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Abstract Cellular Automata (CA) represent an interesting approach to design Substi-
tution Boxes (S-boxes) having good cryptographic properties and low implementation
costs. From the cryptographic perspective, up to now there have been only ad-hoc
studies about specific kinds of CA, the best known example being the χ nonlinear
transformation used in Keccak. In this paper, we undertake a systematic investigation
of the cryptographic properties of S-boxes defined by CA, proving some upper bounds
on their nonlinearity and differential uniformity. Next, we extend some previous pub-
lished results about the construction of CA-based S-boxes by means of a heuristic
technique, namely Genetic Programming (GP). In particular, we propose a “reverse
engineering” method based on De Bruijn graphs to determine whether a specific S-box
is expressible through a single CA rule. Then, we use GP to assess if some CA-based
S-box with optimal cryptographic properties can be described by a smaller CA. The
results show that GP is able to find much smaller CA rules defining the same reference
S-boxes up to the size 7 × 7, suggesting that our method could be used to find more
efficient representations of CA-based S-boxes for hardware implementations. Finally,
we classify up to affine equivalence all 3 × 3 and 4 × 4 CA-based S-boxes.
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1 Introduction

A frequent direction adopted in the design of block ciphers is the Substitution-
Permutation Network (SPN) cipher. Such ciphers usually consist of an XOR operation
with the key/subkeys, a linear layer, and a substitution layer [21]. To build the substitu-
tion layer, a common option in today’s designs is to use one or more Substitution Boxes
(S-boxes, also known as vectorial Boolean functions). In order for an S-box to be
useful, it needs to fulfill a number of cryptographic properties. In his seminal work on
the design of block ciphers, Shannon introduced the concept of confusion that an S-box
needs to have [36]. Here, confusion can be defined as the property that the ciphertext
statistics should depend on the plaintext statistics in a manner too complicated to be
exploited by an attacker. This concept is connected with the cryptographic property of
nonlinearity. Finding an S-box that is resilient against various attacks is not easy and
this problem becomes even more complicated if we consider various sizes of S-boxes
that are of practical relevance. As examples, some common occurring S-box sizes are
4 × 4 (PRESENT [5]), 5 × 5 (Keccak [4]), and 8 × 8 (AES [18]). Note that the given
examples have the same input and output sizes as with the S-boxes we consider in this
paper – i.e., mappings from n bits to n bits.

From the cryptographic properties perspective, the minimum set of criteria one
would need to consider when designing S-boxes includes bijectivity, high nonlinearity,
and low differential uniformity. To obtain such properties, there are several options
to consider ranging from mathematical constructions to various heuristics. When
discussing mathematical constructions, a typical choice is to use power mappings,
as in the case of the AES S-box (where the inverse power function and an affine
transformation are used). Conversely, in heuristic approaches the designer has at his
disposal a number of techniques that in general cannot compete with mathematical
constructions, but which can offer an interesting alternative in specific scenarios (see
Section 6 for details).

In this paper, we focus on S-boxes constructed with Cellular Automata (CA).
More precisely, a CA-based S-box can be considered as a particular type of vectorial
Boolean function where each coordinate function corresponds to the CA rule applied
on a local neighborhood. The best known example of such an S-box is the χ nonlinear
transformation used in the Keccak sponge construction, which is now part of the SHA-
3 standard [4]. There, the authors use a CA rule affecting only three neighborhood
positions for each bit, which results in an extremely lightweight definition of the S-box
with a small implementation cost, but which also yields suboptimal cryptographic
properties. To the best of our knowledge, all the other ciphers using CA rules for
defining S-boxes actually use that same rule. This is the case of Panama [15], Radio-
Gatún [3], Subterranean [13], and 3Way [17] ciphers. Besides those S-boxes, there are
also designs using an S-box that is an affine transformation of the Keccak S-box, such
as Ascon [12].

This paper extends earlier work on the subject published by Picek et al. [30,
29]. In those papers, we covered the construction of CA-based S-boxes of different
dimensions using a specific heuristic technique, namely Genetic Programming (GP).
We showed it is possible to construct optimal S-boxes with respect to the nonlinearity
and differential uniformity properties (except for dimension 6 × 6, which is anyway
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not achievable with a single CA rule, see Section 5.2 for details). Besides that, those
papers addressed the construction of CA-based S-boxes that are additionally optimized
with respect to the area requirements. On the other hand, the main contributions of the
present paper are the following:

1. We theoretically prove some upper bounds for the nonlinearity and differential
uniformity properties of S-boxes constructed by CA. In particular, we relate those
cryptographic properties to the corresponding properties of the underlying local
rules. Interestingly, our findings also show why the CA used in Keccak cannot
have a better nonlinearity and differential uniformity by adding more cells.

2. We present a “reverse-engineering” method that is able to find CA rules resulting
in specific S-boxes. In this context, we address two main questions: the first one
is whether a generic S-box can be expressed through a single CA rule, for which
we devise a procedure based on the De Bruijn graph representation of CA. Next,
given an S-box that can be represented with a single CA rule, the second question
we address is whether there exists a shorter rule resulting in the same S-box. Our
reverse engineering approach, which is still based on GP, shows that it is possible
to obtain such shorter rules for all optimal CA-based S-boxes reported in [30,29].

3. We conduct an exhaustive search for 3 × 3, 4 × 4, and 5 × 5 CA-based S-boxes.
Further, we provide a complete classification up to affine equivalence for the 3 × 3
and 4 × 4 sizes.

The rest of the paper is organized as follows. In Section 2, we discuss neces-
sary information about S-boxes and cryptographic properties we consider. Section 3
gives background on cellular automata and their connection with S-boxes. Section 4
gives theoretical results – specifically, upper bounds for nonlinearity and differential
uniformity attainable by CA-based S-boxes. Section 5 offers experimental results
where we investigate how to use heuristics to construct shorter rules for CA-based
S-boxes. Additionally, we provide enumerations of affine classes for several S-box
sizes and discuss possible future research directions. Section 6 gives a short overview
of related work, both from the perspective of CA and of Evolutionary Computation
(EC) approaches in the design of S-boxes. Finally, in Section 7 we summarize the
main points of the paper.

2 Cryptographic Properties of S-boxes

Let n,m be positive integers, i.e., n,m ∈ N+. We denote by Fn
2 the n-dimensional vector

space over the finite field F2. Further, for any set S , we denote S \{0} by S ∗. The usual
inner product of a, b ∈ Fn

2 equals a · b =
⊕n

i=1 aibi.
The Hamming weight wH(a) of a vector a, where a ∈ Fn

2, is the number of non-zero
positions in the vector. An (n,m)-function is any mapping F from Fn

2 to Fm
2 . An (n,m)-

function F can be defined as a vector F = ( f1, · · · , fm), where the Boolean functions
fi : Fn

2 → F2 for i ∈ {1, · · · ,m} are called the coordinate functions of F. Given
v ∈ (Fm

2 )∗, the component function v · F : Fn
2 → F2 is the Boolean function defined for

all x ∈ Fn
2 as the inner product between v and F(x). In other words, the component

functions of F represent the non-trivial linear combinations of its coordinate functions.
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2.1 S-box Representations

A Boolean function f on Fn
2 can be uniquely represented by a truth table (TT), which

is a vector Ω f ∈ F
2n

2 defined as

Ω f = ( f (0, · · · , 0), · · · , f (1, · · · , 1)) .

