
BEPSys 2.0
Central Registration Tool for Projects and Groups

J. W. D. Alderliesten
F. P. Doolaard

J. Tilro
N. Warnars

D
el
ft
U
ni
ve
rs
ity

of
Te

ch
no

lo
gy

BEPSys 2.0
Central Registration Tool for Projects and

Groups

by

J. W. D. Alderliesten
F. P. Doolaard

J. Tilro
N. Warnars

to report on the process of designing and implementing BEPSys 2.0.
The final presentation was held on July 6th, 2017 at 10:00

in lecture hall D@ta (EEMCS)

This report was edited to remove security details about the system active at the time of the
report’s release to prevent exploits from being utilised.

Project details
Project duration: April 17, 2017 – July 06, 2017
Coach: Alessandro Bozzon
Supervisor: Huijuan Wang
Product Owner: Otto Visser

Preface

This report was written alongside the development of the BEPSys 2.0 application, a system
that provides project registration, management, and approval for companies and research
groups that wish to offer projects to students at the TU Delft.

The development of this system was a part of the bachelor project course TI3806. After a
research phase of two weeks, the system was developed within seven weeks in Ruby on
Rails and delivered to to the client.

The development team would like to thank the following people for their support and help:

• Otto Visser, TU Delft

• Alessandro Bozzon, TU Delft

• Huijuan Wang, TU Delft

• Cynthia Liem, TU Delft

• Eva de Haan, TU Delft

• Lily Stamenova, FeedbackFruits

Without them, this project would not have been possible. Their feedback and desire to help
during testing sessions has ensured that many problems and bugs were identified before de-
ployment, and the application is better due to their varied and detailed input.

J. W. D. Alderliesten
F. P. Doolaard

J. Tilro
N. Warnars

Delft, July 7, 2017

i

Summary

The following report outlines the research, development, and delivery phases of the BEPSys
2.0 application. The application aims to provide central project registration and management
for courses at the TU Delft. The request for the development stemmed from Otto Visser, who
was the acting coordinator for the Computer Science Final Project Course. A system named
”BEPSys” already existed for this purpose, but it was deemed insecure and unreliable, and
warranted a redesign. Additional background information is provided in chapter 1.

Chapter 2 provides an outline regarding the planning of the development process. The
first planned phase was a research phase, in which a detailed planning with research goals
was created. These topics included group formation, technology to be used, and an audit of
the current BEPSys system to determine possible additions upon it. The research phase was
concluded with a research report, which can be found as Appendix F. After the research phase,
the implementation phase took place, in which a new application was developed from scratch.
The third and final phase was a wrap-up phase, in which the final product was polished and
enhanced as required. A retrospective is also found in Chapter 2.

Chapter 3 contains the requirements as obtained from a set of stakeholder interviews.
These interviews yielded a MoSCoW requirements list, which would be utilised to guide the
design of the new application. Stakeholders interviewed include the client, users, coaches,
and external companies. Chapter 3 also includes the definition of done employed by the
development team.

Chapter 4 outlines the methodologies & tools that were utilised by the development team.
The outline covers the development life-cycle model employed, the version control system
used, the approach to code review and merge requests, the software employed for issues
tracing, and the task automation that was utilised.

Chapter 5 includes technical considerations, including the reasons to start over and scrap
the previous version of BEPSys, the decision to employ the Rails framework, and the process
and decisions made regarding the migration of data from the old application to BEPSys 2.0.
After deliberation with both the client and our technical research, the decision was made to
not carry data over between the two applications.

Chapter 6 provides an overview of the design of BEPSys 2.0, including modelling and
process diagrams, front-endmock-ups and designs, colour and theme choicesmade to adhere
to the TU Delft’s style guide, and the process outlined for group formation.

Chapter 7 highlights the differences between the implementation and the design, and out-
lines certain aspects of the implementation that required additional research and validation.

Chapter 8 provides an overview of the testing & quality assurance procedures utilises dur-
ing the development of the application. These aspects include the software verifications tech-
niques used, such as dynamic testing and automated testing, and the software validation
process employed.

Chapter 9 provides an insight into aspects related to the deployment, including the pro-
duction environment configuration, scalability considerations, and the Ansible configuration
automation implementation. A highlight is also given to the Capistrano deployment automa-
tion system for the production and staging environments.

Chapter 10 identifies crucial aspects of security. A segment of considerations regarding
OWASP’s top ten vulnerabilities is addressed, followed by an overview of security gems em-

ii

ployed by the application, and the process of secure development is outlined.
Chapter 11 outlines ethical considerations that took place for the BEPSys 2.0 application,

such as the privacy of student and staff information, and the effects of confirmations within the
system due to their binding status regarding student progress at the TU Delft.

BEPSys 2.0 - Technical Report - 2017 iii

Contents

Preface i

Summary ii

List of Figures vii

1 Introduction 1

2 Planning 2
2.1 Planning Phases. 2

2.1.1 Phase 1: Research . 2
2.1.2 Phase 2: Implementation . 2
2.1.3 Phase 3: Wrap Up . 3

2.2 Retrospective. 3

3 Requirements 4
3.1 Definition of Done . 4
3.2 Resulting Requirements . 4
3.3 Stakeholder 1: Client . 4

3.3.1 Functional requirements . 5
3.3.2 Non-functional requirements . 6

3.4 Stakeholder 2: Counsellor . 6
3.4.1 Functional requirements . 6
3.4.2 Non-functional requirements . 7

3.5 Stakeholder 3: TU Coach . 7
3.5.1 Functional requirements . 7
3.5.2 Non-functional requirements . 8

3.6 Stakeholder 4: Company . 8
3.6.1 Functional requirements . 8
3.6.2 Non-functional requirements . 9

3.7 MoSCoW Requirements . 9
3.7.1 Must Have . 9
3.7.2 Should Have . 11
3.7.3 Could Have . 12
3.7.4 Would Have . 12

4 Methodologies & Tooling 13
4.1 Development Life-Cycle Model . 13
4.2 Version Control using Git & GitLab . 13
4.3 Modern Code Review through Merge-Requests 14
4.4 Issue Tracking using JIRA . 15
4.5 Task Automation using Rake. 15

iv

5 Technical Considerations 16
5.1 Starting Over . 16

5.1.1 Improving Maintainability . 16
5.1.2 Preventing Flaws in BEPSys 2.0 . 17

5.2 Rails Framework. 18
5.2.1 Model-View-Controller . 18
5.2.2 Representational State Transfer . 18
5.2.3 Language and Framework Preferences . 18
5.2.4 Justifying Maintainability . 19

5.3 Migrating data to the new production environment 19
5.3.1 Technical Considerations . 19
5.3.2 Client Preferences . 19
5.3.3 Migration Procedure . 20

6 Design 21
6.1 Decisions . 21
6.2 Modelling . 21

6.2.1 Process Flow Modelling . 21
6.2.2 Data Modelling . 23
6.2.3 Schema Model . 24

6.3 Front-end . 24
6.3.1 Wireframes. 24
6.3.2 Layout . 24
6.3.3 Colour Scheme & Design . 24

6.4 Group Formation. 26
6.4.1 Formation Aspects . 26
6.4.2 Group Formation Design. 27

7 Implementation 28
7.1 Back-end . 28

7.1.1 Implemented Data Model . 28
7.2 Front-end . 28

7.2.1 Administration . 28
7.2.2 Custom theme for the Bootstrap layout framework 28
7.2.3 Responsiveness . 29
7.2.4 Asynchronous Interface . 29
7.2.5 Single Sign-On . 29

8 Testing & Quality Assurance 30
8.1 Software Verification . 30

8.1.1 Dynamic Testing . 30
8.1.2 Browser Automated Testing . 30
8.1.3 Test Coverage Analysis . 31
8.1.4 Static Analysis using Rubocop . 31
8.1.5 Security Testing . 32
8.1.6 Continuous Integration using Jenkins . 32

8.2 Software Validation . 32

BEPSys 2.0 - Technical Report - 2017 v

9 Deployment 33
9.1 Production Environment Configuration . 33
9.2 Scalability . 33
9.3 Configuration Automation using Ansible . 34
9.4 Deployment Automation using Capistrano. 34

10 Security 35
10.1 Testing for and preventing OWASP top 10 security flaws 35

10.1.1 Injection . 35
10.1.2 Broken authentication and session management 35
10.1.3 XSS: Cross-site scripting . 36
10.1.4 Insecure direct object references . 36
10.1.5 Security misconfiguration . 36
10.1.6 Sensitive data exposure . 36
10.1.7 Missing function level access control . 36
10.1.8 CSRF: Cross-site request forgery . 37
10.1.9 Using components with known vulnerabilities: Ruby Gems 37

10.2 Security Gems . 37
10.3 Secure Development . 37

11 Ethical Considerations 38
11.1 Handling of Confidential Information . 38
11.2 Status Confirmations . 38
11.3 Group Formation. 39

12 Conclusion 40
12.1 Product Status . 40
12.2 Future Development. 41
12.3 Process Reflection. 41
12.4 Process Recommendations . 42

Bibliography 43

Appendices 44

A Data Models 45

B SIG Analysis Results 48

C BEPSys 2.0 Colour Table 49

D User Testing 50

E Infosheet 56

F Research Report 58

BEPSys 2.0 - Technical Report - 2017 vi

List of Figures

2.1 Gantt chart of the initial project planning. 2

4.1 An snippet of the revision history of the source code under version control, il-
lustrating how branching and merging were applied. 14

4.2 An example of a discussion taking place in a merge-request. 15

6.1 Process flow model for project creation . 22
6.2 Process flow model for group joining . 22
6.3 Process flow model for course enrolment . 22
6.4 Initial data model . 23
6.5 Wireframe layout for course selection . 25
6.6 Wireframe layout for project selection within a course edition 25
6.7 Wireframe layout for project information . 26
6.8 Group status business logic table . 27

8.1 An example of a local rubocop violation . 32

vii

1
Introduction

The bachelor project (abbreviated as BEP based on its Dutch origin) is the final project to which
students commit for the bachelor degree of Computer Science at Delft University of Technology
(TU Delft). To assist in the search for a suitable project within the course, students utilize
a system called “BEPSys,” also known as the ”bachelor ending project system.” The initial
version of this system was developed and released in October 2013 by Sarah Bashirieh and
Nima Rahbari (Bashirieh and Rahbari [2013]). In March 2017, Otto Visser (coordinator for the
BEP) submitted a request for a revamp of the BEPSys system to accommodate the changing
course structure and to alleviate technical and logistical problems with the current system.
The final product was delivered on July 6th, 2017. The presentation of the final product took
place on the same day in Room D@ta at the faculty of electrical engineering, mathematics,
and computer science at the TU Delft.

The planning of the project, including the research and development phases, can be found
in chapter 2 on the following page. The requirements elicitation, including the process, defini-
tion of done, and a MoSCoW prioritisation requirements list is found in chapter 3. Methodolo-
gies & Tooling, including the development life-cycle model, version control, and code review
is found in chapter 4. Technical considerations, including the desire to start from scratch, the
selection of the Rails framework, and the process of data migration is outlined in chapter 5.
The design of the application is found in chapter 6. The implementation, with a focus on differ-
ence between design and final implementation, is discussed in chapter 7. The testing & quality
assurance process is found in chapter 8. The deployment and production environment is de-
scribed in chapter 9. Security flaws, including a set of top ten vulnerability mitigations as per
OWASP standards, is discussed in chapter 10. Ethical considerations regarding confidential
information and status handling is discussed in chapter 11.

BEPSys 2.0 - Technical Report - 2017 1

2
Planning

This section discusses the initial planning for the project, as well as a retrospective analysis
on how this planning was put into practice.

2.1. Planning Phases
In order to get an overview of the project, kick-off meetings were organized with different
stakeholders several weeks before the start of the project, including the product owner and
the coach. It was decided to partition the available time frame into three phases: two weeks
of research, six weeks of implementation of a solution, and two weeks of user acceptance
testing and wrapping up the system for deployment.

Figure 2.1: Gantt chart of the initial project planning.

2.1.1. Phase 1: Research
During the first days of the project, a detailed planning for the research phase was made.
As a directive for planning and picking suitable research topics, the existing system, includ-
ing its documentation and source code, were analysed. After some struggles with determin-
ing suitable research topics, it was decided that time would be spent eliciting requirements
amongst stakeholders, study and document technical considerations and their justifications,
data modelling, security considerations, and improving the group formation process. During
this research phase a focus was also placed on identifying the weaknesses of the current sys-
tem, including security vulnerabilities, in order to further justify technical decisions and prepare
them for implementation. The research phase was concluded with a research report, which
was delivered to both the group coach and the client. The entire research report has been
included as appendix F.

2.1.2. Phase 2: Implementation
Based on the findings of the research (the designed diagrams and the elicited requirements)
a planning for implementation was constructed. This was done by recording and prioritizing

BEPSys 2.0 - Technical Report - 2017 2

issues in the product backlog of the utilised issue tracking system, and distributing these over
different iterations. It was planned to build the core for the system (including the application
configuration, authentication, and authorization subsystems) in the first week of implementa-
tion. Afterwards, the coming five weeks were used to implement all must-have requirements.
The remaining one week were to be used for implementing all should-have requirements.

Additionally, the intent was to keep the technical report and its diagrams up-to-date each
iteration throughout the implementation phase.

