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‘1. Introduction

-With increasing wavte,r' depth the length of the suspended pipeline between the
pipelaying barge and the ocean floor becomes greater. This may cause the
-stresses in the pipe to become so high that the pipe buckles or the stresses in
the stinger to reach a level where the stinger is damaged. The engineering
deSig‘n. of marine pipeliné systems raises the problem of static and dynamic
analysis of pipelines. Therefore, analysis tools are needed which can accurately
predict the static equilibrium ci_irve and the dynamic response characteristics of
pipelines. With such tools one can establish the limits for water depths and
environmental conditions in which the pipe can be layed or lay the pipe along
a desired path. |

Marine pipelines can be modelled as beams rather than shells because their
diameter—to—length ratios are small.

Thé problem. of predicting the suspended geometry and thereby the stress of
- marine pipelines during laying in the ocean is one of laige deflection. beam
theory, where the length of the suspended beam. is not a priori known.

There is a vast and steadily growing literature. on pipeline problems. Here we
shall cite only a: limited number of important papers where reference to earlier

work may be found.
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| _ Lét us first consider research devoted to the two—dimensional problem of ana—
lysing a plane pipeline subjected to static loads in the plane of bending during
normal laying. " '

Overbend Region !

Lift off point.5
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Fig. 1.1. Conventional pipelaying ‘
R. Plunkett [1) and D.A. Dixon and D.R. Rutledge [2] used the stiffened
catenary method to get solutions, which are based on the . assumption that the
pipeline takes a shape which can be approximated as a natural catenary over
most of its length and where the influence of the boundary conditions is con—
fined to small "bounda.ry layers” near the end supports. The main advantaoe of
this method is relatively small demands on numerical calculations. But it is
only valid in such cases where the tension rather than the bending stlffness
governs the behaviour over most of the length, that is the pipeline has a
relatively small bending stiffness or is to be placed in deep water. It is usually
not flexible enough to handle all the existing types of pipelaying procedures.

|
- J.T. Powers and L.D Finn [3] solve the 2<D problem through the use of a
finite element method and an initial-value approach. They treat the plpehne‘
a series of small beams each of which are treated as linear elements. Th.lS
method possesses several advantages due to.the fact that any desired bounda.ry
condition, in principle, can be- considered and the beam properties- and loads can.-
be varied from element to element. But the primary limitation of this method’
is its loss of accuracy and failure to converge for pipelines layed in deep we'xter
or with small stiffness. Furthermore, the boundary conditions. must: be satlsﬁed-
from one end to another by a trial and error procedure using an- 1mt1a.l—va.lue

approach. It needs laborious computations even for 2=D analyses.




A.C. Palmer et al. [4] and D.W. Darling and R.F. Neathery [5] derive differen—
tial equations governing the equilibrium configuration of the plane pipe. The
result is a non—linear two—point boundary value problem. A finite—difference
solution procedure is described in these papers. In [5], the series truncation is
used to linearize the governing equations. In [4] the nonlinear differential equa—
tions are transformed into a non—dimensional form and a non—dimensionlised
suspended length is introduced. The resulting equations together with end condi—
tions are expressed as a set of simultaneous linear algebraic equations by
moving nonlinear terms to the right hand sides of the equations. Then success—
_ive iterations are used to get numerical solutions. This latter method seems
better than the initial value approach because less programming effort is needed
and the difficulties with instability are reduced. Common to these methods is
that each main iteration step involves a second set of successive iterations for
the calculation of the suspended length. This fact causes a relatively large
demand to computer size and time.

P. Terndrup Pedersen [6] presents a relatively direct solution method to cable
and pipelaying problems. The goverﬁing nonlinear two—point boundary value
problem i derived and transformed into a non—dimensional form such that the
a priori unknown suspended length of the pipeline acts as a scaling parameter.
The method of solution is then based on successive integrations. This method
possesses the principal advantage, that it has extremely modest requirements to
computer storage and computer time because the solution only involves integra—
tion of known functions and only one set of successive iterations is needed.
Another advantage is its flexibility to model different types of pipelaying pro—
cedures. Through a modification [7], this method has been improved so that it
is also an efficient solution technique for pipelines with large or very small
bending stiffnesses and for laying procedures in shallow or very deep water.