More precisely, Ω f contains the output values of f in lexicographical order with
respect to the input entries, i.e., for a, b ∈ Fn

2, it holds a ≤ b if and only if ai ≤ bi

where i ∈ {1, · · · , n} is the first index such that ai , bi [9]. An (n,m) S-box can be
represented in the truth table form as a matrix of dimension 2n × m where each of the
m columns represents a coordinate function.

The Walsh-Hadamard transform of an (n,m)-function F is defined as (see [10]):

Wv·F(ω) =
∑
x∈Fn

2

(−1)v·F(x)⊕ω·x, v ∈ (Fm
2 )∗, ω ∈ Fn

2 . (1)

In particular, the quantity Wv·F(ω) measures the correlation between the component
function v · F and the linear function ω · x. The maximum absolute value of the Walsh
transform of F for a given v ∈ (Fm

2 )∗ is also called the linearity of the component
function v · F.

2.2 S-box Properties

In order to resist linear and differential cryptanalysis attacks, a balanced S-box should
ideally have high nonlinearity and low differential uniformity. An (n,m)-function F
is balanced if it takes every value of Fm

2 the same number 2n−m of times. Balanced
(n, n)-functions correspond to bijective S-boxes.

The linearity of F (also called the spectral radius) is defined as the maximum
linearity of all its component functions v · F, where v ∈ Fm∗

2 [26,10]:

L(F) = max
ω ∈ Fn

2
v ∈ Fm∗

2

|Wv·F(ω)|. (2)

The nonlinearity NF of an (n,m)-function F equals:

NF = 2n−1 −
1
2
L(F). (3)

Let F be a function from Fn
2 into Fm

2 with a ∈ Fn
2 and b ∈ Fm

2 . We define the
difference distribution table of F with respect to a and b as:

DF(a, b) =
{
x ∈ Fn

2 : F(x) ⊕ F(x ⊕ a) = b
}
. (4)

The entry at position (a, b) corresponds to the cardinality of the difference distribution
table DF(a, b) and is denoted as δF(a, b). The differential uniformity δF is then defined
as [27]:

δF = max
a ∈ Fn∗

2
b ∈ Fm

2

δ f (a, b). (5)
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2.3 S-box Bounds

The nonlinearity of any (n,m) function F is bounded above by the so-called covering
radius bound:

NF ≤ 2n−1 − 2
n
2−1. (6)

Functions satisfying the above bound are called bent, and they exist only when n is
even. Further, for m = n a better bound exists. The nonlinearity of any (n, n) function
F is bounded above by the so-called Sidelnikov-Chabaud-Vaudenay bound [11]:

NF ≤ 2n−1 − 2
n−1

2 . (7)

Bound (7) is an equality if and only if F is an Almost Bent (AB) function, by definition
of AB functions [10].

Functions that have differential uniformity equal to 2 are called Almost Perfect
Nonlinear (APN) functions. Every AB function is also APN, but the converse does not
hold in general. AB functions exist only in an odd number of variables, while APN
functions also exist for an even number of variables. When discussing the differential
uniformity parameter for permutations, the best possible (known) value is 2 for any
odd n and also for n = 6. For n even and larger than 6, this is an open question. The
differential uniformity value for the inverse function equals 4 when n is even and 2
when n is odd.

2.4 Affine Equivalence

Two S-boxes S 1 and S 2 of dimension n × n are affine equivalent if the following
equation holds [10]:

S 1(x) = B · (S 2(A · x ⊕ a)) ⊕ b, (8)

where A and B are invertible n × n matrices in F2 and a, b ∈ Fn
2.

Both nonlinearity and differential uniformity are affine invariant, meaning that
applying an affine transformation to an S-box will not change the values of those
properties.

3 Cellular Automata

Cellular Automata (CA) are parallel computational models that have been used to sim-
ulate and analyze a wide variety of discrete complex systems in different application
domains. A CA is characterized by a lattice of cells. During a single time step, each
cell in the lattice synchronously updates its state according to a local rule, which is
applied to the neighborhood of the cell. In what follows, we focus on one-dimensional
Boolean cellular automata, meaning that the lattice is a one-dimensional array, and
the state of each cell is binary. The following definition formalizes the two models of
CA we address in this work:

Definition 1 Let f : Fd
2 → F2 and n ≥ d. We define the following two models of

one-dimensional Boolean CA with n input cells and local rule f :
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– No Boundary CA (NBCA): F : Fn
2 → F

n−d+1
2 is defined for all x ∈ Fn

2 as:

F(x1, x2, · · · , xn) = ( f (x1, · · · , xd), f (x2, · · · , xd+1), · · · , f (xn−d+1, · · · , xn)) .
(9)

– Periodic Boundary CA (PBCA): F : Fn
2 → F

n
2 is defined for all x ∈ Fn

2 as:

F(x1, x2, · · · , xn) = ( f (x1, · · · , xd), · · · , f (xn−(d−2), · · · , x1), · · · , f (xn, · · · , xd−1)) .
(10)

Figure 1 reports an example respectively of NBCA and PBCA based on the local
rule f (x1, x2, x3) = x1 ⊕ x2 ⊕ x3 with n = 6 cells. Thus, a CA can be seen as a vectorial

1 0 0 1

f (1, 0, 0) = 1

01 0 0 0 1

(a) No Boundary CA – NBCA

01 0 1 0 0

f (1, 1, 0) = 0

01 0 0 0 1 1 0

(b) Periodic Boundary CA – PBCA

Fig. 1: Examples of NBCA and PBCA with local rule 150, defined as f (x1, x2, x3) =

x1 ⊕ x2 ⊕ x3

Boolean function where each coordinate function fi corresponds to the local rule f
applied to the neighborhood (xi, · · · , xi+d−1). In the no boundary case, this rule is
applied just up to the coordinate n − d + 1, meaning that the size of the input array
shrinks by d − 1 cells. In the periodic setting, the CA array is seen as a ring, so that
the first cell follows the last one. The remaining d − 1 cells are updated by using
the first d − 1 as their right neighbors. In Figure 1b, this is depicted by appending a
grey-shaded copy of the first d − 1 = 2 cells to the right of the CA array.

Notice that, since the local rule f : Fd
2 → F2 is a Boolean function, it can be

represented by a truth table of 2d bits. In the CA literature, another common way to
identify a local rule is by means of its Wolfram code, which is basically the decimal
representation of the truth table. As an example, the Wolfram code for the CA local
rule applied in Figure 1 is 150, since its truth table is Ω f = (1, 0, 0, 1, 0, 1, 1, 0). The
vectorial Boolean function F of a CA is also called the CA global rule.

Example 1 The nonlinear transformation χ used in Keccak [4] is a PBCA with n = 5
cells and local rule f : F3

2 → F2 defined as:

f (x1, x2, x3) = x1 ⊕ x2x3 ⊕ x3 . (11)

The Wolfram code for such rule is 210.

