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System reliability of slopes using multimodal optimisation

C. REALE�†, J. XUE‡ and K. GAVIN�†

Many engineered and natural slopes have complex geometries and are multi-layered. For these slopes
traditional stability analyses will tend to predict critical failure surfaces in layers with the lowest mean
strength. A move toward probabilistic analyses allows a designer to account for uncertainties with
respect to input parameters that allow for a more complete understanding of risk. Railway slopes, which
in some cases were built more than 150 years ago, form important assets on the European rail network.
Many of these structures were built at slope angles significantly higher than those allowed in modern
design codes. Depending on the local geotechnical conditions these slopes may be susceptible to deep-
seated failure; however, a significant number of failures each year occur as shallow translational slips
that develop during periods of high rainfall. Thus, for a given slope, two potential failure mechanisms
might exist with very similar probabilities of failure. In this paper a novel multimodal optimisation
algorithm (‘Slips’) that is capable of detecting all feasible probabilistic slip surfaces simultaneously is
presented. The system reliability analysis is applied using polar co-ordinates, as this approach has been
shown to be less sensitive to local numerical instabilities, which can develop due to discontinuities on
the limit state surface. The approach is applied to two example slopes where the complexity in terms of
stratification and slope geometry is varied. In addition the methodology is validated using a real-life
case study involving failure of a complex slope.

KEYWORDS: embankments; landslides; limit equilibriummethods; numerical modelling; slopes; statistical
analysis

INTRODUCTION
Within the geotechnical engineering community the signifi-
cant uncertainties associated with slope stability analyses
mean that the area has been at the forefront of the application
of reliability-based design approaches, (see Whitman &
Bailey, 1967; Christian et al., 1994; Juang et al., 1998;
Malkawi et al., 2000; Baecher & Christian, 2005). Although
a range of uncertainties exist when designing new slopes or in
the evaluation of existing slopes, the principal uncertainty
which concerns geotechnical engineers when evaluating slope
stability involves quantifying the strength (and shear resist-
ance) of the different soil layers. Owing to the extreme vari-
ability in most natural and man-made slopes, this uncertainty
cannot be eliminated, or even reduced considerably, without
unreasonable cost (Chowdhury & Xu, 1995).
Earth slopes are commonlyusedas flooddefences, damsand

as embankments and cuttings along road and rail networks. As
a result, slope instability exposes members of the public to sig-
nificant risk. To address this risk it is necessary to quantify
accurately the disturbing force (applied loads, gravity forces
and so on) and the capacity (which depends on the shear resis-
tancealong apotential failure surface) of a slope andassociated
uncertainties in order to predict failure zones as accurately as
possible. Quantifying the load is a relatively simple task for
most slopes, as there is reasonably little variation in soil and
rock unit weights; as a result, gravitational loads and live loads
due to traffic and so on can be quantified relatively accurately.

However, the slope’s capacity (resistance) is typically much
harder to predict as the soil’s shear strength can vary con-
siderably, both spatially and temporally, due towater table level
changes and the development of wetting fronts during periods
of intense rain (Gavin & Xue, 2009). Given that the shear
strength of a soil varies with moisture content (Fredlund &
Rahardjo, 1993; Vanapalli et al., 1996; Ridley et al., 2004) and
the moisture content is controlled by the climate it is subjected
to, the effect of climate on near-surface soils is inherently un-
certain. To deal with these uncertainties in deterministic design
it is usual to adopt conservative fixed parameter values
(Nguyen & Chowdhury, 1985). Although this approach has
been used extensively, in practice it has significant drawbacks.
In uniform soils adoption of conservative design values for
parameters can be excessively conservative, whereas for highly
variable soils the fixed parameter values selected may not
adequately encapsulate the level of variability present and
unsafe designs can result (Morgenstern, 2000). An additional
consideration is that the design of effective remediation stra-
tegies becomes increasingly challenging when real slope beha-
viour is not accurately modelled. As a result, over recent
decades significant research has been carried out investigating
the application of reliability methods to slope stability prob-
lems (Christian et al., 1994; Low & Tang, 1997; Low et al.,
1998; Hassan & Wolff, 1999; Babu & Murthy, 2005; Gavin &
Xue, 2009) where variables are described by distributions
instead of fixed values. These approaches have the inherent
benefit of allowing designers to quantify the level of uncer-
tainty present and significantly reduce risk. A thorough review
of uncertainty and variability in geotechnical engineering can
be found in Phoon & Kulhawy (1999a, 1999b) and Baecher &
Christian (2005), andanumberof reviews havebeen carried out
on reliability analysis as it pertains to geotechnical engineering
(Phoon, 2008; Cheng et al., 2015; Reale et al., 2016).
In general, probabilistic methods can be classified into two

separate categories: approximate methods such as first-order
second moment (FOSM) and simulation-based approaches
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such as the Monte Carlo method. Over recent years with
advances in computing power there has been renewed interest
in simulation methods, with numerous authors proposing
quasi Monte Carlo methods (Malkawi et al., 2001; Wang
et al., 2011; Cheng et al., 2015) as a means of finding the
critical probabilistic slip surface. Simulation techniques can
be used to find both the system reliability (Griffiths &
Fenton, 2004; Huang et al., 2010) and the reliability index for
a given slip surface. However, this paper proposes an
alternative approximate technique for rapidly finding the
system reliability of a slope with multiple failure mechanisms.

