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Drivers of partially automated 
vehicles are blamed for crashes 
that they cannot reasonably avoid
Niek Beckers1,2,5*, Luciano Cavalcante Siebert1,3,5, Merijn Bruijnes4,5, Catholijn Jonker1,3 & 
David Abbink1,2

People seem to hold the human driver to be primarily responsible when their partially automated 
vehicle crashes, yet is this reasonable? While the driver is often required to immediately take over 
from the automation when it fails, placing such high expectations on the driver to remain vigilant 
in partially automated driving is unreasonable. Drivers show difficulties in taking over control when 
needed immediately, potentially resulting in dangerous situations. From a normative perspective, 
it would be reasonable to consider the impact of automation on the driver’s ability to take over 
control when attributing responsibility for a crash. We, therefore, analyzed whether the public indeed 
considers driver ability when attributing responsibility to the driver, the vehicle, and its manufacturer. 
Participants blamed the driver primarily, even though they recognized the driver’s decreased ability 
to avoid the crash. These results portend undesirable situations in which users of partially driving 
automation are the ones held responsible, which may be unreasonable due to the detrimental impact 
of driving automation on human drivers. Lastly, the outcome signals that public awareness of such 
human-factors issues with automated driving should be improved.

Self-driving vehicles are improving rapidly, yet they occasionally fail with potential severe consequences: from 
near-misses, to crashes resulting in damage, injury, or even loss of  life1–3. While studies investigated the public’s 
opinion on the ethical principles that should guide the behavior of self-driving vehicles in critical situations such 
as  accidents4, more recent efforts investigated the public’s opinion on how responsibility should be attributed 
when accidents with self-driving vehicles  occur5–9. Because many stakeholders are involved, e.g. the driver, the 
automated vehicle, and its  manufacturer5,10, assessing who is responsible when a crash occurs in automated driv-
ing and whether that responsibility attribution is reasonable is a complex problem. Understanding how the public 
would attribute responsibility is important, as it may shape vehicle design and legislation. In this work we focus 
on a specific aspect of responsibility, namely culpability (also referred to as blameworthiness), which assesses 
whether someone’s behavior deserves to be blamed or considered responsible for the  accident10,11.

For manual driving and fully autonomous driving the public’s responsibility attribution seems relatively clear-
cut: the driver of a non-automated vehicle is blamed in the event of a crash without mitigating  circumstances6–9,12, 
whereas the manufacturer is blamed when a crash with a fully autonomous vehicle  occurs7–9,12. The question of 
culpability, i.e. if blame is deserved, becomes more complicated for partially automated vehicles. These vehicles 
are not autonomous but take over control of driving tasks from the human driver for long periods. As a result, 
the driver’s role shifts from being directly in control to being an out-of-the-loop supervisor of the automation 
(e.g,13,14). This type of partial automation is dominant in the current automated vehicle market. However, such 
automation is still brittle and can fail  unexpectedly15. Then, the automation trades control authority to the 
human. This unexpected control transfer has been shown to contribute to, or even lead to, accidents (e.g.,16–20).

Manufacturers of partially automated vehicles currently assign liability—i.e., legal responsibility—to the 
human driver by requiring them to remain vigilant and ready to take over control when requested at any time 
through their terms of  use21. The general public shares this view that a driver of a partially automated vehicle 
is required to always be ready to take over: people blame the driver more than the automation when a crash 

OPEN

1AiTech, Delft University of Technology, Delft, Netherlands. 2Cognitive Robotics, Faculty of Mechanical, 
Maritime, and Material Engineering, Delft University of Technology, Delft, Netherlands. 3Interactive Intelligence, 
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, 
Netherlands. 4Public Governance and Management, Faculty of Law Economics and Governance, Utrecht 
University, Utrecht, Netherlands. 5These authors contributed equally: Niek Beckers, Luciano Cavalcante Siebert 
and Merijn Bruijnes. *email: n.w.m.beckers@tudelft.nl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-19876-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16193  | https://doi.org/10.1038/s41598-022-19876-0

www.nature.com/scientificreports/

 occurs8,9. Similarly, Awad et al.6 found that humans are blamed more than the automation when both fail to 
avoid a crash. In other words, when the human and the automation make the same mistake, the human driver 
is blamed more. However, is blaming the driver primarily in these situations reasonable?

