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INPUT REDUCTION FOR LONG-TERM MORPHODYNAMIC SIMULATIONS

Dirk-Jan Walstr&? Gerben RuessifikRoderik Hoekstra Pieter Koen Tonndn

Abstract

Input reduction is imperative to long-term (> ygar®rphodynamic simulations to avoid excessive ataifon times.
Here, we discuss the input-reduction framework i@ve-dominated coastal settings introduced by \Walst al.
(2013). The framework comprised 4 steps, viz. ljg)gelection of the duration of the original (fuiihe series of wave
forcing, (2) the selection of the representativereveonditions, (3) the sequencing of these contitiand (4) the time
span after which the sequence is repeated. In(8)ethe chronology of the original series is net¢ai, while that is no
longer the case in steps (3) and (4). The framewak applied to two different sites (Noordwijk, Netlands and
Hasaki, Japan) with multiple nearshore sandbarscbutrasting long-term offshore-directed behavatriNoordwijk
the offshore migration is gradual and not coupteétlividual storms, while at Hasaki the offshorgration is more
episodic, and wave chronology appears to controg-erm evolution. The performance of the modehwiduced
wave climates was referenced to a simulation vhithactual (full) wave-forcing series. It was demuoated that input
reduction can dramatically affect long-term preidics, even to such an extent that the main chaisiits of the
offshore bar cycle are no longer reproduced. Tlis particularly the case at Hasaki, where all stittseries that no
longer capture the initial chronology (steps 3 d)dead to rather unrealistic long-term simulatioAs Noordwijk,
synthetic series can result in realistic behayooyided that the time span after which the seqaiéncepeated is not
too large; the reduction of this time span hassh@e positive effect on the simulation as increptiie number of
selected conditions in step 2. It was further destrated that, although storms result in the largestphological
change, conditions with low to intermediate wavesrgg must be retained to obtain realistic long-tesamdbar
behavior. The input-reduction framework must beliadpin an iterative fashion as to obtain a redusede climate
that simulates long-term sandbar sufficiently aately within an acceptable computation time. Giusnpotential
huge impact on the actual simulation, we believis itmperative to consider input reduction as amirigic part of
model set-up, calibration and validation.

K ey words:. input reduction; morphodynamic modeling; processedamodeling; cyclic bar behavior; Unibest-TC;
morphodynamic upscaling

1. Introduction

Over the last decades process-based models hawe ghe capability to predict realistic evolution of
coastal morphology in applications covering timalss ranging from years (e.g. Jones et al., 200&s Et

al., 2006; Brown and Davies, 2009; Ruggiero et2lQ9; Tung et al., 2012; Walstra et al., 2012 adies
(e.g. Lesser, 2009; Hibma et al., 2005) to cerguaied even millenia (e.g. van der Wegen and Rdelvin
2008; Dastgheib et al., 2008). In such models muggy evolves because of the feedback between the
hydrodynamics (waves and currents), sediment teahgmd the morphology itself. Most of these stadie
have considered a limited number of forcing coodii to avoid excessive computation times. The
influence of the adopted input reduction methoe. (derivation of a reduced set of representative
conditions that accurately approximates the lomgitenorphological evolution, De Vriend et al., 1993)
was usually not addressed. Input reduction tendietbased on the representation of a specific ttarggh

as the annual transports along a coast or thronghlet (e.g. Van Duin et al., 2004; Lesser, 20@®)on
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the direct simplification of forcing times seriedilgt maintaining its relevant statistical propesti(e.g.
Southgate, 1995; Chesher and Miles, 1990; Brown Radies, 2009). Clearly, any input reduction
involves a number of choices, but their effect be predicted morphological evolution is often not
considered.

