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Accepted: 6 September 2023
© The Author(s) 2023

Abstract
Day by day, human-agent negotiation becomesmore andmore vital to reach a socially beneficial agreement when stakeholders
need to make a joint decision together. Developing agents who understand not only human preferences but also attitudes is
a significant prerequisite for this kind of interaction. Studies on opponent modeling are predominantly based on automated
negotiation and may yield good predictions after exchanging hundreds of offers. However, this is not the case in human-agent
negotiation in which the total number of rounds does not usually exceed tens. For this reason, an opponent model technique
is needed to extract the maximum information gained with limited interaction. This study presents a conflict-based opponent
modeling technique and compares its prediction performance with the well-known approaches in human-agent and automated
negotiation experimental settings. According to the results of human-agent studies, the proposed model outpr erforms them
despite the diversity of participants’ negotiation behaviors. Besides, the conflict-based opponent model estimates the entire
bid space much more successfully than its competitors in automated negotiation sessions when a small portion of the outcome
space was explored. This study may contribute to developing agents that can perceive their human counterparts’ preferences
and behaviors more accurately, acting cooperatively and reaching an admissible settlement for joint interests.

Keywords Opponent modelling · Preference modelling · Human-agent negotiation · Automated negotiation

1 Introduction

Negotiation is an interaction among self-interested parties
that have a conflict of interests and aim to achieve a joint
agreement. It can occur daily basis when parties need to
make decisions collectively on any matters such as personal
activities (e.g., arranging holiday plans), professional proce-
dures (e.g., job interviews, task or resource allocations), or
societal matters(e.g., effective energy distribution). Depend-
ing on the complexity of the decisions, this process can be
time-consuming and cumbersome for human stakeholders.
Therefore, researchers in the field of Artificial Intelligence
have put their effort into automating this process over the
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last decades [1, 8, 14]. Recently, there has been a high inter-
est in human-agent negotiations in which intelligent agents
negotiate with their human counterparts [4, 28]. Creating
large-scale social impact by such intelligent systems requires
understanding how human decisions are made and their pref-
erences and interests [26]. That is, agents should be capable
of understanding why their opponent made such offers and
what is acceptable to their opponent so that it can adapt its bid-
ding strategy accordingly to increase the chance of reaching
mutually beneficial agreements. That shows the importance
of the opponent modeling during the negotiation.

There are a variety of opponent modeling techniques pro-
posed in automated negotiation literature [6]. As far as the
existing opponent models to predict the opponent’s prefer-
ences are concerned, it is observed that they attempt to learn
a model from bid exchanges and mostly have some partic-
ular assumptions about both opponent’s bidding behavior
and preference model (e.g., having an additive utility func-
tion and employing time-based concession strategy). Even
simple heuristic models such as the frequentist approach
[19, 31] perform well in negotiation. Although there are
relatively much fewer offer exchanges in human-agent nego-
tiation in contrast to automated one (i.e., the number of
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offers typically does not exceed 20-30 offers in human-agent
negotiation [22]), some studies adopt their variants in human-
agent negotiation [25].

This study pursues an alternative way of modeling human
opponents’ preferences by searching for cause-effect rela-
tionships in human negotiators’ bidding patterns. Here, the
main challenge is to learn meaningful preference relations
that enable our agents to generate offers that are more likely
to be acceptable by their opponents despite the small number
of offer exchanges. Accordingly, this study proposes a novel
conflict search-based opponent modeling strategy mainly
designed to learn human opponents’ preferences in multi-
issue negotiations to generate well-targeted offers leading
to mutually beneficial agreements (i.e., high social wel-
fare). The proposed opponent modeling approach has been
evaluated experimentally concerning different performance
metrics, such as the model’s accuracy and the model’s effect
on the negotiation and negotiation outcome. To show the
performance of the proposed approach, we conducted two
human-agent negotiation experiments involving 70 partici-
pants in total and compared our agent performancewith those
of the aforementioned well-known frequentist approaches
[19, 31]. Our results showed that the proposed conflict-based
opponent model outperformed them dramatically in terms of
their prediction accuracy. Furthermore, we studied the effect
of themodel on the negotiation outcome in automated negoti-
ation by involving 15 state-of-the-art negotiation agents from
the International Automated Negotiating Agents Competi-
tion (ANAC) [15] on six different negotiation scenarios. Our
results showed that our agent gained the highest average indi-
vidual utility and social welfare (i.e., both product of utilities
and the sum of utilities) on average.

The rest of the paper is organized as follows. Section 2
reviews the related work on opponent modeling. The pro-
posed opponent model is explained in Section 3, and the
negotiation strategy of the agent utilizing themodel is defined
in Section 4. Section 5 presents our experimental setup and
analysis of the results. Finally, we conclude our work with a
discussion involving future work directions in Section 6.

2 Related work

Automated negotiation has been widely studied for several
decades, and a variety of negotiation frameworks have been
proposed so far [2, 8]. By their nature, automated agents
try to find the most beneficial agreement for both parties by
making many consecutive offers up to a particular deadline
(time or round). As Hindriks, Jonker, and Tykhonov point
out that agents can benefit from learning about their oppo-
nent during negotiation [12], a variety of opponent modeling
approaches have been proposed in the negotiation commu-
nity, such as opponent’s preferences (e.g., [12, 19, 21, 25,

31, 32]), the acceptability of an offer (e.g., [20, 26, 29]) and
negotiation strategy/attitude (e.g., [16, 23, 27]). The main
opponent strategy is identifying the opponent’s preferences
by analyzing offer exchanges between parties. Afterward,
the agent examines the opponent’s negotiation offers with
estimated opponent preferences to get an idea about its strat-
egy/attitude. Various modeling techniques have been used in
these strategies, such as kernel density, Bayesian learning,
and frequentist models. While building up their model, those
opponent modeling approaches rely on some assumptions
such as having a predetermined deadline, capturing their
preferences in the formof an additive utility function, and fol-
lowing a turn-taking negotiation protocols such as (Stacked)
AlternatingOffers Protocol [2] and concedingover time (e.g.,
time-based concession strategies). In the following part, we
mention the most relevant works. A more detailed explana-
tion about opponent modeling can be found in the survey [6].

Another common preference model technique in the liter-
ature is based on Bayesian learning [12, 32]. Hindriks et al.
use Bayesian learning to predict the shape of the opponent’s
utility function, the corresponding rank of issue values, and
issue weights [12]. As an extension of Hindrik’s work, Yu
et al. incorporate regression analysis into Bayesian learning
by comparing the predicted future bids and actual incoming
bids. Accordingly, they update the Bayesian belief model by
considering both current and expected coming bids.

