(1)1 (𝛽𝑟) + 𝐴2𝐻(2)1 (𝛽𝑟)

where 𝐴2𝐻(2)1 (𝛽𝑟) and 𝐴1𝐻(1)1 (𝛽𝑟) are the outward- and inward-propagating waves, respectively. Rel-
ative to the dashpot, they are the incoming and reflected waves, respectively. The substituted (5.19)
gives

𝑖𝜔𝑐𝑑𝑝 (𝐴1𝐻(1)1 (𝛽𝑏) + 𝐴2𝐻(2)1 (𝛽𝑏))

+𝐺 (𝛽𝐴1 (𝐻(1)0 (𝛽𝑏) − 𝐻
(1)
1 (𝛽𝑏)
𝛽𝑏 ) + 𝛽𝐴2 (𝐻(2)0 (𝛽𝑏) − 𝐻

(2)
1 (𝛽𝑏)
𝛽𝑏 ) −

(𝐴1𝐻(1)1 (𝛽𝑏) + 𝐴2𝐻(2)1 (𝛽𝑏))
𝑏 ) = 0

and can be be rearranged to give the reflected amplitude 𝐴1

𝐴1 = 𝐴2
−(𝑖𝜔𝑏𝑐𝑑𝑝𝐻(2)1 (𝛽𝑏) − 2𝐺𝐻(2)1 (𝛽𝑏) + 𝛽𝑏𝐺𝐻(2)0 (𝛽𝑏))
𝑖𝜔𝑏𝑐𝑑𝑝𝐻(2)1 (𝛽𝑏) − 2𝐺𝐻(2)1 (𝛽𝑏) + 𝛽𝑏𝐺𝐻(2)0 (𝛽𝑏)

(5.20)

The appearance of 𝑖𝜔 only in the first term of the numerator in (5.20) shows that the reflection ratio
𝐴1/𝐴2 is complex-valued and frequency dependent. To obtain zero amplitude of reflection (𝐴1 = 0),
the numerator in (5.20) must be set to zero. This is because the amplitude of the steady state solution
is, generally, non-zero (𝐴2 ≠ 0), due to non-zero external pressure (𝜏𝑜 ≠ 0) in (5.14) unless it is a trivial
solution. Thus the non-reflective condition requires

− 𝑖𝜔𝑏𝐶𝑑𝑝𝐻(2)1 (𝛽𝑏) − 𝛽𝑏𝐺𝐻(2)0 (𝛽𝑏) + 2𝐺𝐻(2)1 (𝛽𝑏) = 0 (5.21)

where the notation with the lower case 𝑐𝑑𝑝 is replaced by 𝐶𝑑𝑝∗ to emphasize that no reflection is a
special case. Therefore, the non-reflective coefficient of dashpot elements 𝐶𝑑𝑝∗ is found as

𝐶𝑑𝑝∗ =
𝑖𝐺 (𝛽𝑏𝐻(2)0 (𝛽𝑏) − 2𝐻(2)1 (𝛽𝑏))

𝜔𝑏𝐻(2)1 (𝛽𝑏)
(5.22)

For practical purpose, the Hankel functions in (5.22) may be written in terms of Bessel functions by
following (5.10).

𝐶𝑑𝑝∗ =
𝑖𝐺 ((𝛽𝑏𝐽0(𝛽𝑏) − 𝑖𝑌0(𝛽𝑏)) − 2𝐽1(𝛽𝑏) + 2𝑖𝑌1(𝛽𝑏))

𝜔𝑏 (𝐽1(𝛽𝑏) − 𝑖𝑌1(𝛽𝑏))
(5.23)

In the end, the magnitude of the non-reflective elements |𝐶𝑑𝑝| is what matters, so that it can be used
both in the case of cosinusoidal and sinusoidal external load. The denominator in (5.23) can be ra-
tionalized by multiplying with its complex conjugate. Upon rearranging, the real and imaginary part of
(5.10) are found as

𝑅𝑒(𝐶𝑑𝑝∗) =
𝜔𝑏𝐺𝐽1(𝛽𝑏)(𝛽𝑏𝑌0(𝛽𝑏) − 2𝑌1(𝛽𝑏)) − 𝜔𝑏𝐺𝑌1(𝛽𝑏)(𝛽𝑏𝐽0(𝛽𝑏) − 2𝐽1(𝛽𝑏))

𝜔2𝑏2𝐽1(𝛽𝑏)2 + 𝜔2𝑏2𝑌1(𝛽𝑏)2

𝐼𝑚(𝐶𝑑𝑝∗) =
𝜔𝑏𝐺𝐽1(𝛽𝑏)(𝛽𝑏𝐽0(𝛽𝑏) − 2𝐽1(𝛽𝑏)) + 𝜔𝑏𝐺𝑌1(𝛽𝑏)(𝛽𝑏𝑌0(𝛽𝑏) − 2𝑌1(𝛽𝑏))

𝜔2𝑏2𝐽1(𝛽𝑏)2 + 𝜔2𝑏2𝑌1(𝛽𝑏)2
(5.24)

Finally, the magnitude of the non-reflective dashpot elements reads

|𝐶𝑑𝑝| = √𝑅𝑒(𝐶𝑑𝑝∗)
2 + 𝐼𝑚(𝐶𝑑𝑝∗)

2
(5.25)
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Perhaps themost interesting feature of (5.24) is the independence of |𝐶𝑑𝑝| on 𝜏𝑜, 𝑎, and𝑚𝑝, which seem
counter-intuitive at first glance. Note that it is the velocity at the outer boundary that depends on them,
hence the total absorbing force not its coefficient. Nevertheless, for a given 𝐺 and 𝜌, it is dependent on
the the radius of the outer boundary 𝑟 = 𝑏 and the forcing frequency 𝜔 thus the wavenumber 𝛽. Two
plots in Figure 5.4 are shown, with the controlled variables in Table (5.1), to get insight on the behavior
of |𝐶𝑑𝑝|. Note that Figure 5.4.a assumes 𝑓 as an unknown.

𝑐2 𝜌 𝐺 𝑎 𝑓 𝜔 𝛽
𝑚/𝑠 𝑘𝑔/𝑚3 𝑁/𝑚2 𝑚 𝐻𝑧 𝑟𝑎𝑑/𝑠 𝑟𝑎𝑑/𝑚
360 2022 262051200 0.5 80 503 1.396

Table 5.1: Material, geometrical, and external load properties for plotting dashpot coeffcient

Figure 5.4.a shows an exponentially decreasing |𝐶𝑑𝑝| with increasing 𝑏 and an exponentially in-
creasing |𝐶𝑑𝑝| with decreasing 𝜔. For this reason, it is incorrect to use frequency-independent dashpot
coefficient in this case. From Figure 5.4.b, which plots |𝐶𝑑𝑝| at 80𝐻𝑧, it can be concluded that start-
ing from 𝑏 = 5𝑚, |𝐶𝑑𝑝| approaches into one value around 7.3 × 105𝑁𝑠/𝑚3. Due to this asymptotic
behavior, 𝑏 = 5𝑚 will be considered as a reference for the Test cases later on.

The dependence on 𝑏 effectively means that it may be possible to prescribe a damping force to
absorb the incoming wave from the monopile at any distance. One may favour the closest distance
possible to the monopile whenmodeling the soil domain in the FE analysis because of the consequence
of minimum computation. Theoretically, within one dimensional wave analysis, and the assumptions
made in the beginning of the formulation, the viscous elements will work perfectly. This ability breaks
down when other cases are considered (Metrikine & Vrouwenvelder, 2021). However, it will lay the
foundation for the three-dimensional FE analysis in the later sections.

(a) |𝐶𝑑𝑝|(𝜔) − 𝑏 relation for several 𝜔 (b) |𝐶𝑑𝑝| (503
𝑟𝑎𝑑
𝑠 ) − 𝑏 relation

Figure 5.4: |𝐶𝑑𝑝|(𝜔) − 𝑏 relation

It is observed during the Test cases, which will be discussed in the next sections, that the foregoing
non-reflective coefficient is incorrectly formulated 17. This is shown by comparing the solution to the
finite pile-soil-dashpot model with |𝐶𝑑𝑝| versus the solution to the semi-infinite model in one plot. Theo-
retically, two solutions should be exactly the same, since the nature of the analysis is exact. However,
the comparison proves that using |𝐶𝑑𝑝|, the finite solution only approximates the semi-infinite solution.
The flawed derivation is started when the existence of both the real and imaginary part in (5.21) is
overlooked.

17(A. Metrikine, personal communication, 20 January, 2023)
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Figure 5.5: Illustration of a steady state torsional wave with the wavefront approaches spring and dashpot elements

The correct approach is to equate each of the real and imaginary part with zero. The real part can
be zero if another element such as a spring or mass element is added. Considering an additional spring
element 𝑘𝑑𝑝 at 𝑟 = 𝑏, the force equilibrium at 𝑟 = 𝑏 (5.17) becomes

{𝑘𝑑𝑝𝑢𝜃 + 𝑐𝑑𝑝�̇�𝜃 = −𝜏𝑟𝜃}𝑟=𝑏 (5.26)
Accordingly, (5.19) should be replaced by

{𝑘𝑑𝑝𝑈𝜃 + 𝑖𝜔𝑐𝑑𝑝𝑈𝜃 + 𝐺 (
𝑑𝑈𝜃
𝑑𝑟 − 𝑈𝜃𝑟 ) = 0}𝑟=𝑏

(5.27)

Thus, the reflected amplitude 𝐴1 (5.20) becomes

𝐴1 = 𝐴2
−(𝑏𝑘𝑑𝑝𝐻(2)1 (𝛽𝑏) + 𝑖𝜔𝑏𝑐𝑑𝑝𝐻(2)1 (𝛽𝑏) − 2𝐺𝐻(2)1 (𝛽𝑏) + 𝛽𝑏𝐺𝐻(2)0 (𝛽𝑏))
𝑏𝑘𝑑𝑝𝐻(2)1 (𝛽𝑏) + 𝑖𝜔𝑏𝑐𝑑𝑝𝐻(2)1 (𝛽𝑏) − 2𝐺𝐻(2)1 (𝛽𝑏) + 𝛽𝑏𝐺𝐻(2)0 (𝛽𝑏)

(5.28)

Both the real and imaginary part of the numerator in (5.28) must be equal to zero. In terms of Bessel
functions

(−𝑏𝑘𝑑𝑝 − 𝑖𝜔𝑏𝑐𝑑𝑝 + 2𝐺)(𝐽1(𝛽𝑏) − 𝑖𝑌1(𝛽𝑏)) − 𝛽𝑏𝐺(𝐽0(𝛽𝑏) − 𝑖𝑌0(𝛽𝑏)) = 0 (5.29)
The two unknowns can be solved with the following two equations

(𝑏𝑘𝑑𝑝 − 2𝐺)𝑌1(𝛽𝑏) − 𝜔𝑏𝑐𝑑𝑝𝐽1(𝛽𝑏) + 𝛽𝑏𝐺𝑌0(𝛽𝑏) = 0 (5.30)

(−𝑏𝑘𝑑𝑝 + 2𝐺)𝐽1(𝛽𝑏) − 𝜔𝑏𝑐𝑑𝑝𝑌1(𝛽𝑏) − 𝛽𝑏𝐺𝐽0(𝛽𝑏) = 0 (5.31)
From (5.30) and changing the variables

𝐾𝑑𝑝 =
𝑏𝐶𝑑𝑝𝜔𝐽1(𝛽𝑏) + 2𝐺𝑌1(𝛽𝑏) − 𝛽𝑏𝐺𝑌0(𝛽𝑏)

𝑏𝑌1(𝛽𝑏)
(5.32)

Substituting (5.32) into (5.31) leads to

𝐶𝑑𝑝 = −
𝛽𝐺(𝐽0(𝛽𝑏)𝑌1(𝛽𝑏) − 𝐽1(𝛽𝑏)𝑌0(𝛽𝑏))

𝜔(𝐽1(𝛽𝑏)2 + 𝑌1(𝛽𝑏)2)
(5.33)

Finally, (5.32) becomes

𝐾𝑑𝑝 = −
𝐺 (𝛽𝑏𝐽0(𝛽𝑏)𝐽1(𝛽𝑏) + 𝛽𝑏𝑌0(𝛽𝑏)𝑌1(𝛽𝑏) − 2𝐽1(𝛽𝑏)2 − 2𝑌1(𝛽𝑏)2)

𝑏(𝐽1(𝛽𝑏)2 + 𝑌1(𝛽𝑏)2)
(5.34)
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(a) 𝐾𝑑𝑝 (503
𝑟𝑎𝑑
𝑠 ) − 𝑏 relation (b) 𝐶𝑑𝑝 (503

𝑟𝑎𝑑
𝑠 ) − 𝑏 relation

Figure 5.6: 𝐾𝑑𝑝(𝜔) and 𝐶𝑑𝑝(𝜔) − 𝑏 relation

As can be seen from Figure 5.6, an exponentially decaying behavior of 𝐾𝑑𝑝 and a logarithmic behav-
ior of 𝐶𝑑𝑝 with the increasing 𝑏 are visible. Figure 5.6.b also demonstrates that the curve approaches
a value that is approximately the same order of magnitude compared to |𝐶𝑑𝑝| in Figure 5.4.b. Other
than that, the discussion on the derivation of the non-reflective boundary is closed and followed by its
usage in the finite domain.

5.3.3. Forced torsional motion in a finite pile-soil-boundary
It is the time to synthesize |𝐶𝑑𝑝| into a finite pile-soil system to see whether its non-reflective behavior

works or not. It will be presumed that both 𝐴1 and 𝐴2 are unknowns to examine |𝐶𝑑𝑝| for solving the gen-
eral case18 of finite soil bounded by a rigid ring and dashpot elements under the previously established
assumptions. To make it brief, the analysis will start from the governing equations in the frequency
domain by assuming the same steady state solution in the form 𝑢𝜃(𝑟, 𝑡) = 𝑅𝑒(𝑈𝜃(𝑟) exp(𝑖𝜔𝑡)). Recall
first the equation of motion in the first of (5.18), the boundary condition at 𝑟 = 𝑎 in the second of (5.18),
and the boundary condition at 𝑟 = 𝑏 in (5.19). The general solution to the equation of motion is (5.9).

Figure 5.7: Finite model

Having two unknowns and two equation of boundary conditions, the problem is solvable by substi-

18General case here means that |𝐶𝑑𝑝| formulation should work for any 𝜏𝑜, 𝜔, 𝑎, 𝑏, and material properties defined in Section
5.3.
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tuting the general solution into the boundary conditions, which reads

⎡
⎢
⎢
⎢
⎣

−𝛽𝑎𝐺(𝐻(1)0 (𝛽𝑎)−𝐻
(1)
1 (𝛽𝑎)
𝛽𝑎 )+(−𝜔2𝑎𝑚𝑝+𝐺)𝐻(1)1 (𝛽𝑎)

𝑎

−𝛽𝑎𝐺(𝐻(2)0 (𝛽𝑎)−𝐻
(2)
1 (𝛽𝑎)
𝛽𝑎 )+(−𝜔2𝑎𝑚𝑝+𝐺)𝐻(2)1 (𝛽𝑎)

𝑎
𝛽𝑏𝐺(𝐻(1)0 (𝛽𝑏)−𝐻

(1)
1 (𝛽𝑏)
𝛽𝑏 )+(𝑖𝜔𝑏𝑐𝑑𝑝−𝐺)𝐻(1)1 (𝛽𝑏)

𝑏

𝛽𝑏𝐺(𝐻(2)0 (𝛽𝑏)−𝐻
(2)
1 (𝛽𝑏)
𝛽𝑏 )+(𝑖𝜔𝑏𝑐𝑑𝑝−𝐺)𝐻(2)1 (𝛽𝑏)

𝑏

⎤
⎥
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

M

( 𝐴1𝐴2 )⏝⎵⏟⎵⏝
u

= ( 𝜏𝑜0 )
⏝⎵⏟⎵⏝

f

(5.35)
For the exact solution where the spring elements are included at the outer boundary, the term (𝑖𝜔𝑏𝑐𝑑𝑝 − 𝐺)
inM(2, 1) andM(2, 2) in (5.35) is replaced by (𝑖𝜔𝑏𝑐𝑑𝑝 + 𝑏𝑘𝑑𝑝 − 𝐺).

Additionally, to verify the use of non-reflective boundary, two other problems that use 𝑓𝑟𝑒𝑒 and
𝑓𝑖𝑥𝑒𝑑 outer boundary are formulated. While 𝑓𝑟𝑒𝑒 boundary means that 𝜏𝑟𝜃(𝑏, 𝑡) = 0, 𝑓𝑖𝑥𝑒𝑑 boundary
means that 𝑢𝜃(𝑏, 𝑡) = 0. For the 𝑓𝑟𝑒𝑒 boundary, the term (𝑖𝜔𝑏𝑐𝑑𝑝 − 𝐺) inM(2, 1) andM(2, 2) in (5.35)
is replaced by (−𝐺). For the 𝑓𝑖𝑥𝑒𝑑 boundary, the whole term inM(2, 1) andM(2, 2) in (5.35) is replaced
by 𝐻(1)1 (𝛽𝑏) and 𝐻(2)1 (𝛽𝑏), respectively. For each case, the unknown vector u, thus 𝐴1 and 𝐴2, can be
found by operating

u =M−1f (5.36)

Finally, only the real part of 𝑈𝜃(𝑟) exp(𝑖𝜔𝑡) is retrieved to obtain the physical displacement quantities.

5.3.4. Test case 0 (TC0): semi-infinite versus finite domain in Maple
Having the solutions for both the semi-infinite pile-soil and pile-soil- non-reflective boundary at hand,

three cases of the outer boundary radius 𝑏 are examined to compare the 𝑢𝜃(𝑟, 𝑡) against each other in
Maple. Note that Test case 1 is run in the time domain with the purpose to check whether the unwanted
standing wave field occurs or not. If so, this means that either |𝐶𝑑𝑝| or 𝐾𝑑𝑝 and 𝐶𝑑𝑝 or the constants
𝐴1 and 𝐴2 are incorrect. Ideally, the result is checked through an animated plot. On a paper, it will be
presented here only at two time moments. For Test case 1, 𝐷𝑜 = 1𝑚 is desired to ease the tests. The
other geometries are generated from the average ratios based on 𝐷𝑎𝑡𝑎1 in Table 2.1.

