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Abstract 
 
Input reduction is imperative to long-term (> years) morphodynamic simulations to avoid excessive computation times. 
Here, we discuss the input-reduction framework for wave-dominated coastal settings introduced by Walstra et al. 
(2013). The framework comprised 4 steps, viz. (1) the selection of the duration of the original (full) time series of wave 
forcing, (2) the selection of the representative wave conditions, (3) the sequencing of these conditions, and (4) the time 
span after which the sequence is repeated. In step (2), the chronology of the original series is retained, while that is no 
longer the case in steps (3) and (4). The framework was applied to two different sites (Noordwijk, Netherlands and 
Hasaki, Japan) with multiple nearshore sandbars but contrasting long-term offshore-directed behavior: at Noordwijk 
the offshore migration is gradual and not coupled to individual storms, while at Hasaki the offshore migration is more 
episodic, and wave chronology appears to control long-term evolution. The performance of the model with reduced 
wave climates was referenced to a simulation with the actual (full) wave-forcing series. It was demonstrated that input 
reduction can dramatically affect long-term predictions, even to such an extent that the main characteristics of the 
offshore bar cycle are no longer reproduced. This was particularly the case at Hasaki, where all synthetic series that no 
longer capture the initial chronology (steps 3 and 4) lead to rather unrealistic long-term simulations. At Noordwijk, 
synthetic series can result in realistic behavior, provided that the time span after which the sequence is repeated is not 
too large; the reduction of this time span has the same positive effect on the simulation as increasing the number of 
selected conditions in step 2. It was further demonstrated that, although storms result in the largest morphological 
change, conditions with low to intermediate wave energy must be retained to obtain realistic long-term sandbar 
behavior. The input-reduction framework must be applied in an iterative fashion as to obtain a reduced wave climate 
that simulates long-term sandbar sufficiently accurately within an acceptable computation time. Given its potential 
huge impact on the actual simulation, we believe it is imperative to consider input reduction as an intrinsic part of 
model set-up, calibration and validation.  
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1. Introduction 
 
Over the last decades process-based models have shown the capability to predict realistic evolution of 
coastal morphology in applications covering time scales ranging from years (e.g. Jones et al., 2007; Elias et 
al., 2006; Brown and Davies, 2009; Ruggiero et al., 2009; Tung et al., 2012; Walstra et al., 2012), decades 
(e.g. Lesser, 2009; Hibma et al., 2005) to centuries and even millenia (e.g. van der Wegen and Roelvink, 
2008; Dastgheib et al., 2008). In such models morphology evolves because of the feedback between the 
hydrodynamics (waves and currents), sediment transport and the morphology itself. Most of these studies 
have considered a limited number of forcing conditions to avoid excessive computation times. The 
influence of the adopted input reduction method (i.e. derivation of a reduced set of representative 
conditions that accurately approximates the long-term morphological evolution, De Vriend et al., 1993) 
was usually not addressed. Input reduction tends to be based on the representation of a specific target such 
as the annual transports along a coast or through an inlet (e.g. Van Duin et al., 2004; Lesser, 2009), or on 
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the direct simplification of forcing times series whilst maintaining its relevant statistical properties (e.g. 
Southgate, 1995; Chesher and Miles, 1990; Brown and Davies, 2009). Clearly, any input reduction 
involves a number of choices, but their effect on the predicted morphological evolution is often not 
considered. 
 

The ultimate evaluation of an applied input reduction method should be based on a comparison of the 
long-term predicted morphology using the reduced and the full set of conditions. Southgate (1995) was 
among the first to systematically study the effect of modified forcing by systematically varying the wave 
forcing time series in process-based profile model simulations covering a four month period, in this way 
focusing on wave chronology effects. Interestingly, he found that the order in which sequences with high 
waves were incorporated in the time series did not significantly affect the model predictions; whether this 
was also the case in a reduced wave climate was not investigated. Based on medium-term brute forcing 
simulations (i.e. simulations forced with measured time series) for an inlet system covering 5 years with 
various reduced wave and tidal climates, Lesser (2009) concluded that wave-climate reduction was the 
largest source of error. Curiously, Lesser (2009) found a cruder wave climate (i.e. based on less wave 
conditions) to yield the best results (i.e. closest to brute forcing prediction). Although Lesser’s (2009) study 
covered multiple years, the considered 5-year length was relatively short given the cycle duration inherent 
to such inlets of typically several decades to centuries. Input reduction aiming to reproduce coastal 
morphology on time scales similar to an inherent (quasi)-cyclic variation has not yet been performed and 
was the topic of Walstra et al. (2013).  
 