Remark 1 Note that if the rule adopted in Keccak is used with a cellular array of even
length, then the resulting S-box is not bijective. In particular, the S-box is bijective
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if and only if the size of the CA is odd [16]. Since the Keccak rule has diameter
d = 3, it results in an optimal S-box of size 3 × 3, while for the size 5 × 5 (adopted in
the design of Keccak) the resulting S-box has suboptimal cryptographic properties.
Naturally, as one would extend the size of this S-box by adding new cells to the
CA, the cryptographic properties would become increasingly worse. In Section 4
we formalize this observation by analyzing how the nonlinearity and differential
uniformity properties of a CA are affected by adding new cells, deriving upper bounds
for these two cryptographic properties.

Remark 2 PBCA with d = n actually correspond to rotational symmetric S-boxes,
originally introduced in [34].

We conclude this section by observing that, in the CA literature, the focus is
usually on the iterated behavior of CA. In particular, the local rule is applied to all
cells in parallel for multiple time steps, in order to study the long-term properties of
the resulting dynamical system. On the other hand, in this work we only consider
the situation where the CA is evolved for just one time step, and investigate the
cryptographic properties of the resulting vectorial Boolean functions. This is the same
approach used by the designers of the CA-based nonlinear transformation χ used in
Keccak [4]. In general, we remark that studying the iterated behavior in a CA would
correspond to determining the cycles of the corresponding S-box.

4 Theoretical Findings

In this section, we prove some bounds on the nonlinearity and differential uniformity of
S-boxes defined by CA, relating them to the corresponding properties of the underlying
local rules. To prove our results, we make use of the following theorem proved by
Nyberg, concerning how the nonlinearity and the differential uniformity properties
of an S-box are affected by adding a coordinate function while maintaining fixed the
number of input variables [27].

Theorem 1 Let F : Fn
2 → Fm

2 be an S-box defined by m coordinate functions
f1, · · · , fm : Fn

2 → F2, and let g : Fn
2 → F2. Define F̃ : Fn

2 → F
m+1
2 as follows:

F̃(x1, · · · , xn+1) = ( f1(x1, · · · , xn), · · · , fm(x1, · · · , xn), g(x1, · · · , xn)) . (12)

Then, the following upper bounds hold:

NF(F̃) ≤ min{NF(F),NF(g)} . (13)
1
2
δF ≤ δF̃ ≤ δF . (14)

Consider now a CA (either with no boundary or periodic boundary conditions)
with n cells and local rule f : Fd

2 → F2. How do the nonlinearity and differential
uniformity of F change by adding a new cell, thus obtaining a new CA F̃ of n + 1
cells? Observe that Theorem 1 cannot be directly applied here, because we need to
address the case where both a coordinate function and an input variable are added to
the original CA. We first address this situation for generic S-boxes (i.e., not necessarily
defined by a CA rule) in the following result:
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Theorem 2 Let F : Fn
2 → Fm

2 be an S-box defined by m coordinate functions
f1, · · · , fm : Fn

2 → F2, and let g : Fn+1
2 → F2 be a Boolean function defined on

n + 1 variables. Define F̃ : Fn+1
2 → Fm+1

2 as follows:

F̃(x1, · · · , xn+1) = ( f1(x1, · · · , xn), · · · , fm(x1, · · · , xn), g(x1, · · · , xn, xn+1)) . (15)

Then, F̃ satisfies the following bounds:

NF̃ ≤ min{2 · NF ,Ng} , (16)
δF̃ ≤ min{2 · δF , δg} . (17)

Proof We begin by addressing the bound on nonlinearity. We are going to analyze the
Walsh-Hadamard transform of F̃ by classifying its component functions as follows:

(i) The 2m − 1 component functions that do not select the new coordinate g, i.e., those
described by the vectors ṽ = (v, 0) ∈ Fm+1

2 , where v ∈ Fm∗
2 .

(ii) The single component function that just selects g, defined by the vector (0, 1) where
0 ∈ Fm

2 .
(iii) Finally, the 2m − 1 component functions that select g and whose first m coordinates

are not all zeros, defined by the vectors ṽ = (v, 1) ∈ Fm+1
2 , where v ∈ Fm∗

2 .

Consider the component functions of type (i). Let ṽ = (v, 0) ∈ Fm+1
2 , where v ∈ Fm∗

2 .
Then, the Walsh-Hadamard transform of ṽ · F̃ computed on ω ∈ Fn+1

2 equals

Wṽ·F̃(ω̃) =
∑

x̃∈Fn+1
2

(−1)ṽ·F̃(x̃) ⊕ ω̃·x̃ =
∑

(x,xn+1)∈Fn+1
2

(−1)(v,0)·(F(x),g(xn+1)) ⊕ (ω,ωn+1)·(x,xn+1) =

=
∑

(x,xn+1)∈Fn+1
2

(−1)v·F(x̃) ⊕ ω·x · (−1)ωn+1·xn+1 . (18)

Let us rewrite the right hand side of Eq. (18) by dividing the sum with respect to the
value of xn+1:

Wṽ·F̃(ω̃) =
∑

(x,0)∈Fn+1
2

(−1)v·F(x) ⊕ ω·x +
∑

(x,1)∈Fn+1
2

(−1)v·F(x) ⊕ ω·x ⊕ ωn+1 =

=
∑
x∈Fn

2

(−1)v·F(x) ⊕ ω·x + (−1)ωn+1 ·
∑
x∈Fn

2

(−1)v·F(x) ⊕ ω·x . (19)

Notice that the two sums in Eq. (19) correspond to the Walsh-Hadamard coefficient
Wv·F(ω). Thus, it holds that

Wṽ·F̃(ω̃) =

2 ·Wv·F(ω) , if ωn+1 = 0
0 , if ωn+1 = 1

(20)

Hence, by Eq. (20) we have that the linearity of F̃ will be at least twice the linearity of
F, from which it follows that

NF̃ ≤ 2 · NF . (21)
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Let us now consider the component of type (ii), i.e., the one defined by ṽ = (0, 1).
In this case, it is easy to see that Nṽ·F̃ = Ng, which yields

NF̃ ≤ Ng . (22)

Since the nonlinearity of F̃ is defined as the minimum nonlinearity among all its
component functions, by combining Eqs. (21) and (22) we get

NF̃ ≤ min{2 · NF ,Ng} . (23)

Remark that, since we are considering an upper bound on the minimum nonlinearity
among all component functions, even if the components of type (iii) yielded a lower
nonlinearity the upper bound would still stand. Hence, we can safely ignore those
components in this proof.