2.1.3. Phase 3: Wrap Up
During the last two weeks, a feature-freeze was planned. This meant no new features would
be implemented during this phase; the team would only test, refactor, and fix code in order to
improve and assure the quality of the system. The final presentation would be prepared, and
the system would be prepared for deployment to the new production environment.

2.2. Retrospective
The actual process that was conducted deviated from the initial planning in several ways.

The implementation of the core of the system upon which the implementations of the re-
quired features were to be based, took longer than anticipated. After two weeks, the first stable
version of the system was finished.

Not all must-haves were finished in the allotted time frame of five weeks, meaning that the
time period in which the focus was placed upon essential features was extended beyond the
planned time. This ultimately meant that no feature freeze was introduced. Instead, features
were developed until the deadline for the project, due to a large amount of feedback and
additional requirements accumulated throughout the iterative and incremental development
process.

During implementation the report was not kept up-to-date. Preparing the final report started
in the last week before the deadline due to the high implementation demand.

It was decided to start the wrap-up phase one week earlier by planning user acceptance
tests in week eight, in order to be able to process the feedback received through these tests.

The reasons for these deviations from the initial planning, their evaluation and the lessons
learned are elaborated in section 12.3 on page 41.

BEPSys 2.0 - Technical Report - 2017 3

3
Requirements

The requirements were elicited through the method of informal interviews during the research
phase. The interviewer would pose the questions “What are the current problems with BEP-
Sys?”, “What would you like to see improved with the current BEPSys’ features?”, and “What
features should BEPSys have that do not currently exist?” The interview would be guided
by the interviewer, but would consist of an informal atmosphere and allow for the interviewed
person to go on a tangent to explain their statements or desires if required. All interviews had
a formal style of notary recording. These written recordings would be utilised to compile the
list of requirements on a stakeholder by stakeholder basis.

3.1. Definition of Done
According to the Agile Alliance, a project team should agree on a list of criteria which must be
met before a product is considered “done” (Atern [2008]). A definition of done is required to
prevent different stakeholders and developers from having an alternative meaning of ‘done.’
These alternative decisions could lead to conflicts regarding the completion of a project, in
turn leading to uncertainty and dissatisfaction with the (final) product and the possibility of a
failure to meet required deadlines. This could, in turn, lead to projects exceeding their given
timeline or budget.

During the requirement elicitation a requirements list was constructed in MoSCoW (Atern
[2008]) style which was used as the basis for the definition of “done”. It was decided that
all ”must have” items in the requirement elicitation must be integrated in the application to
consider it ”done.” Additionally, the product can only be finished when testing has finished and
an automated test suite has been developed.

3.2. Resulting Requirements
Multiple interviews took place with numerous stakeholders over the research period. These
interviews included the client, students, a counsellor, TU Delft coaches, and external compa-
nies that had utilised the old BEPSys system. This solicited a MoSCoW style requirements
list that will be utilized to evaluate the status of the new BEPSys system.

3.3. Stakeholder 1: Client
Otto Visser served as the product owner and client for this project. His requirements were
solicited through one formal interview at the start of the project, and numerous informal meet-
ings throughout the initial research phase and duration of the project. At least one informal
meeting occurred each week during the implementation phase.

BEPSys 2.0 - Technical Report - 2017 4

3.3.1. Functional requirements
1. The system must support the utilization of the TU Delft’s single sign-on system to in-

crease efficiency of account registration and validate the student and overseeing roles
within the system.

2. Projects must be able to share files between student, client, and coach. These files can
be both code and literary documents.

3. Related information for a project, such as the location of the software repository and
other useful information, must be supported on a project-by-project basis.

4. A single user account must have the ability to obtain multiple roles within a course, such
as Course Coordinator and Coach.

5. The selection of a TU Delft coach for a project must support the ability to invite and
register them into the system.

6. The creation and maintenance of groups, consisting of multiple students, must be sup-
ported. Groups should be able to invite, remove, and manage their members.

7. Groups must be able to claim a project once they match the required participant number.

8. Students without a pre-made group must be able to express their interest in a project to
allow the formation of groups for these projects.

9. Companies need to be able to view their previous projects that existed in BEPSys.

10. A company may not see the projects or existence of another company in the BEPSys
database.

11. The new BEPSys needs to support multiple moments of entry, such as in the second
and fourth quarter of the academic year.

12. Students should be automatically approved to participate in the bachelor end project,
and should automatically see a form to request entry through the counsellor if they do
not meet the requirements.

13. Example documents and approval forms which are currently presented in a PDF of
DOCX format should be altered to exist as a form on the website. New documents
that are created should support direct entry and display in the system.

14. Companies should be able to edit projects and then submit these edits for approval to
the project coordinator.

15. The new BEPSys needs to be responsive, meaning the system works and displays cor-
rectly on both mobile and non-mobile devices.

16. The deletion of user accounts should not lead to the removal or “orphaning” of their
company or projects.

17. Notification messages will be sent to all users on a 24-hour basis, when applicable.

18. Features which exist in the current implementation of BEPSys need to either be altered
or kept in the new version of BEPSys. No features should be lost during the development
of this new version.

BEPSys 2.0 - Technical Report - 2017 5

19. The sender of email notifications must be configurable per course.

20. The number of groups that can be admitted to a project must be configurable per course.

21. A course must be managed by a responsible user (e.g. for receiving notifications and
performing administrative tasks).

22. Project selection conflicts, such as a pre-made group versus a group formed out of the
interest system, must be given priority based on a first come, first serve basis.

3.3.2. Non-functional requirements
1. The new BEPSys front-end needs to be written in the official language of the TU Delft,

British English.

2. The design of the front-end of BEPSys needs to conform to the official huisstijl (design)
of the university.

3. System must be deployed on a production environment running an Apache web server
and a MySQL database server.

3.4. Stakeholder 2: Counsellor
An interview took place with the counsellor for the Computer Science bachelor program at
the TU Delft, Eva de Haan, as the representative for the counsellor role of the system. The
requirements were acquired during a formal interview at the start of the project, and during
informal meetings throughout the implementation phase of the project. A total of four meetings
occurred with the counsellor.

3.4.1. Functional requirements
1. Notification messages will be sent to all users on a 24-hour basis, when applicable. The

types of notifications should be customizable.

2. Students should be approved to participate in the bachelor project course, and should
automatically see a form to request entry through the counsellor if they do not meet the
requirements.

3. A student who submits an electronic entry form should be able to be approved for entry
to the class by the counsellor within the BEPSys system.

4. A counsellor should be able to view the completed courses for an entry requirement
within BEPSys, and export it to another format, such as an CSV or XLSX document
type.

5. A counsellor should be able to export all approved people for a course to another format,
such as an CSV or XLSX document type.

6. The automated barrier for entry (classes or points required) should be customizable per
course.

7. The approval to participate in a course should be done on a person-by-person basis,
and not per project entry request.

8. A single user account must have the ability to obtain multiple roles within a course, such
as ”Course Coordinator” and ”Coach”.

BEPSys 2.0 - Technical Report - 2017 6

9. Deadlines for issues such as registration and presentations must be placed within the
system.

10. The information of a user account, regardless of role, should allow editing of information
such as email and password.

11. An integration with the official grading system of the TU Delft, OSIRIS, should exist in
the new system.

3.4.2. Non-functional requirements
1. The entire BEP application and approval process should be paperless for all participants.

3.5. Stakeholder 3: TU Coach
Cynthia Liem is an assistant professor of the multimedia computing group at TU Delft, and
acted as the representatives of the coaches in the BEPSys system. Coaches assist groups in
their projects and are a neutral assistant for student questions. Her feedback was gathered
through a single formal meeting during the research phase of the project.

3.5.1. Functional requirements
1. A single user account must have the ability to obtain multiple roles within a course, such

as Course Coordinator and Coach.

2. A project should have the ability to be edited, and to have that edit approved by a course
coordinator.

3. A project coordinator and company should get some sort of an update (email notification)
when a group has been made and their project chosen.

4. Coaches need to be able to have a complete per-course overview of all existing projects
and have the ability to indicate the desired projects to coach.

5. A company needs to have the ability to change their contact information with approval
of a course coordinator.

6. Notification messages will be sent to all users on a 24-hour basis, when applicable. The
types of notifications should be customizable.

7. A student group should retain the ability to hand-in a project with an already assembled
student team, company, and coach.

8. Anyone should have access to see the number of students in a course, and the percent-
age of completed projects in a course.

9. A course coordinator should only have to approve a project when there is a coach who
has approved it.

10. Projects within a course should be filtered by either name, date of entry, and other pos-
sible filters.

11. A project should have an area in which students, coach, and client can see the progress
and upcoming deadlines or milestones.

12. A chat system should exist that allows the client and students to communicate without
having to share e-mail or other contact information. This system should also support the
sharing of files.

BEPSys 2.0 - Technical Report - 2017 7

3.5.2. Non-functional requirements
1. A company should get an example project within the BEPSys system to utilize during

their set-up phase.

2. A staff member should be able to state that they have too many projects to coach when
being requested for approval.

3.6. Stakeholder 4: Company
A formal interview took place with a representative of the FeedbackFruits company during the
research phase of the project. Their company had four projects in the old BEPSys system, of
which two were taken and completed recently. Additional insight was provided by the Feed-
backFruits development team, who did this in an ad-hoc fashion after the formal interview was
completed.

3.6.1. Functional requirements
1. Notification messages will be sent to all users on a 24-hour basis, when applicable. The

types of notifications should be customizable. A focus should be placed on making one
of these notifications occur when a group has been found and the project can be started.

2. Projects must be reviewed and then be allowed to be moved to the next edition of the
course if it is not accepted in the current/past edition.

3. A project should have the ability to be edited by the company that provided/created it.

4. Companies should be able to see projects which do not exist, but which would be taken
by students due to their interest.

5. Example documents and approval forms which are currently presented in a PDF of
DOCX format should be altered to exist as a form on the website. Newly created docu-
ments should support direct entry and display in the system.

6. Students must be able to provide a company with some small motivation words to ensure
a company that the students matches their desired profile.

7. A chat system should exist that allows the client and students to communicate without
having to share e-mail or other contact information. This system should also support the
sharing of files.

8. Projects must be able to share files between student, client, and coach. These files can
be both code and literary documents.

9. A project should have an area in which students, coach, and client can see the progress
and upcoming deadlines or milestones.

10. A user of the BEPSys system must be guided through the process they are performing
(e.g: creating a project, accepting a user) in a step-by-step manner, with an example.

11. A list of related projects based on keyword or aggregation must be shown when viewing
an individual project.

12. A project must be able to have more than a single TU-Coach.

13. A company must be able to edit its description, logo, and other attributes pending ap-
proval of the coordinator of the course.

BEPSys 2.0 - Technical Report - 2017 8

14. Members of an interest list must be able to invite others into that project/interest list.

15. Each user must be able to anonymously suggest questions to a project/company through
an in-system chat system in the case of questions or uncertainties.

3.6.2. Non-functional requirements
1. A company should get an example project within the BEPSys system to utilize during

their set-up phase.

2. A list of possible supervisors from the TU Delft for the role of coach must be provided,
with tags to their area of expertise, to suggest possible coaches for a project.

3. A company must be able to place required deadlines within the BEPSys system for a
project.

4. A student must fill out a small survey when registering for a course to guide them towards
a possible project or area of interest.

5. The approval check marks that are in the current version of the BEPSys system must be
clarified to ensure that students and companies understand they are related to class/academic
approval, and not project approval.

3.7. MoSCoW Requirements
After all the interviews were completed, an aggregation was made and discussed with the
client. Based on this aggregation, a formal MoSCoW[Atern, 2008] requirements list was cre-
ated. The application also received the definition of ”done” as being upheld to the completion
of all the ”must have” requirements from this aggregation.

3.7.1. Must Have
1. A single user account must have the ability to obtain multiple roles within a course, such

as Course Coordinator and Coach.

2. The selection of a TU Delft coach for a project must support the ability to invite and
register them into the system.

3. Groups must be able to claim a project once they match the required participant number.

4. The creation and maintenance of groups, consisting of multiple students, must be sup-
ported.

5. Groups must be able to invite, remove, and manage their members.

6. Related information for a project, such as the location of the software repository and
other useful information, must be displayed within the system.

7. A company must not be able to see the projects or existence of other companies in the
BEPSys database.

8. The new BEPSys needs to support multiple moments of entry, such as in the second
and fourth quarter of the academic year.

9. The deletion of user accounts must not be able to lead to the removal or “orphaning” of
their company or projects.

BEPSys 2.0 - Technical Report - 2017 9

10. Requirements in the current BEPSys system must be kept and transferred to BEPSys
2.0.

11. The sender of email notifications must be configurable per course.

12. The number of groups that can be admitted to a project must be configurable per course.

13. A course must be managed by a responsible user (e.g. for receiving notifications and
performing administrative tasks).

14. The first group that signs up for a project and meets the requirements will get the first
chance to accept the project.

15. The new BEPSys front-end must be written in the official language of the TU Delft, British
English.

16. The design of the front-end of BEPSys must conform to the official “TU Delft huisstijl”
(design) of the university.

17. The system must be deployed on a production environment running an Apache web
server and a MySQL database server.

18. A student who submits an electronic entry form must be able to be approved for entry to
the class by the counsellor within the BEPSys system.