The most accurate prediction of stresses and trajections of .pipelines during
laying is achieved by three—dimensional analysis. This is due to the fact that
the various laying procedures and the external loads due to current, wave and
wind in different angles to the direction of laying deflect the pipelines in the
shape of 3—D curves. Furthermore, close to platforms where many obstacles and
existing pipelines may be’ present it is often necessary to- lay pipes in curved
trajections with- great precision. Therefore, in recent years some attempts have
been made to solve 3-D problems. |
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Fig. 1.2. The dynamically positioned reel ship APACHE is designed
to spool and lay pipe up to 16 inches in diameter.

T.N. Gardner et al. [8] developed a 3-D analysis technique for risers in deep
water using FEM. They employed "small angle, large deflection” assumption§ SO
that the terms coupling torsmn and transverse bending and the terms couphng
the displacements in the direction of the two principal axes of the cross—section
can be considered insignificant. The Newmark method with inclusion of  an
iterative relaxation is used for the numerical calculations.

J.S. Chung and C.A. Felippa [9] present a nonlinear 3-D static analysis pro—
cedure for deep ocean mining pipes or risers. The finite—element technique is
also used in their paper, where the pipeline — with a known length = is
modeled by 3-D nonlinear beam elements. The deformations due to tension,
bending or torsion are included. The modified Newton iteration method is use(.
to get a solution. The FEM has the flexibility to model variations of external
loads or cross=sectional properties along the pipe length together with }any
desired boundary condition. But it seems that much more effort will be needed
to get precise and convergent solution in the case of pipelines with unknfown
lengths or in deep water. |
I
M.M. Bernitsas [10], and MB Bryndum et al. [11] have developed the 3—D
nonlinear model for large—deflection behaviour of pipelines using a local ortho—
gonal coordinate system. In [11], the resulting differential eqs. have been solved
numerically by a finite difference approximation. Common to the models in: [10]
and [11] is that the local moving coordinate systems are defined only by the
4 I
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central-line. This results in the inherent limitation that the numerical -solutions
‘based on such models can only describe the deformations of the central-line and
the torsional deformation of the pipe cross—sections cannot be taken into ac—
count. '

R.P. Nordgren [12], [13] sets up the 3—D large deflection non—linear model in
the local principal system by wvector analysis, “where the torsional moment in
stead of torsional deformation appears in the governing equations. This model
can only be used to describe the behaviour of pipelines with equal principal
stiffnesses and the torsional moment at one of the two ends should be known
in advance. The torsional deformation cannot be described.

Also Molahy [14] has presented a 3-D finite element procedure which can be
. used to Study the geometrical non-linear equilibrium curves.

Based on a finite difference procedure Yan Junqi and P. Terndrup Pedersen [15]
and [16] have developed a consistent non-linear model for 3—D large deflection
analysis of pipelines within the small $train beam theory. This model can take
into account all the non—linearities due to geometry, arbitrary variation of loads,
different boundary conditions and variation of the pipe properties. It can be
used to describe not only the behaviour of pipes with symmetric cross—sections
but also of pipes with asymmetric cross—sections such as piggy backed pipelines.
are avoided, and the procedure makes it possible to describe the torsional
deformations of the pipeline. ‘

In the following we shall present a method for 2<D analysis based on' Refs. [6]
and [7] which provides a relatively direct solution pipe-laying problems. The
governing non-linear, two—point boundary value problem is derived and trans—
formed into a non—dimensional form such that the a priori unknown suspended
length of the pipeline or cable acts as a scaling parameter.
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2. Loading on the suspended pipe |
We consider a deformed inextensible pipe as shown in Figure 2.1. As indepin—
dent variable in our formulation we shall employ the arc length s from ‘the
point where the pipe touches the ocean floor. This point will also serve ' as
origin for the rectangular coordinate system X-Y. shown in Figure 2.1 The
tangent angle to the pipe is dénoted 6(s), and we demgnate the depth of the‘

ocean by H.