We now address the differential uniformity bound. Given ã = (a, an+1) ∈ Fn+1
2 and

b̃ = (b, bm+1) ∈ Fm+1
2 , the difference distribution table of F̃ with respect to ã and b̃ is

DF̃(a, b) = {x̃ = (x, xn+1) ∈ Fn+1
2 : F̃(x̃ ⊕ ã) ⊕ F̃(x̃) = b̃} =

= {x̃ ∈ Fn+1
2 : (F(x ⊕ a), g(x̃ ⊕ ã)) ⊕ (F(x), g(x̃)) = (b, bm+1)} =

= {x̃ ∈ Fn+1
2 : [F(x ⊕ a) ⊕ F(x) = b] ∧ [g(x̃ ⊕ ã) ⊕ g(x̃) = bm+1]} =

= {x̃ ∈ Fn+1
2 : [x ∈ DF(a, b)] ∧ [x̃ ∈ Dg(ã, b̃)]} =

= {x̃ ∈ Fn+1
2 : x ∈ DF(a, b)} ∩ {(x, xn+1) ∈ Fn+1

2 : x̃ ∈ Dg(ã, b̃)} = A ∩ B .
(24)

Clearly, from Eq. (24) we have that B = Dg(ã, b̃), and thus |B| = δg(ã, b̃). On the other
hand, for A we obtain |A| = 2 · |DF(a, b)| = 2 · δF(a, b), since the vectors x̃ in A are
constructed by taking all vectors x belonging to DF(a, b) and by appending to their
right a 0 and a 1. Consequently, it holds that

δF̃(ã, b̃) = |A ∩ B| ≤ min{2 · δF(a, b), δg(ã, b̃)} . (25)

Finally, observe that one can construct the delta difference tables of maximum car-
dinality of F̃ by taking all possible intersections between the difference distribution
tables of maximum cardinality of F and g. Hence, the differential uniformity of F̃
satisfies

δF̃ ≤ min{2 · δF , δg} . (26)

ut

Of course, the upper bounds given in Eq. (16) and (17) are not tight. In fact, the
component functions of type (iii) could yield a lower nonlinearity and differential
uniformity than those featured by the components of types (i) and (ii) considered in
the proof of Theorem 2.

Before turning our attention to the CA case, we still need one more preliminary
result about how the nonlinearity and differential uniformity of a Boolean function
change by adding dummy variables:
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Lemma 1 Let f : Fn
2 → F2 be a Boolean function with nonlinearity N f and differential

uniformity δ f . Given t ∈ N, define f̃ : Fn+t
2 → F2 as follows:

f̃ (x1, · · · , xn, xn+1, · · · , xn+t) = f (x1, · · · , xn) . (27)

Then, the following equalities hold:

N f̃ = 2t · N f , δ f̃ = 2t · δ f . (28)

Proof We proceed by induction on t.
For t = 1, one can easily see that f̃ is a special case of the vectorial function F̃

considered in Theorem 2 with m = 1, with the difference that no new output coordinates
are added. Hence, the Walsh-Hadamard transform of f̃ is described by Eq. (20), which
yields N f̃ = 2 · N f . On the other hand, for ã = (a, an+1) ∈ Fn+1

2 and b ∈ F2, the
difference distribution table of f̃ is

D f̃ (ã, b) = {(x, xn+1) ∈ Fn+1
2 : f (x ⊕ a) ⊕ f (x) = b} ,

from which it follows that δ f̃ (ã, b) = 2 · δ f (a, b), and thus δ f̃ = 2 · δ f .
Next, assume that t > 1, and consider the case t + 1, with f ′ : Fn+t

2 → F2 indicating
the function truncated at n + t variables. Then, by induction hypothesis the following
equalities are satisfied:

NF( f ′) = 2t · NF( f ) ,
δ f ′ = 2t · δ f .

Similarly to the case t = 1, the Walsh-Hadamard coefficients of f̃ : Fn+t+1
2 → F2 are as

in Eq. (20), from which one obtains

N f̃ = 2 · N f ′ = 2 · 2t · N f = 2t+1 · N f .

(29)

Finally, the difference distribution table D f̃ (ã, b) is again constructed by appending a
0 and a 1 to all vectors in D f ′(a, b). Hence, the equality δ f̃ (ã, b) = 2 · δ f ′(a, b) holds
for all ã = (a, an+t+1) ∈ Fn+t+1

2 , from which it finally follows that

δ f̃ = 2 · δ f ′ = 2 · 2tδ f = 2t+1 · δ f .

ut

Leveraging on the above results, we can now prove upper bounds on the nonlinear-
ity and differential uniformity of S-boxes defined by CA, both in the no boundary and
the periodic settings:

Theorem 3 Let f : Fd
2 → F2 and n ≥ d. Then, the NBCA and PBCA F̃ with n input

cells and local rule f satisfy the following bounds:

NF̃ ≤ 2n−d · N f (30)

δF̃ ≤ 2n−d · δ f . (31)
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Proof We first address the no boundary case. Let F̃ : Fn
2 → F

n−d+1
2 be a NBCA with

local rule f . We proceed by induction on m = n − d + 1.
For m = 2, we can apply Theorem 2 by setting F = f and g : Fd+1

2 → F2 defined
as follows:

g(x1, x2, · · · , xd+1) = f (x2, · · · , xd+1) .

Thus, Theorem 2 yields that

NF̃ ≤ min{2 · N f ,Ng} ,

δ f̃ ≤ min{2 · δ f , δg} .

Additionally, by Lemma 1 we know that

Ng = 2 · N f ,

δg = 2 · δ f .

Since m − 1 = n − d + 1 − 1 = 1, the three bounds are satisfied in the base case.
Next, let us assume that m > 2 and consider the case m + 1, with F̃ : Fn+1

2 → Fm+1
2

being the NBCA with n + 1 cells. In particular, define F : Fn
2 → F

m
2 as the NBCA with

n cells, and g : Fn+1
2 → F2 as g(x1, · · · , xn+1) = f (xn−d, · · · , xn+1). Again, Theorem 2

gives us that

NF̃ ≤ min{2 · NF ,Ng} ,

δF̃ ≤ min{2 · δF , δg} .

while by Lemma 1 we obtain

Ng = 2m · N f ,

δg = 2m · δ f .

Remarking that m + 1 = n − d + 1, by induction hypothesis one finally gets

NF̃ ≤ 2m · N f = 2n−d · N f ,

δF̃ ≤ 2m · δ f = 2n−d · δ f ,

which concludes the proof for the NBCA case. Finally, for the periodic case it just
suffices to observe that the PBCA is constructed by adding n − d coordinate functions
to the NBCA F̃ without extending the number of input variables, where the new
coordinates always coincide with the local rule f applied on the rightmost and
leftmost d − 1 cells. Hence, Theorem 1 can be applied here, from which one deduces
that the same bounds for nonlinearity and differential uniformity also hold for the
PBCA case. ut

Tables 1a and 1b report the best nonlinearity values respectively reachable by
PBCA as given by Theorem 3, for various values of d and n, and by generic bijective
(n, n)-functions. Table 1a is lower triangular because the bound of Theorem 3 is
meaningful only if n ≥ d. For the maximum nonlinearity of N f of the local rule we
considered the quadratic bound, since it is known to be optimal for balanced Boolean
functions of sizes up to d = 7 variables [9]. By comparing Tables 1a and 1b one can
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(a) PBCA S-Boxes

Rule size d
3 4 5 6 7

C
A

si
ze

n 3 2 – – – –
4 4 4 – – –
5 8 8 12 – –
6 16 16 24 24 –
7 32 32 48 48 56

(b) Generic (n, n)-functions

n × n NF

3 × 3 2
4 × 4 4
5 × 5 12
6 × 6 24
7 × 7 56

Table 1: Best attainable nonlinearity values for PBCA S-boxes and generic bijective
S-boxes up to n = 7 variables.

see that the only case where CA are able to reach the same best values as generic
(n, n)-functions is when d = n, i.e., the rotation-symmetric case which corresponds to
the diagonal of Table 1a. This also explains from a theoretical point of view why the
nonlinearity of the CA χ used in Keccak is suboptimal with respect to the Sidelnikov-
Chabaud-Vaudenay bound, since the neighborhood size of the rule is d = 3 while
n = 5. The χ rule is, however, optimal with respect to the nonlinearity bound given in
Theorem 3.

