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ABSTRACT
Genome sequencing has rapidly advanced in the last decade, mak-

ing it easier for anyone to obtain digital genomes at low costs from

companies such as Helix, MyHeritage, and 23andMe. Companies

now offer their services in a direct-to-consumer (DTC) model with-

out the intervention of a medical institution. Thereby, providing

people with direct services for paternity testing, ancestry testing

and disease susceptibility testing (DST) to infer diseases’ predisposi-

tion. Genome analyses are partly motivated by curiosity and people

often want to partake without fear of privacy invasion. Existing pri-

vacy protection solutions for DST adopt cryptographic techniques

to protect the genome of a patient from the party responsible for

computing the analysis. Said techniques include homomorphic en-

cryption, which can be computationally expensive and could take

minutes for only a few single-nucleotide polymorphisms (SNPs).

A predominant approach is a solution that computes DST over

encrypted data, but the design depends on a medical unit and ex-

poses test results of patients to the medical unit, making the design

uncomfortable for privacy-aware individuals. Hence it is pertinent

to have an efficient privacy-preserving DST solution with a DTC

service. We propose a novel DTC model that protects the privacy

of SNPs and prevents leakage of test results to any other party save

for the genome owner. Conversely, we protect the privacy of the al-

gorithms or trade secrets used by the genome analyzing companies.

Our work utilizes a secure obfuscation technique in computing

DST, eliminating expensive computations over encrypted data. Our

approach significantly outperforms existing state-of-the-art solu-

tions in runtime and scales linearly for equivalent levels of security.

As an example, computing DST for 10,000 SNPs requires approxi-

mately 96 milliseconds on commodity hardware. With this efficient

and privacy-preserving solution which is also simulation-based

secure, we open possibilities for performing genome analyses on

collectively shared data resources.
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1 INTRODUCTION
The technology for sequencing the human genome continues to

improve [42, 44], just as the quest to substantially reduce the cost

of sequencing has drawn enormous attention to the medical field,

research, and commercial platforms in the last two decades [3, 21,

28, 43, 52]. Consequently, research publications corroborate the

plummeting in time required for obtaining a digital version of the

human genome[10, 24, 39, 44, 51]. For as low as $100, commercial

companies such as Helix, MyHeritage and 23andMe state that they

are able to unlock your genome and deliver health and ancestry

services directly to customers [1, 20, 30], without intervention of

your medical doctor. The downward trajectory of the cost and time

for sequencing over the last two decades suggests an inevitable

upsurge in availability of digital genome in the near future. Fur-

thermore, digital genome is required by the research community

for various studies that help in enhancing our understanding of

the basic building blocks of life, the relationship between a gene

and a phenotype, better understanding of diseases and their causes,

patient responses to treatment, and preventive medicare. Only re-

cently, the drug giant GlaxoSmithKline announced that DNA results

from the 5 million customer base of 23andMe will be used to design

new drugs, and GlaxoSmithKline have also invested $300 million

in 23andMe who are already valued at about $1.75 billion [15, 38].

Commercial platforms have also taken advantage by commodifica-

tion of the genome, and thus, services such as sequencing, ancestry

testing and disease susceptibility testing are now offered to willing

customers.

https://doi.org/10.1145/3374664.3375729
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Nucleotides are the building blocks for deoxyribonucleic acid

(DNA), which can take any of 4 possible bases (A, T, C, G). Often,

there is a genetic variation between individuals of the same species,

and this variation could happen as a result of a single substitution

of a nucleotide base. A single variation in the nucleotide is known

as a single-nucleotide polymorphisms (SNP) if it is not observed in

more than 1% of the population [32]. Genome Sequencing is usually

the first services a customer procures from a commercial platform,

allowing an in vitro sample of the customer to be used in obtain-

ing an in silico dataset. The in silico data is commonly presented

in the form of SNPs. The National Library of Medicine records

that there are roughly 10 million SNPs in the human genome, and

more SNPs are still being identified [32]. SNPs have been identified

to contribute to an individual’s susceptibility to certain diseases

[23, 29, 47, 49, 50]. After obtaining a customer’s digital SNPs, the

commercial platform can further analyze the dataset for various rea-

sons or services, common of which is the customer’s predisposition

to diseases.

Our work is interested in how commercial platforms utilize

SNPs in providing DST services to its customers within a direct-to-

consumer market model. For instance, the conventional process of

conducting a DST using the SNPs of an individual is comprised of

four basic phases. In the first phase, a sequencer who is a commer-

cial platform sequences the biological genome and obtains a digital

version for storage and further analysis. The Second phase consists

of a genome owner, to whom a digital genome has been provided,

requesting a disease susceptibility test on a particular disease of

interest. In the third phase, upon receiving such request, a commer-

cial platform will request SNPs it deems relevant for such a test,

and will perform the DST with the SNPs provided by the customer.

Finally, the fourth phase is when the DST results are handed over to

the genome owner or his doctor. This setting whereby commercial

platforms render services such as analyzing the genome, directly

to the customers qualifies as a direct-to-consumer (DTC) model

[37, 46]. Some customers will use these services to settle paternity

or maternity disputes, others will use it to trace their ancestry, or to

inspect their genome for disease associated variants [26, 36, 46]. The

paradigm shift towards a direct-to-consumer model will impact our

medical knowledge as an overwhelming amount of digital genomes

will become available as these services become popular [22]. In

fact, a survey conducted by Lewis [40] and reported by Pascal [46],

documents that as much as 94% of people choose genetic testing

out of curiosity.

This paradigm shift towards a DTC service delivery, however, re-

quires that one protects the privacy and security of customers’ data

when being shared with an untrusted third party. Su and Mclaren

et al. [27, 46] argue that the DTC requires a robust combination of

regulatory and legal solutions, in order to preserve the confidence

that consumers have in using the solution. The implication is that

we need efficient privacy-preserving methods for computing on

genome data in other to satisfy the customer. In the current model

as practiced by the commercial platform, the SNPs of the customer

are transmitted in clear, which means that at least the commercial

platform presents an immediate privacy-risk to the customer. It is

difficult to prove that a commercial platform will always adhere to

the rules and follow ethical guidelines in protecting the privacy of

the genome data, as coercion and disgruntled employees could cir-

cumvent such trust models. In fact, only a few 100s SNPs is already

enough to threaten the privacy of the customer, by re-identifying

an individual even in a large dataset of genetic data [45]. This is

further complicated because of familiar relationships between indi-

viduals, i.e. information on the genome of a relative also releases

information about a customer’s own genome. This holds even long

after an individual is deceased, thereby posing direct privacy-risks

to the relatives. Additionally, whenever genome data is leaked, it is

irrevocable and the individual cannot replace the leaked genome

with a new set [19]. Together, this places strong privacy require-

ments for genomic data all through its digital lifespan. Although

these customers are only interested in analyzing their genome data

for the sheer sake of curiosity [33, 46], it still remains necessary

that privacy be guaranteed while satisfying their desire.