𝐷𝑜 can be used to measure 𝐿Ω𝑝, thus 𝑏, which means larger 𝐷𝑜 will result in larger radius of the
soil domain, thus more computational effort for the FE solver. The measure of 𝐿Ω𝑝 may also be asso-
ciated with the wavelength 𝜆, which can tell how many waves will be captured in the interior domain.
The wavelength for 𝑓 = 80𝐻𝑧 is approximately 𝜆 = 𝑐2/𝑓 = 4.5𝑚 by assuming a plane shear wave.
Suppose 𝐿Ω𝑝 is normalized by the wavelength, then it can be of 2

2
3𝜆, 𝜆, and so on. The controlled and

independent variables for Test case 1 are tabulated in Table 5.2 and 6.1. The upper limit is chosen as
𝐿Ω𝑝 = 12𝐷𝑜 = 22/3𝜆, which is twice the reference discussed in 5.1 to see the effect in a large domain.
𝑏 = 5𝑚, thus 𝐿Ω𝑝 = 4.5𝐷𝑜 = 𝜆, is chosen as the midpoint due to the interest on the asymptotic behav-
ior of |𝐶𝑑𝑝| and 𝐶𝑑𝑝 shown in Figure 5.4.b. and 5.6.b. The lower limit is taken as half of the midpoint
𝐿Ω𝑝 = 2.5𝐷𝑜 = 5/9 𝜆, to see the effect in a small domain.

𝑐2 𝜌 𝐺 𝜌𝑝 𝑤𝑡 𝑚𝑝 𝑎 𝜏𝑜 𝑓 𝜔 𝛽
𝑚/𝑠 𝑘𝑔/𝑚3 𝑁/𝑚2 𝑘𝑔/𝑚3 𝑚 𝑘𝑔/𝑚2 𝑚 𝑃𝑎 𝐻𝑧 𝑟𝑎𝑑/𝑠 𝑟𝑎𝑑/𝑚
360 2022 262051200 7850 0.01 78.5 0.5 40000 80 503 1.396

Table 5.2: Material, geometrical, and external load properties for the Test cases

Notice that the solution to the semi-infinite model is covered by the solution to the finite model that
uses 𝐾𝑑𝑝 and 𝐶𝑑𝑝, which explains why only two curves emanate in Figure 5.8. Using |𝐶𝑑𝑝| will slightly
overestimate the exact solution, which is shown at 𝑡 = 0.0035 𝑠 in Figure 5.8. In any case, it can be
concluded that the coefficient of non-reflective boundary can used to mimic the finite domain as if this
was a semi-infinite domain. Also, Figure 5.9 and 5.10 proves that the non-reflective behavior, by using
𝐾𝑑𝑝 and 𝐶𝑑𝑝, is dependent of 𝑏. It infers that, in theory, it is not a problem to apply small or large
soil domain. Additionally, Figure 5.9.b verifies the occurrence of standing wave field by observing the
location of the peak amplitude for both the solution to the 𝑓𝑟𝑒𝑒 and 𝑓𝑖𝑥𝑒𝑑 boundary that are not moving
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𝐿Ω𝑝 𝑏 |𝐶𝑑𝑝| 𝐾𝑑𝑝 𝐶𝑑𝑝
𝐷𝑜 𝜆 𝑚 𝑚 𝑁𝑠/𝑚3 𝑁/𝑚3 𝑁𝑠/𝑚3
12 223 12 12.5 729719 3.15 × 107 7.27 × 105
4.5 1 4.5 5 734642 7.90 × 107 7.23 × 105
2.5 5

9 2.5 3 751691 1.6 × 108 7.08 × 105

Table 5.3: Horizontal extent of the soil domain and the dashpot coefficient

(a) 𝑅𝑒(𝑢𝜃(𝑟, 0.0000 𝑠)) (𝑚) (b) 𝑅𝑒(𝑢𝜃(𝑟, 0.0035 𝑠)) (𝑚)

Figure 5.8: Solution to the semi-infinite and finite model for 𝑏 = 12.5𝑚

in 𝑟 at different 𝑡. Figure 5.9 and 5.10 proved that at small 𝑏, the 𝑓𝑟𝑒𝑒 boundary approximates the
exact solution well but not at large 𝑏. The opposite is true for the 𝑓𝑖𝑥𝑒𝑑 boundary. On the other hand,
the non-reflective boundaries match well with the semi-infinite solution both at small and large 𝑏. For
these reasons, the non-reflective coefficient will be exploited in the FE model.

(a) 𝑅𝑒(𝑢𝜃(𝑟, 0𝑦.000 𝑠)) (𝑚) for 𝑏 = 12.5𝑚 (b) 𝑅𝑒(𝑢𝜃(𝑟, 0.0014 𝑠)) (𝑚) for 𝑏 = 12.5𝑚

Figure 5.9: Significance of the outer boundary at large 𝑏

5.4. Damped torsional motion
5.4.1. Forced vibration with a distributed viscous damping in the medium

To make sense the steady state solution and since every engineering system experiences energy
dissipation, a form of damping force in the continuum is considered. Among other form of damping,
a viscous damping is assumed, which is proportional to the velocity. Unlike the viscous elements
in Section 5.1, which acts at the boundary, the following distributed damping acts in the continuum
(Metrikine, 2021; Metrikine & Tsouvalas, 2021). When this kind of damping is employed, the model
is often called a linear visco-elastic model because the resulting stress-strain relation is linear. For
this type of model, Kelvin model is adopted instead of Maxwell model. That is to add dashpots, which
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Figure 5.10: Significance of the outer boundary at small 𝑏

represents the damping, parallel19 to the existing springs, which represents the stiffness. In earthquake
engineering, the Kelvin model is often generalized in terms of

𝜏 = 𝐺𝛾 + 𝐺′𝜕𝛾𝜕𝑡 (5.37)

where the shear stress 𝜏 is composed of the stiffness term 𝐺𝛾 and the damping term 𝐺′𝜕𝛾𝜕𝑡 . 𝛾 is the
shear strain and 𝐺′ is called the loss modulus (Ishihara, 1996). In this study, instead of the form in
(5.37), the following form of visco-elastic model, in the Cartesian coordinate, will be adopted to ease
the mathematical computation.

𝜏𝐴𝑜 = 𝐺𝛾𝐴𝑜 + 𝑐𝑑
𝜕𝑢
𝜕𝑡 (5.38)

where 𝐴𝑜 is the cross-sectional area of a solid element cut and 𝑐𝑑 is the distributed damping coefficient.
Therefore, from (5.1), the torsional equation of motion subjected to a distributed damping becomes

𝐺𝑟 (𝑢′′𝜃 +
1
𝑟𝑢

′
𝜃 −

1
𝑟2𝑢𝜃) = 𝜌 𝑟 �̈�𝜃 + 𝑐𝑑�̇�𝜃 , 𝑎 < 𝑟 < ∞ (5.39)

where the accent ̇denotes 𝜕/𝜕𝑡. (5.39) can also be written as

𝑢′′𝜃 +
1
𝑟𝑢

′
𝜃 −

1
𝑟2𝑢𝜃 =

1
𝑐22
�̈�𝜃 +

2𝑛𝑑
𝑐22
�̇�𝜃 , 2𝑛𝑑 =

𝑐𝑑
𝜌𝑟 (5.40)

where 𝑛𝑑 denotes the damping factor (Metrikine & Tsouvalas, 2021). The initial and boundary con-
ditions in Section (5.3.1) still holds. Following a similar procedure as in Section (5.3.1), the steady
state solution is searched for in the form 𝑢𝜃(𝑟, 𝑡) = 𝑈𝜃(𝑟) exp(𝑖𝜔𝑡), which upon substitution into the
governing equations, for a periodic solution to exist, (5.40) and (5.2) reads

𝑈′′𝜃 +
1
𝑟𝑈

′
𝜃 −

1
𝑟2𝑈𝜃 =

−𝜔2
𝑐22

𝑈𝜃 +
𝑖𝜔2𝑛𝑑
𝑐22

𝑈𝜃

𝑈′′𝜃 +
1
𝑟𝑈

′
𝜃 + (𝛽2𝑑 −

1
𝑟2)𝑈𝜃 = 0, 𝛽𝑑 = √

𝜔2 − 𝑖𝜔2𝑛𝑑
𝑐22

(5.41)

{−𝜔2𝑚𝑝𝑈𝜃 − 𝐺 (
𝑑𝑈𝜃
𝑑𝑟 − 𝑈𝜃𝑟 ) = 𝜏𝑜}𝑟=𝑎

(5.42)

Comparing (5.41) with (5.7), it can be seen that these two equations are identical in the form of
Bessel equations, except that the wavenumber 𝛽𝑑 is now a complex number. Since the equations are
similar, a similar general solution should hold but with different wavenumber

𝑈𝜃(𝑟) = 𝐴1𝐻(1)1 (𝛽𝑑𝑟) + 𝐴2𝐻(2)1 (𝛽𝑑𝑟) (5.43)
19Maxwell model assumes the spring and dashpot in series.
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Likewise, the same technique to satisfy the radiation condition and the boundary condition at 𝑟 = 𝑎
(5.42) can be applied as done throughout (5.12) and (5.15). Consequently, one may deduce that the
solution is

𝑢𝜃(𝑟, 𝑡) = 𝑅𝑒 (
𝜏𝑜𝑎

(−𝑎𝜔2𝑚𝑝 + 2𝐺)𝐻(2)1 (𝛽𝑑𝑎) − 𝛽𝑑𝑎𝐺𝐻(2)0 (𝛽𝑑𝑎)
𝐻(2)1 (𝛽𝑑𝑟) exp(𝑖𝜔𝑡)) (5.44)

A remark on the physical meaning of (5.44) is that a decaying amplitude of displacement in space will
be evident, in addition to the decaying behavior of the undamped cylindrical waves, due to energy
dissipation has entered the equation of motion. Mathematically, this is because the 𝑖 of 𝑖𝜔2𝑛𝑑 in (5.41)
is multiplied by another 𝑖 in the Hankel function. One extreme is that the radical √𝜔2 − 𝑖𝜔2𝑛𝑑 must be
positive, which means a lightly damped system, to adhere to common engineering sense (Metrikine
& Tsouvalas, 2021). Otherwise, the soil is too hard to be deformed or the forcing frequency is too
small. To this end, the appropriate damping factor is still unknown and subject of discussion in the later
sections. Lastly, in the case of incoming damped waves, the coefficient of the non-reflective elements
can be recovered by replacing the wavenumber 𝛽 with the wavenumber that corresponds to the damped
waves 𝛽𝑑.

5.5. Calibrating the damping ratio
It is convenient to specify damping in terms of damping ratio 𝜁. This appears everywhere when

discussing a discrete dynamical system subjected to viscous damping. For example, in a single degree
of freedom system (SDOF), the damping ratio is usually defined as to scale the damping coefficient
with respect to twice the natural frequency. 𝜁 > 1 means that the system is over-damped, which
is shown by no oscillation after an imposed initial conditions (i.e. initial displacement or velocity or
both). 𝜁 = 1 is the limit between an over-damped and lightly-damped system, which is also shown by
aperiodic motion or else 𝜁 < 1 where the system oscillates both after an imposed initial conditions. A
new problem arose due to the requirement of initial conditions that are not formulated in the beginning
of Section 5.3. To facilitate the use of damping ratio in Ansys, firstly, an inspection on the well-known
SDOF mass-spring-dashpot system is made (Metrikine & Tsouvalas, 2021).

𝑚𝑜�̈� + 𝑐𝑜�̇� + 𝑘𝑜𝑥 = 𝐹(𝑡)

�̈� + 2𝑛𝑜�̇� + 𝜔2𝑛𝑥 =
𝐹(𝑡)
𝑚𝑜

, 2𝑛𝑜 =
𝑐𝑜
𝑚𝑜
, 𝜔𝑛 = √

𝑘𝑜
𝑚𝑜

�̈� + 2𝜁𝜔𝑛�̇� + 𝜔2𝑛𝑥 =
𝐹(𝑡)
𝑚𝑜

, 𝜁 = 𝑐𝑜
2√𝑘𝑜𝑚𝑜

(5.45)

where 𝑚𝑜, 𝑐𝑜, 𝑘𝑜, and 𝐹 are an arbitrary mass, damping, spring coefficient, and external force of an
SDOF system, respectively. 𝑛𝑜 and 𝜔𝑛 is the damping factor and the natural frequency of that system,
respectively. From (5.45) and comparison with simulation results, which will be shown later on, a
similar notion of the damping ratio for the continuous system discussed in this study can be defined as
2𝑛𝑑 = 2𝜁𝑐2/𝑟. So, (5.40) becomes

𝑢′′𝜃 +
1
𝑟𝑢

′
𝜃 −

1
𝑟2𝑢𝜃 =

1
𝑐22
�̈�𝜃 +

1
𝑟
2𝜁
𝑐2
�̇�𝜃 ,

1
𝑟 2𝜁𝑐2 =

𝑐𝑑
𝜌𝑟 (5.46)

This means that 𝛽𝑑 in the second of (5.41) is equivalent to

𝛽𝑑 = √
𝜔2 − 𝑖𝜔2𝜁𝑐2/𝑟

𝑐22
(5.47)

To verify the use of damping ratio in Ansys, a simulation in Ansys is performed and then compared
with the solution (5.44) by using the new 𝛽𝑑 in (5.47). It is found that the constant structural damping
coefficient in Ansys is approximately the same with the notion of damping ratio here. This verification
is made because Ansys uses several terminologies to define damping.
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5.6. Non-reflective coefficient for torsional motion propagating in
longitudinal direction

Since the infinite nature of the soil domain also extends in the 𝑧-direction, another type of non-
reflective boundary should be established. In the same manner with the derivation in Section 5.3.2, the
first and foremost is to state the equation of motion, which reads

𝜕2𝑢𝜃(𝑧∗, 𝑡)
𝜕𝑧2∗

= 1
𝑐22
𝜕2𝑢𝜃(𝑧∗, 𝑡)

𝜕𝑡2 (5.48)

as derived in Appendix B.2, where 𝑧∗ is a new local coordinate that acts in the opposite of 𝑧 for
mathematical convenience to avoid confusion in the formulation of the boundary condition. To find
the non-reflective coefficient, viscous elements are first assumed at 𝑧Ω. The boundary condition thus
reads

{𝑐𝑑𝑝,𝑧�̇�𝜃 = −𝜏𝑧𝜃}𝑟=𝑧Ω (5.49)

Note that the displacement in (5.48) and (5.49) is 𝑢𝜃(𝑧∗, 𝑡). The steady state solution is searched for
in the form of 𝑢𝜃(𝑧∗, 𝑡) = �̃�𝜃(𝑧∗) exp(𝑖𝜔𝑡). In the frequency domain, (5.48) and (5.49) become

�̃�′′𝜃 + 𝛽2�̃�𝜃 = 0, 𝛽 = 𝜔
𝑐2 (5.50)

{𝑖𝜔𝑐𝑑𝑝,𝑧�̃�𝜃 + 𝐺
𝑑�̃�𝜃
𝑑𝑟 = 0}

𝑟=𝑧Ω
(5.51)

The general solution to (5.50) is

�̃�𝜃(𝑧∗) = 𝐴3 exp(𝑖𝛽𝑧∗) + 𝐴4 exp(−𝑖𝛽𝑧∗) (5.52)

where 𝐴3 and 𝐴4 are the unknown amplitudes that propagate in negative and positive 𝑧∗-direction,
respectively. With respect to 𝑧Ω, the reflected wave must be 𝐴3. Substituting (5.52) into (5.51) and
solve for 𝐴3 will give

𝐴3 =
𝐴4 (𝛽𝐺 − 𝜔𝑐𝑑𝑝,𝑧) exp (𝑖𝛽𝑧Ω)
(𝛽𝐺 + 𝜔𝑐𝑑𝑝,𝑧) exp (−𝑖𝛽𝑧Ω)

(5.53)

In the same manner with (5.21), the non-reflective coefficient for the torsional wave that propagates in
𝑧∗-direction reads

𝐶𝑑𝑝,𝑧 =
𝐺
𝑐2
= 𝜌𝑐2 (5.54)

This means that (5.54) is constant and the same with the standard LK boundary discussed in Section
5.1.