The ultimate evaluation of an applied input reduttmethod should be based on a comparison of the
long-term predicted morphology using the reduced #me full set of conditions. Southgate (1995) was
among the first to systematically study the effeictmodified forcing by systematically varying theave
forcing time series in process-based profile mai@lulations covering a four month period, in thiayw
focusing on wave chronology effects. Interestingly,found that the order in which sequences witj hi
waves were incorporated in the time series didsignificantly affect the model predictions; whethieis
was also the case in a reduced wave climate wagmwestigated. Based on medium-term brute forcing
simulations (i.e. simulations forced with measutieae series) for an inlet system covering 5 yeaith w
various reduced wave and tidal climates, Lesse@9p@oncluded that wave-climate reduction was the
largest source of error. Curiously, Lesser (20@@nfl a cruder wave climate (i.e. based on less wave
conditions) to yield the best results (i.e. clogedirute forcing prediction). Although Lesser'®(®) study
covered multiple years, the considered 5-year lemgts relatively short given the cycle durationerént
to such inlets of typically several decades to wees$. Input reduction aiming to reproduce coastal
morphology on time scales similar to an inherentai)-cyclic variation has not yet been performad a
was the topic of Walstra et al. (2013).

This paper summarizes Walstra et al. (2013) in kvhie influence of input reduction on the wave-
driven morphological evolution of nearshore sandhmr the time scale of years, i.e. on the timeesoél
their quasi-cyclic offshore-directed behavior waseistigated. For this Walstra et al (2013) utilizbd
process-based cross-shore model Unibest-TC (Rbesdiral., 2007) on two sites (Noordwijk, The
Netherlands and Hasaki, Japan) for which calibridad-term brute force models are available (Walstr
al., 2012; Pape et al., 2010) that can act as eaenefe to evaluate the predictions using reduced wa
forcing was utilized. We start off by introducintggtinput reduction framework (Section 2). The framek
is then applied to both sites to evaluate the imp&dhe input reduction derived from morphological
predictions generated by a range of reduced warmatds (Section 3). Section 4 discusses the reanits
the implications for long-term modeling. Finallgrelusions can be found in Section 5.

2. Approach toinput reduction
2.1. Concepts of Input reduction and implications for long-term modeling

Two basic choices are available to derive the redwset of forcing conditions that enable deterntimis
long-term predictions. The first option is to restrnct (or aggregate) time series of measured Vaeag

with a limited number of representative conditidtmsmaintain the same pattern of wave chronology. (e.
Brown and Davies, 2009). The second option becoavedlable if wave chronology can be ignored,
implying the selected representative conditions bancombined in ascending, descending or arbitrary
order into a synthetic time series (e.g. Van Duialg 2004, Grunnet et al., 2004, 2005).

Besides chronology effects, the choice betweennsoacted or synthetic time series is also governed
by the morphological modeling approach. Brown araliBs (2009) utilized a model that simulates the
morphology directly from the divergence in sedimgansports originating from the hydrodynamic forgi
However, to increase the computational efficiereyyumber of techniques have been developed which
accelerate or upscale the morphology (Roelvink,6200he so-called “online” or “MorFac”-approach
(Lesser et al., 2004 and Ranasinghe et al., 2614div one of the most commonly applied methods (e.g
Geleynse et al.,, 2010, 2011; Edmonds and Sling#rl2010; van der Wegen and Roelvink, 2008;
Dastgheib et al., 2008; Jones et al., 2007). Thathod directly scales the calculated depth changa b
constant (MF) factor, so that after a simulatioero& hydrodynamic period T we have in fact moddiexd
morphological changes over MF*T. Here we also umse MorFac-concept to illustrate the implications
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input reduction may have on the morphodynamic modepproach.

Reconstructed time series are appropriate for sitils using a constant MF-value; however, the
maximum allowable MF is typically governed by thighienergy events in the time series (Jones et al.,
2007), as these induce the largest morphologicglaomse. For storm conditions, MF is typically sefl0-

