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1. Introduction

With increasing water depth the length of the suspended pipeline between the
pipelaying barge and the. ocean floor becomes greater. This may cause the
stresses in the pipe to become so high that the pipe buckles or the stresses in
the stinger to reaçh a level where the stinger is danaged. The engineering
design of marine pipeline systems raises the problem of static and dynamic
analysis of pipelines. Therefore, analysis tools re needed which can accurately
predict the static equilibrium curve and the dynamic response characteristics of
pipelines.. With such tools one can establish the limits for water depths and
environmental conditions in which the pipe can be layed or 'lay the pipe along
a desired path.

Marine pipelines can be modelled, as beams rather than shells because their
diametertolength rtios are small.

The problem. of predicting the suspended geometry and thereby the' stress of

marine pipeliñes during Iayiig. in the ocean is one of large. deflection. beam
theory, where the length of the suspended beam. i.s not a priori known.

There. is a vast and steadily growing literature, on pipeline problems. Here we.
shall cite only a: limited number of important papers where reference. to earlier
work may be found.
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Let us first consider research devoted to the twodimensional problem of ana-

lysing a p1an pipeline subjected to static loads in the plane of bending during

normal laying.
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Fig. 1.1. Conventional pipelaying

R.. Plunkett [1] and D.A. Dixon and D.R. Rutledge [2] used the stifiejied

catenary method to get solutions, which are based on the assumption that the
pipeline takes a shape which can be approximated as a natural catenary over

most of' its length and where thê influence of the boundary conditions is con-

fined to small "boundary layers" near the nd supports. The main advant3ge of

this method is relatively small demands on numerical calculations. But it is

only valid in such cases where the tension rather 'than the bending stiffness

governs the behaviour Over most of the length, that is the pipeline has a

relatively small betiding stiffness or is to be placed in deep water. It is usu.11y

not flexible enough to handle 'all the existing typeS of pipelaying procedures.

JT. Powers and LD Finn [3] solve the 2D problem through the use of a

finite element method and an initialvalue approaçh. They treat the' pipe1ine as

a series of small beams each of which are treated as linear elements. This

method possesses several advantages due to the fact that any desired boundary

cOnditiOn, in principle, can be considered and' the beam properties and. loads can

be varied from element to element. But the primary limitation of this metiod

is its loss of accuracy and failure to cony, erge' for pipelines Jayed' in deep water

Or with small stiffness. Furthermore., the boundary conditions, must be satisied'

from One end t another by a trial and error procedure' using an initialvalue

approach. It needs laborious. comput3tionS even for 2-D analyses

Pipe by Barge



A.C. Palmer et al. [4] and D.W. Darling and ...F. Neathery [5] derive differen-

tial equat.ions governing the equilibrium configuration of the plane pipe. The

result, is a non-linear two-point boundary value problem. A finite-difference

solution procedure is described in these papers. In [5], the series truncation is

used to linearize the governing equations. In [4] the nonlinear differential equa-

tions are transformed into a. non-dimensional form and a non-dimensionlised
suspended length is introdùced. The resulting equations together with end condi-
tions are expressed as a set of simultaneous linear algebraic equations by

moving nonlinear terms to the right hand sidês of the equations. Then success-
ive iteratiOns are used to get numerical solutions. This latter method seems
better than the initial value approach because less programming effort is needed

and the difficulties with instability are reduced. Common to these methods is
that each main Iteration step involves a second set of successive iterations for

the calculation of the suspended length. This fact causes a relatively large

demand to computer size and time.

P. Terndrup Pedersen [6] presents a relatively direct solution method to cable
and pipelaying problems. The goverìing nonlinear two-point boundary value

problem is derived and transfórmed into a non-dimensional form such that the
a priori unknown suspended length of the pipeline acts as a scaling parameter.
The method of solution is then based on successive integrations. This method
possesses the principal advantage, that it has extremely modest requirements to
computer storage and computer time because the solution only involves integra-
tion of known functiòns and only one set of successive iterations is needed.

Another advantage is its flexibility to model different types of pipelaying pro-
cedures. Through a modification [7], this metho4, has been improved SQ that it

is a1Q an effiCient sOlution technique for pipelines with large or very small

bending stiffnessés and for laying procedures in shallow or very deep water.