While the driver technically has the means to take over control of the vehicle—e.g., through grabbing the 
steering wheel or pushing an override button—a key element in culpability attribution is the extent to which the 
human driver is able to appropriately act and avoid the crash at the moment they were required  to10,11. Indeed, 
scientists argue that the extent of a driver’s responsibility when interacting with automation, such as driving a 
partially automated vehicle, depends on to what degree they were able to control the system at that  moment22,23. 
We define ability as the extent to having the competence, skill, and the opportunity (e.g., in time) to execute 
control including perception, action selection, and action  following22. In this context, we find a critical gap in 
the aforementioned studies on blame attribution in partially automated  driving6,8,9,12 as they did not explicitly 
consider whether the human driver was able to control the outcome.

Indeed, taking the driver’s ability into account when assigning culpability is important, as the design of 
automated vehicles that require drivers to supervise the automation can lead to significant driver-related issues 
including complacency, skill degradation, and loss of situation awareness  (see24 for an overview). Asking a driver 
to supervise for prolonged periods drastically impacts their ability to take back control, and quickly and appro-
priately respond to unexpected  situations16–20,24–27. A prominent cause is the loss of awareness of the environment 
and of the automated vehicle’s  functioning28,29. Regaining this situation awareness requires time that may not 
be available given the time-critical nature of unexpected automation failures, hampering the driver’s ability to 
appropriately  respond16,18,27,29.

These issues are exacerbated by the fact that humans do not excel at remaining vigilant even for short periods 
when supervising automation, exemplified by the fact that drivers tend to engage in undesirable non-driving 
related activities, such as mobile phone  use24,29. On the one hand, drivers can lose situation awareness due to 
engaging in non-driving related tasks, such as using the vehicle’s entertainment  system28,30. On the other hand, 
loss of situation awareness can also occur unintentionally: drivers’ minds tend to wander off when the driving 
tasks are  monotonous26,31,32 as is often the case when supervising  automation33. It is, therefore, important to 
consider the source of distraction in automated vehicles to assess  culpability34. Moral judgment depends on the 
intention of an action; deciding to perform an action leading to negative consequences is blamed more than 
not deciding to do any  action12,35,36. Distractions that result from intentionally deciding to do something non-
driving related such as using the entertainment system might be considered more culpable than distraction due 
to unintentional behavior (e.g., the driver’s mind wandering off)35–37.

Taken together, there seems to be a mismatch between the public’s attribution of blame and what the human 
factors literature deems as blameworthy. Specifically, a gap exists between what is required from the driver when 
using an automated vehicle and what can be reasonable expected from them, posing a challenge to attribute 
culpability when a crash  occurs10. In this paper we investigate culpability by assessing how information about a 
driver’s ability affects the public’s attribution of blame to the driver, vehicle, and manufacturer in situations where 
a crash occurred after a partially automated vehicle required the driver to suddenly take over control. We also 
investigate the reasons provided by participants for attributing blame and whether we can see a shift in blame 
attribution among the actors for different circumstances.

We used an online vignette study in which we asked our participants (N=250) to indicate to what extent the 
driver, the automated vehicle, and the vehicle’s manufacturer is considered responsible for a crash in different 
scenarios. We asked participants broadly on responsibility attribution to incorporate participants’ perspectives 
on legal, causal, moral, and role  responsibility11 and asked participants to provide a textual motivation to their 
answers. The hypothetical scenarios contain realistic situations and descriptions of human driver behaviors based 
on empirical observations from human factors literature in real-world partially-automated driving (e.g.,17,24). 
The scenarios contain descriptions of the driver’s level of distraction that result from supervising the vehicle 
for a prolonged period to manipulate the perceived driver’s ability (following the presented human factors 
 literature17,22,24,29), see Table 1 and Fig. 1. Drivers were either not distracted, distracted for a short period (in 
the order of seconds), or distracted for a long period (order of minutes). For the distracted scenarios, we varied 
whether the driver’s distraction was caused by intentionally engaging in a secondary task (e.g., using the vehicle’s 

Table 1.  Scenario descriptions. The automated vehicle was performing all the driving-related task successfully 
for an extended period of time before the crash occurred in each scenario. The driver’s behavior is varied per 
scenario. The driver and automated vehicle encounters an unknown situation and requests the driver to take 
over immediately. The driver fails to take over control and a crash occurs. Figure 1 shows two examples of the 
vignette visuals.