20, but for moderate conditions MF can be O(100bheut affecting the quality of the predictions
(Ranasinghe et al., 2011). Because moderate andctmwditions occupy the majority of time, the
application of a varying MF significantly reducé® tcomputational time. However, the transition teetw
conditions with a different MF requires the setiliof all suspended sediment to the bed prior to the
activation of the next condition followed by a sqpip to let the hydrodynamics (and sediment trartspor
re-adjust to the next condition before bed-updatiag be re-activated in order to avoid mass balance
errors. Therefore, a straightforward applicatiorredonstructed time series with varying MF is tytle

less efficient than the application of a constaiit M

Synthetic time series do not require the selectedlitions to be split up into short duration eveiitsis
can significantly reduce the number of transitibbe$ween conditions (NoT), therefore making syntheti
time series more appropriate for varying MF appiaes. Application of synthetic time series (with
reduced NoT) combined with varying MF has the ptié¢rio significantly increase the computational
efficiency (typically, a varying MF -combined with synthetic time series- reduces the computatiog ti
by at least a factor 2 compared to synthetic fgreuith constant MF).

2.2. Framework for input reduction

Input reduction essentially aims at selecting atéchnumber of conditions with which the morpholai
prediction obtained with the original time series accurately reproduced (de Vriend et al., 1993).
Therefore, it is not the aim to reproduce or mamthe statistical properties of the full wave dita since

an accurate reproduction of the coastal morpholsgihe primary objective. In Walstra et al. (20E3)
framework is introduced in which all the issuesatedl to input reduction are addressed in a humber o
analysis steps:

1. Selection of the input reduction period,

2. Selection of the representative wave conditions,

3. Sequencing of the selected conditions,

4. Determine the wave climate duration.

For reconstructed time series only steps 1 and € ralevant (e.g. sufficient for constaMF
applications); all four steps need to be applied $gnthetic time series (required for varyimgF
applications). The steps are briefly explained Wwefor all details is referred to Walstra et al0{3).

Step 1. Selection of the reduction period.
The reduction period is defined as the length efrtieasured brute forcing time series that is used t
reduce the input. The upper limit of the reductpamiod, Tg, is primarily governed by the time scales
related to the inherent morphological (quasi)-ayaiariation. The annual time scale is typically the
lower limit to ensure that the seasonal variatiorthe wave climate are included. In gendrashould
be multiples of one year to avoid seasonal bias.

Step 2. Selection of the representative wave ciomdit
The selection of the representative wave conditisngsually based on a weighted average of the
frequency of occurrence aggregated over the obdevawe conditions. The wave period can also be
related to the wave height (if a strong correlateists) to reduce the number of independent
parameters (Roelvink and Reniers, 2011). The reptatve conditions are determined by grouping
the observed wave conditions< 1, 2, ..,n) enclosed by the bin boundaries (ég,; is based on all
wave conditions within each bip indicated by the squares in Fig. 1b). The repradive wave

conditionFp j is weighted with the cumulative frequency of oceace, f . = Z f.

i=1
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To account for non-linear effects (i.e. the noreéindependence of sediment transport on wave hgight
the representative root-mean-square wave helgiht, conditions can also by including a power or
incorporating a sediment transport formula (seeRaglvink and Reniers, 2011).

Both equidistant (i.e. constant bin-size) and nquigistant binning (varying bin-size) of the wave
conditions were considered. In the non-equidistanhing method, bin sizes are chosen such that
weights of the representative conditions are agprately similar (Benedet et al., 2013).

The difference between equidistant and non-equaidisbinning is illustrated in Fig. 1. Equidistant
binning, in Fig. 1b with intervals of 1 m and 30% H,,,s andé (the offshore incident wave angle with
respect to the shore-normal), respectively, resulton-equal representative weighi,%p’ j (indicated

by the colors of the bins). By varying the bin sizeuch that the representative weights are
approximately equal (notice the more evenly disteld weighting colors in Fig. 1¢c compared to Fig.
1b), small bin sizes result for levels where waweaditions are frequent (and vice versa). Notice,
furthermore, that the representative wave conditifindicated by the red circles) are not in the bin
centers as the wave selected wave conditions ateewenly distributed over the bins. The
reconstructed time series are rebuilt observed sienes in which each observation is converteti¢o t
representative condition of the bin that it fallghin.

Relative
duration g/o

Hrms (m)

Figurel. Comparison of (b) equidistant and (c) non-eqtgdisbinning based on (a) the measured conditioiers
indicate the relative duration; red circles repnéske representative wave conditions (source: Wéaét al., 2013).