The most accurate prediction of stresses and trajections of .pipelines during

laying is achieved by thrêe-dimensional analysis. This is due to the fact that
the various laying procedures and the external loads due to current, wave and
wind in different angles to the direction of laying deflect the pipelines in the
shape of . 3-D curves. Furthermorè, close to platforms where many obstacles and
existing pipelines may be present it is. often necessary to lay pipes in curved
trajections with great precision. Therefore, in recent years some attempts have
been made to solve 3-D problems.

-

3



Tension Machine
Weld Station

Pipé Clamp
Pipé Position Detector

Stern Roller Box

/Min. / /(Ramp at /
Pipe Entry Angle ,
(Ramp ót 40°) /

/
Max.

(Ramp at 60°)

Levelwind Aligner Pipe Ramp

Fig. 1.2. The dynamically psitioned reel ship APACHE is designed

to spool and lay pipe up to 16 inches in diarneter

T.N. Gardner et al. [8] developêd a 3D analysis technique for risers in deep

water using FEM. They employed "small angle,, large deflection" assumption so

that the terms coupling torsion and transverse bending an the terms coupling

the displacements in the direction of the two principal axês of the crosssection

can be considered insignificant. The Newmark method with inclusion of an

iterative relaxation is used fOr the numerical calculations.

J.S. Chung and C.A. Felippa [9] present a nonlinear 3D static analysis pro-

cedure for deep ocean mining pipes or risers. The finiteelement techniquè is

also used in their paper, where the pipeline - with a known length - is
modeled by 3D nonlinear beam elements. The defOrmations due to tension,

bending or torsion are included. The modified Newton iteçation method is ised

to get a solution. The FEM has the flèxibility to model variations of ext tal

loads or cross-sectional propérties along the pipe length together with any

desired boundary condition. But it seems that much more effOrt will be needed

to get precisê and convergent sOlution in the case of pipelines with unknown

lengths or in deep water.

M.M. Bérnitsas [10], and M.B. Bryndum et al. [11] have developed the 3D

nonlinear model for largedeflection beh3viour of pipelines using a ocal orho-

gonal coordinate systêm. In [11], the resulting differential eqs. have been sc1ved

numerically by a finite difference approximation. Common to the. models in [10]

and [11] is. that the local moving coordinate systems are defined only by the



central-line. This results in the inherent limitation that the numerical solutions
based on such models can only describe the defonnations f the central-line and
the torsiOnal deformation of the pipe cross-sections cannot be taken into ac-
count.

R.P. Nordgren [12], [13] sets up the. 3-D large deflection non-liflear model in
the local principal system by vector analysis, where the torsional moment in
stead of torsional deformation appears in the governing equatiÖns. This model
can only be used to describe the behaviour of pipelines With equal principal
stiffnesses and the torsional moment at One Of the two ends should be known
in advance. The torsional deformation cannot be described.

Also Molahy [14] has presented a 3-D flaite element procedure which can be
used to study the geometrical non-linear equilibrium curves.

Based on a finite difference procedure Yan Junqi and P. Terndrup Pédersen [15]
and [16] have developed a consistent non-linear model for 3-D large deflection
analysis of pipelines within the small strain beam theory. This model can take
into account al the non-linearities due to geometry, arbitrary variation of loads,
different boundary conditions and variation of the pipe properties. It an be
used to describe not only the behaviour of pipes with symmetric cross-sections
but also of pipes with asyn1nTIetric cross-sections such as piggy backed pipelines.
The often used approximations leading to the inconsistent equilibrium equation
are avoided, and thé procedure makes it possible to describe the torsional

deformations of the pipeline.

In the following we shall present a method for 2-D analysis based on Refs. [6]

and [7] which provides a relatively direct solution pipe-laying problems. The
governing non-linear, two-point boundary value problem is derived and trans-
formed into a hon-dimensional form such that the a priori- unknown suspended
length of the pipeline or cable acts as a scaling parameter.