5.7. Torsional motion of a thin shell on (visco)-elastic elements
As a tool to inspect the simulation result of the pre-stressed harmonic analysis in Section 7.6, an

analytical solution considering a forced torsional vibration 𝑢𝜃,𝑝(𝑧, 𝑡) of a monopile, represented by a thin
shell, in the longitudinal direction seems useful. It is because the equation of motion of an axisymmetric
torsion of a circular cylindrical thin shell is independent of the radial and longitudinal motion as can be
seen in the second of (2.2), ergo a simplified derivation can be proposed. A 1D axisymmetric torsional
problem will be very likely to be able to represent the 3D FE problem in this case. Following Winkler
foundation concept with a distributed viscous damping as introduced in Section 5.5, a parallel springs
and dashpots can represent the soil reaction along the embedded pile shaft. The model will assume no
damping in the monopile for simplicity. Assuming an undamped steel and a harmonic load in a cosine
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form at the pile top with force amplitude over the pile perimeter 𝐹𝜃(𝑡) =
𝑓𝑜
𝑝𝑝

cos(𝜔𝑡), the governing
equations of 𝑢𝜃,𝑝(𝑧, 𝑡) reads

1
𝑐22,𝑝

𝑢𝜃,𝑝,1,𝑡𝑡 − 𝑢𝜃,𝑝,1,𝑧𝑧 = 0, 𝑧𝑏𝑒𝑑 < 𝑧 < 𝑧𝑡𝑜𝑝 (5.55)

1
𝑐22,𝑝

𝑢𝜃,𝑝,2,𝑡𝑡 − 𝑢𝜃,𝑝,2,𝑧𝑧 +
𝜁𝑜
𝑐22,𝑝

𝑢𝜃,𝑝,2,𝑡 +
𝛼𝑧
𝑐22,𝑝

𝑢𝜃,𝑝,2 = 0, 𝑧𝑡𝑖𝑝 < 𝑧 < 𝑧𝑏𝑒𝑑 (5.56)

{𝐺𝑝 𝑤𝑡 𝑢𝜃,𝑝,1,𝑧 + 𝐹𝜃(𝑡) = 0}𝑧𝑡𝑜𝑝 (5.57)

{𝑢𝜃,𝑝,2,𝑧 = 0}𝑧𝑡𝑖𝑝 (5.58)

{𝑢𝜃,𝑝,2 − 𝑢𝜃,𝑝,1 = 0}𝑧𝑏𝑒𝑑 (5.59)

{𝑢𝜃,𝑝,2,𝑧 − 𝑢𝜃,𝑝,1,𝑧 = 0}𝑧𝑏𝑒𝑑 (5.60)

where 𝐺𝑝 𝑤𝑡 = 𝐾𝑝
(1−𝜈𝑝)
2 is used to modify the stiffness term in the second of (2.2). While the subscript

𝑝 denotes the pile, 1 and 2 means the first and second segment of the pile that is above and below the
soil surface, respectively. The subscripts 𝑡 and 𝑧 denote the time and spatial derivative, respectively.
𝜁𝑜 =

2𝜁𝑐2
𝑅𝑝

= 𝑐𝑑
𝜌𝑝𝑤𝑡

and 𝛼 = 𝑘𝜃
𝜌𝑝𝑤𝑡

. 𝑘𝜃 = 2𝐺 modifies the spring coefficient originated by Randolph for the
torque-rotation 𝑇 − 𝜃 relationship of a rigid pile with the embedded length 𝑃𝑝 and reads 𝑘𝜃,𝑅 = 𝑇/𝜃 =
4𝜋𝑅2𝑝𝐺𝑃𝑝, which is utilized in experiments by other researchers (Georgiadis & Saflekou, 1990). Note
that the modification assumes small angle approximation (i.e 𝜃 ≈ 𝑢𝜃/𝑅𝑝) Notice that the embedded
length 𝑃𝑝 as a constant is replaced by 𝑧 to approximate a linearly increasing soil stiffness.

Having four boundary/interface conditions for two second order PDE, the mathematical statement is
well-posed for the steady state condition. Aiming for the transfer function (TF) or amplitude-frequency
response function (A-FRF) or the response amplitude operator (RAO) along the pile |�̃�𝜃,𝑝(𝑧, 𝜉)/�̃�𝜃(𝜉)|,
the governing equations in the frequency domain can be obtained through the following Fourier trans-
form

�̃�𝜃,𝑝(𝜉) = ∫
∞

−∞
𝑢𝜃,𝑝(𝑡) exp(−𝑖𝜉𝑡) 𝑑𝑡

𝑢𝜃,𝑝(𝑡) =
1
2𝜋 ∫

∞

−∞
�̃�𝜃,𝑝(𝜉) exp(𝑖𝜉𝑡) 𝑑𝜉

(5.61)

where 𝜉 = 2𝜋𝑓. Consequently,

�̃�𝜃,𝑝,1,𝑧𝑧(𝑧, 𝜉) + 𝛽𝑝�̃�𝜃,𝑝,1(𝑧, 𝜉) = 0, 𝛽𝑝 =
𝜉
𝑐2,𝑝

, 𝑧𝑏𝑒𝑑 < 𝑧 < 𝑧𝑡𝑜𝑝 (5.62)

�̃�𝜃,𝑝,2,𝑧𝑧(𝑧, 𝜉) +
Λ
𝑐22,𝑝

�̃�𝜃,𝑝,2(𝑧, 𝜉) = 0, Λ = 𝑖𝜁𝑜𝜉 + 𝛼 𝑧 − 𝜉2, 𝑧𝑡𝑖𝑝 < 𝑧 < 𝑧𝑏𝑒𝑑 (5.63)

�̃�𝜃(𝜉) = 𝑓𝑜/𝑝𝑝𝜋(𝛿(−𝜉 + 𝜔) + 𝛿(𝜉 + 𝜔)) (5.64)

{𝐺𝑝 𝑤𝑡 �̃�𝜃,𝑝,1,𝑧(𝑧, 𝜉) + �̃�𝜃(𝜉) = 0}𝑧𝑡𝑜𝑝 (5.65)

{�̃�𝜃,𝑝,2,𝑧(𝑧, 𝜉) = 0}𝑧𝑡𝑖𝑝 (5.66)

{�̃�𝜃,𝑝,2(𝑧, 𝜉) − �̃�𝜃,𝑝,1(𝑧, 𝜉) = 0}𝑧𝑏𝑒𝑑 (5.67)

{�̃�𝜃,𝑝,2,𝑧(𝑧, 𝜉) − �̃�𝜃,𝑝,1,𝑧(𝑧, 𝜉) = 0}𝑧𝑏𝑒𝑑 (5.68)

where 𝛿() is the Dirac delta function. With the help of Maple, the general solution to the ODE (5.62)
and Airy DE (5.63) reads

�̃�𝜃,𝑝,1(𝑧, 𝜉) = �̃�1(𝜉) exp(𝑖𝛽𝑝𝑧) + �̃�2(𝜉) exp(−𝑖𝛽𝑝𝑧) (5.69)



46 5. Analytical model

�̃�𝜃,𝑝,2(𝑧, 𝜉) = �̃�3(𝜉)𝐴𝑖(−𝛼𝑜Λ(𝑧)/𝛼) + �̃�4(𝜉)𝐵𝑖(−𝛼𝑜Λ(𝑧)/𝛼), 𝛼𝑜 = (
−𝛼
𝑐22,𝑝

)
1/3

(5.70)

where 𝐴𝑖 and 𝐵𝑖 are Airy wave functions that satisfy the Airy differential equation. 𝐴𝑖 and 𝐵𝑖 are first
checked in Maple to ensure which one produces the downward and upward propagating waves in
Maple by introducing a much higher frequency than 80𝐻𝑧, though in this particular problem the check
is not so important due to the summation of both the downward and upward propagating waves as the
problem is bounded at the two ends.

Substituting the general solution �̃�𝜃,𝑝,1(𝑧, 𝜉) and �̃�𝜃,𝑝,2(𝑧, 𝜉) into (5.65), (5.66), (5.67), and (5.68)
yields the following matrix form

⎡
⎢
⎢
⎢
⎣

𝑖𝛽𝑝𝐺𝑝 𝑤𝑡 exp(𝑖𝛽𝑝𝑧𝑡𝑜𝑝) −𝑖𝛽𝑝𝐺𝑝 𝑤𝑡 exp(−𝑖𝛽𝑝𝑧𝑡𝑜𝑝) 0 0
0 0 𝑑

𝑑𝑧 (𝐴𝑖(−
𝛼𝑜
𝛼 Λ(𝑧𝑡𝑖𝑝)))

𝑑
𝑑𝑧 (𝐵𝑖(−

𝛼𝑜
𝛼 Λ(𝑧𝑡𝑖𝑝)))

−𝑖𝛽𝑝 exp(𝑖𝛽𝑝𝑧𝑏𝑒𝑑) 𝑖𝛽𝑝 exp(−𝑖𝛽𝑝𝑧𝑏𝑒𝑑)
𝑑
𝑑𝑧 (𝐴𝑖(−

𝛼𝑜
𝛼 Λ(𝑧𝑏𝑒𝑑)))

𝑑
𝑑𝑧 (𝐵𝑖(−

𝛼𝑜
𝛼 Λ(𝑧𝑏𝑒𝑑)))

− exp(𝑖𝛽𝑝𝑧𝑏𝑒𝑑) − exp(−𝑖𝛽𝑝𝑧𝑏𝑒𝑑) 𝐴𝑖(−𝛼𝑜𝛼 Λ(𝑧𝑏𝑒𝑑)) 𝐵𝑖(−𝛼𝑜𝛼 Λ(𝑧𝑏𝑒𝑑)/)

⎤
⎥
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

Mp

⎛

⎝

�̃�1
�̃�2
�̃�3
�̃�4

⎞

⎠⏝⎵⎵⏟⎵⎵⏝
up

= ⎛

⎝

−𝑓𝑜/𝑝𝑝𝜋(𝛿(−𝜉 + 𝜔) + 𝛿(𝜉 + 𝜔))
0
0
0

⎞

⎠⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
fp

(5.71)

the unknown vector up, thus �̃�1, �̃�2, �̃�3, and �̃�4, can be found by evaluating

up =Mp
−1fp (5.72)

If one focuses on the shear stress only, the transfer function of the shear stress above the soil surface
𝐻1,𝜏(𝑧, 𝜉) and below the soil surface 𝐻2,𝜏(𝑧, 𝜉) read

𝐻1,𝜏(𝑧, 𝜉) = 𝐺𝑝 |
�̃�𝜃,𝑝,1,𝑧(𝑧, 𝜉)
�̃�𝜃(𝜉)

|

𝐻2,𝜏(𝑧, 𝜉) = 𝐺𝑝 |
�̃�𝜃,𝑝,2,𝑧(𝑧, 𝜉)
�̃�𝜃(𝜉)

|
(5.73)

Accordingly, the amplitude of the shear stress in the frequency domain along the monopile reads

|𝜏𝑧𝜃(𝑧, 𝜉)| = (𝐻1,𝜏(𝑧, 𝜉) (𝐻(𝑧 − 𝑧𝑡𝑖𝑝) − 𝐻(𝑧 − 𝑧𝑏𝑒𝑑)) + 𝐻2,𝜏(𝑧, 𝜉) (𝐻(𝑧 − 𝑧𝑏𝑒𝑑) − 𝐻(𝑧 − 𝑧𝑡𝑜𝑝)))
𝑓𝑜
𝑝𝑝
(5.74)

where 𝐻() is the Heaviside step function.
Correction on the spring elements and simplifying the model

It is found during the analysis that the linearly increasing stiffness of the soil is not correctly formu-
lated proven by the inconsistent unit compared to the mass and stiffness term of the pile. Therefore,
a correction is made by using a more simplified spring elements through constant coefficient and that
the soil damping is neglected for simplicity. Accordingly, (5.56) is replaced by

1
𝑐22,𝑝

𝑢𝜃,𝑝,2,𝑡𝑡 − 𝑢𝜃,𝑝,2,𝑧𝑧 +
𝛼
𝑐22,𝑝

𝑢𝜃,𝑝,2 = 0, 𝑧𝑡𝑖𝑝 < 𝑧 < 𝑧𝑏𝑒𝑑 (5.75)

where 𝛼 = 𝑘𝜃
𝜌𝑝𝑤𝑡

. 𝑘𝜃 = 2𝐺/𝑅𝑝. Additionally, the reaction of the soil at the pile tip is now considered. The
spring at the bottom helps to achieve a somewhat stable solution during the evaluation of a convergence
problem later on. Therefore, (5.58) becomes
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{−𝐺𝑝 𝑤𝑡 𝑢𝜃,𝑝,2,𝑧 = 𝑘𝜃 𝑤𝑡 𝑢𝜃,𝑝,2}𝑧𝑡𝑖𝑝 (5.76)

Following the Fourier transform, Λ in (5.63) is replaced by Λ = −𝛼 + 𝜉2. The inverse problem in
(5.71) is then replaced by

⎡
⎢
⎢
⎣

𝑖𝛽𝑝𝐺𝑝 𝑤𝑡 exp(𝑖𝛽𝑝𝑧𝑡𝑜𝑝) −𝑖𝛽𝑝𝐺𝑝 𝑤𝑡 exp(−𝑖𝛽𝑝𝑧𝑡𝑜𝑝) 0 0
0 0 − (𝑖Λ𝐺𝑝 + 𝑘𝜃) exp(𝑖Λ𝑧𝑡𝑖𝑝) − (𝑖Λ𝐺𝑝 + 𝑘𝜃) exp(−𝑖Λ𝑧𝑡𝑖𝑝)

−𝑖𝛽𝑝 exp(𝑖𝛽𝑝𝑧𝑏𝑒𝑑) 𝑖𝛽𝑝 exp(−𝑖𝛽𝑝𝑧𝑏𝑒𝑑) 𝑖Λ exp(𝑖Λ𝑧𝑏𝑒𝑑) −𝑖Λ exp(−𝑖Λ𝑧𝑏𝑒𝑑)
− exp(𝑖𝛽𝑝𝑧𝑏𝑒𝑑) − exp(−𝑖𝛽𝑝𝑧𝑏𝑒𝑑) exp(𝑖Λ𝑧𝑏𝑒𝑑) exp(−𝑖Λ𝑧𝑏𝑒𝑑)

⎤
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

Mp

⎛

⎝

�̃�1
�̃�2
�̃�3
�̃�4

⎞

⎠⏝⎵⎵⏟⎵⎵⏝
up

= ⎛

⎝

−𝑓𝑜/𝑝𝑝𝜋(𝛿(−𝜉 + 𝜔) + 𝛿(𝜉 + 𝜔))
0
0
0

⎞

⎠⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
fp

(5.77)

Finally, the transfer function of the shear stress can be found by following the same procedure as in the
previous analysis.



6
2D FE modeling, result, and discussion

6.1. Modeling under plane strain assumption

Figure 6.1: Workflow in Ansys

A typical workflow to perform a FE analysis in Ansys is shown in Figure 6.1. Important steps to be
taken are explained for each step, where pitfalls are experienced. It is best to model the system in the
global 𝑥-𝑦 plane for 2D plane strain analysis. In other words, the dimension in 𝑧-axis is assumed to
be infinitely long. The monopile thickness must be modeled geometrically at this stage. Otherwise, a
profile with a cross-section perpendicular to the 𝑥-𝑦 plane should be assigned, which is incorrect. Even
though material libraries are available, customized material properties are created to ensure that only
the properties that belong to the assumption of isotropic elastic material are put. The homogeneous
and linear assumptions are implemented by assigning a single material property to the corresponding
geometrical properties of the pile-soil system and by turning off the non-linear effects. It is important
to create a new cylindrical coordinate system so that the new 𝑥-𝑦-𝑧 coordinate is equivalent to 𝑟-𝜃-𝑧 to
ensure that the torsional loading is applied correctly. The cylindrical coordinate systemwill also alleviate
the difficulty during the post-processing as the desired results can be set directly in the 𝜃-direction.

The boundary or interface conditions are defined in the Connection and Harmonic Response. The
first includes the contact between the interfaces and the application of the spring element. As introduced
in Section 5.2, a bonded connection is set at the pile-soil interface. A large initial gap or penetration
should be avoided to minimize inaccuracies, which is usually done by iteration of the meshing. When
defining the contact, exploiting the so-called named selection is beneficial so that one may not repet-
itively define the contact through geometrical selection. Under the spring element, the non-reflective
coefficient is applied as a longitudinal stiffness and longitudinal damping with rigid behavior. The rigid
behavior is set to ensure that the spring gives reaction force. Currently, the longitudinal spring element
cannot be applied as if it acted in the 𝜃-direction. Despite this limitation, the Test case will show that
the results approximate well the exact solution.

As guided by Section 5.3.2, a key important step is defining the correct coefficient. Since the ele-
ment acts only at one degree of freedom, the coefficient found in the analytical computation shall be
integrated along the perimeter. It shall be modeled symmetrically to obtain a symmetric solution. The
spring element must be modeled continuously along the perimeter to get an axisymmetric problem as
in the analytical model. However, it is not done due to practical implementation because it requires a
uniform mesh in the 𝜃 and 𝑧-direction, which is impossible due to the use of tetrahedral mesh. If one
uses hexahedral mesh to overcome this problem, another problem appears in the meshing around the
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pile-soil interface (i.e. the difficulty of hexahedral mesh to fill a cylindrical shape), which is not desired
because it is the location where the interests are focused. It is found that applying four spring elements
in symmetry yields a relatively good result even though the reflection is expected due to imperfect mod-
eling. The use of non-reflective elements through this spring element is seldom discussed in the Ansys
forum. It is possible that a better way of implementing the spring element as a non-reflective boundary
exists.

Most of the simulations in this study are performed in the Harmonic Response toolbox to obtain
the steady-state solution. With harmonic analysis, the meshing will be only in space. The meshing
size should satisfy the criteria discussed in Section 5.1. In 2D, the meshing process is straightforward,
especially when assuring conformity at the pile-soil interface. Nonetheless, an output called total defor-
mation must be checked to ensure that no stress concentration occurs at the pile-soil interface, which
means that both the meshing criteria and the conformity are met. An automatic linear meshing gener-
ates a hexahedral mesh with mid-side nodes by default. Mid-side node is one of the most important
features in meshing with linear elements to ensure better accuracy than without it.

The remaining task for the modeling is to apply the harmonic load. Since any load input defined
under the Harmonic Response toolbox will be assumed to be a harmonic load, the effect of gravity
must be defined separately and done in the Static Structural toolbox. Finally, the load components
must be carefully assigned to act in the 𝜃-direction through cylindrical coordinates. At this point, a ficti-
tious1 force that is uniformly distributed along the monopile perimeter at the pile-soil interface is applied.
When post-processing the result, the amplitude and phase response are used with the interpretation
as introduced in Section 4.1. Due to axisymmetric assumption, it seems sufficient to sample the dis-
placement amplitude |𝑈𝜃(𝑟)| (𝑚) or stress field |𝜏𝑟𝜃(𝑟)| (𝑃𝑎) along a path. In this case, evaluating the
solution along a path from 𝑟 = 𝑎 to 𝑟 = 𝑏 will be the best option rather than looking at the result of the
contour plot. In spite of taking a little bit more effort to process the data, the result is considered the
most relevant. On the contrary, the contour plot seems obvious at first glance, but it is more difficult to
interpret the deformation data from the contour legend.

6.2. Summary of the test cases
To see the bigger picture and to navigate the scheme, an illustration through Figure 6.2 is made.

It shows that the soil geometry is built up in Ansys from the simplest model at TC1 up to the most
complicated model at TC6. The end goal is to minimize the error of the final simulation, on which no
validated analytical solution is yet available. At each test case, a verification is performed to get one
or some conclusions that are used to evolve the model. The conclusion is taken by measuring the
average of the relative error ̄𝜖 and the correlation coefficient 𝑟𝑐. To this end, the maximum relative error
̄𝜖𝑟,𝑚𝑎𝑥 is not definitive. Instead, the conclusion is deduced in relative to the other results in the same
plot.

