

Delft University of Technology

How to Kill Them All
An Exploratory Study on the Impact of Code Observability on Mutation Testing
Zhu, Qianqian ; Zaidman, Andy; Panichella, Annibale

DOI
10.1016/j.jss.2020.110864
Publication date
2021
Document Version
Final published version
Published in
Journal of Systems and Software

Citation (APA)
Zhu, Q., Zaidman, A., & Panichella, A. (2021). How to Kill Them All: An Exploratory Study on the Impact of
Code Observability on Mutation Testing. Journal of Systems and Software, 173, 1-20. Article 110864.
https://doi.org/10.1016/j.jss.2020.110864

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jss.2020.110864
https://doi.org/10.1016/j.jss.2020.110864

The Journal of Systems & Software 173 (2021) 110864

S

t
o
a
i
2
L
G
t
e

u
t
t
2
f
e
p
k
o

A

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

How to kill them all: An exploratory study on the impact of code
observability onmutation testing
Qianqian Zhu ∗, Andy Zaidman, Annibale Panichella
oftware Engineering Research Group, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands

a r t i c l e i n f o

Article history:
Received 2 April 2020
Received in revised form 1 November 2020
Accepted 12 November 2020
Available online 3 December 2020

Keywords:
Mutation testing
Code quality
Observability
Testability
Code refactoring

a b s t r a c t

Mutation testing is well-known for its efficacy in assessing test quality, and starting to be applied in the
industry. However, what should a developer do when confronted with a low mutation score? Should
the test suite be plainly reinforced to increase the mutation score, or should the production code be
improved as well, to make the creation of better tests possible? In this paper, we aim to provide a new
perspective to developers that enables them to understand and reason about the mutation score in the
light of testability and observability. First, we investigate whether testability and observability metrics
are correlated with the mutation score on six open-source Java projects. We observe a correlation
between observability metrics and the mutation score, e.g., test directness, which measures the extent
to which the production code is tested directly, seems to be an essential factor. Based on our insights
from the correlation study, we propose a number of "mutation score anti-patterns’’, enabling software
engineers to refactor their existing code or add tests to improve the mutation score. In doing so,
we observe that relatively simple refactoring operations enable an improvement or increase in the
mutation score.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
m
n
b

v
m
o
a
t
t
m
(
b
1
i
o
t
W

1. Introduction

Mutation testing has been a very active research field since
he 1970s as a technique to evaluate test suite quality in terms
f the fault-revealing capability (Jia and Harman, 2011). Recent
dvances have made it possible for mutation testing to be used
n industry (Petrovic et al., 2018). For example, PIT/PiTest (Coles,
019a) has been adopted by several companies, such as The
adders and British Sky Broadcasting (Coles, 2019e). Furthermore,
oogle (Petrovic and Ivankovic, 2018) has integrated mutation
esting with the code review process for around 6000 software
ngineers.
As mutation testing gains traction in the industry, a better

nderstanding of the mutation score (one outcome of mutation
esting) becomes essential. The existing works have mainly linked
he mutation score with test quality (Inozemtseva and Holmes,
014; Li et al., 2009) (i.e., how good is the test suite at detecting
aults in the software?) and mutant utility (Yao et al., 2014; Just
t al., 2017) (i.e., how useful is the mutant?). However, in our
revious study, we have observed that certain mutants could be
illed only after refactoring the production code to increase the
bservability of state changes. In such cases, test deficiency is not

∗ Corresponding author.
E-mail addresses: qianqian.zhu@hotmail.com (Q. Zhu),

.E.Zaidman@tudelft.nl (A. Zaidman), A.Panichella@tudelft.nl (A. Panichella).
https://doi.org/10.1016/j.jss.2020.110864
0164-1212/© 2021 The Authors. Published by Elsevier Inc. This is an open access art
the only reason for the survival of mutants. Still, some issues in
the production code, such as code observability, result in difficul-
ties to kill the mutants. Unlike previous works (e.g., Inozemtseva
and Holmes, 2014; Li et al., 2009; Yao et al., 2014; Just et al.,
2017), our goal is to bring a new perspective to developers that
enable them to understand and reason about the mutation score
in the light of testability and observability. Thereby, developers can
ake a choice when confronting low mutation scores: (1) adding
ew tests, (2) refactoring the production code to be able to write
etter tests, or (3) ignoring the surviving mutants.
To this aim, our study consists of two parts: firstly, we in-

estigate the relationship between testability/observability and
utation testing in order to find the most correlated metrics; sec-
ndly, based on what we observe from the correlations, we define
nti-patterns or indicators that software engineers can apply to
heir code to kill the surviving mutants. We start by investigating
he relationship between testability/observability metrics and the
utation score inspired by the work of Bruntink and van Deursen

2006). Testability is defined as the ‘‘attributes of software that
ear on the effort needed to validate the software product’’ (ISO,
991; Bruntink and van Deursen, 2006). Given our context, an
mportant part of testability is observability, which is a measure
f how well internal states of a system can be inferred, usually
hrough the values of its external outputs (Staats et al., 2011).
halen et al. (2013) formally defined observability as follows:

An expression in a program is observable in a test case if the
value of an expression is changed, leaving the rest of the program
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2020.110864
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110864&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:qianqian.zhu@hotmail.com
mailto:A.E.Zaidman@tudelft.nl
mailto:A.Panichella@tudelft.nl
https://doi.org/10.1016/j.jss.2020.110864
http://creativecommons.org/licenses/by/4.0/

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

i
I
t
p
a
o

f

R

R

R

o
t
i
R
e
c

R

R
t
i
w
a

2

r
p

2

f
c
m
d
t
t
d
m
s
c
W
s
f
e

d
a
R
e
t
O
t
i

1
s
m
m
o
t
c
e
C

c
m
a
e
e
c
t
h
a

t

ntact, and the output of the system is changed correspondingly.
f there is no such value, the expression is not observable for
hat test. Compared to testability that covers various aspects of a
roject (e.g., inheritance and cohesion), observability specifically
ddresses the extent to which the value change of expression is
bservable in a test case.
Our first three research questions steer our investigation in the

irst part of our study:

Q1 What is the relation between testability metrics and the
mutation score?

Q2 What is the relation between observability metrics and the
mutation score?

Q3 What is the relation between the combination of testability
and observability metrics and the mutation score?

After investigating the relationship between testability/
bservability and mutation testing, we still lack insight into how
hese relationships can help developers to take actions when fac-
ng survival mutants. That is why, based on the observations from
Q1–RQ3, we define anti-patterns or indicators that software
ngineers can apply to their code/tests to ensure that mutants
an be killed. This leads us to the next research question:

Q4 To what extent does the removal of anti-patterns based on
testability and observability help in improving the mutation
score?

In terms of the methodology that we follow in our study, for
Q1–RQ3, we use statistical analysis on open-source Java projects
o investigate the relationship between testability, observabil-
ty, and the mutation score. For RQ4, we perform a case study
ith 16 code fragments to investigate whether the removal of
nti-patterns increases the mutation score.

. Background

In this section, we briefly introduce the basic concepts of and
elated works on mutation testing, testability metrics, and our
roposed metrics for quantifying code observability.

.1. Mutation testing

Mutation testing is defined by Jia and Harman (2011) as a
ault-based testing technique that provides a testing criterion
alled the mutation adequacy score. This score can be used to
easure the effectiveness of a test suite regarding its ability to
etect faults (Jia and Harman, 2011). The principle of mutation
esting is to introduce syntactic changes into the original program
o generate faulty versions (called mutants) according to well-
efined rules (mutation operators) (Offutt, 2011). The benefits of
utation testing have been extensively investigated and can be
ummarised (Zhu et al., 2018b) as (1) having better fault exposing
apability compared to other test coverage criteria (Mathur and
ong, 1994; Frankl et al., 1997; Li et al., 2009), (2) being a valid

ubstitute to real faults and providing a good indication of the
ault detection ability of a test suite (Andrews et al., 2005; Just
t al., 2014).
Researchers have actively investigated mutation testing for

ecades (as evidenced by the extensive survey Offutt, 2011; Jia
nd Harman, 2011; Madeyski et al., 2014; Zhu et al., 2018b).
ecently, it has started to attract attention from industry (Petrovic
t al., 2018). In part, this is due to the growing awareness of
he importance of testing in software development (Ammann and
ffutt, 2017). Code coverage, the most common metric to measure
est suite effectiveness, has seen its limitations being reported
n numerous studies (e.g. Mathur and Wong, 1994; Frankl et al.,
2

997; Li et al., 2009; Inozemtseva and Holmes, 2014). Using
tructural coverage metrics alone might be misleading because, in
any cases, statements might be covered, but their consequences
ight not be asserted (Inozemtseva and Holmes, 2014). An-
ther factor is that well-developed open-source mutation testing
ools (e.g., PIT/PiTest Coles, 2019a and Mull GitHub, 2019) have
ontributed to mutation testing being applied in the industrial
nvironments (Petrovic et al., 2018; Petrovic and Ivankovic, 2018;
oles, 2019e).
However, questions still exist about mutation testing, espe-

ially regarding the usefulness of a mutant (Just et al., 2017). The
ajority of the mutants generated by existing mutation operators
re equivalent, trivial, and redundant (Kurtz et al., 2014; Just
t al., 2017; Brown et al., 2017; Papadakis et al., 2018; Jimenez
t al., 2018), which reduces the efficacy of the mutation score. If a
lass has a high mutation score while most mutants generated are
rivial and redundant, the high mutation score does not promise
igh test effectiveness. A better understanding of mutation score
nd mutants is thus important.
To address this knowledge gap, numerous studies have inves-

igated how useful mutants are. Example studies include mutant
subsumption (Kurtz et al., 2014), stubborn mutants (Yao et al.,
2014), and real-fault coupling (Just et al., 2014; Papadakis et al.,
2018). These studies paid attention to the context and types
of mutants as well as the impact of the test suite, while the
impact of production code quality has rarely been investigated.
We have seen how code quality can influence how hard it is to
test (Bruntink and van Deursen, 2006) (called software testabil-
ity Freedman, 1991), and since mutation testing can generally
be considered as ‘‘testing the tests’’, production code quality
could also impact mutation testing, just like production code
quality has been shown to be correlated with the presence of
test smells (Spadini et al., 2018). Due to the lack of insights into
how code quality affects the efforts needed for mutation testing,
especially in how to engineer tests that kill all the mutants, we
conduct this exploratory study. Our study can help researchers
and practitioners deepen their understanding of the mutation
score, which is generally related to test suite quality and mutant
usefulness.

2.2. Existing object-oriented metrics for testability

The notion of software testability dates back to 1991 when
Freedman (1991) formally defined observability and controllability
in the software domain. Voas (1992) proposed a dynamic tech-
nique coined propagation, infection, and execution (PIE) analysis
for statistically estimating the program’s fault sensitivity. More
recently, researchers have aimed to increase our understanding
of testability by using statistical methods to predict testability
based on various code metrics. Influential works include that of
Bruntink and van Deursen (2006), in which they explored the
relationship between nine object-oriented metrics and testability.
To explore the relation between testability and mutation score
(RQ1), we first need to collect several existing object-oriented
metrics that have been proposed in the literature. In total, we
collect 64 code quality metrics, including both class-level and
method-level metrics that have been the most widely used. We
select those 64 metrics because they measure various aspects of
a project, including basic characteristics (e.g., NLOC and NOMT),
inheritance (e.g., DIT), coupling (e.g., CBO and FIN), and cohe-
sion (LCOM). A large number of those metrics, such as LCOM
and HLTH, have been widely used to explore software testabil-
ity (Bruntink and van Deursen, 2006; Gao and Shih, 2005) and
fault prediction (Arisholm and Briand, 2006; Hall et al., 2011).

We present a brief summary of the 64 metrics in Table 1
(method-level) and Tables 2–3 (class-level). We computed these
metrics using a static code analysis tool provided by JHawk
(JHawk, 2019).

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

T
S

s
o
o
o
a
t
j

able 1
ummary of method-level code quality metrics.
Abbr. Full name Description

COMP Cyclomatic Complexity McCabes cyclomatic complexity for the method
NOA Number of Arguments The number of arguments
NOCL Number of Comments The number of comments associated with the method
NOC Number of Comment Lines The number of comment lines associated with the method
VDEC Variable Declarations The number of variables declared in the method
VREF Variable References The number of variables referenced in the method
NOS Number of Java statements The number of statements in the method
NEXP Number of expressions The number of expressions in the method
MDN Max depth of nesting The maximum depth of nesting in the method
HLTH Halstead length The Halstead length of the metric (one of the Halstead metrics)
HVOC Halstead vocabulary The Halstead vocabulary of the method (one of the Halstead metrics)
HVOL Halstead volume The Halstead volume of the method (one of the Halstead metrics)
HDIF Halstead difficulty The Halstead difficulty of the method (one of the Halstead metrics)
HEFF Halstead effort The Halstead effort of the method (one of the Halstead metrics)
HBUG Halstead bugs The Halstead prediction of the number of bugs in the method (one of the Halstead metrics)
TDN Total depth of nesting The total depth of nesting in the method
CAST Number of casts The number of class casts in the method
LOOP Number of loops The number of loops (for, while) in the method
NOPR Number of operators The total number of operators in the method
NAND Number of operands The total number of operands in the method
CREF Number of classes referenced The classes referenced in the method
XMET Number of external methods The external methods called by the method
LMET Number of local methods The number of methods local to this class called by this method
EXCR Number of exceptions referenced The number of exceptions referenced by the method
EXCT Number of exceptions thrown The number of exceptions thrown by the method
MOD Number of modifiers The number of modifiers (public, protected, etc.) in method declaration
NLOC Lines of Code The number of lines of code in the method
Table 2
Summary of class-level code quality metrics (1).
Abbr. Full name Description

NOMT Number of methods The number of methods in the class (WMC — one of the Chidamber and Kemerer metrics)

LCOM Lack of Cohesion of Methods The value of the Lack of Cohesion of Methods metric for the class. This uses the LCOM* (or
LCOM5) calculation. (one of the Chidamber and Kemerer metrics)

TCC Total Cyclomatic Complexity The total McCabes cyclomatic Complexity for the class
AVCC Average Cyclomatic Complexity The average McCabes cyclomatic complexity for all of the methods in the class
MAXCC Maximum Cyclomatic Complexity The maximum McCabes cyclomatic complexity for all of the methods in the class
NOS Number of Java statements The number of statements in the class

HLTH Cumulative Halstead length The Halstead length of the code in the class plus the total of all the Halstead lengths of all
the methods in the class