To date, the majority of applications of probabilistic
analysis to slope stability problems have involved a two-step
decoupled approach. In the first step the location of the
critical slip surface is established using a deterministic
approach. In the second step a probabilistic analysis is
performed wherein the critical inputs are described using
some appropriate statistical distribution to obtain the critical
reliability index. However, as the slip surface in question is
still the deterministic critical slip surface, this approach is
unlikely to find the true minimum reliability index. Over
recent years researchers (Hassan & Wolff, 1999;
Bhattacharya et al., 2003; Xue & Gavin, 2007, among
others) have incorporated sophisticated techniques to search
simultaneously for the critical probabilistic surface and
critical design points of input parameters, allowing for a
more accurate minimum reliability index. These approaches
represent a significant advance on earlier approaches, but
they still only provide the user with the most critical slip
surface (lowest reliability index) for a given slope condition or
state. This is clearly unsatisfactory, as over the design life of a
slope its condition (water table position, degree of saturation
and so on) will change. For example, for a slope where
deep-seated and shallow failures have similar likelihoods of
occurrence, although a deep-seated failure mode might be
more likely during the dry season, during a period of
prolonged rainfall a shallow slip might develop and both
failure modes should be identified in an analysis.
Furthermore, large slopes with complex geometries (e.g.
multiple benches) can have multiple viable failure surfaces
with similar failure probabilities, the criticality of which is
typically determined by the triggering mechanism which
presents itself first.

To address this deficit, the current paper uses a novel
optimisation method, ‘Slips’ (standardised locally informed
particle swarm), which is able to simultaneously converge to
multiple different optima through the use of a sophisticated
niching algorithm. When combined with a suitable limit
state and first-order reliability method (‘Form’) this allows
for the location of multiple distinct ‘critical’ probabilistic slip
surfaces and the simultaneous determination of their related
reliability indices. A polar co-ordinate defined search space is
used instead of the more traditional Cartesian co-ordinate
system, as this has been shown to be less sensitive to local
discontinuities on the limit state surface (Val et al., 1996). As
most slopes have multiple viable slip surfaces, the overall
failure probability of the slope as a system should be
evaluated, not just that of the critical failure surface; the
probability of failure of the critical failure surface may be
significantly less than that of the slope as a whole (Oka &
Wu, 1990; Chowdhury & Xu, 1995; Huang et al., 2010;
Zhang et al., 2011; Ji & Low, 2012). Therefore, this paper
considers the correlation between different viable slip
surfaces and uses that correlation to determine upper and
lower bounds for the system’s probability of failure.
Non-circular slip circles are used as these allow a wider
range of potential slip surface shapes to be adopted, ranging
from translational slips, which typically present as a shallow
wetting front depth (usually less than 2 m deep) and which

form parallel to the slope surface, to the circular or
near-circular surface associated with deep-seated failures.
The model is applied to three case studies and the results are
discussed in the final section.

METHODOLOGY
General overview of reliability-based design
Reliability methods provide a framework which allows

designers to incorporate uncertainty into stability calcu-
lations and thereby offer a more meaningful interpretation of
safety than deterministic calculations. The performance
function (g(X)) or limit state function of a slope can be
expressed as the difference between the capacity (C ) and
demand (D), see equation (1).

g Xð Þ ¼ C �Dð Þ
. 0; safe state

¼ 0; limit state

, 0; failure state

8><
>:

g Xð Þ ¼ g x1; x2; . . . ; xnð Þ for i ¼ 1 to n

ð1Þ

where X is the vector of the different random variables (xi) in
the problem. A reliability analysis typically provides two
equivalent measures of safety: a reliability index, β, and a
probability of failure, Pf. The probability of failure is defined
as the probability of the performance function being less than
zero, see equation (2).

Pf ¼ P g Xð Þ � 0½ � ð2Þ
The reliability index is defined as the distance in standard

deviations from the mean of the performance function to the
design point, equation (3).

β ¼ E g Xð Þ½ �
σ g Xð Þ½ � ð3Þ

where E[g(X)] is the mean of the performance function at the
design point (critical slip surface) and σ[g(X)] is its standard
deviation, see Fig. 1. When performing slope stability
analyses the performance function of the slope is typically
presented in the form shown in equation (4).

g Xð Þ ¼ FOS� 1�0 ð4Þ
where FOS is the factor of safety.