The need for providing privacy for all sorts of activities regard-

ing the genome is one that is multifaceted [3], and does require

conscious efforts and dedication from legal, ethical, information

security and other related research fields. The objective is for cus-

tomers to have full control over their privacy which requires that

genome information about an individual is not shared in a disclosed

form with any third party. Secondly, since companies invest a lot of

money to understand the genome [38], the SNPs that are relevant to

disease and the algorithm for computing DST is regarded as trade

secret and should be protected as such. Customers and companies

therefore require efficient, provable security and privacy measures

that will protect the genome data of a customer and the trade secret

of the commercial platform while the customer continues to enjoy

services offered by the service provider in the popular DTC model.

Existing information security based privacy-preserving approaches

for computing DST commonly adopt cryptographic techniques

in plugging the privacy challenges that arises from interactions

between the commercial platforms and their customers. For the

purpose of simplicity, information security researchers typically

concentrate on the last three phases of the described process. This

is important because the sequencing phase is dependent on bio-

logical samples which cannot easily be protected with information

security techniques. Let us assume that in the first phase, the se-

quencer deletes all data, both biological and digital relating to the

customer, or perhaps the customer now has a secure stand alone de-

vice for sequencing the genome. This assumption is consistent with

existing solutions [4, 12]. The cryptographic techniques commonly

deployed in the last three phases are homomorphic encryption and

secret sharing. Homomorphic encryption is a technique that allows

anyone to encrypt values in a special way such that basic operations

like addition and multiplication can be performed on the encrypted

data without using the decryption keys [5, 7, 8, 16, 34, 41]. However,

computing the DST algorithm over encrypted data is a non-trivial

task. Data expansion and computational complexity of homomor-

phic operations make it expensive, inefficient and hence undesirable

for deploying in the wild, as the whole processes is highly time

consuming [13, 48]. While secret sharing recommendations are

relatively more efficient than their homomorphic encryption coun-

terparts, secret sharing requires that the data be shared amongst

various parties with non-collusion restrictions. This does not ex-

actly reflect the ideal scenario as obtainable by current structure

of commercial platforms. This is the case because companies do



not usually collaborate to compute disease predisposition for a

customer.

In this paper, we recommend an information security solution

that protects the privacy of customers’ data, companies’ trade secret

and equally preserve the direct-to-consumer market model most

profitable for the commercial platforms. Our protocol enhances the

efficiency of the runtime by replacing the homomorphic encryption

construction with a lightweight obfuscation technique which is

provably secure.We provide customers the ultimate power to decide

how, when and with whom they choose to share their genome data.

Our contributions are as follows: 1) We propose PREDICT, a

novel protocol which executes the existing susceptibility testing

requirements with the use of SNPs, and preserves the increasingly

popular DTC model adopted by commercial platforms. 2) PREDICT

prioritizes the privacy of the customer and that of the commercial

platform. Genome data are resident with the customer in a secure

format and not stored in a centralized cloud nor shared with any

third-party in an unprotected manner. The result of a test can only

be deduced by the customer and he is left with the prerogative

to either share the result or not. 3) Our protocol is efficient and

can be deployed for practical use. Our design and implementation

of this privacy-preserving DST protocol significantly outperforms

existing privacy-protection solutions in memory and computational

efficiency. As an example, it takes about 96 milliseconds to compute

DST using 10,000 SNPs on a commodity hardware. And finally, we

provide privacy proof based on simulation paradigm, as well as the

complexity analysis of our protocol.

The outline for the rest of the paper is as follows: in Section 2 we

discuss relevant literature to our work, and how they differ from

our proposal. In Section 3 we introduce important building blocks

requisite for the construction of our proposed protocol. In Section

4 we introduce and discuss PREDICT. We present the complexity

analysis of PREDICT in Section 5, followed by optimisation in

Section 6. We provide further discussion on PREDICT in Section

7 and implementation in Section 8. We present the privacy and

security analyses in Section 9. Finally, in Section 10, we conclude

this paper.

2 RELATEDWORK
In this section, we focus on privacy solutions for disease susceptibil-

ity testing from an information security perspective. We continue

the rest of the discussion with the assumption that every customer

or patient already has a digital genome, and the sequencer will

play no further role in the interactions. Such digital genome can

be securely stored in the cloud or privately kept by the owner in a

secure device, this is consistent with proposals in [4, 12]. Previously,

a number of other works [4, 12, 27, 31, 46] have proposed solutions

for privacy-preserving protocols which perform DST using SNPs

or other sensitive data.

A first drawback across these proposals is the inefficiency of the

solutions, because adoption of homomorphic encryption introduces

significant computational and storage overhead when compared to

the non-privacy-preserving solution. One renowned homomorphic

encryption based solution is the method proposed by [4]. In the

proposal, the bulk of the steps are computations carried out on

encrypted data, as seen in Figure 1. Following the same protocol as

1)  Sam
ple

2) Sequencing and 
encryption

3) Encrypted SNPs and positions

4) P
art o

f P’s s
ecret ke

y, x
(1) 

8) E
ncryp

ted SNP positi
ons 

Storage and Processing Unit 
(SPU)

Patient (P)

Certified Institution (CI)

6) Position of the requested SNPs

5) “Check my susceptibility to disease X” 
and part of P’s secret key, x(2)

7) Encryption of the requested 
positions

11) Homomorphic operations 
or recovery of relevant SNPs

9) Re-encryption or partial 
decryption of the requested SNPs

10)  Encrypted SN
Ps

Medical Centre 
(MC)

12)  Encrypted  end-result

13)  Partially decrypted end-result

Figure 1: Protocol proposed by Ayday et al.[4]

[4], Namazi et al.[31] proposed a similar solution but replaced the

homomorphic scheme used by Ayday et al.[4] with an even more

computationally expensive homomorphic scheme. This was done

to improve privacy and eliminate communication cost peculiar

to additive homomorphic schemes. Lastly, Danezis and Cristofaro

[12] recommend an improved proposal that is more efficient than

the original work by Ayday et al. Although they offer significant

improvements in efficiency, their solution equally involves compu-

tation over encrypted data. Danezis and Cristofaro also provides a

secret-sharing based variant for privacy-preserving DST, but it still

uses encrypted data for its computation. Homomorphic encryption

techniques are still evolving and techniques to reduce its compu-

tational overhead is still an open problem [2, 6]. It implies that

homomorphic encryption based approaches are not yet efficient

for scalable practical deployment, especially when large dataset are

used.

A second drawback to the homomorphic encryption based proto-

col by Ayday et al.[4] is that of strict privacy. The disease for which

a customer is testing can be easily learned by the processing unit,

see Figure 1. In testing for a disease predisposition, the processing

unit is allowed to learn the SNPs that are relevant for the computa-

tion. Even though the exact values for the SNPs are not known by

the processing unit, this is still a privacy concern. Also, in [4, 31],

the final result of the test is transmitted to the medical unit rather

than the customer, which is not consistent with our objective of

granting the customer absolute control to privacy.