HVOL Cumulative Halstead volume The Halstead volume of the code in the class plus the total of all the Halstead volumes of all
the methods in the class

HEFF Cumulative Halstead effort The Halstead effort of the code in the class plus the total of all the Halstead efforts of all the
methods in the class

HBUG Cumulative Halstead bugs The Halstead prediction of the number of bugs in the code of the class and all of its methods
UWCS Un Weighted class Size The Unweighted Class Size of the class
NQU Number of Queries The number of methods in the class that are queries (i.e., that return a value)
NCO Number of Commands The number of methods in the class that are commands (i.e., that do not return a value)
EXT External method calls The number of external methods called by the class and by methods in the class
LMC Local method calls The number of methods called by the class and by methods in the class

HIER Hierarchy method calls The number of local methods called by the class and by methods in the class that are defined
in the hierarchy of the class

INST Instance Variables The number of instance variables declared in the class
MOD Number of Modifiers The number of modifiers (public, protected, etc.) applied to the declaration of the class
INTR Number of Interfaces The number of interfaces implemented by the class
2.3. Code observability

To explore the relation between observability and mutation
core (RQ2), we first need a set of metrics to quantify code
bservability. According to Whalen et al. (2013)’s definition of
bservability (as mentioned in Section 1), we consider that code
bservability comprises two perspectives: that of production code
nd that of the test case. To better explain these two perspec-
ives, let us consider the example in Listing 1 from project
freechart-1.5.0 showing the method setSectionPaint
3

and its corresponding test. This method sets the section paint as-
sociated with the specified key for the PiePlot object, and sends
a PlotChangeEvent to all registered listeners. There is one
mutant in Line 3 that removes the call to org/jfree/chart/
plot/PiePlot ::fireChangeEvent. This mutant is not killed
by testEquals. Looking at the observability of this mutant from
the production code perspective, we can see that the setSec-
tionPaint method is void; thus, this mutant is hard to de-
tect because there is no return value for the test case to as-
sert. From the test case perspective, although testEquals in-
vokes the method setSectionPaint in Line 14 and 17, no

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

T
S

able 3
ummary of class-level code quality metrics (2).
Abbr. Full name Description

PACK Number of Packages imported The number of packages imported by the class

RFC Response for Class The value of the Response For Class metric for the class. (One of the Chidamber and Kemerer metrics)

MPC Message passing The value of the Message passing metric for the class

CBO Coupling between objects The value of the Coupling Between Objects metric for the class. (One of the Chidamber and Kemerer
metrics)

FIN Fan In The value of the Fan In (Afferent coupling (Ca)) metric for the class
FOUT Fan Out The value of the Fan Out (Efferent coupling (Ce)) metric for the class
R-R Reuse Ratio The value of the Reuse Ratio for the class
S-R Specialisation Ratio The value of the Specialisation Ratio for the class

NSUP Number of Superclasses The number of superclasses (excluding Object) in the hierarchy of the class

NSUB Number of Subclasses The number of subclasses below the class in the hierarchy. (NOC — one of the Chidamber and
Kemerer metrics)

MI Maintainability Index
(including comments)

The Maintainability Index for the class, including the adjustment for comments

MINC Maintainability Index
(not including comments)

The Maintainability Index for the class without any adjustment for comments

COH Cohesion The value of the Cohesion metric for the class

DIT Depth of Inheritance Tree The value of the Depth of Inheritance Tree metric for the class. (One of the Chidamber and Kemerer
metrics)

LCOM2 Lack of Cohesion of Methods
(variant 2)

The value of the Lack of Cohesion of Methods (2) metric for the class. This uses the LCOM2
calculation. (One of the Chidamber and Kemerer metrics)

CCOM Number of Comments The number of comments associated with the class
CCML Number of Comment Lines The number of comment Lines associated with the class
cNLOC Lines of Code The number of lines of code in the class and its methods
T
m

F
t
c
i
i
T

2
t
r

1public void setSectionPaint(Comparable key, Paint
paint) {

2this.sectionPaintMap.put(key, paint);
3fireChangeEvent(); // mutant: remove this

method
4}
5
6@Test
7public void testEquals() {
8...
9PiePlot plot1 = new PiePlot();
10PiePlot plot2 = new PiePlot();
11assertTrue(plot1.equals(plot2));
12assertTrue(plot2.equals(plot1));
13// sectionPaintMap
14plot1.setSectionPaint(" A " , new GradientPaint

(1.0f, 2.0f,
15Color.BLUE ,3.0f, 4.0f, Color.WHITE));
16assertFalse(plot1.equals(plot2));
17plot2.setSectionPaint(" A " , new GradientPaint

(1.0f, 2.0f,
18Color.BLUE ,3.0f, 4.0f, Color.WHITE));
19assertTrue(plot1.equals(plot2));
20...
21}

Listing 1: Example of method org.jfree.chart.plot.
PiePlot: setSectionPaint and its test

proper assertion statements are used to examine the changes
of fireChangeEvent() (which is used to send an event to
listeners).

Starting with two angles of code observability, we come up
with a set of the code observability metrics. Since our study is a
starting point to design metrics to measure the code observabil-
ity, we start with the simple and practical metrics, which are easy
for practitioners to understand and apply.

First of all, we consider the return type of the method. As
discussed in Listing 1, it is hard to observe the changing states
4

inside a void method because there is no return value for test
cases to assert. Accordingly, we design two metrics, is_void and
non_void_percent (shown in 1st and 2nd rows in Table 5).
The metric is_void is to examine whether the return value
of the method is void or not. The metric non_void_percent
addresses the return type at class level which measures the
percent of non-void methods in the class. Besides these two, a
void method might change the field(s) of the class it belongs
to. A workaround to test a void method is to invoke getters. So
getter_percentage (shown in 3rd row in Table 5) is proposed
to complement is_void.

Secondly, we come up with the access control modifiers. Let us
consider the example in Listing 2 from project commons-lang-
LANG_3_7. The method getMantissa in class NumberUtils
returns the mantissa of the given number. This method has only
one mutant: the return value is replaced with ‘‘return if (get-
Mantissa(str, str.length()) != null) null else throw
new RuntimeException’’.1 This mutant should be easy to detect
given an input of either a legal String object (the return value is
not null) or a null string (throw an exception). This ‘‘trivial’’ mu-
tant is not detected because the method getMantissa is private.
he access control modifier private makes it impossible to test the
ethod getMantissa directly, for this method is only visible to

methods from class NumberUtils. To test this method, the test
case must first invoke a method that calls method getMantissa.
rom this case, we observe that access control modifiers influence
he visibility of the method, so as to play a significant role in
ode observability. Thereby, we take access control modifiers
nto account to quantify code observability, where we design
s_public and is_static (shown in 4th and 5th rows in
able 5).

1 This mutant is generated by Return Values Mutator in PIT (Coles,
019c). In Listing 2, getMantissa(str, str.length()) returns a String object. When
he return value of a method is an object, the mutator replaces non-null
eturn values with null and throw a java.lang.RuntimeException if the
un-mutated method would return null.

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

U

6
n
t
t
t

T

i
s
w
o
e
r
t

t
t
t
c
i
o
c
t
H
d
d
1
m

a
i
m
t
t
d
p
p
a
t
b
a
m
t
c
t
p

w
m

3

s
h

3

t
a
2
t
C
M
m
v
d
t

3

m
p
t
n
t
m
w

1private static String getMantissa(final String
str) {

2return getMantissa(str, str.length());
3}

Listing 2: Example of method getMantissa in class Number
tils

1@Override
2public int hashCode() {
3return (getLeft() == null ? 0 : getLeft().

hashCode()) ^
4(getMiddle() == null ? 0 : getMiddle().

hashCode()) ^
5(getRight() == null ? 0 : getRight().

hashCode());
6}

Listing 3: Example of method hashCode in class Triple

The third point we raise concerns fault masking. We have ob-
served that mutants generated in certain locations are more likely
to be masked (Gopinath et al., 2017), i.e., the state change cannot
propagate to the output of the method. The first observation is
that mutants that reside in a nested class. The reasoning is similar
to mutants that reside in nested sections of code, namely that
a change in intermediate results does not propagate to a point
where a test can pick it up. Thus, we come up with is_nested (in
th row in Table 5). Another group of mutants is generated inside
ested conditions and loops. These can be problematic because
he results of the mutations cannot propagate to the output, and
he tests have no way of checking the intermediate results within
he method. Accordingly, we define nested_depth (shown in
7th row in Table 5) and a set of metrics to quantify the conditions
and loops (shown in 8th through 13 rows in Table 5). The last
observation is related to mutants that are inside a long method
(the reason is similar to the mutants inside nested conditions and
loops), thus, we design method_length (shown in 14th row in
able 5).
The next aspect we consider is test directness. Before we dig

nto test directness, we take Listing 3 as an instance. Listing 3
hows the class Triple from project commons-lang-LANG_3_7,
hich is an abstract implementation defining the basic functions
f the object, and that consists of three elements. It refers to the
lements as ‘‘left’’, ‘‘middle’’ and ‘‘right’’. The method hashCode
eturns the hash code of the object. Six mutants are generated for
he method hashCode in class Triple. Table 4 summarises all
the mutants from Listing 3. Of those six mutants, only Mutant 1 is
killed, and the other mutants are not equivalent. Through further
investigation of method hashCode and its test class, we found
hat although this method has 100% coverage by the test suite,
here is no direct test for this method. A direct test would mean
hat the test method directly invoking the method (production
ode) (Athanasiou et al., 2014). The direct test is useful because
t allows to control the input data directly and to assert the output
f a method directly. This example shows that test directness
an influence the outcome of mutation testing, which denotes
he test case angle of code observability. Previous works such as
uo and Clause (2016) also addressed the significance of test
irectness in mutation testing. Therefore, we design two metrics,
irect_test_no. and test_distance (shown in 15th and
6th row in Table 5), to quantify test directness. Those two
etrics represent the test case perspective of code observability.
Last but not least, we take assertions into considerations. As

discussed in Listing 1, we have observed that mutants without
5

appropriate assertions in place (throwing exceptions is also under
consideration) cannot be killed, as a prerequisite to killing a
mutant is to have the tests fail in the mutated program. Schuler
and Zeller (2013) and Zhang and Mesbah (2015) also drew a
similar conclusion to ours. Accordingly, we come up with three
metrics to quantify assertions in the method, assertion_no.,
ssertion-McCabe_Ratio and assertion_density (shown
n 17th-19th rows in Table 5). The assertion-McCabe_Ratio
etric (Athanasiou et al., 2014) is originally proposed to measure

est completeness by indicating the ratio between the number of
he actual points of testing in the test code and the number of
ecision points in the production code (i.e., how many decision
oints are tested). For example, a method has a McCabe com-
lexity of 4, then in the ideal case, we would expect 4 different
ssertions to test those linear independent paths (in this case
his ration would be 1), but if the ratio is lower than 1, it could
e an indication that either not all paths are tested, or that not
ll paths are tested in a direct way. The assertion_density
etric (Kudrjavets et al., 2006) aims at measuring the ability of

he test code to detect defects in the parts of the production
ode that it covers. We include those two metrics here as a way
o measure the quality of assertions. These three metrics are
roposed based on the test case perspective of code observability.
To sum up, Table 5 presents all the code observability metrics

e propose, where we display the name, the definition of each
etric, and the category.

. Experimental setup

To examine our conjectures, we conduct an experiment using
ix open-source projects. We recall the research questions we
ave proposed in Section 1:

• RQ1: What is the relation between testability metrics and the
mutation score?

• RQ2: What is the relation between observability metrics and
the mutation score?

• RQ3: What is the relation between the combination of testa-
bility and observability metrics and the mutation score?

• RQ4: To what extent does removal of anti-patterns based on
testability and observability help in improving the mutation
score?

.1. Mutation testing

We adopt PIT (Version 1.4.0) (Coles, 2019a) to apply mu-
ation testing in our experiments. The mutation operators we
dopt are the default mutation operators provided by PIT (Coles,
019c): Conditionals Boundary Mutator, Increments Mu-
ator, Invert Negatives Mutator, Math Mutator, Negate
onditionals Mutator, Return Values Mutator, and Void
ethod Calls Mutator. We did not adopt the extended set of
utation operators provided PIT, as the operators in the default
ersion are largely designed to be stable (i.e., not be too easy to
etect) and minimise the number of equivalent mutations that
hey generate (Coles, 2019c).

.2. Subject systems

We use six systems publicly available on GitHub in this experi-
ent. Table 6 summarises the main characteristics of the selected
rojects, which include the lines of code (LOC), the number of
ests (#Test), the total number of methods (#Total Methods), the
umber of selected methods used in our experiment (#Selected),
he total number of mutants (#Total Mutants), and the killed
utants (#Killed). In our experiment, we remove the methods
ith no generated mutant by PIT, thus resulting in the number of

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

s

T
S

s
t
m
F
d
s
b

Table 4
Summary of mutants from Listing 3.
ID Line no. Mutator Results

1 3 Negated conditional Killed
2 3 Replaced return of integer sized value with (x == 0 ? 1 : 0) Survived
3 3 Replaced XOR with AND Survived
4 4 Negated conditional Survived
5 4 Replaced XOR with AND Survived
6 5 Negated conditional Survived
Table 5
Summary of code observability metrics.
Name Definition Category

1 is_void Whether the return value of the method is void or not Return type2 non_void_percent (class-level) The percent of non-void methods in the class
3 getter_percentage The percentage of getter methods in the classa

4 is_public Whether the method is public or not Access control modifiers5 is_static Whether the method is static or not

6 is_nested (class-level) Whether the method is located in a nested class or not

Fault masking

7 nested_depth The maximum number of nested depth (MDN from Section 2.2)
8 (cond) The number of conditions (if, if-else and switch) in the method
9 (cond(cond)) The number of nested conditions (e.g.,if{if{}}) in the method
10 (cond(loop)) The number of nested condition-loops (e.g.,if{for{}}) in the method
11 (loop) The number of loops (for, while and do-while) in the method (LOOP from

Section 2.2)
12 (loop(cond)) The number of nested loop-conditions (e.g.,for{if{}}) in the method.
13 (loop(loop)) The number of nested loop-conditions (e.g.,for{for{}}) in the method.
14 method_length The number of lines of code in the method (NLOC from Section 2.2)

15 direct_test_no. The number of test methods directly invoking the method under test
(production code)b Test directness

16 test_distance The shortest method call sequence required to invoke the method (production
code) by test methodsc

17 assertion_no. The number of assertions in direct tests Assertion18 assertion-McCabe_Ratio The ratio between the total number of assertions in direct tests and the
McCabe Cyclomatic complexity

19 assertion_density The ratio between the total number of assertions in direct tests and the lines
of code in direct tests

aA getter method must follow three patterns (Zhang and Mesbah, 2015): (1) must be public; (2) has no arguments and its return type must be something other
than void. (3) have naming conventions: the name of a getter method begins with ‘‘get’’ followed by an uppercase letter.
bIf the method is not directly tested, then its direct_test_no. is 0.
cIf the method is directly tested, then its test_distance is 0. The maximum test_distance is set Integer.MAX_VALUE in Java which means there is no method call
equence that can reach the method from test methods.
able 6
ubject systems.
PID Project LOC #Tests #Methods #Mutants

#Total #Selected #Total #Killed

1 Bukkit-1.7.9-R0.2 32 373 432 7 325 2 385 7 325 947
2 commons-lang-LANG_3_7 77 224 4 068 13 052 2 740 13 052 11 284
3 commons-math-MATH_3_6_1 208 959 6 523 48 524 6 663 48 524 38 016
4 java-apns-apns-0.2.3 3 418 91 429 150 429 247
5 jfreechart-1.5.0 134 117 2 175 34 488 7 133 34 488 11 527
6 pysonar2-2.1 10 926 269 3 070 719 3 074 836

Overall 467 017 13 558 106 888 19 790 106 892 62 857
selected methods (#Selected). These systems are selected because
they have been widely used in the research domain (e.g., Schuler
and Zeller, 2013; Zhang and Mesbah, 2015; Huo and Clause, 2016;
Zhu et al., 2018a; Zhang et al., 2018). All systems are written in
Java, and tested by means of JUnit. The granularity of our analysis
is at the method-level.