This paper summarizes Walstra et al. (2013) in which the influence of input reduction on the wave-
driven morphological evolution of nearshore sandbars on the time scale of years, i.e. on the time scale of 
their quasi-cyclic offshore-directed behavior was investigated. For this Walstra et al (2013) utilized the 
process-based cross-shore model Unibest-TC (Ruessink et al., 2007) on two sites (Noordwijk, The 
Netherlands and Hasaki, Japan) for which calibrated long-term brute force models are available (Walstra et 
al., 2012; Pape et al., 2010) that can act as a reference to evaluate the predictions using reduced wave 
forcing was utilized. We start off by introducing the input reduction framework (Section 2). The framework 
is then applied to both sites to evaluate the impact of the input reduction derived from morphological 
predictions generated by a range of reduced wave climates (Section 3). Section 4 discusses the results and 
the implications for long-term modeling. Finally, conclusions can be found in Section 5. 
 
 
2. Approach to input reduction 
 
2.1. Concepts of Input reduction and implications for long-term modeling 
 
Two basic choices are available to derive the reduced set of forcing conditions that enable deterministic 
long-term predictions. The first option is to reconstruct (or aggregate) time series of measured wave forcing 
with a limited number of representative conditions to maintain the same pattern of wave chronology (e.g. 
Brown and Davies, 2009). The second option becomes available if wave chronology can be ignored, 
implying the selected representative conditions can be combined in ascending, descending or arbitrary 
order into a synthetic time series (e.g. Van Duin et al., 2004, Grunnet et al., 2004, 2005).  
 

Besides chronology effects, the choice between reconstructed or synthetic time series is also governed 
by the morphological modeling approach. Brown and Davies (2009) utilized a model that simulates the 
morphology directly from the divergence in sediment transports originating from the hydrodynamic forcing. 
However, to increase the computational efficiency, a number of techniques have been developed which 
accelerate or upscale the morphology (Roelvink, 2006). The so-called “online” or “MorFac”-approach 
(Lesser et al., 2004 and Ranasinghe et al., 2011) is now one of the most commonly applied methods (e.g. 
Geleynse et al., 2010, 2011; Edmonds and Slingerland, 2010; van der Wegen and Roelvink, 2008; 
Dastgheib et al., 2008; Jones et al., 2007). This method directly scales the calculated depth change by a 
constant (MF) factor, so that after a simulation over a hydrodynamic period T we have in fact modeled the 
morphological changes over MF*T. Here we also use the MorFac-concept to illustrate the implications 
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input reduction may have on the morphodynamic modeling approach. 
 

Reconstructed time series are appropriate for simulations using a constant MF-value; however, the 
maximum allowable MF is typically governed by the high-energy events in the time series (Jones et al., 
2007), as these induce the largest morphological response. For storm conditions, MF is typically set to 10-
20, but for moderate conditions MF can be O(100) without affecting the quality of the predictions 
(Ranasinghe et al., 2011). Because moderate and low conditions occupy the majority of time, the 
application of a varying MF significantly reduces the computational time. However, the transition between 
conditions with a different MF requires the settling of all suspended sediment to the bed prior to the 
activation of the next condition followed by a spin-up to let the hydrodynamics (and sediment transports) 
re-adjust to the next condition before bed-updating can be re-activated in order to avoid mass balance 
errors. Therefore, a straightforward application of reconstructed time series with varying MF is typically 
less efficient than the application of a constant MF. 
 

Synthetic time series do not require the selected conditions to be split up into short duration events. This 
can significantly reduce the number of transitions between conditions (NoT), therefore making synthetic 
time series more appropriate for varying MF applications. Application of synthetic time series (with 
reduced NoT) combined with varying MF has the potential to significantly increase the computational 
efficiency (typically, a varying MF -combined with a synthetic time series- reduces the computation time 
by at least a factor 2 compared to synthetic forcing with constant MF). 
 