First-order reliability methods (Form)
In a Form analysis all random variables (X) that define the

performance function g(X) are first transformed into the

f(X )

0 g (X ) = C – D

βσ [g(X )]

β = E [g(X )]
σ [g(X )]

E [g(X )]

Pf

Fig. 1. Relationship between reliability index, probability of failure
and performance function for a normally distributed performance
function
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standard normal space (X̄), see Fig. 2. In this reduced
variable space (X̄), the reliability index, β, is equivalent to the
minimum distance from the origin to the limit state surface
defined by g(X̄)¼ 0. Traditionally this distance was deter-
mined by performing a cosine directional search along the
limit state surface. However, Val et al. (1996) noted that this
technique was unlikely to locate the minimum reliability
index when considering non-linear performance functions.
Following the work of Val et al. (1996), Xue & Gavin (2007)
described a method that transforms the standardised vari-
ables described in equation (4) from Cartesian co-ordinates
into polar coordinates using radial distance (r) and polar
angles (θ1, θ2, … , θN�1). In this paper the non-circular slip
model is expanded to account for multimodal system
reliability. The polar coordinates at the design point for a
number of variables can be described using equations (5) and
(6), where N is the number of variables �1. Fig. 2 shows the
process diagrammatically.

X̄ i ¼ rωi ð5Þ
where ωi ¼ sin θN�iþ1ΠN�i

i¼1 cos θi and is equivalent to the
directional cosine vector typically used in Form analyses;
therefore

X̄ i ¼ r sin θN�iþ1Π
N�i
i¼1 cos θi; i ¼ 1; 2; . . . ;N ð6Þ

where sin θN¼ 1, and

�1=2ð Þπ � θi � 1=2ð Þπ
i ¼ 1; 2; . . . ;N � 2ð Þ; 0 � θN�1 � 2π

The reliability index is then defined by equation (7)
where X̄ is the vector of reduced variables described in
equation (6).

β ¼ min
X̄eψ

X̄
T
X̄

� �1=2
ð7Þ

System reliability in polar coordinates
A system may have multiple distinct failure modes or limit

states; in such circumstances the exceedance of any individ-
ual limit state constitutes a system failure. In terms of
slopes stability this means that there are many potential
slip surfaces present within the slope. These failure

surfaces may or may not be interdependent, that is, some
slip surfaces may overlap while others may be considered as
independent events. Therefore, to evaluate system reliability,
the correlation between the different possible failure modes
(ρij) needs to be determined. Ji & Low (2012) suggest ρij can
be obtained from the following relationship between
Cartesian design points and failure mode correlation
coefficients.

ρij ¼
X̄

T
i X̄ j

βiβj
ð8Þ

Transforming equation (8) into polar form using
equation (5) the correlation coefficient between failure
modes i and j becomes

ρij ¼
rωð ÞTi rωð Þj

βiβj
ð9Þ

However, from Fig. 2 it can be seen that at the design point
r¼ β, therefore at the design point equation (9) reduces to
equation (10).

ρij ¼ ωT
i ωj ð10Þ

Extrapolating equation (10) to account for all failure
modes, the correlation matrix (ρ) for the entire system can be
evaluated using equation (11), where ω is a vector containing
all possible failure modes.

ρ ¼ ωTω ð11Þ
Kounias (1968) and Ditlevsen (1979) suggested a bimodal

bounded approach for estimating the system probability
of failure (Pf,sys) for systems with several failure modes.
Ma & Ang (1981) note that these bounds are typically
reasonably narrow except for situations where numerous
individual failure modes have large failure probabilities
(e.g. pf. 10�2). The approach presented in equation (12)
requires the probability of failure and correlation of all failure
modes to have been evaluated prior to computation. The
failure modes and corresponding correlation matrix should
be sorted from most likely (Pf,max) to least likely (Pf,min) in
order to provide the narrowest possible probability bounds
(Ang & Tang, 1984; Haldar & Mahadevan, 2000).

Pf ;max þmax
Pm
i¼2

Pf ið Þ � Pi�1

j¼1
Pf i; jð Þ; 0

" #
� Pf ;sys

� min
Pm
i¼1

Pf ið Þ � Pm
i¼2

max
j,i

Pf i; jð Þ; 1
� � ð12Þ

where Pf(i, j) represents the probability of both failure modes
i and j occurring simultaneously. Depending on the corre-
lation between failure modes this term can be substantial but
is notoriously difficult to evaluate. Ditlevsen (1979) proposed
a simplified methodology for evaluating this term provided
all inputs used were Gaussian random variables, see
equations (13) and (14).

max a; b½ � � Pf i; jð Þ � aþ b; for ρi;j . 0 ð13aÞ

0 � Pf i; jð Þ � min a; b½ �; for ρi;j , 0 ð13bÞ
where a and b are defined as follows

a ¼ Φ �βið ÞΦ � βj � ρijβiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2ij

q
0
B@

1
CA ð14aÞ

Limit state
g(X ) = 0

Failure state
g(X ) < 0

Safe state
g(X ) < 0

X1

Design point

X2

β

θ

r

Fig. 2. Relationship between design point and reliability index for a
‘Form’ analysis
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b ¼ Φ �βj
� �

Φ � βi � ρijβjffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2ij

q
0
B@

1
CA ð14bÞ

This reduces the complexity of the problem to a straight-
forward computation of the reliability indices of individual
failure modes and their corresponding correlation coeffi-
cients, thus allowing the user to obtain an upper and lower
bound estimate for Pf,sys. Low et al. (2011) provide a VBA
(visual basic for applications) code for easy computation of
equations (13) and (14).