The load ‘on an element of unit length of the suspended pipe ‘is composed of:
the weight wt(s), the buoyancy wo(s) and, due to a steady ocean current with

velocity V(Y), also a normal drag force F (s) and a tangential drag force Ft(is).

The mass density of the water is given by p . the gravity by g, and the crios‘s
: |

sectional area of the pipe by a.

Tension Machine

-'Lay Barfge

Figme 2.1. Loading on 't-h(_e pipe

The buoyancy load on the pipe due to the water pressure is determmed.
follows. Consider the segment of length ds shown in Figure 2.2.. The t?ta.l
buoyancy of the -segment with "open ends" equals P82 ds and acts in ithe

Y—direction. This load has to be corrected for the lack of pressure at the e'nds
of the segment. From Flgure 2.2 it follows that the resulting buoyancy load
0‘ds acts in the direction normal to the centerline of the pipe segment ~and

+
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Figure 2.2. Buoyancy on pipe element.
with. a magnitude given by

Wy = w {coso + (H - Y) gg} ' 2.1)

wherewbipvgaforOsYsHandwb=0forY>H.

1 .
F =350, CIVI VA, | (2.2)

 where C is the drag coefficient, V the flow velocity, and Ac a characteristic
area. The axial and tangential load per unit length can be obtained from (2.2)
as. ‘

F. =1, ¢ V|VID sin®
, =3P

' (2.3)

o 1 : 2
F, =57y, Ct V|V|D cos“8

where D is the diameter of the pipe, and C'n, Ct‘ are drag coefficients.

Thus, the resulting horizontal and vertical load intensities for the submerged

7




part of the pipe are

f?x(S) = Ft‘ eesﬂ'— [WO - Fn]sin() " | '
| o | (2.4)
Py(8) = F sinf + [wd - .Fn]coso - W, ’ - | |

respectively.

3. Governing equations for i:he pipeline

In this section we shall set up- the governing -equations for the plane, one—
dimensional, ﬁmte strain beam theory which w1ll be used -to model the p1pe

As constitutive law for the pipe we will assume a hnea.r relatlon between ,the

bénding moment M and the curvature dé/ds. Thus I

M(s) = EI gg ) '_ (3,:1:) ,

j
where EI is the bending stiffness of the pipe.

The moment -equilibrium condition for segments of the pipe give the shear force
T(s) as

OB [ag] o - (3.ef)

The shear force T at any section of the pipe can be found from Figure '2.1‘_by
equilibrium considerations. We find ‘

() =-% [EI gg]

= Hb__sipﬂ(S) + Vy c,qsﬂ(s) — cos(s) J‘::_f)y(s'l_)ds'l

+ sinf(s) JO f)x(sl-)ds1 : : (3.3)

5
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where Hb, Vy are the horizontal and vertical force components;, respectively, at
the support point at the ocean floor. Similarly, we find the axial force N(s) at

any section of the suspended pipe as

N(s) = Hy cosf(s) =+ ‘Vb_ sinf(s) — sind(s) J(S) py(sl‘)ds1
~ cosé(s) IS p.(s;) ds ‘ ' - (3.4)
: 0 X 1/ 71 | ‘ |

The equations (3.3) and (3.4) can also be written in the form

$[er g = Ay sinde) -V, costle) + eosts) | (o8
a§[ G) = Hy sindle) = Vy costls) + coshls) | - Byls;)dsy