2.2. Framework for input reduction 
 
Input reduction essentially aims at selecting a limited number of conditions with which the morphological 
prediction obtained with the original time series is accurately reproduced (de Vriend et al., 1993). 
Therefore, it is not the aim to reproduce or maintain the statistical properties of the full wave climate since 
an accurate reproduction of the coastal morphology is the primary objective. In Walstra et al. (2013) a 
framework is introduced in which all the issues related to input reduction are addressed in a number of 
analysis steps: 
1. Selection of  the input reduction period,  
2. Selection of the representative wave conditions, 
3. Sequencing of the selected conditions,   
4. Determine the wave climate duration. 
 

For reconstructed time series only steps 1 and 2 are relevant (e.g. sufficient for constant MF 
applications); all four steps need to be applied for synthetic time series (required for varying MF 
applications). The steps are briefly explained below, for all details is referred to Walstra et al. (2013). 
 
Step 1. Selection of the reduction period. 

The reduction period is defined as the length of the measured brute forcing time series that is used to 
reduce the input. The upper limit of the reduction period, TR, is primarily governed by the time scales 
related to the inherent morphological (quasi)-cyclic variation. The annual time scale is typically the 
lower limit to ensure that the seasonal variations in the wave climate are included. In general TR should 
be multiples of one year to avoid seasonal bias.  

 
Step 2. Selection of the representative wave conditions. 

The selection of the representative wave conditions is usually based on a weighted average of the 
frequency of occurrence aggregated over the observed wave conditions. The wave period can also be 
related to the wave height (if a strong correlation exists) to reduce the number of independent 
parameters (Roelvink and Reniers, 2011). The representative conditions are determined by grouping 
the observed wave conditions (i = 1, 2, .., n) enclosed by the bin boundaries (e.g. Frep,j is based on all 
wave conditions within each bin j, indicated by the squares in Fig. 1b). The representative wave 

condition Frep,j is weighted with the cumulative frequency of occurrence, 
,

1
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To account for non-linear effects (i.e. the non-linear dependence of sediment transport on wave height), 
the representative root-mean-square wave height, Hrms, conditions can also by including a power or 
incorporating a sediment transport formula (see e.g. Roelvink and Reniers, 2011). 
  
Both equidistant (i.e. constant bin-size) and non-equidistant binning (varying bin-size) of the wave 
conditions were considered. In the non-equidistant binning method, bin sizes are chosen such that 
weights of the representative conditions are approximately similar (Benedet et al., 2013).  
 
The difference between equidistant and non-equidistant binning is illustrated in Fig. 1. Equidistant 
binning, in Fig. 1b with intervals of 1 m and 30º for Hrms and θ (the offshore incident wave angle with 
respect to the shore-normal), respectively, results in non-equal representative weights ,rep jf  (indicated 
by the colors of the bins). By varying the bin sizes such that the representative weights are 
approximately equal (notice the more evenly distributed weighting colors in Fig. 1c compared to Fig. 
1b), small bin sizes result for levels where wave conditions are frequent (and vice versa). Notice, 
furthermore, that the representative wave conditions (indicated by the red circles) are not in the bin 
centers as the wave selected wave conditions are not evenly distributed over the bins. The 
reconstructed time series are rebuilt observed time series in which each observation is converted to the 
representative condition of the bin that it falls within.  
 

 
 

Figure 1. Comparison of (b) equidistant and (c) non-equidistant binning based on (a) the measured conditions; colors 
indicate the relative duration; red circles represent the representative wave conditions (source: Walstra et al., 2013). 

 
Step 3. Sequencing of the selected conditions. 