Distraction level Source of distraction Driver behavior description

1 Not distracted – “The driver stays focused on supervising the vehicle. As a result, the driver is paying full attention to the vehicle and the road”

2 Short distraction Intentional “The driver decides to look for a new podcast on the vehicle’s entertainment system. As a result, the driver is not paying attention 
to the vehicle and the road for a few seconds”

3 Short distraction Unintentional “The driver’s mind wanders off a bit on what to have for dinner. As a result, the driver is not actively paying attention to the 
vehicle and the road for a few seconds”

4 Long distraction Intentional “The driver decides to read news articles on the vehicle’s entertainment system. As a result, the driver is not paying attention to 
the vehicle and the road for a few minutes”

5 Long distraction Unintentional “The driver’s mind completely wanders off to day-dream about holiday plans. As a result, the driver is not actively paying atten-
tion to the vehicle and the road for a few seconds”
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entertainment system) or due to their minds wandering off unintentionally (e.g., thinking about dinner). In all 
scenarios, the automated vehicle is initially performing all the driving tasks for a long period of time success-
fully until a time-critical road situation occurs and the driver is requested to take over. The driver fails to take 
control and a crash occurs. Table 1 summarizes the scenario descriptions and the full vignettes can be found in 
the Supplementary methods.

Participants were randomly assigned to only one of the five scenarios resulting in fifty participants per sce-
nario. We asked participants to rate the driver’s level of situation awareness and ability to intervene on 100-point 
scales to check whether the distraction descriptions resulted in the hypothesized impact on situation awareness 
and subsequently ability to take control and avoid the crash. Participants then assigned responsibility to the three 
involved actors: the driver, the automated vehicle, and the vehicle’s manufacturer on a 100-point scale. These 
ratings were analyzed with a moderated mediation regression  model38, with awareness and control ability as 
mediators and actor and source of distraction as moderators (see Fig. 6). Participants’ motivations were analyzed 
through thematic analysis (see Methods for more information).

Results
The responsibility attributions per scenario (see Table 1) are shown in Fig. 2 and the driver awareness and abil-
ity are shown in Fig. 3. The model coefficients for the main effects are summarized in Table 2; the full model 
including interaction term coefficients can be found in the Supplementary table 1 and Supplementary figure 1.

The distraction level has a significant impact on the responsibility attributed to the driver. Participants 
blame the distracted driver (with short and long duration grouped) more compared to the not-distracted driver 
( c1 = 10.19 , 99% CI 0.33 to 21.50). The duration of distraction (comparing short versus long distraction duration) 

Figure 1.  Two example vignette visuals of (left) an intentionally distracted driver engaging with the vehicle’s 
entertainment center and (right) an unintentionally distracted driver whose mind is wandering. See the 
Supplementary methods for all vignettes.

Figure 2.  Responsibility attributed to each actor by the participants for all factor levels (distraction and cause 
of distraction). Data are visualized using violin plots, box plots, and individual data points. Cause of distraction 
was only varied within the distracted factor levels.
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has no significant effect on the driver’s attributed responsibility ( c2 = 3.78 , 99% CI − 0.50 to 7.60). Responsibility 
attribution did not depend on the source of distraction ( b9 = −4.36 , 99% CI − 10.26 to 1.94). Hence, the partici-
pants blamed the driver similarly regardless of whether the driver was distracted due to intentionally engaging 
in another task or unintentionally by their mind wandering off.

The overall responsibility attributed to the automated vehicle and its manufacturer was significantly lower 
compared to the driver ( b2 = −65.4 CI − 80.0 to − 50.7 and b3 = −55.61 , CI − 70.41, − 36.22, respectively). 
Interestingly, although the automated vehicle is not a human actor, participants still blamed it similarly com-
pared to its manufacturer. In addition, the level of driver distraction and source of distraction did not moderate 
how participants attributed responsibility to the actors. In other words, we observed no shift in blame from the 
driver to the other actors, neither when the driver was more distracted, nor when the driver’s distraction was 
unintentional.