The results of the mutants that are killable for all of the
ubjects are shown in Columns 7–8 of Table 6. Fig. 1a shows
he distribution of mutation scores among selected methods. The
ajority of the mutation scores are either 0 or 1. Together with
ig. 1b, we can see that the massive number of 0s and 1s are
ue to the low number of mutants per method. Most methods
how less than 10 mutants, which is mainly due to most methods
eing short methods (NOS < 2 as shown in Fig. 2). Writing

short methods is a preferred strategy in practice, for a long
6

method is a well-known code smell (Beck et al., 1999). Besides,
PIT adopts several optimisation mechanisms (Coles, 2019d) to
reduce the number of mutants. Thus, the number of mutants
(#Total Mutants) shown in Table 6 is fewer than the actual
number of generated mutants. The large number of methods with
low mutant number is an unavoidable bias in our experiment.

3.3. Tool implementation

To evaluate the code observability metrics that we have pro-
posed, we implemented a prototype tool (coined Mutation Ob-
server) to capture all the necessary information from both the
program under test and the mutation testing process. This tool is
openly available on GitHub (Zhu, 2019).

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

O

3

3

0
i
a
w
o
t
t
v
t
H
s

m

n
t
o
a
i

Fig. 1. Distribution of mutation score and mutant no.

Fig. 2. Distribution of Number of Java statements (NOS) per method.

e

7

Our tool extracts information from three parts of the system
under test (in Java): source code, bytecode, and tests. Firstly, Antlr
(2019) parses the source code to obtain the basic code features,
e.g., is public, is static, and (cond). Secondly, we adopt Apache
Commons BCEL (Apache, 2019) to parse the bytecode. Then,
java-callgraph (java-callgraph, 2019) generates the pairs of
method calls between the source code and tests, which we later
use to calculate direct test no. and other test call-related metrics.
The last part is related to the mutation testing process, for which
we adopt PIT (Version 1.4.0) (Coles, 2019a) to obtain the killable
mutant results. An overview of the architecture of Mutation
bserver can be seen in Fig. 3.

.4. Design of experiment

.4.1. RQ1–RQ3
Our investigation of the relationships between testability/

observability metrics and the mutation score (RQ1–RQ3) is two-
fold: in the first part, we adopt Spearman’s rank-order correlation
to measure the pairwise correlations statistically between each
metric (both testability and observability metrics) and the muta-
tion score; in the second part, we turn the correlation problem
into a binary classification problem (where we adopt Random
Forest as the classification algorithm) to investigate how those
metrics interact with one another.

Pairwise correlations. To answer RQ1, RQ2, and RQ3, we first
adopt Spearman’s rank-order correlation to statistically measure
the correlation between each metric (both testability and ob-
servability metrics) and the mutation score of the corresponding
methods or classes. Spearman’s correlation test checks whether
there exists a monotonic relationship (linear or not) between
two data samples. It is a non-parametric test and, therefore, it
does not make any assumption about the distribution of the
data being tested. The resulting coefficient ρ takes values in the
interval [−1; +1]; the higher the correlation in either direction
(positive or negative), the stronger the monotonic relationship
between the two data samples under analysis. The strength of
the correlation can be established by classifying into ‘‘negligible’’
(|ρ| < 0.1), ‘‘small’’ (0.1 ≤ |ρ| < 0.3), ‘‘medium’’ (0.3 ≤ |ρ| <

.5), and ‘‘large’’ (|ρ| ≥ 0.5) (Hinkle et al., 1988). Positive ρ values
ndicate that one distribution increases when the other increases
s well; negative ρ values indicate that one distribution decreases
hen the other increases. To measure the statistical significance
f Spearman’s correlation test, we look at p-values that measure
he probability of an observed (or more extreme) result assuming
hat the null hypothesis is true. Any test size larger than the p-
alue leads to rejection, whereas using a test size smaller than
he p-value fails to reject the null hypothesis (Hung et al., 1997).
ere we consider the test size of 5% as the cutoff for statistical
ignificance.
The mutation score2 is calculated by Eq. (1) (method-level).

utation score (A) =
killed mutants in method A
total mutants in method A

(1)

We adopt Matlab (MATLAB, 2019) to calculate the Spearman’s
rank-order correlation coefficient between each metric and the
mutation score. In particular, we used the statistical analysis

2 In the original equation for mutation score, the divisor is the number of
on-equivalent. In our study, our main focus is the relation between testabili-
y/observability metrics and mutation score, rather than mutation score itself. In
ur previous literature review (Zhu et al., 2018b), we have found that treating
ll mutants as non-equivalent is a common method when the mutation score
s used as a relative comparison. Therefore, we do not manually analyse the
quivalent mutants, and treated all mutants as non-equivalent.

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

(
p

I
r
m
t
r
i
o
p
s
t
p
p
c
t
h
g
t
p
i

c
t
m
t
t
2
t
2

r
m
(
m
m
o
o
s
t
F
a
t

Fig. 3. Overview of Mutation Observer architecture.
(
m
a
m
W
a
t
M
m
w

d
f
p
2
a
p
t
t
R
i

3

s
r
t
m
r
e
p
r
l
a
w

corr function with the option of ‘‘Spearman’’ in Matlab’s default
ackage3).

nteractions. Except for the pairwise correlations between met-
ics and mutation score, we are also interested in how those
etrics interact with one another. First, we try regression models

o predict mutation scores based on the metrics. However, all the
egression models incur extremely high cross-validation errors,
.e., Root Relative Squared Errors (RRSEs) are > 70% (e.g., RRSE
f linear regression is 76.62%). Therefore, we turn the correlation
roblem into a classification problem for better performance. For
implicity, we use 0.5 as the cutoff between HIGH and LOW mu-
ation core because 0.5 is widely used as a cutoff in classification
roblems whose independent variable ranges in [0,1] (e.g., defect
rediction (Zhang et al., 2016; Tosun and Bener, 2009)). We
onsider all the metrics to predicate whether the method belongs
o classes with HIGH or LOW mutation score. One thing to notice
ere is that building a perfect prediction model is not our primary
oal. Our interest is to see which metrics and/or combinations of
he metrics contribute to the LOW mutation score by building the
rediction models. Therefore, deciding different threshold values
s outside the scope of this paper.

For prediction, we adopt Random Forest (Breiman, 2001) as the
lassification algorithm, where we use WEKA (Frank et al., 2016)
o build the prediction model. Random Forest is an ensemble
ethod based on a collection of decision tree classifiers, where

he individual decision trees are generated using a random selec-
ion of attributes at each node to determine the split (Han et al.,
011). Besides, Random Forest is more accurate than one decision
ree, and it is not affected by the overfitting problem (Han et al.,
011).
As our investigation includes testability and observability met-

ics, for each project, we compare three types of classification
odels: (1) a model based on merely existing testability metrics,

2) a model based on merely code observability metrics, and (3) a
odel based on the combination of existing and our observability
etrics (overlapping metrics, e.g., method_length to NLOC, are
nly considered once). In particular, we include the model based
n the combination of the two aspects for further comparison: to
ee whether the combination of the two aspects can work better
han each aspect itself. To examine the effectiveness of Random
orest in our dataset, we also consider ZeroR, which classifies
ll the instances to the majority and ignores all predictors, as
he baseline. It might be that our data is not balanced, as in that

3 https://www.mathworks.com/help/stats/corr.html.
 m

8

one project has over 90% methods with a HIGH mutation score.
This could entail that the classification model achieving 90%
accuracy is not necessarily an effective model. In this situation,
ZeroR could also achieve over 90% accuracy in that scenario.
Our Random Forest model must thus perform better than Ze-
roR; otherwise, the Random Forest model is not suitable for our
dataset.

In total, we consider four classification models: (1) ZeroR
i.e., the constant classifier), (2) Random Forest based on existing
etrics, (3) Random Forest based on code observability metrics,
nd (4) Random Forest based on the combination of existing
etrics and code observability metrics. To build Random Forest,
EKA (Frank et al., 2016) adopts bagging in tandem with random
ttribute selection. We use WEKA’s default parameters to train
he Random Forest model, i.e., ‘‘-P 100 -I 100 -num-slots 1 -K 0 -
1.0 -V 0.001 -S 1’’. To evaluate the performance of the classifier
odel (e.g., precision and recall), we use K-fold cross-validation
ith K = 10 (Kohavi et al., 1995).
In terms of feature importance, we apply scikit-learn (Pe-

regosa et al., 2011) to conduct the analysis. To determine the
eature importance, scikit-learn (Pedregosa et al., 2011) im-
lements ‘‘Gini Importance’’ or ‘‘Mean Decrease Impurity’’ (Breiman,
017). The importance of each feature is computed by the prob-
bility of reaching that node (which is approximated by the
roportion of samples reaching that node) averaged over total
ree ensembles (Breiman, 2017). We use the method of fea-
ure_importances_ in sklearn.ensemble.RandomForest
egressor (scikit-learn, 2019) package to analyse the feature
mportance.

.4.2. RQ4
To answer RQ4, we first need to establish the anti-patterns (or

mells) based on these metrics. An example of an anti-pattern
ule generated from the metrics is method_length > 20 and
est_distance > 2. In this case, it is highly likely that the
ethod has a low mutation score. To obtain the anti-pattern

ules, we adopt J48 to build a decision tree (Quinlan, 1993; Frank
t al., 2016). We consider J48 because of its advantage in inter-
retation over Random Forest. After building the decision tree, we
ank all leaves (or paths) according to instances falling into each
eaf and accuracy. We select the leaves with the highest instances
nd accuracy ≥ 0.8 for further manual analysis, to understand to
hat extent refactoring of the anti-patterns can help improve the

utation score.

https://www.mathworks.com/help/stats/corr.html

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

3

c
c
s

i
e
b
S

a
n

w

s
h
w
r
i

w

d
p

t

4
t

R
t

4

4

F
o
o
e
d
n
c
t
c
C
l

s
c
r
t
m

.5. Evaluation metrics

For RQ1, RQ2, and RQ3, to ease the comparisons of the four
lassification models, we consider four metrics widely used in
lassification problems: precision, recall, AUC, and the mean ab-
olute error.
In our case, we cannot decide which class is positive or not, or

n other words, we cannot say HIGH mutation score is what we
xpect. We use a prediction model to investigate the interactions
etween those metrics or how they interact with each other.
o we adopt weighted precision and recall, which also take the

number of instances in each class into consideration.
Weighted precision. The precision is the fraction of true posi-

tive instances in the instances that are predicted to be positive:
TP/(TP+FP). The higher the precision, the fewer false positives.
The weighted precision is computed as follows, where pc1 and pc2
re the precisions for class 1 and class 2, and |c1| and |c2| are the
umber of instances in class 1 and class 2, respectively:

eighted precision =
pc1 × |c1| + pc2 × |c2|

|c1| + |c2|
(2)

Weighted recall. The recall is the fraction of true positive in-
tances in the instances that are actual positives: TP/(TP+FN). The
igher the recall, the fewer false-negative errors there are. The
eighted recall is computed as follows, where rc1 and rc2 are the
ecalls for class 1 and class 2, and |c1| and |c2| are the number of
nstances in class 1 and class 2:

eighted recall =
rc1 × |c1| + rc2 × |c2|

|c1| + |c2|
(3)

AUC. The area under ROC curve, which measures the overall
iscrimination ability of a classifier. An area of 1 represents a
erfect test; an area of 0.5 represents a worthless test.
Mean absolute error. The mean of overall differences between

he predicted values and actual values.

. RQ1–RQ3 testability versus observability versus combina-
ion

We opt to discuss the three research questions, RQ1, RQ2, and
Q3, together, because it gives us the opportunity to compare
estability, observability, and their combination in detail.

.1. Spearman’s rank order correlation

.1.1. Testability

indings. Table 7 presents the overall results of Spearman’s rank-
rder correlation analysis for existing code metrics. The columns
f ‘‘rho’’ represent the pairwise correlation coefficient between
ach code metric and the mutation score. The p-values columns
enote the strength of evidence for testing the hypothesis of
o correlation against the alternative hypothesis of a non-zero
orrelation using Spearman’s rank-order. Here we used 0.05 as
he cutoff for significance. From Table 7, we can see that ex-
ept for NOS, NLOC, MOD, EXCR, INST(class), NSUB(class),
OH(class) and S-R(class) (which, for convenience, we high-
ighted by underlining the value), the correlation results for the
metrics are all statistically significant.

Overall, the pairwise correlation between each source code
metric and the mutation score is not strong (|rho| < 0.27). We
peculate the reason behind the weak correlations to be the
ollinearity of these code metrics. More specifically, Spearman’s
ank-order correlation analysis only evaluates the correlation be-
ween individual code metric and mutation score. Some code
etrics could interact with one another. For example, a long
9

method does not necessarily have a low mutation score. Alter-
natively, another example: if there are more than four loops in
a long method, then the method is very likely to have a low
mutation score. That is also an example of collinearity, i.e., the
number of loops and the method length are highly correlated.