Step 3. Sequencing of the selected conditions.
As the morphological response to time-varying fiogdis usually non-linear, the sequence in which the
wave conditions are imposed potentially influenoesnay even dominate long-term predictions. In
the case of synthetic time series it is therefagential to investigate to what extent wave chrogyl
influences the long-term morphological evolutiohisTis also related to step 1 as chronology effects
smaller than the reduction period are destroyeslinthetic time series (e.g. seasonal fluctuatioas a
removed in synthetic time series basedTgnl yr). Therefore, a range of predictions resultiram
synthetic time series with different sequencingiad are evaluated in Section 3. To that end, a
reduced wave climate resulting from step 2 is syatecally and randomly sequenced into a number
of synthetic forcing time series. The systematjcaiquenced time series are constructed by armgngin
the representative wave conditions in ascendindescendingH,,s and arranging? in positive or
negative directions. This results in 8 possible loimations (schematically shown in Fig. 1b), the evav
height sequence is indicated by A (ascending) andd&scending) whereas the wave direction
sequence is indicated by P (positive direction) Mrgegative direction). For example wave sequence
DP implies that first the wave heights are sequerme starting at the top row and than orderéhg
within this row from left to right, whereas for wansequence PD the conditions are sequenced by
starting at the left column and subsequently ordeH, s within this column from top to bottom.
Furthermore, five randomly sequenced time seriecansidered in Section 3.
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Step 4. Determine the wave climate duration.
The wave climate duratiof,,, is defined as the length of the synthetic timgesecontaining all the
selected conditions. As was highlighted in Sectihd, the computational efficiency increases
significantly if the synthetic time series can badthened and coupled to increab#ftlas this reduces
NoT. However,T, can affect the morphological prediction as the photogical response depends on
both the magnitude and the duration of the forciprgr example, increasing,. could result in an
over-estimated storm response for infrequent sevents (or vice versa). Conceptually, this imposes
both upper and lower limits t®,,. An indication of the lower limit is estimated fapplying the
randomized time series approach (Southgate, 1998).determined by evaluating morphodynamic
simulations forced with time series in which thesetved conditions are randomly re-arranged. These
random time series are generated by splitting treeved time series into a number of segments of
constant length, and randomly re-ordering thesensets. T, is compared to the segment length by
considering the condition with the lowest frequenoy occurrence of the reduced wave

climate: frepmin T, The lower limit ofT,, is based on the shortest segment length for wstittran

acceptable prediction (skill) results. The uppenitliof T, is iteratively established by evaluating the
morphological predictions resulting from synthetiime series composed with a rangeTgf (i.e.
evaluation of multiple synthetic time series in @fhiNy is varied).

Conceptually, a limited reduction in the numbemaifve conditions (step 2) makes the sequencingeof th
conditions (step 3) less critical and vice versd atso affects the optimal climate duration (stgp 4
Because cyclic morphodynamic sandbar behaviorvsmped by the interplay between episodic storms and
prolonged calm periods (e.g. Walstra et al., 2023, essential that a reduced wave climate presethe
associated response mechanisms. It is especlalienging to preserve the storm response in aceztu
wave climate due to its intermittent character. ¥b@onsiderations and the non-linear response ef th
coastal morphology to the magnitude and durationhef forcing are of major importance in all input
reduction steps and therefore inhibit a straightfod step by step application of the input redurctio
framework. Instead, it is envisaged that the imgdiuction steps should be repeated a number ofttme
establish an optimal wave climate. The optimal walimate implies a minimization dloT which is
determined by the number of conditioMo() from step 2 and,, (identified byNg, the number of times
the sequence is repeated) from step 4 as

NoT = NoC* N -1. (2)

To evaluate the effect of input reduction the riaisgl model predictionszgy) were compared with the
reduced wave forcing to the model prediction basecdthe brute forcing time serieg,(). Following
Lesser (2009) and Ranasinghe et al. (2011) theoqpeaihce of the reduced set of wave conditions was
defined by using a cumulative skill scdrRe(Ruessink et al., 2007). AR of 1 implies a perfect match in
predicted morphological evolution between the reduand full set of wave conditions. Aless than 1
indicates a difference between both simulations.