19. A counsellor must be able to export all approved people for a course to another format,
such as an CSV or XLSX document type.

20. The approval to participate in a course must be done on a person-by-person basis, and
not as a per-project unique entry request.

21. Deadlines for issues such as registration, deliverables, and presentation dates must be
placed within the system on a per course basis.

22. The information of a user account, regardless of role, must allow editing of information
such as email and password.

23. The entire BEP application and approval process must be paperless for all participants.

24. A project coordinator and company must be able to get a notification when a group has
been made and their project chosen.

25. A company must be able to edit its description, logo, and other attributes pending ap-
proval of the coordinator of the course.

26. A student group must be able to retain the ability to hand-in a project with an already
assembled student team, company, and coach.

27. Projects within a course must be able to be filtered by either name, date of entry, and
other possible filters.

28. A project must have the ability to be edited by the company that provided/created it.

29. Example documents and approval forms which are currently presented in a PDF of
DOCX format must be able to be altered to exist as a form on the website. New docu-
ments that are created should support direct entry and display in the system.

BEPSys 2.0 - Technical Report - 2017 10

30. A user of the BEPSys system must be guided through the process they are performing
(e.g: creating a project, accepting a user) in a step-by-step manner, with an example.

31. A project must be able to have more than a single TU-Coach.

32. Members of an interest list must be able to invite others into that project/interest list.

3.7.2. Should Have
1. Students without a pre-made group should be able to express their interest in a project

to allow the formation of groups for these projects.

2. Companies should be able to view their previous projects that existed in BEPSys.

3. Companies should be able to edit projects and then submit these edits for approval to
the project coordinator.

4. The new BEPSys front-end should be responsive, meaning the system works and dis-
plays correctly on both mobile and non-mobile devices.

5. Notification messages should be sent to all users on a 24-hour basis, when applicable.
The content of these messages should be customizable.

6. A counsellor should be able to view the completed courses of a student for an entry
requirement within BEPSys, and export it to another format, such as an CSV or XLSX
document type.

7. A counsellor should be able to export all approved people for a course to another format,
such as an CSV or XLSX document type.

8. The automated barrier for entry (classes or points required) should be customizable per
course.

9. TU coaches should be able to have a complete per-course overview of all existing
projects and have the ability to indicate the desired projects to coach.

10. All users should be able to see the number of students in a course, and the percentage
of completed projects in a course.

11. A course coordinator should only have to approve a project when there is a TU coach
who has approved it.

12. A project should have an area in which students, coach, and client can see the progress
and upcoming deadlines or milestones.

13. A company should get an example project within the BEPSys system to utilize during
the project set-up phase.

14. Projects should be able to be reviewed and then be allowed to be moved to the next
edition of the course if it is not accepted in the current/past edition.

15. A list of related projects based on keyword or aggregation should be able to be shown
when viewing an individual project.

16. The system must support the utilization of the TU Delft’s single sign-on system to in-
crease efficiency of account registration and validate the student and overseeing roles
within the system.

BEPSys 2.0 - Technical Report - 2017 11

3.7.3. Could Have
1. Students can be automatically approved to participate in the bachelor project through

Osiris data, and can automatically see a form to request entry through the counsellor if
they do not meet the requirements.

2. An integration with the official grading system of the TU Delft, OSIRIS, can exist in the
new system.

3. A staff member can state that they have too many projects to coach when being re-
quested for approval.

4. Projects can be reviewed and then be allowed to be moved to the next edition of the
course if it is not accepted in the current/past edition.

5. Companies can see projects which do not exist, but which would be taken by students
due to their interest.

6. Students can be able to provide a company with some small motivation words to ensure
a company that the students matches their desired profile.

7. A list of possible supervisors from the TU Delft for the role of coach can be provided,
with tags to their area of expertise, to suggest possible coaches for a project.

8. A company can place required project deadlines within the BEPSys system.

9. The approval check marks that are in the current version of the BEPSys system can be
clarified to ensure that students and companies understand they are related to class/academic
approval, and not project approval.

3.7.4. Would Have
1. Projects can share files between student, client, and coach. These files can be both

code and literary documents.

2. Example documents and approval forms which are currently presented in a PDF of
DOCX format can be altered to exist as a form on the website. New documents that
are created should support direct entry and display in the system.

3. A chat system can allow the client and students to communicate without having to share
e-mail or other contact information. This system can also support the sharing of files.

4. Each user can anonymously suggest questions to a project/company through an in-
system chat system in the case of questions or uncertainties.

5. A student can fill out a small survey when registering for a course to guide them towards
a possible project or area of interest.

BEPSys 2.0 - Technical Report - 2017 12

4
Methodologies & Tooling

The methodologies & tooling section aims to describe the processes utilized by the project
team during the development of the BEPSys 2.0 application. The development life-cycle is
described, version and code control methodologies are explained, testing and task automation
is mentioned, and tools utilized for clean testing and task automation are discussed.

4.1. Development Life-Cycle Model
The development life-cycle model refers to the software engineering methods utilized within
the code base to indicate code maturity and readiness. During development, a feature is cre-
ated and added into the development product. To ensure stability and the ability to show off the
development progress to the client and coach, a release of new features has to be scheduled
at set intervals which provides a stable base to continue development of the product.

The development life-cycle model implemented for BEPSys 2.0 was the ”dolphin model”
(van Solingen [2015]). In this model, the dolphin is a metaphor for the development team,
who must resurface often to acquire air. The development team is required to resurface to
the client every so often and present the development progress, acquiring desired changes
and feedback in the process. This model provides the benefit of continuous validation of
features with the client, while also allowing for an iterative development process which allows
for change in case of the required addition of features or client dissatisfaction.

The dolphin model stands in direct contrast with the ”submarine model” (van Solingen
[2015]), in which the submarine is a metaphor for the project team. The submarine delves
underwater for a longer period of time, and only resurfaces when it is required for a mission.
When comparing this to a product development iteration, the metaphor alludes to a project
team interacting with a client exclusively at the beginning and ending of a project, never check-
ing in to validate and verify their work.

The decision was made within the project team to work in iterations of one week, as this
would provide ten moments of feedback with the client, while also providing enough time to
implement a new feature set. The client was also consulted during moments of uncertainty,
which was possible due to proximity of the client to the BEPSys 2.0 development office.

4.2. Version Control using Git & GitLab
Version Control refers to the tools utilized for management of code and stable releases. The
”Git” version control management system provides a method to share code among the team
and keep all versions of the development code base in sync. Git allows a member to create
a ”branch,” an area of code based on an earlier version that would not get the latest updates

BEPSys 2.0 - Technical Report - 2017 13

to allow isolated development, and upon completion of that development task to ”merge” the
branch into another stable branch. The process of code reviews and merging can be found in
section 3.3.

The ”master” branch acts as the most up-to-date approved version of the software at that
moment in development. The master branch would form the basis for a ”development” branch
which would be the branch from which all new features and implementations are created. The
development branch aimed to be a stable code repository of all new work created during the
week’s iteration. All branches for an iteration had to be started from the development branch,
to ensure the most up to date code base was given to a member of the team when creating
new features.

Figure 4.1: An snippet of the revision history of the source code under version control, illustrating how branching
and merging were applied.

Upon completion of a development iteration, all code within the development branch would
be submitted to the client for merging into the master branch. The master branch would there-
fore continue to be the most stable up-to-date approved branch, and upon completion of the
merge a new development branch would be created from the new master.

The repository that was utilised to store the software was hosted on an internal server
environment of the TU Delft, as required by the TU Delft’s regulations. The software utilised
to manage the repository including merge requests, automated testing, and branching was
Gitlab. These tools and environments were all provided by the client, and the utilisation of
these tools and environment were required.

4.3. Modern Code Review through Merge-Requests
Merge-requests act as formal validation and verification processes in which a new feature or
bug fix has been implemented and wishes to become a part of the stable development branch.
A merge request consists of a code review in which at least two members of the team review
another members’ code and ensure that all tests pass. A focus is also placed on the code
quality, which must meet the required specifications given to the project, and a validation that
all aspects of an implementation match the desired specifications for that implementation.

The team required two members to verify each merge request that was created, regardless
of size or complexity of the branch under consideration. The standardised process was to
review the code in isolation, and comment on any violations of code style or unnecessarily

BEPSys 2.0 - Technical Report - 2017 14

Figure 4.2: An example of a discussion taking place in a merge-request.

complex structures within the code. After the code was deemed acceptable, multiple local
tests were done. These tests included automated self-written test suites through Jenkins,
manual verification of functionality, and automated style offence checking with the utilisation
of Rubocop.

4.4. Issue Tracking using JIRA
The tracking of issues and tasks, including the maintenance of the product backlog, was done
utilising the JIRA software. JIRA allows issue tracking, assignment, user story logging, and
the assignment of priority tasks for bug fixing.

4.5. Task Automation using Rake
A Rails project is bundled and integrated with the Rake gem, a task automation tool, which
provides automation for many tasks such as running tests, performing database migrations,
and updating dependencies. In addition, custom project specific tasks can be implemented
that are integrated with the framework.

BEPSys 2.0 - Technical Report - 2017 15

5
Technical Considerations

The original version of the BEPSys system was written in PHP, using the CakePHP framework
[Bashirieh and Rahbari, 2013]. For the development of its successor the decision was made
to discontinue the use of the existing code base, and to instead build the new system from
scratch. It was decided upon to implement the new system in the Ruby language, using the
Rails framework. This chapter outlines the reasons for starting design and development from
scratch and utilising a different language and framework. The options for deployment and
scaling with the selected technology are discussed, along with the decisions related to the
migration of data in the old BEPSys system to the new iteration.

5.1. Starting Over
After an analysis of the code base of BEPSys 1.0 and taking into account the elicited require-
ments, it was concluded in conjunction with the client that starting the design and implementa-
tion of BEPSys 2.0 from scratch was in the best interest of both stakeholders and developers.
Starting over increased the chances of meeting the requirements regarding the product quality,
and allowed the development team to provide a greater guarantee of removing and avoiding
(security) flaws that were present in the current implementation.

5.1.1. Improving Maintainability
Maintainability is considered to be one of the eight main characteristics that make up the prod-
uct quality of a software system, as standardized in ISO/IEC 25010. Aside from its importance
with respect to software quality, there was an additional emphasis on maintainability for the
BEPSys 2.0 project. As elaborated upon in the requirements, the collection of stakeholders
for the system was diverse, yielding equally diverse requirements. These requirements are
prone to change, since the purpose of BEPSys is to support the TU Delft’s administration of a
course approval and management process that is subject to intermittent changes. An exam-
ple of such a change is the admission criterion utilised for students to enrol for the bachelor
project, which were indicated to be subject to change in future versions of the course. These
changes could vary from minor entry point changes (where a student would have to attain a
certain amount of European Credit Hours to gain entry) to entire course requirement changes
(all classes from the first and second year would have to be passed before enrolment was
accepted). The current BEPSys application lacks support for these long-term changes.

The quality of the current product did not meet the expectations either. The number of
‘hotfixes’ and ‘urgent fixes,’ alongside the functional changes in the commit history after the
delivery of the initial version of the system, reflect this. A more flexible and more generalized

BEPSys 2.0 - Technical Report - 2017 16

implementation is urgently required to ensure a more maintainable system. The fresh start
and new framework are thus aimed at improving the product quality, especially with respect
to maintainability.

The BEPSys application is currently implemented without the employment of third-party
software dependencies. Software packages for the PHP language could have been managed
by utilising the Composer, for which a dependency file recorded in the application. In addition,
specific plugins for the CakePHP framework are available, providing off-the-shelf function-
alities for CakePHP projects. The third-party code that is included, consisting primarily of
JavaScript assets, are integrated directly into the code base without any dependency man-
agement, which leads to a less maintainable software repository that is vulnerable to security
issues due to a lack of automatically managed updates.

The lack of version controlled dependencies - or rather the lack of dependencies at all -
yields implementations of subsystems that can be described as “reinventing the wheel.” This
refers to writing code to solve a problem that has already been solved by more experienced
developers and made available in some form, usually as open source software or libraries. An
analysis of the initial code base revealed that the aforementioned redundant implementation
was rife within the current BEPSys application.

The user authentication subsystem in BEPSys is handled by the ”UsersController” compo-
nent. This component is responsible for handling actions like the login, logout, register, reset
and deletion of user accounts. This is implemented using the Authentication component of the
CakePHP framework. However, this component provides a rather low-level interface, there-
fore rendering the controller actions cluttered and having a relatively high complexity. This
might lead to security vulnerabilities, such as the ones that were found in the password reset
and account confirmation mechanism during an audit of the original code base.

5.1.2. Preventing Flaws in BEPSys 2.0
Implementing a subsystem such as user authentication is a time consuming and risky endeav-
our. When there are reusable open source dependencies that have proven themselves to be
functional and secure in practice, utilisation of these dependencies is preferable in the new
application.

As mentioned in the research report, the new user authentication subsystem will rely on
the Ruby gem ”Devise”. This gem is contributed to by many developers, and is rich with
features related to the required account system requirements. Unless specific customization
is required, the application does not need controllers for the purposes of user authentication:
these are embedded into the gem. This means zero lines of controller code in the code base,
as opposed to the 321 lines of unreliable authentication code in the original PHP version of
the system.