From Table 7, we can see that the highest rho4 is −0.2634
for both NSUP (class) standing for Number of Superclasses,
and DIT(class), or Depth of Inheritance Tree. Followed by R-
R(class), for Reuse Ratio, and HIER(class), for Hierarchy
method calls. At first glance, the top 4 metrics are all class-
level metrics. However, we cannot infer that class-level metrics
are more impactful on the mutation score than method-level
ones. In particular, it can be related to the fact that we have
considered more class-level metrics than method-level ones in
the experiment.

Additionally, we expected that the metrics related to McCabe’s
Cyclomatic Complexity, i.e., COMP, TCC, AVCC and MAXCC would
show stronger correlation to the mutation score. In fact, McCabe’s
Cyclomatic Complexity has been widely considered a powerful
measure to quantify the complexity of a software program, and
it is used to provide a lower bound to the number of tests that
should be written (Woodward et al., 1979; Gill and Kemerer,
1991; Fenton and Ohlsson, 2000). Based on our results without
further investigation, we could only speculate that McCabe’s Cy-
clomatic Complexity might not directly influence the mutation
score.

Summary. We found that the pair-wise correlations between the 64
existing source code metrics and the mutation score to be not so
strong (|rho| < 0.27). The top 4 metrics with the strongest correlation
coefficients are NSUP(class), DIT(class), R-R(class) and
HIER(class).

4.1.2. Observability

Findings. Table 8 shows the overall results of Spearman’s rank-
order correlation analysis for code observability metrics. From Ta-
ble 8, we can see that except for method_length and
(cond(loop)), whose p-value is greater than 0.05, the results
of the other observability metrics are statistically significant.
The overall correlation between code observability metrics and
mutation score is still not strong (<0.5), but significantly better
than existing code metrics (<0.27). The top five metrics are
test_distance, direct_test_no., assertion-density,
assertion-McCabe, and assertion_no. The metrics related
to test directness, i.e., test_distance (−0.4923) and direct_
test_no (0.4177) are ranked first in terms of rho among all
metrics that we consider (including existing code metrics in
Section 2.2). This observation corresponds to our hypothesis in
Section 2.3 that the methods with no direct tests are more
challenging to kill mutants. In terms of rho values, the assertion
related metrics are ranked after test directness related metrics;
this confirms both our conjectures in Section 2.3 and what has
been reported in the related literature (Schuler and Zeller, 2013;
Zhang and Mesbah, 2015) that the quality of assertions can
influence the outcome of mutation testing.

Summary. The correlations between code observability metrics and
mutation score are not very strong (<0.5); however, they are sig-
nificantly better than the correlations for existing code metrics.
Test directness (test_distance and direct_test_no.) takes
the first place of NSUP(class) in |rho| among all metrics (in-
cluding existing ones in Section 2.2), followed by assertion-based
metrics (assertion-density, assertion-McCabe and asser-
tion_no).

4 In terms of absolute value.

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

T
S

p
m

e

able 7
pearman results of existing code metrics for testability.
Metric rho p-value Metric rho p-value Metric rho p-value

COMP 0.0398 2.16E−08 NOC 0.1908 1.254E−161 R-R(class) −0.2524 3.721E−285
NOCL 0.1047 2.32E−49 NOA 0.0423 2.723E−09 NSUB(class) −0.0048 0.5009
NOS −0.0139 0.05024 CAST −0.0162 0.02302 NSUP(class) −0.2634 0
HLTH 0.0518 2.927E−13 HDIF 0.1334 2.691E−79 NCO(class) −0.0751 3.602E−26
HVOC 0.0485 8.831E−12 NEXP 0.0288 5.135E−05 FOUT(class) −0.1073 9.482E−52
HEFF 0.0856 1.595E−33 NOMT(class) 0.0981 1.564E−43 DIT(class) −0.2634 0
HBUG 0.0518 3.163E−13 LCOM(class) 0.0564 2.125E−15 CCOM(class) 0.1695 1.589E−127
CREF 0.0193 0.00653 AVCC(class) 0.0405 1.206E−08 COH(class) 0.0001 0.9852
XMET 0.0465 5.743E−11 NOS(class) 0.0793 5.416E−29 S-R(class) 0.0016 0.8184
LMET −0.0221 0.00191 HBUG(class) 0.0824 3.826E−31 MINC(class) −0.0255 0.0003272
NLOC −0.0004 0.95 HEFF(class) 0.0982 1.213E−43 EXT(class) −0.0636 3.314E−19
VDEC 0.0281 7.702E−05 UWCS(class) 0.0929 3.708E−39 INTR(class) −0.0571 9.413E−16
TDN 0.0408 9.634E−09 INST(class) 0.0045 0.5238 MPC(class) −0.0636 3.314E−19
NAND 0.0357 5.191E−07 PACK(class) −0.1029 9.956E−48 HVOL(class) 0.0823 4.344E−31
LOOP 0.0685 5.116E−22 RFC(class) 0.095 6.38E−41 HIER(class) −0.212 6.066E−200
MOD 0.0103 0.1482 CBO(class) −0.0157 0.0274 HLTH(class) 0.0911 9.53E−38
NOPR 0.067 3.801E−21 MI(class) 0.0482 1.144E−11 SIX(class) −0.197 2.388E−172
EXCT 0.1125 9.723E−57 CCML(class) 0.1559 6.998E−108 TCC(class) 0.0897 1.203E−36
MDN 0.053 8.3E−14 NLOC(class) 0.0756 1.692E−26 NQU(class) 0.1489 1.568E−98
EXCR −0.0067 0.3473 RVF(class) −0.033 3.498E−06 F-IN(class) 0.0875 6.031E−35
HVOL 0.0512 5.719E−13 LCOM2(class) −0.0486 7.691E−12 MOD(class) 0.0516 3.738E−13
VREF 0.0446 3.42E−10 MAXCC(class) −0.0178 0.01245 LMC(class) 0.1034 3.68E−48
Table 8
Spearman results of code observability metrics.
Metric rho pvlaue Metric rho pvlaue

is_public −0.0639 2.35E−19 (cond(cond)) −0.0415 5.4E−09
is_static 0.1137 6.29E−58 (cond(loop)) 0.0073 0.302
is_void −0.1427 1.42E−90 (loop) 0.0685 5.12E−22
is_nested 0.0466 5.38E−11 (loop(cond)) 0.0216 0.00242
method_length −0.0004 0.95 (loop(loop)) 0.0428 1.65E−09
nested_depth 0.053 8.3E−14 non_void_percent 0.2424 1.24E−262
direct_test_no 0.4177 0 getter_percent −0.153 6.23E−104
test_distance −0.4921 0 assertion-McCabe 0.3956 0
assertion_no 0.3858 0 assertion-density 0.4096 0
(cond) 0.023 0.00124
Table 9
Random forest results of code observability metrics vs. Existing metrics.
pid ZeroR Existing Code observability Combined

Prec. Recall AUC Err. Prec. Recall AUC Err. Prec. Recall AUC Err. Prec. Recall AUC Err.

pid Prec. Recall AUC Err. Prec. Recall AUC Err. Prec. Recall AUC Err. Prec. Recall AUC Err.
1 – 0.856 0.497 0.2465 0.927 0.93 0.961 0.1014 0.940 0.942 0.960 0.0786 0.946 0.948 0.976 0.0741
2 – 0.913 0.498 0.1595 0.947 0.951 0.932 0.0775 0.960 0.962 0.946 0.063 0.957 0.959 0.951 0.067
3 – 0.815 0.499 0.3015 0.848 0.861 0.836 0.2039 0.866 0.864 0.871 0.1727 0.887 0.893 0.909 0.167
4 – 0.507 0.468 0.5001 0.667 0.667 0.733 0.3831 0.861 0.860 0.909 0.2044 0.827 0.827 0.887 0.2626
5 – 0.62 0.5 0.4712 0.842 0.843 0.908 0.2347 0.868 0.869 0.931 0.1801 0.901 0.901 0.955 0.168
6 – 0.726 0.493 0.3982 0.73 0.743 0.804 0.2948 0.708 0.716 0.779 0.2976 0.742 0.755 0.802 0.2946
all – 0.569 0.5 0.4905 0.862 0.862 0.928 0.2133 0.864 0.864 0.937 0.1846 0.905 0.905 0.963 0.1625
dir. – 0.853 0.499 0.2513 0.945 0.946 0.949 0.0915 0.941 0.943 0.955 0.0933 0.950 0.951 0.962 0.0886
non. – 0.593 0.5 0.4829 0.853 0.853 0.923 0.2329 0.813 0.814 0.893 0.2371 0.878 0.879 0.941 0.2075
F
m
a
F
s
m
p

b
j

4.2. Random forest

Classification effectiveness. As discussed in Section 3.4, we com-
are the four models in terms of both our code observability
etrics and the existing metrics, namely:

1. ZeroR: model using ZeroR approach
2. existing: Random Forest model based on existing code

metrics
3. code observability: Random Forest model based on

code observability metrics
4. combined: Random Forest model based on the combina-

tion of existing metrics and code observability metrics

Table 9 shows the results of the comparison of the four mod-
ls. To make clear which model performs better than the others,
10
we highlighted the values of the model achieving the best perfor-
mance among the four in bold, that of second best in underline.
or precision, recall, and AUC, the model with the best perfor-
ance is the one with the highest value, while for the mean
bsolute error, the best scoring model exhibits the lowest value.
or the ZeroR model, because this model classifies all the in-
tances to the majority (i.e., one class), the precision of the
inority is not valid due to 0/0. Thus, in Table 9, we mark the
recisions by ‘‘−’’.
From Table 9, we can see that the Random Forest models are

etter than the baseline ZeroR which only relies on the ma-
ority. This is the prerequisite for further comparison. Combined
achieves the best performance (in 5 out of 6 projects) compared
to the existing code metrics and code observability metrics in
terms of AUC; this observation is as expected since combined
considered both the existing and our metrics during training,
which provides the classification model with more information.

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

T
F

able 10
eature importance of classification model (1).

1 2 3 4 5

Metric Imp. Metric Imp. Metric Imp. Metric Imp. Metric Imp.

test_distance 0.35 test_distance 0.15 test_distance 0.13 test_distance 0.48 test_distance 0.23
NLOC(class) 0.15 HIER(class) 0.12 NOCL 0.05 method_length 0.03 is_void 0.1
NOCL 0.03 CCML(class) 0.05 HDIF 0.03 COMP 0.03 EXCT 0.04
CREF 0.03 NLOC(class) 0.05 MI(class) 0.03 NOCL 0.03 NOCL 0.03
MINC(class) 0.03 NOCL 0.04 is_static 0.02 CAST 0.03 NOS 0.03
non_void_percent 0.02 MI(class) 0.04 non_void_percent 0.02 HDIF 0.03 S-R(class) 0.03
HDIF 0.02 assertion-density 0.03 HVOC 0.02 (Cond) 0.02 is_public 0.02
NOS(class) 0.02 CREF 0.03 HEFF 0.02 VREF 0.02 nested_depth 0.02
PACK(class) 0.02 HDIF 0.03 CREF 0.02 is_void 0.01 direct_test_no 0.02
TCC(class) 0.02 PACK(class) 0.03 VREF 0.02 direct_test_no 0.01 assertion_no 0.02
LMC(class) 0.02 method_length 0.02 NEXP 0.02 assertion_no 0.01 CREF 0.02
HLTH 0.01 HVOC 0.02 HEFF(class) 0.02 non_void_percent 0.01 HDIF 0.02
HVOC 0.01 HEFF 0.02 PACK(class) 0.02 assertion-density 0.01 PACK(class) 0.02
HEFF 0.01 LMET 0.02 CBO(class) 0.02 HLTH 0.01 F-IN(class) 0.02
XMET 0.01 NOA 0.02 CCML(class) 0.02 HVOC 0.01 method_length 0.01
Table 11
Feature importances of classification model (2).
6 all dir. non-dir.

Metric Imp. Metric Imp. Metric Imp. Metric Imp.

CBO(class) 0.09 test_distance 0.29 is_void 0.22 test_distance 0.16
HDIF 0.07 PACK(class) 0.06 PACK(class) 0.13 NOCL 0.09
NQU(class) 0.06 NOCL 0.05 HDIF 0.05 non_void_percent 0.04
test_distance 0.04 is_void 0.03 NOS 0.04 EXCT 0.04
non_void_percent 0.03 EXCT 0.03 assertion-density 0.03 HDIF 0.03
HVOC 0.03 non_void_percent 0.02 NEXP 0.03 PACK(class) 0.03
HEFF 0.03 CREF 0.02 direct_test_no 0.02 MI(class) 0.03
CREF 0.03 HDIF 0.02 assertion_no 0.02 CREF 0.02
XMET 0.03 MI(class) 0.02 assertion-McCabe 0.02 CBO(class) 0.02
NAND 0.03 is_public 0.01 NOCL 0.02 MINC(class) 0.02
VREF 0.03 is_nested 0.01 CREF 0.02 HIER(class) 0.02
NOA 0.03 method_length 0.01 NOA 0.02 F-IN(class) 0.02
NEXP 0.03 nested_depth 0.01 MINC(class) 0.02 MOD(class) 0.02
method_length 0.02 assertion_no 0.01 method_length 0.01 is_public 0.01
NOCL 0.02 getter_percent 0.01 nested_depth 0.01 is_static 0.01
The only exception is java-apns-apns-0.2.3 (pid = 4). We
conjecture that the number of instances (selected methods) in
this project might be too small (only 150 methods) to develop a
sound prediction model. In second place comes the model based
on code observability metrics, edging out the model based on
existing metrics.

For the overall dataset (the 7th row marked with ‘‘all’’ in
Table 9), combined takes the first place in all evaluation metrics.
In second place comes the code observability, slightly better
than existing. Another interesting angle investigate further is
the test directness. If we only consider the methods that are
directly tested (the second to last row in Table 9), combined
again comes in first, followed by the existing code metrics model.
The same observation holds for the methods that are not directly
tested (the last row in Table 9). It is easy to understand that when
the dataset only considers methods that are directly tested (or
not), the test directness features in our model become irrelevant.
However, we can see that the difference between existing metrics
and ours are quite tiny (<3.4%).