Recent studies’most commonpreferencemodeling strate-
gies are variations of the frequentist models. The winner of
the Second Automated Negotiating Agents Competition [15]
called Hardheaded agent [19] uses a simple counting mech-
anism for each issue value and analyzes the contents of the
opponent’s consequent offers. The main heuristic is that the
opponent would concede less on the essential issues while
using the preferred values in its offers. Therefore, while ana-
lyzing the opponent’s current and previous offer, if the value
of an issue is changed, that issue’s weight is decreased by
a certain amount. While such a simple approach is initially
intuitive, information loss seems inevitable. Due to the nature
of the negotiation, the opponent may need to concede even
on important issues. Those moves maymislead the model. In
addition, the concession amount may vary during the nego-
tiation, which the frequentist approach needs to capture.

Moreover, suppose the opponent repeats the same bid
multiple times. In that case, the model may overvalue those
repeated issue values while underestimating the unobserved
values (e.g., converging a zero utility since it is not seen).
Tunalı, Aydoǧan, and Sanchez [31] aims to resolve those
problems by comparing the windows of offers instead of
consecutive pairs of offers and offering amore robust estima-
tion of the opponent’s behavior. It adopts a decayed weight
update to avoid incorrect updates when opponents concede
on themost critical issues. Furthermore, it smoothly increases
the importance of issue values to avoid unbalanced issue
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value distributions when the opponent offers the same offer
repeatedly. Although their approach outperforms the classi-
cal frequency approach, it still suffers from only counting the
issue value appearance because it ignores the varying utility
patterns of the opponent’s offers.

Apart from the opponent modeling in automated nego-
tiation, we review the opponent modeling approaches par-
ticularly designed for human-agent negotiations. Lin et al.
introduce the QOAgent using kernel density estimation
(KDE) for modeling opponent’s preferences [21]. Accord-
ing to their results, the QOAgent can reachmore agreements.
In most cases, it achieves better agreements than the human
counterpart playing the same role in individual utility. As
an extension of QOAgent, Oshrat et al. present an agent
unlikemost other negotiating agents in the automated negoti-
ation, the KBAgent attempts to utilize previous negotiations
with other human opponents having the same preferences
to learn the current human opponent [26]. This approach
requires an essential assumption that human participants will
behave similarly to each other. Thus, KBAgent builds a broad
knowledge base from its previous opponents and accordingly
offers based on a probabilistic model constructed from the
knowledge base utilizing kernel density estimation. In their
experimental comparison, the KBAgent outperformed the
QOAgent. In these studies, the authors focus on the over-
all negotiation performance rather than the performance of
the proposed opponent modeling approach. However, we
examine the accuracy of the opponent modeling and the per-
formance of the whole negotiation strategy.

Furthermore, Nazari, Lucas, and Gratch follow a similar
intuition with frequentist models for human-agent negotia-
tion [25].However, they take into account only the preference
ranking of the negotiation issues instead of estimating the
overall utility of each outcome. For issue values, they con-
sider a predefined ordering.However, those assumptionsmay
not hold in negotiations where a human participant may have
a different evaluation of issue values. In their negotiation,
their agent considers the importance of the issues and the
expected ordering of the issue values while generating their
offers. A similar heuristicwith the frequentist approach holds
here. That is, an issue is more important if the opponent con-
sistently asks for more on that issue. It leads to the same
intrinsic problem of the frequentist approach.

Instead of learning an explicit preference model, some
studies focus on understanding what offers would be accept-
able for their opponent. Sanchez et al. useBayesian classifiers
to learn the acceptability of partial offers for each teammem-
ber in a negotiation team [29]. They present a model for
negotiation teams that guarantees unanimous decisions con-
sisting of predictable, compatible, and unforeseen issues. The
model maximizes the probability of being accepted by both
sides. While their model relies on predictable issues such as
price, our model is designed to handle unpredictable discrete

issues. Lastly, it is good to mention the reinforcement learn-
ing approach proposed for human-agent negotiation [20].
Lewis et al. collect a large dataset consisting of offers repre-
sented in natural language from 5808 sessions on Amazon’s
Mechanical Turk. They present a reinforcement learning
model to maximize the agent’s reward against human oppo-
nents. Accordingly, they aim to estimate the negotiation
states acceptable for their human counterparts.

More recently, researchers have been trying to incorporate
deep learning models in opponent modeling. For instance,
Sengupta et al. has implemented a reinforcement learning-
based agent that can adapt to unknown agents per experiences
with other agents. In order to model the opponent, they have
applied the Recurrent Neural Networks model, specifically
LSTM, since they use time series data from the negotiation
steps. However, they switched their implementation to a 1D-
CNN classifier instead due to data limitations. They observe
an opponent agent’s bidding strategy according to the agent’s
self-utility and try to cast it into a class of known behaviors.
According to this classification, the agent swaps negotiation
strategy within the runtime [30].

Meanwhile, Hosokowa and Fujita expand upon the clas-
sical frequentist approach through the addition of the ratio of
offers within specified slices of the negotiation timeline, and
they implement a weighting function to stabilize the ratios
as time passes to capture the change of an opponent’s con-
cession toward the end of negotiation [13].

3 Proposed conflict-based opponent
modelling (CBOM)

Our opponent modeling called Conflict-Based Opponent
Modeling (CBOM) aims to estimate the opponent’s prefer-
ences represented utilizing an additive utility function shown
in (1) where wi represents the importance of the negotiation
issue Ii (i.e., issue weight), oi represents the value for issue i
in offer o, and Vi is the valuation function for issue i , which
returns the desirability of the issue value.Without losing gen-
erality, it is assumed that

∑
i∈n wi = 1 and the domain of Vi

is (0,1) for any i . The higher the Vi is, the more preferred an
issue value is.

U(o) =
n∑

i=1

wi × Vi (oi ) (1)

Regarding the issue valuation/weight functions (i.e., pref-
erences on issue values), targeting to learn these functions
directly from the opponent’s offer history may not be a reli-
able approach since the opponent’s negotiation strategy may
mislead us. Although the contents of the opponent’s offers
give insight into which values are more preferred over oth-
ers, depending on the employed strategy, wemay end upwith
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a different model estimation. For instance, the frequency of
the issue value appearance might be a good indicator for
understanding the ranking of issue values. However, it is not
sufficient to deduce to what extent each issue value is pre-
ferred. Fluctuations in the opponent’s offers or repeating the
exact offers often mislead the agent into accurately estimat-
ing the additive utility function. Therefore, we aim first to
detect the preference ordering pattern rather than quantify-
ing an evaluation function directly and then interpolate it.