6.3. TC1: verifying the non-reflective coefficient and damping ratio
TC1 is aimed to evaluate the interpretation of the amplitude and phase response in Ansys harmonic

analysis introduced in Section 4.1, the application of the non-reflective coefficient, and to calibrate the
use of the damping ratio in Ansys by looking at the undamped motion. Since the amplitude will be
revealed simultaneously with the last two, the phase response will be discussed after the second one.
The discussion on the non-reflective problem is made by comparing the results that use kinematic
boundaries and also the LK boundary with the exact solution. The second goal is achieved by consid-
ering three figures in Figure 6.3, 6.4, and 6.5. Together with Table 6.2, 6.3, 6.4, and 6.5, the evaluation
can be made quantitatively. Each figure compares the displacement and the shear stress along the
sampling points. 𝑏 = 12.5𝑚, 𝑏 = 5𝑚, and 𝑏 = 2.5𝑚 are assumed as the large, medium, and small
soil domain. To get confidence on the obtained results, a fine mesh size of Δ𝑙 = 0.1𝑚 is used.

Significance of the non-reflective boundary
1It is fictitious because the force at the pile-soil interface is the one that is unknown and is to be found. However, it is assumed
that this force is known for the test cases. By means of this assumption, the theoretical equilibrium force can be checked due
to dynamic boundary conditions at the pile-soil interface.
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Figure 6.2: Summary of the test cases

𝐿Ω𝑝 𝑏 𝐾𝑑𝑝 𝐶𝑑𝑝 𝐿𝐾𝑑𝑝
𝐷𝑜 𝜆 𝑚 𝑚 𝑁/𝑚3 𝑁/𝑚 𝑁𝑠/𝑚3 𝑁𝑠/𝑚 𝑁𝑠/𝑚3 𝑁𝑠/𝑚
12 223 12 12.5 3.15 × 107 6.18 × 108 7.27 × 105 1.43 × 107 7.27 × 105 5.71 × 107
4.5 1 4.5 5 7.90 × 107 6.21 × 108 7.23 × 105 5.68 × 106 7.27 × 105 2.28 × 107
2.5 5

9 2 2.5 1.6 × 108 6.29 × 108 7.08 × 105 2.78 × 106 7.27 × 105 1.14 × 107

Table 6.1: Horizontal extent of the soil domain, the non-reflective coefficient, and the mesh size

From Figure 6.5, the application of 𝐾𝑑𝑝 and 𝐶𝑑𝑝 in the FE model matches the exact solution. Nev-
ertheless, its error increases with 𝑏, which can be attributed to the fact that the the spring elements
are assigned imperfectly as introduced in Section 6.1. Despite of this limitation, the assignment of four
spring elements seems fine with the following considerations. The mean of the mean relative error ̄̄𝜖𝑟 in
Table 6.2 and 6.3 show that all of the finite model contain error. Considering both ̄̄𝜖𝑟 and 𝜎�̄�𝑟 , using non-
reflective coefficient will be the best option. It is found that at this frequency, the frequency-independent
LK boundary gives almost identical solution to the model that uses 𝐾𝑑𝑝 and 𝐶𝑑𝑝.

On the other hand, finite model using 𝑓𝑟𝑒𝑒 and 𝑓𝑖𝑥𝑒𝑑 boundary lead to larger error, where the latter
being the worst. Looking at Table 6.4 and 6.5, the same trend can be observed where the non-reflective
correlate well to the exact solution. Additionally, 𝑓𝑟𝑒𝑒 boundary also displays a good correlation to the
exact solution. The negation is true when using the 𝑓𝑖𝑥𝑒𝑑 boundary, which is somehow cluttered
with the negative correlation at 𝑏 = 5𝑚. The measure of ̄𝑟𝑐 and 𝜎𝑟𝑐 confirm that the non-reflective
boundary excel the 𝑓𝑟𝑒𝑒 boundary. Even though using either the frequency- dependent or indepen-
dent coefficient seems fine at frequency 80𝐻𝑧, it is decided to continue the simulation only with the
frequency-dependent one due to its frequency-dependent nature as introduced in Section 5.3.4. Since
the the non-reflective behavior is independent of 𝑏 (i.e. the domain size) discussed in Section 5.3.4, a
moderate choice is taken by implementing 𝑏 = 5𝑚 for the next simulation. Moreover, the simulation
from this point forward will focus only on the shear stress because of the interest on the shear stress
at failure.

Amplitude and phase response

Figure 6.6.a illustrates that the there is a deviation between the amplitude |(𝑈𝜃(𝑟)| of the exact
solution and the FE analysis even though the maximum amplitude is in good agreement. This can be
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(a) |(𝑈𝜃(𝑟)| (𝑚) for different outer boundary conditions (b) |𝜏𝑟𝜃(𝑟)| (𝑃𝑎) for different outer boundary conditions

Figure 6.3: Significance of outer boundary conditions for 𝑏 = 12.5𝑚

(a) |(𝑈𝜃(𝑟)| (𝑚) for different outer boundary conditions (b) |𝜏𝑟𝜃(𝑟)| (𝑃𝑎) for different outer boundary conditions

Figure 6.4: Significance of outer boundary conditions for 𝑏 = 5𝑚

𝐿Ω𝑝 ̄𝜖𝑟𝐾𝑑𝑝&𝐶𝑑𝑝 ̄𝜖𝑟𝐹𝑖𝑥𝑒𝑑 ̄𝜖𝑟𝐹𝑟𝑒𝑒 ̄𝜖𝑟𝐿𝐾𝑑𝑝
𝐷𝑜 𝜆 − − − −
12 223 0.29 0.35 0.65 0.32
4.5 1 0.22 12.87 0.35 0.07
2.5 5

9 0.03 1.31 0.40 0.15
̄̄𝜖𝑟 0.18 4.84 0.47 0.18
𝜎�̄�𝑟 0.13 6.97 0.16 0.13

Table 6.2: Error in the displacement

attributed to the presence of damping term 𝑖ΩC in the formulation of equation of motion, as introduced
in Section 4.1, despite of nil percent damping is assigned. A question must be asked based on Figure
6.6.a where the sign of the imaginary parts oppose each other, which is not the case for the real part.
The pair of wave function from Ansys resembles the Hankel function 𝐻(1)1 (𝛽𝑟) and not yet understood
fully why this is the case. It can be the indication of imperfect assignment of spring element that
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(a) |(𝑈𝜃(𝑟)| (𝑚) for different outer boundary conditions (b) |𝜏𝑟𝜃(𝑟)| (𝑃𝑎) for different outer boundary conditions

Figure 6.5: Significance of outer boundary conditions for 𝑏 = 2.5𝑚

𝐿Ω𝑝 ̄𝜖𝑟𝐾𝑑𝑝&𝐶𝑑𝑝 ̄𝜖𝑟𝐹𝑖𝑥𝑒𝑑 ̄𝜖𝑟𝐹𝑟𝑒𝑒 ̄𝜖𝑟𝐿𝐾𝑑𝑝
𝐷𝑜 𝜆 − − − −
12 223 0.28 0.34 0.63 0.31
4.5 1 0.19 11.87 0.30 0.08
2.5 5

9 0.04 1.22 0.26 0.09
̄̄𝜖𝑟 0.17 4.48 0.40 0.16
𝜎�̄�𝑟 0.12 6.42 0.20 0.13

Table 6.3: Error in the shear stress

𝐿Ω𝑝 𝑟𝑐𝐾𝑑𝑝&𝐶𝑑𝑝 𝑟𝑐𝐹𝑖𝑥𝑒𝑑 𝑟𝑐𝐹𝑟𝑒𝑒 𝑟𝑐𝐿𝐾𝑑𝑝
𝐷𝑜 𝜆 − − − −
12 223 0.94 0.56 0.84 0.93
4.5 1 0.92 −0.59 0.81 0.99
2.5 5

9 0.99 0.75 0.87 0.99
̄𝑟𝑐 0.95 0.63 0.84 0.97

𝜎𝑟𝑐 0.04 0.10 0.03 0.03

Table 6.4: Correlation of the displacement

𝐿Ω𝑝 𝑟𝑐𝐾𝑑𝑝&𝐶𝑑𝑝 𝑟𝑐𝐹𝑖𝑥𝑒𝑑 𝑟𝑐𝐹𝑟𝑒𝑒 𝑟𝑐𝐿𝐾𝑑𝑝
𝐷𝑜 𝜆 − − − −
12 223 0.97 0.93 0.90 0.97
4.5 1 0.99 −0.17 0.98 0.99
2.5 5

9 0.99 0.95 0.98 0.99
̄𝑟𝑐 0.98 0.57 0.95 0.98

𝜎𝑟𝑐 0.01 0.64 0.05 0.01

Table 6.5: Correlation of the shear stress

makes the pile-soil far than an axisymmetric problem. The flipped sign of the imaginary part leads
to a reversed phase response Φ in Figure 6.6.b. Nevertheless, since cos(Φ) for both the analytical
and FE solution returns approximately the same values, as shown in Figure 6.6.b, the assumed load in
a cosine form, that is concluded in Section 4.1, is adequate together with the corresponding amplitude.
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Another takeaway from the phase response in 6.6.b is that the motion delay in the proximity of the
pile-soil interface, with the assumed parameters, is small with respect to the force.

(a) |(𝑈𝜃(𝑟)| (𝑚) for 𝑏 = 5𝑚 (b) Φ(𝑟) (∘) and cos(Φ)(𝑟) for 𝑏 = 5𝑚

Figure 6.6: Comparison of the displacement amplitude and phase response

Calibration of the damping ratio
Three cases of damping ratio 𝜁 < 1, 𝜁 = 1, and 𝜁 > 1 are depicted in Figure 6.7. The same

numerical input is fed into Ansys as the constant structural damping coefficient. Figure 6.7 verifies
that the decaying behavior due to the increasing damping ratio in the continuum is apparent. Also, the
previously distorted graph in Figure 6.4 due to the solution to the 𝑓𝑖𝑥𝑒𝑑 boundary is now becoming
vivid. Table 6.6 shows that even though the error increases with the damping ratio, the correlation is
very good. The increasing error with the damping ratio means that there can be neglected terms in the
assumed damping force in Section 5.4.1. Nonetheless, since damping ratio in engineering system is
usually small, especially when linearity is assumed such as between 𝜁 = 1% to 𝜁 = 5% (S.S. Gómez,
personal communication, 9 January, 2023), the assumed form of damping seems not a big problem if
one look at the graph for 𝜁 = 0 and 𝜁 = 0.25. Furthermore, the agreement is sound around the pile-soil
interface between 𝑟 = 0.5𝑚 and 𝑟 = 1𝑚. Therefore, by assuming small damping ratio and focusing
on the pile-soil interface, this discussion concludes that the damping ratio in the analytical solution is
approximately equal to the constant structural damping coefficient in Ansys. From this point forward,
the damping ratio will not be used in the test cases except at the final simulation.

Figure 6.7: |𝜏𝑟𝜃(𝑟)| (𝑃𝑎) for different 𝜁
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Radius Damping ratio Error and correlation
𝑏 𝜁 ̄𝜖𝑟|𝜏𝑟𝜃(𝑟)| 𝑟𝑐|𝜏𝑟𝜃(𝑟)|
𝑚 − − −
5 0 0.04 0.99
5 0.25 0.26 0.99
5 1 0.60 0.99

Table 6.6: Error and correlation of the shear stress for different 𝜁

6.4. TC2: Effect of inner soil and mesh sensitivity check
TC2 searches the effect of the inner soil with respect to the model with cavity. Three graphs are

plotted in Figure 6.10.a namely the exact solution to the semi-infinite cavity-pile-soil problem, the FE so-
lution to the cavity-pile-soil-dashpot problem, and the FE solution to the soil-pile-soil-dashpot problem.
By visual inspection, Figure 6.10.a illustrates that the presence of the inner soil gives small effect to
the shear stress response measured by ̄𝜖𝑟 = 0.17 and 𝑟𝑐 = 0.99. This is by assuming that the solution
is sampled between 𝑟 = 0.5𝑚 and 𝑟 = 5.0𝑚 just like the foregoing cases. A closer look at 𝑟 = 0.5𝑚
shows that the shear stress increases 2% when the inner soil is taken into account in the model. This
can be caused by reflection from the opposite side of the monopile. The discussion concludes that the
effect of the inner soil to the overall soil response outside the monopile is considerably small.

Additionally, a convergence test of the shear stress distribution around the pile-soil interface is
conducted by simulating difference discretization sizes. The goal is to use non-uniform mesh in the soil
domain that is to avoid the use of small Δ𝑙, 𝑠 in the entire soil domain. From the minimum mesh size
of the soil Δ𝑙𝑠𝑜𝑖𝑙 = 𝜆/10 = 0.45𝑚, several sequential simulations with smaller mesh size is done and
plotted in Figure 6.10.b. It shows, from right to left, that Δ𝑙𝑠𝑜𝑖𝑙 ≤ 0.08𝑚, around the pile-soil interface,
leads to small relative error from the preceding simulation 𝜀∗ that is defined as

𝜀∗𝑛𝑠 = |
𝜏𝑟𝜃,𝑛𝑠 − 𝜏𝑟𝜃,𝑛𝑠−1

𝜏𝑟𝜃,𝑛𝑠−1
| (6.1)

where 𝑛𝑠 is the number of simulation. Figure 6.9 illustrates the decrease, from right to left, of the mesh
size around the pile-soil interface discussed in this section. On the basis of Figure 6.10.b, Δ𝑙𝑠𝑜𝑖𝑙 ≤
0.08𝑚 is adopted for the 3D problem.

(a) |(𝜏𝜃(𝑟)| with and without inner soil (b) 𝜖∗ (−)

Figure 6.8: Effect of inner soil and mesh sensitivity analysis
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Figure 6.9: Mesh sensitivity study around the pile-soil interface for Δ𝑙, 𝑠 ≤ 0.45𝑚

Figure 6.10: Effect of inner soil



7
3D FE modeling, result, and discussion

7.1. 3D modeling
A much the same workflow in Figure 6.1 is applied when modeling in three dimensions. The sig-

nificant differences from the 2D model are the following. The monopile is now a shell structure, geo-
metrically constructed as a surface. The influence of the thickness will be ensured by activating the
thickness effect. 3D modeling can be considered extruding both the pile and soil model. However, this
is not the case here since the pile is a cylindrical surface. Therefore, a new geometrical model must be
produced for the monopile instead of only adding an extrusion unless it is solid. With the soil as a solid,
the assembly and meshing will be less complicated when using the pile as a surface. These two advan-
tages stand out when the additional layer is added. The shell structure should have the membrane and
bending stiffness activated, which is vital when the analysis considers force in the longitudinal direction
of the shell due to self-weight in this case. Otherwise, the error will occur due to excessive deflection
in the rotational degree of freedom about the 𝑧-direction. To approximate the reality, the soil model is
divided into two groups: the soil around the monopile and the additional layer in which no monopile is
embedded. The latter is related to imitating the infinite nature of the soil domain in 𝑧-direction.

The monopile mesh is formed from triangles with mid-side nodes. Tetrahedral mesh with mid-side
nodes is used to mesh the solid instead of the hexahedral mesh. A speedy simulation can be achieved
by tetrahedral meshing rather than hexahedral meshing, which is beneficial. One of the most difficult
routines has been to conform the mesh at the pile-soil interface, which is the contact between the shell-
solid interface. Four meshing procedures are taken through body sizing, patch conforming method,
contact sizing and contact match to maximize the conforming mesh at the interfaces. However, by
visual inspection, while solid-solid contact is conforming or shares the same nodes at the interface,
many shell-solid contacts are not conforming. An effort to solve this problem by node merging still does
not solve the problem. Instead, it creates a problem because the element shape becomes distorted.

Regarding the forcing input, a similar concept of fictitious force is applied following Section 6.1. In
3D, the force is also first distributed along the pile length and its perimeter. At the final simulation, the
force is put at 𝑧 = 𝑧𝑡𝑜𝑝 of the extended monopile above the soil surface at 𝑧 = 0.0𝑚. Extra sampling
points are now taken into account as introduced in Figure 6.2. In 𝑟-direction, the solution is investigated
at three elevations: at the top 𝑧 = 0.0𝑚, middle 𝑧 = 0.0 − 𝑃𝑝/2, and the bottom level 𝑧 = 𝑧𝑡𝑖𝑝 of the
monopile embedded length. In 𝑧-direction, the response at the pile-soil interface is of interest from
𝑧 = 0.0𝑚 to 𝑧 = 𝑧𝑡𝑖𝑝. In the first few cases, the response at 𝑟 = 𝑎 cannot be captured. Thus, the
response at 𝑟 = 𝑎 + 0.1𝑚 is used as an alternative. However, it is found later on that the response at
𝑟 = 𝑎 can be obtained after mesh refinement. Before continuing the test cases, the system parameters
for the 3D FE modeling are summarized in Table 7.1 and figures in Appendix C are referred.

7.2. TC3: Effect of finite depth
TC3 marks the first 3D model in this report by incorporating a finite length in 𝑧-direction, which will

be defined here as a finite thickness. The inner soil is also taken into account as a continuation of the

56
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𝑐2 𝜌 𝐺 𝜌𝑝 𝑤𝑡 𝑎 𝑏 𝜏𝑜 𝑓
𝑚/𝑠 𝑘𝑔/𝑚3 𝑁/𝑚2 𝑘𝑔/𝑚3 𝑚 𝑚 𝑚 𝑃𝑎 𝐻𝑧
360 2022 262051200 7850 0.01 0.5 5.0 40000 80

Table 7.1: Material, geometrical, and external load properties for the 3D test cases

latest test case. Therefore, the effect of the finite thickness is of interest at this stage. As suggested in
the preceding paragraph, sampling at three locations is rendered at the top, mid, and bottom elevations.
All the parameters follow Table 5.2 in addition to 𝑏 = 5𝑚 that follows the conclusion in TC1. With the
finite thickness of 6𝑚 following 𝐷𝑎𝑡𝑎1 in Table 2.1, the non-reflective coefficient 𝐾𝑑𝑝 and 𝐶𝑑𝑝 as in
Table 6.1 becomes 3.7 × 109𝑁/𝑚 and 3.4 × 107 due to the integration along the depth. At 𝑧 = 0.0𝑚
and 𝑧 = 𝑧𝑡𝑖𝑝, 𝑓𝑟𝑒𝑒 boundary condition is applied to the pile-soil system.