The undesired insertion or update of values for certain attributes will be prevented us-
ing “Strong Parameters”, which is utility in Rails to filter only allowed key value pairs from
the parameters sent along with HTTP-requests. This prevents users from updating values in
columns of a database table for which they are not authorized.

In addition, the ”CanCanCan” gem is to be employed for structured user authorization,
which previously was either done using manual role checks all over the system, or not done at
all. Using this gem, user authorization is centralized in an ”Ability” class, in which permissions
to create, read, update and destroy models - or specific model instances - are dynamically
determined for a given user instance.

The research report, found under appendix B, lists many other evaluated and selected
modules (mainly Ruby gems) that not only assist in quality assurance, but also significantly in-
crease the speed of the development process, mitigating the overhead of starting from scratch.

BEPSys 2.0 - Technical Report - 2017 17

5.2. Rails Framework
The following section outlines the decisions that led to the selection of the Rails framework for
the development of the new BEPSys 2.0 application.

5.2.1. Model-View-Controller
Rails implements the Model-View-Controller (MVC) pattern, which is a compound software
design pattern that can be decomposed into three more fundamental design patterns: the
Strategy, Composite and Observer design pattern. The purpose of this compound design pat-
tern is to strictly separate key responsibilities in a system over different classes of components
(i.e. controllers, models and views) of the system.

5.2.2. Representational State Transfer
Representational State Transfer (REST) is a software architectural style that emphasizes scal-
ability of component interactions, generality of interfaces and independent deployment of com-
ponents (Fielding and Taylor [2000]). By imposing constraints on the software architecture,
certain quality attributes such as performance, scalability, simplicity, modifiability, visibility,
portability, and reliability can be improved. For these purposes, in contrary to the original im-
plementation, BEPSys 2.0 is intended to provide a RESTful interface. Rails supports this, as
exemplified by the default resourceful routes.

5.2.3. Language and Framework Preferences
Ruby as a language was selected by the development team due to its aim to centralize pro-
grammer productivity, such as by offering an intuitive, readable, high-level syntax. Within the
context of the Rails framework, this is especially noticeable in the different internal domain spe-
cific languages (DSL) that are offered by tools integrated with the framework. The language
allows the focus to be placed upon conforming to the functional requirements as opposed to
syntactical enforcement, speeding up the development process.

The chain of tools integrated with the Rails framework provides developers with quick ways
to manage the project. This concerns command line utilities such as ”Rake” for task automa-
tion (such as running tests and database migrations), Rails for generation of projects and code
scaffolds and Capistrano for fully automated deployment.

The philosophy behind the Rails framework includes two main principles, namely “Don’t
Repeat Yourself (DRY)” and “Convention Over Configuration”. The implications of the former
principle is obviously a more maintainable code base. However, the latter principle has the
negative side effect of a rather steep learning curve. Nonetheless, a month before the start
of the project the developers started learning Ruby on Rails through readily available online
tutorials and documentation, mitigating the effect of the hurdles these numerous conventions
cause for novice Rails programmers. The benefit of this principle is ultimately that building
applications is faster because of the negligible overhead of configuration throughout the ap-
plication. The Ruby and Rails communities are also helpful, providing many forms of detailed
documentation, and many reusable modules in the form of Ruby gems.

Rails also comes integrated with the MiniTest testing framework, extended with an ab-
straction layer. This testing framework allows for structured testing of all the different classes
of components of the rails application, at different testing levels (such as unit and integra-
tion tests). Alternatively, frameworks like RSpec and Cucumber can be used with Rails as
well. With the stable release of Rails 5.112 on 21 April, 2017, full integration of system tests
(i.e. browser-automated acceptance tests) were introduced - right in time to be utilised for the
1http://weblog.rubyonrails.org/2017/4/21/Rails-5-1-rc2/
2http://edgeguides.rubyonrails.org/5_1_release_notes.html

BEPSys 2.0 - Technical Report - 2017 18

http://weblog.rubyonrails.org/2017/4/21/Rails-5-1-rc2/
http://edgeguides.rubyonrails.org/5_1_release_notes.html

project. The value of these tests and the way they were employed are further discussed in
section 8.1.2 on page 30.

5.2.4. Justifying Maintainability
It was discussed with the client that students involved in the future maintenance of BEPSys
are not likely to be familiar with Ruby on Rails due to a lack of its existence within the bachelor
curriculum offered at the TU Delft. The involved stakeholders have little to no experience with
Ruby on Rails, either. Therefore, one could argue that the choice to employ Ruby on Rails
is interfering with the maintainability of the system. The development team believes that this
argument is ultimately unsustainable. First, PHP is not part of the computer science bachelor
curriculum either, nor is the framework CakePHP, thus rendering it equally likely that students
are unfamiliar with the currently employed technology. This argument can be generalized
to many web technologies, frameworks, and languages (such as Django, Meteor, Laravel,
Symfony, Zend, Sinatra, WordPress, Elixir, Phoenix).

Moreover, bachelor students in computer science at the TU Delft are taught about relatively
abstract concepts on programming languages and software engineering methodologies, en-
suring the ability to quickly familiarize with new software technologies. Therefore, one could
argue that being introduced to a different language and/or framework should not pose any
unreasonable challenges and thus should not introduce any significant hurdles with respect
to maintainability. The development team was required to teach themselves the new frame-
works, and the resulting product shows the ability to learn the language and framework, and
proceed to develop with it.

5.3. Migrating data to the new production environment
The migration section outlines the research and decisions that were made which led to the
decision to not migrate current BEPSys data to the new application.

5.3.1. Technical Considerations
The current implementation of BEPSys stores data objects with fields which were determined
to be relevant at the time of implementation. Such data includes student records (name, netID,
student number, date of birth), project information (name, company, contact information), and
other minor data objects that are required for the system (users who have a special role, such
as the course coordinator or counsellor). As outlined in section 5, the design of BEPSys 2.0
aimed to generalize all data objects (splitting company information from projects to allow for a
single company entity to have multiple projects) and to create flexible parameters (allow mul-
tiple courses, forms, rule sets). Due to the restrictions of the previous data model, alongside
the requirements for flexibility and shift of scope focus, it was decided that migration of data
to the new production environment would not be done.

5.3.2. Client Preferences
After multiple discussion moments with the client, it was concluded that the client was willing to
accept both a data migration or no migration. Due to the desire to make BEPSys 2.0 flexible,
and the lack of support for many of the options within the data model, the client accepted the
proposal to not migrate any data over to the new production environment. The client did insist
that information would be provided to all companies currently in the BEPSys system about the
incoming change, including the ability to fetch their current project data before the removal of
the old system.

BEPSys 2.0 - Technical Report - 2017 19

5.3.3. Migration Procedure
Since it was decided that no data migration to the new production environment would take
place, no procedure was developed. It was agreed upon to inform all companies in the existing
BEPSys database of the incoming application change, and to provide themwith the opportunity
to re-register in the new system. No further migration related actions or procedures took place
during the development of BEPSys 2.0.

BEPSys 2.0 - Technical Report - 2017 20

6
Design

The design section outlines choices that have been made related to database design, data
modelling, software architectural decisions, and front-end design choices. Section 6.4 on
page 26 outlines group formation theories that were researched to aide in the formation of
groups for projects.

6.1. Decisions
The methodologies section aims to clarify the reasoning and processes behind decision made
for the project. The original version of the BEPSys system was written in PHP, using the
CakePHP framework [Bashirieh and Rahbari, 2013]. For the development of its successor
the decision was made to discontinue the use of the existing code base, and instead build
the new system from scratch. Additionally, it was decided to implement the new system in the
Ruby language, using the Rails framework. This section aims to outline the reasons for starting
design and development from scratch and utilizing a different language and framework. The
options for deployment and scaling with the selected technology are also discussed in this
section.

6.2. Modelling
To ensure that future changes and requirements can be added into the new BEPSys system,
and to ensure that all specifications and requirements are met, different models were created
as a guideline for the back-end. The flows of different processes within the system were
modelled using business process model and notation (BPMN). The database was designed
using an EER diagram.

6.2.1. Process Flow Modelling
Figure 5.1 displays a process flow diagram which describes the process of the creation of
project. This process is complicated due to the ability for multiple company entities to exist, as
they can be created on a person-by-person basis. The administrator has the option to merge
companies such that all projects from those companies are seen under the name of one of
the merged companies, creating an overview of a company with multiple users.

Figure 5.2 displays the process of joining a group for a project. After a coordinator has
approved a user to participate in a course (edition), a user can request to join a group or can
be invited by the group leader to join the group.

Figure 5.3 displays the process of enrolling in a course (edition), including the permission
that must be granted to the user from a counsellor.

BEPSys 2.0 - Technical Report - 2017 21

Figure 6.1: Process flow model for project creation

Figure 6.2: Process flow model for group joining

Figure 6.3: Process flow model for course enrolment

BEPSys 2.0 - Technical Report - 2017 22

Figure 6.4: Initial data model

6.2.2. Data Modelling
Data modelling refers to the design of the data and the interactions that take place between
objects of data. To describe the initial data model, a conceptual data model was designed. To
comply with the requirements, this model primarily expands the data model of BEPSys 1.0 and
aims to conform to it wherever possible. Extensions to the model include separating student
groups as an entity, separating companies as an entity, adding support for course editions
under a course to separate active time periods of courses, and a data model for the system
notifications with support for logging. Figure 5.4 shows the initial data model.

The ubiquitous “role” and “status” attributes were added to relations that were already in
place as a result of the required associations between different entities (regardless of the
user role allocation mechanism). This makes for efficient reuse of existing relations for role
allocation purposes. In order to scope user roles to entities which are not directly associated
with the User, a more generic role allocation mechanism was put in place revolving around the
Role entity which uses Rails polymorphic associations in the application layer to be associated

BEPSys 2.0 - Technical Report - 2017 23

with different entities.

6.2.3. Schema Model
The schema model outlines the interactions between data objects within the system. The
schema model served as a guiding diagram to ensure that all individually developed compo-
nents would interact correctly as per the agreed upon model. Due to the size, the complete
schema model can be found under appendix A.

6.3. Front-end
This section outlines the design process behind the front-end’s graphical and layout design,
including wireframes, layout concepts, and interaction design.

6.3.1. Wireframes
The development of a front-end in an iterative manner is an inefficient and slow process, as
the design would have to be developed, programmed, and discussed for each iteration. A
decision was made to develop a set of wireframes in Balsamiq’s Mockups1 application, which
provide a somewhat stylized concept within a drag-and-drop interface for front-end design.
The wireframes would assist in developing the main look and feel of the application.

6.3.2. Layout
The main focus of the layout was to provide a singular style for all aspects of the application,
meaning that menu’s and information display was identical regardless of role, data object, or
location. The general template of the layout was to match that of the TU Delft, meaning a full
width navigation bar at the top of the page and a full width footer with a navigational sitemap
and logo at the bottom of the page. The content of each individual page would be displayed
between these two objects. On the course page, an overview will be given of all courses that
exist in the system. When selecting a course and selecting a course edition, a list of projects
would be displayed. An impression of this layout for the course selection is provided by the
wireframe in figure 5.5, and an impression of this layout for the project selection of a course
edition is provided in figure 5.6.

Since each data object in the application would require multiple views (such as projects,
which require views for information, groups, and management), it was decided to implement
a contextual menu on each page that contained a data model with depth. A wireframe layout
of such a layout can be seen in figure 5.7. Note the navigation bar in figure 5.7 that is located
under the course title and edition period, which acts as a central navigation method through
objects with the level of aforementioned depth that require multi-level navigation.

Utilising these mock-ups, a general look and feel to the BEPSys 2.0 application was devel-
oped and agreed upon. The front-end would rely on a simple interface with full-width elements
to distinguish navigation from page content.

6.3.3. Colour Scheme & Design
The colour scheme for the front-end of the application was predetermined by a client require-
ment. The client expressed a desire for the new application to adhere to the TU Delft’s colour
and style guidelines (”huisstijl”), which dictate colouring for multiple elements and accents, as
well as header and display properties. The navigation and footer colours were determined to
be blue as dictated in the style guide, as to mimic the TU Delft’s website style as much as pos-
sible for a uniform user experience across platforms. All effects and animations are focussed
1https://balsamiq.com/products/mockups/

BEPSys 2.0 - Technical Report - 2017 24

Figure 6.5: Wireframe layout for course selection

Figure 6.6: Wireframe layout for project selection within a course edition

BEPSys 2.0 - Technical Report - 2017 25

Figure 6.7: Wireframe layout for project information

on matching those found on the TU Delft’s website, including the sidebar navigation discussed
in section 5.3.2. A table with all required colours and properties is found in appendix C.

6.4. Group Formation
Starting a project in the BEPSys application requires a group. In this section an assessment is
made of different methods of group formation and outlines the decisions that led to the design
of groups and group formation in BEPSys 2.0.