Non-circular slip surfaces
The limit state equation adopted in this paper is Bishop’s

simplified method adapted for non-circular slip surfaces, see
equation (15). However, it is important to note that a wide
variety of slope stability limit equilibrium methodologies
(LEMs) exist and, depending on the situation, a different
LEM may be more applicable. For example, as Bishop’s
simplified method does not consider horizontal force equi-
librium, it should not be applied to situations where hori-
zontal forces might be significant (e.g. earthquake loading).
Horizontal loads could be easily incorporated in the
methodology presented through the use of a different
failure model. An extensive review of LEMs suitable for
slope stability analysis can be found in Fredlund & Krahn
(1977). Bishop’s non-circular model was used in this study
as it can accommodate failure planes developing parallel
to the slope’s surface, along weak layers, as well as the more
classical circular slip shape. When used in conjunction with a
multimodal search algorithm this allows for better assess-
ment of stability and makes it less likely that an important
failure mode could be overlooked.

where n is the number of slices; Δx is the slice width; αi is the
inclination angle of the base of the slice; Wi is the weight of
the slice; Ui is the positive pore pressure within the slice if the
water table is above the base of the slice; ci is the cohesion
value and ϕi is the internal angle of friction, both taken at the
mid-point of the base of the slice.

The performance function is shown in equation (16). The
FOS term in equation (15) reduces to 1 at the limit state.

The following constraints are necessary in order for a
successful optimisation to occur; they are described in greater
detail in Xue & Gavin (2007)

�1=2ð Þπ � θi � 1=2ð Þπ i ¼ 1; 2; . . . ; 2k � 2ð Þ
0 � θ2k�1 � 2π
xn � x0 � 0

sec αi
1þ tan ϕi tan αi

� 0�2 i ¼ 0; 1; 2; . . . ; n� 1ð Þ
PxðxiÞ � yi � 0 i ¼ 1; 2; . . . ; n� 1ð Þ
yi �H � 0 i ¼ 1; 2; . . . ; n� 1ð Þ
E cið Þ þ rωiσ cið Þ � 0 i ¼ 1; 2; . . . ; kð Þ
E tan ϕið Þ½ � þ rωkþiσ tan ϕið Þ½ � � 0 i ¼ 1; 2; . . . ; kð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

where k represents the soil layer in question;H is the height to
a hard stratum; y is the height of the slip; and Px is the
function which describes the slope profile. Fig. 3 depicts these
parameters graphically.

Optimisation procedure
The proposed optimisation procedure Slips (standardised

locally informed particle swarm) is an enhanced version of an
optimisation model previously used by the authors termed
‘Lips’ – locally informed particle swarm (Qu et al., 2013;
Reale et al., 2015). These are both variations of particle
swarm optimisation (PSO) which have been adapted to
enhance their ability to solve multimodal problems. An
overview of PSO algorithms is provided below. A more
in-depth understanding of PSO algorithms can be gained by
reading Kennedy (2010).

Particle swarm algorithms. Eberhart & Kennedy (1995)
developed an optimisation method based on the social
organisation of swarm animals (birds, fish and so on),
which seek food collaboratively, termed PSO. In PSO, each
particle in the swarm represents a solution to an optimisation
problem. In deference to evolutionary algorithms, PSO
particles do not use mutation, crossover or breeding to
optimise (see Xue & Gavin, 2007); therefore, all particles
survive until the end of the optimisation. This can be a
drawback if particles are initially located far from a
minimum, as there is no shortcut to the solution and
particles will have to move there iteratively. The swarm
contains a predetermined number of particles, each of which
moves with a velocity about the search space seeking a better
solution (in this case minimum β). In every iteration,

each particle updates both its position (U ) and velocity (V )
based on both that particle’s individual best experience
(lowest β) so far (local extrema, termed ‘pbest’) and the
swarm’s best experience so far (global extrema, termed
‘gbest’). When a particle is in the locale of a local or
global minimum it slows down; if there is no minimum
present, the particle increases its velocity and moves to a
different area of the search space. Whenever a particle iterates

to a better pbest than the current gbest, that particle turns
into the new gbest. The old gbest is then demoted to the
status of a local minimum. In this way every particle is
constantly aware of the most ‘profitable’ areas of the search
space.
The position U and velocity V of each particle are

calculated using the following equations (17) and (18)

Vtþ1
i;d ¼ ϑ Vt

i;d þ c1 rand1i;d pbesti;d �Ut
i;d

� �
þ c2 rand2i;d gbesti;d �Ut

i;d

� �
ð17Þ

G Xð Þ ¼
Pn

i¼1 ciΔxþ Wi �Uið Þ tan ϕið Þ½ � sec2 αi= 1þ tan ϕið Þ tan αi½ �� �Pn
i¼1 Wi tan αi