As most of the existing opponent models in the literature
do, our model assumes the opponent concedes over time.
Initially, the agent does not know anything about its oppo-
nent’s preferences; therefore, it creates a template estimation
model according to the given domain configuration. In other
words, the agent starts with an initial belief in ranking the
issue values (Vi ) and issues (Wi ). The agent may assume
that the opponent’s value function is the opposite of its value
function. For instance, If the agent prefers V1 > to V2, it may
consider that its opponent prefers V2 to V1. Alternatively, it
may consider an arbitrary ordering for the opponent. Con-
sider that we have n issues and for each issue i there are
possible issue values denoted by Di = {vi1, . . . , vim}. Assum-
ing an arbitrary preference ordering for the opponent, (2) and
(3) shows how the initial valuation values and issue weight
are initiated. The agent keeps the issues and issue values in
order in line with the estimated opponent preferences. Mean-
ing that vik is preferred over vij by the opponent where where
k > j . Accordingly, (2) assigns compatible evaluation val-
ues via max normalization. Similarly, the issue weights are
initialized by sum normalization, where each issue weight is
in the [0, 1] range, and their sum is equal to 1. Equation (3)
ensures that their sum equals one.

vij = j

|Di | (2)

Wi =

⎧
⎪⎨

⎪⎩

Wi−1 + Wi−1
n i > n

2

Wi+1 − Wi+1
n i < n

2
1
n i = � n

2 �
(3)

As the agent receives the opponent’s offers during the
negotiation, it updates its belief incrementally based on the
inconsistency between the current model and the opponent’s
offers. To achieve this, it stores all bids made by the oppo-
nent so far, and when a new offer arrives, the current offer
is compared with the previous bids with respect to any con-
flicting ordering. In particular, common and different values
in the offer contents are detected. For different values, the
system checks whether there is any conflicting situation with
the current model. Recall that the current offer is expected to
have the less preferred values since the model assumes that
the opponent concedes over time. However, according to the

learned model, the ordering may not match the expectation.
In such a case, the model is updated.

Two types of conflict in the estimated model could be
detected: issue value conflict and issue conflict. To illustrate
those conflicts, let us examine some examples where agents
negotiate over three issues (i.e., A, B, and C) in Fig. 1. As
current belief indicates b1 � b2 � b3 where bi denotes a
possible issue value for the issue B, b1 is preferred b2. In
the given negotiation dialogue in Fig. 1a, it can be seen that
the opponent’s previous offer and current offers are Ot =<

a1, b2, c1 > andOt+1 =< a1, b1, c1 >, respectively.Agents
can examine the contents of the offers and find unique value
changes to make some inferences on the preferences. For our
case, the only difference in the offers is the value of the issue
B. Relying on the assumption that the human negotiator leans
towards concession over time, the agent could infer b2 � b1.
Recall that the most preferred values would appear early. As
seen clearly, this preference ordering conflicts with that of
the agent’s belief. We call this type of conflict “issue value
conflict” in our study.

The latter conflict type is about the importance of the
issues. In the given an example in Fig. 1b, the consecutive
offers involve more than one issue value difference, par-
ticularly on issues B and C . Then, the agent can deduce
(c1, b2) > (c2, b1) by relying on the concession assumption
mentioned above. Individually, ordering in issue C is con-
sistent with the belief (i.e., c1 � c2); however, the ordering
on issue B is conflicting (i.e., b2 > b1). Therefore, in order
to have (c1, b2) � (c2, b1), the importance of the issue C
should be higher than that of B (i.e., C � B). This inference
conflicts with the current belief of the agent, which says B
is more important than C .

Algorithm 1 shows how the ranking of the issue values is
extracted. When the opponent makes an offer (Oc), the agent
compares the content of the current offer with that of each
offer in the opponent’s offer history to find the unique val-
ues and consequently extract some preferential comparisons
(Lines 1–4). Afterward, the agent keeps all those compar-
isons in a dictionary called CM (Line 3). By reasoning on
each comparison in this set by considering the current belief
set, each conflict is extracted and stored in AC (Line 5-7). It
is worth noting that the method can find issue value conflicts
consisting of multiple issues. After keeping track of all pos-
sible conflicts, the agent must determine how to update its
beliefs. Counting the number of conflicts on each issue value
pair, it considers the issue value orderings having the least
conflicts and updates its belief accordingly (Lines 8-16). The
agent detects issue value pairs in the conflict set for each issue
and compares their occurrences to determine which one to
stick on. For instance, if the agent observes conflicting infor-
mation, the more frequent ordering becomes more dominant,
and the agent adapts its beliefs accordingly. After updating
the beliefs about issue value orderings, it does the same kind
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Fig. 1 Preference conflict
extraction example

(a) Issue value conflict (b) Issue conflict

of updates for the issue ordering (Lines 18-25). After finaliz-
ing the updates on the rankings, it estimates the utility space
of the opponent by utilizing the update operations in (2) &
(3).

To illustrate this, we trace the negotiation in Fig. 2, where
we can observe how this opponent model works. Following
the same domain, we first arbitrarily set our initial beliefs
about preference ordering (e.g., a3 � a2 � a1 for the val-
ues of issue A). The agent keeps track of offers made by the

Algorithm 1 Conflict-based Opponent Model (CBOM).
O: Offer history, Oc: Current Offer, Bc: Current Belief, I :
Issues, Vi : Values;
UV : A list of unique values for a given offer pair;
CM : Comparison map of unique values per each offer pair;
AC : All conflicts extracted from comparison map;
VC : A list of conflicted value pairs for an issue;
IC : A list of conflicted issue pairs;
Uopp: The estimated opponent utility space;

1 for each Oi ∈ O do
2 UV ← findUniqueValues(Oi , Oc) ;
3 CM .append(UV );
4 end
5 for each c ∈ CM do
6 AC .append(extractConflictsFrom(c, Bc));
7 end
8 for each i ∈ I do
9 VC ← getValueConflictbyIssue(AC , i);

10 for each (p, r) ∈ VC do // p, r ∈ Di
11 if ‖VC(r , p)‖ > ‖VC(p, r)‖ then
12 Bc(i) ← r � p ;
13 else
14 Bc(i) ← p � r ;
15 end
16 end
17 end
18 IC ← getIssueConflict(AC) ;
19 for each (A, B) ∈ IC do // A, B ∈ I
20 if ‖IC(A, B)‖ > ‖IC(B, A)‖ then
21 Bc(I ) ← A � B ;
22 else
23 Bc(I ) ← B � A ;
24 end
25 end
26 Uopp ← estimateOppUtilitySpace(Bc);

opponent so far. In our example, you can see the offer his-
tory at time t+2. Following, the agent compares all previous
offers with each other (i.e., pairwise comparison) and tries
to extract an ordering relation. Here, Ot and Ot+1 denote the
first and second offer made by the opponent. Since the agent
believes that the opponent’s earlier offers are more preferred
over the later offers, it extract that a1, b2 � a2, b1. This knowl-
edge does not give any novel insight to update our beliefs,
but we store this ordering for future analysis in the following
rounds. When the opponent makes the offer Ot+2, the model
compares it with all the previous offers pairwisely as well as
the previously extracted information (e.g., the a1, b2 � a2,
b1 relation). Starting from the first offer in the offer history
(Ot -Ot+2), the model acquires the information of a1 � a2,
since there is only one issue with a different value. When it
compares Ot+1 with Ot+2, it extracts (b1 � b2) and updates
its beliefs accordingly. Similarly, the extracted information
could be utilized to reason about the ordering of the negotia-
tion issues (e.g., A � B) based on the contradiction between
(a1, b2 � a2, b1) and (b1 � b2). Consequently, the agent
deduces that the importance of issue A is more than issue B
considering the assumption that one-issue comparisons are
more reliable than multi-issue comparisons, which conflicts
with the current belief and updates its belief accordingly.