A third concern inherent in the existing works [4, 31] is the fact

that the protocols proposed do not seamlessly fit into the model

as currently observed between the commercial platforms and their

customers. The direct-to-consumer relationship preferred by the

commercial platforms is not well reflected in the mentioned pro-

posal. The medical units continue to play an inalienable role in

those proposals, which makes these protocol not suitable for a DTC

service delivery.

Other drawbacks of the state-of-the-art proposal by Ayday et

al.[4] include the following:



• Their approach proposes to store the protected genome data

with a storage and processing unit (SPU). This requires that

individuals must store their genome data encrypted on a

central cloud infrastructure, making it enticing for attackers.

• The protocol assumes that the homomorphic operations are

computed at the Medical Centres (MC). This is not practical

in the wild as such operations are computationally expensive

for average medical centres to carry out. Furthermore, the

MC is not often equipped with the technical and security

requirements for handling such operations.

We propose a protocol that aids customers and commercial

platforms to interact and compute disease susceptibility test in

a privacy-preserving manner without being bedeviled with the

above listed drawbacks.

3 PRELIMINARIES
In this section, we provide the necessary building blocks required to

understand our proposed protocol. These include: the cryptographic

protocols such as multi-party computation, obfuscation techniques

as well as the functions required to compute disease susceptibility

testing. In this work, we adopt the semi-honest a.k.a honest-but-
curious security model, which implies that every stakeholder is

expected to judiciously follow the rules of the protocol, but can

be passively curious to learn extra information from data they can

observe.

3.1 Secure Multi-party Computation
A secure multi-party computation (MPC) is an interactive crypto-

graphic protocol that allows for two or more mistrusting parties to

jointly compute a function using their private data as input [11, 18].

It allows for the output of the desired function to be public but the

contributed inputs remains private upon the assumption that each

party does not digress from the rules of the protocol. We deploy the

concept of MPC by allowing three mis-trusting parties (customers,

commercial platforms and processing unit) to jointly compute a

DST function using their private inputs. MPCs are commonly de-

signed in a semi-honest security model, because the adversary is

considered to be able to control some parties in the protocol.

3.2 Homomorphic Encryption
Homomorphic encryption allows for arbitrary algebraic operations

to be performed on ciphertexts. Let Encpk (·) andDecsk (·) represent
encryption and decryption functions respectively. (m1 ,m2) are two
messages and k is a scalar value, while ⊞ , ⊡ and ⊠ are arbitrary

operations on the ciphertexts. Then, homomorphism is defined as:

Decsk (Encpk (m1)⊞ Encpk (m2)) = m1 +m2 , (1)

Decsk (Encpk (m1)⊡ Encpk (m2)) = m1 ·m2 , (2)

Decsk (Encpk (m1)⊠ k) = m1 · k . (3)

3.2.1 Paillier Scheme [34] : Paillier cryptosystem is an additively

homomorphic scheme. Given a public key, private key pair (pk, sk) ,
and n := p · q, s.t p and q are distinct large primes, pk := (д,n) and
sk := λ(n) ,whereд is generator of ordern , λ(n) is the Carmichael’s

function on n, expressed as λ(n) := lcm(p − 1,q − 1).
Enc: c := Encpk (m, r ) := дm ·rn mod n2 ,where c ∈ Z∗n2

; r ← Z∗n .

Dec: Given c, m :=
Ln (cλ mod n2)
Ln (дλ mod n2) mod n and Ln (a) := a−1

n .

Additive Homomorphism: Given two ciphertexts of messages

m0 and m1, we can compute the sum as follows:

Encpk (m0, r0) × Encpk (m1, r1) := (дm0 · rn
0
× дm1 · rn

1
)

:= (дm0+m1 · (r0 · r1)n mod n2)
:= Encpk (m0 +m1) .

With the abovementioned homomorphic scheme, it is possible to

compute simple linear functions such as aggregation of encrypted

values. However, more complex function that involves division,

multiplication and other complex operations on encrypted data

are not feasible. Complex functions are usually computed by the

introduction of a third party who decrypts ciphertexts, computes

the complex operation in clear and re-encrypts the results.

It is evident by inspection that ciphertexts are generated modulo

n2 and this results to data expansion for every encrypted value.

Computing on the ciphertext introduces computational overhead

since n should not be less than 2048 bits in order to obtain 112-bit

security, being that 112-bit security is considered sufficient between

the in the year 2016 up until 2030 [17]. The reader is referred to

[35] for further details on the Paillier scheme.

3.3 Privacy-Preserving DST
Every individual inherits a pair of allele to make a gene at a locus,

each allele comes from each contributing parents. An allele can

either be major or minor, depending on what percentage of the

population have them. Since a gene is made up of two alleles, it can

occur in any of the three possible classes: two major alleles, two

minor alleles, or a major and minor allele. Subsequently, we use

the term ‘SNP value’ to represent the class in which an individual’s

SNP falls within. We denote the ‘SNP values’ as {0, 1, 2} to denote

No SNP (two major alleles), heterozygous SNP (a major and minor

allele) and homozygous SNP (two minor alleles) respectively. For

a DNA sequence belonging to a customer, we denote the SNP at

locus i as SNPi , where SNPi ∈ {0, 1, 2}.
A weighting averaging function is used to compute the suscep-

tibility of a patient to a disease X . A DST can be computed by

weighing the contribution of each SNP to the disease X , as follows:

a) Let L(x) represent a set of all known SNPs that contribute

to the disease X and Ci represents the weight that a SNP at

locus i contributes to the disease X .

b) Pr (X |SNPi ) denotes the probability that an individual has a

disease X , conditioned on the SNP value at the locus i .
c) A SNP at locus i contributes Ci · Pr (X |SNPi = j) , with

j ∈ {0, 1, 2} .
d) The aggregation of all loci is then

∑
i ∈L(x )

Ci · Pr (X |SNPi = j) .

e) The aggregation is then normalized over all weights to obtain

a disease susceptibility test score:

SX =
1∑

t ∈L(x )
Ct
·

∑
i ∈L(x )

Ci · Pr (X |SNPi = j) . (4)

It can be seen fromEq. 4 that three inputs are required to compute

SX , all of which are considered privacy-sensitive and should not

be shared unprotected.



• Only the customer knows SNPi values, as this is his private
data.

• The commercial platform knows Ci and Pr (X |SNPi = j)
values, these being his trade secrets.