— sind(s) J ¥ po(s,)ds 5 (3.5)
: o xSV o
and
N(is) = fIb cosb(s) — Vb sinf(s) — siné(s) J(S) f)y(sl)ds1
— cosd(s) JO px(sl)dsl' (3.6)
where
f.)y(s) = 'Ft» sinf(s) = F, cosf(s) — [wt - wb] E

px(x) = F; cosf(s) + Fn sinf(s)
= Hy + Hwy cosf, ; Vy =V, + Hwp sinf

and




SR = N+ {H = Y

Equation (3.5) shows that the effect of the buoyancy on the equilibrium cu:r've
of thé pipe can be accounted for by introducing the submerged weight of :the
pipe. However, it will be seen from eéquation (3.6) that taking care of the
buoyancy simply by introducing the submerged weight results in an appafent
axial force N which equals the real axial force N plus the hydrostatic fdrce
wb(H - Y). Here we may note that for the eva.l'uation of the buckling strength

of a pipe it is the real axial force N that is of importance, whereas for the
determmatxon of a reference stress for a solid cable or mooring line we wxll be
concerned thh the adjusted axial force which here is denoted N.

In order to isolate the uiknown suspended length L o'f the pipe let us then
introduce the following dimensionless quantities: r

|

|

E=s/L 5 {ty)={XY}L ; A=LH |

El |

"o 0
L {p'x’ py} - {px’ pY}/wt

Wt

and

' d_Ja v N 0 ¢
{hb, v n,-t} = {Hb, vy, K, T}/[wt H]

0
t

Then equation (3.5) takes the form

where w_ is a characteristic value of the weight per unit length w, of the pipe.

-2 d

A az [7 g—g] = hy sind =~V cosfd . o

_6 1.-. - ’ {
+ A {cosé JO Py d¢, sinf JO Py d¢; (3.72)

and equation (3.6) takes the form




n(&) = .hb cosd + Vb sinf
o ; | - |
— Aisiné JO Py d¢; + cosd JO px_dg1 ‘ . (3.7b)

By differentiation of Eq. (3.7a) and use of Eq. (3.7b) we obtain

2

- d 2 eg 49 _ 43 .

Al IRENLCUR R Cl (38)
where

P66 = cosh(§) - py(€) — sind() py(6)

Neglecting the axial extension of the pipe; the relation between the dimension—
less natural coordinates (6,6) and the dimensionless rectangular coordinates (x,y)
are

dy = sind d¢ and  dx = cosd dé (3.9)

The boundary conditions at the ocean floor are taken as:

yO = x0 = 0 - 6w
0o =6 - (3.11)
' [%g] £=0 = 0 (3.12)

The boundary conditions at the upper end of the suspended pipe depend on the

method of operation (for example the type of stinger used). But we note, for |

future use, that the dimensionless applied horizontal tension can be found from |
. the following equilibrium equation

!
b =h — A Jo- b, dé, (3.13)
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- and that the vertical component of the tension is given by

. - |
v o=V - A Jo Py dgy | . (3.14
Here the non—dimensional forces. b, v; are related to the applied forces H,,|

V.
1 1
by

h, = {Hi + [H - Yi] wy cosb?i}/[wg H]

and

<,
|

A L

The differential equations (3.8) and (3.9) and the boundary conditions of |the
problem constitute the non<linear boundary value problem to be solved

4. Solution Procedure

A. Pipe-laving without stinger or with an articulated stinger .

= Suspended Pipe

e T —— ~ -

" Gcean’ Fioor

Figure 4.1. Pipe-laying without stinger:
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First we shall consider a case where the pipe is layed without the use of a
stinger. See Fig. 4.1. We shall assume that at the upper end of the suspended
pipe we have the kinematic boundary conditions '

oy =6 - o S RY

YU =H+4A. - | (4.2)

where A is the distance between the pipe support on the barge and the ocean._'
surface We shall also assume that the applied horizontal tension H at the
support is. known.

In order to Solve this non-linear boundary value problem we shall assume that
the loading pj[f,()j] and the axial tension n-[é,().] associated._ with an arbitraty

J J
deflection curve {Bj, xj, yj, ’\j is determined. Then a new improved solution
vector {0j+1’ xj+1’ yj+1, '\j+1 can be found in the following way.