4 Proposed conflict-based
negotiation strategy

This section presents our negotiation strategy employing the
opponentmodelmentioned above. This strategy incorporates
the estimated opponent modeling into the Hybrid strategy
[16], which estimates the target utility of the current offer
based on time and behavior-based concession strategies.

The Algorithm 2 elaborates how the agent makes its deci-
sions during the negotiation. In each round, it calculates a
target utility by employing the hybrid bidding strategy. Con-
sequently, it generates candidate offers that were not offered
by the agent (i.e., CBOMAgent). Its utility is in the range of
lower and upper target utility (i.e., TUcbom - ε and TUcbom

+ ε) (Lines 1–9). If there is no such an offer, the boundary is
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Fig. 2 Example process of the
conflict-based opponent model
(CBOM)

enlargedwith a dynamically generated small number accord-
ing to the domain size (Line 8). We define a round count n
where we believe the agent has enough offers from its oppo-
nent to estimate their preferences. The value of n may vary
depending on whether the agent negotiates with a human or
agent negotiator. If the number of received offers from the
opponent is less than n, the agent picks the offer maximizing
its utility among potential offers (Lines 10–12). Shortly, the
system does not engage the opponent model until there are
enough offers accumulated in the history of opponent offers.
Otherwise, the agent selects the offer whose estimated utility
product is the maximum (Line 14). If the opponent made an
offer with a utility higher than our lowest utility bid and the
utility of the current candidate’s offer (Line 16), the agent
accepted its opponent’s offer instead of making the offer.
This acceptance condition is slightly more cooperative than
the ACnext acceptance strategy. Otherwise, it makes the cho-
sen offer (Line 19).

TUHybrid = (t2)×TUTimes+(1 − t2)×TUBehavior (4)

TUTimes = (1 − t)2 × P0 + [2 × (1 − t) × t × P1]
+t2 × P2 (5)

TUBehavior = U (Ot−1
j ) − μ × ΔU (6)

ΔU =
4∑

i=1

[Wi × (U (Ot−i
h ) −U (Ot−i−1

h ))] (7)

μ = P3 + t × P3 (8)

Equation (4) outlines how the agent computes the tar-
get utility for its upcoming offer, according to [16]. The
concession function (TUTimes), represented by (5), incor-
porates t , the scaled time (t ∈ [0, 1]), and P0, P1, P2,
which correspond to the curve’s maximum value, curva-
ture, and minimum value, respectively. Note that the values
of P0, P1, and P2 in our experiment are 0.9, 0.7, and 0.4,
respectively. The behavioral aspect of the "Hybrid" strategy
involves scaling the overall utility change by a time-varying
parameter, μ, to estimate the target utility, as demonstrated
in (4). U (Ot−1

a ) signifies the agent’s utility for its preced-
ing offer. Positive changes imply that the opponent has made
concessions; hence, the agent should also make concessions.

In (6), U (Ot−1
a ) again represents the agent’s utility for its

prior offer. Positive changes indicate that the opponent has
conceded, prompting the agent tomake concessions. Consid-
ering the opponent’s previous n bids, where Wi represents
the weights of each utility difference, the behavior-based
approach determines overall utility changes, as demonstrated
in (7). Equation (8) reveals that the value of the coefficient
μ is determined by the current time and P3, which con-
trols the degree of mimicry. Initially, the agent decreases
or increases the target utility less than its opponent; subse-
quently, the degree of mimicry rises over time. Therefore, the
“HybridAgent” strategy can smoothly conformwith domains
of varying sizes and harmonize with distinctive opponents
utilizing behavior-based components of theHybridAgent. As
an extension of the bidding strategy, CBOM agent also gen-
erates a target utility value by combining different p-values
for various domain sizes. It cares about the social welfare
score for both parties, choosing the most agreeable offer

Algorithm 2 Conflict-based negotiation strategy.
Ospace: Offer space, n: Minimum number of round required for
CBOM;
Oopp , Ocbom : Opponent’s & CBOM agent’s offer history,
respectively ;
Ucbom(o): The utility of an offer o for the CBOM agent ;
Uopp: The estimated utility space of the opponent ;
ε: Parameter controlling the bid utility window ;
TUHybrid : Calculated target utility with Hybrid Bidding
Strategy ;

1 Opotential ← {} ;
2 while ‖Opotential‖ � 0 do
3 for each o ∈ Ospace do
4 if (Ucbom(o) ∈ [TUHybrid - ε, TUHybrid + ε]) &

(o /∈ Ocbom ) then
5 Opotential ← Opotential + o ;
6 end
7 end
8 ε ← ε + 0.01 ;
9 end

10 if ‖Oopp‖ < n then
11 Ot

cbom ← argmaxo Ucbom(Opotential ) ;
12 else
13 Uopp ← CBOM(Oopp);
14 Ot

cbom ← argmaxo Ucbom(Opotential ) * Uopp(Opotential ) ;
15 end
16 if (min(U (Ocbom ∪ Ot

cbom)) ≤ U (Ot
opp)) then

17 Accept Ot
opp ;

18 else
19 Return Ot

cbom
20 end
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from the list of offers that the opponent model creates. Thus,
it is expected that CBOM agent can achieve higher utility
while maximizing social welfare and finding quicker mutual
agreement.

In accordance, Fig. 3 illustrates an example of the selected
offer of the CBOM Agent according to its boundaries. The
figure is structured with the y-axis representing the agent’s
utility and the x-axis representing the opponent’s utility
for the potential outcomes in the domain. Each outcome is
depicted by blue dots on the graph. The red dot represents
the target utility offer at a given time, indicating the preferred
outcome for the agent. The red circle is drawn by adding
the target utility to an epsilon value. Within this boundary,
the agent selects the offer closest to the Nash offer (dN ),
depicted in green. When the domain size is limited, only a
few bids may remain within a specific utility range. With-
out enlarging the epsilon, the agent might end up repeating
certain offers. The number of offers within the offer win-
dow should be increased in such situations. Expanding this
boundary allows the agent to explore more offers, which
helps avoid sending repetitive final offers to the opponent
while still adhering to the target window. Examining other
offers within the same window allows the agent to iden-
tify a more appropriate choice while upholding its target
utility.

5 Experimental analysis

We first examine the performance of the proposed Conflict-
basedOpponentModel (CBOM) by conducting two different
human experiments (Section 5.1) and extend this evalua-
tion by considering the performance of the proposed strategy
using this opponent model through agent-based negotiation
simulations (Section 5.2).

5.1 Evaluation of opponent modeling
via human-agent experiments

To showhowwell the proposed opponentmodeling approach
predicts the human opponent’s preferences, we conducted
experiments where participants negotiated with our agent on
a given scenario to find a consensus within limited rounds by
following the Alternating Offers Protocol (Section 3).