Feature importance analysis. Tables 10 and 11 show the top 15
features per project (and overall) in descending order. We can see
that for five out of the six projects (including the overall dataset),
test_distance ranks first. This again supports our previous
findings that test directness plays a significant role in mutation
testing. The remaining features in the top 14 vary per project;
this is not surprising, as the task and context of these projects
vary greatly. For example, Apache Commons Lang (Column ‘‘2’’
in Table 10) is a utility library that provides a host of helper
methods for the java.lang API. Therefore, most methods in
Apache Commons Lang are public and static; thus, is_public
11
and is_static are not among the top 15 features for Apache
Commons Lang. A totally different context is provided by the
JFreeChart project (Column ‘‘5’’ in Table 10). JFreeChart is
a Java chart library, whose class encapsulation and inheritance
hierarchy are well-designed, so is_public appears among the
top 15 features.

Looking at the overall dataset (Column ‘‘all’’ in Table 11), there
are eight metrics from our proposed code observability metrics
among the top 15 features. The importance of test_distance
is much higher than the other features (>4.83X). In second place
comes PACK(class), or the number of packages imported. This
observation is easy to understand since PACK(class) denotes
the complexity of dependency, and dependency could influence
the difficulty of testing, especially when making use of mocking
objects. Thereby, dependency affects the mutation score. Clearly,
more investigations are required to draw further conclusions. The
third place in the feature importance analysis is taken by NOCL,
which stands for the Number of Comments. This observation
is quite interesting since NOCL is related to how hard it is to
understand the code (code readability). This implies that code
readability might have an impact on mutation testing.

As for the methods with direct tests (Column ‘‘dir.’’ in Ta-
ble 11), is_void takes the first position, which indicates that it is
more difficult to achieve a high mutation score for void methods.
Considering the methods without direct tests (Column ‘‘non-dir.’’
in Table 11), test_distance again ranks first.

Another observation stems from the comparison of the per-
formance of assertion related metrics in the feature importance
analysis and the Spearman rank order correlation results (in Sec-

tion 4.1). For Spearman’s rank order correlation, we can see that

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

a
a
t
a
t
r
n
r
a
t
t
r
0
f
c
t
i

s
(
m
f
m
D
c
s
(
E
t
(
a
i
a
e
t
(
a
u
p
a

S
i
l
i
h

Fig. 4. Overview of J48 decision tree.
b
t
t
w
b
i
d

ssertion related metrics are the second significant category right
fter test directness (in Table 8 in Section 4.1). While in the fea-
ure importance analysis, assertion related metrics mostly rank
fter the top 5 (shown in Tables 10 and 11) To further investigate
he reason behind the dramatic changes of ranks for assertion
elated metrics, we analyse the correlations between test direct-
ess (i.e., direct_test_no and test_distance) and assertion
elated metrics (i.e., assertion_no, assertion-McCabe and
ssertion_distance). Looking at the correlation results be-
ween test directness and assertion related metrics in Table 12,
he major reason is that test directness and assertion related met-
ics are almost collinear in the prediction model (where |rho| >
.87). To put simply, there are almost no tests without assertions
or the six subjects. If the method has a direct test, then the
orresponding assertion no. is always greater than 1. Therefore,
he ranks of assertion related metrics are not as high as we had
nitially expected in the feature importance analysis.

Moreover, we would like to put our observations into per-
pective by comparing our results with the work of Zhang et al.
2018), where they have constructed a similar Random Forest
odel to predict the result of killable mutant based on a series of

eatures related to mutants and tests. The metrics that are com-
on to their model and ours are Cyclomatic Complexity (COMP),
epth of Inheritance Tree (DIT), nested_depth, Number of Sub-
lasses (NSUB), and method_length. Only two metrics in their
tudy, i.e., method_length (in 6th place) and nested_depth
in 10th place) appear in our top 15 (Column ‘‘all’’ in Table 11).
specially COMP which ranks nine in their results is not in our
op 15. There are multiple reasons for the difference in results:
i) we do consider a much larger range of metrics, which provide
better explanatory power (statistically speaking) than the one

n their paper; (ii) our goal is to determine patterns in production
nd test code that may prevent killing some mutants while Zhang
t al. (2018) predict if a mutant is killable (aka different prediction
arget and different granularity level). Besides, as we see later
next section), we can use our model to determine common
nti-patterns with proper statistical methods. (iii) the subjects
sed in our experiment are different from theirs. For example, in
roject java-apns-apns-0.2.3 (Column ‘‘4’’ in Table 11), COMP
ppears among the top 15.

ummary. Overall, Random Forest based on the combination of ex-
sting code metrics and code observability metrics perform best, fol-
owed by that on code observability metrics. The analysis of feature
mportances shows that test directness ranks highest, remarkably

igher than the other metrics.

12
5. RQ4 code refactoring

Our goal is to investigate whether we can refactor away the
observability issue that we expect to hinder tests from killing
mutants and thus to affect the mutation score. In an in-depth
case study, we manually analysed 16 code fragments to un-
derstand better the interaction between testability/observability
metrics that we have been investigating, and the possibilities for
refactoring.

Our analysis starts from the combined model, which as Ta-
le 9 shows, takes the leading position among the models. We
hen apply Principal Component Analysis (PCA) (Wold et al., 1987)
o perform feature selection, which, as Table 13 shows, leaves us
ith 36 features (or metrics). Then, as discussed in Section 3, we
uild a decision tree based on those 36 metrics using J48 (shown
n Fig. 4), and select the top 6 leaves (also called end nodes) in the
ecision tree for further manual analysis as potential refactoring

guidelines. We present the top six anti-patterns in Table 14.
Here, we take a partial decision tree to demonstrate how

we generate rules (shown in Fig. 5). In Fig. 5, we can see that
there are three attributes (marked as an ellipse) and four end
nodes or leaves (marked as a rectangle) in the decision tree.
Since we would like to investigate how code refactoring increases
mutation score (RQ4), we only consider the end nodes labelled
with ‘‘LOW’’ denoting mutation score < 0.5. By combining the
conditions along the paths of the decision tree, we obtain the two
rules for ‘‘LOW’’ end nodes (as shown in the first column of the
table in Fig. 5). For every end node, there are two values attached
to the class: the first is the number of instances that correctly
fall into the node, the other is the instances that incorrectly fall
into the node. The accuracy in the table is computed by the
number of correct instances divided by that of total instances.
As mentioned earlier, we select the top 6 end nodes from the
decision tree, where the end nodes are ranked by the number of
correct instances under the condition accuracy ≥ 0.8.

After selecting the rules, the first author of this paper has
conducted the main task of the manual analysis. If there were any
questions during the manual analysis, the attempts of refactoring
or adding tests are discussed among all the authors to reach an
agreement. In our actual case study, we manually analysed 16
cases in total. Due to space limitations, we only highlight six cases
in this paper (all details are available on GitHub (Zhu, 2019)). We

will discuss our findings in code refactoring case by case.

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

L

t
0
9
g
s

C
t
d

d

Table 12
Spearman results of test directness vs. assertions in terms of rho.
(rho) assertion_no assertion-McCabe assertion_distance

direct_test_no 0.9604 0.9472 0.9334
test_distance −0.8707 −0.8707 −0.8707
Fig. 5. Demo of rule generation.
p
T
b
R
g
t
L
2
v
n

5
C

d
i
t
N

C
i
W
r

1139/**
1140* Draws the value label just below the center

of the dial.
1141*
1142* @param g2 the graphics device.
1143* @param area the plot area.
1144*/
1145protected void drawValueLabel(Graphics2D g2,

Rectangle2D area) {
1146g2.setFont(this.valueFont);
1147g2.setPaint(this.valuePaint);
1148String valueStr = " No value " ;
1149if (this.dataset != null) {
1150Number n = this.dataset.getValue();
1151if (n != null) {
1152valueStr = this.tickLabelFormat.format(n

.doubleValue()) + " "
1153+ this.units;
1154}
1155}
1156float x = (float) area.getCenterX();
1157float y = (float) area.getCenterY() +

DEFAULT_CIRCLE_SIZE;
1158TextUtils.drawAlignedString(valueStr, g2, x,

y,TextAnchor.TOP_CENTER);
1159}

isting 4: plot.MeterPlot::drawValueLabel (Case 1)

5.1. Case 1: plot.MeterPlot::drawValueLabel from JFree
Chart

This case (shown in Listing 4) is under anti-pattern Rule 1:
est_distance > 5 && (loop(loop)) ≤ 0 && is_nested =
&& is_public = 0 && XMET > 4 && (loop) ≤ 0 && NOCL ≤

&& non-void_percent ≤ 0.42. In total, there are 5 mutants
enerated from this method (shown in Table 15). All 5 mutants
urvive the test suite.

ode changes. We start with test_distance > 5 which means
here is no direct test for this method. Accordingly, we add one
irect test (shown in Listing 5).
However, Mutant 4 and 5 cannot be killed by adding the above

irect test. Upon inspection, we found that Mutant 4 and 5 cannot
13
1@Test
2public void testDrawValueLabel(){
3MeterPlot p1 = new MeterPlot(new

DefaultValueDataset(1.23));
4BufferedImage image = new BufferedImage(3, 4,

BufferedImage.TYPE_INT_ARGB);
5Graphics2D g2 = image.createGraphics();
6Rectangle2D area = new Rectangle(0, 0, 1, 1);
7p1.drawValueLabel(g2,area);
8assertTrue(g2.getFont() == p1.getValueFont())

;
9assertTrue(g2.getPaint() == p1.getValuePaint

());
10}

Listing 5: Direct test for Listing 4 (Case 1)

be killed because the DrawValueLabel(...) method is void. In
articular, this means that the changes in the state caused by the
extUtils.drawAlignedString()method (line 1158) cannot
e assessed. This is indicated by non-void_percent ≤ 0.42 in
ule 1. We then refactor the method to have it return Rectan-
le2D (shown in Listing 6). Also, we improve the direct test for
his method in Listing 5 by adding a new test method (shown in
isting 7) to avoid the assertion roulette test smell (Moonen et al.,
008; Palomba et al., 2016). By refactoring the method to non-
oid and adding a direct test, all previously surviving mutants are
ow successfully killed.

.2. Case 2: axis.SymbolAxis::drawGridBands from JFree
hart

This case (shown in Listing 8) is under Rule 2: test_
istance > 5 && (loop(loop)) ≤ 0 && is_nested = 0 &&
s_public = 0 && XMET > 4 && (loop) ≤ 0 && NOCL > 9. In
otal, 4 mutants are generated from this method (see Table 16).
one of the mutants are killed.

ode changes. It is clear that this method is private, thus, it is
mpossible to call this method from outside the class directly.
e first refactor this method from private to public. This is

evealed by is_public = 0 in Rule 2.

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

L

d

5
L

Table 13
Selected feature by PCA.
is_public (cond) assertion-density XMET
is_static (cond(cond)) COMP LMET
is_void (cond(loop)) NOCL NLOC
is_nested (loop) NOS VDEC
method_length (loop(cond)) HLTH TDN
nested_depth (loop(loop)) HVOC NAND
direct_test_no non-void_percent HEFF LOOP
test_distance getter_percent HBUG MOD
assertion_no assertion-McCabe CREF NOPR
Table 14
Top six anti-patterns from J48 decision tree 4.
Rule no. Details

1 test_distance > 5 && (loop(loop)) ≤ 0 && is_nested = 0 && is_public = 0 && XMET > 4 && (loop) ≤ 0 && NOCL ≤ 9
&& non-void_percent ≤ 0.42

2 test_distance > 5 && (loop(loop)) ≤ 0 && is_nested = 0 && is_public = 0 && XMET > 4 && (loop) ≤ 0 && NOCL > 9

3 test_distance > 5 && (loop(loop)) ≤ 0 && is_nested = 0 && is_public = 1 && NOCL ≤ 4 && NOCL > 0 && is_static =
0 && getter_percent ≤ 0.01 && HBUG ≤ 0.02 && method_length > 3

4 test_distance > 5 && (loop(loop)) ≤ 0 && is_nested = 0 && is_public = 1 && NOCL > 4 && (cond) ≤ 0 && is_static
= 0 && LMET ≤ 1 && NOCL > 8 && NOPR > 5 && is_void = 1

5 test_distance ≤ 5 && is_void = 1 && nested_depth ≤ 0 && NOS ≤ 2 && assertion-density ≤ 0.14 && MOD > 1

6 test_distance ≤ 5 && is_void = 1 && nested_depth ≤ 0 && NOS > 2 && assertion-density ≤ 0.22 && CREF > 1 &&
XMET > 0
Table 15
Summary of mutants from Listing 4 (Case 1).
ID Line no. Mutator Results

1 1146 Removed call to java/awt/Graphics2D::setFont SURVIVED
2 1147 Removed call to java/awt/Graphics2D::setPaint SURVIVED
3 1149 Negated conditional SURVIVED
4 1151 Negated conditional SURVIVED
5 1157 Replaced float addition with subtraction SURVIVED
1145protected Rectangle2D drawValueLabel(Graphics2D g2, Rectangle2D area) {

1146g2.setFont(this.valueFont);
1147g2.setPaint(this.valuePaint);
1148String valueStr = " No value " ;
1149if (this.dataset != null) {
1150Number n = this.dataset.getValue();
1151if (n != null) {
1152valueStr = this.tickLabelFormat.format(n.doubleValue()) + " "
1153+ this.units;
1154}
1155}
1156float x = (float) area.getCenterX();
1157float y = (float) area.getCenterY() + DEFAULT_CIRCLE_SIZE;

1158return TextUtils.drawAlignedString(valueStr, g2, x, y,TextAnchor.TOP_CENTER);

1159}

isting 6: Refactoring of Listing 4 (Case 1)
Then, guided by test_distance > 5 from Rule 2, we add a
irect test for this method to kill all mutants (see Listing 10).

.3. Case 3: builder.IDKey::hashCode from Apache Commons
ang

This case (shown in Listing 11) is under Rule 3: test
_distance > 5 && (loop(loop)) ≤ 0 && is_nested = 0 &&
is_public = 1 && NOCL ≤ 4 && NOCL > 0 && is_static = 0 &&
getter_percent ≤ 0.01 && HBUG ≤ 0.02 && method_length
> 3. Only one mutant is generated for this method: a mutant that
replaces the return value with (x == 0 ? 1 : 0). This mutant
survives.
14
Code changes. Starting with test_distance > 5, we add a direct
test for this method (shown in Listing 12), which works perfectly
to kill the mutant.