2. Loading on the suspended pipe

We cönsidr a deformed inextensible pipe as shown in Figure 2.1. As in4epn-
dent variable in our formulation we shall employ the arc length s from he

point where the pipe touches the ocean floör. This point will also serve as

origiil for the rectangular coordinate system XY shown. in Figure 2.],. the
tangent angle to the pipe is denOted O(s), and we designate the depth of he

ocean by H.

The load on an element of unit length of the suspended pipe ls composed of:

the weight wc(s), the buoyancr w0(s) and, due to a steady oçean current with

velocity V(Y), also a normal drag force Fa(s) and a tangential dtag force F'(s).

The mass density of the water: is given by the gravity by g, and the cross

sectional area of the pipe by a.
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The buoyancy load on the pipe due to the water prsure is deterthined as

follows. Consider the segment of length ds shown in Figure 2.2.. The tbtal

buoyancy of the segment with "open ends" equals pga ds and acts in the

Y-direction. This load has to be corrected for the lack of pressure at the nds

of the segment. From Figure 2.2 it follows that the resulting buoyancy load

w0ds acts in the direction normal to the centerline of the pipe segment nd

Vb

Figure 2.1. Loading on the pipe
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Figure 2.2. Buoyancy on pipe. element.

with a magnitude given by

W0 = Wb {cosO + (H - Y) (2.1.)

where wb= ga for O YH and wb= O for Y> H.

The loading due to the current takes the form

F =pCIVIVA (2.2)

where C is the drag coefficient, V the flow velocity, and a characteristic

area. The axial and tangentiái load per unit length can be obtained from (2.2)
as

F = C VIVID sin2O

(2.3)

Ft = ir C VIVID cos29

where D is the diameter of the pipe, and C, C are drag coefficients.

Thus, the resulting horizontal and vertical load intensities for the submerged



part of the pipe are

respectively.

3. Governiùg equations for the pipeline

In this. section we shall, set up. the governing equations 1or the plane, one-
dimensiönal, finite strain beam theory which will bê used to model the pipe.

As constitutive law for 'the pipe we will assume a Uuiear relation between the

bending möment M and the curvature dO/ds. Thus

S =
(3d)

where, EI is the bending tiffnes of the pipe.

The moment equilibrium cönditiöïi for segments of the pipe give the shear force

T(s)' as

T(s)
.

.. (3.2

The shear force T at any section of the pipe can be. found from Figure

equilibrium considerations. We find

T(s) =-[EI]

'b sinO(s). + Vb cosO(s) - cos(s) .(s1)ds1

cosO = - F]sinO

(2.4)

Ft sinO + - .FJ cosO - w

.1 y

± sinO(s) (3.3)



where

sinO(s) -

rs
- sinO(s)

IJo

Ñ(s) Eh cosO(s) - Vh sinO(s) - sinO(s)

Ft. sinO(s) - F cosO(s) -. [w - w

cosO(s) + F sinO(s)

cosO(s) + cosO(s) J (s1)ds1

)ds1 (3.5)
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where Hb, Vb are the horizontal and vertical force components4 rpective1y, at

the support point at the ocean poor. Similarly., wê find the aidai force N(s) at
any sectiOn of the suspeided pipe as

N(s) cosO(s) Vb sinO(s) - sinO(s) f (s1)ds

cosO(s) i: (si) ds1 (3.4)

The equations (3.3) and (3.4) cau also be wEitten in the

- cosO(s) f (si)dsi (3.6)

+ Hwb COSOV b + Hwb SiflOb

arid



Ñ N + {H - Y(s)}wb

Equation (35) shows that the effect Of the buoyancy On the equilibrium curve
of thè pipe can be accounted for by introducing the submerged weight of the
pipe However, it will be seen from equation (3 6) that taking care of the
buoyancy simply by introducing the submerged weight results i an apparent
axial förce Ñ which equals the real axial force N plus the hydrostatic fdrce

Wb(H Y). Here, we may note that for the evaluation of the buckling strength

of a pipe it is the real axial force N that is of importance, whereas fOr the
determination of a reference stress fr a solid cable or mooring line wé will be
concerned w]th the adjusted axial force which here is denoted Ñ

In order to isolate the uñknown suspepded length L of the pipe let us then
introduce the following dimensionless quantities:

s/L ; {x,y} = {X,Y}/L L/H

and

EI
7 = Th -:3wtH = {

''y}I'

{hb, vb, n,t} {Ñb 'b' Ñ, T}/[w n]

where w, is a characteristic value of the wèight per unit length of thê pipe!