As the morphological response to time-varying forcing is usually non-linear, the sequence in which the 
wave conditions are imposed potentially influences or may even dominate long-term predictions. In 
the case of synthetic time series it is therefore essential to investigate to what extent wave chronology 
influences the long-term morphological evolution. This is also related to step 1 as chronology effects 
smaller than the reduction period are destroyed in synthetic time series (e.g. seasonal fluctuations are 
removed in synthetic time series based on TR=1 yr). Therefore, a range of predictions resulting from 
synthetic time series with different sequencing options are evaluated in Section 3. To that end, a 
reduced wave climate resulting from step 2 is systematically and randomly sequenced into a number 
of synthetic forcing time series. The systematically sequenced time series are constructed by arranging 
the representative wave conditions in ascending or descending Hrms and arranging θ  in positive or 
negative directions. This results in 8 possible combinations (schematically shown in Fig. 1b), the wave 
height sequence is indicated by A (ascending) and D (descending) whereas the wave direction 
sequence is indicated by P (positive direction) and N (negative direction). For example wave sequence 
DP implies that first the wave heights are sequenced by starting at the top row and than ordering θ  
within this row from left to right, whereas for wave sequence PD the conditions are sequenced by 
starting at the left column and subsequently ordering Hrms within this column from top to bottom. 
Furthermore, five randomly sequenced time series are considered in Section 3. 
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Step 4. Determine the wave climate duration. 

The wave climate duration, Twc, is defined as the length of the synthetic time series containing all the 
selected conditions. As was highlighted in Section 2.1, the computational efficiency increases 
significantly if the synthetic time series can be lengthened and coupled to increased MF as this reduces 
NoT. However, Twc can affect the morphological prediction as the morphological response depends on 
both the magnitude and the duration of the forcing. For example, increasing Twc could result in an 
over-estimated storm response for infrequent storm events (or vice versa). Conceptually, this imposes 
both upper and lower limits to Twc.  An indication of the lower limit is estimated by applying the 
randomized time series approach (Southgate, 1995). It is determined by evaluating morphodynamic 
simulations forced with time series in which the observed conditions are randomly re-arranged. These 
random time series are generated by splitting the observed time series into a number of segments of 
constant length, and randomly re-ordering these segments. Twc is compared to the segment length by 
considering the condition with the lowest frequency of occurrence of the reduced wave 

climate: ,minrep wcf T∗  The lower limit of Twc is based on the shortest segment length for which still an 

acceptable prediction (skill) results. The upper limit of Twc is iteratively established by evaluating the 
morphological predictions resulting from synthetic time series composed with a range of Twc (i.e. 
evaluation of multiple synthetic time series in which NR is varied). 
 

Conceptually, a limited reduction in the number of wave conditions (step 2) makes the sequencing of the 
conditions (step 3) less critical and vice versa and also affects the optimal climate duration (step 4). 
Because cyclic morphodynamic sandbar behavior is governed by the interplay between episodic storms and 
prolonged calm periods (e.g. Walstra et al., 2012), it is essential that a reduced wave climate preserves the 
associated response mechanisms.  It is especially challenging to preserve the storm response in a reduced 
wave climate due to its intermittent character. Above considerations and the non-linear response of the 
coastal morphology to the magnitude and duration of the forcing are of major importance in all input 
reduction steps and therefore inhibit a straightforward step by step application of the input reduction 
framework. Instead, it is envisaged that the input reduction steps should be repeated a number of times to 
establish an optimal wave climate. The optimal wave climate implies a minimization of NoT which is 
determined by the number of conditions (NoC) from step 2 and Twc (identified by NR, the number of times 
the sequence is repeated) from step 4 as 
 

 * 1RNoT NoC N= − . (1) 
 
To evaluate the effect of input reduction the resulting model predictions (zred) were compared with the 
reduced wave forcing to the model prediction based on the brute forcing time series (zfull). Following 
Lesser (2009) and Ranasinghe et al. (2011) the performance of the reduced set of wave conditions was 
defined by using a cumulative skill score R (Ruessink et al., 2007). An R of 1 implies a perfect match in 
predicted morphological evolution between the reduced and full set of wave conditions. An R less than 1 
indicates a difference between both simulations.  