Figure 7.1.a is the image of the shear stress responses corresponding to the three depths and the
exact solution. Notice that all three responses befall each other, shown by a single visible response
next to the exact solution. Although not displayed in the same plot, a slight difference is observable
if Figure 6.10 is recalled. However, if not attentive, one would miss the fact that the shear stress at
the pile-soil interface becomes practically zero in Figure 7.1.a. The computed error and correlation of
̄𝜖𝑟 = 0.13 and 𝑟𝑐 = 0.99 for the response between 𝑟 = 0.51𝑚 and 𝑟 = 5𝑚 prove that the FE solution

agrees with the exact solution in the region away from the pile.

What is more, TC3 examines the shear stress along the monopile depth at the pile-soil interface as
plotted in Figure 7.1.b. As mentioned in the previous paragraph, the solution at the interface cannot be
captured well. Therefore, an additional solution in the vicinity of the interface at 𝑟 = 0.51𝑚 is shown
here. Visually, it shows that the shear stress, along the depth at 𝑟 = 0.51𝑚, is in the same order of
magnitude as the shear stress in Figure 6.10. The constant response, along the depth at 𝑟 = 0.51𝑚,
in Figure 7.1.b, reinforces the previous statement that the shear response is the same at three different
levels of 𝑧. In view of force equilibrium, the response is in the same order of magnitude compared to
the fictitious force amplitude 𝜏𝑜 = 40𝑘𝑃𝑎 as in Table 5.2.

Despite the inability to capture the response at 𝑟 = 𝑎, the maximum response in Figure 7.1.a still
agrees with the exact solution. Secondly, in 𝑧-direction, the response at 𝑟 = 0.50𝑚 can be interpolated
from the response at 𝑟 = 0.51𝑚, which shows good agreement with the principle of force equilibrium.
For these reasons, the discussion for TC3 is closed by concluding: in terms of the shear stress re-
sponse, the finite thickness model with 𝑓𝑟𝑒𝑒-𝑓𝑟𝑒𝑒 boundary condition will be assumed to be equivalent
to the 2D plane strain semi-infinite model by noting the elaborated limitations.

(a) |𝜏𝑟𝜃(𝑟)| (𝑃𝑎) (b) |𝜏𝑟𝜃(𝑧)| (𝑃𝑎)

Figure 7.1: Effect of finite depth
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7.3. TC4: Effect of an additional soil layer below the pile tip
To designate the depth of the additional layer below the pile tip, TC4 is carried out. This task

is deemed necessary because of the following. Firstly, the presence of soil underneath the pile is
essentially true. Secondly, the extent to which the depth is modeled has yet to be fully understood.
Section 5.1 demonstrates that the effect of the bottom boundary is small when applying 𝐻Ω = 13𝐷𝑜.
In the same manner as the discussion regarding the horizontal extent of the soil domain, the vertical
extent of the soil domain below the pile tip is desired to be small. The interface condition between the
additional soil layer and the top soil and pile assumes displacement and stress continuity (i.e. perfectly
bonded). A new pair of non-reflective coefficients 𝐾𝑑𝑝 and 𝐶𝑑𝑝 are assigned at the outer boundary of
the additional soil layer, similarly to the outer boundary of the top layer.

It is sought in such a way that the effect of the boundary at the bottom is negligible. The matter
is settled by establishing force equilibrium at the pile-soil interface. Also, a non-reflective boundary in
𝐶𝑑𝑝,𝑧 is added in 𝑟-𝜃 plane at the bottom of the additional soil layer. A similar idea for deriving its radial
counterpart 𝐾𝑑𝑝 and 𝐶𝑑𝑝 yields the non-reflective boundary without a spring element as described
in Section 5.6. Note that these two non-reflective boundaries are approximated by means of one-
dimensional wave theory. However, it will be shown later that force equilibrium at the pile-soil interface
can be approximated by using these viscous boundaries.

The same material as the soil in the upper layer is assumed. At TC4, the tetrahedral mesh is
imposed upon the upper and additional soil layers. The monopile mesh is in the form of triangles to
maximize contact matching with the tetrahedral mesh. Although the meshing method is different, the
meshing size is still the same with TC3, which are Δ𝑙𝑠𝑜𝑖𝑙 = 𝜆/10 = 0.45𝑚 and Δ𝑙 = 0.2𝑚. By contact
sizing, the soil around the pile-soil interface will have Δ𝑙𝑠𝑜𝑖𝑙 = Δ𝑙 = 0.2𝑚. At this point, the meshing is
twice larger than in the 2D modeling to explore faster simulations at the risk of larger error around 10%
according to Figure 6.10.

(a) 𝜏𝑟𝜃(𝑟)| (𝑃𝑎) (b) 𝜏𝑟𝜃(𝑧)| (𝑃𝑎)

Figure 7.2: Effect of finite depth

Plots of the shear stress in the radial direction at three elevations of the top layer in Figure 7.2.a
shows that the deviation becomes larger than the exact solution. Visually, the largest deviation appears
at 𝑧 = 0𝑚 and decreases to the smallest deviation at 𝑧 = −6.0𝑚. It can be the indication that the one-
dimensional non-reflective boundary breaks down. The appearance of nodes and antinodes is obvious,
similar to the response to the semi-infinite problem when 𝑓𝑟𝑒𝑒 or 𝑓𝑖𝑥𝑒𝑑 boundary is used under the
plane strain assumption. It seems that assessing the response with respect to the semi-infinite solution
is no longer relevant and more difficult.

Figure 7.2.b shows the shear stress in the proximity of pile-soil contact at 𝑟 = 0.51𝑚. Once again,
this is because the response at 𝑟 = 0.50𝑚 cannot be captured well. Force equilibrium due to the
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fictitious force of 𝜏𝑜 = 40𝑘𝑃𝑎 can be approximated when the additional soil layer 𝐻Ω𝑝 = 10𝑚. This
means that 𝐻Ω = 6+10

1.0 = 16𝐷𝑜 > 13𝐷𝑜 as introduced in Section 5.1. When a 𝑓𝑖𝑥𝑒𝑑 boundary is
used at the bottom of the additional soil layer, the shear response at 𝑟 = 0.51𝑚 is not in the order
of 𝜏𝑜 = 40𝑘𝑃𝑎, which indicates that the solution in the interior domain is disturbed by reflection. The
𝑓𝑖𝑥𝑒𝑑 boundary is highlighted because a rigid boundary is often assumed due to the existence of a
hard-bearing stratum at a large depth of earth. However, a fixation should not be used in this case.

A stress jump at the pile-soil contact normal to 𝑟 −𝜃 plane is seen from the first time, shown at 𝑧𝑡𝑖𝑝.
The occurrence of stress jump somewhat counteracts the assumption on the continuity of displace-
ments and stresses, which are enforced at the interfaces. It is expected due to material discontinuities
where the pile tip meets the soil underneath it. Jumps are also pictured at 𝑟 = 0.5𝑚 when Figure 7.2.a
is recalled. It can be associated with the fact that the stress-free condition at the top and bottom of the
pile-soil system in the previous analyses is no longer the case. In other words, the presence of the
additional soil layer gives a reaction at the pile-soil contact. Stress jumps have also been observed
even at the soil-soil interface in another study about soil-pile interaction (Anoyatis & Mylonakis, 2011).

The stress jump can also be associated with a stress singularity where the elasticity theory tends
to be inaccurate at corners (C. Kasbergen, personal communication, 17 January, 2023) (A. Metrikine,
personal communication, 20 January, 2023). Finally, the response below the pile tip is not interesting
to be examined, ergo not discussed further. To sum up the TC4 matter, force equilibrium along the
pile-soil interface seems handier than assessing the shear stress response in the radial direction with
reference to the exact solution. Therefore, in what follows, force equilibrium at the pile-soil interface
will be used as the primary tool to examine the simulation.

7.4. TC5: Effect of soil layering around the monopile

(a) |𝜏𝑟𝜃(𝑧)| (𝑃𝑎) (b) |𝜏𝑟𝜃(𝑧)| (𝑃𝑎)

Figure 7.3: Effect of soil layering

To accommodate the hypothesis on the overall behavior of the pile-soil system, as introduced in
Section 3.4.3, the top soil is modeled as three discrete layers. The contact between these layers is
also perfectly bonded, as described in the previous Section. Therefore, the coefficient 𝐾𝑑𝑝 and 𝐶𝑑𝑝
must be adjusted per the thickness of the layers. Other than that, the model is a copy of the TC4
model. It is found that layering influences the solution to some extent. It indicates that the solution
does not converge yet, and mesh refinement is needed.

Figure 7.3.a demonstrates that the shear stress at 𝑟 = 0.5𝑚 is not captured well like at TC4,
although a fictitious force is uniformly distributed at 𝑟 = 𝑎 along the monopile. At 𝑟 = 0.51𝑚, the shear
stress is in the order of magnitude of the fictitious force 𝜏𝑜 = 40𝑘𝑃𝑎 with a noticeable variation in view
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of TC4. The most considerable difference occurs around the pile tip, where the amplitude of the jump
reduces. Since the shear stress below the pile tip is unimportant, it is left as is and no further discourse
is made about it. Finally, TC5 concludes that the model with a layered top soil is acceptable because
the force equilibrium near the pile-soil interface can be approximated.

7.5. TC6: Effect of gravity without and with the monopile above the
soil surface

Figure 7.4: The initial vertical stress without and with the monopile above the soil

The test case is continued by the insertion of constant acceleration of earth gravity 𝑔 = 9.81𝑚/𝑠2 in
the negative 𝑧-direction with reference to Figure 7.18. Two FE analyses are performed, namely without
and with the monopile that extends from 𝑧 = 0𝑚 to 𝑧 = 𝑧𝑡𝑜𝑝 and the vertical stress 𝜎𝑧𝑧(𝑧) at 𝑟 = 0.51𝑚
is evaluated in the Static Structural toolbox. The assumption of hydrostatic distribution for the vertical
stress holds by implementing the boundary conditions introduced in Section 4.2. Notice that up until
TC5, no monopile above the soil is yet included and the simulation is done within the harmonic analysis
framework in the Harmonic Response toolbox. The stiffness of the overall pile-soil system is expected
to change to some extent due to the initial stress. Figure 7.4 is quoted to verify the implementation of
initial stress.

Without the monopile above the soil surface, the assumed hydrostatic distribution of the vertical
stress is clarified with the linearly increasing magnitude from the surface to the depth beneath it. For
example, at a large depth below the pile tip

𝜎𝑧𝑧(𝑧 = −15.5) = 𝜌 𝑔 𝑧 = 2022 × 9.81 × −15.5 ≈ −307𝑘𝑃𝑎 (7.1)

which agrees well with Figure 7.4. Nonetheless, the expected zero vertical stress does not hold at the
soil surface, which can be related to the assumption of a perfectly bonded connection at the pile-soil
interface in the modeling. So, there is a local tension around the pile due to the larger steel mass
density than the soil. The jump appears at the pile tip as before due to material discontinuity.

The monopile above the soil surface alters the soil vertical stress distribution that spans from the soil
surface down to the large depth below the pile tip, particularly near the embedded pile where hydrostatic
distribution is not the case anymore. The vertical stress at the soil surface even becomes compressed
unlike the one discussed in the preceding paragraph. More compression at the soil surface can be
associated with the additional weight from the extended monopile and then the Poisson’s effect comes
into play by expanding the monopile radially, which compresses the soil.

Below 𝑧 = −1𝑚, the magnitude of the vertical stress decreases non-linearly in magnitude until the
pile tip, which shows that the pile tends to tension the soil. If sand is considered, the appearance of
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tension in it is not realistic due to the absence of chemical bonding between its grain that allows tension.
The same tendency can be observed below the pile tip, in which the magnitude of the vertical stress
increases non-linearly, starting from 𝑧 = 7.5𝑚 where the influence of stress jump subsides. These
can also be related to the assumption of perfectly bonded contact at the pile-soil interface, where
the simulation ensures displacement continuity. Hence, the soil follows the monopile due to its larger
weight.

7.6. Finding the torque amplitude and the clamping force
Since the initial stress has been included, the pre-stressed harmonic analysis of the torsional vibra-

tion of the monopile is ready to be carried out. A fictitious force per unit area with amplitude 𝜏𝑜 that
is uniformly distributed along the monopile circumference and depth between 𝑧 = 0𝑚 and 𝑧 = 𝑧𝑡𝑖𝑝
is no longer applied. Instead, a force amplitude 𝑓𝑜 is uniformly distributed along the circumference at
the pile top 𝑧 = 𝑧𝑡𝑜𝑝. The very first force amplitude is arbitrary because this force amplitude will be
the one that is to be found. Damping will be incorporated in terms of damping ratio, for which the soil
damping ratio 𝜁 = 5% is assumed as introduced in Section 6.3, and the steel damping ratio assumes
𝜁𝑝 = 2%.1 At this stage, the soil layers are updated from three to six discrete layers to explore more
simulation possibilities. Table 7.2 and Table 7.3 summarize the system parameters used to find the
force amplitude.

𝐷𝑜 𝐿𝑝 𝑤𝑡 𝑃𝑝 𝐷Ω 𝐻Ω 𝑎
𝑚 𝑚 𝑚 𝑚 𝑚 𝑚 𝑚
1.0 10.5 0.01 6.0 10 16 0.5

Table 7.2: Geometrical properties for finding the torque amplitude

𝑐2 𝜌 𝐺 𝜁 𝑐2,𝑝 𝜌𝑝 𝐺𝑝 𝜁𝑝 𝑓
𝑚/𝑠 𝑘𝑔/𝑚3 𝑁/𝑚2 % 𝑚/𝑠 𝑘𝑔/𝑚3 𝑁/𝑚2 % 𝐻𝑧
360 2022 2.62 × 108 5 3208 7850 8.08 × 1010 2 80

Table 7.3: Material and external load properties for finding the torque amplitude

Due to the thickness of the assumed monopile dimensions, the ideal location to sample the maxi-
mum shear stress will be at 𝑟 = 0.505𝑚. However, it is observed that in the region between 𝑟 = 𝑎 and
𝑟 = 𝑎 + 0.1𝑚, the maximum shear stress does not converge, which is not the case for the stress at
𝑟 = 𝑎 and 𝑟 = 𝑎+0.1𝑚. Note that a stress jump occurs at 𝑟 = 𝑎 and the shear stress drops very fast at
𝑟 = 𝑎+0.1𝑚 due to material discontinuities like in the case of stress jump at the pile tip described in the
previous test case. The shear stress at 𝑟 = 𝑎 + 0.1𝑚 is in the order of 1% of the shear stress at 𝑟 = 𝑎.
The magnitude of the maximum shear stress for the soil failure is then assumed at 𝑟 = 𝑎+0.1𝑚 to allow
for conservatism. Although the assumption is controversial, intuition on the relative difference between
simulation outcomes can still be understood. Hence, the discussion is continued and the stress jump
problem is saved for further discussion.

By assuming six discrete layers, eight possible simulations are done to delve into the hypothesis on
the overall pile-soil failure mechanisms. Figure 7.6 and 7.7 exemplify the distributions of the maximum
shear in the soil 𝜏𝑚𝑎𝑥 along the depth 𝑧 when they exceed the Mohr-Coulomb failure criterion of the
targeted soil layers. While Figure 7.6.a and 7.6.b assume six and three discrete layers, Figure 7.7.a
and 7.7.b assume two and one discrete layers shown by the number of peaks in each plot. Crossings
between the maximum shear and the dotted blue line (i.e. failure criterion) at each depth of the discrete
layer identify the failure condition in which slip takes place.

1For the given range of small soil damping assumption 1% − 5%, 𝜁 = 5% is deemed the worst condition, which leads to
the smallest amplitude response. 𝜁𝑝 = 2% is, in fact, above the upper limit of the typical damping ratio in steel structures
𝜁𝑝 = 0.5%−1.5% (Shirzadeh et al., 2013). It is intended to account for hydrodynamic damping due to wave radiation. However, it
is a mere rough approximation because damping must be measured experimentally and measuring the damping ratio is beyond
the scope of this study.
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Let Figure 7.6.b be an example to focus the discussion. It is clear that the green solid line 𝑙4 crosses
the failure criterion at depth 𝑧 = −4𝑚. The location of the peak at 𝑧 = −2𝑚 shows that the pile-soil
contact between 𝑧 = 𝑧𝑏𝑒𝑑 = 0 and 𝑧 = −1𝑚 is detached as per assumption. The disconnection is also
justified by the magnitude of the shear stress that is close to zero above the peak. The shear stress
decreases exponentially from the peak toward the depth where the pile-soil contact is active below the
peak. It indicates that the shear stress radiates into deeper soil region in addition to the radiation in
the radial direction as discussed in Chapter 5. Whilst the latter is governed by the Hankel function,
the former is dictated by the Airy function, and of course they are both weakened more by the energy
dissipation due to viscous damping. At the region close to the pile tip, a singular behavior appears as
the pile meets the soil, where the shear stress increases but with the magnitude much lower than the
peak stress. It informs that the source comes from the depth above it, which is true.

When looking at the overall trend of the peak in Figure 7.6.a and 7.6.b, the peaks form a peak
group shown by the largest magnitude of around 3.3 × 105 𝑃𝑎 and 6.3 × 105 𝑃𝑎, respectively. Going
back to the bigger picture in Figure 7.6 and 7.7, it is noticeable that the magnitude of the peak differs for
each pile-soil failure assumptions, where the largest magnitude occurs when the failure assumes full
depth (i.e. one layer) and the smallest one when the failure assumes six layers, which makes sense at
least due to the linearly increasing failure criterion with depth. The force amplitudes that generate the
maximum shear stress distribution are then analyzed to get more insight.