Then equation (3;5) takes the form

A2 [7 j = hb sinO _Vb COSO

[coso je

and equation (3.6) takes the form

lo.

sinO Px dC1 (3.7a



By differentiation of Eq. (3.7a) and use of q, (3.7b) we obtaifl

where

= coso(e) - sinO(C) P,c(C)

Neglecting the axial extension of the pipe, the relation betweefl the dinension-
less natural cOordinates (O,C) and the dimensionless rectangular coordinates (x,y)
are

hb cosO + sinO

d2 I dOl
L7J A2 n(C,O) f = À3 p(,9)
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(3.8)

The boundary conditions at the upper end of the suspended pipe depend on the
method of operation (for example the type of stinger used). But we note, for
future use, that the dimensionless applied horizontal tension can be fòund. from
the following equilibriuii equation

h1 - A p d1 (3.13)

dy = sinO dC and dx = cosO dC (3.9)

The boundary coidjtion at the ocean floor are taken as:

y(0) = x(0) = O (3.10)

0(0) (3.11)

IdOl (3.12)

- Afsino
s:

dC1 + cosO

I
(3.7b)



and that the vertical component of the tension is given by

- A p d (3.14)

Here the nondimensionai forces. h, v are related to the applied forces vi

by

= { + [i - Yji W coü}i [w ii]

and

vi = {v + [H - \']wb sin91}/[w H]

The differential equations (3.8) and (3.9) and the boundary conditions of the
problem constitute the nonlinear boundary value problem to be solved.

4. SolutiOn Procedure

A. Pipelaying without stinger or With an articulated stinger

Suspended Pipe

Ocean Floor

Figure 4.1. Pipelaying without stinger
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First we shall consider a. case where the pipe is laye4 ithot the use of a
stinger. See Fig. 4.1. We shall assume that at the upper end of the suspended

pipe we ha.ve the kinematic boundary conditions

0(L) (4.1)

Y(L) =H+A. (4.2)

where A is the distance between thê pipe support on the barge and the oceafl

surface. We shall also assume that the applied hotizontal tension H at the

support is known..

In order to solve this nonlinear boundary value problem we shall assume that

the loading p [,oJ and the axial tension ni [e7o] associated With an arbitraty

deflection curve {o, xj y, A is determined. Then a new improved solution

vector can be found in the following way.

d 9

First the dimensionless norÎient distribtition mi(e) is introduced and an

algorithm based on equation (3.8) is obtained in the form

c1

13

m() = #+i P(e)} (4.3).

Here the exponent' a. is chosen such that fast convergence is obtained. It can be
H.i/2

shown that this choice must depend on the value of r L However iii

most realistic pipelaying problems a 3 is a good choice.

FrOm equatioñ (4.3)' an improved moment distribution can be

determined numerically by t sfórming the equation intO finite difference form

and solving the resulting linear aJgebrai system of equations, which has a

convenient tridiagonal form, by Gaussion elimination. This leads t

dO. ,m. )1

-
aÀ.

+ m±('). m.(e)} (4.4)
d - t)



where m+i(l) is the. so far unknown möfnent at the iiper end of the pipe.

By integration of equation (4.4) and use
f thê. boundary condition °+i(» ='

to determine m3+i(1) we find

= g() + g2()

Where g1() an4 g2() are ktiöwn functiÒn$

The improved cartesian coordinates to the equilibrium curve are given by

(4.5)

The sequence of successive iterations may be started with an arbitrary regular

function satisfying the kinematic bounday conditions.

x+i()

and

=
d

(4.6a and b)

=
sii91 d'

The as yet unkflówn suspended length of the pipe can now be determiñed by

solving the, transcendental equation obta.ined from the boundary condition

Y(L) = H + A and (4.6b):

i±i J. sin[±1 g1() '.1- g2()]d

= i a,. where a = A/ti (4.7)

Thus, starting with an arbitrary integrable approximation to the equilibrium

curve, the functions g1 and g2 can be determined from (4.4) and a new ap-

profliatior to the suspended lengti of the pipe cali be found from (4.7).