5 Experimental Results

5.1 Genetic Programming Approach

Genetic Programming (GP) is an Evolutionary Algorithm (EA) in which the data
structures that undergo optimization are computer programs (i.e., executable expres-
sions) [2]. Although GP has a history longer than 50 years, its full acceptance is
due to the work of John Koza at the beginning of the 1990s, in which he formalized
the idea of employing chromosomes based on tree data structures. Since the aim
of GP is to automatically generate new programs, each individual in a population
represents a computable expression, whose most common form are symbolic expres-
sions corresponding to parse trees. A parse tree (syntax tree) is an ordered, rooted
tree that represents the syntactic structure of a string according to some context-free
grammar. A tree can represent a mathematical expression, a rule set or a decision tree,
for instance. The building elements in a tree-based GP are functions (inner nodes)
and terminals (leaves, problem variables); both functions and terminals are known as
primitives. For further information about GP, we refer interested readers to [22,32].

In our experiments, the function set consists of several Boolean primitives that
enable representation of any Boolean function: NOT, which inverts its single argument,
XOR, NAND, NOR, each of which takes two input arguments. Additionally, we use
the function IF, which takes three arguments and returns the second one if the first
one evaluates to true, and the third one otherwise. This function corresponds to the
multiplexer gate (MUX). In our setting, GP evolves a Boolean function of n variables
in the form of a tree which represents a CA local rule.
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NOR

f (x1, x2, x3, x4) = (x1 NAND x2) NOR (x3 XOR x4)

NAND XOR

x1 x2 x3 x4

Fig. 2: Example of GP tree encoding a Boolean function of 4 variables.

Figure 2 depicts an example of GP tree which represents a Boolean function of 4
variables f : F4

2 → F2. The leaves in this case stand for the 4 input variables, while the
internal nodes correspond to the NAND and XOR respectively combining x1, x2 and
x3, x4. Finally, the root node gives the output value of the function by combining the
results of the NAND and XOR nodes through a NOR.

Throughout our experiments, we assume the following: the state of a CA is
represented by a periodic one-dimensional binary array of size n. The elements of
the binary array are used as Boolean variables in a GP tree (GP terminals), where the
variable c0 denotes the value that is being updated. The variables c1, . . . , cn−1 denote
the cells to the right of the current cell. The neighborhood of a cell is formed by the
cell itself and the n−1 cells to its right, so each value in the current state can be used in
a local update rule, which corresponds to the case of rotation-symmetric S-boxes (i.e.,
d = n). A candidate Boolean function obtained with GP is evaluated in the following
manner: all the possible 2n input states are considered, and for each state the same rule
is applied in parallel to each of the variables to determine the next state. The obtained
global rule represents a candidate S-box.

In the evolution process, GP uses a 3-tournament selection, where the worst of
three randomly selected individuals is eliminated. A new individual is then created by
applying crossover to the remaining two individuals from the tournament. The new
individual is then mutated with a probability of 0.5. We use the mutation probability
to select whether an individual would be mutated or not, and the mutation operator is
executed only once on a given individual; e.g., if the mutation probability is 0.5, then
on average 5 out of every 10 new individuals will be mutated and one mutation will be
performed on each of those 5 individuals. This procedure is illustrated in Algorithm 1.

The variation operators are simple tree crossover, uniform crossover, size fair, one-
point, and context preserving crossover (selected at random), and subtree mutation [33].
All our experiments suggest that having a maximum tree depth equal to the size of
S-box is sufficient (i.e., tree depth equals n, which is the number of Boolean variables).
The initial population is initialized such that each new individual is a randomly created
tree. The tree creation starts with a functional node at the root, while for every child
node either a functional or terminal node is selected with uniform probability, so
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different initial tree depths are attainable. At the maximum tree depth only terminal
nodes are randomly added. Every experiment is repeated 50 times to provide statistical
significance.

We emphasize that not all bijective S-boxes can be represented by CA rules and
consequently, the number of S-boxes expressible through CA is smaller than the total
number of S-boxes of a certain size. Considering the AES S-box as an example, it
is possible to see that this S-box cannot be obtained with a single CA rule. Still,
this does not mean there are no S-boxes of that size with the same properties that
cannot be constructed with a single CA rule. On the other hand, there are infinitely
many ways how one can represent an S-box with CA rules. For example, with the
tree representation for the rule, it suffices to consider the trivial approach where one
adds subexpressions that cancel themselves out. Accordingly, the number of CA rules
representations is much larger than the number of S-boxes and it is impossible to
exhaustively visit them even for small sizes.

Algorithm 1 Genetic Programming evolution
repeat

randomly select 3 individuals;
remove the worst of 3 individuals;
child = crossover (remaining two individuals);
perform mutation on child, with given individual mutation probability;
generate S-box using child Boolean function
evaluate S-box
assign fitness to child
insert child into population;

until stopping criteria reached

We note that Picek et al. showed that genetic programming can be used to design
CA-based S-box with optimal cryptographic properties up to size 7×7 (not counting the
APN in dimension 6) [30,29]. Besides the cryptographic properties, they demonstrated
how it is possible to use the same approach to reduce the size of the CA rules
(which consequently reduces the area of S-boxes). Finally, they discussed the power
consumption of such CA-based S-boxes and they found them to be comparable or
better than several S-boxes used in modern ciphers [30].

5.2 Reverse Engineering of CA-based S-boxes

Here, we assume that we already have an S-box and we want to obtain its CA rule
representation. There are two obvious reasons why one would want to do this. The first
reason is to check whether a certain S-box is expressible with a CA rule. The second
reason is to obtain a combinatorial circuit representation of an S-box (in the case that
the S-box can be represented with a CA rule). The first objective can be reached with
another technique that we briefly explain.
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Fig. 3: De Bruijn graph associated to CA rule of Keccak.

Given the truth table description of an S-box, the task of determining the local
rule of the corresponding CA can be determined using the De Bruijn graph representa-
tion [37]. The De Bruijn graph associated to a CA with local rule f : Fd

2 → F2 is a
directed graph G = (V, E) where |V | = 2d−1. In particular, each vertex in G is labeled
with a binary vector of length d − 1. An edge from vertex a ∈ V to b ∈ V exists if and
only if a and b overlap respectively on the last and the first d − 2 coordinates. For
example, for d = 3 the De Bruijn graph has an edge from a = 01 to b = 10 since
a and b have a 1 respectively in the last and in the first position. A CA local rule
is represented over the De Bruijn graph as a labeling of the edges, i.e., a function
l : E → {0, 1}. Hence, in the example above the labeling of (01, 10) would be the
result of the local rule applied to the input 010. Figure 3 depicts the De Bruijn graph
representation of the CA rule χ used in Keccak.

To check if a given S-box of length n can be expressed using a CA rule with
diameter d < n, one could start from a De Bruijn graph with 2d−1 vertices and
iteratively label the edges by reading the entries in the truth table of the S-box. As
soon as an inconsistency is found (i.e., an edge gets more than one label), one knows
that the S-box is not representable with a CA of diameter d. On the other hand, if after
reading the whole S-box each edge has a unique label, then the De Bruijn graph of a
CA rule implementing that S-box is obtained.