 
2.3. Test cases 
 
The input reduction framework was applied on two sites (Noordwijk, The Netherlands and the Hasaki 
Oceanographic Research Station (HORS), Japan) for which calibrated long-term brute force predictions 
were available (Walstra et al., 2012; Pape et al., 2010) that act as a reference to evaluate ( ),redz x t  found 
by the reduced wave climates. In both studies the calibrated model predictions compared favorably to the 
observed morphological evolution. To enable a consistent comparison the same model (Unibest-TC, 
Ruessink et al., 2007) as in the brute force predictions using identical model settings without 
morphodynamic upscaling (i.e. MF = 1) was applied. The brute forcing for Noordwijk contains 3 hourly 
observations for wave height, period and direction, whereas for Hasaki daily observations of wave height 
and period were available. However, no wave direction was measured at Hasaki; therefore Pape et al. 
(2010) used a constant direction of 30º relative to the coast normal which was also applied in the present 
study in both the brute forcing and the reduced wave climates. 
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Figure 2. Time series of  (a,b) offshore root-mean-square wave height Hrms and (c,d) time stacks of brute forcing based 

predictions of the profile perturbations (i.e. deviations from the time mean profile) at Noordwijk (left) and Hasaki 
(right). In (c,d) warm colors correspond to sandbars, cold colors to troughs (source: Walstra et al., 2013). 

 
Both Noordwijk and Hasaki are characterized by a double sandbar system that propagates offshore on 

the time scale of years (Wijnberg and Terwindt, 1995; Kuriyama et al., 2008). At Noordwijk the cycle from 
bar inception in the swash zone to bar decay in the outer surf zone region takes about 3 - 4 years (Figures 
2a,c). There appears to be no direct link between specific wave events and the bar cycle duration, see also 
Ruessink et al. (2009). Storms cause a noticeable offshore migration, but the magnitude of the response is 
small relative to the width of the barred part of the cross-shore profile. The bars at Hasaki exhibit similar 
behavior, but with a cycle period in the range of 1 to 4 years it is substantially more variable than at 
Noordwijk (Figures 2b,d). This is primarily caused by the fact that outer-bar decay (i.e. the end of a cycle) 
usually sets in after a storm event (Kuriyama et al., 2008; Pape et al., 2010). From Figures 2b,d it can be 
seen that two distinct bar cycles were present in the considered period. After about 200 days the initial 
outer-bar decayed followed by a period of about 250 days during which a new bar developed whilst 
gradually moving offshore. After 450 days a stormy period caused the outer bar to migrate beyond the 
location where the previous bar decayed. Following Ruessink et al. (2009), bar dynamics at Hasaki was 
classified as episodic net offshore migration (NOM) and the Noordwijk bar dynamics as inter-annual NOM. 
The contrasting sensitivity to individual wave events and hence chronology was the main motivation to 
include both sites in Walstra et al. (2013).  
 
 
3. Application 
 
3.1. Steps 1 and 2 (reduction period and selection of wave conditions) 
 
Based on the observed cycle periods ~4 years at Noordwijk and ~1.5 years at Hasaki were used as the 
reduction periods. This corresponds to the length of the time series in the brute force simulations for both 
sites. 
 
For Noordwijk, representative Hrms, Tp and θ were determined by considering equidistant bins for all 
combinations of 2, 4, 8 and 16 Hrms-bins (respectively ∆Hrms = 2, 1, 0.5 and 0.25 m) with 2, 4, 7 and 14 θ-
bins (respectively ∆θ= 70°, 35°, 20° and 10°). Two non-equidistant wave climates were also evaluated: 4 
and 8 Hrms-bins combined with 4 non-equidistant θ-bins. All the reduced wave climates were subsequently 
converted to reconstructed time series. Correlating the reconstructed and observed Hrms, Tp and θ time 
series showed that ∆Hrms=2.0 m resulted in a significantly reduced correlation, r, compared to ∆Hrms=1.0 m. 
For θ, r seemed to be fairly insensitive to bin size. The non-equidistant binning resulted in a comparable r 
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for both 4 and 8 Hrms-bins.  
 