Other hypothetical failure sequences are simulated and the resulting force amplitudes 𝑓𝑜 of eight
𝑉𝐼𝐼𝐼 simulations are summarized in Figure 7.8. While the bar chart with blue color shows the local
trend within each simulation, the red colored bar chart displays the relation between the maximum
force amplitudes in each simulation. As indicated in the previous paragraph, the local maximum of
the force amplitudes arise at different location following different assumptions. For instance, whilst in
simulation 𝐼 the peak is at 𝑙3, simulation 𝐼𝐼 has a peak at 𝑙3−4. Notice that the peak location is not
exactly the same between the force amplitude and the maximum shear stress. It can be associated
with the combined effect of larger shear stress produced by larger torsion due to longer unsupported
length of the monopile and the increasing failure criterion with depth. The exponentially decreasing
behavior of the shear stress and the linearly increasing failure criterion also contribute into it.

Furthermore, Figure 7.8 says that the maximum force amplitude is smallest when the simulation
assumes six layers and largest when the simulation assumes one layer because the former divides the
job into smaller tasks rather than doing all in one go in addition to the increasing failure criterion with
depth. The maximum force amplitude in the other simulations vary in between the two. All together,
the maximum force amplitude in each simulation corresponds to the discrete layer in which the third
layer 𝑙3 is part of. It can be attributed to the centroid of the shearing resistance triangle at 𝑧 = −4𝑚.
Therefore, a new hypothesis can be proposed, which says that it is sufficient to fail the first two-third
of the soil layers in sandy soil. Besides, one can also examine that at depth 𝑧 = −4𝑚, the shear
stress begins to approximate zero in Figure 7.7.b when the thickest soil layer is assumed. Hence, the
soil failure at 𝑧 = −4𝑚 tends to not happen due to small shearing is left. Then, another hypothesis
is proposed, which says that the depth at which the shear stress approaches zero is the location that
determines the soil failure below it.

The first hypothesis seems unlikely when the soil is stiff such as dense sand or stiff clay and at the
same time the embedded length is long. It is because in a relatively stiff soil, the decaying shear stress
will be so quick which leads to a huge force 𝑓𝑜,ℎ to generate large shear stress at the two-third of the
embedded depth if the elasticity holds. Even if 𝑓𝑜,ℎ is excited, the shear stress closer to the soil surface
will experience larger shear stress, which likely to have exceeded the failure criterion. Thus, a smaller
force 𝑓𝑜,𝑠 such that 𝑓𝑜,𝑠 < 𝑓𝑜,ℎ is preferred to evaluate the shear stress at the depth closer to the soil
surface, which leads to the second hypothesis. However, it brings up a new issue about to what extent
the zero is approached. The matter is put on hold for the time being and another concern is addressed.

Scattered force amplitudes

If the assumed failure mechanisms are true, there will be infinitely many possible combinations
if infinitely many discrete soil layer (i.e. infinitely small thickness) is considered, which necessitate
the concept of probability distribution to describe the maximum force amplitude for each combination.
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A commonly used probability distribution in reliability engineering is the Weibull distribution2. Due
to the limited number of simulations, and since more soil layering in 3D FE modeling tends to be
computationally expensive because of the demand of small element size with a large domain, the
local maxima of force amplitudes will be assumed to follow the Weibull distribution.

Following the Weibull distribution, Figure 7.8 is converted to Figure 7.5, which leads to the expected
force amplitude ̄𝑓𝑜 = 3.19 × 106𝑁, where the Weibull shape and scale parameter are 𝛼𝑊 = 0.932 and
𝛽𝑊 = 3.09 × 106, respectively. The expected value is in the same order of magnitude with the force to
fail the first four layers 𝑓𝑜,𝐼𝑉,1−4 = 3.10 × 106𝑁 shown in simulation 𝐼𝑉 with 2% difference. Since the
difference is small, ̄𝑓𝑜 ≈ 3.10 × 106𝑁. From the cumulative distribution function (CDF) of the Weibull
distribution, the probability that the force amplitude is less than ̄𝑓𝑜 = 3.10×106𝑁 𝑃(𝑓𝑜 ≤ ̄𝑓𝑜)will be 63%.
In other words, the probability that the soil will fail by applying ̄𝑓𝑜 is 63%. If 𝑓𝑜,𝑉𝐼𝐼𝐼,1−6 = 9.34 × 106𝑁 in
Figure 7.8 is applied the probability to fail the soil becomes 94% and will be defined as the maximum
value 𝑓𝑜,𝑚𝑎𝑥.

Figure 7.5: The assumed Weibull distribution of the maximum force amplitudes 𝑓𝑜

Accordingly, the torque amplitude 𝑇𝑜 can be specified to be between ̄𝑇𝑜 = 3.10 × 106 × 0.5 =
1.55×106𝑁𝑚 and 𝑇𝑜,𝑚𝑎𝑥 = 9.34×106×0.5 = 4.67×106𝑁𝑚. Finally, the clamping force can be obtained
as �̄�𝑜 = ̄𝑓𝑜/𝜇𝑒𝑥,𝑠𝑠 = 3.10 × 106/0.7 = 4.43 × 106𝑁 and 𝑁𝑜,𝑚𝑎𝑥 = 𝑓𝑜,𝑚𝑎𝑥/𝜇𝑒𝑥,𝑠𝑠 = 9.34 × 106/0.7 =
1.33 × 107𝑁. The results are then summarized in Table 7.4 and 7.5.

− 𝑓𝑜 𝑅𝑒(𝑈𝜃) 𝐼𝑚(𝑈𝜃) |𝑈𝜃| Φ
− 𝑁 𝑚 𝑚 𝑚 𝑟𝑎𝑑

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 3.10 × 106 8.69 × 10−3 5.17 × 10−4 8.71 × 10−3 0.0594
𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑣𝑎𝑙𝑢𝑒 9.34 × 106 2.60 × 10−2 1.65 × 10−3 2.61 × 10−2 0.0634

Table 7.4: Summary of the output for 𝐷𝑜 = 1.0𝑚 (1/2)

7.7. The required power
Since the forcing amplitudes and the real and imaginary part of the displacement are now known, the

average power consumption to vibrate the monopile can be estimated. As can be seen in Table 7.5, the
expected power is ten times smaller than the maximum power, which is not the case for the computed

2Weibull distribution is often suitable to describe structural engineering phenomena such as fatigue, fracture, and strength. The

probability density function of a variable 𝑥 is defined as 𝑝𝑊(𝑥) =
𝛼𝑊𝑥𝛼𝑊−1

𝛽𝛼𝑊𝑊
exp(−( 𝑥

𝛽𝑊
)
𝛼𝑊
) , 𝑥 ≥ 0, 𝛼𝑊 > 0,𝛽𝑊 > 0 and the

corresponding cumulative distribution function is 𝑃𝑊(𝑥) = 1 − exp(−( 𝑥
𝛽𝑊
)
𝛼
) , 𝑥 > 0 (Choi et al., 2007)



64 7. 3D FE modeling, result, and discussion

(a) |𝜏𝑟𝜃(0.5, 𝑧)| (𝑃𝑎) assuming 6 discrete layers (b) |𝜏𝑟𝜃(0.5, 𝑧)| (𝑃𝑎) assuming 3 discrete layers

Figure 7.6: Maximum shear stress at the pile-soil interface

(a) |𝜏𝑟𝜃(0.5, 𝑧)| (𝑃𝑎) assuming 2 discrete layers (b) |𝜏𝑟𝜃(0.5, 𝑧)| (𝑃𝑎) assuming 1 discrete layer

Figure 7.7: Maximum shear stress at the pile-soil interface

Figure 7.8: Summary of the force amplitude to fail the soil layer 𝑓𝑜,𝑙

circumferential force 𝑓𝑜, torque 𝑇𝑜, and clamping force 𝑁𝑜, where
�̄�𝑜

𝑓𝑜,𝑚𝑎𝑥
≈ �̄�𝑜

𝑇𝑜,𝑚𝑎𝑥
≈ �̄�𝑜

𝑁𝑜,𝑚𝑎𝑥
≈ 0.33. It is

mainly because
̄|𝑈𝜃|

|𝑈𝜃,𝑚𝑎𝑥|
≈ 0.33 shown implicitly in Table 7.4, which leads to a squared difference of the
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Figure 7.9: Amplitude of the shear stress along the monopile

expected and maximum power. If the assumption on the gradual soil failure mechanism is true, then it
is preferred to apply the force amplitude at the expected value that will fail the first two-third layer of the
soil rather than applying the maximum force amplitude. Additionally, the squared difference confirms
that the linear assumption is held as intended shown by the same force-displacement proportionality
throughout the simulations.

Finally, if the expected value of the average power is regarded as the operational power, Table
7.5 also predicts that the current GDP shaker will need to be upgraded for the purpose of monopile
decommissioning with the dimensions 𝐷𝑜, 𝐿𝑝, 𝑤𝑡, and 𝑃𝑝 assumed in Table 7.2, since its operational
power is 188 𝑘𝑊 < 403𝑘𝑊. Recalling the emergence of stress jumps at the pile-soil interface, the
computed operational power is questionable due to the assumed shear stress that is taken at 𝑟 =
𝑎 + 0.1𝑚. If the shear stress at 𝑟 = 𝑎 (i.e. in the pile) is used, the power can be as small as 40.34𝑊,
thus the computed power cannot yet be relied upon. So, a validation through laboratory or field tests
are required.

− 𝑇𝑜 𝑁𝑜 𝑃𝑎𝑣𝑒
− 𝑁𝑚 𝑁 𝑊

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 1.55 × 106 4.43 × 106 4.03 × 105
𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑣𝑎𝑙𝑢𝑒 4.67 × 106 1.33 × 107 3.87 × 106

Table 7.5: Summary of the output for 𝐷𝑜 = 1.0𝑚 (2/2)

7.8. Inquiring the shear stress in the pile
The procedure to fail the soil layers by assuming discrete layers still contain uncertainty due to no

validation against experimental data is yet conducted. Contrasting one of the outcomes of the 3D FE
analysis and 1D shell-spring-dashpot derived in Section 5.74 is done to reduce the uncertainty. But first,
an example of overall shear stress in the pile is plotted in Figure 7.9 taking an example from simulation
𝐼, which has six discrete layers and therefore will have six graphs. The shear stress in the pile forms
six peaks and peak envelope that are similar as in Figure 7.6.a, which confirms that they correspond
to the same simulation3.

The same exponentially decreasing behavior with soil depth of the shear stress is generally the
same between the two, which starts from the topmost part of the targeted soil layer where the pile-soil
contact is maintained. The main difference is the non-zero shear stress distribution above the targeted
soil layer, which has a quadratic trend from the pile top 𝑧 = 4.5𝑚. An inflection point is visible when
3Note that the 𝑥-axis in Figure 7.9 and 7.6.a must be read in the opposite manner to each other.
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the remaining soil layer is 1𝑚 thick. Additionally, the trend of the shear stress at the pile top does not
follow the trend of the peak, for instance, at 𝜏𝑚𝑎𝑥(𝑧 = 4.5) of 𝑙5 is not the maximum among other shear
stresses at the same 𝑧. While the emergence of an inflection point is not fully understood, the latter
can be linked to the presence of soil mass around the pile-soil contacts that are disconnected.

The use of a shell-spring-dashpot model

When 𝑙1 in Figure 7.9 is plotted together with the amplitude of the shear stress due to the analytical
formulation in Section 5.74, a comparable pattern can be seen in Figure 7.10, which shows that the
analytical solution 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙1 underestimates the FE solution 𝐹𝐸𝐴 𝑙1 except at the pile top, with the
average error ̄𝜖𝑟 = 0.52, correlation coefficient 𝑟𝑐 = 0.98, and error 𝜖𝑟,𝑝𝑒𝑎𝑘 = 0.13 is recorded at the
peak shear at 𝑧 = 0𝑚. Note that the same 𝑓𝑜 is applied at the pile top to make a fair comparison. On
the other hand, though 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙6 and 𝐹𝐸𝐴 𝑙6 do not agree well with each other in terms of magnitude,
𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙6 can roughly capture the onset of the exponentially decreasing behavior of the shear stress
due to the presence of the pile-soil contact and the quadratic distribution of the shear stress above the
soil with ̄𝜖𝑟 = 1.44, 𝑟𝑐 = 0.86, and 𝜖𝑟,𝑝𝑒𝑎𝑘 = 0.17. Due to these discrepancies, it is expected that error
in terms of displacement also exists, which means that the corresponding power consumption is not
yet reliable if computed through the current analytical model.

Furthermore, it is expected that the analytical solution will deviate the FEmodel because it simplifies
the problem more. While around 𝑧 = −4𝑚 to 𝑧 = −2.5𝑚, the 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙6 underestimates the 𝐹𝐸𝐴 𝑙6,
𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙6 overestimate the 𝐹𝐸𝐴 𝑙6 between 𝑧 = −2.5𝑚 to 𝑧 = 4.5𝑚. The lack of matching between
𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙6 and 𝐹𝐸𝐴 𝑙6 can be due to ignoring the soil mass around the failed pile-soil interface, which is
substantiated by a better agreement between 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙1 and 𝐹𝐸𝐴 𝑙1 which assume complete pile-soil
contact (i.e. no pile-soil contact failure has yet occurs). Also, the effect of initial stresses is neglected
by the analytical model. In view of a quite good agreement between the 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙1 and 𝐹𝐸𝐴 𝑙1, one
can concludes that the FE model performs as assumed in which an elastic cylindrical shell partly rests
on a visco-elastic foundation subject to a harmonic circumferential force at the pile top.

It seems that the analytical model will match the FE model better if better assumptions and cali-
bration are made to construct the model, for example by the inclusion of mass elements in addition
to spring and dashpots to represent the soil or by considering plasticity through plastic slider as sug-
gested by another work for large-diameter pile installation (Tsetas et al., 2021). It is natural to prioritize
the use of a more simplified model if it can already give insight similar to the 3D FE analysis. Taking
advantage of axisymmteric condition through analytical model can lead to clear advantages such as
shorter duration and smaller memory requirements due to less equations are being solved. Therefore,
this thesis suggests to move on to the improvement of 1D shell-spring-dashpot model.

Figure 7.10: 3D FE analysis versus 1D shell-spring-dashpot model
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7.9. Toward validation against field experiments
By virtue of a comparable shear stress distribution between the 3D FE analysis, an extrapolation to

predict the force amplitude and its by-products for larger diameters and the effect of the GDP shaker’s
mass is of interest. First the analytical model is calibrated against two literature concerning torsional
response of piles by Georgiadis and Saflekou (Georgiadis & Saflekou, 1990) and Stoll (Dong Guo &
Randolph, 1996). Since no available information on the shear stress distribution of the soil in the 𝑟-
direction, the shear stress in the pile is used. Inspired by the hypothesis in the 7𝑡ℎ and 10𝑡ℎ paragraph
in Section 7.6 regarding the tendency of the soil failure location, a computation schema to determine
the force amplitude 𝑓𝑜, thus torque amplitude 𝑇𝑜, is proposed.

It says that 𝑓𝑜 is the average of several force amplitudes, which generate the shear stresses larger
than the failure criterion at their corresponding points within depth, where the decaying function due
to spring reaction approaches zero. In step-wise, the calculation scheme essentially consists of four
steps: 1. plot the TF with the spring along the embedded depth of the pile; 2. estimate and assume
the coordinates where the shear stresses approach zero; 3. find the force amplitudes that produce
the shear stresses over the failure criterion ratio larger or equal to unity at the assumed coordinates;
and 4. take the average of the force or torque amplitudes. Due to the failure of the first layer, a new
embedded depth is assumed and four steps are repeated. Finally, take the maximum of the average
torque amplitudes to obtain the torque capacity.

Comparison with a prediction by Georgiadis and Saflekou
Figures and tables in Appendix D are referred to compare the proposed method with the first litera-

ture. Figure D.1 shows three predictions of torque capacity with the influence different additional axial
load. Due to the additional axial load, the comparison is essentially not apples to apples. However, it
is still possible to get an insight from the one with the smallest axial load around 0.5×103 𝑘𝑁 that gives
a torque capacity 𝑇𝑜,𝐺𝑆 = 7000𝑘𝑁𝑚. Generally, Figure D illustrates that the torque capacity decreases
with the increase of the axial load. Thus, it is natural to expect that without the additional axial load,
the torque capacity will be larger than 7000 𝑘𝑁𝑚.

The prediction refers to an offshore steel pipe piles characterized in Table D.1. Steel material fol-
lowing Section 2.2 is assumed due to no specific metric of steel material properties provided. Soft clay
is identified from Table D.1 and its shear wave speed is assumed as 𝑐2 = 100𝑚/𝑠 following Eurocode
8 in Table 3.1 for soft clay. Finally, the loading frequency is assumed as static due to no specific
information about it, which means that 𝜔 = 0𝑟𝑎𝑑/𝑠. Five A-FRF due to a unit force are plotted to
assume five discrete layers. With the help of Excel spreadsheet and Maple, the proposed calcula-
tion method estimates the torque capacity of 𝑇𝑜 = 7878𝑘𝑁𝑚 shown in Figure D.1, which means that
7878 𝑘𝑁𝑚 > 7000𝑘𝑁𝑚 as expected. In light of the error in the previous section, the estimated torque
will be larger than 7878 𝑘𝑁𝑚. Therefore, the calculation scheme through 1D shell-spring-dashpot de-
rived in Section 5.7 can approximate, to some extent, the torque capacity described by Georgiadis and
Saflekou. Additionally, its tendency to overestimate the actual torque is shown here that is similar with
the comparison against the FE model.

Comparison with an experiment by Stoll as described by Guo and Randolph
Figures and tables in Appendix E are shown for the second comparison with the torque capacity of a

so-called pile 𝐴−3 tested by Stoll within the case study of Guo and Randolph. The system parameters
are summarized in Table E.1 from which the soil shear modulus is assumed as 𝐺 = 3×1.38×106

2×(1+0.4) ≈
1.48 × 106𝑃𝑎 due to the use of standard penetration test (SPT) test to investigate the soil properties.
Similarly with the previous comparison, static analysis is assumed. Only a single A-FRF is used, since
the decaying function approaches zero near the pile tip from the first plot. The torque capacity of
𝑇𝑜 = 53𝑘𝑁𝑚, which overestimates 1.8 times the torque capacity of pile 𝐴 − 3 stated by Guo and
Randolph 𝑇𝑜,𝐺𝑅 = 29𝑘𝑁𝑚. It is the third times that the overestimation is recorded, which suggests a
refinement to improve the accuracy of the analytical model.