We consider the performance metrics to assess the quality
of the predictions: Spearman’s correlation and root-mean-
square error (RMSE). The former metric indicates the
accuracy of the predicted order of the outcomes according to
the learned utility function, whereas the latter measures how
accurate estimated utilities are. For correlation estimation,
possible outcomes are sorted concerning the learned oppo-

nent model, and this ranking is compared with the actual
ordering. Consequently, the Spearman correlation is calcu-
lated between the actual outcome ranking and the estimated
one. The correlation would be high when both orderings are
similar to each other. The correlation coefficient r ranges
between -1 and 1, where the sign of the coefficient shows
the direction, and the magnitude is the strength of the rela-
tionship. For RMSE, the utility of each outcome is estimated
according to the learned model, and the error in the predic-
tion is calculated (See (9)). When the estimated utility values
are close to the actual utility values, the RSME values would
be low. In summary, low RSME and high correlation values
are desired in our case.

RMSE =
√
1

n
Σn

i=1

(
U (oi ) − Û (oi )

)2
(9)

Baarslag et al. compare the performance of the existing
opponent models in automated negotiation [5]. Their results
show that frequentist-based opponent modeling approaches
are the most effective among the existing ones despite
the approach’s simplicity. Therefore, we use a benchmark
involving two different state-of-the-art frequentist opponent
modeling approaches widely used in automated negotiation
employed in HardHeaded [19] and Scientist [31] agents to
evaluate the performance of the proposed opponent model.
Frequentist opponent modeling techniques mostly rely on
heuristics, assuming that the opponent would concede less
on the essential issues and the preferred values appear more
often than less preferred ones. Consequently, they check the
frequency of each issue value’s appearance in the offers. Fur-
thermore, they compare the content of the consecutive offers
and find out the issues with changed values. In other words,
if the value of an issue is changed in the opponent’s consec-
utive offers, the weights of those issues are decreased by a
certain amount (i.e., becoming less critical). In the Scientist
Agent, Tunalı et al. aims to resolve someupdate problems and
enhance the model by comparing a group of offer exchanges
instead of only consecutive pairs of offers and adopting a
decayed weight update mechanism. Each opponent model is
fed and updated in each round by simulating the negotiation
data obtained from human-agent negotiation experiments.
At the end of each negotiation, the estimated models are
evaluated according to the RMSE and Spearman correlation
metrics explained above.

5.1.1 Study 1: human-agent negotiation in deserted
Island scenario

We analyzed and utilized the negotiation log data col-
lected during the human-agent negotiation experiments in
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Fig. 3 Offer selection example
of the CBOM Agent according
to ε boundary

Table 1 Agent’s and
participants’ preference profiles
in deserted Island scenario

First Negotiation Second Negotiation
Items Agent Participant Agent Participant

Compass 13 5 6 13

Container 22 20 13 5

Food 17 7 20 22

Hammer 6 13 5 10

Knife 5 10 10 17

Match 20 22 7 6

Medicine 7 6 17 7

Rope 10 17 22 20

Fig. 4 RMSE & Spearman
Correlations for the experiment
in Island Scenario (� represents
p < 0.001)

(a) RMSE (b) Spearman Correlation
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Table 2 Preference profiles for
grocery negotiation sessions

First Negotiation Second Negotiation
Items Agent Participant Agent Participant

Watermelon 4 12 12 4

Banana 1 8 8 1

Orange 12 4 4 12

Apple 8 1 1 8

[4], where the participants negotiated on a particular sce-
nario called “Deserted Island”. They negotiated resource
allocation based on the division of eight survival products
by two partners who fell on the deserted island. Each par-
ticipant attended two negotiation sessions where the utility
distributions of the issues were the same, but the orderings
differed. Table 1 shows the preference profiles for both ses-
sions. During the experiments, participants only know their
preferences, and so does the agent. In this study, 42 partic-
ipants (21 men, 21 women, median age: 23) were included
and asked to negotiate with our agent on a face-to-face basis,
and the agent made counteroffers. Offer exchanges in both
sessions were recorded separately for each session. At the
end of this data collection process, 46 sessions using the
time-based stochastic bidding tactic (TSBT) and 38 sessions
using the behavior-based adaptive bidding tactic (BABT)
were obtained. The average negotiation rounds to reach an
agreement was 14.84, with a standard deviation of 5.2.

Figure 4 shows box plots for each opponent modeling
technique’s RMSE and Spearman correlation values. As far
as the correlation values are concerned, it can be said that
CBOM’s ranking predictions are better than Scientist and
Frequentist (See Fig. 4b). To apply the appropriate statis-
tical significance test, we first check the normality of the
data distribution via the Kolmogorov-Smirnov normality test
and then the homogeneity of variance via Levene’s Test. We

applied the dependent sample t-test or the Wilcoxon Signed
Rank test, depending on the results. If the data distribution
passes these tests, the paired t-test is applied; otherwise, a
non-parametric statistics test, namely the Wilcoxon-Signed
Rank test. All statistical test results are given at the 99% con-
fidence interval (i.e., α = 0.01). When we apply the statistical
tests, it is seen that CBOM’s ranking performance is statis-
tically significantly better than others (p < 0.01). Similarly,
the errors on the estimated utilities via CBOM are lower than
the errors via other approaches (see Fig. 4a). Furthermore, it
is seen that Scientist statistically significantly performed bet-
ter than Frequentist for both metrics except when the agent
employs the TSBT strategy.

5.1.2 Study 2: human-agent negotiation in grocery scenario

In this part, we analyzed and utilized the negotiation log data
collected during another human-agent negotiation experi-
ment in [16] where the participants negotiated on a particular
scenario called “Grocery”. Different from the first study, the
negotiation domain does not consist of binary resource items
(i.e., allocate or not allocate). Instead, the negotiation parties
negotiate on the number of items to be allocated (i.e., how
many items will be allocated). In this scenario, there are four
types of fruits, where each participant can have up to four

Fig. 5 RMSE & Spearman
Correlations for the experiment
in Grocery Scenario (�
represents p < 0.001)

(a) RMSE (b) Spearman Correlation
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Table 3 Negotiation scenarios
in automated negotiation
settings

Domain (ANAC Year) # of Values for Each I Total Bids Opposition

Car (2015) 3, 4, 4, 5 240 0.209

Smart Energy Grid (2016) 5, 5, 5, 5 625 0.362

Grocery (2011) 4, 4, 4, 5, 5 1,600 0.354

Party (2012) 3, 4, 4, 4, 4, 4 3,072 0.191

Politics (2015) 2, 3, 3, 4, 4, 4, 4, 5 23,040 0.221

Supermarket (2012) 4, 6, 6, 7, 7, 7 49,392 0.155

of each, and the opponent gets the rest. The participants aim
to find an adequate division of the fruits. Table 2 shows the
agent and participant’s preference profiles for both sessions.
It is worth noting that each party only knows its scores. In
this experiment, the participants negotiated against an agent
employing the hybrid strategywhereTSBTandBABTstrate-
gies are used together for bidding. 28 participants attended
twonegotiation sessionswhere all negotiation sessions ended
with an agreement, thus, totaling up to 56 negotiation ses-
sions against the agent. The average negotiation rounds to
reach an agreement was 19.39, with a standard deviation of
11.82.