6.4.1. Formation Aspects
Before looking at the benefits and drawbacks of a group formation system there are two ways
of dealing with group formation that can be distinguished [Cantador and Castells, 2012]. One
method is “intentional” group formation in which users can create their own groups. The al-
ternative refers to “non-intentional” group formation which requires an automatic identification
system in which groups are created automatically. Non-intentional systems can be very use-
ful if one wishes to solve difficulties in creating groups that have certain requirements. The
”optimal” group could suggest group members that all have the same talent which makes the
group very strong in one area of expertise. A good group could also suggest group members
with different talents and specialisations to ensure together the group is divergently talented.
To form diverse groups there are associated optimization problems where the aim can be to
maximize group diversity and minimize difference among the groups. According to [Mahen-
thiran and Rouse, 2000] it can also be said that when people choose their own group they
will have less “slackers”, which is defined as people who are graded somewhat lower than
the average of the group grade due to the inability to perform within the group. The group
performance and satisfaction can be enhanced when people work together with friends rather
than when they are allocated together with other people.

BEPSys 2.0 - Technical Report - 2017 26

Figure 6.8: Group status business logic table

6.4.2. Group Formation Design
It was decided upon to go for an intentional group formation system where a person can
choose to join a project. In the system, a group size of 3 to 4 students is taken into account as
per the wishes of the client. The minimum and maximum number of group members can be
configured by a course coordinator for each individual course edition. The grouping system
has three phases: open, locked and approved. In an open phase any student is allowed to
sign up for a group or join the project-based ”looking for group” list. When a group reaches a
minimum of 3 interested people (or the minimum amount of people for a group), the system
locks that group to be considered for the project. People can still sign up for other groups, but
when other groups reach 3 members then they will be placed on a waiting list for the project.
The leader of the locked group has the option to finalize the group after which no more people
can request to join the group. The sign-up procedure is then closed for everyone for that
individual project and the locked group is selected. The maximum number of groups that can
be accepted for a project will be configurable per course edition.

The system utilises a “First Come First Serve” (FCFS) procedure in which the first group
to reach 3 members (or the minimum amount of members for a group) will be locked first. In
the locked phase the waiting list will also have a FCFS approach which suggests that the first
group on the waiting list will get locked in the case of the current locked group getting rejected
or opting not to do the project. Groups have a “looking for team mate”-option where it will be
visually clear that a group is looking for extra group members. Other users can simply click to
join the group after which a request is sent to the group leader.

A locked group will get the option to commit to a project. Every group member should
commit individually to the project in the locked phase to ensure absolute certainty to commit
to the project. This prevents the issue in which the group leader can accept a new member
and commit to a project without the others of the group agreeing with the decision of the leader.
It was decided to let group leaders commit on their own as it will be reviewed in a later iteration
of the development process. When a group has committed to a project, a final check must be
done by the project submitter. The project submitter will have the option to accept the group or
not. If the group is not accepted then the sign-up phase is open again and the current locked
group is unlocked and tagged as “rejected”. However, if the group gets accepted then the
project can finally start its process.

An outline for the group phases and business logic as outlined in this section can be found
in figure 5.8. Note that ”LFG” refers to the interest lists, and is an abbreviation for ”Looking for
Group,” which was the original title of the interest list system.

BEPSys 2.0 - Technical Report - 2017 27

7
Implementation

The implementation section describes the developed application and its back-end, front-end,
and deployment environments. The focus therein lies with changes between the design and
actual development phases. It also outlines attempted implementation of technologies that
would not make it to the final application due to time or resource constraints.

7.1. Back-end
The back-end section covers implementation related details and issues that are related to
Ruby on Rails and the database environment.

7.1.1. Implemented Data Model
The data model and associated schema as designed during the research phase was imple-
mented in the application. A copy of the schema can be found in appendix A. Minor attributes
such as course images and company logo support were added after the design phase, but
all changes made were minor and encompassed a scope of a few variables added to certain
data models.

7.2. Front-end
The front-end section covers implementation related details and issues that are related to the
layout, design, and interface implementation that is shown to the users of the application.

7.2.1. Administration
After completion of the wireframes during the design phase, it was decided upon to have a
physical split between the front-end for users, and the view for administrative tasks. This re-
sulted in an administrative panel which did not adhere to design guidelines and was focused
entirely on providing simple access to all data objects and administrative tasks in the applica-
tion.

7.2.2. Custom theme for the Bootstrap layout framework
The web interface for the front-end and administrator panel was built using the Bootstrap layout
framework1. The Bootstrap framework accelerates front-end development by providing many
general, pre-built components and layout utilities. In addition, these components and utilities
are responsively styled, which eases the process of making the interface available on different
1https://getbootstrap.com/

BEPSys 2.0 - Technical Report - 2017 28

https://getbootstrap.com/

screen sizes (such as mobile phones and tablets). In order to meet the front-end design
guidelines that have been introduced in the preceding chapter on ”Design,” a custom theme
was developed for the Bootstrap framework using the colours as outlined in appendix C. In
order to make this theme maintainable and reusable, the Syntactically Awesome Stylesheets
(SASS2) version of Bootstrap was used. SASS is a CSS pre-compiler and syntax extension
that allows for colour variables across CSS files. This allowed the default Bootstrap styling to
be modified and tweaked by simply editing SASS variable values.

7.2.3. Responsiveness
Due to the Bootstrap implementation as outlined in the previous subsection, the design of both
the administration panel and the front-end is entirely responsive. The tweaking of the respon-
siveness, including verification, was done through manual testing. All devices are supported,
although phones with a screen diameter under four inches will have issues displaying certain
pages. It was decided to not take those devices into account, as they are a decreasing trend
and are not found in phone trends today. The major interest and usage group for BEPSys 2.0
consists of students, and a common trend is that students have smartphones with a screen
diameter and resolution that exceeds these parameters.

7.2.4. Asynchronous Interface
Research was done into the possibility of an asynchronous interface, in which data is displayed
instantly based on live updates and instant reactions to user input. A possible component to
support this feature was React.JS, a Javascript library which allows for simple implementation
of a reactive interface. Whenever a user performed an action related to group management
or administrative tasks, the page would not have to reload or be refreshed manually, but all
data on the page would by dynamically adjusted through the utilisation of listeners. Due to
time constraints, it was not possible to implement this library into the BEPSys 2.0 application.

Due to the added value of such a library, and due to the interface having been designed with
a library such as React.JS in mind (all components in a view are separated and independently
loadable), the development team wishes to advise any future programmer to implement such
a reactive library into the BEPSys 2.0 application.

7.2.5. Single Sign-On
The TUDelft provides each staff member and student with an official TU account, which can be
utilised to sign in to authorised applications using their ”single sign-on” system. The incoming
iteration of this system utilises a security assertion mark-up language (SAML) which has been
integrated into the BEPSys 2.0 application.

Acquiring authorisation to utilise an application with the single sign-on environment re-
quires a formal request to be sent to the TU Delft’s authority for personal and sensitive data.
This request was sent in the second week of the project, and a resubmission occurred in the
sixth week of the project. Both requests were met with silence, meaning the actual link with
the single sign-on system and the BEPSys 2.0 SAML integration did not take place. This was
entirely due to a lack of responsiveness on the part of the TU Delft’s central services, and
there was no possible alternative course of action to be taken by the development team.

For temporary purposes, an integration wasmade with Okta3 to simulate logging in through
the single sign-on. A temporary registration page for student and internal staff members (which
would not be required if the single sign-on environment was active) was added to temporarily
circumvent this issue.

2http://sass-lang.com/
3https://www.okta.com/

BEPSys 2.0 - Technical Report - 2017 29

http://sass-lang.com/
https://www.okta.com/

8
Testing & Quality Assurance

The process of testing is an important complement to the software development life-cycle,
especially when focussed on improving and assuring the quality of the software product. Fur-
thermore, testing is context dependent. Therefore, a specific testing strategy and policy were
constructed for the testing process of the web information system. This chapter discusses
the technologies and methods involved in the automation of software testing for verification
purposes, how acceptance testing was applied for validation purposes, and the studies that
were employed to improve the human computer interaction aspect of the system.

8.1. Software Verification
Software verification amounts to confirmation by examination and through provision of objec-
tive evidence that specified requirements have been fulfilled (Kaner and Fiedler [2013]). Using
dynamic and static testing, and different testing techniques at different levels, the system was
verified to meet the elicited requirements as documented in chapter 3 on page 4.

8.1.1. Dynamic Testing
Within the BEPSys2 application are two main object types that were tested: models and con-
trollers. Test Cases were deemed most suitable in testing individual methods found in models.
Testing these methods does not require any integration tests to be run, as most methods can
be tested by providing a simple input value and checking the given output to an expected
output.

Integration testing was found most useful when testing controllers. Controllers contain a
lot of redirects to different URL addresses, and many asserts that validate whether a website
page was successfully loaded or was showing a redirect or error page. The IntegrationTest1
class in Rails provides a convenient list of assert methods which support these test cases.

Rails also provides a simple manner of providing test data. Mock data for tests called
fixtures2 can be easily stored in a YAML file and called from the appropriate test files.

8.1.2. Browser Automated Testing
Since Rails version 5.1, system tests are available natively. Based on the Capybara gem and
fully integrated with the framework, system tests use an interchangeable module for browser-
automation (using specialized software such as the Selenium Webdriver). This way, the sys-
tem can be automatically tested against acceptance criteria, including Javascript functionality
1http://api.rubyonrails.org/v5.1/classes/ActionDispatch/IntegrationTest.html
2http://api.rubyonrails.org/v5.1.1/classes/ActiveRecord/FixtureSet.html

BEPSys 2.0 - Technical Report - 2017 30

http://api.rubyonrails.org/v5.1/classes/ActionDispatch/IntegrationTest.html
http://api.rubyonrails.org/v5.1.1/classes/ActiveRecord/FixtureSet.html

and adherence to visual criteria for the layout, using browser-automation techniques. From
within these tests, the entire application and framework API’s are available. This means that
tests can launch the browser, perform some actions through the web interface in the same
manner as a real user, and validate whether relevant records in the database are being manip-
ulated as expected (an example of this could be filling in input fields within forms and pressing
submission buttons to validate object creation and error handling).

Additionally, system tests can run on a headless server, such as by using a virtual frame
buffer. Tests were configured to run inside en X virtual frame buffer (XVFB) on the Jenkins
continuous integration server (storing screenshots in case of failed tests to allow for manual
checking to resolve errors and test failures).

A major contributing factor for employing system tests into the BEPSys 2.0 application is
the fact that they provide reliable regression tests. Due to strict security regulations for the
system, dependencies had to be kept up-to-date automatically. Dependency updates may
often break functionality, especially in the case of major updates changing a crucial API. Run-
ning system tests in continuous integration assists in assuring that a succeeding build on the
continuous integration server yields a correctly functioning build in the production environment.

8.1.3. Test Coverage Analysis
The development teamwanted ametric related to the percentage of tested objects and classes
within the code base. From the available coverage metrics a decision was made to utilise line
coverage. A code coverage analysis tool for Ruby, SimpleCov3, was utilised to determine the
percentage of line coverage in the code base. This tool was used as a means to see the test
coverage at a given point in time. The team generally aimed at achieving a minimum line
coverage of 80% for models and controllers. Line coverage for view objects, which rely on
HTML and CSS, were not created.

8.1.4. Static Analysis using Rubocop
To ensure uniformity in code style (indentation, tabbing, whitespace, bracket placement), and
to detect specific types defects in the system, static analysis was used. The static analysis
tool Rubocop4 was used for this purpose. Rubocop checks for violations of rules that are
organized in rule sets called ”Cops”. General Ruby language cops, as well as a specific cop
for the Rails framework, are available.

The Rubocop configuration was left at the strict default settings, which are in line with
the Ruby Style Guide constructed and maintained by the community5. Some exceptions to
specific rules for specific files were added to the configuration only in cases where the rule
was considered not applicable, along with an elaborate motivation. These motivations have
been left in the code base for other developers to see in case of maintenance or changes.

In order to integrate static analysis into the development workflow, a linter plugin for the
used text editor Atom was installed locally. This plugin ensures that Rubocop runs in the back-
ground on opened files, and warnings are displayed inside the editor whenever violations are
introduced. An example of such local Rubocop violations can be seen in figure 7.1. Rubocop
was also configured to run on the continuous integration server as part of the build and testing
process. In order for the CI build to pass, the code would have to be clean from violations. A
build would fail if a Rubocop style violation took place.
3https://github.com/colszowka/simplecov
4https://rubocop.readthedocs.io/en/latest/
5https://github.com/bbatsov/ruby-style-guide

BEPSys 2.0 - Technical Report - 2017 31

https://github.com/colszowka/simplecov
https://rubocop.readthedocs.io/en/latest/
https://github.com/bbatsov/ruby-style-guide

Figure 8.1: An example of a local rubocop violation

8.1.5. Security Testing
Automated testing was utilised to identify and eliminate security vulnerabilities. Refer to sec-
tion 10.3 on page 37 for details about the tools and techniques employed for these purposes.

8.1.6. Continuous Integration using Jenkins
To ensure that tests were executed within a clean environment and without the ability to ma-
nipulate tests locally, an automated test system was utilised. This system, Jenkins, runs all
system tests and other automated tasks (such as Brakeman and Rubocop) to ensure that the
submitted code is up to the agreed standard within the development team. The utilisation of an
automated system for this process ensures that tests and implementations that are unstable
or heavily dependent on local changes can be caught, effectively removing submission bias
and manipulation from the testing process.