� 1 ð16Þ

FOS ¼
Pn

i¼1 ciΔxþ Wi �Uið Þ tan ϕið Þ½ � sec2 αi= 1þ tan ϕið Þ tan αi½ �=FOS
� �Pn

i¼1 Wi tan αi
ð15Þ
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Utþ1
i;d ¼ Ut

i;d þ Vt
i;d ð18Þ

where i is the target particle’s index, d is the dimension of the
search space, c1 and c2 are constants controlling the particle’s
acceleration; pbesti,d represents a particle i’s best position to
date; gbesti,d represents the swarm’s best position to date; ϑ is
the inertia weight which balances the search between global
and local performance. The value assigned to ϑ is important,
as it prevents particles from quickly abandoning search in
their respective area every time the gbest is updated; rand1i,d
and rand2i,d are random numbers between 0 and 1.
A deficiency of PSO when applied to multimodal problems

is that every particle is updatedwith the position of the global
optimum solution, therefore given sufficient generations
every particle ends up being drawn to the global minimum.

Standardised locally informed particle swarm optimisation
(Slips)
In multimodal problems, numerous global or near-global

optima exist; however, most optimisation models are only
capable of searching for one extrema per run. Traditionally
multimodal problems required optimisation techniques to be
run several times to find all solutions. This requires
substantial user intervention to ensure previous solutions
are screened out of the search space to prevent reoccurrence.
Therefore, solving multimodal problems can be a laborious
task using traditional techniques. By defining several
sub-swarms, numerous PSO-based algorithms (Qu &
Suganthan, 2010; Qu et al., 2012) have been able to define
stable niches within the search space, which facilitates
optimising to multiple peaks. Qu et al. (2013) developed a
variant of PSO, termed ‘Lips’, which differs from standard
PSO in that each particle within the swarm is only allowed to
share information with other particles in its neighbourhood.
In this instance, a neighbourhood is defined as the nsize
closest particles to the particle in question, measured in
Euclidian distance. This limits the number of particles which
are aware of the location of the global best. Instead each
particle is aware of its personal best solution (pbest) and that
of its neighbourhood, thus easily facilitating the development
of distinct niches within the search space. This means that
every particle can learn from those around it, but its search
cannot be altered by particles on the opposite side of the
search space.
Reale et al. (2015) successfully adapted this optimisation

procedure to solve probabilistic slope stability problems using
Bishop’s circular slip surface. However, when the optimis-
ation procedure was applied to non-circular slip surfaces the

optimisation process became erratic, as there were substan-
tially more variables to be optimised. The algorithm’s poor
performance when presented with higher-dimensional data
can be attributed to the difficulty in determining each
particle’s nearest neighbours. This is partly owing to the
scale effect of increased dimensions, but is primarily a result
of the optimisation variables being of different type (material
and geometric) and hence scale; that is, the variables meas-
ured in large-valued units dominate the search process. This
problem was overcome by modifying the Lips algorithm to
determine the nearest neighbours using standardised or
normalised Euclidian distance instead of Euclidian distance.
By using standardised Euclidian distance to measure nearest
neighbours, the difference in scale between the different
dimensions is no longer an influencing factor, as the standard
space is scale invariant and unitless. This updated algorithm
is termed Slips. The standardised Euclidean distance between
two particles A and B can be calculated using equation (19),
where si is the sample standard deviation of the neighbour-
hood containing particles a and b.

dist A;Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

Ai � Bið Þ2
s2i

vuut ð19Þ

The equations to update the velocities (V ) and positions
(U ) of the particles remain the same as those used in the Lips
algorithm, equations (18)–(21). Table 1 describes the optim-
isation process.

Vtþ1
i;d ¼ ϑ Vt

i;d þ φ Pt
i;d �Ut

i;d

� �h i
ð20Þ

Pt
i;d ¼

Pnsize
j¼1 φj nbestj

� �
=nsize

φ
ð21Þ

where φj is a random distributed number in the range of
[0, (4·1)/nsize] and φ is equal to the summation of φj; nbestj is
the jth nearest neighbourhood to the ith particle’s personal
best (pbest); nsize is the neighbourhood size; and ϑ is the
inertia weight which balances the search between global and
local performance. The optimisation process is terminated
when the function evaluations limit is reached. The function
evaluations limit is the maximum number of times the
velocity and position vectors are updated for each particle. Its
value should be sufficiently high to obtain a repeatable level
of accuracy, to the desired number of decimal places. The
greater the number of optima to be located within the search
space, the larger the function evaluations limit should be. If
the search space is complex, the particle population and
function evaluations limit should be increased to improve
accuracy.