5.4. Case 4: AbstractCategoryItemRenderer::drawOutline
from JFreeChart

This case (shown in Listing 13) is under Rule 4: test_
distance > 5 && (loop(loop)) ≤ 0 && is_nested = 0 &&
is_public = 1 && NOCL > 4 && (cond) ≤ 0 && is_static
= 0 && LMET ≤ 1 && NOCL > 8 && NOPR > 5 && is_void = 1.
Also in this case, only 1 mutant is generated for this method. The

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

L

C
k

C
t
m

1@Test

2public void testDrawValueLabelArea() {
3MeterPlot p1 = new MeterPlot(new

DefaultValueDataset(1.23));
4BufferedImage image = new BufferedImage(3, 4,

BufferedImage.TYPE_INT_ARGB);
5Graphics2D g2 = image.createGraphics();
6Rectangle2D area = new Rectangle(0, 0, 1, 1);

7Rectangle2D drawArea = p1.drawValueLabel(g2,area);

8assertEquals(0.5,drawArea.getCenterX(),0.01);

9assertEquals(18.8671875,drawArea.getCenterY(),0.01);

10assertEquals(15.0,drawArea.getHeight(),0.01);

11assertEquals(64.0,drawArea.getWidth(),0.01);

12}

isting 7: Improved direct test for Listing 4 (Case 1)

154/**
155* Similar to {@link Color#darker()}.
156* <p>
157* The essential difference is that this method
158* maintains the alpha-channel unchanged

159*
160* @param paint a {@code Color}
161*
162* @return a darker version of the {@code Color

}
163*/
164private static Color darker(Color paint) {
165return new Color(
166(int)(paint.getRed () * FACTOR),
167(int)(paint.getGreen() * FACTOR),
168(int)(paint.getBlue () * FACTOR), paint.

getAlpha());
169}

Listing 8: axis.SymbolAxis::drawGridBands (Case 2)

164public static Color darker(Color paint) {

165return new Color(
166(int)(paint.getRed () * FACTOR),
167(int)(paint.getGreen() * FACTOR),
168(int)(paint.getBlue () * FACTOR), paint.

getAlpha());
169}

Listing 9: Refactoring of Listing 8 (Case 2)

1@Test
2public void testDarker(){
3Color paint = new Color(10,20,30);
4Color darker = PaintAlpha.darker(paint);
5assertEquals(7,darker.getRed());
6assertEquals(14,darker.getGreen());
7assertEquals(21,darker.getBlue());
8}

Listing 10: Direct test for Listing 8 (Case 2)

particular change applied is the removal of the call to Abstract-
ategoryPlot::drawOutline. The original test suite did not
ill the mutant.

ode changes. Based on test_distance > 5, we add one direct
est (as shown in Listing 14) for this method to kill the surviving
utant.
15
46/**
47* returns hash code - i.e., the system

identity hashcode.
48* @return the hashcode
49*/
50@Override
51public int hashCode() {
52return id;
53}

Listing 11: builder.IDKey::hashCode (Case 3)

1@Test
2public void testHashCode(){
3IDKey idKey = new IDKey(new Integer(123));
4assertEquals(989794870,idKey.hashCode());
5}

Listing 12: Direct test for Listing 11 (Case 3)

808/**
809* Draws an outline for the data area. The

default implementation just
810* gets the plot to draw the outline, but some

renderers will override this
811* behaviour.
812*
813* @param g2 the graphics device.
814* @param plot the plot.
815* @param dataArea the data area.
816*/
817@Override
818public void drawOutline(Graphics2D g2,

CategoryPlot plot,
819Rectangle2D dataArea) {
820plot.drawOutline(g2, dataArea);
821}

Listing 13: AbstractCategoryItemRenderer::drawOutli
ne (Case 4)

1@Test
2public void testDrawOutline(){
3AbstractCategoryItemRenderer r = new

LineAndShapeRenderer();
4BufferedImage image = new BufferedImage(200 ,

100,
5BufferedImage.TYPE_INT_RGB);
6Graphics2D g2 = image.createGraphics();
7CategoryPlot plot = new CategoryPlot();
8Rectangle2D dataArea = new Rectangle2D.Double

();
9r.drawOutline(g2,plot,dataArea);
10assertTrue(g2.getStroke()==plot.

getOutlineStroke());
11}

Listing 14: Direct test for Listing 13 (Case 4)

5.5. Case 5: builder.ToStringStyle::setUseShortClass
Name from Apache Commons Lang

This case (shown in Listing 15) is under Rule 5: test
_distance ≤ 5 && is_void = 1 && nested_depth ≤ 0 && NOS
≤ 2 && assertion-density ≤ 0.14 && MOD > 1. In this case,
a single (surviving) mutant is generated that removes the call to
builder.ToStringStyle::setUseShortClassName.

Code changes. We can see that Rule 5 is different from the
previous rule in that test_distance is less than 5, while in

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

L
N

L

L
<

R
t
t
t
s
b
a
t

5
<

_
>

5

t
w
e
t
e
o
a
m
D
D
a

81/**
82* <p>Sets whether to output short or long

class names.</p>
83*
84* @param useShortClassName the new

useShortClassName flag
85* @since 2.0
86*/
87@Override
88public void setUseShortClassName(final boolean

useShortClassName) { // NOPMD as this is
implementing the abstract class

89super.setUseShortClassName(useShortClassName)
;

90}

isting 15: builder.ToStringStyle::setUseShortClass
ame (Case 5)

1@Test
2public void testSetUseShortClassName(){
3assertTrue(STYLE.isUseShortClassName());
4STYLE.setUseShortClassName(false);
5assertFalse(STYLE.isUseShortClassName());
6STYLE.setUseShortClassName(true);
7assertTrue(STYLE.isUseShortClassName());
8}

isting 16: Additional assertions for Listing 15 (Case 5)

30/**
31* Construct the exception.
32*
33* @param max Maximum number of evaluations.
34*/
35public TooManyEvaluationsException(Number max)

{
36super(max);
37getContext().addMessage(LocalizedFormats.

EVALUATIONS);
38}

isting 17: exception.TooManyEvaluationsException::
init> (Case 6)

ule 4 test_distance > 5. A more in-depth analysis reveals
hat the method in Listing 15 is already directly invoked by
he original test suite. The surviving mutant is due to the fact
hat there are no assertions that examine the changes after the
etUseShortClassName method call. This situation is reflected
y assertion-density ≤ 0.14 in Rule 5. Therefore, we add
ssertions to assess the changes (seen in Listing 16), which leads
o the mutant being killed.

.6. Case 6: exception.TooManyEvaluationsException::
init> from Apache Commons Math

This case (shown in Listing 17) is under Rule 6: test
distance ≤ 5 && is_void = 1 && nested_depth ≤ 0 && NOS
2 && assertion-density ≤ 0.22 && CREF > 1 && XMET >

0 && VDEC ≤ 0 && NOCL ≤ 12. A single mutant is generated: a
removal of the call to exception.util.ExceptionContext::
addMessage. This mutant is surviving the test suite.

Code changes. We found that the mutant in Line 37 cannot
be killed because the function addMessage changes the field
List<Localizable> msgPatterns. This field is private in the
class ExceptionContext and there is no other way to access it.
16
1public List<Localizable > getMsgPatterns(){
2return msgPatterns;
3}

Listing 18: Refactoring of Listing 17 (Case 6)

1@Test

2public void testMsgPatterns() {

3final int max = 12345;
4final TooManyEvaluationsException e = new

TooManyEvaluationsException(max);
5final String msg = e.getLocalizedMessage();

6Assert.assertTrue(e.getContext().getMsgPatterns()

7.contains(LocalizedFormats.EVALUATIONS));
8}

Listing 19: Additional assertion for Listing 17 (Case 6)

As such, our first step is to add a getter for msgPatterns (shown
in Listing 18). In Rule 6, we can see that is_void = 1 is the
underlying cause since void methods could be difficult to test if
no getters for private fields exist.

To kill the surviving mutant, we add one extra assertion (in a
new test method) to examine the changes in msgPatterns (in
Listing 19). This action is also partly evidenced by assertion-
density ≤ 0.22 in Rule 6. As assertion-density denotes the ratio
between the total number of assertions in direct tests and the
lines of code in direct tests, low assertion-density is a sign of
insufficient assertions in the direct tests to detect the mutant.

5.7. RQ4 summary

Based on all 16 cases that we analysed (available in our GitHub
repository Zhu, 2019), we found that our code observability met-
rics can lead to simple refactorings that enable to kill mutants
that were previously not being killed. Ultimately, this leads to an
increase of the mutation score:

• Most cases can be easily fixed by adding direct tests if
test_distance>5.

• Most cases can be easily fixed by adding assertions if
test_distance ≤ 5.

• Private methods must be refactored to protected/public for
testing (indicated by is_public=0).

• Three void methods had to be refactored to be non-void (in-
dicated by is_void=1 and non-void_percent ≤ 0.42).

• One void method needed an additional getter because a
private field was changed (indicated by is_void=1).

.8. Discussion

From the findings of RQ4, we can see that some code refac-
orings break OO design principles (Booch, 2006). For instance,
e suggest to change the access modifier from private to protect-
d/public to kill the mutants; this violates the idea of Encapsula-
ion, the ability to protect some components of the object from
xternal entities (Booch, 2006). A new hypothesis emerges from
ur study: the trade-off between OO design principles and testing
nd hence software testability (Suri and Singhani, 2015). The
ain concepts of OO design are centred around the features of
ata abstraction, Encapsulation, Inheritance, Polymorphism, and
ynamic binding. However, some factors such as Encapsulation
nd Inheritance could increase the complexity of OO systems and

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

T
S

O
s
a
t
a
l
t
p
t
i
l
o

able 16
ummary of mutants from Listing 8 (Case 2).
ID Line no. Mutator Results

1 165 Mutated return of Object value for org/jfree/chart/util/PaintAlpha::darker to (if (x ! = null) null else throw
new RuntimeException)

NO_COVERAGE

2 166 Replaced double multiplication with division NO_COVERAGE
3 167 Replaced double multiplication with division NO_COVERAGE
4 168 Replaced double multiplication with division NO_COVERAGE
a
o
A
m
a
d
e
t
s
m

C
m
t
i
s
r

7

hence hinder testing and testability (Suri and Singhani, 2015).
Existing literature (Mouchawrab et al., 2005; Singh and Saha,
2010; Zhou et al., 2012; Nazir et al., 2010) has already addressed
this dilemma. Mouchawrab et al. (2005) pointed out that in-
creasing the size of the inheritance hierarchy could increase
the cost of testing due to dynamic dependencies. Singh and
Saha’s work (Singh and Saha, 2010) has shown that Inheritance
and Polymorphism increase testing effort and lower software
testability. All the works above indicate that there is a trade-off
between OO design features and software testability. Currently, it
is up to practitioners to balance the two perspectives themselves,
depending on the requirements of software and their preferences.

In the context of mutation testing, a similar trade-off between
O design features and the ease of killing mutants exists. In this
tudy, we relate the ease of killing mutants to the testability
nd observability. In Section 5.7, we found that a simple strategy
o kill all the mutants is to write additional direct tests and/or
ssertions. However, some OO design features related to Encapsu-
ation, such as the private access modifier (see Listing 8), increase
he difficulty to add a direct test. Also, the void return type
revents killing the mutants generated from the immediate states
hat cannot propagate to the output (see Listing 4). As such, a very
mportant note here is that our refactoring recommendations
isted in Section 5.7 are centred around the anti-patterns based
n the testability and observability; they do not take OO design

principles into consideration. The recommendations attempt to
help developers in understanding the cause of the low muta-
tion score considering testability and observability, but not all
surviving mutants are due to test quality.

Take Listing 8 for instance. The developer found the mutation
score of this method is low, and our tool shows the low mutation
score is mainly due to private access control modifier. Then, the
developer can decide to ignore the surviving mutants if he cannot
break Encapsulation based on the requirement. Or if this method
is critical and must be well-tested according to the document,
he may alter the access control modifier from private to protect-
ed/public to kill the mutants. Whether the developers make use of
these testability and observability recommendations depends on
their choices with regard to either (1) adding test cases (Beller
et al., 2015b,a, 2019) (2) refactoring the production code to kill
the mutants, or (3) ignoring the surviving mutants.

6. Threats to validity

External validity. Our results are based on mutants generated
by the operators implemented in PIT. While PIT is a frequently
used mutation testing tool, our results might be different when
using other mutation tools (Kurtz et al., 2016). Concerning the
subject systems selection, we choose six open-source projects
from GitHub; the selected projects differ in size, the number of
test cases, and application domain. Besides, as mentioned in Sec-
tion 3, the large number of methods with low number of mutants
is an unavoidable bias in our experiment. The reason is partly
due to the optimisation mechanism of PIT (Coles, 2019d) and
partly due to a large number of short methods in those projects.
Nevertheless, we do acknowledge that a broad replication of our
study would mitigate any generalisability concerns even further.
17
Internal validity. The main threat to internal validity for our study
is the implementation of the Mutation Observer tool for the
experiment. To reduce internal threats to a large extent, we rely
on existing tools that have been widely used, e.g., WEKA, MATLAB,
nd PIT. Moreover, we carefully reviewed and tested all code for
ur study to eliminate potential faults in our implementation.
nother threat to internal validity is the disregard of equivalent
utants in our experiment. However, this threat is unavoidable
nd shared by other studies on mutation testing that attempt to
etect equivalent mutants or not (Grün et al., 2009; Mirshokraie
t al., 2013). Moreover, we consider equivalent mutants as a po-
ential weakness in the software (reported by Coles Coles, 2019b,
lide 44–52); thereby, we did not manually detect equivalent
utants in this paper.

onstruct validity. The main threat to construct validity is the
easurement we used to evaluate our methods. We minimise

his risk by adopting evaluation metrics that are widely used
n research (such as recall, precision, and AUC), as well as a
ound statistical analysis to assess the significance (Spearman’s
ank-order correlation).

. Related work

The notion of software testability dates back to 1991 when
Freedman (1991) formally defined observability and controllability
in the domain of software. Voas (1992) proposed a dynamic tech-
nique coined propagation, infection, and execution (PIE) analysis
for statistically estimating the program’s fault sensitivity. More
recently, researchers have aimed to increase our collective un-
derstanding of testability by using statistical methods to predict
testability based on various code metrics. A prime example is the
work of Bruntink and van Deursen (2006), who have explored the
relationship between nine class-level object-oriented metrics and
testability. To the best of our knowledge, no study uses statisti-
cal or machine learning methods to investigate the relationship
between testability/observability metrics and the mutation score.