By adopting homomorphic encryption to compute Eq. 4 in a

privacy-protected setting, Ayday et al. has re-written the equation

to:

SX =
1∑

t ∈L(x )
Ct
×

∑
i ∈L(x )

Ci

[
pi
0
(X )

(0 − 1)(0 − 2) [SNPi − 1]×

[SNPi − 2] +
pi
1
(X )

(1 − 0)(1 − 2) [SNPi − 0] × [SNPi − 2]

+
pi
2
(X )

(2 − 0)(2 − 1) [SNPi − 0] × [SNPi − 1]
]
, (5)

where pi
0
(X ) = Pr (X |SNPi = 0), pi

1
(X ) = Pr (X |SNPi = 1)

and pi
2
(X ) = Pr (X |SNPi = 2) .

In the proposal by Ayday et al. [4], refer to Figure 1, Eq. 5 is com-

puted homomorphically with the use of an additive homomorphic

encryption scheme. Due to the inability of the adopted homomor-

phic encryption scheme to perform a homomorphic multiplication

operation, their protocol is designed to store the encrypted values

of (SNPi )2 which requires additional storage space. The final result

as obtained in the protocol described by Ayday et al.[4] is decrypted

by the medical unit, who is able to view the result and communicate

professional opinion to the patient. However, the storage and pro-

cessing unit does not have a view of the SNP values in clear, despite
having to store and process the data. Nevertheless, the storage and

processing unit knows which loci have no SNP from those that

have at least a single SNP. Therefore the patient’s SNPs are not

completely private against the storage and processing unit.

Due to the privacy concerns mentioned above and the computa-

tional inefficiency introduced by homomorphically computing Eq.

4, we introduce a novel protocol for computing DST. Our protocol

will optimally compute DST by replacing homomorphic encryption

with a secure obfuscation technique using MPC, where each sen-

sitive data input is masked using a one-time-only secure random

number. Our proposed protocol removes the medical unit from the

setting, replacing it with a commercial platform and ensures that

the processing unit does not learn the SNP loci of a customer as was

the case in the protocol by Ayday et al. Lastly, in order to achieve

these, we again re-write Eq. 4, by drawing insight from Eq. 5:

a.) Redefine Ci to be the normalized term
Ci∑

t ∈L(x )
Ct
.

b.) Re-write Eq. 4 to a simpler form using Eq. 5,

SX =
∑

i ∈L(x )
Ci

[
1

2

pi
0
(SNPi − 1)(SNPi − 2)

−pi
1
(SNPi − 0)(SNPi − 2)

+
1

2

pi
2
(SNPi − 0)(SNPi − 1)

]
.

c.) Collect like terms,

SX =
∑

i ∈L(x )
Ci

[
SNP2i (

pi
0

2

− pi
1
+
pi
2

2

) − SNPi (
3pi

0

2

− 2pi
1
+
pi
2

2

) + pi
0

]
.

(6)

From Eq. 6, customers own variables SNPi and SNP2i , while the
commercial platform owns

ai = Ci (
pi
0

2

− pi
1
+
pi
2

2

) ,

bi = Ci (
3pi

0

2

− 2pi
1
+
pi
2

2

) ,

vi = p
i
0
.

Hence, we can now compute DST as:

SX =
∑

i ∈L(x )
ai · SNP2i − bi · SNPi +vi . (7)

3.4 Secure Inner Product with Obfuscation
Henceforth, we represent vectors in bold characters, example X ,
and |X| denotes the number of elements in X .We will occasionally

use the notation X[i] to represent the i-th term of the vector X .
Consider two parties Alice and Bob, each having a vector of values

and they wish to compute the inner product of the vectors without

revealing the individual values of each vector.Alice holds the vector
X = {x0,x1, . . . ,xn−1} and Bob holds Y = {y0,y1, . . . ,yn−1} both
of size n ∈ Z . They wish to compute the inner product of their

vectors X · Y = ∑n−1
k=0 xk · yk , and the result known only to Alice .

In order to solve the secure inner product problem, Du and

Atallah[14] propose a three party protocol which uses additive

masking to obfuscate the values. Their protocol introduces an un-

trusted third party Charlie that only helps in data computation.

Charlie can be viewed as a cloud infrastructure that helps with

the computation of the inner product function. Their protocol is

described as follows:

1. Alice andBob jointly generate two randomnumbers r and r ′ .
2. Alice and Bob jointly generate two random vectors R,R′ of

size n .
3. Alice sends w1 = X + R and s1 = X · R′ + r to Charlie .
4. Bob sends w2 = Y + R′ and s2 = R · (Y + R) + r ′ toCharlie .
5. Charlie computesv = w1 ·w2−s1−s2 , and sends the result

to Alice .
6. Alice computes X · Y = v + (r + r ′) .
This secure inner product uses additive masking to obfuscate

each sensitive value before sharing with other parties.

We modify the above inner product protocol by first replacing

the r and r ′ integers with vectors. Also rather than Alice and Bob
jointly generating r, we propose that they do this independently.

That way, we can use the values in r as a one-time only random

number only known to the party who generates it.

The modified algorithm is presented in Algorithm 1. All opera-

tions in Algorithm 1. are computed modulo a large prime q , and
random numbers are chosen to be cryptographically secure. Due

to simplicity of expression, the algorithm and other operations are

not presented to show reduction modulo q , but it should be noted

that it is implied.



Algorithm 1 Secure 3-Party Inner Product Protocol

1: procedure Initialization
2: Set variable n, and publish to Alice and Bob
3: Alice and Bob jointly generate random vectors RA and RB ,

each of size n
4: Alice and Bob independently generate random vectors rA

and rB respectively, each of size n
5: end procedure
6: procedure Alice
7: for i = 0→ (n − 1) do
8: WA[i] := X[i] + RA[i]
9: SA[i] := X[i] · RB [i] + rA[i]
10: end for
11: Alice sendsWA,

∑n−1
i=0 SA[i] to Charlie

12: end procedure
13: procedure Bob
14: for i = 0→ (n − 1) do
15: WB [i] := Y[i] + RB [i]
16: SB [i] := RA[i] · (Y[i] + RB [i]) + rB [i]
17: end for
18: Bob sendsWB ,

∑n−1
i=0 SB [i] to Charlie

19: Bob sends

∑n−1
i=0 rB [i] to Alice

20: end procedure
21: procedure Charlie
22: temp :=

∑n−1
i=0 WA[i] ·WB [i]

23: V := temp − SA[i] − SB [i]
24: Send V to Alice
25: end procedure
26: Alice computes X · Y := V +

∑n−1
i=0 rA[i] +

∑n−1
i=0 rB [i]

4 PREDICT
It is now clear that our goal is to compute Eq. 7 using secure multi-

party computation. We adopt the modified version of the secure

inner product protocol proposed by Du and Atallah [14], as pre-

sented in Algorithm 1. We replace three parties with the three

stakeholders required for computing DST. The secure inner prod-

uct protocol is used to compute

∑
i ∈L(x )

ai ·SNP2i and
∑

i ∈L(x )
bi ·SNPi

components and finally the aggregation of the

∑
i ∈L(x )

vi component.