8.2. Software Validation
Software validation concerns the evaluation of the system to check whether the user needs
and requirements are met. User Acceptance Testing (UAT) was primarily used to support the
software validation. Developers cannot identify all quirks and bugs on their own, thus requiring
user testing to locate additional bugs and issues.

Four stakeholders representing the users of the system were asked to perform UATs: a
student, a study counsellor, a coordinator, and a staff member. The test sessions with these
stakeholders were prepared by setting up test scenarios in which the user had to solve the
assignments given by the developers. The documentation and instructions for these scenarios
can be found in appendix D.

During these scenarios the user was requested to think out loud, allowing the developers
to document possible issues or bugs that the user came across. Users were not permitted to
ask anything regarding the assignments unless they could no longer make any progress and
got stuck. It is undesired that users are stuck at an activity while this issue could have been
found during user test sessions before deployment.

The user test session did not only involve the thinking-out-loud process. Feedback ques-
tions were asked in order to found out evenmore about what the user has in mind when looking
at the system.

The results of the user tests session were processed by dividing the feedback of the users
into separate issues. These issues were evaluated one by one with the development team to
prioritize them and to ensure that most bugs and issues were fixed and that newly requested
features were implemented with the best efficiency possible. The prioritization of issues was
defined by looking at how much the user was impacted by an issue. A high priority would be
given to bugs or missing functionality. A lower priority was given to minor and visual issues,
such as the neatness of the layout in the front-end.

BEPSys 2.0 - Technical Report - 2017 32

9
Deployment

New technologies were employed for developing BEPSys 2.0, as discussed and justified in
earlier sections. In order to implement Single Sign-On integration, the system was required
to be hosted inside the infrastructure of the TU Delft. For these reasons, a new production
environment for the application had to be configured.

9.1. Production Environment Configuration
As required by the product owner, the new BEPSys 2.0 application will be deployed on an
Ubuntu system running an Apache web server and a MySQL database server. The server will
be periodically and automatically rebooted to apply security updates as required by the TU
Delft’s regulations. Different approaches for configuring the server architecture to support the
Rails application were studied.

Rails is integrated with an internal middleware stack conforming to Rack, which is a mini-
mal, modular, and adaptable interface between Ruby supporting web servers and Ruby frame-
works. Different Rack application servers are available, of which Phusion Passenger, Puma,
and Unicorn were studied for implementation and deployment. Puma comes bundled with
Rails by default, and was used as a development server.

For Phusion Passenger, an Apache module is available that allows Apache to serve Rack
applications by utilising a child process for the Passenger server.

Alternatively, a Rack server serving the Rails application could run as an independent
process. By configuring a virtual host, the Apache web server could function as a reverse
proxy delegating HTTP requests to the Rack server. To ensure that the Rack server resumes
on reboot, the initial idea was to add an ”@reboot” rule to the CRON table. However, as a
more reliable approach, the Rack server can be made available and enabled as a service
managed by the init system (such as ”systemd”).

9.2. Scalability
Like withmany other frameworks, Rails applications can be horizontally scaled, which amounts
to the conversion of the server architecture into a three-tier architecture. Such an architecture
distributes the load balancer, the Rails application instances, and the database instances over
different servers. If multiple distinct database instances are necessary, multi-master or master-
slave replication techniques can be employed to synchronize the databases. The second
server configuration approach mentioned previously, namely that of running the Rack server
as an independent process, best supports horizontal scaling due to the ability to add additional

BEPSys 2.0 - Technical Report - 2017 33

application instances to the architecture and distribute them over different systems. Therefore,
this approach was used for configuring the production environment.

9.3. Configuration Automation using Ansible
Ansible1 is an IT automation language and engine, having different use cases such as appli-
cation deployment, continuous delivery, and orchestration. The use case for which Ansible
was employed for BEPSys 2.0 was configuration automation. From a control node, the con-
figuration of remote machines can be managed over an SSH connection in a fully automated
way. Ansible has an agentless architecture, meaning that no installation of special software
on remote machines is required in order for them to be controlled; industry standard proto-
cols like OpenSSH are utilised. In an Ansible script - called a ”Playbook” - the needs for
the BEPSys 2.0 production environment were recorded in a detailed and declarative manner.
The Playbook utilises different user created, self-contained modules called ”Roles” shared in
the Ansible community. This script was then run against the production server to allow the
application to be deployed.

9.4. Deployment Automation using Capistrano
Deployment to the staging and production environments for the BEPSys 2.0 system was fully
automated using the Capistrano gem. This tool provides an extensible and abstract interface
for scripting deployment related tasks which are ultimately translated into shell commands.
These shell commands are tunnelled over an SSH connection with the remote environment
(such as a VPS or a dedicated server).

The Rails framework comes with an additional gem that sets up Capistrano for deploying
Rails projects specifically, therefore requiring minimal configuration by the developers. Each
deployment yields a new timestamped directory on the server in which the specified version of
the system is cloned from the Git repository. Subsequently, assets that are compiled and files
are shared across different versions are symbolically linked into the directory (such as user
uploads). If the deployment process succeeds, the symlink pointing to the ‘current’ version
(the version that exists on the web server) is updated. This allows for an easy rollback to a
previous version using a single command if necessary.

1https://www.ansible.com/

BEPSys 2.0 - Technical Report - 2017 34

https://www.ansible.com/

10
Security

The BEPSys 2.0 application handles information for which confidentiality, integrity, and avail-
ability must be assured. This section focuses on security issues that arose in the design and
development of BEPSys 2.0, and the design choices that were made to tackle these issues
are elaborated upon.

10.1. Testing for and preventing OWASP top 10 security flaws
The Open Web Application Security Project (OWASP) classified a set of ten security vulnera-
bilities in 2013 due to the increasing impact technology partakes in crucial infrastructure such
as ”financial, healthcare, defense, energy, and other critical infrastructure” [OWASP, 2013j].
This section discusses nine of the ten flaws present in the OWASP top 10 together with miti-
gations for these flaws that were employed in the BEPSys 2.0 application.

10.1.1. Injection
Injection attacks occur when unsanitised user input is used in a command or query. An ad-
versary can craft his or her input in such a way that some form of code execution is achieved
that is undesired by the developer. This can result in remote code execution on the server
or unauthorized access to data [OWASP, 2013a]. The Rails framework has built-in protection
mechanisms against injection attacks such as SQL injection, a vulnerability which gives an
attacker the ability to inject own SQL queries. By using Rails’ ActiveRecord query interface
SQL injection flaws are prevented as nowhere in the application raw SQL queries have to be
used with untrusted user input.

Stakeholders have additionally requested file and document sharing functionality for groups,
which creates a new attack vector. Uploads should only be possible for certain file types and
files should be placed in a data directory outside of the application web directory. It should fur-
ther be ensured that uploaded files can only be written to the intended data directory [OWASP,
2006].

10.1.2. Broken authentication and session management
Flaws in the user authentication and authorization systems occur when this functionality is
wrongly developed, implemented, or used. This can result in the compromise of user accounts
as a result of password, token, or session theft / manipulation [OWASP, 2013b]. Authentication
and authorization issues are limited by relying on existing gems that provide authentication and
authorization functionality in an abstracted manner. With these functionalities abstracted away
in a small number of gems the developers merely had to focus on correctly configuring and

BEPSys 2.0 - Technical Report - 2017 35

guiding the gems and not on the actual implementation of authentication and authorization
features. Gems used for authentication and authorization include Devise, CanCanCan and
Rolify.

10.1.3. XSS: Cross-site scripting
Cross-site scripting attacks are possible when a user can provide input that is printed in one
way or another to the web browser of a user. This makes it possible for an attacker to inject
Javascript code into the user’s browser. An attacker could steal session cookies [OWASP,
2013c] or perform other actions related to unwanted information manipulation. The Rails
framework automatically prevents cross-site scripting attacks by escaping data directly printed
to the browser by default.

It was not possible to consider under all circumstances to print escaped data. Company
representatives and TU staff members can style project submissions in BEPSys 2.0 using
Markdown1. Output from the markdown-to-html parser could not be escaped as this would
prevent the parsed markdown from being correctly rendered as html. Without a form of escap-
ing, this would have created a Cross-Site-Scripting opportunity. The solution to this problem
was escaping the entered markdown text before it is rendered to html, ensuring that no XSS
attacks could occur.

10.1.4. Insecure direct object references
References to files and pages that should not be visible to all users can be exposed. If an
adversary can change the URL path of a resource to that of a resource that is not protected,
unauthorized data can be leaked [OWASP, 2013d]. All actions in BEPSys 2.0 were build up
on the ”need-to-know” principle. This means that, by default, a user has access only to a
small number of pages and actions and that access to additional pages and actions have to
be explicitly defined. This approach ensures that a user can only perform a minimal amount
of required actions.

10.1.5. Security misconfiguration
Insecure configurations can cause security issues. The consequences of a misconfigura-
tion(s) depends on the type of misconfiguration in the application [OWASP, 2013e]. A security
misconfiguration for Ruby on Rails that has to be dealt with in the production environment
is preventing the contents of POST requests to be logged. The contents of POST request
can contain sensitive information such as login credentials [Facca, 2017]. Additionally, the
web application is only accessible in production via HTTPS to prevent users from accessing
BEPSys via the unencrypted and thus less secure HTTP protocol.

10.1.6. Sensitive data exposure
Sensitive information needs to be properly protected from unauthorized access and indexing.
Proper protection and encryption ensures that in the case of a breach or unauthorized access it
is not possible to read sensitive data [OWASP, 2013f]. In the BEPSys 2.0 system passwords
are hashed and salted. The Devise gem used for authentication by default uses bcrypt, a
strong algorithm for password hashing [OWASP, 2011]. In a comparison between MD5 and
bcrypt, MD5 hashes could be cracked 2.5 million faster than a bcrypt hash [Gosney, 2012].

10.1.7. Missing function level access control
Each function call requires an authorization check to ensure that a user has the correct privi-
leges for accessing a function or resource. This prevents unauthorized access to pages and
1https://daringfireball.net/projects/markdown/

BEPSys 2.0 - Technical Report - 2017 36

unauthorized information edit requests [OWASP, 2013g]. In BEPSys 2.0 access rights are
defined for each user per controller action as ‘Ability’. It is not always possible to control au-
thorization using Abilities, in those cases authorization takes place on a controller level.

10.1.8. CSRF: Cross-site request forgery
A web application might not sufficiently check whether an HTTP request is deliberately per-
formed by a logged-in user. If a user is logged in and the vulnerable receiving web application
accepts any HTTP request coming from the user without any verification, an adversary can
forge requests made to the vulnerable receiving web application by making the user visit a
specially prepared website. If this prepared website contains special Javascript code or an
embedded link to the vulnerable web application then unauthorized requests can be performed
[OWASP, 2013h]. This vulnerability is automatically prevented by the Rails framework if forms
are used. Every time a form is created a unique CSRF token is generated that is sent along
with the entered data in the form.

10.1.9. Using components with known vulnerabilities: Ruby Gems
Ruby on Rails and gems have experienced vulnerabilities in the past. Installing the latest secu-
rity patches prevents the exploitation of known vulnerabilities in the server platform [OWASP,
2013i]. The ”bundle-audit” gem is used to check for security patches and the ”brakeman”
gem is used to test the application for security vulnerabilities. Both gems were used in the
continuous integration pipeline.

10.2. Security Gems
Existing libraries for authentication and authorisation are used instead of building this function-
ality from scratch. This prevents overhead and the introduction of vulnerabilities in the code
base. Devise (a Ruby account gem) and CanCanCan (a Ruby access and permissions man-
ager gem) were used for authentication and authorisation respectively. Both gems belong to
the most popular gems for these purposes [TheRubyToolbox, 2017a,b].

10.3. Secure Development
Security issues have been considered into the design of BEPSys 2.0 from the onset. Role and
rights management is included in the design, security issues were anticipated and actively
tested for, and remediations were documented in advance. Code is kept maintainable and
the Ruby on Rails Security Guide is taken into consideration. A clean code base reduces the
number of bugs and thus also the number of vulnerabilities. All developers are aware of the
most common security vulnerabilities and source code is audited at every merge-request to
take security into account.

Throughout the development of BEPSys 2.0, the web application was checked for design
limitations and security vulnerabilities. The application was tested for vulnerabilities using
static source code audit tool Brakeman. In addition, the dependencies of the system were
checked for vulnerabilities using bundle-audit, a tool that checks currently installed versions
of gems in the application against an advisory database.

Other security vulnerabilities like flaws in user authorization were tested for using specific
dynamic tests. Manual code analysis took place at each pull request and prevented vulnera-
bilities from being introduced in the stable release. At the end of the project the application is
again audited, both with manual source code analysis and with manual penetration testing to
ensure that the majority of vulnerabilities are removed before the application is deployed.

BEPSys 2.0 - Technical Report - 2017 37

11
Ethical Considerations

The following section outlines ethical decision and issues that were discussed and handled
during the development of the BEPSys 2.0 application.

11.1. Handling of Confidential Information
The BEPSys 2.0 application will handle multiple sources of confidential information, including
student contact and personal information. Federal and TU Delft regulations mandate that the
handling of this private information is done with great care, and requires applications utilising
this data to be secure and to uphold encryption standards.

Another aspect is that not all users within the system may view all information. Students
and staff members are allowed to see most information in the application, but an external
account (from a company or an institute) may not view any student information, nor information
from another company. Thus, an isolation of data as per the ”need to know” principle is required
to adhere to all the regulations and requirements.