As an example, we consider the APN function in dimension 6 [6]. Considering the
last occurring value that equals 22, we see that this S-box cannot be generated with
a CA rule. This is due to the fact that for the input 63 (111111 in binary) the output
equals 22 (010110), which means that the local rule is not consistent because it assigns
different values to the cells 1, 3, and 6 (value 0) and to the cells 2, 4, and 5 (value 1).

We note that the above procedure cannot help us to reach the second objective, i.e.,
finding a combinatorial representation of a given S-box. Additionally, this problem is
much more difficult since there exist many circuits mapping to the same truth table,
and there is no easy way to determine the smallest circuit. Consequently, we use a
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regression process based on GP in order to find an efficient combinatorial circuit for a
given S-box defined by a CA.

More formally, let F : Fn
2 → F

n
2 be a CA-based S-box of n-bit defined by a local

rule f : Fn
2 → F2. Given a GP tree T f encoding the local rule, we define the size S (T f )

of T f as the number of primitives composing the tree. The optimization objective
is thus to find a second GP tree T ′f encoding the same local rule f and such that
S (T ′f ) < S (T f ).

As shown in [30], the main idea behind this approach is that the size of the GP
tree encoding a CA rule gives a good approximation of its implementation cost as
expressed by the GE measure, which stands for Gate Equivalent (i.e., the number of
equivalent NAND gates in the specified technology). In particular, to properly evaluate
the tree size and the influence of its elements to the implementation cost, we define an
implementation weight using the GE measure. This weight reflects the relative area
of those functions as follows: the weights of NAND and NOR gates are set to 1, the
XOR weight is 2, the weight of IF is 2.33 and the weight of NOT equals 0.667 (the
weights can be easily modified to reflect different hardware properties). Note also that,
although combinatorial circuits are equivalent to directed acyclic graphs (DAGs), here
we do not evolve DAGs but only trees (a restricted form of DAGs), since each child
node has only one parent node.

The GP evolution process used in our experiments is guided by a fitness function
that describes the difference between the S-box obtained by a CA rule, and the one
given as an input parameter. The design of the objective function is such that the truth
table output of the current CA rule is compared with the truth table of the given S-box.

Rather than only counting all the bits in which the two differ, we employ a two-
stage fitness. In the first stage, the number of differing bits is minimized, which is the
primary objective. Only if the difference is zero, we add a term devoted to minimizing
the size of the resulting CA rule (enforcing parsimony). This term is defined so that it
is inversely proportional to the size of the GP tree representing an individual.

f itnessre = nErrors + ∆nErrors,0

( treeSize
maxTreeSize

)
, (32)

where nErrors denotes the number of differing bits in the truth tables, while treeSize
and maxTreeSize are respectively the actual tree size and the maximum size that the
tree may assume given the maximum tree depth and the number of arguments of the
GP functions. Note that this fitness measure is minimized; the correct CA rule will
have a fitness in the range [0, 1], which in that case depends only on the tree size.

In our experiments, we used as inputs the S-boxes obtained in [30,29], which were
evolved through GP. By doing so, we can be sure that the S-box can be represented
with a CA rule, while trying to find an implementation with a smaller complexity.
In Table 2, we give results for each S-box size. Column Original size gives the size
of the target S-box used in the regression, and the other columns give statistics for
the obtained results (here, column Min represents the best obtained solution). All
columns refer to the number of primitives in the GP individuals not multiplied by their
implementation weights. We randomly selected the target input S-boxes among those
with the best obtained cryptographic properties from the experiments described in [30,
29] (thus, we did not consider implementation properties in this selection).
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Table 2: Reverse engineering approach, Eq. (32)

S-box size Original size New size
Max Min Avg Std dev

4 × 4 77 26 11 13.96 3.36

5 × 5 27 30 9 15.32 6.13

6 × 6 26 31 13 20.11 5.34

7 × 7 23 42 13 22.19 8.99

We notice that for all the presented sizes, our procedure is able to find CA rules
encoded by much smaller GP trees than those used in the original cases. More precisely,
up to the 6 × 6 size, we have 100% success rate in obtaining the correct rules. For the
7 × 7 size, that percentage equals 96.7%, which is still an excellent result. This makes
our methodology a viable option when the goal is to implement the S-box obtained via
a CA rule in hardware, since a rule with smaller GP tree will mean a smaller gate count
(measured in GE), and consequently a smaller area. Since smaller S-boxes are used in
lightweight cryptography, where one common objective is to have as small as possible
areas, we deem our approach useful in the design phase of lightweight ciphers. As an
interesting fact, we note that we also tried this approach with the Keccak S-box, and
among the obtained solutions there were several occurrences of the exact same CA
rule as used in Keccak.

When working with the 8 × 8 S-box size, our regression technique was unable
to find any correct rule corresponding to the given S-box. We experimented with an
S-box originally obtained with a CA rule consisting of 177 primitives, which is a much
longer rule when compared with the sizes where our approach found correct rules.

5.3 Equivalence Classes

In this section, we concentrate on S-boxes of sizes up to 5 × 5, i.e., those that can
be exhaustively checked when considering CA-based S-boxes. First, in Table 3 we
give results for sizes 3 × 3, 4 × 4, and 5 × 5. As it can be seen, from the corpus
of possible CA-based S-boxes, only a fragment is bijective. Additionally, from the
bijective S-boxes again only a small part is optimal with regards to the nonlinearity
and differential uniformity properties. We emphasize that this is the total number of
CA-based S-boxes since other S-boxes that are affine equivalent to these cannot be
obtained with a single CA rule.

For sizes larger than 5 × 5, an exhaustive search is not possible. Still, a simple
estimation can be made. The total number of CA-based S-boxes equals the number of
Boolean functions of the corresponding size, i.e., 22n

. Next, the number of balanced
Boolean functions of size n equals

(
2n

2n−1

)
, which also represents a trivial upper bound

on the number of bijective CA-based S-boxes. As an example, for size 5 × 5, the
number of bijective S-boxes obtainable with a single CA rule forms only 26.7% of
possible balanced Boolean functions of size 5.
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Table 3: Results for exhaustive search

n Number of CA-based S-
boxes

Number of bijective CA-
based S-boxes

Number of optimal CA-
based S-boxes

3 256 36 12
4 65 536 1 536 512
5 4 294 967 296 22 500 002 2 880

Table 4: Equivalence classes of bijective 3 × 3 CA-based S-boxes

Class Representative Number of S-boxes Optimal

0 0,1,2,3,4,5,6,7 6 No
1 0,1,2,3,4,5,7,6 6 No
2 0,1,2,3,4,6,7,5 12 No
3 0,1,2,4,3,6,7,5 12 Yes

Table 5: Equivalence classes of bijective 4 × 4 CA-based S-boxes. Note that we give
class representatives for each class but that does not necessarily mean it is possible to
construct them with a single CA rule.