Ground surface
Px(x)

(x0, y0)

(xi, yi)

(x1, y1)

(xn, yn)
Layer 1

n

i

3
2

1
y

X

H Layer k

Layer i

Fig. 3. Various parameters used to define non-circular slip circles in a
slope with k layers (Xue & Gavin, 2007)

Table 1. Slips schema

Step 1 Randomly generate initial solutions
Step 2 Evaluate the initial pbests for the entire population (n)

For i¼ 1:n
Step 3 Establish neighbourhood of nsize particles for ith

particle using equation (19)
Step 4 Identify the neighbourhood best for ith particle.
Step 5 Update the particles velocity (equation (18))
Step 6 Update the particles position (equation (17))
Step 7 Evaluate new ith particle solution
Step 8 Update ith particle pbest

End for
Step 9 Terminate if stopping criteria are met otherwise repeat

from step 3
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RESULTS AND DISCUSSION
Case study 1: railway embankment

A 10 m high embankment composed of soft clay fill
founded on a stiffer clay deposit was chosen for this case
study. The embankment is inclined at 26·5° to the horizontal,
see Fig. 4. The soil properties used for the case study are
summarised in Table 2. Normal distributions were used to
model all parameters. The Slips model detected four
representative slip surfaces, shown in Fig. 5; of these four
slip surfaces, three passed through the fill layer into the
underlying stiff clay-bearing layer. These slip surfaces all had
reliability indices greater than 2·4 and could be considered
reasonably safe. However, the critical slip surface stayed
within the weaker embankment fill and as a result had a
significantly lower reliability index of 1·0. This corresponds
to a failure probability of 0·1587. The correlation coefficients
between the slip surfaces (e.g. between m1 and m2, and so on)
were calculated using equation (11) and the results are shown
in Table 3, together with the bounds for system probability of
failure. Owing to the large discrepancy in safety between the
different failure modes the system probability of failure
bounds (see Table 3) are reasonably narrow and are heavily
influenced by the critical failure mode. The co-ordinates of
the detected slip circles and polar angle design points are
given in Table 4.

Case study 2: multi-layered embankment
The second case study outlined here is a hypothetical

example of a large, multi-layered embankment with a berm.
The embankment consists of two well-defined fill layers
overlying a 10 m deep deposit of stiff glacial till. The
geometry used in this example is shown in Fig. 6 and the
soil properties are summarised in Table 5. Normal

distributions were used to model all parameters. The water
table was assumed to be at the top of the glacial till layer.
Slips detected five distinct failure modes, which can be seen

in Fig. 7. The most likely failure mode was found to be a
relatively small slide, which did not affect fill layer 1. It had a
minimum reliability index of 3·41, which was substantially
less than the four other failure modes detected, see Table 6.
Therefore, similarly to case study 1, the failure probability of
the critical slip surface (3·2146� 10�4) has a massive
influence on the system probability bounds. As a result
there is virtually no difference in this example between the
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Fig. 4. Geometry chosen for case study 1

Table 2. Soil properties and associated uncertainties for case study 1

Clay fill Clay-bearing layer

c′:
kPa

ϕ:
deg

γ:
kN/
m3

c′:
kPa

ϕ:
deg

γ:
kN/
m3

Mean 10 10 18 25 12 18
Std deviation 2 1 — 5 1·2 —
Coefficient of
variation

0·2 0·1 — 0·2 0·1 —
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Fig. 5. Representative non-circular failure modes detected using Slips

Table 3. Failure mode correlation matrix, reliability indices and
system probability of failure bounds for case study 1

Failure mode Correlation matrix, ρ β

m1 m2 m3 m4

m1 1 0·6662 0·3199 0·5426 1·00
m2 0·6662 1 0·7535 0·9293 2·40
m3 0·3199 0·7535 1 0·8106 2·83
m4 0·5426 0·9293 0·8106 1 3·33

System probability of failure bounds
Lower: 0·1587 Upper: 0·1611
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upper and lower system probability of failure bounds. The
polar design points, slip circle y co-ordinates and entry and
exit points for case study 2 can be found in Table 7.

Case study 3: Congress St Cut, Chicago
The Congress St Cut, Chicago cutting failure originally

reported by Ireland (1954), has been extensively used as a

validation case study in the literature (Oka & Wu, 1990;
Chowdhury & Xu, 1995; Liang et al., 1999, among others).
The approximate profile of the cut is presented in Fig. 8. In
this paper the shear strength of the three clay layers was
modelled used normal distributions, and the strength of the
sand fill layer was modelled using deterministic values, as it
has negligible influence on the analyses. The material
properties and associated uncertainties used in this example

Table 4. Co-ordinates of non-circular slip circles and polar thetas obtained from Slips for case study 1

Entry point: m y1: m y2: m y3: m y4: m y5: m Exit point: m θ1 θ2 θ3 θ4 β Failure mode

6·54 6·19 6·07 6·16 7·44 10·61 26·94 1·21 0·28 0·65 0·95 1·00 1
4·96 4·52 3·43 3·91 6·10 10·61 30·07 0·50 0·86 0·52 1·01 2·40 2
4·74 3·21 3·88 4·83 6·32 8·55 26·27 0·14 0·84 0·49 0·46 2·83 3
1·99 2·06 0·62 1·22 3·12 9·06 25·42 0·39 1·15 0·44 1·32 3·33 4

10 m 15 m

40°

10·0 m fill 1

9·0 m fill 2

Hard stratum

10·0 m glacial till

Fig. 6. Slope geometry for case study 2

Table 5. Soil properties and associated uncertainties for case study 2

Fill 1 Fill 2 Glacial till

c′: kPa ϕ: deg γ: kN/m3 c′: kPa ϕ: deg γ: kN/m3 c′: kPa ϕ: deg γ: kN/m3

Mean 10 28 18 8 29 18·5 5 36 20
Std deviation 1 1·4 — 1·2 2·9 — 1 3·6 —
Coefficient of variation 0·1 0·05 — 0·15 0·1 — 0·2 0·1 —
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Fig. 7. Five most likely failure modes detected by the Slips algorithm
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are presented in Table 8. The water table is assumed to be
coincident with the base of the sand layer.