First the dimensionless moment distribution m,(§) = 7 azi is introduced and an

J
algorithm based on equation (3.8) is obtained in the form
2 o 0:(§) | o
2 {oy0) - K brse) e
Ej J+1(§) J Ty'&')’ mj,*,l(f) j+1 '\j PJ(E) _ (4.3)
Here the exponent « is chosen such that fast convergenoe is obta.l/ned It can be
H.11/2
shown that this choice must depend on the value of r = L E'I . However in

most realistic pipe-laying problems o = 3 is a good ch01ce

From equation (4.3) an improved moment distribution m; +-1(§) can be
determined numerically by ‘transforming the equation into finite difference form
and solving the resulting linear algebraic system of equations, which has a
convenient tri-diagonal form, by Gaussion elimination. This leads to -

) )
D1 _ ®1l® _ Ay fm (g + m+1(1) af2)o) e

a1 708 M+l Tj+1

13




‘where mJ +1(l) is the so far unknown moment at the upper end of the pipe.

|

|

|

) . 1

By integration of equation (4.4) and use of the boundai'y' condition 0j _+1(I) ==I
: |

to determine m +1(l) we find
0108 = 2Ty - g8 + g0 - (49)

where g,(¢) and go(§) are kiown functions.

The improved cartesian coordinates to the equilibrium curve are given by

%108 = JO cosd,,; d¢ ‘
and : ' , ‘. | (4.6a and 'bf)
§ - ?

»_Yj+,1(§). = JO S1n0j+1. d¢
i ;
The as yet unknown suspended length of the pipe can now be determined|

solving the transcendental equation obtained from the boundary condition
Y(L) = H + A and (4.6b):

E I .
'\H'l . J‘O‘ sin[A?’+1 g;(€) + g2(€)]d€

=1+ a, _where & = A/H - (4.7)

Thus, starting with an arbitrary 1ntegrable a.ppI'OXIma.thD to. the equilibri

by

um

curve the functions 3} and 89 can be deterrmned from (4.4) and a new ap—

‘proximation to the suspended length of the pipe A can be found from (4

7).

The improved approximation to the equilibrium functlons are then found from

(4.5), (4.6a) and (4.6b).

The sequence of successive iterations may be started with an arbitrary regu
t

furiction satisfying the kinematic boundary conditions.

14 ;
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Fig. 4.2. Articulated Stingers.

We can, for example, use the deflection curve corresponding to a natural
catenary or a solution of the linearized Bernoulli-Euler beam equation ‘that
satisfies all the boundary conditions at the ocean floor and the kinematic
boundary conditions at the upper end of the suspended pipe. These methods of
obtaining the first approximation also supply us with a first estimate of the
suspended length. '

The effect of having part of the equilibrium curve above the surface of the
ocean (A > 0), or support buoys along the pipe, or, an articulated stinger, see
Fig. 4.2, is easily taken care of in the present formulation by introducing &
variation in the distributed buoyancy and/or weight of the pipe. '

As an appliéation- of the foregoing, figure 4.3, shows the results of the numeri—
cal analysis of a pipe-laying procedure where the pipe is laid without the use
of a stinger. The water depth H is 50 m, the pipe leaves the pipe-laying  barge
2 m above the water surface at an angle equal to 20°. ’I'f‘_he:_horizonté.l‘ tension
H, applied at the barge is 2.200 - 10° N. The uniform bending stiffness- EI of

the pipe is 2.256 - 109 Nm2,< the buoyancy per unit length in. water. W is
1.614 - 10* N/m and the weight per unit length w, is 1843 - 10* N/m.

Starting with a deflection curve corresponding to the solution of the. linearized
beam equation, where the effect of the applied horizontal tension H, is ne—.