4.1 Private DST in DTC model
In our protocol as shown in Figure 2, there are 4 parties involved but

only 3 parties required in computing the protocol. There is a non-

collusion assumption on the parties, implying that no two parties

are allowed to collaborate with others to learn more information

than the protocol permits them.

The protocol by Ayday et al.[4] assumes that the genome data

belongs to a patient, thereby presuming that the medical centre

(genome analysing unit) is trusted to see the result of the DST.

We adopt a contrary assumption. An individual P is any customer

who seeks to learn information from their genome due to sheer

curiosity. Our assumptionmakes it easier to appreciate why Pmight

not necessarily want to share the end result of the susceptibility

test with any party including the medical centre.

The protocol parties are as follows:

(i) The individual (P), is the customer whose genome is consid-

ered for analysis. P owns the SNPs required as input for the

execution of the DST protocol, and will contribute them for

computation in a privacy-preserving manner.

(ii) The Genome Analysing Unit (GA-Unit), represents a com-

mercial platform that offers genome analyses as a service

using a DTC model. This entity is considered to have a rep-

utation that must be protected, therefore, should conform

to ethical requirements within their field. To be simply put,

GA-Unit is not assumed to be malicious. From Eq. 7, GA-
Unit holds the values for {a, b, v} and would want to keep

them private as well.

(iii) The Certified Sequencing Institution (CSI), handles sequenc-
ing of the genomes and transforming the biological sample

of genomes to a digital format. The CSI is equally bounded

to conform to ethical values. Although the CSI performs

sequencing, it is not involved in the DST protocol and will

not be further discussed during the course of computing

DST.

(iv) The Processing Unit (PU), has a lot of processing resources

that are required to handle huge computations. He is not to

be trusted with unprotected genome data, but is assumed

to follow the protocol and execute the expected computa-

tions. Since the PU does not contribute any input data to

the evaluation of the function, it has no concern for privacy.

We further denote SNPi as ki , hence Eq. 7 is now re-written to:

SX :=
∑

i ∈L(x )
aik

2

i − biki +vi (8)

It has been shown that Eq.8 can be computed using the secure

inner product protocol. Let π = |L(x)| be the number of SNPs

needed for computing the susceptibility of a disease. Each SNP

(represented by ki ) requires two multiplications and two additions.

Thismeans that if the number of SNPs required for computing aDST

for a disease X is π . Therefore, the size of the vector contributed
by both GA-Unit and P shall be of size 2π . The addition of vi is
taken care of by the aggregation property intrinsic in the secure

inner product protocol.

4.2 Privacy and Security Assumptions
Figure 2 shows the interactions and work-flow between parties

within our proposed protocol. Our protocol is designed with the

following security assumptions in mind:

a) The individual (P) is aware of the sensitivity of his genome

data and needs to utilise the computational ability of the

processing unit or cloud infrastructure and the knowledge

of the genome analysing unit, without leaking any sensitive

information to the PU and GA-Unit. On the contrary, P
does not pose any privacy threat to PU during the course of

execution of the protocol.

b) GA-Unit is in possession of the individual weights of SNPs

for diseases. The weights are considered trade secrets and
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Figure 2: Private Disease Susceptibility Test on a DTC model

should equally be protected fromP andPU , while being used

to privately compute the susceptibility of P to a disease.

c) The device on which P’s data are stored, is considered secure
and only accessible with P’s permission.

4.3 Protocol Description
A detailed description of steps in the proposed protocol is as follows:

• Step 0: P generates a pair of cryptographic keys, consisting

of a private key and a public key. The public key is made

public to CSI only, for encrypting the digital sequence of

P’s genome. This case is slightly different if we adopt the

symmetric key option, where P generates a single private

key with the hope of sharing it with CSI .
• Step 1: P sends a biological sample of his genome to the CSI
for sequencing, alongside his public key (or private key in

the case of a symmetric crypto scheme).

• Step 2: CSI receives the sample and sequences the genome,

produces it in silico and encrypts the sequence with the

public key of P .
• Step 3: CSI returns the encrypted SNPs and the correspond-
ing locations to P . The CSI is also obligated to securely

delete all copies and traces of the genome data. This is nec-

essary because the CSI is not expected to further participate
actively in the remaining part of the protocol.

• Step 4: At this point, P is in full possession and control of

his encrypted SNPs, and our assumption allows that only

the individual has any possible copy of his SNPs. Now, P
performs a one-time only decryption of the encrypted data,

and saves the SNP related data in his secure device. We

assume that such a device is protected and is private to only

P . For a susceptibility test to be initiated by P , he is first

required to generate a random token τ (a 160-bit value). This

token is unique and used to reference every instance of a

disease susceptibility test.

• Step 5: It is important to note that our assumption presumes

that P is online and is therefore able to carry out his part

of the protocol. It is expected that P is active and is able

to locate a publicly available unique disease identifier (ID)

published by GA-Unit. The public identifiers (IDs) may be

published on a website, and P can then send a token τ and

the disease ID to GA-Unit after necessary authentication.



• Step 6: The GA-Unit will verify the request from P , and
then responds with the SNP positions for the disease X ,
where X is the corresponding disease for the supplied ID.

The GA-Unit will always demand a constant size π of SNPs.

This is to make it more difficult for an observer to infer

what disease P is interested in. The extra (dummy) SNPs

are pertinent to obfuscate the actual SNPs relevant to the

disease. The set of dummy SNPs are to be deterministic for

any disease. As to prevent P from distinguishing real SNPs

from dummy SNPs. Also, the GA-Unit sends 2π random

numbers to P , called vector RB . These randoms will be

used for the secure inner product protocol. Finally, GA-Unit
generates vectors a , b , and v .
• Step 7:When P receives the SNP positions from GA-Unit,
he generates 2π random numbers and sends the vector to

GA-Unit. We denote this random number vector as RA .

• Step 8: In order for both P and GA-Unit to compute Eq.

8, they agree to split the equation into two parts aik
2

i and

(−biki + vi ). P generates another set of 2π random num-

bers, denoted as rA. Generates the vectorWA by computing

WA[i] := k2i + RA[i] and WA[i + π ] := −ki + RA[i + π ] .
The vector SA is also generated by computing SA[i] :=

k2i ·RB [i]+rA[i] and SA[i+π ] := −ki ·RB [i+π ]+rA[i+π ] .
• Step 9: The GA-Unit first has to generate a vector of 2π
random numbers, which we refer to as rB . Then, just like P
generated WA, SA , GA-Unit generates WB , SB as follows:

WB [i] := ai +RB [i] andWB [i + π ] := bi +RB [i]. Then the

vector SB is generated as SB [i] := RA[i](ai + RB [i]) + rB [i]
and SB [i +π ] := RA[i +π ](b+RB [i +π ])+rB [i +π ] . Lastly,

GA-Unit computes the variable µ :=

2π∑
i=1

rB [i] +
π∑
i=1

v[i] .