Participants rated the situation awareness of a distracted driver lower compared to a not-distracted driver 
( a11 = −30.9 , 99% CI − 34.9 to − 25.8). A driver who is distracted for a longer period is also perceived to be 
less aware compared to a driver who is distracted for a short time ( a21 = −3.92 , 99% CI − 6.53 to − 1.19), see 
Fig. 3. Situation awareness is positively correlated to perceived ability to take control ( d = 0.45 , 99% CI 0.35 to 
0.55). These results reflect that participants understand that distraction harms situation awareness, which in turn 
impacts the driver’s ability to take over control.

Although the distracted drivers were perceived to have less situation awareness and subsequent lower ability 
to take control, we found no significant impact on their attributed responsibility ( b1 = −0.01 , 99% CI − 0.2 to 
0.17 and b2 = 0.07 , 99% CI − 0.07 to 0.23, respectively). Furthermore, the cause of distraction did not moderate 
the effect of the ability to take control on the driver’s blame ( b11 = 0.04 , 99% CI − 0.09 to 0.16). This indicates 
that even if the decrease in the ability to take control is due to an unintentional distraction, the driver is blamed 
to a similar level compared to an intentionally distracted driver. Lastly, we found no interaction between ability 

Figure 3.  Driver’s situation awareness and ability to take control as perceived by the participants per distraction 
level and source of distraction. Data are visualized using box and violin plots.

Table 2.  Moderated mediation regression coefficient estimates and the 99% confidence intervals in brackets 
(bold represent significant effects) for the conceptual model in Fig. 6. Awareness, ability, and cause refer to 
situation awareness, ability to take control and successfully avoid the crash, and cause of the distraction, 
respectively. Note that we omit the (not-significant) interaction terms in this table; please see Supplementary 
table 1 for all model coefficients.

Outcome

Duration Awareness Ability Actor Cause

Intersect

Not dist.–
dist. Short–long

M1 M2

Driver–AV
Driver–
manuf.

CD1 D2 A1 A2

Awareness
a11 = −30.9 a21 = −3.9 iM1

= 49.9

(− 34.9, 
− 25.8) (− 6.5, − 1.2) (47.2, 52.5)

Ability
a12 = −9.10 a22 = −2.41 d = 0.45 iM2

= 30.0

(− 14.8, 
− 3.8) (− 5.11, 0.25) (0.35, 0.55) (24.3, 36.2)

Responsibility
c1 = 10.2 c2 = 3.78 b1 = −0.01 b2 = 0.07 b3 = −65.4 b4 = −55.6 b9 = −4.36 iR = 78.4

(0.33, 21.5) (− 0.50 7.60) (− 0.20, 0.17) (− 0.07, 0.23) (− 80.0, 
− 50.7)

(− 70.4, 
− 36.2) (− 10.2, 1.9) (65.6, 89.2)
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and the type of actor on responsibility attribution ( b7 = −0.11 and b8 = −0.09 ), suggesting that blame was not 
shifted to other actors when the driver was less able to intervene.

We analyzed participants’ motivations for their responsibility attribution through a thematic analysis. Two 
independent raters identified four themes, 17 codes (or labeled topics), and 52 sub-codes in the 238 participant 
comments without knowledge of the participants’ responsibility ratings. The themes sort the codes into argu-
ments of explaining responsibility attribution toward the driver, the automated vehicle, the manufacturer, and 
the situation. Supplementary figures 14–17 show the codes, sub-codes, and a quote per sub-code for each theme. 
Grouping the participants’ responsibility ratings with the code corresponding by code revealed that responsibility 
attribution to the driver and manufacturer seems to be consistent with their reasoning, see Fig. 4. Participants 
who detail shortcomings or expectations of the driver attributed more responsibility to the driver and less to 
the manufacturer, while those who point out shortcomings of the manufacturer (including aspects related to 
the vehicle’s design) attributed less responsibility to the driver and more to the manufacturer. Participants that 
pointed out that the vehicle is a machine or a technical artifact and thus should not be blamed for any outcomes, 
in general, attributed less responsibility to both the driver and the manufacturer.