Above certain bin size thresholds the model performance appeared to be rather insensitive to the chosen 
bin sizes. The skill R was high for all combinations of ∆Hrms≤1 m and ∆θ≤35°. For ∆Hrms=2.0 m the final 
profile did not contain any bars and the inter-tidal area had accreted unrealistically. While ∆Hrms=0.25 and 
0.5 m resulted in near perfect agreement with the reference run (R=0.99), ∆Hrms=1.0 m maintained the bars, 
but slightly underestimated offshore bar migration (R=0.92). Varying ∆θ hardly influenced the predictions 
for ∆θ≤35°, but with ∆θ=70° the outer bar migrated too far offshore. The temporal evolution of the R-
values revealed that the model performance was high throughout the simulation period for ∆Hrms<1m. The 
largest bin size (∆Hrms=2 m and ∆θ =70°) had considerably lower R throughout the simulation. For 
∆Hrms=2 m and ∆θ=70° R was low irrespective of the bin size for ∆θ and ∆Hrms, respectively. Non-
equidistant binning only improved R for 4 Hrms-bins, while for 8 Hrms-bins R was high for both types of 
binning. 
 
For Hasaki 4 and 8 Hrms equidistant and non-equidistant bins were considered, respectively. The correlation 
between the reconstructed Hrms time series and the observations was approximately similar to Noordwijk. 
On the whole, R for Hasaki was lower compared to Noordwijk. With all reconstructed time series the 
model underestimated the offshore bar migration after 420 days (Fig. 2d) causing the overall low R. 
 
3.2. Steps 3 and 4: sequencing and duration of the reduced wave climate 
 
The construction of a synthetic time series is governed by the sequence in which the conditions (step 3) are 
imposed as well as by the duration of the wave climate (step 4). In this section both steps are jointly 
investigated for a number of the reduced wave climates derived in step 2 for Noordwijk and Hasaki. 
 
First, the randomized waves approach (Southgate, 1995) to establish the lower limit of Twc was applied. 
This involves the application of re-ordered time series which are generated by splitting up the observed 
time series into segments of constant length and than randomly re-ordering these segments. For Noordwijk, 
time series based on segment lengths of 3 hrs, 12 hrs, 1, 2, 7, 28 and 92 days were considered. For Hasaki 
the segment lengths of 1 day and larger were applied due to the 1-day resolution of the observations. For 
each segment length 5 randomly sequenced time series are imposed on the model. The lower limit of Twc 
was therefore defined as the minimum segment length at which the model outcomes become insensitive 
and are in good agreement with the brute force simulations. 
 
For Noordwijk the model predictions for 3-hour segments length all deviated from the reference run results 
(Fig. 3). In contrast, model predictions resulting from the 28 days segment length in general agreed well 
with the reference run. On the whole, a segment length of 12 hours caused the predictions to agree fairly 
well with the reference run (R>0.8, see Fig. 3); model performance was found to be relatively insensitive to 
longer segment lengths. For Hasaki the performance of the considered segment lengths was comparable but 
with a considerable scatter (Fig. 3). Compared to Noordwijk, the overall performance was significantly 
lower for all segment lengths. The most detailed considered representative wave climates result in lower 
limits for Twc of about 10 to 20 days (assuming the minimum segment lengths of 12 hrs and 1 day equals 

,minrep wcf T∗ , for Noordwijk and Hasaki respectively). 

 
Conceptually, the model performance using reconstructed time series constitutes the best possible 
performance given a reduced set of input conditions and therefore acts as the upper performance limit for 
synthetic time series. The randomized time series approach therefore acts as an indicator to what extent 
synthetic time series are an appropriate way to simulate long-term profile evolution (tested in the next 
section). Consequently, an accurate reproduction of the brute forcing prediction based on synthetic time 
series may be achievable for Noordwijk, while this is unlikely for Hasaki. In stead, for the latter focus 
could be on more aggregated bar cycle characteristics such as averaged cycle period and the transient bar 
amplitude response which are still predicted using the randomized time series; therefore, the efficacy of 
synthetic time series was also considered for Hasaki. 
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Figure 3. Skill R (black) averaged over the 5 random simulations as a function of the segment length, red lines are the 
maximum and minimum R (source: Walstra et al., 2013). 