15




glected, the solution presented in Figure 4.2 is obtained in 3 iteration steps. '

Yﬁ Ax2m
50t ——— = =
El= zzss-w’Nm N
w, = 1.843x10°N/m
254 w,= 1.614= 10°N/m
H; .2 2,200 10°N
YV = 0 m/sek

v

0-- - -
A 50 100 150 200 m :
81 _ i
|
i
it ~< Bending moment (Nm=10"°) :
/—'Shidr force {N=10"%)

Axial force {N=10%)

Flgure 4 3. Results of numerical analysis of plpe—laymg procedure
without the use of a stinger.

Fig. 4.4 shows the results of the numerical analysis of a pipe-laying procedure
where the pipe is laid with the use of a flexible stinger. The water depth H is
300 m. B , _ i

_ N : |
Starting with a deflection” cufve correspondmg to the solution of the hneanzed
beam equation, where the effect of the applied horizontal tension H is lne—

glected, the solution presented in. Fig. ,4.4. is obtained in 7 iteration steps:
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300 TE7 = 3924 -10°Km%

w, =390 -10°N/m
w, =2.9¢ -10°N/m
H; =1674-10°N
Ly, =410m
w692 - 10°K/m
200 b Wes=600 10°N/m
EI. =800 -10%Nm?

T
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20 g
" Total bending moment »//v'msm"'f)
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Figure 4.4. Results of numerical analysis of 'p'ipelayin‘g using a ﬂexibie stinger.

B. Pipe-laying using a rigid stinger

We will now consider pipe—laying with the use of a rigid stinger with a fixed
curvature 1/R as shown in figure 1.1. Let us assume that the applied horizontal
tension is H; at the upper end of the suspended pipe (the lift—off point from
the stinger). The tangent angle of -the_ stinger at the point where the stinger is
hinged to the barge is denoted § . The angle 6 will normally be a non—linear

function of the position of the lift—off point given by Y’i and 0i and the magé

nitude of the concentrated force T; perpendicular to the stinger axis at the

lift—off point. Due to the constant curvature of the- stinger the force Ti equals

the shear force in the pipe just below the lift—off point. The functions

17




Figure 4.5. Pipelaying using rigid stinger

0, = 0,(Y; T,) can be determined when the geometry and the weight dis—

tribution of the stinger are known. See figure 4.6.

— Lift Off Point

Figure 4.6. The stinger supported part of the pipe.

Besides the static boundary condition expressmg the fact that the honzonta.l
force is H, at the lift—off pomt then the bendmg moment M is- also given 1

‘ | | ‘ B
M. = - EI/R | )
Finaﬂy,- kinematic considerations give us the relationship

. H —Y; + A i
cosb, = cosd : —:_—_R - (4-'?)

!

|

x
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The iteration algorithm for the solution of this problem is similar to the algo—
rithm which was described for the solution of the problem where the angle 0.

was known. Only in this case we know the bending moment at the upper end,
Eq. (4.8), therefore we do not need to introduce the auxiliary function mgi%(g)

in the Eq. (4.4).

The equation used to determine the unknown suspended length “j+1 is derived
from a transcendental equation obtained from the boundary condition (4.1a) and
Eq. (4.6b): ' '

cos0j+1(1) = cosf, — % {1 + a - ’\j+1 yjﬂi:l(l)} (4.10)

The methdd outlined is, of course, only valid when the stinger is so long that
the calculated lift—off point is on the stinger. If this is not the case, a slightly
different iteration scheme is called for.

Ya

) T 2.256 «10% Nm?
mi w, =1843:10N/m
254 w,= 16141 10* N/m
H; = 2.200%10° N
V =0 m/séc.