Class Representative Number of S-boxes Optimal

0 F,D,B,9,7,5,3,1,E,C,A,8,6,4,2,0 16 No
1 0,1,2,3,4,5,6,7,8,9,A,B,C,D,F,E 32 No
3 0,1,2,3,4,5,6,7,8,9,A,B,D,E,F,C 32 No
4 0,1,2,3,4,5,6,7,8,9,A,B,D,C,F,E 16 No
6 0,1,2,3,4,5,6,7,8,9,A,C,B,D,F,E 32 No
9 0,1,2,3,4,5,6,7,8,9,A,C,D,E,B,F 64 No
41 0,1,2,3,4,5,7,6,8,A,9,C,B,F,E,D 128 No
193 0,1,2,3,4,5,8,A,6,C,7,F,D,B,9,E 128 No
270 0,1,2,3,4,6,8,B,5,C,9,D,E,A,7,F 128 Yes (G4)
272 0,1,2,3,4,6,8,B,5,C,D,7,9,F,A,E 128 Yes (G6)
273 0,1,2,3,4,5,8,A,6,C,7,F,E,B,9,D 128 No
278 0,1,2,3,4,6,8,B,5,C,D,7,A,F,9,E 128 Yes (G5)
279 0,1,2,3,4,5,8,A,6,B,C,7,D,F,E,9 128 No
281 0,1,2,3,4,5,7,8,6,9,A,C,F,B,D,E 128 No
282 0,1,2,3,4,6,8,B,5,C,D,7,F,9,E,A 128 Yes (G3)
288 0,1,2,3,4,5,6,7,8,9,C,E,F,B,D,A 32 No
289 0,1,2,3,4,5,6,7,8,9,C,E,B,F,D,A 64 No
291 0,1,2,3,4,5,7,6,8,A,9,B,C,F,E,D 64 No
294 0,1,2,3,4,5,6,7,8,9,B,A,E,F,D,C 32 No

When considering 3× 3 size, we give details in Table 4. In Table 5, we give details
about equivalence classes of 4 × 4 S-boxes that are CA-based and bijective. For the
4 × 4 S-box size, Leander and Poschmann defined optimal S-boxes as those being
bijective, with maximal nonlinearity (equal to 4), and minimal differential uniformity
(again equal to 4) [23]. There are in total 16 nonequivalent classes of S-boxes with
such properties (denoted G0, . . . ,G15).
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5.4 Future Work

There are several options for future developments, the most obvious one being focusing
on the 8 × 8 case. In particular, we remark that the 8 × 8 CA-based S-boxes evolved
through GP in [30,29] had suboptimal cryptographic values. Hence, besides applying
the reverse engineering approach on these CA (which we tried without much success
in this paper), a first direction for future work would be to improve the GP performance
to evolve optimal 8 × 8 CA-based S-boxes. Since the main reason GP failed in the
8 × 8 case could be the enormous size of the resulting search space, a possible idea to
overcome this obstacle would be to reduce this space by either experimenting with
the GP parameters (such as set of primitives and tree depth) or by designing specific
genetic operators preserving some basic cryptographic properties (such as bijectivity).
In this way, the GP heuristic would explore a smaller set of candidate solutions
and could have better possibilities at locating S-boxes with optimal cryptographic
properties.

Naturally, in this paper we concentrated only on a small set of cryptographic
properties and one could include in the fitness function other relevant properties like
the algebraic degree. As it can be seen in Table 1a, for the sizes 4 × 4 and 6 × 6
the best obtainable nonlinearity still equals the quadratic bound respectively when
d = 3 and d = 5. Hence, it would be interesting to investigate whether the GP
heuristic adopted in [30,29] is still able to evolve S-boxes with optimal nonlinearity
when d = n − 1, i.e., when the local rule depends on all input variables except
one. From the theoretical side, another possible direction for future research is to
investigate lower bounds on the nonlinearity and differential uniformity of CA S-
boxes based on specific subclasses of local rules, such as plateaued Boolean functions.
We note that this question has already been investigated in Mariot et al. [24] for
permutive local rules. A local rule f : Fd

2 → F2 is called permutive if it is defined as
f (x1, · · · , xd−1, xd) = g(x1, · · · , xd−1) ⊕ xd, where g is a function of d − 1 variables.
Computer searches performed on small input size suggest that permutive rules always
satisfy with equality the bound on nonlinearity given in Theorem 3. An example of
permutive rule is the function χ used in the Keccak S-box. However, the authors of [24]
later observed a mistake in the proof of this fact, and they are currently investigating
either how to fix it or to disprove it.

Another interesting venue for future research is to extend our reverse engineering
approach through affine equivalence. As a matter of fact, the fitness function used in
this paper aimed at evolving CA rules which resulted in the same S-boxes given as input
to GP. An interesting question to investigate is whether it is possible to reverse engineer
a CA-based S-box through GP in order to obtain an affine equivalent CA, thus having
the same cryptographic properties. We remark that the only affine transformations
preserving the CA property (i.e., such that the affine equivalent versions of a CA are
CA themselves) are those defined by circulant matrices [20]. Since these matrices
have an easy combinatorial characterization, a possible idea to address this question
could be to generate all CA-based S-boxes which are affine equivalent to a given input
CA, and then try apply our GP reverse engineering approach on them, to investigate if
even smaller rules can be found.
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More in general, one could extend the above line of research by considering
whether a generic S-box that is not expressible by a CA admits an affine equivalent
S-box defined by a CA. As we mentioned in Section 5.1, not all S-boxes of a specified
size can be expressed by a CA of the same diameter, due to a simple combinatorial
argument: while the number of (n, n)-functions is n × 22n

, the number of PBCA of
size n and diameter d = n is just 22n

. However, we note that applying a generic
affine transformation (i.e., not necessarily defined by a circulant matrix) to a CA does
not yield in general a CA. It would be interesting to find a procedure that is able to
solve the inverse problem, that is, starting from a (n, n)-function which is not a CA,
determine whether there is an affine (non-circulant) transformation which is defined by
a CA. A straightforward method to perform this task would be to generate all S-boxes
which are equivalent to the starting one, and then determine if some of them can be
expressed by a single CA rule using the De Bruijn graph representation. However,
we note that as the size of the S-box increases, exhaustively enumerating the affine
equivalent version of an S-box becomes computationally unfeasible.

The experiments presented in this paper focused on evolving CA as nonlinear
elements for the confusion phase of a block cipher. Another interesting perspective
would be to investigate the use of CA also for the diffusion phase. Since linear diffusion
layers are often implemented in the literature using MDS linear codes, a possible
venue for future research in this context is to optimize through GP the implementation
cost of the MDS matrices arising from linear CA.

Recall that a (n, k, t) binary linear cyclic code C is a k-dimensional subspace of the
vector space Fn

2 such that each pair of vectors (called codewords) is at the Hamming
distance at least t, which is also closed under cyclic shifts (so that x ∈ C implies
σ̃(x) ∈ C). On the other hand, a CA is called linear if its local rule f : Fd

2 → F2 is
defined as an XOR of a subset of cells in the neighborhood.

Consider now a NBCA of length n = m + d − 1 equipped with a linear rule
f : Fd

2 → F2. In this case, the global rule of F is defined by a m× (m + d−1) transition
matrix MF of the following form:

MF =


a1 · · · ad 0 · · · · · · · · · · · · 0
0 a1 · · · ad 0 · · · · · · · · · 0
...

...
...
. . .

...
...

...
. . .