• Step 10:P transmits the valuesWA ,

2π∑
i=1

SA[i] to PU .

• Step 11: The GA-Unit transmits the valuesWB ,

2π∑
i=1

SB [i]

to PU .

• Step 12:PU computesQ :=WA ·WB−
2π∑
i=1

SA[i]−
2π∑
i=1

SB [i] .

• Step 13: PU sends Q toP .
• Step 14: The GA-Unit sends µ to P .

• Step 15: Finally, P computes SXP := Q + µ +
2π∑
i=1

rA[i] .

4.4 Correctness
The proof of correctness for the computation of SX in PREDICT

inherits the proof of correctness of the secure inner product pro-

tocol. The original protocol by Du and Atallah [12] computes an

inner product of vectors between two mistrusting parties. How-

ever, our equation is of the form

∑π
i=1 ai · k2i − bi · ki +vi , hence

we require a slight modification to the original protocol. Variables

(−k, k2) are contributed by P while variables (a, b, v) belong to the

GA-Unit. Each party then holds a vector for their variables, and

each vector is of size π . First, we split the equation into two parts

that can each be executed using an instance of the secure inner

product protocol. One half of the equation is

∑π
i=1 ai · k2i and the

other

∑π
i=1(−ki · bi +vi ) . Nevertheless, since we are computing a

modified version of the form

∑π
i=1(bi · ki +vi ) , it suffices to show

that a circuit that correctly computes

∑π
i=1 ai · ki , can be modified

to compute

∑π
i=1(ai · ki +vi ) without loss of security.

Since v is considered to be part of GA-Unit’s trade secret [12],
we have to transfer v to P without revealing the value in clear.
We do this by additively masking v values with random numbers.

Specifically, we use the random numbers rB which is known to

GA-Unit but oblivious to P in Step 9 to mask the values of v. This
operation still preserves the correctness of the computation. Having

established that

∑π
i=1(−ki ·bi+vi ) can be computed using the secure

inner product protocol, we perform one more step. We merge the

vectors of

∑π
i=1 ai ·k2i and

∑π
i=1(−ki ·bi +vi ) by appending the latter

to the former. We produce a new vector of size 2π , with which we

compute the secure inner product. Thus, an equation of the form∑π
i=1 ai ·k2i −bi ·ki +vi , can be correctly computed using PREDICT.

5 COMPLEXITY ANALYSIS
In Table 1, we present an overview of the communication com-

plexity of our protocol. All units of data transfer are in bits, except

for Step 3 of Figure 2, where the data is represented in megabyte

(MB). LetN denote the plaintext size (in bits) for the crypto scheme

adopted, which provides an appropriate security level (default value:

κ = 112-bits). An example of a SNP reference is rs138055828, we
only consider the number numeric part of the reference code. All

random numbers generated are of size 132-bits, while each of the

variables (a, b, v) contributed by GA-Unit is of size 20 bits. Let

M represent the number of SNPs that can be packed into a sin-

gle ciphertext (without any SNP overflowing into a new block of

ciphertext). Consequently,

MRSA :=
⌊N − 128

36

⌋
=

⌊
2048 − 128

36

⌋
= 53 , and

MAES :=
⌊N
36

⌋
=

⌊
128

36

⌋
= 3 , (9)

where 128-bits are required for RSA padding.

If an individual has 10 million SNPs as reported by The National

Library of Medicine[32], then let t denote the number of packed

ciphertext blocks produced on encrypting 10 million records (SNPs).

tRSA :=
⌈
10, 000, 000

MRSA

⌉
=
⌈
10, 000, 000

53

⌉
= 188, 680 , and

tAES :=
⌈
10, 000, 000

MAES

⌉
=
⌈
10, 000, 000

3

⌉
= 3, 333, 334 . (10)

For any individual who has 10 million SNPs, we require 188680

units of RSA ciphertexts, where a single ciphertext is of size 2048

bits. From Table 1, it is clear that the communication complexity

is linear in the number of SNPs required for a DST. In fact, even

for 10 million SNPs, the protocol will require less than 1GB of data

transfer during the DST computation.

The computational overhead of our protocol is shown in Table

2. Although the number of operations are provided for simplicity,

we note that not all operations are of the same complexity. For

instance, addition counts in Table 2 include adding a 2-bit and a

133-bit numbers, as well as adding a 132-bit and a 265-bit number.

From Table 2, it can be deduced that the computational complexity



Table 1: DATA COMMUNICATION COMPLEXITY FOR THE PROPOSED PROTOCOL

Received (bits)

Sent (bits)

CSI P PU GA-Unit

CSI –

3) AES: 51MB,

RSA: 47MB

– –

P 1) AES: 128,

RSA: 2065

– 10) 266π + 297 + log
2
(2π ) 5) 288

PU 13) 426 + log
2
(2π ) – 7) 264π + 160

GA-Unit –

6) 298π + 160
14) 293 + log

2
(2π ) 11) 266π + 426 + log

2
(2π ) –

Table 2: COMPUTATION COMPLEXITY

P GA-Unit PU
Addition 6π + 2 12π 2

Multiplication 2π 2π 2π

for computing a disease susceptibility test is linear in the size (π )
of the SNPs relevant for computing such a test.

6 OPTIMIZATION OF PREDICT.
Firstly, a variant setting of this protocol could be achieved by alter-

ing the flow of operations halfway into the protocol. For instance,

rather than have the GA-Unit send µ :=

2π∑
i=1

rB [i] +
π∑
i=1

v[i] to P ,

GA-Unit can send µ :=

2π∑
i=1

rB [i] to P and send the other value

to PU indirectly by modifying Step 11: to
2π∑
i=1

SB [i] −
2π∑
i=1

rB [i] −

π∑
i=1

v[i] . This will reduce the computation and communication

overhead on P and place it on PU who is assumed to have suffi-

cient resources. This will save both computation and communica-

tion costs for P . Moreover, the correctness of the protocol will still

hold. Adopting this optimization will offer significant improvement

where large number of SNPs are required and the security level is

equally very high. However, for the default setting of this protocol,

such an optimization will not offer a significant improvement.

Secondly, due to the time it takes to generate random numbers, P
and GA-Unit might have to pre-generate random numbers as part

of the preprocessing phase. This saves time and allow for the rest of

the protocol to be executed seamlessly, with only basic operations.

Thirdly, another optimization step is to adopt a symmetric key

crypto scheme for encryption in Step 1. By this, we achieve a re-

duction in bits of the ciphertext being transferred from the CSI
to P in Step 3. Since a symmetric crypto scheme will offer faster

encryption and decryption operations, this offers a computational

reduction in the time it takes P to decrypt his sequence. Recall that

the decryption operation has to be performed only once. There-

after, the data will be stored in clear within the secure device of P .
However, this approach requires that the CSI and P will share P’s

secret key.