Similar to the previous study, we update each opponent
modeling by using the offer exchanges by the human partic-
ipants and calculate the error and correlation values with the
final model at the end of each negotiation. Figure 5 shows
box plots for RMSE and Spearman correlation values per
each opponent modeling technique in this scenario. We can
conclude that CBOM statistically significantly outperformed
others, whereas Frequentist performs better than Scientist
when we analyze the statistical test results. Those results are
in line with the first study and strongly show the success
of the proposed opponent modeling in human-agent negotia-
tions. It is worth noting that the prediction error in the grocery
scenario is lower than in the island scenario. Although the
number of possible outcomes in these scenarios is the same
(256), the number of issues in grocery scenarios is lower than
in the island scenario. Therefore, one can intuitively think it is
easier to predict the evaluation values in the grocery scenario
compared to island scenarios. In addition, this study’s aver-
age number of rounds is higher (19.39 versus 14.84). When

we receive more offers, the model’s accuracy may increase
depending on the model.

5.2 Evaluation of the CBOM agent via automated
negotiation experiments

In this section, we evaluate the performance of our agent
employing the proposed CBOM opponent modeling by
comparing its performance with that of the state-of-the-art
negotiating agents available in automated negotiation litera-
ture. We built a rich benchmark of 15 successful negotiating
agents who competed in the International Automated Nego-
tiating Agents Competition ANAC [15] between 2011 and
2017.We ran negotiation tournaments in Genius, where each
agent bilaterally negotiated on various negotiation scenarios.
Six negotiation scenarios were used during the tournament,
and the details of those scenarios are given in Table 3. As
can be seen, the size and opposition degree of preference
profiles in the given scenario is different. The size of the
scenarios determines the search space. The larger the search
space is, the more difficult it might be to estimate an accu-
rate model based on the opponent’s offers exchanges. Next,
the opposition is valuable information regarding understand-
ing the domain’s capacity to satisfy both parties [5]. That
is, it indicates how difficult it is to find a consensus. Tak-
ing the opposition of the preference profiles into account
while analyzing the negotiation results may help us get an
insight into how well the proposed negotiation strategy is in
terms of social welfare with varying difficulties in finding an
agreement.

Table 4 Average Spearman and
RMSE results for six domains

SPEARMAN RMSE
Domains CBOM Scientist Hardheaded CBOM Scientist Hardheaded

Car 0.73 ± 0.1 0.29 ± 0.0 0.33 ± 0.0 0.15 ± 0.0 0.31 ± 0.0 0.27 ± 0.0

Energy Grid 0.68 ± 0.1 0.25 ± 0.0 0.25 ± 0.0 0.16 ± 0.0 0.22 ± 0.0 0.30 ± 0.0

Grocery 0.81 ± 0.0 0.85 ± 0.0 0.82 ± 0.0 0.12 ± 0.0 0.17 ± 0.0 0.20 ± 0.0

Party 0.90 ± 0.0 0.82 ± 0.0 0.50 ± 0.0 0.10 ± 0.0 0.13 ± 0.1 0.26 ± 0.0

Politics 0.82 ± 0.0 0.86 ± 0.0 0.79 ± 0.0 0.20 ± 0.0 0.22 ± 0.0 0.16 ± 0.0

Supermarket 0.66 ± 0.0 0.58 ± 0.0 0.56 ± 0.0 0.21 ± 0.0 0.18 ± 0.0 0.30 ± 0.0
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Table 5 Average agent individual utility

Agent Name Car Energy Grid Grocery Party Politics Supermarket Average ± Std

CBOMAgent 0.833 0.777 0.846 0.838 0.594 0.868 0.793 ± 0.09

Atlas3 0.875 0.758 0.828 0.809 0.578 0.848 0.783 ± 0.10

AgentKN 0.832 0.728 0.793 0.820 0.609 0.756 0.756 ± 0.07

NiceTitForTat 0.804 0.680 0.767 0.848 0.569 0.853 0.753 ± 0.10

HardHeaded 0.882 0.670 0.795 0.832 0.533 0.741 0.742 ± 0.12

ParsCat 0.800 0.726 0.792 0.833 0.501 0.767 0.736 ± 0.11

CUHKAgent 0.750 0.684 0.763 0.800 0.543 0.765 0.717 ± 0.09

IAMcrazyHaggler 0.836 0.546 0.819 0.771 0.416 0.872 0.710 ± 0.17

IAMhaggler2012 0.782 0.496 0.796 0.841 0.491 0.792 0.700 ± 0.15

PonPokoAgent 0.773 0.606 0.785 0.783 0.427 0.802 0.696 ± 0.14

Caduceus 0.731 0.546 0.801 0.703 0.489 0.711 0.663 ± 0.11

ParsAgent2 0.779 0.540 0.713 0.698 0.424 0.805 0.660 ± 0.14

Boulware 0.712 0.611 0.671 0.752 0.460 0.642 0.641 ± 0.09

AgentX 0.672 0.582 0.655 0.801 0.347 0.642 0.616 ± 0.14

YXAgent 0.770 0.553 0.721 0.625 0.397 0.553 0.603 ± 0.12

Conceder 0.598 0.505 0.391 0.649 0.306 0.335 0.464 ± 0.13

We formed a pool of agents involving our Conflict-based
agent and theANACfinalists in different categories.We ran a
tournament inGeniuswhere each agent bilaterally negotiated
with each other on scenarios described in Table 3. TheANAC
agents used in this evaluation are listed as follows:

– Boulware andConceder are baseline agents available in
Genius framework.

– Hardheaded [19] was the winner of individual utility
category in ANAC 2011.

– NiceTitForTat [7] was the finalist of individual utility
category in ANAC 2011.

– CUHKAgent [11] was the winner of individual utility
category in ANAC 2012.

– IAmHaggler2012 [15] was the winner of the Nash cat-
egory in ANAC 2012.