The improved approximation to the equilibrium functions are then found from

(4.5), (4.6a) and (4.6b).
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Fig. 4.2. Articulated Stingers.

We can, for example, use the deflection curve corresponding to a naturai
catenary or a solution of the linearized BernoulliEuler beam equation that
satisfies all the boundary cönditions at the ocean floOr and the kinematic
boundary conditions. at the upper end of the suspended pipe The methods of
obtaining the first approximation also supply us with a first estimate of the
suspended length.

The effect of having part of the equilibrium curve above the surface of the
ocean (A > 0), or support buoys along the pipe, or, an articulated stinger, see
Fig. 4.2, is easily taken care of in the present formulation by introducing a

variation in the distributed buoyancy and/or weight of the pipe.

As an application of the foregoing, figure 4.3, shows the results of' the numeri-
cal analysis of a pipelaying procedure where the pipe is laid, without the use
of a stinger. The water depth H is 50: rn, the pipe leaves thê pipelaying'. barge
2 m above the water surface at an angle equal to. 200 The horizontal tension
H1 applied at the barge s 2.200 1O N. T'he uniform' bending stiffness EI of

the pipe is 2256 . 10 Nm,. the buoyancy per' unit length in,. water. wb is
1.614 . N/rn and the weight per. unit length w is l.843 10 N/rn.

Starting with' a deflection curve corresponding to the solution' of the. linearized;
beam equation, where the effect of the applied horizontal tensiòn H1 is ne-.



glected, the sQlution presented in Figure 4.2 is obtained in 3 iteration steps

Y

sa

25

Eis 2.256e 10'Nm2
1.s43 10' N/rn

Wb 1.614' 10'NIrn
H1 2.200' 105N
V 0 mlsek

Figure 4.. Results of numerial analysis of pipelaying procedure

wÏthout the use of a stinger.

Fig. 4.4 shows the results of the numrÏca1 analysis of a pipelaying procedure

where the pipê is laid with the se f a flexible stinger. The water depth H is

300 m.

Starting with a deflectiOn cufve correspoding to the solution of the linearized

beam equation, where the effect of the applied horizontal tension H is ne-

glected, the solutIon preseflted ir. Fig. 4.4. is obtained in 7 iteration steps
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Figure 4.4 Results of numerical analysis of pipelaying using a flexible stinger.

B. Pipe-laying using a rigid stinger

We will now consider pipelaying with the use of a rigid stinger with a fixed
curvature 1fR as shown in figure 1.1. Let ûs assume tlat the applied horizontal

teflsion is H1 at the upper end of the suspended pipe (the liftoff pOint from

the stinger). The tangent angle of the stinger at the poiflt whérê the stinger is
hinged to the barge is denoted O. The angle O will normally be a nonlinear

function of the position of the liftoff point given by Y ad O and the mag-

nitude of the concentrated force T perpendicuia.r to the stinger axis at the

liftoff point. Due to the constant curvature of the stinger the force T1 equals

the shear force in the pipe just below the liftoff point. The functions

17
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Figure 45. Pipela.ying using rigid stinger.

lift Off POint

Figure 4.6. The stingçr supported part of the pipe.

Besides the static boudy condition expressing the fact that the horizontal

force is H at' the 1iftof pOint then the bending moinent M1 is also given

M1 =. - EI/R (4.)

Finally, kinematic considerations give us the re1atioiship

HY1+A

18

= (Y T1) can be determined whén the geometry and the weight dis-

tribution of the stinger are knoWn. See figure 4.6.

(4,9)

J-



cosOi+i(1) = cosou -

50

m

25

0
L
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The iteration algorithm for the solution of this problem is similar to the algo-
rithm which was described for the solution of the problem where the angle Oj

Was known Only in this case we know the bending moment at the upper end,
Eq. (4.8), therefore we do not need to introdüce the auxiliary function mf(e)

in the Eq. (4.4).