 
The Noordwijk case was used to jointly investigate the influence of sequencing and varying Twc for the 
8x4EQ wave climate (i.e wave climate resulting from equidistant binning of the observed Hrms and θ into 8 
and 4 bins, respectively). To that end, the model performance for six wave climate durations (Twc =1205, 
603, 402, 301, 241, 114 days which implies the conditions in the reduced wave climate are repeated 1, 2, 3, 
4, 5 and 9 times, respectively) combined with all the sequencing options is summarized in Fig. 1. 
Interestingly, a wave climate duration equal to the reduction period (i.e. Twc=1205 days) resulted in 
negative R for most of the sequencing options, while Twc < 401 days only marginally increased R. For all 
synthetic time series, R increased for shorter wave climate durations. This is due to the reduced duration of 
the individual conditions and the repetition of the wave conditions, causing a better resemblance to the 
brute forcing time series. It was found that systematic sequencing of wave conditions consistently resulted 
in lower skills compared to the randomly ordered time series. Only for the lowest considered climate 
duration (Twc = 114 days) all sequences (systematic and random) converged to a comparable skill.  
 
3.3. Influence of bin size and binning method on synthetic time series 
 
In Walstra et al. (2013) the analysis from the previous section was extended to also include the 4x4 and 8x4 
wave climates for Noordwijk and the 4x1 and 8x1wave climates for Hasaki considering both equidistant 
(EQ) and non-equidistant binning (NEQ). At Noordwijk the use of the more detailed 8x4 wave climates 
generally improved R (Figure 4). Non-equidistant binning had a similar or larger positive impact on R for 
most of the 4x4 based synthetic time series; compare R for 4x4EQ and 4x4NEQ in Figures 4a,b. For the 
8x4 wave climates, non-equidistant binning improved results to a lesser extent. In general, R converged at 
about 0.85 for all wave climates with Twc=114 days. The influence of N (number of conditions in the 
reduced wave climate) is limited for non-equidistant binning (i.e. compare R of 4x4NEQ with 8x4NEQ wave 
climates). For the equidistant binning method, the influence of N is somewhat larger. 
 
The large influence of the sequencing found at Hasaki (not shown) was caused by the fact that the 
morphological response strongly depends on the phase of the bar cycle at the time of high wave events. 
 
For both sites it can be concluded that sequencing, the aggregation level (i.e. number of conditions in the 
reduced wave climate) and the binning method (equidistant vs non-equidistant) are less critical for low Twc 
as R  and Rs  converge to minimal values. For larger Twc both input reduction parameters are of similar 
importance.  
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Figure 4. Model performance at Noordwijk for the reduced wave climates: a) skill R resulting from the 5 randomly 

sequenced synthetic time series; b) and c) shows average R and its standard deviation Rs , respectively (source: 
Walstra et al., 2013). 

 
 
4. Discussion 
 
The influence of Twc was illustrated by comparing time stacks of the profile perturbations for Noordwijk 
and Hasaki for all six considered Twc with the brute force predictions (Figs. 5 and 6). At Noordwijk the 
outer and middle bars characteristics were already fairly well reproduced with Twc =602 days (Fig. 5b). 

However, the inner bars (x=-400 m) only started to converge for 401
wc

T ≤ days (Fig. 5c-f). On the bar 

cycle time scale, the middle and inner bars were coupled to the dynamics of the outer bars. However, near 
the water line (x>-200 m) bar generation, decay and/or merging with the inner bar occurred at a much 
higher frequency as it was directly coupled to the wave forcing. At Hasaki Twc had an even large influence, 

for 277
wc

T ≥ days (Fig. 6a,b) the initial outer bar rapidly decayed which was the onset for strong bar 

growth and offshore migration of the former inner bar. With shorter Twc (Fig. 6c-f) the offshore migration 
and bar growth of the inner bar was less pronounced. As a result this bar only gradually moved offshore 
and slowly decayed for the remainder of the simulation. Although the predictions converge for Hasaki, the 
model failed to reproduce the bar characteristics of the brute force prediction for all the considered wave 
climates. The predicted gradual offshore migration, decay and merging of the inner and outer bars contrast 
with the episodic nature of the bar dynamics in the brute forcing prediction. Therefore, input reduction at 
Hasaki is only feasible by applying reconstructed time series. The morphological response to extreme wave 
events is so strong that this will be an important aspect for the interpretation of the model predictions. This 
could be addressed by considering a number of reconstructed time series for different time periods to 
obtain further insight in the variability in the model predictions. 
 