The implementation of this revolved around the CanCanCan permissions, in which only
the super user (administrator) receiver permission to manage everything in the system. All
other roles (student, staff, coordinator, counsellor) have hand-picked and tested permissions
in which each data object within the system has indexing, viewing, reading, editing, creating,
destroying, and managing permissions that are set and tweaked per role option. This prevents
unwarranted data access, and ensures that all users of the application only see information
that adheres to the ”need to know” principle.

11.2. Status Confirmations
The BEPSys 2.0 application is utilized for the bachelor project course within Computer Science
to display and handle official confirmations related to academic status. This data is submitted
to official records of the TU Delft, and can have legal implications for both student and staff.
If a student is rejected from participating in a course edition, this is considered to be binding
due to the application having been validated and approved by the appropriate counsellor. This
decision must only be taken when it is certain that a student does not meet the entry require-
ments. This situation is identical for approved students, whommust be only be accepted when
it is certain they meet the entire requirements.

To facilitate this, the BEPSys 2.0 application contains multiple checks and validations on
the importing of student data and utilises modals to confirm the intent of a counsellor when
editing an individual user. These modals pop-up and prevent accidental button activations of
such confirmation actions, ensuring a counsellor or course coordinator must be certain they

BEPSys 2.0 - Technical Report - 2017 38

wish to perform the desired action upon the selected user(s). These systems aim to prevent
possible (legal) conflicts with status and approval in order to ensure a streamlined student
confirmation process.

11.3. Group Formation
Although related to the confirmations mentioned in the previous section, consideration has
gone into the group management procedure and regulations. There was a period in time in
which there was an ethical discussions related to the ability to remove members from groups.
It placed the power of legal decisions in the hand of students (namely, whether or not a person
would get approved within a group for a project).

After discussions with the client, it was decided to not have any guards against student
group management. The client made it clear that a lot of time had gone into assisting students
who wished to have their group managed in the previous iteration of BEPSys, costing the
course coordinator(s) of the Bachelor Project a lot of time. Although some risks are associated
with allowing group members to manage each other, the inclusion of logging and safeguards in
the system should prevent accidental sweeping decisions from being taken, thereby averting
the issue.

BEPSys 2.0 - Technical Report - 2017 39

12
Conclusion

The following section outlines the status of the product upon finalisation of the development,
and suggestions for future development and extensions of the system. The section also out-
lines problems with the development and possible improvements in the reflections subsection.

12.1. Product Status
The product that was delivered on the 6th of July 2017 adhered to the requirements as outlined
in chapter 2. The majority of the ”must haves” were implemented, the majority of the ”should
haves” were implemented, and a sizeable amount of ”could-” and ”would haves” were imple-
mented. Feedback gathered from the client was also implemented during the final week of
development, resulting in a significant amount of non-written requirements being implemented.
With regards to essential functionality, the new BEPSys 2.0 application supports:

1. Registration for student, staff, externals, and coach users.

2. The signing-on to the application using the TU Delft single sign-on environment.

3. Registration of a new company and projects within a company.

4. Enrolment and counsellor approval for all courses.

5. Registration of multiple courses and course editions under courses.

6. The creation and management of groups with regards to students and coaches.

7. Management of groups, including approving and rejecting groups or projects.

8. The sharing of files between group members and client.

9. The validating of project submissions before showing them to users.

10. Privacy for all users and companies, including an adherence to the ”need to know” prin-
ciple.

11. Overviews for all roles and objects, split as required.

12. Exporting and Importing of all administrative information.

BEPSys 2.0 - Technical Report - 2017 40

The delivered product supports all features that are required for the Bachelor Project
course, and the roll-out and utilisation of the application appear allotted to start in the first
quarter of the 20167-2018 academic year at the TU Delft. The development team remains
prepared to assist and make changes in case of requirements that arise during deployment
as agreed with the client.

Although not all requirements could be met, most of these issues resulted due to time
constraints. With further development the application can continue to be easily developed
due to good maintainability.

Interest for the BEPSys 2.0 project management application has arisen from multiple ex-
ternal parties, including the central student council of the TU Delft (represented by the party
”Lijst Beta”), and other degree programmes at the TU Delft. The application could secure ad-
ditional funding from parties within the TU Delft to continue development and to be expanded
with features they require or wish to see.

12.2. Future Development
As a suggestion for future development, the BEPSys 2.0 application mainly requires a focus
on additional usability features. These features include extended notifications, linking the
single sign-on of the TU Delft with the temporary SAML implementation of the application, and
support for a reactive interface through libraries such as React.JS.

If BEPSys 2.0 is rolled out to additional faculties, a prioritisation has to be placed upon
expanding the administration panel with flexible features, such as adaptive forms for enrolment
and flexible course entry requirement validation. Another such focus could take place with an
integration attempt with the TU Delft grading system, OSIRIS, to allow for immediate approval
if a student matches these parameters for a course edition.

12.3. Process Reflection
During the process, multiple issues arose which, upon reflection, could have been avoided.
The reflection subsection aims to outline a subset of the encountered problems, along with an
analysis of possible solutions.

During the first week of the project, it was agreed upon that all team members would arrive
at the office at the TU Delft each day at an agreed upon time (barring issues with transporta-
tion), in order to allow for a small daily discussions to ensure all team awareness of ongoing
processes and to prevent duplicate efforts. Although this was adhered to during the first week,
the process of conducting a centralised meeting was not consistent throughout the project.
Two members in the team were unavailable during multiple days each week, certain members
had regular issues reaching the office on time, and certain events would receive precedent
over attending the meetings. This periodically led to a lack of communication during crucial
moments. This led to frustration among team members, and some members felt others were
slacking or not contributing as much to the collective effort. These issues could have been
avoided if the team had constructed and agreed upon a more strict policy for scheduling meet-
ings and office hours.

Regular meetings took place with the client in order to solicit advise and additional require-
ments if necessary. After the fourth week, this resulted in an ever increasing set of require-
ments that would eventually lead to scope creep. The team attempted to catch-up to this
scope creep, which eventually caused an overwhelming amount of tasks to be completed and
many requirements and possible features to be cut from development. A lesson to be learned
from this is to better prioritize and select issues, and more frequently and elaborately com-
municate, amongst team members as well as with stakeholders. This would allow for more
realistic planning.

BEPSys 2.0 - Technical Report - 2017 41

User testing took place late in the development cycle. This resulted in a hassle for selecting
possible testers, of which a few were unable to make it due to scheduling issues. The user
testing revealed that many minor changes had to occur. These minor changes and requests
would eventually build-up to become a subset of close to 100 issues, which all had to be taken
care of in the final week of development. Changes ranged from colour and layout changes to
additional features that were ”must haves.” These issue overwhelmed the development team
and caused the removal of a lot of allotted time for improving software quality and polishing and
preparing the system for deployment. If the user testing with the client had taken place in an
earlier stage, solving these problems could have been planned for and would have prevented
a required rescheduling of all issues in the product backlog.

A significant setback occurred due to administrative delays related to the single sign-on
submission. As mentioned in chapter 7 on page 28, support for the single-sign on authenti-
cation protocol was built into the system, but was not linked with the TU Delft’s single sign-on
system. This delay occurred due to problems at the administrative and oversized branch of
the TU that is responsible for handling identity management. If the team had spent additional
time pursuing the client and the responsible branches to handle the request sent, it could have
been sped-up and perhaps implemented within the allotted time frame of the project.

12.4. Process Recommendations
Based on the reflection in the previous section, and based on the experience of the develop-
ment team, a set of process recommendations that are encouraged for future development of
the platform include:

1. Ensure all team members are present during all meetings and at the allocated time.

2. Ensure client and coach meetings occur on regular intervals, and provide moments for
all stakeholders to test the application freely to reveal weaknesses.

3. Ensure that new requirements require a definition from the client or relevant stakeholder,
and ensure to prioritise them appropriately to prevent scope creep.

4. Ensure that administrative tasks, including sending requests to a large central organisa-
tion such as the TU Delft, are sent on time.

5. Ensure that features are properly tested before integration.

6. Prioritise features not through commitment to a schedule, but based on what the product
needs at that time in development.

BEPSys 2.0 - Technical Report - 2017 42

Bibliography

Atern (2008). Moscow prioritisation. Web.

Bashirieh, S. and Rahbari, N. (2013). Bachelor project system (bepsys). Technical report.

Cantador, I. and Castells, P. (2012). Group recommender systems: New perspectives in the
social web. Intelligent Systems Reference Library, 32:139–157.

Facca, B. (2017). Zen rails security checklist. Web.

Fielding, R. T. and Taylor, R. N. (2000). Architectural styles and the design of network-based
software architectures. University of California, Irvine Doctoral dissertation.

Gosney, J. (2012). Password cracking hpc. Web.

Kaner, C. and Fiedler, R. L. (2013). Foundations of Software Testing. Context-Driven Press.

Mahenthiran, S. and Rouse, P. (2000). The impact of group selection on student performance
and satisfaction. International Journal of Educational Management, 14(6):255–264.

OWASP (2006). Unrestricted file upload. web.

OWASP (2011). Password storage cheat sheet. web.

OWASP (2013a). Top 10 2013-a1-injection. web.

OWASP (2013b). Top 10 2013-a2-broken authentication and session management. web.

OWASP (2013c). Top 10 2013-a3-cross-site scripting (xss). web.

OWASP (2013d). Top 10 2013-a4-insecure direct object references. web.

OWASP (2013e). Top 10 2013-a5-security misconfiguration. web.

OWASP (2013f). Top 10 2013-a6-sensitive data exposure. web.

OWASP (2013g). Top 10 2013-a7-missing function level access control. web.

OWASP (2013h). Top 10 2013-a8-cross-site request forgery (csrf). web.

OWASP (2013i). Top 10 2013-a9-using components with known vulnerabilities. web.

OWASP (2013j). Top 10 introduction. web.

TheRubyToolbox (2017a). Rails authentication. web.

TheRubyToolbox (2017b). Rails authorization. web.

van Solingen, R. (2015). The power of scrum.

BEPSys 2.0 - Technical Report - 2017 43

Appendices

A
Data Models

The following pages include the final implementation models of the database schema for the
system. The first model was manually designed and kept up-to-date using MySQL Work-
bench. The second model was automatically generated based on the model components in
the application using the rails-erd gem.

BEPSys 2.0 - Technical Report - 2017 45

users

id INT

authorization_level INT

first_name VARCHAR(45)

last_name VARCHAR(45)

email VARCHAR(45)

encrypted_password VARCHAR(45)

reset_password_token VARCHAR(45)

reset_password_sent_at VARCHAR(45)

remember_created_at VARCHAR(45)

sign_in_count VARCHAR(45)

current_sign_in_at VARCHAR(45)

last_sign_in_at VARCHAR(45)

current_sign_in_ip VARCHAR(45)

last_sign_in_ip VARCHAR(45)

confirmation_token VARCHAR(45)

confirmed_at VARCHAR(45)

confirmation_sent_at VARCHAR(45)

unconfirmed_email VARCHAR(45)

failed_attempts VARCHAR(45)

unlock_token VARCHAR(45)

locked_at VARCHAR(45)

created_at VARCHAR(45)

updated_at VARCHAR(45)

Indexes

company

id INT

name VARCHAR(45)

description TEXT

email VARCHAR(45)

phone VARCHAR(45)

city VARCHAR(45)

street VARCHAR(45)

house_number VARCHAR(45)

postal_code VARCHAR(45)

country VARCHAR(45)

website_url VARCHAR(45)

linkedin_url VARCHAR(45)

created_at DATETIME

updated_at DATETIME

Indexes

sso_profiles

id INT

user_id INT

netid VARCHAR(45)

student_number VARCHAR(45)

year_of_registration VARCHAR(45)

created_at DATETIME

updated_at DATETIME

Indexes

projects

id INT

name VARCHAR(45)

description TEXT

company_id INT

course_edition_id INT

presentation_location VARCHAR(45)

presented_at DATETIME

created_at DATETIME

updated_at DATETIME

Indexes

groups

id INT

status INT

project_edition_id INT

projects_id INT

created_at INT

updated_at INT

Indexes

memberships

id INT

user_id INT

group_id INT

role INT

status INT

created_at DATETIME

updated_at DATETIME

Indexes

courses

id INT

name VARCHAR(45)

description VARCHAR(45)

created_at VARCHAR(45)

updated_at VARCHAR(45)

Indexes

course_editions

id INT

name VARCHAR(45)

description VARCHAR(45)

description_for_externals VARCHAR(45)

status INT

starts_at DATE

ends_at DATE

course_id INT

created_at DATETIME

updated_at DATETIME

Indexes

course_configurations

id INT

course_edition_id INT

min_group_size INT

max_group_size INT

min_number_of_groups INT

max_number_of_groups INT

allow_internal BOOLEAN

allow_external BOOLEAN

created_at DATETIME

updated_at DATETIME

Indexes

course_participations

id INT

user_id INT

course_edition_id INT

status INT

created_at DATETIME

updated_at DATETIME

Indexes

course_participation_requests

id INT

course_participation_id INT

description TEXT

circumstances TEXT

planning TEXT

created_at DATETIME

updated_at DATETIME

Indexes

roles

id INT

name VARCHAR(45)

resource_type VARCHAR(45)

resource_id INT

created_at DATETIME

updated_at DATETIME

Indexes

users_roles

role_id INT

user_id INT

Indexes

imports

id INT

name VARCHAR(45)

status INT

course_edition_id INT

user_identifier_type INT

participation_status INT

text TEXT

document_file_name VARCHAR(45)

document_content_type VARCHAR(45)

document_file_size VARCHAR(45)

document_updated_at DATETIME

created_at DATETIME

updated_at DATETIME

Indexes

import_entries

id INT

import_id INT

participation_status INT

user_identifier_type INT

user_identifier_value VARCHAR(45)

user_id INT

course_edition_id INT

course_participation_id INT

created_at VARCHAR(45)

updated_at VARCHAR(45)