The equation used to determine the unlçnown suspended length is derived

from a transcendental equation obtained fröm the boundary condition (4.la) and
Eq. (4.6b):

EI = 2.256 '.10' Nm2
w, 1.843' iO' Him
Wb 1.614 '10' NIm
H1 = 2200'1O' N
V O misèc.

50 100 150

Bending Moment (Nm.1O

{
i + a A±i Y±(1)}

The method outlined is, of course, only valid when the stinger is so long that
the calculated lift-off point is on the stinger. If this is not the case, a slightly
diffèrent iteration scheme is called for.

19
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Figure 4.7. flesults of numerical analysis Ql pipe4aying procedt4re
with the use of a rigid stinger

An example of the numerical analysis o a pipe-laying procedure using a stinger
with fixed curvature is shown in figure 4.6. The stinger radius is assumed to be
300 m and i.n this example, the stinger is assumed to be rigidly cónnected to

(4.10)



the pipelaying barge. The water depth and the pipe data are assumed to be
the sarné as in thê previous example.

C. Pipe; abandon/recovery operations

Pipe abandon and recovei operations may be modelled as shown in figure 4.8.

These operations can be perfotthed in a numbet of different ways. As an
example we will assume that the wire passes over the stinger rollers and that
the horizontal, anchor fOrce transmitted to the pipe Tb and the Ycoordinate of

the pipe end Y are knowú, whereas the wire tension T is cOnsidered s a

dependent variable.

M(L)

H1

=Yl
=0
=Tb - Wb(H - Y1) cosO(L)

20

Figure 4.8. Pipe. abandon/recovery operation.

Taking into account the water pressure on the lid which is normally welded

onto the pipe end during these opérations, the bounda.ry conditions for the

upper end of the pipe take the form



Figure 4.9 shows the results Of a nurrierical analysis of a pipe abandon or
recovery operation. The same pipe data as in the previous numericaj examples
have been assumed. The position of. the upper end of the suspended length is
specified as 25 m above the ocean floor and the honzontal anchor force as lO5

N. The. necessary wire tension is found to be 2.148 10 N.

Y4'

50

m

25

o
L

8-

-4-

El 2256 lO' Nrn2

w, 1.843 10' Nim
Wb 1.614' 10'NIm
H= l0'N

25m
V = Omlsec

50

21

100

Pipeline

mo

Wire tenSion
2.148 10 N

X

fôrce (Ni0')

Figure 4.9. Resi.ilts of numerical, analysis of abandon/recovery OperatiOn.

5. Cnclusion

The method of successive integrations presented for the determination of equilib-
rhim. lärms and stresses for stibmarim pipelities during laying possesses several
advantages over other available methods. The principal advantage is the ex-
tremely modest requirements to computer storage and computer time. Since, in
pricile, the methOd only involves Ïntegration of known functions, the method
is well suited for prOgramming on shipboard I computers for control of the actual
pipelaying procedure. Another advantage of the methöd is its flexibility. For
example the effect of variations of pipeline bending stiffness due to variations in
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the coating, current variations with depth, and auxiliary support buoys ca

easily be accounted fori

The primary limitation of the present method for the analyses of equilibrium
forms of pipes is that in it's presented form it can on.ly deal with 2D cpn-
figurations. However, ja [15] and [16] it is shown how the procedure can be
extended to the 3D case. Unfortunately, the analysis of 3D equilibri um fokrns
is considerably m°re complicated.
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7. NomenclätuXe

A distance between barge deck and water surface

a crosSsectional areä. -.

Cn iiorthal drag coefficient

tangential drag cöefficient

D outer diameter of pipe or cable

EI bending tiffness of pipe

F, Ç normal drag force per unit length

Ft, Ç tangential drag force per unit length

g auxi.l iary functÏons

H water depth

Hb, hb horizontal force component at the ocean floor

I4, h horizontal force component at upper end of suspended length

A suspended. lei.gth

m bending moment

N5 n axial tension
p- pX, components of load per unit length
pn'pt
s, arc length

T

shear force

Tb orizontal anchor force

V . current vélocity

Vb, Vb vert-ical fórce component at ocean floor

V1, v vertical force component at upper end of suspended length

Wb bubyançy per unIt length

w weight per unit length

X, Y, x, y rectangular coordinates

O tangent agle

pv
mass density of water
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