Lift off

'7 Pipeline point

0 ~ 80 60 150 200 250 m 300 X
1 )

8] .8ending Moment (N_rn-lo")

Iy

r fShef’r force (N_ELO' 5 =

0 | - . o | :x
e — Axial force (N=10%)- |

Figure 4.7. Tlesults of numerical analysis of pipe-laying procedure
with the use of a rigid stinger:

An example of the numerical analysis of a pipe-laying procedure using a stinger
with fixed curvature is shown in figure 4.6. The stinger radius is assumed to be
300 m and in this example, the stinger is assumed to be rigidly connected to

19
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v

N . . | |
|

-the - pipe=laying ba.rge The water depth a.nd the pipe data are assumed to be
_the same as in the prev1ous éxa.mple '

|
|
!
|
Pipe abandon and recovery operatlons may be modelled as shown in ﬁgure 4 8.
These operations can be performed in a number of different ways. AsI an

example we will assume that the wire passes over the stinger rollers and that
the horizontal anchor force transmitted to the pipe T, and the Y—coordlnatcle of

the pipe end Y, are known, whereas the wire temsion T is considered as a

| I
dependent variable. | | | \
1

_ Figure 4.8. Pipe abandon/recovery operation.

Taking into account the water pressure on the lid which is normally welded
onto the pipe end during these operations, the boundary - conditions for | the
" upper end of the pipe .take the form - L ‘ |

Y(L)‘- = Y, o | (a.11)
ML) =0 - ' | | (4. 12)
H, = Tb — wp(H =Y;) cosf(L) | (4. 13)

20




Figure 4.9 shows the results of a numerical analysis of a pipe abandon or
recovery operation. ~The same pipe data as in the previous numerical examples
specified as 25 m above the ocean floor and the horizOnta.l. anchor force as 10°
N. The necessary wire tension'is found to be 2.148 - 105' N.

Ya
SO Er- 2256 10° Nm*_ -
m| w, = 1.843+10° Nim
= 1.614110° N/m Wire tension
5t s N 2148 10 N
Y, = 25m
V = Omisec I
0 e _ + — >
A 50 100 150 m X
st ] .
Jd 0 “Bending Moment
(Nm=10"%)
S e i, —>
- Shear force (N=107) ‘
-4 /
-8 —Caxial force (N=10"%)

Figure 4.9. Results of numerical analysis of abandon/recovery operation.

5. Conclusion

The method of Successive integrat’ions’ presénted for the determination of equilib—
advantages over other available methods. The principal advantage is the ex—
tremely modest requirements to computer storage and computer time. Since, in
principle, the method only involves integration of known functions, the- method
is well suited for' programming on shipboard computers for control of the actual
pipe-laying procedure. Another advantage of the method is its flexibility. For
example the effect of variations of pipeline bending stiffness due to variations in
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the coating, current variations with depth, and auxiliary- support buoys can

easily be accounted for. - ' . |

1

The primary limitation of the present method for the analyses of equilibrium
forms of pipes is that in it's presented form it can only deal with 2-D cpn— '
figurations. However, in {15] and [16] it is shown how the procedure can' be
extended to the 3—D case. Unfortunately, the analysis of 3—D equilibrium forms
is considerably more cofnplicated. E
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7. Nomenclature L o T i |
A dist_a;ice between barge deck and water sur"f'aicv:e' , T
a cross—sectional area Lo e e |
Cn' normal drag coefficient o T B
C, tangential drag coefficient
. ) |
.D “outer diameter of pipe or cable |
EI ' . bending stiffness of pipe . ‘
F 0 f - normal drag force per unit length
Fo, " tangential drag force per unmit length
fj, 8; '  auxiliary functions =~ o | l
. |
H water depth , _
- Hb” by, horizontal force component at the ocean floor
Hi, by " horizontal force component at upper end of suspended lengtfh
L, A suspended. length [
M, m bending moment i
N, n axial tension ‘
Py, Py k L
v components of load per unit length
Py Pt - ,
s, § _ - arc length
T shear force i
T}, horizontal anchor force _ .
\" - current velocity :
Vi Y vertical force component at ocean floor
Vi’ v, vertical force component at uppe‘r.', end of- suspendéd length |
. ) ‘ Lo " . R i
Wy buoyancy per unit length A C v i
w, weight per unit length |
|
"X, Y, x, y rectangular coordinates |
8 tangent angle ' | | : _ |
Py mass density of water
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