...
0 · · · · · · · · · · · · 0 a1 · · · ad

 . (33)

The vectorial Boolean function defined by such CA is determined by the matrix-vector
multiplication y = MF x>.

One can notice that the transition matrix in Eq. (33) actually has the same form
as the generator matrix of a cyclic code (see [25]). Hence, an interesting idea would
be to use linear CA to implement MDS cyclic codes for diffusion layers in block
ciphers. This would require first to characterize the systematic generator matrix S F

of the cyclic codes induced by a linear CA with transition matrix MF as defined in
Eq. (33). Consequently, one could employ the non-systematic part of S F as a MDS
matrix to implement a linear diffusion layer. It is known that these MDS matrices
are not sparse [1]. Thus, a possible future work in this context could be to optimize
through GP the implementation cost of the MDS matrices arising from linear CA.
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Finally, it would be interesting to see how CA rules can be integrated into unbal-
anced MISTY constructions as presented by Canteaut et al. [8]. Since the aim there is
to construct lightweight S-boxes of larger sizes, a procedure to obtain building blocks
(i.e., smaller S-boxes) could be beneficial.

6 Related Work

Most of the block ciphers based on the dynamics of cellular automata focus on the use
of reversible CA (RCA). A CA is reversible if its global rule F : Fn

2 → F
n
2 is bijective

and the inverse G = F−1 is again the global rule of a CA. In a CA-based block cipher,
the idea is to represent a block of plaintext as the initial configuration of the CA. The
global rule is then applied for a certain number of steps to obtain the encrypted block.
For decryption, the inverse global rule is applied for the same number of steps starting
from the ciphertext block to recover the plaintext.

The first block cipher based on cellular automata was proposed by Gutowitz [19].
In particular, for the substitution phase block CA were used to ensure the invertibility
of the resulting S-box. In a block CA, the local rule does not determine the next state
of a single cell, but rather the state of a block of adjacent cells. The cellular array is
partitioned in blocks of equal length, and then a permutation is applied to each block
in parallel. In the next step, the partition is shifted one cell to the right with periodic
boundary conditions.

A second type of CA which has been used for block ciphers are second-order CA,
where the state of a cell is determined by XORing its previous state with the result
of the local rule. Hence, the configuration at time t − 1 can be computed by knowing
both the configurations at time t and t + 1. Seredynsky et al. investigated second-order
CA as S-boxes, by assessing the avalanche properties of several rules with diameter
d = 5, 7 and array lengths n = 32, 64 [35].

Another interesting kind of CA for block ciphers are the so-called complementing
landscapes cellular automata (CLCA), where the state of a cell is flipped if and
only if a pattern belonging to a specific landscape occurs in the surrounding cells.
Daemen et al. studied CLCA for designing block ciphers, discovering the rule χ used
in Keccak [16,4]. In particular, this rule induces an invertible CA if the length n of the
cellular array is odd.

From the EC perspective, we mention only several characteristic approaches,
all of which use the permutation encoding. Clark et al. used the principles from
the evolutionary design of Boolean functions to evolve S-boxes with the desired
cryptographic properties for sizes up to 8 × 8 [14]. Burnett et al. used a heuristic
method to generate MARS-like S-boxes [7]. With their approach, they were able to
generate a number of S-boxes of appropriate sizes that satisfy all the requirements
placed on a MARS S-box. Picek et al. used Cartesian Genetic Programming and
Genetic Programming to evolve S-boxes and discussed how to obtain permutation
based encoding with those algorithms [31]. Picek et al. presented an improved fitness
function with which EC is able to find higher nonlinearity values for a number of
S-box sizes [28]. Picek et al. also discussed how to use genetic programming to
evolve cellular automata rules that in turn can be used to generate S-boxes with good
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cryptographic properties [30,29]. Finally, Picek et al. used the same genetic paradigm
to evolve CA rules to be used in S-boxes but where the goal is not only cryptographic
properties but also implementation perspective [30]. Interestingly, the results obtained
in these two papers, where GP is used to evolve CA rules, outperform any other
solutions obtained with heuristics for sizes 5 × 5 up to 7 × 7.

7 Conclusions

In this paper, we approach the problem of designing S-boxes with good cryptographic
properties with cellular automata rules that are then mapped to S-boxes. We first show
upper bounds for the nonlinearity and differential uniformity achievable by CA, both
in the no boundary and periodic boundary settings.

Next, we use GP in order to “reverse-engineer” an S-box. There, we use the
regression approach to find the shortest CA rule resulting in a specific S-box. This
approach has interesting ramifications from two aspects: fast checking whether an
S-box is expressible through CA rules and obtaining different rules (and consequently
their sizes) resulting in a specific S-box. Finally, we conduct an exhaustive search of
CA-based S-boxes of sizes 3 × 3, 4 × 4, and 5 × 5. For the first two dimensions, we
also classify them with respect to the affine equivalence notion.
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2. Bäck, T., Fogel, D., Michalewicz, Z. (eds.): Evolutionary Computation 1: Basic Algorithms and
Operators. Institute of Physics Publishing, Bristol (2000)

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Radiogatún, a belt-and-mill hash function. IACR
Cryptology ePrint Archive 2006, 369 (2006)

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference (2011).
http://keccak.noekeon.org/

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J., Seurin, Y.,
Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Proceedings of the 9th International
Workshop on Cryptographic Hardware and Embedded Systems, CHES ’07, pp. 450–466. Springer-
Verlag, Berlin, Heidelberg (2007)

6. Browning, K.A., Dillon, J.F., McQuistan, M.T., Wolfe, A.J.: An APN permutation in dimension six.
Finite Fields: theory and applications pp. 33–42 (2010)

7. Burnett, L., Carter, G., Dawson, E., Millan, W.: Efficient Methods for Generating MARS-Like S-Boxes.
In: Proceedings of the 7th International Workshop on Fast Software Encryption, FSE ’00, pp. 300–314.
Springer-Verlag, London, UK, UK (2001). URL http://dl.acm.org/citation.cfm?id=647935.740914

8. Canteaut, A., Duval, S., Leurent, G.: Construction of Lightweight S-Boxes Using Feistel and MISTY
Structures. In: O. Dunkelman, L. Keliher (eds.) Selected Areas in Cryptography - SAC 2015: 22nd
International Conference, Sackville, NB, Canada, August 12-14, 2015, Revised Selected Papers, pp.
373–393. Springer International Publishing, Cham (2016)



Cellular Automata Based S-boxes 23

9. Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes. In: Y. Crama, P.L.
Hammer (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering,
1st edn., pp. 257–397. Cambridge University Press, New York, NY, USA (2010)

10. Carlet, C.: Vectorial Boolean Functions for Cryptography. In: Y. Crama, P.L. Hammer (eds.) Boolean
Models and Methods in Mathematics, Computer Science, and Engineering, 1st edn., pp. 398–469.
Cambridge University Press, New York, USA (2010)

11. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: A. De Santis
(ed.) Advances in Cryptology — EUROCRYPT ’94: Workshop on the Theory and Application of
Cryptographic Techniques Perugia, Italy, 1994 Proceedings, pp. 356–365. Springer Berlin Heidelberg
(1995)

12. Christoph Dobraunig Maria Eichlseder, F.M., Schläffer, M.: Ascon (2014). CAESAR submission,
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