2.3. Test cases

The input reduction framework was applied on twssi(Noordwijk, The Netherlands and the Hasaki
Oceanographic Research Station (HORS), Japan) fischwcalibrated long-term brute force predictions
were available (Walstra et al., 2012; Pape eR8al10) that act as a reference to evaltmg( X tS) found

by the reduced wave climates. In both studies #ibrated model predictions compared favorablyhi® t
observed morphological evolution. To enable a &test comparison the same model (Unibest-TC,
Ruessink et al.,, 2007) as in the brute force ptdiis using identical model settings without
morphodynamic upscaling (i.81F = 1) was applied. The brute forcing for Noordwi@ntains 3 hourly
observations for wave height, period and directishereas for Hasaki daily observations of wave lhieig
and period were available. However, no wave dioectvas measured at Hasaki; therefore Pape et al.
(2010) used a constant direction of 30° relativéhto coast normal which was also applied in theqre
study in both the brute forcing and the reducedenclimates.
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Figure2. Time series of (a,b) offshore root-mean-squareeweaightH,.s and (c,d) time stacks of brute forcing based
predictions of the profile perturbations (i.e. dgidns from the time mean profile) at Noordwijkf{Jeand Hasaki
(right). In (c,d) warm colors correspond to sangbaold colors to troughs (source: Walstra et2dl1,3).

Both Noordwijk and Hasaki are characterized by abi sandbar system that propagates offshore on
the time scale of years (Wijnberg and Terwindt,3;3Quriyama et al., 2008). At Noordwijk the cycl®iin
bar inception in the swash zone to bar decay irother surf zone region takes about 3 - 4 yeaigu(Es
2a,c). There appears to be no direct link betwgecic wave events and the bar cycle duration,atse
Ruessink et al. (2009). Storms cause a noticedfdbove migration, but the magnitude of the respoiss
small relative to the width of the barred part loé tross-shore profile. The bars at Hasaki exkihiflar
behavior, but with a cycle period in the range ofol4 years it is substantially more variable ttzn
Noordwijk (Figures 2b,d). This is primarily causieg the fact that outer-bar decay (i.e. the end ojde)
usually sets in after a storm event (Kuriyama et2008; Pape et al., 2010). From Figures 2b, @it loe
seen that two distinct bar cycles were presenhéndonsidered period. After about 200 days théalnit
outer-bar decayed followed by a period of about #39s during which a new bar developed whilst
gradually moving offshore. After 450 days a storpgriod caused the outer bar to migrate beyond the
location where the previous bar decayed. FollowRgessink et al. (2009), bar dynamics at Hasaki was
classified as episodic net offshore migration (NCGiiJl the Noordwijk bar dynamics as inter-annual NOM
The contrasting sensitivity to individual wave etseand hence chronology was the main motivation to
include both sites in Walstra et al. (2013).

3. Application
3.1. Seps 1 and 2 (reduction period and selection of wave conditions)

Based on the observed cycle periods ~4 years atdMdj& and ~1.5 years at Hasaki were used as the
reduction periods. This corresponds to the lengtth® time series in the brute force simulationsidoth
sites.

For Noordwijk, representativel,s T, and 8 were determined by considering equidistant birrs &b
combinations of 2, 4, 8 and §¢sbins (respectivel\H,,s= 2, 1, 0.5 and 0.25 m) with 2, 4, 7 and&4
bins (respectivelyA6= 70°, 35°, 20° and 10°). Two non-equidistant walimates were also evaluated: 4
and 8H,¢sbins combined with 4 non-equidistadibins. All the reduced wave climates were subsetiyien
converted to reconstructed time series. Correlatitegreconstructed and observdg,s T, and 6 time
series showed thdiH,,=2.0 m resulted in a significantly reduced coriietatr, compared t&H,,<=1.0 m.
For 6, r seemed to be fairly insensitive to bin size. Tha-equidistant binning resulted in a comparable
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for both 4 and &1,,sbins.