Lastly, three main observations—(i) a distracted driver is perceived to be less able to take control and avoid 
the crash, (ii) the driver is held primarily responsible, and (iii) no blame is shifted to other actors—reveal a 
mismatch between participants’ responsibility attribution and whether this attribution is reasonable given the 
driver’s ability to take control of the automated vehicle and avoid the crash. The data seem to be at odds with a 
normative balance between ability and responsibility as argued by Flemisch et al.22. To illustrate this mismatch, 
Fig. 5 shows the quantitative responses of attributed responsibility versus the perceived ability combined with 
a qualitative representation of the normative balance between responsibility and ability. We only show the dis-
tracted conditions and differentiate between the intentional and unintentional causes of distraction. The identity 
line illustrates a qualitative normative balance between ability and attributed responsibility proposed  by22; lower 
control ability should result in lower attributed responsibility. These results suggest that the public’s perception 
seems to ‘fall in a culpability gap’10, in particular when the driver’s ability to take control is low, which we will 
discuss in more detail below.

Discussion
This study found that people who read about a crash involving a partially automated vehicle primarily blame 
the driver of the automated vehicle when a crash occurs, even when the driver’s ability to avoid the crash has 
deteriorated. Other studies also found that drivers, not the vehicle or its manufacturer, are primarily blamed 
in partially automated vehicles in which both driver and automated vehicle fail to avoid the  crash6–8,12. What is 
surprising in the current study is that the participants acknowledged that the driver’s situation awareness and 
ability to intervene were impacted, yet this did not change their responsibility attribution as we expected. Our 
normative assumption was that drivers’ ability and responsibility would be balanced. This is particularly interest-
ing for the cases when the impacted ability was due to an unintentional cause (mind wandering).

Figure 4.  Median responsibility attribution to the driver and the manufacturer per code identified in the 
thematic analysis of the participants’ reasoning. Codes that were mentioned at least 10 times are visualized 
here for clarity (see Supplementary figures 17 and 18 for the other codes). The number of times the argument 
was made is included in brackets. The lines indicate 95% confidence interval of the median responsibility 
attributions to the driver and manufacturer for each code.
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The ability to control an outcome is an important condition for culpability, which assesses whether someone’s 
behavior deserves to be blamed or considered responsible for a  crash39,40. Indeed, studies found that when a driver 
has no ability to override a fully autonomous vehicle—e.g., no switch, button, steering wheel, or pedals—the 
general public shifts responsibility for a crash to the vehicle or its manufacturer instead of the driver compared 
to when a driver was manually driving the  car7,8,12,41. However, when the driver has the means to override the 
automation, which is likely to remain in vehicles with increasing levels of automation for the foreseeable future, 
both the current study and another  study8 found that drivers are held the most responsibility similar to when 
manually driving the vehicle. Uniquely, we found no effect of impacted ability on responsibility attribution. Only 
a few participants refer to the impacted driver ability by mentioning the limitations in human drivers, such as 
easily getting distracted and limited reaction speed; these participants attribute less responsibility to the driver.

The fact that drivers are mostly blamed could be due to the ‘foreseeability’ involved in partially automated 
vehicles—the driver should anticipate that the automation could  fail8,36. Most of our participants’ arguments 
reflect this notion: among others, participants expected the driver to supervise and not get distracted, as well as 
that the driver made a voluntary choice and commitment when buying or driving a partially automated vehicle. 
Other arguments refer to the manual of the automated vehicle; the drivers should be aware of what is expected 
of them. Combined with the responsibility and ability ratings, this suggests that the majority of participants base 
their opinion using normative arguments against the driver: the driver committed to using an automated vehicle, 
and they failed to use it properly (e.g., they did not supervise the vehicle as they were supposed to).

Indeed, the public expects drivers to remain vigilant and supervise the automated vehicle at all times, yet we 
know this is an unreasonable demand for a human driver; even highly-trained pilots struggle with supervising 
autopilot systems for prolonged  periods13,14. Driving automation has consistently been shown to impact driver 
vigilance and the ability to successfully take control, in particular in time-critical scenarios, which can happen 
without the driver’s awareness (e.g.,24–27,29). Following Flemisch et al.22, we argue that the responsibility attributed 
to a driver should be consistent with their ability to control the automated vehicle. If that ability is impacted by 
using the automation, responsibility should shift from the driver to the automation (or by proxy, its manufac-
turer), which raises the question whether our participants’ ratings are reasonable. Note that we only described 
typical behavior that occurs when driving with automated vehicles; we did not provide the participants with the 
aforementioned information about the known challenges of driving automation. It is an open question whether 
this will lead to shift in responsibility attribution.