The considered wave climates were relatively detailed (16 to 32 wave conditions) compared to commonly 
applied wave climates in multi-annual morphodynamic simulations (typically about 10 wave conditions, 
see, for example van Duin et al., 2004 and Grunnet et al., 2004). This further reduction was partly achieved 
by ignoring the low to moderate wave conditions. To test whether exclusion of low conditions is justified 
Hrms<1 m wave conditions were excluded from the 8x4EQ and 8x4NEQ wave climates for all wave climate 
durations for the Noordwijk case. This resulted in significantly increased bar amplitudes and enhanced 
offshore bar migration, causing negative skill for all considered wave climates and Twc. It proves that, 
although storms strongly influence profile evolution, the interplay between such episodic events and 
prolonged periods of low to moderate waves cannot be ignored. 
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Figure 5. Time stack of the predicted profile perturbations at Noordwijk for the 4x4EQ wave climate with randomized 
time series (R3) with Twc= (a) 1205, (b) 602, (c) 401, (d) 301, (e) 241 and (f) 114 days. Twc is indicated by the vertical 

grey lines (source: Walstra et al., 2013).  

 

 
 
Figure 6 Time stack of the predicted profile perturbations at Hasaki for the 4x4EQ wave climate with randomized time 
series (R3) with Twc= (a) 555, (b) 278, (c) 185, (d) 139, (e) 111 and (f) 62 days. Twc is indicated by the vertical grey 

lines (source: Walstra et al., 2013). 
 
Because the computational efficiency of a reduced wave climate is governed by NoT, this parameter should 
be used as the primary selection criterion. Therefore, the considered wave climates were evaluated for 
Noordwijk by comparing R averaged over the 5 random simulations as a function of NoT (Fig. 7). It is 
evident that the number of conditions and binning method (step 2) were of similar importance as the wave 
climate duration (step 4). Although, the 4x4NEQ wave climate was the optimal climate (largest R for a given 
NoT), the 8x4NEQ wave climate resulted in a comparable model performance with a nearly similar 
efficiency. Given the comparable performance of the 4x4NEQ and 8x4NEQ wave climates, a final selection 
could also be based on a more detailed inspection of the predictions and other aspects such as robustness of 
the predictions. For example, the standard deviation Rs  shown in Figure 4c is mostly lower for 8x4NEQ, 
suggesting that it is to be preferred over 4x4NEQ. 
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Figure 7. Averaged skill R for a) the complete profile, b) the upper part of the profile (x=[-400m:-100m]) and c) the 
lower part of the profile (x=[-1000m:-400m]) as a function of the number of condition transitions (NoT) in the 

synthetic time series at Noordwijk (source: Walstra et al., 2013). 
 
 
5. Conclusions 
 
Input reduction can have a major impact on model simulations, even to such an extent that major 
characteristics of cyclic behavior of sub tidal sandbars are no longer reproduced. This is particularly true 
when long-term evolution is steered by episodic storm events, such as at Hasaki. Therefore, the 
characteristics of the bar cycle response (e.g. episodic or inter-annual net offshore migration of bars) should 
be accounted for when applying input reduction. Synthetic time series of wave conditions are only 
appropriate if the bar-cycle dynamics are not directly linked to individual storm events. If such a coupling 
does exist, reconstructed time series that retain the original chronology should be applied (also implying 
that constant MF-values should be used in case morphodynamic upscaling is utilized). The effect of input 
reduction is not steered by a single choice. In the presented applications, the aggregation level, the binning 
methods and the wave climate duration Twc affected skill to a similar degree. Since the efficiency of long-
term process-based morphodynamic models (with varying MF) is governed by the number of transitions 
NoT, the optimal wave climate should also consider Twc. This could result in the selection of an optimal 
reduced wave climate containing a larger number of conditions but with a longer Twc. Given its potentially 
major influence, the type of input reduction, including associated choices, should be well-motivated and 
investigated. In other words, it should be an intrinsic part of model set-up, calibration and validation 
procedures. 
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