Finally, we recommend a data packing technique in encrypting

the SNPs. Every SNP can be represented with 36 bits, given that 2

bits represent the SNP value (0, 1, 2) refer to Section 3.3. The other

34 bits are for referencing the SNP, otherwise known as the SNP

position. Data packing will group more than one SNP into a single

block of ciphertext, thereby optimizing the time required to decrypt

and access the entire SNPs of an individual.

7 DISCUSSION
PREDICT differs from the proposal by Ayday et al.[4] as follows:

• Our primary aim is to protect the privacy of an individual’s

genome data from all other entities in the protocol, while

being able to harness their abilities to test for disease suscep-

tibility. Only the individual P is allowed to view the result

of every susceptibility test. However, Ayday et al’s proto-

col does not seek to protect the privacy of the individual’s

genome data from the genome analyzing unit, which results

from their assumption that the individual is a patient and the

genome analyzing unit is a doctor in a medical institution.

• We propose that genome data should be stored in a dedicated

piece of hardware, that should only be accessible by the

individual P . This allows P to have full control of his digital

genome data and also provides him the freedom to change

the cryptographic keys and other security measure when

necessary. These can be done without incurring much cost or

informing a third party about the intentions to make changes

to the cryptographic keys. Our choice to decentralize the

genome data storage helps to reduce the risk of targeting a

central cloud storage infrastructure.

• Our protocol guarantees P’s independence from a medical

unit. Thereby, realizing our aim of providing privacy for

curiosity driven individuals, and at the same time offering a

DTC service for disease susceptibility testing using genetic

data. The protocol by Ayday et al. is not designed to target a

DTC scenario.

• In our setting, the obfuscation of the SNP positions and val-

ues are meant to be computed by P and sent to the PU . Re-

placing encryption with randomization eliminates the expen-

sive homomorphic operations for all parties. The GA-Unit
is not expected to possess the processing power required

to compute over encrypted data. However, introducing ran-

domisation as opposed to encryption requires that we have

a secure means for generating fresh and cryptographically

secure random numbers. The hardware on which P stores



his genome data is assumed to provide such requirements.

Random number can be pre-generated and securely stored

on such devices.

• Our protocol does not leak SNPs of P to the processing unit.

Since the processing unit cannot distinguish the real SNPs

from the dummy SNPs.

• Our protocol offers reduced storage cost to the individual.

This is a result of storing encrypted data using data packing

techniques.

8 IMPLEMENTATION
Here, we present the implementation of PREDICT as a prototype

using basic tools. Our implementation uses simulated data rather

than real dataset, since a real dataset can always be substituted

whenever such data is available. We simulate ten thousand SNPs

values as random numbers uniformly distributed between 0 and 2,

to represent input data for the customer. The weights are equally

simulated and scaled to integer values, which represent the input

data of the commercial platform. The prototype of PREDICT was

implemented in C++, using NTL and GMP as dependency libraries.

All codes are written and executed as sequentially. Our implementa-

tion was tested on a computer with Intel Core i7-4770, 3.40 GHz, 16

GB of RAM, and 64-bit version of Ubuntu 18.04 LTS. The prototype

implementation shows that PREDICT scales linearly in the size of

SNP values required for a DST. As an example, computing DST

using 10,000 SNP only takes about 96 milliseconds. In Table 3 we

show comparison of our protocol with that by Ayday et al.[4].

Table 3: COMPUTATION COMPLEXITY

Ayday et al. PREDICT
Technique Additive HE Masking

SNP Storage Centralized Decentralized

Privacy Leaks Yes No

Performance 2 mins/10 SNPs 96 ms/10,000 SNPs

9 PRIVACY ANALYSES
Our Direct-to-Consumer DST protocol is described in the semi-

honest (honest but curious) security model. Also, there is a non-

collusion assumption on the entities (P , GA-Unit, PU , CSI ) apart
from those explicitly specified within the protocol. Actually, the

value π is chosen as follows: Let D = {X1, . . . ,Xm } be the set of all
diseases, and |Xi | represents the number of SNPs that are associated

with a diseaseXi . If⊤ :=max{|Xi | , ∀Xi ∈ D} , then π := ⊤+κ .
The privacy of data is argued using simulation-based security

reduction [9, 18, 25].

Definition 9.1. Negligible function: A function µ(·) is negligi-
ble if for every positive polynomial p(·) and all sufficiently large

κ ∈ N, it holds that µ(κ) < 1/p(κ).

Definition 9.2. Computational indistinguishability: Given
that a ∈ {0, 1}∗ and κ is security parameter, let X = X (a,κ) and
Y = Y (a,κ) be two probability ensembles. X and Y are said to be

computationally indistinguishable, denoted by X

c≡ Y, if for every

non-uniform probabilistic polynomial-time (PPT) algorithm D ,
there exists a negligible function µ(·) such that

|Pr[D(X (a,κ)) = 1] − Pr[D(Y (a,κ)) = 1]| ≤ µ(κ) . (11)

s≡ denotes statistical indistinguishability.

Definition 9.3. Security: Let f = (f1, f2) be an ideal functionality
and let Π be a real-world two-party protocol for computing f .
Where f1, f2 denote the results corresponding to parties 1 and

2 respectively on running f . The view of the party i ∈ {1, 2}
during the execution of Π on input (a,b) and security parameterκ is

denoted by viewΠ
i (a,b,κ) := (w, r

i
;mi

1
, . . . ,mi

t ) , wherew ∈ (a,b),
and r i is the content of party i’s internal random tape, and mi

j
represents the j-th message received.

The output of party i during the execution of Π on the inputs

(a,b)with security parameter κ is denoted by, outputΠi (a,b,κ) and
can be computed from its own view of the execution. The joint

output of both parties is denoted by

outputΠ(a,b,κ) = (outputΠ
1
(a,b,κ), outputΠ

2
(a,b,κ)) .

We say that Π securely computes f in the presence of semi-

honest adversaries if there exists PPT algorithms S1 and S2 such
that:

{S1(1κ ,a, f1(a,b)), f (a,b)}
c≡ {(viewΠ

1
(a,b,κ), outputΠ(a,b,κ))} .

{S2(1κ ,b, f2(a,b)), f (a,b)}
c≡ {(viewΠ

2
(a,b,κ), outputΠ(a,b,κ))} .

(12)

Although we have provided definitions for a two-party com-

putation, the remainder of the security proof is extended for a

three-party computation without loss of generality. The ideal func-

tionality f takes ordered inputs from P , GA-Unit and PU respec-

tively. The aim of the proof is to show that the view of a PPT

adversary A in the real-world execution of the protocol Π, is com-

putationally indistinguishable from the view of a simulator Si for
i ∈ {1, 2, 3} ≡ {P,GA-Unit,PU } in the ideal world execution of

the protocol f . Specifically, we consider three distinct scenarios
where an adversary compromises each of the parties in order to

gain information about the private data of other parties.