The imbalance between these human-factor-related challenges with automation regarding driver ability and 
the participant’s responsibility attributions reveal a culpability  gap10 (visualized in Fig. 5). In this culpability gap, 
responsibility is not reasonably distributed over the involved human agents; the driver receives most blame, yet 
this may be unreasonable given their impacted ability to change the outcome. The question is then what steps are 
needed for a reasonable distribution of responsibility to close this gap. The findings of this work have implications. 
In terms of public discourse, based on the participants’ arguments, it seems that the majority of our participants 
do not consider the aforementioned human-centered challenges of automated driving in their responsibility 
attribution. This could be an indication that humans are not aware of these effects of automation, which could 
lead to ‘unwitting omissions’42. Drivers are unaware of the impact of automated driving on their ability to per-
form the required driving tasks should they need to, yet they are still considered to be responsible by their peers. 

Figure 5.  Attributed responsibility versus driver ability to take control and avoid the crash. The distribution of 
the responses for driver ability and corresponding attributed responsibility per participant are visualized using 
a kernel density estimate plot (Gaussian kernels, contour threshold at 0.25; e.g. 75% of the probability mass is 
indicated in the shaded areas) for the intentional and unintentional factor levels (short and long distraction 
factor levels pooled). The shaded areas represent 75% of the data probability mass per group. The black identity 
line is a qualitative representation of the normative expected attribution of responsibility given the driver’s 
ability to take control; attributed responsibility should be equal or lower to the driver’s control  ability22.
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Providing public information about the driver-centered challenges associated with automated driving could be 
helpful, as well as driver training, but it remains to be seen whether this changes public responsibility attribution.

The public’s opinion on who is held responsible is important to consider, as public opinion on these matters 
can be expected to shape laws regarding automated  vehicles4,6,43. Participants referred to the manual of use, 
indicating that participants agree with the manufacturer’s terms of use of the vehicle, most likely for liability 
 reasons21. It is unclear whether these participants believe that these expectations of the manufacturer are rea-
sonable. However, legal scholars argue that the state of the driver should be taken into account when evaluating 
liability after an accident with an automated vehicle, advocating that manufacturers should also bear part of the 
liability (e.g.,44). Similarly, regulatory commissions in the United Kingdom are recommending that automated 
vehicle users should not face regulatory sanctions when something goes  wrong45.

It is an open question how public awareness and blame attribution may change when partially automated 
driving becomes more prevalent in our streets. Of our 250 participants, 137 never and 64 participants rarely 
drive a vehicle with partial automation (see Supplementary figure 13), showing that only a small portion of 
the participants have regular experience with partial driving automation. It is likely that with more exposure 
to partially automated vehicles, both when driving or participating in traffic with other automated vehicles, 
opinions may change.

This study has potential limitations. First, the wording of the scenarios can impact the participants’ responses. 
Although the descriptions were set up to be objective and accurate representations of the scenario, bias may still 
be present. To minimize bias, we used the terminology of user manuals of partially automated vehicles, accident 
reports involving partially automated vehicles, and human factors literature to create realistic and comprehensible 
scenarios. Essential concepts, such as ‘supervision’ or ‘taking over control’, are explained in more detail following 
descriptions in accident  reports1,2 and wording used by manufacturers of partially automated vehicles in user 
 manuals21,46,47. In addition, we acknowledge that describing underlying driver behavior (distraction) without 
explicitly stating its likely behavioral outcome (reduced ability to intervene) leaves room for interpretation. 
Similar studies described more explicit actions (e.g., “[the driver] decided to not intervene”6) or outcomes (e.g., 
“the semi-autonomous car hits the pedestrian”8), not the underlying behavior leading up to them (i.e., distrac-
tion in our case). We argue that providing information on the underlying behavior, which we based on human 
factors literature (e.g.,24,26,28,29), is essential and provides a more thorough account of the situation. Despite the 
potential issues in the wording of the descriptions, the ratings of awareness and ability, as well as the arguments 
for the responsibility rating, suggested that participants generally understood the scenarios. However, based on 
the ratings and arguments, it is an open question whether intentional and unintentional cause of the distraction 
is appropriately taken into consideration (see Supplementary table 2; participants used similar arguments for 
both intentional and unintentional scenarios).