The overestimation means that the proposed method needs to be improved to increase the accu-
racy. However, there are always uncertainties when dealing with soil, for example in this case, Guo
and Randolph highlighted a range of possible correlation between the 𝑁𝑆𝑃𝑇 values and the modulus
elasticity of soil such as 𝐸 = 2.8𝑁𝑀𝑃𝑎, 𝐸 = 4𝑁𝑀𝑃𝑎, and 𝐸 = 7𝑁𝑀𝑃𝑎. Even though overestima-
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tion seems favorable for the purpose of monopile extraction, an almost twice overestimation seems
unacceptable when dealing with larger diameter. The inaccuracy can be related to the fact that shorter
embedded length than the first comparison is considered so that only one discrete layer is assumed.
When a single layer is assumed, the difficulty in determining the optimum depth becomes significant.
More experiment data is thus required to improve and validate the proposed scheme.

Restating the torque and the clamping force
With regard to the occurrence of stress jumps, the overestimation against the literature is similar

with the one against the FE analysis. Since the overestimation is in the order of twice the torque
capacity mentioned in the literature, which is much smaller than 100, the shear stress in the pile seems
more plausible to be decisive. Since a shell structure assumes a uniform stress through the thickness
and a stress continuity is assumed at the pile-soil interface, the soil shares the same shear stress as
in the pile at the pile-soil interface. Therefore, it concludes that the current GDP shaker will be able
to aid the monopile extraction if similar monopile dimensions are used for the field experiments with
the expected value of circumferential force, torque, clamping force, and power of 𝑓𝑜 = 3.10 × 104𝑁,
𝑇𝑜 = 1.55×104𝑁𝑚,𝑁𝑜 = 4.43×104, and 𝑃𝑎𝑣𝑒 = 40𝑊, whereas themaximum value of 𝑓𝑜 = 9.34×104𝑁,
𝑇𝑜 = 4.67 × 104𝑁𝑚, 𝑁𝑜 = 1.33 × 105, and 𝑃𝑎𝑣𝑒 = 387𝑊.

7.10. Questioning the displacement at the pile top
The tendency of overestimation of the analytical model4 in terms of shear stresses is clear but not yet

in terms of displacement. The displacement at the pile top is then discussed to examine the suitability
of the analytical model to replace the FE model by taking an example from 𝐹𝐸𝐴 𝑙1 and 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙1 and
indicated in Figure 7.11 and Table 7.6. Figure 7.11 shows that non-uniform displacement5 is visible in
the area close to the pile top. It seems have to do with the mode of vibration that is activated by the
applied forcing frequency of 80𝐻𝑧. It can also be influenced by the initial stress due to the self-weight.

If Figure C.3 and C.4 in Appendix C are referred, the non-uniform distribution seems localized at
the top. It can be the indication of imperfectly distributed force due to non-uniform meshing, which may
increase the risk of local buckling. Since it resembles the actual condition where the non-uniform stress
response due to non-uniform mass of the shaker appears, future research regarding the stress check
to avoid local buckling at the pile top can be of interest.

From Table 7.6 shows that 9.6% difference of the real part of 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙1 with respect to 𝐹𝐸𝐴 𝑙1
and 100% difference is shown between the imaginary part. They will lead to large deviation when
computing the average power 𝑃𝑎𝑣𝑒 due to the sin(Φ) term. It is because the 1D shell-spring-dashpot
cannot capture the mode of vibration in the 𝑟 and 𝜃 direction due to the axial symmetric assumption.
Since the modal analysis is not studied, it is recommended to apply the modal analysis technique in
the future to further study the vibration modes to obtain better accuracy of the phase response at the
pile top, thus the average power. It can be concluded that the analytical model that assumes steady
state response cannot fully replace the 3D FE model.

Figure 7.11: Displacement 𝐹𝐸𝐴 𝑙1 versus 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙1. From left to right: 1. 𝑅𝑒 (𝑈𝜃) 2. 𝐼𝑚 (𝑈𝜃) 3. |𝑈𝜃|

4A better correlation is found through a more simplified analytical model that will be clear later on. It is found that in the latter
model, the displacement amplitude agrees well with the FE model. However, the phase response cannot approximate the FE
model too. Therefore, the same conclusion is made regarding the inability of the current analytical model to fully replace the
FE model in order to obtain accurate estimate of power consumption.

5The average value of the displacement is used to compute the power in Section 7.7
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− 𝑓𝑜,𝑙1 𝑅𝑒 (𝑈𝜃) 𝐼𝑚 (𝑈𝜃) |𝑈𝜃| Φ sin(Φ)
− 𝑁 𝑚 𝑚 𝑚 𝑟𝑎𝑑 −

𝐹𝐸𝐴 𝑙1 3.53 × 104 9.83 × 10−5 6.23 × 10−6 9.85 × 10−5 6.33 × 10−2 0.063
𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙1 3.53 × 104 8.90 × 10−5 −1.20 × 10−14 8.90 × 10−5 −1.34 × 10−10 −1.34 × 10−10

Table 7.6: Displacement 𝐹𝐸𝐴 𝑙1 versus 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑙1

7.11. Searching for a convergence through a more simplified ana-
lytical model

Even though the analytical shell-spring-dashpot model shows a comparable plot against the FE
model, the spring reaction is found incorrect due to inconsistent unit. A correction is made in Section
5.7 together with a more simplifying assumption through the use of constant spring and neglecting the
dashpot. The resulting shear stress compared to the results in the previous discussion is shown in
Figure 7.12.

Figure 7.12: 3D FE analysis versus 1D shell-spring-dashpot versus 1D shell-spring model

While 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐2 𝑙1 matches very well with the 𝐹𝐸𝐴 𝑙1 visually, which corresponds to ̄𝜖𝑟 = 0.22 and
𝑟𝑐 = 0.99, 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐2 𝑙6 does not agree and underestimates 𝐹𝐸𝐴 𝑙6 well with ̄𝜖𝑟 = 0.77 and 𝑟𝑐 = 0.92.
This means that the analytical model with a constant spring corresponds better to the FE analysis. Due
to a good agreement when all the soil layers are in contact with the pile, it indicates that the effect
of the linearly increasing soil stiffness is not captured well by the FE analysis. It is expected that the
decaying shear stress in the FE analysis, due to the soil, is faster than the one that considers constant
spring. The good agreement also indicates that the effect of material damping in the FE analysis seems
negligible, which can lead to a further underestimation of the torque amplitude. On the other hand, the
underestimation of the shear stress by 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐2 𝑙6 seems due to the effect of soil mass around the
failed pile-soil contact. However, it is not yet understood why that is the case. Moreover, 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐2 𝑙6
is able to show the appearance of a node near the pile top similar to the shear stress shown by 𝐹𝐸𝐴 𝑙6.

Since the torsional shell-spring model correlates well with the FE analysis results, an effort to check
for a convergence on the torque amplitude is made. It is hypothesized that more soil discretization will
lead to the convergence. It is indicated by first considering several cases in Figure 7.8 that assumes
uniform discretization of the soil layers such as in simulation 𝐼, 𝐼𝐼, 𝐼𝐼𝐼, and 𝑉𝐼𝐼𝐼. As can be seen in
Figure 7.13, the torque amplitudes6 is shown in the descending order and reveals that the change of
the amplitude becomes smaller as more soil layers are assumed, which infers a convergence. Since it

6Note that the torque is computed from the obtained force amplitude that has been divided by 100 due to the occurrence of the
stress jump as discussed in the previous section
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is not practicable to apply more layers in the 3D FE analysis, the analytical shell-spring model is used
to check the convergence.

Figure 7.13: Torque amplitude of the cases with uniform soil discretization

A flowchart in Figure 7.14 is developed to show how an iteration is performed to check for the con-
vergence of the torque amplitude following the gradual soil failure assumption. Note that the iteration
assumes a decreasing depth of the spring similar to the FE model except that the presence of the soil
around the failed pile-soil contact is not taken into account. Six layers are first assumed to verify the
result against the FE analysis in simulation 𝐼 and plotted in Figure 7.15.

Figure 7.14: Flow chart to check for a convergence of the torque amplitude

Figure 7.15 illustrates a roughly similar envelope of the torque amplitudes to fail six soil layers
gradually between the analytical shell-spring model and FE analysis. It shows that the first torque is
almost identical and increases before eventually decreases starting from the fourth layer until the sixth
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Figure 7.15: Torque according to the gradual soil failure assumption based on the shell-spring model and FE analysis
assuming six discrete layers

layer. For this reason, the analytical model seems useful to study the convergence of the maximum
torque amplitude when more soil elements are examined. Furthermore, the analytical model can be
used to provide first approximation of the torque and clamping force for larger diameters. It should be
noted that although the analytical and FE model seems not converge yet due to only six layers are
examined, the analytical model underestimates the maximum torque of the FE analysis, which in this
case in the order of 19%.

Further examination of more discrete layers, according to the analytical shell-spring model for a
typical monopile dimensions with 𝐷𝑜 = 1𝑚, is plotted in Figure 7.16. It shows that the torque amplitude
converges to 𝑇𝑜,2×104 = 74.5𝑁𝑚 with 2 × 104 layers, which is 22% smaller than the previously found
torque amplitude with six layers 𝑇𝑜,6 = 331.5𝑁𝑚. Therefore, it reinforces the statement regarding the
applicability of the GDP shaker for a monopile extraction test with 𝐷𝑜 = 1𝑚. Additionally, it counteracts
the proposed method to obtain the optimum depth because a much smaller soil thickness is now con-
sidered due to large number of discretization. Despite the modeling limitations that comes from a more
simplification assumption than the 3D FE model, estimating the torque amplitude, thus the clamping
force, for larger diameters is of interest because a convergence is obtained.

Figure 7.16: Convergence study of the torque amplitude for 𝐷𝑜 = 1𝑚

A first approximation of the torque and clamping force for larger diameters
In view of good correlation between the analytical shell-spring and FE model and the convergence

that is found for 𝐷𝑜 = 1𝑚 in the earlier discussion, this thesis offers a first approximation of the torque
amplitude and the clamping force for larger diameters such as 2𝑚, 3𝑚, 4𝑚, 5𝑚, 6𝑚7. While the

76𝑚 diameter is chosen by considering a moderate choice due to the so-called soon to be decommissioned monopile according
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steel monopile geometries are determined by referring to Table 2.1, the steel material properties are
as described in the early paragraph of Section 2.2. Finally, the soil spring and the failure criterion8
assumes 𝑐2 = 360𝑚/𝑠 and 𝜌 = 2022 𝑘𝑔/𝑚3 based on Section 3.5 and Table 3.1.

Figure 7.17 shows a first approximation of the required torque and clamping force during the tor-
sional vibration of larger diameters with loading frequency of 80𝐻𝑧. Since the clamping force is directly
proportional to the torque, a similar trend can be expected and therefore only the torque is plotted. It
is found during the iteration, for larger diameters, that considering full depth of soil layer is impractical
due to requiring large number of elements to obtain convergence near the pile tip and therefore only
85% of the embedded depth is assumed. Figure 7.17 illustrates that the torque increases non-linearly
from the smallest 𝑇𝑜,𝐷𝑜=1𝑚 = 0.075 𝑘𝑁𝑚 to the largest diameter 𝑇𝑜,𝐷𝑜=6𝑚 = 1205𝑘𝑁𝑚. Why this is the
case is not fully understood and subject for further research.

A comparison to another study by Nielsen in the field of monopile extraction by axial vibratory ham-
mer is performed to check whether the computation is going into the right direction or not to reduce the
uncertainty. Even though the comparison is not precisely apples to apples and that the study is not
validated against experiments, some similarities are evident such as the monopile diameter and sand
unit weight, which are cited in Appendix F. Due to a suggestion by Stoll (Poulos, 1975) regarding it may
be easier and cheaper to determine the ultimate axial load capacity of a pile from a torsion loading test
rather than a conventional axial load tests for friction piles in clay, it is logical to argue that a smaller
force that generates torque can fail the pile-soil interface compared to the same force that acts axially.
Although the suggestion specifically mentions clay, it is somewhat neutralized by the word friction piles,
which includes sand as well.

To further reduce the uncertainty, the analytical model is run for a frequency of a typical vibratory
hammer 20𝐻𝑧. According to Nielsen, around 8.5𝑀𝑁 of axial force is required to fail the pile-soil in-
terface of a monopile with diameter 6𝑚 by means of a typical axial vibratory hammer. Comparing to
Figure 7.17 is referred, only a couple of tangent force of 0.086𝑀𝑁 each is required to generate the
torque at the pile top, which indicates the superiority of the concept of torsional vibration within the
GDP shaker framework in terms of magnitude of force. Since it agrees with the suggestion regarding a
smaller force amplitude to generate torque than to produce an axial load, it indicates that the calculation
is in the right direction. Finally, further research is recommended to validate the estimated torque.

Figure 7.17: A first approximation of the torque and clamping force to twist the monopile for decommissioning

to the other research works (Meijer, 2022; Nielsen, 2022). This thesis will make a rough comparison to get insight into estimated
force amplitude.

8A linearly increasing failure criterion is assumed without the application of limiting shear stress at a particular depth limit as often
introduced in the standard computation of pile skin friction. It is intended to somewhat compensate the use of constant spring
so that a conservative result is approximated.
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Figure 7.18: Nomenclature of the 3D model



8
Conclusions and recommendations for

future research

8.1. Conclusions
The need for removing offshore wind monopiles completely from the seabed at the end of their

lifetime is inevitable, particularly to allow redevelopment of offshore wind farms and a more environ-
mentally and economically friendly approach than the cutting method. A potentially win-win solution
through a novel GDP technique to extract monopiles is studied with a focus on modifying the shaker-
pile interface. Answering a question regarding the amount of clamping force to fix the interface during
the torsional vibration of the GDP shaker is fundamental before commissioning the technology in the
offshore decommissioning market to guarantee its safety and economic feasibility. Therefore, this the-
sis seeks to understand the magnitude of the corresponding torque to slide the monopile over the soil
before eventually arriving at the gripping force.

The linear elastic theory is implemented in the form of Navier Stokes equations to examine the ide-
alized soil continuum as a solid and Love-Timoshenko equations to investigate the idealized monopile
as a thin shell structure approximated by 3D FE method in Ansys Mechanical under a pre-stressed
steady-state dynamic analysis. Soil failure criterion that resembles offshore soil in the North Sea is
defined separately and does not enter the equation of motion within Ansys simulation. Static friction
of sand following Mohr-Coulomb is the first focus of the study before the shear strength of clay. Then,
gradual pile-soil interface failure is assumed on account of the failure criterion and generated shear
stress.

1D analytical models within circular cylindrical coordinates are established to construct and com-
prehend the 3D FE analysis through the semi-infinite cavity-pile-soil, wave reflection, and finite cavity-
pile-soil-dashpot subjected to torsional excitation with the help of Maple, Mathematica, Matlab, and
Excel. A decaying amplitude behavior as the cylindrical torsional waves spread away from the pile is
evident due to the Hankel function. Non-reflective boundaries to minimize the error within the 3D FE
analysis are derived and implemented as frequency-dependent spring and dashpot coefficients for the
outer 𝑟 domain and frequency-independent dashpot coefficients for the outer 𝑧 domain. It is found that
the non-reflective coefficients work for small, moderate, and large soil domain sizes and have proven
to excel the essential and natural boundaries to replace the infinite extent of the soil domain as a finite
domain.

Care must be taken before choosing the soil domain size because the proposed non-reflective co-
efficients are based on 1D analysis. A thorough assessment of the domain size and non-reflective
coefficients will lead to a reasonable approximation of force equilibrium at the pile-soil interface. Am-
plitude and phase response is checked to ensure correct interpretation during post-processing of the
Ansys outputs. Material damping is incorporated in terms of viscous damping in the form of a damping
ratio. A good agreement between the response in the FE analysis and analytical model under the plane
strain assumption verifies the modeling of the geometrical and material properties, boundary/interface
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conditions, meshing, and harmonic analysis in Ansys despite the discrepancy in the axial symmetry.
Non-uniform hexahedral mesh with mid-side nodes is employed because it can better fill the cylindri-
cal shape and grow in size with the increasing distance from the pile-soil interface compared to the
tetrahedral one. Mesh convergence is achieved by a small change in the solution when assuming a
uniformly distributed force along the monopile.

During the construction of the 3D FE model, it is found that the effect of the inner soil is considerably
small, which confirms the plane strain cavity-pile-soil model. In terms of shear stress, while the 3D FE
model with 𝑓𝑟𝑒𝑒-𝑓𝑟𝑒𝑒 boundary at the top and bottom domain show correspondence with the plane
strain cavity-pile-soil model, the one with the additional soil layer below the pile-soil system cancels
the congruity. Therefore, the force equilibrium near the pile-soil interface is prioritized as the primary
tool for examining the solution. Stress jumps are evident in the radial and longitudinal direction at the
pile-soil interface due to material discontinuity. It also found that a fixed boundary at the bottom of the
additional layer is not recommended to be used due to deviating the force equilibrium near the pile-soil
interface.

An element size of 0.04𝑚 is applied around the pile-soil interface after changes in the solution
due to soil layering at the pile-soil interface arise. The initial stresses due to the constant gravitational
acceleration are delivered without and with the unsupported length of the monopile above the soil
surface through static analysis following the hydrostatic pressure distribution of the soil vertical stress.
Unrealistic tension in the soil continuum becomes significant due to perfectly bonded contact at the pile-
soil interface when themonopile above the seabed is added. Six discrete layers are assumed to explore
simulation possibilities regarding the gradual pile-soil interface failure due to the torque excitation at
the pile top.

As a result of simulation possibilities, the resulting force amplitudes at the pile top to fail the discrete
soil layers can be grouped in several bins, which leads to the need for probabilistic sense to grasp the
pattern. It is found that the pile-soil interface failure tends to occur in the neighborhood of zero shear
stress as described by the expected value of the compiled amplitudes through the assumption ofWeibull
distribution. Even though the mesh convergence is realized in the previous steps, the force amplitudes
are still questionable due to the development of stress jump in the order of 100 times difference between
the shear stress in the pile and in the soil close to the pile-soil interface. It leads to a possible error of
the estimated power consumption in the order of squared difference coming from the product of force
and velocity amplitudes and eventually leads to the prediction of insufficient GDP shaker’s operating
power.