Above certain bin size thresholds the model peréoree appeared to be rather insensitive to the ohose
bin sizes. The skilR was high for all combinations @dH,,,<<1 m andA8<35°. ForAH,,,=2.0 m the final
profile did not contain any bars and the interdtidl@a had accreted unrealistically. Whilg,,=0.25 and
0.5 m resulted in near perfect agreement with ¢ference runR=0.99),AH,,=1.0 m maintained the bars,
but slightly underestimated offshore bar migrati®+0.92). VaryingA6 hardly influenced the predictions
for AB<35°, but withAB=70° the outer bar migrated too far offshore. Témporal evolution of th&-
values revealed that the model performance wasthiglughout the simulation period faH,,«<<1m. The
largest bin size AHn<=2 m andA6 =70°) had considerably loweR throughout the simulation. For
AHn&=2 m andAB=70° R was low irrespective of the bin size fA8 and AH,,s, respectively. Non-
equidistant binning only improveR for 4 H,,sbins, while for 8H,,sbins R was high for both types of
binning.

For Hasaki 4 and B,,s equidistant and non-equidistant bins were consitlaespectively. The correlation
between the reconstructét],,s time series and the observations was approximataiilar to Noordwijk.
On the wholeR for Hasaki was lower compared to Noordwijk. Wit econstructed time series the
model underestimated the offshore bar migratioera20 days (Fig. 2d) causing the overall Bw

3.2. Seps 3 and 4: sequencing and duration of the reduced wave climate

The construction of a synthetic time series is goeé by the sequence in which the conditions (3)egre
imposed as well as by the duration of the wave aém(step 4). In this section both steps are jpintl
investigated for a number of the reduced wave d¢bésderived in step 2 for Noordwijk and Hasaki.

First, the randomized waves approach (Southgate5)1® establish the lower limit df,. was applied.
This involves the application of re-ordered timeiese which are generated by splitting up the olesrv
time series into segments of constant length aad thndomly re-ordering these segments. For Nogrdwi
time series based on segment lengths of 3 hrsyrsl2Lh2, 7, 28 and 92 days were considered. Feakia
the segment lengths of 1 day and larger were applige to the 1-day resolution of the observatiéis.
each segment length 5 randomly sequenced timessameimposed on the model. The lower limifTgf
was therefore defined as the minimum segment leagthihich the model outcomes become insensitive
and are in good agreement with the brute force lsitions.

For Noordwijk the model predictions for 3-hour seggits length all deviated from the reference runoltes
(Fig. 3). In contrast, model predictions resultingm the 28 days segment length in general agresdt w
with the reference run. On the whole, a segmergtlenf 12 hours caused the predictions to agreby fai
well with the reference rurRe0.8, see Fig. 3); model performance was founceteetatively insensitive to
longer segment lengths. For Hasaki the performahtiee considered segment lengths was comparable bu
with a considerable scatter (Fig. 3). Compared tmridwijk, the overall performance was significantly
lower for all segment lengths. The most detailedsatered representative wave climates result iretow
limits for T, of about 10 to 20 days (assuming the minimum segteagths of 12 hrs and 1 day equals

f T, _, for Noordwijk and Hasaki respectively).

rep,min wc?

Conceptually, the model performance using recootdi time series constitutes the best possible
performance given a reduced set of input conditenms therefore acts as the upper performance fanit
synthetic time series. The randomized time sen®saach therefore acts as an indicator to whatnéxte
synthetic time series are an appropriate way talsita long-term profile evolution (tested in thexne
section). Consequently, an accurate reproductiothe@fbrute forcing prediction based on syntheteeti
series may be achievable for Noordwijk, while tissunlikely for Hasaki. In stead, for the lattercés
could be on more aggregated bar cycle characteistich as averaged cycle period and the transsnt
amplitude response which are still predicted ushegrandomized time series; therefore, the efficaicy
synthetic time series was also considered for Hasak
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Figure 3. SkillR (black) averaged over the 5 random simulatiors fasiction of the segment length, red lines are the
maximum and minimurR (source: Walstra et al., 2013).