Although we described potential behavior that has been observed in the real-world driving and situations 
that have occurred on the road, the participants know they are reading about hypothetical scenarios. It may 
reduce the psychological realism of the study, causing the responses to be different from what they would after 
reading about an actual event. Moreover, judgments do likely not occur using information solely provided in 
our scenarios but will be shaped by many factors beyond our control. People may have overly positive views of 
automated vehicle capabilities based on promises made by manufacturers, reports of accidents, or opinion pieces. 
These will influence the participants’ judgments.

It is a topic of debate whether or not failing to monitor automation and intervene when necessary is a typical 
‘human error’ that should be remedied by  policies21,44,48,49, more training and public education, and increased 
automation; or whether it is a symptom of inappropriate human-automation interaction design that should be 
remedied by human-centered design methodologies, for example through shared  control23. Either way, we believe 
that such failures would still occur and a reasonable approach for responsibility attribution in such cases should 
be considered. We argue that the well-understood limitations in human abilities have to be accepted as they are, 
and should be used to realize appropriate attribution of responsibility to the driver, or the manufacturer of the 
vehicle (or by proxy the developers of the automated driving algorithms that control it) in case of accidents, by 
the general public as well as other stakeholders.

Methods
We ask our participants (N=250) in an online vignette study to attribute responsibility in a scenario in which 
a human driver and their partially automated vehicle were involved in a crash. We assess the effect of driver 
distraction (denoted by D), source of distraction (C) on the responsibility R attributed to each actor (A). Partici-
pants also rated their perception of the driver’s situation awareness ( M1 ) and driver ability to take over control 
and avoid the crash ( M2 ). Figure 6 shows the conceptual model of the relations between these independent 
and dependent variables. We hypothesize that distraction will impact the driver’s situation awareness, which in 
turn affects the driver’s ability to take control and successfully intervene. The impact of driver ability on their 
attributed responsibility is analyzed.

Participants were recruited through the online crowd-worker platform Prolific to assure high-quality  data50. 
We estimated the minimum required sample size to be 204 participants using an effect size f 2 = .1 (between 
small and medium effect), α = .05 , power (1− β) = .95 and ten predictors (each predictor path, see Fig. 6) 
of which five are measured. Accommodating for expected attrition (i.e., failed attention checks) and available 
funds, we decided a-priori to recruit a total of 250 participants. Participants were paid for their time according 
to the platform’s norms. Participants were uniformly randomly assigned to one of the five scenarios. Participants 
could only take part in the study if they had a valid driver’s license. Twelve participants failed the attention check 
questions and were excluded from further analysis. The remaining participants are aged 18–76 years (median of 
25 years) and 39% are female. After the main experiment, participants were asked about their general attitude 
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toward driving automation, including trust in driving automation, and technology adoption to check whether 
attitudes toward driving automation could influence the results (see Supplementary figure 13). The experiment 
was carried out in accordance with the university’s guidelines and regulations. The Human Research Ethical 
Committee of Delft University of Technology approved the research under number 1277. We obtained informed 
consent from all participants.

Scenarios. The scenarios are hypothetical, but are designed to contain realistic situations and descriptions 
of driver behaviors in real-world automated driving in human-factors  literature22,24–26,28,29 and automated vehi-
cle accident  reports1–3. We describe the underlying behavior (distraction and cause of the distraction) that are 
shown to impact situation awareness and subsequent ability to take control rather than explicitly stating these 
factors (e.g., the driver was able to take control) to avoid biasing the participants. To check whether the descrip-
tions of driver behavior were interpreted as intended, we asked participants to rate the degree of situation aware-
ness and degree of ability based on the descriptions prior to attributing responsibility.