A 1D shell-spring-dashpot model is developed to question the shear stress in the pile. It is found that
there is a good correlation between the analytical and FE model in terms of shear stress in 𝑧-direction,
which verifies the linear elastic and steady-state assumption of the FE model. A better consistency
between the two is noticeable when a complete pile-soil contact from the pile tip to the soil surface is
assumed compared to when the pile-soil connection in the first top layers failed, indicating the effect of
soil mass around the detached pile-soil contact. The analytical model shows that the decaying shear
stress in the soil is due to the Airy function, which decays faster when the soil is stiffer.

Comparison against the literature is made to question further the stress jumps and to possibly pro-
mote the improvement of the 1D shell-spring-dashpot model with the proposed calculation procedures,
which indicates that the analytical model can predict the range of the torque capacity due to Geor-
giadis and Saflekou. The analytical model overestimates the torque capacity described by Guo and
Randolph based on a test by Stoll. Concerning the occurrence of stress jumps, the overestimation
against the literature is similar to the one against the FE analysis. Since the overestimation is in the
order of twice the torque capacity mentioned in the literature, which is much smaller than 100, and that
a uniform stress through thickness of shell structures is assumed, the shear stress in the pile seems
more plausible to be decisive. Therefore, it concludes that the current GDP shaker will be able to aid
the monopile extraction if similar monopile dimensions are used for an onshore field experiment with
the expected value of the circumferential force, torque, clamping force, and power of 𝑓𝑜 = 3.10×104𝑁,
𝑇𝑜 = 1.55×104𝑁𝑚,𝑁𝑜 = 4.43×104, and 𝑃𝑎𝑣𝑒 = 40𝑊, whereas themaximum value of 𝑓𝑜 = 9.34×104𝑁,
𝑇𝑜 = 4.67 × 104𝑁𝑚, 𝑁𝑜 = 1.33 × 105, and 𝑃𝑎𝑣𝑒 = 387𝑊 at the frequency of 80𝐻𝑧.

A seemingly better interpretation of the torque amplitude from the obtained simulation is due to
a convergence check. It is found that through an iteration with the help of a more simplified analyt-
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ical shell-spring model, the torque amplitudes converge into one value when more soil elements are
considered in the order of 24 elements by considering only 85% of the soil depth due to numerical imple-
mentation. The estimated torque amplitude is now 𝑇𝑜 = 74.5𝑁𝑚 and the clamping force 𝑁𝑜 = 213𝑁.
A first approximation of the torque amplitude, thus the clamping force, is then proposed to get the most
out of the analytical model for larger diameters such as 𝐷𝑜 = 6𝑚 from which 𝑇𝑜,𝐷𝑜=6𝑚 = 1.205𝑀𝑁𝑚
and 𝑁𝑜,𝐷𝑜=6𝑚 = 0.574𝑀𝑁. It is found that the required torque, thus the clamping force, increases non-
linearly with the monopile diameter. A first check regarding the required force amplitude to generate
the torque is made by comparing it to another study about monopile extraction using axial vibratory
hammer. Following a suggestion from a literature regarding the torsional response a pile, the check
satisfies the suggestion that indicates the advantages of using torsional vibration compared to its axial
counterpart.

8.2. Recommendations
The workflow to determine the torque amplitude and its corresponding clamping force through the

FE method in Ansys is now clear. The first recommendation is to exercise the workflow to create a
benchmark FEmodel by calibrating themodel against laboratory experiments that consider the shaker’s
mass. The calibration process should help to evaluate the model assumptions such as the pile flexibility
and the soil spring model. Force equilibrium checks through applying a fictitious force uniformly dis-
tributed along the pile should be prioritized so that an entire domain is constructed immediately. At the
same time, the FE model is improved by considering soil plasticity or reduced spring coefficient either
by putting a new constitutive model in the equation of motion or by perturbing the linear analysis within
a small domain. Modifying the frequency-dependent non-reflective boundary to analyze a few different
frequencies is suggested to make references. Secondly, a refinement of a simplified analytical model
such as through the 1D shaker-shell-spring with the proposed iteration method is suggested to be
developed to compete with the FE model by taking advantage of the axisymmetric loading assumption.

The improvement of the analytical model should consider soil plasticity and vibrator’s mass through-
out the gradual soil failure simulation. The analytical model is thus calibrated against the established
benchmark to see the location and magnitude of the displacement and stress field at which the impor-
tant outputs deviate and make compromises by considering the trade-offs. Modal analysis is recom-
mended as the replacement of or addition to the steady state analysis if a better estimate of average
power consumption is desired at the modeling level. When the analytical model can approximate the
FE model well, finding the optimum forcing frequency through the analytical model is suggested. The
A-FRF derived at the end of the chapter analytical model can be used as a first approximation to deter-
mine the optimum frequency. Through discrete soil layers, insight from probability theory such as the
use of extreme value distribution is useful to indicate the likelihood of a force amplitude to fail the soil
layers, thus the corresponding clamping force, especially when larger diameters and deeper soil layers
are considered. Having the optimum forcing frequency and amplitude, an offshore field experiment is
recommended to validate the model with larger diameters.



A
Monopiles dimensions

Two geometrical data of installed monopiles in Europe, which are collected and analyzed by other
researchers (Meijer, 2022; Negro et al., 2017), are adopted1. It is deemed of secondary importance to
criticize the way they are analyzed since a reasonable match, in terms of the relationship against the
diameter, has been found between the two.

Figure A.1: 𝐷𝑎𝑡𝑎2 (Negro et al., 2017)

1On𝐷𝑎𝑡𝑎1, the water depth is taken as themaximum in the range. Two unavailable information in𝐷𝑎𝑡𝑎2 on the bottom diameter
is assumed to be equal the top diameter.
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Figure A.2: 𝐷𝑎𝑡𝑎1 (Meijer, 2022)



B
Equation of motion

Equations of dynamic equilibrium in curvilinear coordinates

Figure B.1: Equilibrium of forces in 𝜃-direction of a solid element cut

According to Newton’s second law, the dynamic force equilibrium of an element cut of a solid in
Figure B.1 consist of the internal force due to the material stiffness, external body force, and inertia
force. Assuming no energy loss, in the circumferential direction 𝜃, in terms of stresses, the equilibrium
can be described as
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2 𝑑𝑟

+𝜏𝑧𝜃(𝑧 + 𝑑𝑧)
𝑟 𝑑𝜃 + (𝑟 + 𝑑𝑟) 𝑑𝜃

2 𝑑𝑟 + 𝑓𝜃 𝑟 𝑑𝜃 𝑑𝑟 𝑑𝑧 = 𝜌 𝑟 𝑑𝜃 𝑑𝑟 𝑑𝑧
𝜕2𝑢𝜃
𝜕𝑡2

(B.1)
Taking the Taylor Series Expansion (TSE) up to the first order (i.e. neglecting non-linear terms)

(Metrikine & Vrouwenvelder, 2021) will lead to 𝜎𝜃𝜃(𝜃 +𝑑𝜃) ≈ 𝜎𝜃𝜃(𝜃)+
𝜕𝜎𝜃𝜃
𝜕𝜃 𝑑𝜃, 𝜎𝑟𝜃(𝑟 + 𝑑𝑟) ≈ 𝜎𝑟𝜃(𝑟) +

𝜕𝜎𝑟𝜃
𝜕𝑟 𝑑𝑟, 𝜏𝜃𝑟(𝜃+𝑑𝜃) ≈ 𝜏𝜃𝑟(𝜃)+

𝜕𝜏𝜃𝑟
𝜕𝜃 𝑑𝜃, 𝜏𝑧𝜃(𝑧+𝑑𝑧) ≈ 𝜏𝑧𝜃(𝑧)+

𝜕𝜏𝑧𝜃
𝜕𝑧 𝑑𝑧. This is valid for small displacement

assumption. Accordingly, sin𝑑𝜃 ≈ 𝑑𝜃, 𝑑𝜃2 ≈ 0, 𝑑𝑟2 ≈ 0. Thus, (B.1) reduces to
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𝜕𝜎𝜃𝜃
𝜕𝜃 𝑑𝜃 𝑑𝑟 𝑑𝑧 + 𝜏𝑟𝜃 𝑑𝑟 𝑑𝜃 𝑑𝑧 +

𝜕𝜏𝑟𝜃
𝜕𝑟 𝑟 𝑑𝑟 𝑑𝜃 𝑑𝑧 + 𝜏𝜃𝑟 𝑑𝑟 𝑑𝑧 𝑑𝜃 +

𝜕𝜏𝑧𝜃
𝜕𝑧 𝑑𝑧 𝑟 𝑑𝜃 𝑑𝑟 + 𝑓𝜃 𝑟 𝑑𝜃 𝑑𝑟 𝑑𝑧 =

𝜌 𝑟 𝑑𝜃 𝑑𝑟 𝑑𝑧 𝜕
2𝑢𝜃
𝜕𝑡2
(B.2)

Due to the balance of moment about the centre point (Timoshenko & Goodier, 1951), 𝜏𝜃𝑟 = 𝜏𝑟𝜃.
Thus, (B.1) reduces further to

𝜕𝜎𝜃𝜃
𝜕𝜃 𝑑𝜃 𝑑𝑟 𝑑𝑧 + 2𝜏𝑟𝜃 𝑑𝑟 𝑑𝜃 𝑑𝑧 +

𝜕𝜏𝑟𝜃
𝜕𝑟 𝑟 𝑑𝑟 𝑑𝜃 𝑑𝑧 + 𝜕𝜏𝑧𝜃𝜕𝑧 𝑑𝑧 𝑟 𝑑𝜃 𝑟 + 𝑓𝜃 𝑟 𝑑𝜃 𝑑𝑟 𝑑𝑧 = 𝜌 𝑟 𝑑𝜃 𝑑𝑟 𝑑𝑧

𝜕2𝑢𝜃
𝜕𝑡2
(B.3)

Dividing (B.3) by 𝑟 𝑑𝜃 𝑑𝑟 𝑑𝑧 yields the following equilibrium equations (Graff, 1975)1.

𝜕𝜏𝑟𝜃
𝜕𝑟 + 1𝑟

𝜕𝜎𝜃𝜃
𝜕𝜃 + 𝜕𝜏𝜃𝑧𝜕𝑧 + 2𝑟 𝜏𝑟𝜃 + 𝑓𝜃 = 𝜌

𝜕2𝑢𝜃
𝜕𝑡2 (B.4)

where the normal stresses 𝜎, shear stresses 𝜏, and displacement 𝑢, are functions of space 𝑟, 𝜃, 𝑧, and
time 𝑡.
Strain-displacement relationship derived from the geometry

The shear strains, in 𝜃 direction, as a result of small changes of displacement can be written as
(Wierzbicki, 2022)

𝛾𝑟𝜃 =
1
𝑟
𝜕𝑢𝑟
𝜕𝜃 + 𝜕𝑢𝜃𝜕𝑟 − 𝑢𝜃𝑟

𝛾𝜃𝑧 =
1
𝑟
𝜕𝑢𝑧
𝜕𝜃 + 𝜕𝑢𝜃𝜕𝑧

(B.5)

B.1. Torsional motion under a plane strain assumption
Equilibrium equation and strain-displacement relationship

By assuming a plane strain motion, the displacement in 𝑧 are assumed to be uniform. This is
reasonable by also assuming that the excitation from the vibrator is uniformly distributed along 𝑟 and 𝜃.
The system is thus axisymmetric. The change of strains in 𝜃 and 𝑧 direction are thus zero (i.e. 𝜕

𝜕𝜃 = 0
and 𝜕

𝜕𝑧 = 0). For that reason, (B.4) and the first of (B.5) reduces to

𝜕𝜏𝑟𝜃
𝜕𝑟 + 2𝑟 𝜏𝑟𝜃 + 𝑓𝜃 = 𝜌

𝜕2𝑢𝜃
𝜕𝑡2

(B.6)

𝛾𝑟𝜃 = (
𝜕𝑢𝜃
𝜕𝑟 − 𝑢𝜃𝑟 ) (B.7)

Stress-strain relationship
Following Hooke’s law, the force to restore every springing body to its natural position is proportional

to the distance it is removed from. This law holds also when the restoring force is termed as a stress
and the distance as a strain. Two possible deformations, which are independent to each other, can
be described as elongations and distortions (i.e. normal and shear strain). In this particular case of
torsional motion under plane strain assumption, the shear strain reads
1There is a slight difference in the notation.
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𝛾𝑟𝜃 =
1
𝐺 𝜏𝑟𝜃 (B.8)

where the shear modulus 𝐺 is defined as

𝐺 = 𝐸
2(1 + 𝜈) (B.9)

where 𝐸 is the Young’s modulus and 𝜈 is the Poisson’s ratio (Howell, 2017; Timoshenko & Goodier,
1951). It should be noted that the material constants (𝐸, 𝜈, and 𝐺) are due to the linear, homogeneous,
and isotropic material assumption. Substituting (B.7) into (B.8) gives

𝜏𝑟𝜃 = 𝐺 (
𝜕𝑢𝜃
𝜕𝑟 − 𝑢𝜃𝑟 ) (B.10)

Equation of torsional motion
Substituting (B.10) into (B.6) leads to the torsional equation of motion in terms of displacement.

𝐺 (𝜕
2𝑢𝜃
𝜕𝑟2 + 1𝑟

𝜕𝑢𝜃
𝜕𝑟 − 𝑢𝜃𝑟2 ) + 𝑓𝜃 = 𝜌

𝜕2𝑢𝜃
𝜕𝑡2 (B.11)

In the absence of external body force (i.e. 𝑓𝜃 = 0), (B.11) can also be written as

𝜕2𝑢𝜃
𝜕𝑟2 + 1𝑟

𝜕𝑢𝜃
𝜕𝑟 − 1

𝑟2𝑢𝜃 =
1
𝑐22
𝜕2𝑢𝜃
𝜕𝑡2 (B.12)

where the displacement in the 𝜃 direction is a function of radius and time 𝑢𝜃(𝑟, 𝑡), and 𝑐2 = √
𝐺
𝜌 is the

shear wave speed.

B.2. One-dimensional torsional motion propagating in 𝑧-direction
If no stresses in 𝑟 and 𝜃-direction is now assumed, the torsional motion will propagate in 𝑧-direction.

Following this assumption, and in the absence of body force, (B.4) and the second of (B.5) reduces to

𝜕𝜏𝜃𝑧
𝜕𝑧 = 𝜌𝜕

2𝑢𝜃
𝜕𝑡2

(B.13)

𝛾𝜃𝑧 =
𝜕𝑢𝜃
𝜕𝑧 (B.14)

Stress-strain relationship Considering only the shear strain in 𝑧,

𝛾𝜃𝑧 =
1
𝐺 𝜏𝜃𝑧 (B.15)

Therefore,

𝜏𝜃𝑧 = 𝐺
𝜕𝑢𝜃
𝜕𝑧 (B.16)

Equation of torsional motion
Substituting (B.16) into (B.13) leads to the torsional equation of motion in terms of displacement

that propagates in 𝑧-direction.

𝜕2𝑢𝜃
𝜕𝑧2 = 1

𝑐22
𝜕2𝑢𝜃
𝜕𝑡2 (B.17)



C
Snips of Ansys simulation

Figure C.1: Pile-soil meshing and location of loading input

Figure C.2: Pile-soil meshing of the first two layers in 2D 𝑟 − 𝑧 plane
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Figure C.3: Normalized shear stress amplitude distribution with different depth of the pile-soil contact in 2D 𝑟 − 𝑧 plane (1/2)

Figure C.4: Normalized shear stress amplitude distribution with different depth of the pile-soil contact in 2D 𝑟 − 𝑧 plane (2/2)



D
Comparison with a prediction by

Georgiadis and Saflekou for an offshore
steel pipe pile

1

Figure D.1: Predicted offshore pile response (Georgiadis & Saflekou, 1990)

𝐷𝑜 𝐿𝑝 𝑤𝑡 𝑠𝑢 𝜔
𝑚 𝑚 𝑚 𝑘𝑃𝑎 𝑟𝑎𝑑/𝑠
2.1 50 28 × 10−3 20 0

Table D.1: Geometrical and material properties discussed by Georgiadis and Saflekou

1𝑧 coordinate is shifted such that 𝑧𝑡𝑖𝑝 = 0.0𝑚 (see Figure 7.18) for computation convenience
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(a) TF for 𝑧𝑏𝑒𝑑 = 49.99𝑚 (b) TF for 𝑧𝑏𝑒𝑑 = 42𝑚

Figure D.2: Transfer function of the 1𝑠𝑡 and 2𝑛𝑑 layer failure

(a) TF for 𝑧𝑏𝑒𝑑 = 33𝑚 (b) TF for 𝑧𝑏𝑒𝑑 = 24𝑚

Figure D.3: Transfer function of the 3𝑟𝑑 and 4𝑡ℎ layer failure
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(a) TF for 𝑧𝑏𝑒𝑑 = 15𝑚 (b) The proposed computation scheme

Figure D.4: TF for 𝑧𝑏𝑒𝑑 = 15𝑚 and the proposed computation scheme



E
Comparison with an experiment by Stoll
discussed by Guo and Randolph for a

steel pipe pile
1

𝐷𝑜 𝐿𝑝 𝑤𝑡 𝑁 𝐸 𝜇 𝜔
𝑚 𝑚 𝑚 𝑁𝑆𝑃𝑇 𝑀𝑃𝑎 − 𝑟𝑎𝑑/𝑠

0.273 17.4 6.3 × 10−3 1.38𝑧 3𝑁 0.4 0

Table E.1: Geometrical and material properties discussed by Guo and Randolph

(a) Transfer function of the 1𝑠𝑡 layer failure (b) The proposed computation scheme

Figure E.1: Transfer fucntion and the proposed computation scheme

1𝑧 coordinate is shifted such that 𝑧𝑡𝑖𝑝 = 0.0𝑚 (see Figure 7.18) for computation convenience
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F
Comparison with a prediction by Nielsen

Figure F.1: Monopile dimensions (Nielsen, 2022)

Figure F.2: Soil properties (Nielsen, 2022)

Figure F.3: Soil properties (Nielsen, 2022)
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