The Noordwijk case was used to jointly investigtdte influence of sequencing and varying for the
8x4eq wave climate (i.e wave climate resulting from efisteint binning of the observeéd},s and #into 8
and 4 bins, respectively). To that end, the mo@efgpmance for six wave climate duratiofg,{=1205,
603, 402, 301, 241, 114 days which implies the ¢ in the reduced wave climate are repeated] 3,

4, 5 and 9 times, respectively) combined with &k tsequencing options is summarized in Fig. 1.
Interestingly, a wave climate duration equal to tleeuction period (i.eT,=1205 days) resulted in
negativeR for most of the sequencing options, whilg. < 401 days only marginally increasBd For all
synthetic time serie® increased for shorter wave climate durations. haue to the reduced duration of
the individual conditions and the repetition of thvave conditions, causing a better resemblancédo t
brute forcing time series. It was found that systeesequencing of wave conditions consistentlylted

in lower skills compared to the randomly ordereuetiseries. Only for the lowest considered climate
duration T = 114 days) all sequences (systematic and randomjerged to a comparable skill.

3.3. Influence of bin size and binning method on synthetic time series

In Walstra et al. (2013) the analysis from the pras section was extended to also include the #xi48x4
wave climates for Noordwijk and the 4x1 and 8x1walimates for Hasaki considering both equidistant
(EQ) and non-equidistant binning (NEQ). At Noordwihe use of the more detailed 8x4 wave climates
generally improve (Figure 4). Non-equidistant binning had a simdadarger positive impact on R for
most of the 4x4 based synthetic time series; coeBdor 4x4EQ and 4x4NEQ in Figures 4a,b. For the
8x4 wave climates, non-equidistant binning improvesllts to a lesser extent. In geneRatonverged at
about 0.85 for all wave climates wifh,.=114 days. The influence & (number of conditions in the
reduced wave climate) is limited for non-equidistaimning (i.e. compar® of 4x4yeq With 8x4yeq wave
climates). For the equidistant binning methodiittileience ofN is somewhat larger.

The large influence of the sequencing found at Ka&aot shown) was caused by the fact that the
morphological response strongly depends on theepbithe bar cycle at the time of high wave events.

For both sites it can be concluded that sequendirgaggregation level (i.e. number of conditiamghie
reduced wave climate) and the binning method (éspaidt vs non-equidistant) are less critical fow 6,
as<R> and S; converge to minimal values. For larggy; both input reduction parameters are of similar
importance.
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Figure 4. Model performance at Noordwijk for thelweed wave climates: a) skifl resulting from the 5 randomly
sequenced synthetic time series; b) and c) shoerageR and its standard deviatiog , respectively (source:
Walstra et al., 2013).
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4. Discussion

The influence ofT,,. was illustrated by comparing time stacks of thefifg perturbations for Noordwijk
and Hasaki for all six considerdl, with the brute force predictions (Figs. 5 and &).Noordwijk the
outer and middle bars characteristics were alrdanlly well reproduced withl,,. =602 days (Fig. 5b).

However, the inner barx%-400 m) only started to converge for < 401days (Fig. 5c-f). On the bar

cycle time scale, the middle and inner bars werglsn to the dynamics of the outer bars. Howevesy n
the water line X>-200 m) bar generation, decay and/or merging With inner bar occurred at a much
higher frequency as it was directly coupled towee forcing. At HasakT,,. had an even large influence,

for T = 277days (Fig. 6a,b) the initial outer bar rapidly deséh which was the onset for strong bar

growth and offshore migration of the former innar.BNith shortefT,, (Fig. 6¢-f) the offshore migration
and bar growth of the inner bar was less pronoun&sda result this bar only gradually moved offshor
and slowly decayed for the remainder of the sinmutatAlthough the predictions converge for Has#h&
model failed to reproduce the bar characteristfcthe brute force prediction for all the considergave
climates. The predicted gradual offshore migrataetay and merging of the inner and outer barsasint
with the episodic nature of the bar dynamics inlih&te forcing prediction. Therefore, input redantiat
Hasaki is only feasible by applying reconstruciatktseries. The morphological response to extremew
events is so strong that this will be an importspect for the interpretation of the model preditdi This
could be addressed by considering a number of steated time series for different time periods to
obtain further insight in the variability in the ohel predictions.