Table 6 Average Nash Distances

Agent name Car Energy Grid Grocery Party Politics Supermarket Average ± Std

CBOMAgent 0.077 0.104 0.068 0.120 0.311 0.058 0.123 ± 0.09

Atlas3 0.183 0.216 0.105 0.230 0.253 0.198 0.197 ± 0.05

AgentKN 0.139 0.194 0.166 0.213 0.250 0.229 0.198 ± 0.04

ParsCat 0.133 0.173 0.130 0.156 0.438 0.178 0.201 ± 0.11

NiceTitForTat 0.154 0.209 0.178 0.230 0.187 0.250 0.201 ± 0.03

IAMhaggler2012 0.115 0.500 0.095 0.152 0.363 0.145 0.228 ± 0.15

HardHeaded 0.142 0.357 0.183 0.198 0.487 0.279 0.274 ± 0.12

AgentX 0.210 0.273 0.230 0.267 0.418 0.262 0.277 ± 0.07

Boulware 0.217 0.271 0.254 0.278 0.326 0.334 0.280 ± 0.04

IAMcrazyHaggler 0.156 0.495 0.176 0.156 0.686 0.064 0.289 ± 0.22

Caduceus 0.190 0.462 0.178 0.238 0.431 0.254 0.292 ± 0.11

PonPokoAgent 0.201 0.392 0.177 0.205 0.640 0.154 0.295 ± 0.17

CUHKAgent 0.361 0.428 0.280 0.205 0.457 0.261 0.332 ± 0.09

ParsAgent2 0.197 0.474 0.274 0.306 0.576 0.210 0.340 ± 0.14

YXAgent 0.268 0.526 0.350 0.376 0.718 0.450 0.448 ± 0.15

Conceder 0.321 0.360 0.534 0.459 0.458 0.652 0.464 ± 0.11
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Fig. 6 Agreement rates of
agents

– Atlas3 [24] was the winner of individual utility category
in ANAC2015, .

– ParsAgent2 [17] was the winner of the Nash category in
ANAC 2015.

– AgentX [9] was fourth of the Nash category in ANAC
2015.

– Caudeceus [10] was the winner of individual utility cat-
egory in ANAC 2016.

– YXAgent [3] was the second of individual utility cate-
gory in ANAC 2016.

– PonPoko Agent [3] was winner of individual utility cat-
egory in ANAC 2017.

– AgentKN [3] was the second of the Nash category in
ANAC 2017.

In order to study how well our opponent model per-
forms when it negotiates with automated negotiating agents,
we compare the performance of opponent models used in

Conflict-based (CBOM), Scientist, and HardHeaded by inte-
grating those opponent models into our negotiation strategy.
We calculated the Spearman correlation between the actual
and estimated ranks of the outcomes per each scenario and
reported their averages. Note that the higher correlation is,
the better the prediction is. Table 4 shows those Spearman
correlations and RMSE in the utility calculations where the
best scores are boldfaced. It is seen that CBOM is more suc-
cessful than others in terms of Spearman correlation, except
for the results obtained in the grocery and politics domains.
Furthermore, RMSE results show that the CBOM is more
successful in all domains.

Next, we analyze the performance of the proposed nego-
tiation strategy relying on the CBOM opponent modeling
against the ANAC finalists. The most widely used perfor-
mancemetric in negotiation is the final received utility, which
is intuitive and in line with Kiruthika’s approach to Multi-
Agent Negotiation systems [18]. There are other metrics,

Table 7 Average agreement rounds

Agent name Car Energy Grid Grocery Party Politics Supermarket Average ± Std

AgentX 205 816 440 477 1,868 162 661 ± 580

Conceder 1,222 1,826 2,626 2,017 2,559 3,095 2,224 ± 611

IAMhaggler2012 2,765 4,393 2,096 2,829 4,146 2,378 3,101 ± 864

ParsCat 2,899 3,988 2,741 3,034 4,254 2,567 3,247 ± 639

CBOMAgent 3,506 3,859 2,978 3,452 4,407 2,403 3,434 ± 633

IAMcrazyHaggler 3,526 4,202 2,984 3,104 4,489 2,553 3,476 ± 682

PonPokoAgent 3,673 4,321 3,330 3,564 4,489 3,202 3,763 ± 481

Boulware 3,604 4,005 3,650 3,705 4,317 3,560 3,807 ± 270

NiceTitForTat 3,367 4,002 4,061 3,654 4,142 4,053 3,880 ± 277

AgentKN 3,612 4,054 3,809 3,898 4,362 3,712 3,908 ± 246

Atlas3 4,252 4,473 2,298 4,355 4,369 3,973 3,953 ± 756

YXAgent 3,907 4,171 3,597 4,053 4,565 3,754 4,008 ± 312

ParsAgent2 3,658 4,249 3,870 4,024 4,527 3,736 4,011 ± 301

Caduceus 4,070 4,501 3,628 4,148 4,473 4,012 4,139 ± 296

HardHeaded 4,099 4,399 3,968 4,196 4,646 4,243 4,258 ± 217

CUHKAgent 4,301 4,458 4,512 4,272 4,659 4,236 4,406 ± 150
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such as nearness to Pareto optimal solutions/Kalai point/the
Nash point, the sum of both agents’ agreement utility (i.e.,
social welfare), and the product of those agreement utili-
ties. Accordingly, we evaluate the performances regarding
average individual received utility, Nash distance, and social
welfare.

First, we analyze the average individual utilities received
by each agent. Table 5 shows those utilities per each agent
in each negotiation scenario where the highest scores are
boldfaced. The last column shows the average scores of each
agent in all domains. Our agent took in the first top three
agents. We noticed that the worst performance of our agent
was in the supermarket domain, where the outcome space is
too large to search.Moreover, our agent performedwell in the
smart energy grid and grocery scenarios, whose opposition
levels are high.

Table 6 shows the average Nash distance for each agent
in all scenarios separately, and the final column indicates the
average of all scenarios. Here, the lower the Nash distance
is, the fairer the agent’s outcomes are. Our conflict-based
agent outperformed theANACfinalist agents except for Nice
TitForTat, which is known for maximizing social welfare
in the Politics scenario (See Table 8 in Appendix). Similar
results were obtained when we analyzed the social welfare in
terms of summation of both agents’ agreement utilities (See
Appendix). Overall results support the success of our agent,
and the reason may stem from the fact that our agent aims to
learn its opponent’s preferences over time and aims to find
win-win solutions for both sides.

When we investigate the overall agreement rate, it can be
seen that most of the agents have a high acceptance rate, and
the leading ones, like ours and Atlas3, found agreements in
all negotiations, as seen in Fig. 6. The final metric that we
investigated is the average rounds to reach an agreement. In
our experiments, the deadline is set to 5000 rounds per nego-
tiation scenario. Table 7 shows the average rounds that the
agent reached their agreement. It can be observed that the the
size of the outcome space and the opposition level may influ-
ence the agreement round. In large and competitive scenarios,
agents needed more rounds to reach an agreement. Among
all agents, Agent X tended to reach a consensus sooner than
all other agents. Furthermore, IAMHaggler2012 and ParsCat
agents tend to explore the offered space asmuch as they can in
the given time. Therefore, these are the agents least affected
by the size of the outcome space and its competitiveness.
Our conflict-based agent could reached an agreement sooner
than more than half of the agents but it is worth noting that it
took more time in terms of seconds due to its computational
complexity similar to AgentKN (See Table 9 in Appendix).