As a result of the analysis, five distinct slip surfaces were
identified, see Fig. 9. The critical slip surface, m1, was found
to have a failure probability of 0·2921. The correlation matrix
between the different slip surfaces and their reliability indices
can be seen in Table 9. The slip circle co-ordinates’ polar
thetas following optimisation can be seen in Table 10. Owing
to the presence of several slip surfaces with extremely poor
reliability indices, the upper and lower system failure bounds
are substantially different from one another. Furthermore, as

several near-critical slip surfaces exist, the lower bound
failure probability of 0·32844 is considerably higher than that
of the critical failure surface. The system upper bound of

Table 6. Correlation matrix showing the correlation indices between different slip modes and associated reliability indices. The resultant system
failure probabilities are below

Failure modes Correlation matrix, ρ

m1 m2 m3 m4 m5 β

m1 1 0·9625 0·9415 0·9411 0·9808 3·413
m2 0·9625 1 0·9952 0·9929 0·9875 4·503
m3 0·9415 0·9952 1 0·9982 0·9760 4·551
m4 0·9411 0·9929 0·9982 1 0·9707 4·663
m5 0·9808 0·9875 0·9760 0·9707 1 4·691

System probability of failure bounds:
Lower: 0·00032146 Upper: 0·00032148

Table 7. Co-ordinates of non-circular slip circles and polar thetas obtained from Slips for multi-layered embankment in case study 2

Entry
point: m

y1:
m

y2:
m

y3:
m

y4:
m

y5:
m

y6: m Exit
point: m

θ1 θ2 θ3 θ4 θ5 θ6 β Failure
mode

13·52 8·83 8·28 7·86 8·56 9·75 14·19 26·10 1·16 0·44 0·99 1·36 1·29 1·49 3·41 1
5·02 7·38 5·35 4·48 4·79 8·54 13·68 36·96 1·36 1·02 1·39 0·48 1·06 0·71 4·50 2
4·30 4·91 1·69 2·78 4·88 9·69 16·29 58·42 1·43 1·36 0·69 0·81 0·14 0·38 4·55 3
4·71 7·79 5·63 4·57 5·14 6·60 9·44 50·17 1·48 1·18 1·22 1·36 0·57 1·42 4·66 4
10·67 7·27 6·11 5·02 4·70 4·95 8·91 58·89 1·25 0·81 0·85 0·79 0·32 1·03 4·69 5

1·92 m

Hard stratum

8·
66

 m

7·16 m

2·74 m

36·0

36·3

3·35 m sand fill

4·27 m stiff gritty blue clay (1)

6·10 m medium gritty blue clay (2)

3·05 m medium gritty blue clay (3)

Fig. 8. Approximate profile of the Congress St Cut used in this example, dimensions taken from Ji & Low (2012)

Table 8. Soil properties and associated uncertainties for the Congress
St Cut

Sand fill Clay 1 Clay 2 Clay 3

c′:
kPa

ϕ:
deg

cu:
kPa

cu:
kPa

cu:
kPa

Mean — 30 55 43 56
Std deviation — — 20·4 8·2 13·2
Coefficient of
variation

— — 0·37 0·19 0·24
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Fig. 9. Most probable failure modes determined by Slips algorithm
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0·47569 encapsulates the high level of variability in the
system and emphasises the difference between analysing
the probability of failure of a critical slip and that of the
entire slope system for a slope with multiple critical slip
surfaces.
The results compare well with the failure bounds obtained

by Chowdhury & Xu (1995) of [0·27389, 0·44733]. They
employed a similar approach to calculate the bimodal system
bounds, but obtained their critical slip surfaces by perform-
ing multiple deterministic analyses using the conjugate
gradient method. Ji & Low (2012) obtained a system
probability of failure of 0·3911 by performing Monte Carlo
simulations on their stratified response surfaces using sample
sizes of 50 000. One reason for the slightly higher probabil-
ities of failure predicted by Slips might be the use of Bishop’s
non-circular limit state, which is known to give slightly lower
factors of safety than Bishop’s circular slip surface.