Mutation testing was initially introduced as a fault-based test-
ing method which was regarded as significantly better at detect-
ing errors than the covering measure approach (Budd et al., 1979).
Since then, mutation testing has been actively investigated and
studied, thereby resulting in remarkable advances in its concepts,
theory, technology, and empirical evidence. For more literature
on mutation testing, we refer to the existing surveys of DeMillo
(1989), Offutt and Untch (2001), Jia and Harman (2011), Offutt
(2011) and Zhu et al. (2018b). Here we mainly address the studies
that concern mutant utility (Just et al., 2017), the efficacy of
mutation testing. Yao et al. (2014) have reported on the causes
and prevalence of equivalent mutants and their relationship to
stubborn mutants based on a manual analysis of 1230 mutants.
Visser (2016) has conducted an exhaustive analysis of all pos-
sible test inputs to determine how hard it is to kill a mutant
considering three common mutation operators (i.e., relational,
integer constants and arithmetic operators). His results show
that mutant reachability, mutation operators, and oracle sensitivity
are the key contributors to determining how hard it is to kill
a mutant. Just et al. (2017) have shown a strong correlation

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

b
g
h
m
w
h
m
t
s
u
A
t
d
i
a
t

a
d
d

a
w

<

m
t
(
d

o
s
o
w
t
o
m
i
i
w
m
i
r
p

d
e
e
b
c
–
t

F
w
e
a
e
(

C

a
s
v
v
W

etween mutant utility and context information from the pro-
ram in which the mutant is embedded. Brown et al. (2017)
ave developed a method for creating potential faults that are
ore closely coupled with changes made by actual programmers
here they named ‘‘wild-caught mutants’’. Chekam et al. (2018)
ave investigated the problem of selecting the fault revealing
utants. They put forward a machine learning approach (decision

rees) that learns to select fault revealing mutants from a set of
tatic program features. Jimenez et al. (2018) investigated the
se of natural language modelling techniques in mutation testing.
ll studies above have enriched the understanding of mutation
esting, especially its efficacy. However, the aim of our work is
ifferent from those studies, as we would like to gain insights
nto how code quality in terms of testability and observability
ffects the efforts needed for mutation testing, especially in how
o engineer tests to kill more the mutants.

Similar to our study, there have been a few recent studies
lso investigating the relationships between assertions and test
irectness with mutation testing. Schuler and Zeller (2013) intro-
uced checked coverage – the ratio of statements that contribute

to the computation of values that are later checked by the test
suite – as an indicator for oracle quality. In their experiment, they
compared checked coverage with the mutation score, where they
found that checked coverage is more sensitive than mutation test-
ing in evaluating oracle quality. Huo and Clause (2016) proposed
direct coverage and indirect coverage by leveraging the concepts
of test directness with conventional statement coverage. They
used the mutants as an indicator of the test suite effectiveness,
and they found faults in indirectly covered code are significantly
less likely to be detected than those in directly covered code.
Zhang and Mesbah (2015) evaluated the relationship between
test suite effectiveness (in terms of the mutation score) and the
(1) number of assertions, (2) assertion coverage, and (3) different
types of assertions. They found test assertion quantity and as-
sertion coverage are strongly correlated with the mutation score,
and assertion types could also influence test suite effectiveness.
Compared to our studies, those works only addressed one or
two aspect(s) of code observability in our study. We provide a
complete view of the relationships between code observability
and mutation testing.

The study most related to ours is that of Zhang et al. (2018)’s
predictive mutation testing, where they have constructed a classi-
fication model to predict killable mutant result based on a series
of features related to mutants and tests. In their discussion, they
compared source code related features and test code related fea-
tures in the prediction model for the mutation score. They found
that test code features are more important than source code
ones. But from their results, we cannot draw clear conclusions on
the impact of production code on mutation testing as their goal
is to predict exact killable mutant results. Another interesting
work close to our study is Vera-Pérez et al. (2017)’s pseudo-tested
methods. Pseudo-tested methods denote those methods that are
covered by the test suite, but for which no test case fails even if
the entire method body is completely stripped. They rely on the
idea of ‘‘extreme mutation’’, which completely strips out the body
of a method. The difference between Vera-Pérez et al. (2017)’s
study and ours is that we pay attention to conventional mutation
operators rather than ‘‘extreme mutation’’.

8. Conclusion & future work

This paper aims to bring a new perspective to software devel-
opers helping them to understand and reason about the mutation
score in the light of testability and observability. This should en-
ble developers to make decisions on the possible actions to take
hen confronted with low mutation scores. To achieve this goal,
18
we firstly investigate the relationship between testability and
observability metrics and the mutation score. More specifically,
we have collected 64 existing source code quality metrics for
testability, and have proposed a set of metrics that specifically
target observability. The results from our empirical study involv-
ing 6 open-source projects show that the 64 existing code quality
metrics are not strongly correlated with the mutation score (|rho|

0.27). In contrast, the 19 newly proposed code observability
etrics, that are defined in terms of both production code and
est cases, do show a stronger correlation with the mutation score
|rho| < 0.5). In particular, test directness, test_distance, and
irect_test_no stand out.
To better understand the causality of our insights, we continue

ur investigation with a manual analysis of 16 methods that
cored particularly bad in terms of mutation score, i.e., a number
f mutants were not killed by the existing tests. In particular,
e have refactored these methods and/or added tests according
o the anti-patterns that we established in terms of the code
bservability metrics. Our aim here is to establish whether the re-
oval of the observability anti-patterns would lead to an increase

n the mutation score. We found that these anti-patterns can
ndeed provide insights in order to kill the mutants by indicating
hether the production code or the test suite needs improve-
ents. For instance, we found that private methods (expressed as
s_public=0 in our schema) are prime candidates to potentially
efactor to increase their observability, e.g., by making them
ublic or protected for testing purposes.
However, some refactoring recommendations could violate OO

esign principles. For example, by changing private to protect-
d/public we increase observability, but we also break the idea of
ncapsulation. Therefore, we suggest developers make a choice
etween – (1) adding test cases, (2) refactoring the production
ode to kill the mutants, or (3) ignoring the surviving mutants
by considering the trade-off between OO design features and

estability/observability.
To sum up, our paper makes the following contributions:

1. 19 newly proposed code observability metrics
2. A detailed investigation of the relationship between testa-

bility/observability metrics and the mutation score (RQ1–
RQ3)

3. A case study with 16 code fragments to investigate whether
removal of the anti-patterns increases the mutation score
(RQ4)

4. A guideline for developers to make choices when con-
fronting low mutation scores

5. A prototype tool coined Mutation Observer (openly avail-
able on GitHub (Zhu, 2019)) that automatically calculates
code observability metrics

uture work.With our tool, and since the results are encouraging,
e envision the following future work: (1) conduct additional
mpirical studies on more subject systems; (2) evaluate the us-
bility of our code observability metrics by involving practition-
rs; (3) investigate the relations between more code metrics
e.g., code readability) and mutation score.

RediT authorship contribution statement

Qianqian Zhu: Methodology, Software, Data curation, Visu-
lization, Investigation, Validation, Writing - original draft, Re-
ources. Andy Zaidman: Conceptualization, Methodology, Super-
ision, Project administration, Funding acquisition, Writing - re-
iew & editing. Annibale Panichella: Methodology, Supervision,
riting - review & editing.

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

D

c
t

A

g
p
2

R

A

A

2
2

A

A

B

B

B

B

B

B

B
B

B

B

C

C

C

C

C

C

D

F

F

F

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

This work has been partially funded by the Netherlands Or-
anisation for Scientific Research (NWO) through the ‘‘TestRoots’’
roject. Further funding came from the EU Horizon 2020 ICT-10-
016-RIA ‘‘STAMP’’ project (No.731529).

eferences

mmann, P., Offutt, J., 2017. Introduction to Software Testing, second ed.
Cambridge University Press.

ndrews, J.H., Briand, L.C., Labiche, Y., 2005. Is mutation an appropriate tool for
testing experiments?. In: International Conference on Software Engineering.
IEEE, pp. 402–411.

019. Antlr. http://www.antlr.org/ [Online; accessed 18-September-2019].
019. Apache commons BCEL. https://commons.apache.org/proper/commons-

bcel/ [Online; accessed 18-September-2019].
risholm, E., Briand, L.C., 2006. Predicting fault-prone components in a

java legacy system. In: Proceedings of the 2006 ACM/IEEE International
Symposium on Empirical Software Engineering. ACM, pp. 8–17.

thanasiou, D., Nugroho, A., Visser, J., Zaidman, A., 2014. Test code quality and
its relation to issue handling performance. IEEE Trans. Softw. Eng. 40 (11),
1100–1125.

eck, K., Fowler, M., Beck, G., 1999. Bad smells in code. Refactoring: Improv.
Des. Exist. Code 75–88.

eller, M., Gousios, G., Panichella, A., Proksch, S., Amann, S., Zaidman, A., 2019.
Developer testing in the IDE: Patterns, beliefs, and behavior. IEEE Trans.
Softw. Eng. (TSE) 45 (3), 261–284.

eller, M., Gousios, G., Panichella, A., Zaidman, A., 2015a. When, how and why
developers (do not) test in their IDEs. In: Proceedings of the Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM,
pp. 179–190.

eller, M., Gousios, G., Zaidman, A., 2015b. How (much) do developers test?. In:
Proceedings of the International Conference on Software Engineering (ICSE
- Volume 2). IEEE, pp. 559–562.

ooch, G., 2006. Object Oriented Analysis & Design with Application. Pearson
Education India.

reiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32. http://dx.doi.org/
10.1023/A:1010933404324.

reiman, L., 2017. Classification and Regression Trees. Routledge.
rown, D.B., Vaughn, M., Liblit, B., Reps, T., 2017. The care and feeding of

wild-caught mutants. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. ACM, pp. 511–522.

runtink, M., van Deursen, A., 2006. An empirical study into class testability. J.
Syst. Softw. 79 (9), 1219–1232.

udd, T.A., Lipton, R.J., DeMillo, R.A., Sayward, F.G., 1979. Mutation Analysis. Yale
University, Department of Computer Science.

hekam, T.T., Papadakis, M., Bissyandé, T., Traon, Y.L., Sen, K., 2018. Selecting
fault revealing mutants. arXiv preprint arXiv:1803.07901.

oles, H., 2019a. Github repository for PIT. https://github.com/hcoles/pitest
[Online; accessed 18-September-2019].

oles, H., 2019b. Mutation testing - a practitioners perspective. https://github.
com/hcoles/slides/blob/master/slides.pdf [Online; accessed 18-September-
2019].

oles, H., 2019c. PIT Mutation operators. http://pitest.org/quickstart/mutators/
[Online; accessed 18-September-2019].

oles, H., 2019d. PIT Incremental analysis. http://pitest.org/quickstart/
incremental_analysis/ [Online; accessed 18-September-2019].

oles, H., 2019e. PIT Main page. http://pitest.org/ [Online; accessed 18-
September-2019].

eMillo, R., 1989. Test adequacy and program mutation. In: Software Engineer-
ing, 1989. 11th International Conference on. pp. 355–356. http://dx.doi.org/
10.1109/ICSE.1989.714449.

enton, N.E., Ohlsson, N., 2000. Quantitative analysis of faults and failures in a
complex software system. IEEE Trans. Softw. Eng. 26 (8), 797–814.

rank, E., Hall, M.A., Witten, I.H., 2016. The WEKA Workbench. Online Appendix
for ‘‘Data Mining: Practical Machine Learning Tools and Techniques’’, fourth
ed. Morgan Kaufmann.

rankl, P.G., Weiss, S.N., Hu, C., 1997. All-uses vs mutation testing: an
experimental comparison of effectiveness. J. Syst. Softw. 38 (3), 235–253.
19
Freedman, R.S., 1991. Testability of software components. IEEE Trans. Softw .Eng.
17 (6), 553–564.

Gao, J., Shih, M.-C., 2005. A component testability model for verification
and measurement. In: 29th Annual International Computer Software and
Applications Conference (COMPSAC’05). 2, IEEE, pp. 211–218.

Gill, G.K., Kemerer, C.F., 1991. Cyclomatic complexity density and software
maintenance productivity. IEEE Trans. Softw. Eng. 17 (12), 1284–1288.

2019. Github repository for mull. https://github.com/mull-project/mull [Online;
accessed 18-September-2019].

Gopinath, R., Jensen, C., Groce, A., 2017. The theory of composite faults. In:
Software Testing, Verification and Validation (ICST), 2017 IEEE International
Conference on. IEEE, pp. 47–57.

Grün, B.J., Schuler, D., Zeller, A., 2009. The impact of equivalent mutants. In: 2009
International Conference on Software Testing, Verification, and Validation
Workshops. IEEE, pp. 192–199.

Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S., 2011. A systematic
literature review on fault prediction performance in software engineering.
IEEE Trans. Softw. Eng. 38 (6), 1276–1304.

Han, J., Pei, J., Kamber, M., 2011. Data Mining: Concepts and Techniques. Elsevier.
Hinkle, D.E., Wiersma, W., Jurs, S.G., et al., 1988. Applied Statistics for the

Behavioral Sciences. Houghton Mifflin Boston.
Hung, H.J., O’Neill, R.T., Bauer, P., Kohne, K., 1997. The behavior of the p-value

when the alternative hypothesis is true. Biometrics 11–22.
Huo, C., Clause, J., 2016. Interpreting coverage information using direct and in-

direct coverage. In: 2016 IEEE International Conference on Software Testing,
Verification and Validation (ICST). IEEE, pp. 234–243.

Inozemtseva, L., Holmes, R., 2014. Coverage is not strongly correlated with test
suite effectiveness. In: Proceedings of the 36th International Conference on
Software Engineering. ACM, pp. 435–445.

ISO, I., 1991. Iso 9126/iso, iec (hrsg.): International standard iso/iec 9126:
Information technology-software product evaluation. Qual. Charact. Guidel.
Use 12–15.

2019. Java-callgraph github repositry. https://github.com/gousiosg/java-callgraph
[Online; accessed 18-September-2019].

2019. Jhawk. http://www.virtualmachinery.com/jhawkprod.htm [Online; ac-
cessed 18-September-2019].

Jia, Y., Harman, M., 2011. An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37 (5), 649–678.

Jimenez, M., Titcheu Chekam, T., Cordy, M., Papadakis, M., Kintis, M., Le Traon, Y.,
Harman, M., 2018. Are mutants really natural? A study on how naturalness
helps mutant selection. In: 12th International Symposium on Empirical
Software Engineering and Measurement (ESEM’18).

Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G., 2014. Are
mutants a valid substitute for real faults in software testing?. In: Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, pp. 654–665.