As a result of all the automated negotiations, we deter-
mined the six most successful agents in both the individual
and fairness category. Figure 7 shows clearly that our agent
gains the highest individual gain while having a fairer win-
win solution (i.e., minimum distance to Nash solution). It is
worth noting that while having high utility, our agent lets its
opponent gains relatively high utility in contrast to other top
agents.

6 Conclusion and future work

In conclusion, this work presents a conflict-based opponent
modeling approach and a bidding strategy employing this
model for bilateral negotiations. Apart from evaluating the
performance of the proposed opponentmodel in twodifferent
human-negotiation experiment settings, the proposed strat-
egy was also tested against the finalist of the ANAC agents
considering various performance metrics such as individual
utility and distance to theNash solution.Our results show that
the proposed approach outperformed the state of the nego-
tiating agents, and the proposed opponent model performed
better than other frequency-based models. The contribution
of this study is twofold: (1) introducing a novel opponent
modeling approach to learn human negotiators’ preferences
from limited bid exchanges and (2) presenting a suitable bid-
ding strategy relying on the proposed opponent model for
both collaborative and competitive negotiation settings.

Due to the algorithm’s complexity, the agent’s perfor-
mance decreases when the outcome space becomes more
extensive or the number of generated offers made by the
opponent increases in automated negotiation. We are plan-
ning to reduce the computational complexity of the opponent
modeling by adopting dynamic programming properties and
local search. The upcoming study will focus on opponent
model strategies that decrease the human-agent negotiation
duration with the optimal number of rounds. It would be
interesting to create stereotype profiles by mining the previ-
ous negotiation history and matching the current opponent’s
profile based on their recent offer exchanges.

Understanding and discovering the opponent’s prefer-
ences over negotiation may play a key role in adopting
strategic bidding strategies to find mutually beneficial agree-
ments. However, as stated before, it is challenging to create a
mental model for the opponent’s preferences based on a few
bid exchanges. In contrast to automated negotiation, the num-
ber of exchanged bids is limited in human-agent negotiation.
That requires a bidding strategy smartly exploring the poten-
tial bids and building upon an opponent model, capturing the
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Fig. 7 Best six agents in all automated negotiation results

critical components of the opponent’s preferences.While cre-
ating such modeling is not trivial with limited bid exchanges,
the agent can exploit its previous negotiation experiences and
take advantage of repeated patterns. As future work, it would
be interesting to create differentmentalmodels fromprevious
negotiation experiences by applying our model and trying to
detect which mental model fits better for the current human
negotiators. Consequently, instead of starting to learn from

scratch, our model can enhance the chosen model by ana-
lyzing the current bid exchanges. Furthermore, the agent can
exploit different types of inputs, such as the opponent’s argu-
ments and facial expressions, to enhance opponentmodeling.

Appendix

Table 8 Average social welfare score

Agent Name Car Energy Grid Grocery Party Politics Supermarket Average ± Std

CBOMAgent 165,655 157,227 150,312 167,216 106,945 172,876 153,372 ± 21,995

AgentX 162,310 149,437 157,913 157,453 124,845 159,043 151,834 ± 12,678

Atlas3 159,891 151,089 153,578 153,295 126,653 157,466 150,329 ± 10,976

AgentKN 166,027 150,985 133,303 156,921 126,087 150,364 147,281 ± 13,615

ParsCat 166,225 152,253 145,902 164,745 85,448 161,411 145,997 ± 27,999

NiceTitForTat 165,437 144,536 129,573 152,589 127,955 145,374 144,244 ± 12,914

IAMhaggler2012 161,990 93,551 156,376 165,018 93,827 164,709 139,245 ± 32,337

HardHeaded 166,258 120,624 131,202 161,969 85,146 142,000 134,533 ± 27,260

Boulware 152,574 134,493 118,818 141,937 116,171 127,207 131,867 ± 12,750

IAMcrazyHaggler 155,615 95,329 136,363 157,082 58,579 172,290 129,210 ± 39,828

PonPokoAgent 149,828 108,912 132,648 154,698 62,888 158,976 127,992 ± 33,601

Caduceus 151,600 100,644 130,134 144,040 93,133 146,992 127,757 ± 22,888

CUHKAgent 130,850 120,066 114,833 157,693 92,766 145,382 126,932 ± 21,067

ParsAgent2 150,379 100,984 115,091 135,542 69,915 154,718 121,105 ± 29,599

Conceder 136,634 128,370 81,617 112,968 114,208 68,503 107,050 ± 24,320

YXAgent 139,677 93,292 111,212 121,324 54,423 107,581 104,585 ± 26,484
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Table 9 Average agreement run times

Agent Name Car Energy Grid Grocery Party Politics Supermarket Average ± Std

AgentX 9,831 18,626 3,413 7,771 81,721 23,662 24,171 ± 26,610

Conceder 17,312 29,410 19,058 27,922 114,666 213,279 70,275 ± 72,241

Boulware 40,855 50,588 32,838 43,204 142,281 189,926 83,282 ± 60,379

ParsCat 36,405 66,436 30,499 41,597 172,065 184,158 88,527 ± 64,418

PonPokoAgent 47,276 66,870 40,068 47,167 169,917 177,437 91,456 ± 58,747

HardHeaded 46,853 57,890 34,569 53,148 165,997 198,421 92,813 ± 64,299

Atlas3 52,283 72,105 18,138 66,174 161,367 199,162 94,872 ± 63,694

CUHKAgent 50,303 55,542 38,336 53,566 168,014 214,496 96,709 ± 68,404

YXAgent 55,307 75,352 46,004 59,929 194,091 162,102 98,797 ± 57,485

IAMcrazyHaggler 57,375 80,281 42,139 44,002 199,154 175,726 99,780 ± 63,581

IAMhaggler2012 78,696 124,397 63,920 88,375 226,875 231,055 135,553 ± 68,526

ParsAgent2 154,667 164,868 46,388 117,370 227,899 254,998 161,032 ± 68,806

Caduceus 48,768 70,825 62,566 101,401 521,733 508,281 218,929 ± 209,987

NiceTitForTat 48,707 90,214 118,381 163,795 494,087 748,441 277,271 ± 256,374

CBOMAgent 149,535 248,868 116,199 183,300 626,341 937,576 376,970 ± 302,796

AgentKN 240,108 322,627 104,224 149,689 776,897 863,015 409,427 ± 299,331
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from Özyeğin University. Sub-
sequently, he pursued further
academic education as a Master’s
Student at the same institution.
During this time, he actively
participated in the CHIST-ERA
(locally Tübitak) funded project,
"EXPECTATION: Personalized
Explainable AI for decentralized
agents with heterogeneous knowl-
edge," His focus within the scope
of the project was the applica-
tion of explainability techniques

in recommender systems which aligned with his research interests.
The main goal was to enhance the success of recommender systems in
achieving user goals via sociability. In addition to his thesis research,
Berk developed a human-robot negotiation environment while touch-
ing on other multiagent-related topics involving Blockchain and drone
cooperation.
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