Scenario 1: Let us assume that P has been compromised by an

adversary A. Then, S1 is provided with the inputs and outputs of

P , and is required to simulate the view:

Note that the privacy assets are the weights of SNPs to diseases,

which are trade secrets and denoted as the vectors (a, b, v) . Refer
to Figure 2 and Eq.8 for details on variables. Since PU does not

contribute any input, we do not have to worry about PU ’s privacy.

Let ⊥ denote an empty string.

Theorem 9.4. The DST protocol Π securely and privately com-
putes the DST functionality f ((k, k2), (a, b, v), ⊥) = (SXP ,⊥,⊥) in
the presence of any honest-but-curious PPT adversary.

Proof.

viewΠ
1
(((k,k2), (a, b, v)),κ) := (1κ , rP ,k,k2,RB ,Q, µ) , (13)

where rP is a uniformly distributed random tape.

In order to simulate the view of P , S1 does the following:



(1) S1 starts the protocol with his inputs (k,k2) , and generates
the vectors of random numbers r′A,R

′
A . Observe that the

randoms are different from those generated by an honest P .
(2) For Step 6: S1 generates the vector of randoms R′B , to simu-

late incoming input from GA-Unit.
(3) For Step 13: In order to simulate Q as received from PU , S1

first generates vectorsW′B , S
′
B such that the elements of the

vector W′B and S′B come from the same space as elements

of WB and SB respectively. Then, compute W′A and S′A as

prescribed in Step 8. Finally, compute Q ′ = W′A · W
′
B −

2π∑
i=1

S′A −
2π∑
i=1

S′B .

(4) For Step 14: S1 computes µ ′ =
2π∑
i=1

r′B −
π∑
i=1

v′ . The vector

v′ is generate from the same space as v .
From the above, the simulated view of S1 can be expressed as:

S1(1κ ,k,k2, f1((k,k2), (a, b, v))) := (1κ , rP ,k,k2,R′B ,Q
′, µ ′)

(14)

From Equations 13 & 14, we conclude that

S1(1κ ,k,k2, f1((k,k2), (a, b, v)))
s≡ viewΠ

1
(((k,k2), (a, b, v)),κ)

For any PPT distinguisher D ,

Pr [D(1κ , rS1 ,k,k2,R′B ,Q
′, µ ′) = 1]−

Pr [D(1κ , rP ,k,k2,RB ,Q, µ) = 1] ≤ 1

µ(κ) (15)

□
Scenario 2: We assume that GA-Unit is compromised and the

aim is to learn the values of the SNPs which are the vectors k, k2 .

Proof.

viewΠ
2
(((k,k2), (a, b, v)),κ) := (1κ , rG , a, b, v,RA) (16)

where rG is a uniformly distributed random tape. In order for S1
to simulate the operations of GA-Unit, the following steps occur:

(1) S2 is provided with the inputs of GA-Unit and the disease

X. These are the vectors ( a, b, v).
(2) For Step 7: S2 generates a vector of random numbers R′A ,

which should be sampled from the same space as RA .

No other input is received by GA-Unit, and this makes the proof

trivial. The simulated view of S2 is then expressed as:

S2(1κ , a, b, v, f2((k,k2), (a, b, v))) := (1κ , rS2 , a, b, v,R′A) (17)

From Equations 16 & 17, we have that

S2(1κ , a, b, v, f2((k,k2), (a, b, v)))
s≡ viewΠ

2
(((k,k2), (a, b, v)),κ)

For any PPT distinguisher D ,

Pr [D(1κ , rS2 , a, b, v,R′A) = 1]

− Pr [D(1κ , rG , a, b, v,RA) = 1] ≤ 1

µ(κ)
□

Scenario 3: We assume that PU is compromised by an adversary

A. The aim is to learn the private values of P and GA-Unit which
include (k,k2), ( a, b, c) .

Proof.

viewΠ
3
(((k,k2), (a, b, v)),κ) := (1κ , rPU ,⊥,WA,WB ,

2π∑
i=1

SA,
2π∑
i=1

SB )

(18)

where rPU is a uniformly distributed random tape. For simulator

S3 to simulate the view of PU , the following steps are followed:

(1) S3 is provided with the security parameter κ.
(2) For Step 10:S3 generates the vectorW′A from the same space

as WA. Then, he generates a vector S′A and computes the

value

2π∑
i=1

S′A .

(3) For Step 11:S3 generates the vectorW′B from the same space

as WB . Then, he generates a vector S′B and computes the

value

2π∑
i=1

S′B .

The simulated view of S3 is then expressed as:

S3(1κ ,⊥, f3((k,k2), (a, b, v))) := (1κ , rS3 ,⊥,W′A,W
′
B ,

2π∑
i=1

S′A,
2π∑
i=1

S′B )

(19)

From Equations 18 & 19, we have that

S3(1κ ,⊥, f3((k,k2), (a, b, v)))
s≡ viewΠ

3
(((k,k2), (a, b, v)),κ)

For any PPT distinguisher D ,

Pr [D(1κ , rS3 ,⊥,W′A,W
′
B ,

2π∑
i=1

S′A,
2π∑
i=1

S′B ) = 1]−

Pr [D(1κ , rPU ,⊥,WA,WB ,

2π∑
i=1

SA,
2π∑
i=1

SB ) = 1] ≤ 1

µ(κ) (20)

□
10 CONCLUSION
This paper presents a protocol that blends the direct-to-consumer

genetic testing model and the need to protect consumers’ privacy.

We have shown that a cryptographic solution to the problem is

possible and implementable for practical use. Under our proposed

protocol, the use of one-time-only masking is deployed to obfus-

cate sensitive data. We show that our proposed protocol provides

security and privacy for both the genome data owners and the

commercial platform while they collaborate to perform a disease

susceptibility test. The design we propose introduces less work for

all parties, as they are required to compute over randomized data

instead of encrypted data. Our approach eliminates the storage of

encrypted data on a third-party cloud infrastructure as was sug-

gested by some earlier works. Rather, we recommend decentralizing

the storage of the genome data and only allowing for storage on a

device owned and controlled by genome owners. Distributing the

data also eliminates a single point of failure. Our proposal allows

any customer to easily update newly discovered SNPs. A prototype

implementation shows that with as much as 10,000 SNPs, the DST

can be computed in about 96milliseconds on a commodity hard-

ware, ignoring the network transfer time. This outperforms other

existing homomorphic encryption based approaches where compu-

tational complexity is dominated by homomorphic operations. Our



proposal scales linearly in the size of the SNPs, and has shown to be

practicable in the wild. Finally, we mention that our solution does

not plug the analog hole. For instance, it does not protect a scenario

where an attacker is able to physically force an individual to reveal

his SNP values. Such an attack can be compared to an adversary

retrieving a biological sample from the individual, to sequence the

genome.
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