Indexes

events

id INT

user_id INT

resource_id INT

resource_type VARCHAR(45)

message_parameters TEXT

created_at DATETIME

updated_at DATETIME

Indexes

notifications

id INT

user_id INT

event_id INT

message_key VARCHAR(45)

read BOOLEAN

created_at VARCHAR(45)

updated_at VARCHAR(45)

Indexes

images

id INT

title VARCHAR(45)

imageable_id INT

imageable_type VARCHAR(45)

file_file_name VARCHAR(45)

file_content_type VARCHAR(45)

file_file_size INT

file_updated_at DATETIME

created_at DATETIME

updated_at DATETIME

Indexes

BEPSys 2.0 - Technical Report - 2017 46

BEPSys domain model

Company

affiliation integer ∗
city string
country string
description text
email string
house_number string
linkedin_url string
name string
phone string
postal_code string
projects_count integer ∗
street string
website_url string

Event

action string
message_parameters text
resource_type string

Image

file_content_type string
file_file_name string
file_file_size integer
file_updated_at datetime
imageable_type string
title string

Project

description text
name string
presentation_location string
presented_at datetime
status integer

Role

name string
resource_type string

RoleInvitation

name string
resource_type string
status integer ∗

Course

code string
description text
level text
name string ∗

CourseEdition

description text
description_for_externals text
ends_at date
name string ∗ U
starts_at date
status integer

CourseConfiguration

allow_external boolean
allow_internal boolean
allow_project_course_edition_update boolean
max_group_size integer ∗
max_number_of_groups integer ∗
min_group_size integer ∗
min_number_of_groups integer ∗
project_description_template text

CourseParticipation

status integer
status_motivation text

CourseParticipationRequest

circumstances text ∗
description text ∗
planning text ∗

Deadline

description text
hard_at datetime ∗
name string ∗
soft_at datetime ∗

Group

client_status integer
name string
project_edition_id integer
status integer

Import

name string
participation_status integer ∗
status integer ∗
text text
user_identifier_column integer
user_identifier_type integer ∗

ImportEntry

participation_status integer ∗
user_identifier_type integer ∗
user_identifier_value string

User

affiliation integer ∗
authorization_level integer
confirmation_sent_at datetime
confirmation_token string
confirmed_at datetime
created_via integer
current_sign_in_at datetime
current_sign_in_ip string
email string ∗ U
encrypted_password string ∗
failed_attempts integer ∗
first_name string ∗
last_name string ∗
last_sign_in_at datetime
last_sign_in_ip string
locked_at datetime
remember_created_at datetime
reset_password_sent_at datetime
reset_password_token string
role integer ∗
sign_in_count integer ∗
unconfirmed_email string
unlock_token string

Notification

message_key string
read boolean

Membership

role integer
status integer

PaperTrail::Version

event string ∗
item_type string ∗
object text (1073741823)
whodunnit string

ProjectInterest

UsersRole

BEPSys 2.0 - Technical Report - 2017 47

B
SIG Analysis Results

At the end of the sixth week, the source code was uploaded to the Software Improvement
Group (SIG). SIG analysed the code in order to rate the maintainability of the system. In re-
sponse, SIG reported that BEPSys 2.0 scored 4 out of 5 stars on their model for maintainability,
which is above average.

The maximum score was not achieved due to a low score in the area of code duplication.
For this category the redundancy in the code was analysed, identifying pieces of code that
could be removed after refactoring. For assuring maintainability, removing redundant code
is desirable because changes to this code would otherwise need to be implemented multiple
times, in different places in the codebase.

The major flaw that was identified, were the methods used for filtering parameters in con-
trollers that were used for managing the same resource (but which were organized in different
namespaces). These methods often shared a number of parameters. SIG stated that they
understood the presumed reason for this rather redundant approach; in the opinion of the de-
velopers this was related to the accepted parameters, which should be customizable per con-
troller to allow different subsets of a model’s attributes to be managed via different controllers
for authorization purposes. Nonetheless, SIG still advised to try to refactor the implementation
by sharing parameters between controllers through an inheritance hierarchy.

The team agreed that sharing the parameters between different controllers is a manner
of reducing duplication. An important principle in object-oriented software design is to favour
composition over inheritance. Therefore, it was preferred to share the methods - or rather
their abstractions allowing customization in each specific controller - through modules instead
of super classes.

Besides the issues identified by the SIG, the team was confident that code duplication was
largely eliminated. The utilised framework was designed according to the principle ”Don’t Re-
peat Yourself,” and implementations were continuously refactored in order to create reusable
abstractions and modular components.

48

C
BEPSys 2.0 Colour Table

The following page contains the color schema provided by the ”TU Huisstijl” style guidelines
that was adapted for the design of BEPSys 2.0.

Table C.1: BEPSys 2.0 color table

Colour RGB Value
Black 0, 0, 0
White 255, 255, 255
Blue 0, 166, 214
Light Blue 110, 187, 213
Purple 29, 28, 115
Yellow 225, 196, 0
Red 226, 26, 26
Green 0, 136, 145
Gray 107, 134, 137

49

D
User Testing

The following pages contain the documents utilised during the user testing phase of the de-
velopment of BEPSys 2.0.

50

Student
In the test scenario no account has to be created. Use the following login credentials:

User without course enrolment
User: student1@student.tudelft.nl
Pwd: test123

User with course enrollment, without project or group
User: student2@student.tudelft.nl
Pwd: test123

Please think out loud. Describe all the steps that you are going to take and what you would
expect after certain button presses.

Scenario 1: Account information update

User: student1@student.tudelft.nl
Pwd: test123
Task: Change your last name

Questions:

- What did you like and dislike about the homepage?
- What did you like and dislike about the account information updating

process?

Scenario 2: Register for correct course edition

User: student1@student.tudelft.nl
Pwd: test123
Task: Register for a course edition

Questions

- What did you like and dislike about the course enrolment process?

Scenario 3: Project interest list

User: student2@student.tudelft.nl
Pwd: test123
Task: Join the interest list of a project

Questions

- What did you like and dislike about the project interest process?

BEPSys 2.0 - Technical Report - 2017 51

Scenario 4: Group joining and coach invitation
User: student2@student.tudelft.nl
Pwd: test123
Task: Join a group and Invite a coach

Questions

- What did you like and dislike about the project joining process?
- What did you like and dislike about the coach invitation process?

BEPSys 2.0 - Technical Report - 2017 52

Company

In the test scenario no account has to be created. Use the following login credentials:
User: test@external.nl
Pwd: test123

Please think out loud. Describe all the steps that you are going to take and what you would
expect after certain button presses.

Scenario 1: Account information update

Task 1: Login with the provided login credentials
Task 2: Change your last name

Questions:

- What did you like and dislike about the homepage?
- What did you like and dislike about the account information updating

process?

Scenario 2: Course navigation

Task 1: Login with the provided login credentials
Task 2: Navigate through the courses and find relevant information

Questions:

- What did you like and dislike about the course (edition) overview?

Scenario 3: Project creation

Task 1: Login with the provided login credentials
Task 2: Create a new project (and thus also a new company)

Questions:

- What did you like and dislike about the company creation process?
- What did you like and dislike about the project creation process?
- What did you like and dislike about the project styling option using

Markdown?

Scenario 4: Group approval

Task 1: Login with the provided login credentials
Task 2: Go to an unapproved project
Task 3: Approve the project

Questions

- What did you like and dislike about the group approval process?

BEPSys 2.0 - Technical Report - 2017 53

Coordinator
In the test session no account has to be created. Use the following login credentials:
User: admin@tudelft.nl
Pwd: test123

Please think out loud. Describe all the steps that you are going to take and what you would
expect after certain button presses.

Scenario 1: Free navigation through application

Task: Freely navigate through the admin interface of the application

Questions
- What did you like and dislike in general?

Scenario 2: Creating course editions

Task: Create a course edition

Questions
- What did you like and dislike about the course (edition) creation process?

Scenario 3: Updating student names

Task: Update the name of a student

Questions

- What did you like and dislike about the account update functionality?

Scenario 4: Assigning Coordinator privileges
Task: Make user Staff1 (coordinator@tudelft.nl) coordinator for
‘Test Course-Edition 1’

Questions

- What did you like and dislike about the process of assigning roles to users?

Scenario 5: Approving project proposals

Task: Approve a project proposal

Questions

- What did you like and dislike about the project approval process?

Scenario 6: Approving groups

Task: Approve a group

Questions

- What did you like and dislike about the group approval process?
BEPSys 2.0 - Technical Report - 2017 54

Counsellor
In the test scenario no account has to be created. Use the following login credentials:
User: admin@tudelft.nl
Pwd: test123

Please think out loud. Describe all the steps that you are going to take and what you would
expect after certain button presses.

Scenario 1: Import list of approved students

Task 1: Login with the provided login credentials
Task 2: Import a list of approved students

Questions

- What did you like and dislike about the import process?

Scenario 2: Approve students

Task 1: Login with the provided login credentials
Task 2: Approve and reject several students

Questions

- What did you like and dislike about the student approval process?

BEPSys 2.0 - Technical Report - 2017 55

E
Infosheet

The following page contains the infosheet that was delivered alongside the technical report.

56

THE INFORMATION SHEET WAS REMOVED FROM THE PUBLIC VERSION OF THE
REPORT DUE TO CONFIDENTIAL INFORMATION REGARDING SECURITY FLAWS AND
CONTACT INFORMATION.

BEPSys 2.0 - Technical Report - 2017 57

F
Research Report

The following pages contain the unaltered research report as provided to the client and coaches
at the end of the research phase - the first two weeks - of the project.

58

RESEARCHREPORT REMOVED FROMPUBLIC REPORT DUE TO SECURITY INFOR-
MATION REGARDING A CURRENTLY ACTIVE SYSTEM AT THE TU DELFT.

BEPSys 2.0 - Technical Report - 2017 59

	Preface
	Summary
	List of Figures
	Introduction
	Planning
	Planning Phases
	Phase 1: Research
	Phase 2: Implementation
	Phase 3: Wrap Up

	Retrospective

	Requirements
	Definition of Done
	Resulting Requirements
	Stakeholder 1: Client
	Functional requirements
	Non-functional requirements

	Stakeholder 2: Counsellor
	Functional requirements
	Non-functional requirements

	Stakeholder 3: TU Coach
	Functional requirements
	Non-functional requirements

	Stakeholder 4: Company
	Functional requirements
	Non-functional requirements

	MoSCoW Requirements
	Must Have
	Should Have
	Could Have
	Would Have

	Methodologies & Tooling
	Development Life-Cycle Model
	Version Control using Git & GitLab
	Modern Code Review through Merge-Requests
	Issue Tracking using JIRA
	Task Automation using Rake

	Technical Considerations
	Starting Over
	Improving Maintainability
	Preventing Flaws in BEPSys 2.0

	Rails Framework
	Model-View-Controller
	Representational State Transfer
	Language and Framework Preferences
	Justifying Maintainability

	Migrating data to the new production environment
	Technical Considerations
	Client Preferences
	Migration Procedure

	Design
	Decisions
	Modelling
	Process Flow Modelling
	Data Modelling
	Schema Model

	Front-end
	Wireframes
	Layout
	Colour Scheme & Design

	Group Formation
	Formation Aspects
	Group Formation Design

	Implementation
	Back-end
	Implemented Data Model

	Front-end
	Administration
	Custom theme for the Bootstrap layout framework
	Responsiveness
	Asynchronous Interface
	Single Sign-On

	Testing & Quality Assurance
	Software Verification
	Dynamic Testing
	Browser Automated Testing
	Test Coverage Analysis
	Static Analysis using Rubocop
	Security Testing
	Continuous Integration using Jenkins

	Software Validation

	Deployment
	Production Environment Configuration
	Scalability
	Configuration Automation using Ansible
	Deployment Automation using Capistrano

	Security
	Testing for and preventing OWASP top 10 security flaws
	Injection
	Broken authentication and session management
	XSS: Cross-site scripting
	Insecure direct object references
	Security misconfiguration
	Sensitive data exposure
	Missing function level access control
	CSRF: Cross-site request forgery
	Using components with known vulnerabilities: Ruby Gems

	Security Gems
	Secure Development

	Ethical Considerations
	Handling of Confidential Information
	Status Confirmations
	Group Formation

	Conclusion
	Product Status
	Future Development
	Process Reflection
	Process Recommendations

	Bibliography
	Appendices
	Data Models
	SIG Analysis Results
	BEPSys 2.0 Colour Table
	User Testing
	Infosheet
	Research Report