CONCLUSION
This paper presents a novel multimodal optimisation

model termed ‘Slips’, which is able to simultaneously locate
multiple distinct non-circular probabilistic failure surfaces
within a slope. It accomplishes this by establishing multiple
sub-swarms through a sophisticated niching algorithm,
which allows it to converge to multiple different optima.
Although some existing optimisation methods have accom-
plished similar solutions for deterministic analyses and for
probabilistic circular slip surfaces, the authors are not aware
of any existing non-circular multimodal reliability analyses.
Multimodal non-circular probabilistic slip surfaces involve
significantly more optimisation variables than circular
probabilistic slip surfaces and as a result require additional
computational power. However, non-circular slip surfaces
offer several advantages over circular slip surfaces in that
they can emulate multiple different failure shapes, such as
parallel failures, circular failures and failures along weak
layers. This is a significant advantage when trying to locate
all possible failure modes within a slope.
Many slopes have multiple viable failure surfaces with

similar failure probabilities. Therefore, when analysing
existing marginal slopes it is imperative to consider the
presence of multiple critical or near-critical failure planes;

missing any could make potential rehabilitation measures
redundant. Furthermore, for slopes which are susceptible to
climate effects, the critical failure mode may vary over
relatively short time periods; for example, during heavy
rainfall a reduction in near-surface suctions could cause the
development of a preferential shallow slip surface. Therefore,
when modelling slope stability, designers should consider the
stability of the slope as a whole system instead of examining
solely the stability of the most critical slip surface.
This paper also demonstrates how to perform a system

reliability analysis using polar co-ordinate defined reduced
random variables. A formula is provided for generating the
correlation matrix between the different failure modes in a
polar co-ordinate search space. Once this correlation matrix
has been obtained it can then easily be accommodated into
Ditlevsen’s bimodal bounded approach for estimating system
probability of failure.
Three case studies are examined using this methodology.

In the first two case studies multiple distinct failure modes
were found. However, in both examples there was one
dominant failure mode which had a reliability index
significantly less than the remaining failure modes. In such
circumstances the system failure probability is unlikely to
change much from that of the critical failure probability. This
was shown to be the case in both case study 1 and 2.
In the third case study the Congress St Cut in Chicago was

examined. The Slips algorithm detected a number of viable
slip surfaces, including a slip surface (m2, see Fig. 9) very
similar to the actual slip surface recorded by Ireland. Owing
to the significant number of viable slip surfaces, the
probability of the system failing was shown to be substan-
tially higher than that of the critical slip surface failing. The
system failure probability bounds obtained compared favour-
ably with those from the literature.
Although the analyses in this paper were carried out using

Bishop’s non-circular limit state and a polar co-ordinate
defined search space, the Slips algorithm could easily be
adapted to a Cartesian co-ordinate system and to accom-
modate other multimodal problems. It is important to note
that the effects of spatial correlation structures on stability,
such as those proposed by Le (2014) and Jamshidi Chenari &
Alaie (2015), were neglected in this study and may be
significant. Future work will address this.

Table 9. Failure mode correlation matrix, associated reliability indices and system probability of failure bounds

Failure modes Correlation matrix, ρ β

m1 m2 m3 m4 m5

m1 1 0·7278 0·4815 0·8088 0·6251 0·547
m2 0·7278 1 0·8608 0·9750 0·9406 0·646
m3 0·4815 0·8608 1 0·7672 0·8813 1·072
m4 0·8088 0·9750 0·7672 1 0·8783 1·226
m5 0·6251 0·9406 0·8813 0·8783 1 1·756

System probability of failure bounds:
Lower: 0·3284 Upper: 0·4757

Table 10. Co-ordinates of non-circular slip circles and polar thetas obtained from Slips for Congress St Cut example

Entry point: m y1: m y2: m y3: m y4: m y5: m y6: m Exit point: m θ1 θ2 θ3 β Failure mode

8·52 1·19 1·23 1·93 3·10 4·75 8·97 35·18 0·48 0·73 1·24 0·55 1
6·89 0·26 0·55 1·00 4·31 7·95 11·73 36·80 1·14 1·26 1·13 0·65 2
3·61 1·41 0·44 0·19 0·02 2·51 8·62 31·94 1·19 0·08 0·15 1·07 3
3·56 1·50 1·01 0·62 0·71 1·66 7·22 31·69 0·92 1·31 1·41 1·23 4
7·47 0·71 0·33 0·19 0·27 2·94 5·75 28·32 1·21 0·58 0·44 1·76 5
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NOTATION
a, b particles within a neighbourhood
ci cohesion value

c1, c2 constants
d dimension of search space
E mean

g(X) performance function
H height to hard stratum
i target particle’s index

N number of variables� 1
n number of slices

nsize neighbourhood size
Pf probability of failure

Pf,sys system probability of failure
Px slope profile
r radial distance to design point
U particle position
Ui positive pore pressure
V particle velocity
Wi weight of slice

X̄ ¼ rω vector of reduced polar design points
xn exit point of slip circle
x0 entry point of slip circle
y height of slip
αi inclination angle of base of slice
β reliability index
γ soil unit weight

Δx slice width
θ1, θ2, … , θN�1 polar angles describing location of design point

ϑ inertia weight between global and local search
ρ correlation matrix between slip surfaces
σ standard deviation
Φ cumulative distribution function
ϕi internal angle of friction
φ summation of φj
φj random distributed number in range of

[0, (4·1)/nsize]
ωi ¼ sin θN�iþ1ΠN�i

i¼1 cos θi
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