We created the scenarios to compare responsibility attribution for different levels of driver distraction: not 
distracted, short distracted (order of seconds), and long distracted (order of minutes). Loss of situation awareness 
can occur even over short periods of reduced vigilance i.e., when briefly  distracted29, which we operationalized 
in the short distraction scenarios. The long distraction scenarios are used to include distractions that are typical 
when over-relying on automation, which is detrimental for vigilance and loss of situation  awareness28,29. The cause 
of distraction was either intentional (actively engaging with the vehicles entertainment system) or unintentional 
(the driver’s mind wandering off). This resulted in five scenarios that are listed in Table 1. See the Supplementary 
methods for the full scenario descriptions.

Metrics. We asked our participants to attribute responsibility to each of following three actors (denoted by 
A): the human driver (“Robyn”), the automated vehicle (“Robocar”), and the vehicle’s manufacturer (“Manufac-
turer”). We included the automated vehicle as an actor to explore the extent to which the public views automated 
vehicles as moral agents, following previous  studies7,8. We measured attributed perceived responsibility for each 
actor (driver, automated vehicle, and manufacturer) on a 100-point scale ranging from ‘totally not’ (0) to ‘totally’ 
(100) by asking “To what extent is each actor responsible for the accident?”. The perceived extent of the driver’s 
situation awareness was assessed through the question “To what extent would Robyn be aware of the situa-
tion?” on a 100-point scale from ‘totally not aware’ to ‘totally aware’. Participants then gave their perception of 
the driver’s ability to take control (“Can Robyn take control to successfully deal with the situation?”), again on 
a 100-point scale from ‘totally not’ to ‘totally’. At the end of the questionnaire participants filled out questions 
regarding driving frequency, experience with driving automation, and attention checks whether they read the 
scenario correctly.

Statistical analysis. The data was analyzed using a moderated mediation model shown in Fig. 6, in which 
situation awareness M1 and ability M2 are mediators, and cause of distraction C and actors A are  moderators38,51,52. 
Because both distraction duration D and actor A are multi-categorical variables with three factor levels, we 
defined two contrasts per  factor38, see Table 3. Contrast D1 compares the not-distracted driver scenarios with the 
distracted driver scenarios (combining short and long distraction and pooling cause of distraction). Contrast D2 
compares the short and long distraction levels (cause is pooled). The actor groups are coded with respect to the 
human driver, resulting in two groups comparing human driver with automated vehicle (group A1 ) and human 
driver with manufacturer (group A2).

The conceptual model in Fig. 6 translates into three linear equations:

(1)M1 = iM1
+ a11D1 + a21D2 + eM1

(2)M2 = iM2
+ a12D1 + a22D2 + dM1 + eM2

Figure 6.  The conceptual model; the corresponding statistical model is shown in Supplementary Fig. 1.
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The model coefficients for M1 and M2 are estimated using ordinary least-squares. Because R depends on between- 
and within-participant factors, R is a linear-mixed effect model that is fitted using a maximum log-likelihood 
method. In addition to estimating the model coefficients, we also calculated the indirect effects from D to R 
through M1 and M2 by multiplying the coefficients corresponding to the indirect path. The moderation effects 
of A and C on the indirect effects are analyzed using the approach outlined  in52. We use strict 99% bootstrap 
confidence intervals using 10,000 samples for all coefficients and indirect effects; coefficients with confidence 
intervals that do not include zero are statistically  significant51. We perform the analysis in two steps. First we 
analyze the model without source of distraction, including all distraction contrasts and actor groups. We then 
analyze the effect of source of distraction on perceived responsibility only including the distracted conditions 
(i.e., only considering contrast D2).

Thematic analysis. Participants’ answers to an open-ended question asking to explain the reasoning for 
their responsibility attribution were analyzed by two independent raters following the thematic analysis method 
outlined by Braun and  Clarke53. Codes and subcodes were generated systematically by the independent raters 
and then collated into thematic maps and applied to the entire dataset to generate frequencies. The codes, sub-
codes, and thematic maps were finalized only after unanimous agreement was reached in a discussion between 
the raters and the first three authors.

Data availability
Data for all figures and tables are available at https:// doi. org/ 10. 4121/ 16652 056. v1.

Code availability
The software used for analysis and generating the figures is available at https:// doi. org/ 10. 4121/ 16652 056. v1
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