Just, R., Kurtz, B., Ammann, P., 2017. Inferring mutant utility from program
context. In: Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis. ACM, pp. 284–294.

Kohavi, R., et al., 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In: Ijcai, Vol. 14, Montreal, Canada, pp.
1137–1145.

Kudrjavets, G., Nagappan, N., Ball, T., 2006. Assessing the relationship between
software assertions and faults: An empirical investigation. In: 2006 17th
International Symposium on Software Reliability Engineering. IEEE, pp.
204–212.

Kurtz, B., Ammann, P., Delamaro, M.E., Offutt, J., Deng, L., 2014. Mutant subsump-
tion graphs. In: Software Testing, Verification and Validation Workshops
(ICSTW), 2014 IEEE Seventh International Conference on. IEEE, pp. 176–185.

Kurtz, B., Ammann, P., Offutt, J., Delamaro, M.E., Kurtz, M., Gökçe, N., 2016.
Analyzing the validity of selective mutation with dominator mutants. In:
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, pp. 571–582.

Li, N., Praphamontripong, U., Offutt, J., 2009. An experimental comparison of four
unit test criteria: Mutation, edge-pair, all-uses and prime path coverage. In:
Software Testing, Verification and Validation Workshops, 2009. ICSTW’09.
International Conference on. IEEE, pp. 220–229.

Madeyski, L., Orzeszyna, W., Torkar, R., Józala, M., 2014. Overcoming the equiv-
alent mutant problem: A systematic literature review and a comparative
experiment of second order mutation. IEEE Trans. Softw. Eng. 40 (1), 23–42.

Mathur, A.P., Wong, W.E., 1994. An empirical comparison of data flow and
mutation-based test adequacy criteria. Softw. Test. Verif. Reliab. 4 (1), 9–31.

MATLAB, 2019. version 9.6.0 (R2019a). The MathWorks Inc., Natick, Mas-
sachusetts.

Mirshokraie, S., Mesbah, A., Pattabiraman, K., 2013. Efficient javascript mutation
testing. In: 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation. IEEE, pp. 74–83.

Moonen, L., van Deursen, A., Zaidman, A., Bruntink, M., 2008. On the interplay
between software testing and evolution and its effect on program compre-
hension. In: Mens, T., Demeyer, S. (Eds.), Software Evolution. Springer, pp.
173–202.

http://refhub.elsevier.com/S0164-1212(20)30254-5/sb1
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb1
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb1
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb2
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb2
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb2
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb2
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb2
http://www.antlr.org/
https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-bcel/
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb5
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb5
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb5
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb5
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb5
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb6
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb6
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb6
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb6
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb6
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb7
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb7
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb7
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb8
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb8
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb8
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb8
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb8
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb9
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb9
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb9
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb9
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb9
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb9
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb9
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb9
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb9
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb10
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb10
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb10
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb10
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb10
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb11
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb11
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb11
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb13
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb14
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb14
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb14
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb14
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb14
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb15
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb15
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb15
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb16
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb16
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb16
http://arxiv.org/abs/1803.07901
https://github.com/hcoles/pitest
https://github.com/hcoles/slides/blob/master/slides.pdf
https://github.com/hcoles/slides/blob/master/slides.pdf
https://github.com/hcoles/slides/blob/master/slides.pdf
http://pitest.org/quickstart/mutators/
http://pitest.org/quickstart/incremental_analysis/
http://pitest.org/quickstart/incremental_analysis/
http://pitest.org/quickstart/incremental_analysis/
http://pitest.org/
http://dx.doi.org/10.1109/ICSE.1989.714449
http://dx.doi.org/10.1109/ICSE.1989.714449
http://dx.doi.org/10.1109/ICSE.1989.714449
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb24
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb24
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb24
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb25
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb25
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb25
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb25
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb25
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb26
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb26
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb26
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb27
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb27
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb27
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb28
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb28
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb28
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb28
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb28
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb29
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb29
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb29
https://github.com/mull-project/mull
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb31
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb31
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb31
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb31
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb31
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb32
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb32
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb32
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb32
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb32
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb33
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb33
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb33
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb33
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb33
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb34
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb35
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb35
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb35
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb36
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb36
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb36
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb37
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb37
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb37
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb37
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb37
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb38
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb38
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb38
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb38
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb38
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb39
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb39
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb39
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb39
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb39
https://github.com/gousiosg/java-callgraph
http://www.virtualmachinery.com/jhawkprod.htm
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb42
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb42
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb42
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb43
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb43
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb43
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb43
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb43
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb43
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb43
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb44
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb44
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb44
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb44
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb44
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb44
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb44
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb45
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb45
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb45
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb45
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb45
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb47
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb47
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb47
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb47
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb47
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb47
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb47
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb48
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb48
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb48
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb48
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb48
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb49
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb49
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb49
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb49
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb49
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb49
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb49
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb50
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb50
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb50
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb50
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb50
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb50
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb50
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb51
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb51
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb51
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb51
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb51
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb52
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb52
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb52
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb53
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb53
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb53
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb54
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb54
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb54
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb54
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb54
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb55
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb55
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb55
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb55
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb55
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb55
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb55

Q. Zhu, A. Zaidman and A. Panichella The Journal of Systems & Software 173 (2021) 110864

M

N

O

O

P

P

P

P

P

Q

S

2

S

S

S

S

T

V

V

V

ouchawrab, S., Briand, L.C., Labiche, Y., 2005. A measurement framework for
object-oriented software testability. Inf. Softw. Technol. 47 (15), 979–997.

azir, M., Khan, R.A., Mustafa, K., 2010. Testability estimation framework. Int. J.
Comput. Appl. 2 (5), 9–14.

ffutt, J., 2011. A mutation carol: Past, present and future. Inf. Softw. Technol.
53 (10), 1098–1107.

ffutt, A.J., Untch, R.H., 2001. Mutation 2000: Uniting the orthogonal. In:
Mutation Testing for the New Century. Springer, pp. 34–44.

alomba, F., Panichella, A., Zaidman, A., Oliveto, R., De Lucia, A., 2016. Automatic
test case generation: What if test code quality matters?. In: Proceedings of
the International Symposium on Software Testing and Analysis (ISSTA). ACM,
pp. 130–141.

apadakis, M., Shin, D., Yoo, S., Bae, D.-H., 2018. Are mutation scores correlated
with real fault detection? a large scale empirical study on the relationship
between mutants and real faults. In: 40th International Conference on
Software Engineering, May 27-3 June 2018, Gothenburg, Sweden.

edregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn:
Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.

etrovic, G., Ivankovic, M., 2018. State of mutation testing at google. In:
Proceedings of the International Conference on Software Engineering in
Practice (ICSE SEIP).

etrovic, G., Ivankovic, M., Kurtz, B., Ammann, P., Just, R., 2018. An industrial
application of mutation testing: Lessons, challenges, and research directions.
In: 2018 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICST Workshops). IEEE, pp. 47–53.

uinlan, R., 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA.

chuler, D., Zeller, A., 2013. Checked coverage: an indicator for oracle quality.
Softw. Test. Verif. Reliab. 23 (7), 531–551.

019. Scikit-learn randomforestregressor. https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestRegressor.html [Online; accessed
18-September-2019].

ingh, Y., Saha, A., 2010. Predicting testability of eclipse: a case study. J. Softw.
Eng. 4 (2), 122–136.

padini, D., Palomba, F., Zaidman, A., Bruntink, M., Bacchelli, A., 2018. On the
relation of test smells to software code quality. In: Proceedings of the
International Conference on Software Maintenance and Evolution (ICSME).
IEEE, pp. 12–23.

taats, M., Whalen, M.W., Heimdahl, M.P., 2011. Better testing through oracle
selection (NIER track). In: Proceedings of the 33rd International Conference
on Software Engineering. ACM, pp. 892–895.

uri, P.R., Singhani, H., 2015. Object oriented software testability survey at
designing and implementation phase. Int. J. Sci. Res. 4 (4), 3047–3053.

osun, A., Bener, A., 2009. Reducing false alarms in software defect prediction
by decision threshold optimization. In: Proceedings of the 2009 3rd Inter-
national Symposium on Empirical Software Engineering and Measurement.
IEEE Computer Society, pp. 477–480.

era-Pérez, O.L., Danglot, B., Monperrus, M., Baudry, B., 2017. A comprehensive
study of pseudo-tested methods. Empir. Softw. Eng. 1–31.

isser, W., 2016. What makes killing a mutant hard. In: Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering.
ACM, pp. 39–44.

oas, J.M., 1992. Pie: A dynamic failure-based technique. IEEE Trans. Softw. Eng.
18 (8), 717–727.
20
Whalen, M., Gay, G., You, D., Heimdahl, M.P., Staats, M., 2013. Observable
modified condition/decision coverage. In: Software Engineering (ICSE), 2013
35th International Conference on. IEEE, pp. 102–111.

Wold, S., Esbensen, K., Geladi, P., 1987. Principal component analysis. Chemom.
Intell. Lab. Syst. 2 (1–3), 37–52.

Woodward, M.R., Hennell, M.A., Hedley, D., 1979. A measure of control flow
complexity in program text. IEEE Trans. Softw. Eng. (1), 45–50.

Yao, X., Harman, M., Jia, Y., 2014. A study of equivalent and stubborn mutation
operators using human analysis of equivalence. In: Proceedings of the 36th
International Conference on Software Engineering. ACM, pp. 919–930.

Zhang, Y., Mesbah, A., 2015. Assertions are strongly correlated with test suite
effectiveness. In: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. ACM, pp. 214–224.

Zhang, J., Zhang, L., Harman, M., Hao, D., Jia, Y., Zhang, L., 2018. Predictive
mutation testing. IEEE Trans. Softw. Eng. 1. http://dx.doi.org/10.1109/TSE.
2018.2809496.

Zhang, F., Zheng, Q., Zou, Y., Hassan, A.E., 2016. Cross-project defect prediction
using a connectivity-based unsupervised classifier. In: Proceedings of the
38th International Conference on Software Engineering. ACM, pp. 309–320.

Zhou, Y., Leung, H., Song, Q., Zhao, J., Lu, H., Chen, L., Xu, B., 2012. An in-depth
investigation into the relationships between structural metrics and unit
testability in object-oriented systems. Sci. China Inf. Sci. 55 (12), 2800–2815.

Zhu, Q., 2019. Github repository for mutation observer. https://zenodo.org/badge/
latestdoi/147203995 [Online; accessed 18-September-2019].

Zhu, Q., Panichella, A., Zaidman, A., 2018a. An investigation of compression
techniques to speed up mutation testing. In: 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation (ICST). IEEE, pp.
274–284.

Zhu, Q., Panichella, A., Zaidman, A., 2018b. A systematic literature review of
how mutation testing supports quality assurance processes. Softw. Test.
Verif. Reliab. 28 (6), e1675. http://dx.doi.org/10.1002/stvr.1675, arXiv:https://
onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1675 URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/stvr.1675 e1675 stvr.1675.

Qianqian Zhu received master’s degree from Imperial College London in 2014
and Ph.D. degree in Software Engineering from Delft University of Technology
in 2020. Her research interests include software testing, debugging, software
quality, fault predication, mutation testing, and static analysis.

Andy Zaidman received M.Sc. (2002) and Ph.D. (2006) from the University of
Antwerp, Belgium. He is currently a full professor in software engineering at
the Delft University of Technology, The Netherlands. His research interests are
in software evolution and software testing.

Annibale Panichella received M.Sc. and Ph.D. from the University of Salerno,
Italy, in 2010 and 2014, respectively. He is currently an Assistant Professor
in the Software Engineering Research Group (SERG) at Delft University of
Technology (TU Delft) in Netherlands. His research interests include security
testing, evolutionary testing, search-based software engineering, textual analysis,
and empirical software engineering.

http://refhub.elsevier.com/S0164-1212(20)30254-5/sb56
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb56
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb56
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb57
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb57
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb57
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb58
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb58
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb58
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb59
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb59
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb59
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb60
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb60
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb60
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb60
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb60
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb60
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb60
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb61
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb61
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb61
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb61
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb61
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb61
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb61
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb62
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb62
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb62
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb62
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb62
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb62
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb62
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb64
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb64
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb64
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb64
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb64
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb64
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb64
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb65
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb65
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb65
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb66
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb66
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb66
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb68
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb68
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb68
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb69
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb69
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb69
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb69
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb69
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb69
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb69
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb70
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb70
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb70
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb70
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb70
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb71
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb71
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb71
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb72
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb72
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb72
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb72
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb72
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb72
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb72
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb73
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb73
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb73
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb74
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb74
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb74
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb74
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb74
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb75
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb75
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb75
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb76
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb76
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb76
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb76
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb76
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb77
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb77
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb77
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb78
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb78
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb78
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb79
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb79
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb79
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb79
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb79
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb80
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb80
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb80
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb80
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb80
http://dx.doi.org/10.1109/TSE.2018.2809496
http://dx.doi.org/10.1109/TSE.2018.2809496
http://dx.doi.org/10.1109/TSE.2018.2809496
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb82
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb82
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb82
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb82
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb82
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb83
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb83
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb83
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb83
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb83
https://zenodo.org/badge/latestdoi/147203995
https://zenodo.org/badge/latestdoi/147203995
https://zenodo.org/badge/latestdoi/147203995
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb85
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb85
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb85
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb85
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb85
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb85
http://refhub.elsevier.com/S0164-1212(20)30254-5/sb85
http://dx.doi.org/10.1002/stvr.1675
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1675
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1675
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1675
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1675
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1675
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1675

	How to kill them all: An exploratory study on the impact of code observability on mutation testing
	Introduction
	Background
	Mutation testing
	Existing object-oriented metrics for testability
	Code observability

	Experimental setup
	Mutation testing
	Subject systems
	Tool implementation
	Design of experiment
	RQ1–RQ3
	RQ4

	Evaluation metrics

	RQ1–RQ3 testability versus observability versus combination
	Spearman's rank order correlation
	Testability
	Observability

	Random forest

	RQ4 code refactoring
	Case 1: plot.MeterPlot::drawValueLabel from JFreeChart
	Case 2: axis.SymbolAxis::drawGridBands from JFreeChart
	Case 3: builder.IDKey::hashCode from Apache Commons Lang
	Case 4: AbstractCategoryItemRenderer::drawOutline from JFreeChart
	Case 5: builder.ToStringStyle::setUseShortClassName from Apache Commons Lang
	Case 6: exception.TooManyEvaluationsException::<init> from Apache Commons Math
	RQ4 summary
	Discussion

	Threats to validity
	Related work
	Conclusion & future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