The considered wave climates were relatively dedafll6 to 32 wave conditions) compared to commonly
applied wave climates in multi-annual morphodynasiioulations (typically about 10 wave conditions,
see, for example van Duin et al., 2004 and Gruahat., 2004). This further reduction was partlhiaged

by ignoring the low to moderate wave conditions.t@st whether exclusion of low conditions is justif
Hm<1 m wave conditions were excluded from the @xdnd 8x4eq wave climates for all wave climate
durations for the Noordwijk case. This resultedsignificantly increased bar amplitudes and enhanced
offshore bar migration, causing negative skill &f considered wave climates afg.. It proves that,
although storms strongly influence profile evolatiche interplay between such episodic events and
prolonged periods of low to moderate waves canadghored.
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Figure 5. Time stack of the predicted profile payations at Noordwijk for the 4x4 wave climate with randomized
time series (R3) witf,,= (a) 1205, (b) 602, (c) 401, (d) 301, (e) 241 apd 1# daysT,,. is indicated by the vertical
grey lines (source: Walstra et al., 2013).
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Figure 6 Time stack of the predicted profile pdvations at Hasaki for the 4x4wave climate with randomized time
series (R3) withl,= (a) 555, (b) 278, (c) 185, (d) 139, (e) 111 and)daysT,. is indicated by the vertical grey
lines (source: Walstra et al., 2013).

Because the computational efficiency of a reducadexclimate is governed INoT, this parameter should
be used as the primary selection criterion. Theegfthe considered wave climates were evaluated for
Noordwijk by comparingR averaged over the 5 random simulations as a fumaif NoT (Fig. 7). It is
evident that the number of conditions and binnireghad (step 2) were of similar importance as theewva
climate duration (step 4). Although, the 4x4 wave climate was the optimal climate (largedor a given
NoT), the 8x4egq wave climate resulted in a comparable model pevmce with a nearly similar
efficiency. Given the comparable performance of 4kéd\eq and 8x4eq Wave climates, a final selection
could also be based on a more detailed inspecfitre@redictions and other aspects such as robssiof

the predictions. For example, the standard deviagip shown inFigure £ is mostly lower for 8xdeq,
suggesting that it is to be preferred over x4
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Figure 7. Averaged skiR for a) the complete profile, b) the upper parthaf profile &=[-400m:-100m]) and c) the
lower part of the profilexc[-1000m:-400m]) as a function of the number ofdition transitions KloT) in the
synthetic time series at Noordwijk (source: Walstral., 2013).

5. Conclusions

Input reduction can have a major impact on modelukitions, even to such an extent that major
characteristics of cyclic behavior of sub tidal diaars are no longer reproduced. This is particulade
when long-term evolution is steered by episodicrnsteevents, such as at Hasaki. Therefore, the
characteristics of the bar cycle response (e.go€j@ or inter-annual net offshore migration off)ahould

be accounted for when applying input reduction. tBgtic time series of wave conditions are only
appropriate if the bar-cycle dynamics are not diydinked to individual storm events. If such aupding
does exist, reconstructed time series that retanotiginal chronology should be applied (also iy
that constanMF-values should be used in case morphodynamic upgdal utilized). The effect of input
reduction is not steered by a single choice. Inpitesented applications, the aggregation levelbtheing
methods and the wave climate duratip affected skill to a similar degree. Since theogdficy of long-
term process-based morphodynamic models (with ngiyiF) is governed by the number of transitions
NoT, the optimal wave climate should also consifigr This could result in the selection of an optimal
reduced wave climate containing a larger numbaoflitions but with a longér,.. Given its potentially
major influence, the type of input reduction, irdig associated choices, should be well-motivatedi a
investigated. In other words, it should be an ¢ part of model set-up, calibration and validiati
procedures.
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