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CleanUMamba: A Compact Mamba Network for
Speech Denoising using Channel Pruning

Sjoerd Groot, Qinyu Chen, Jan C. van Gemert, Chang Gao

Abstract—This paper presents CleanUMamba, a time-domain
neural network architecture designed for real-time causal audio
denoising directly applied to raw waveforms. CleanUMamba
leverages a U-Net encoder-decoder structure, incorporating the
Mamba state-space model in the bottleneck layer. By replacing
conventional self-attention and LSTM mechanisms with Mamba,
our architecture offers superior denoising performance while
maintaining a constant memory footprint, enabling streaming
operation. To enhance efficiency, we applied structured channel
pruning, achieving an 8X reduction in model size without com-
promising audio quality. Our model demonstrates strong results
in the Interspeech 2020 Deep Noise Suppression challenge. Specif-
ically, CleanUMamba achieves a PESQ score of 2.42 and STOI
of 95.1% with only 442K parameters and 468M MACs, matching
or outperforming larger models in real-time performance. Code
will be available at: https://github.com/lab-emi/CleanUMamba

Index Terms—deep learning, speech enhancement, audio de-
noising, state-space model, convolutional neural network

I. INTRODUCTION

Audio denoising, or speech enhancement, removes back-
ground noise from speech recordings while preserving quality
and intelligibility. This technology is important for applica-
tions such as hearing aids, audio calls, and speech recognition
systems. Traditional methods like spectral subtraction [1]
and Wiener filtering [2] struggle in dynamic environments,
especially when noise overlaps with speech.

Deep neural networks (DNNs) have significantly advanced
this field in recent years. Various architectures, including con-
volutional neural networks (CNNs) [3]–[6], recurrent neural
networks (RNNs) [7]–[9], and transformers [10], [11], have
been used to enhance speech. Although transformers achieve
high-quality results, they are computationally expensive at
longer input sequences.

The Mamba state space model [12] offers a promising
solution for sequence modeling and time series prediction.
Mamba enables parallel computation during training and re-
current processing during inference without sequence length
constraints, making it a strong candidate for audio denoising.

In this work, we introduce CleanUMamba, a neural net-
work designed for real-time audio denoising that processes
raw waveforms. CleanUMamba adopts the U-Net encoder-
decoder architecture from [10], replacing self-attention with
Mamba state-space blocks, which enables a more compact
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Fig. 1: CleanUMamba architecture consisting of convolu-
tional encoder-decoder with 3 sequential Mamba blocks in the
bottleneck.

model with reduced algorithmic latency. Additionally, we
implement structured pruning to reduce the model size while
maintaining high performance.

Our main contributions are:
1) A novel Mamba-based architecture for time-domain

speech enhancement with a 12 ms real-time algorithmic
latency.

2) A comparative analysis of Mamba, self-attention,
LSTM, and Mamba-S4 for audio denoising.

3) An efficient, structured pruning strategy using periodic
calibration of GroupTaylor importance [13].

II. RELATED WORKS

Recent research has explored the application of
Mamba to audio denoising, with several concurrent
works emerging. Many of these studies focus on non-
causal speech enhancement for offline settings, where
the entire audio track is available for processing.
Notable works include SPMamba [14], DPMamba [15],
Mamba-TasNet [16], and SEMamba [17], which build
upon TF-Gridnet [11], SlowFast [18], Dual-path
RNN [19], Conv-TasNet [4], and MP-SENet [20]
respectively. These approaches incorporate bidirectional
Mamba implementations for efficient global audio processing.
TRAMBA [21] enhances a time domain U-Net Temporal
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Fig. 2: Pruning Pipeline

TABLE I: Multi-Head Attention (MHA), LSTM, Mamba, and
Mamba S4 compared in the same size unit model and training
conditions on the DNS no-reverb test set.

Model Params MACs PESQ
(WB)

PESQ
(NB)

STOI
(%)

pred.
CSIG

pred.
CBAK

pred.
COVRL

Mamba 442K 468M 2.42 2.95 95.1 3.98 3.25 3.21
Mamba S4 451K 468M 2.36 2.90 94.9 3.93 3.20 3.15
MHA 443K 470M 2.37 2.92 94.9 3.94 3.20 3.16
LSTM 443K 463M 2.32 2.88 94.7 3.90 3.19 3.12

FiLM [22] by integrating Mamba in the bottleneck and
using self-attention for feature-wise linear modulation.
This network is applied to audio super-resolution and
reconstruction from bone-conducting microphone and
accelerometer data. For long-term streaming applications,
oSpatialNet-Mamba [23] extends SpatialNet [24] by
replacing self-attention with masked self-attention, Retention,
or Mamba. Operating in the time-frequency domain with 2-4
second window sizes, Mamba outperforms other variations.
Zhang et al. [25] conduct an ablation study comparing
different backbones, including Mamba and two bidirectional
Mamba implementations, in the time-frequency domain.

In contrast to these works, our research focuses on real-time
causal speech enhancement in the time domain. By applying
Mamba to the U-Net architecture, we reduce computational
load compared to DPMamba and Mamba-Tasnet through pro-
cessing in a lower-resolution latent space.

III. PROPOSED METHOD

A. Problem Definition

Audio denoising aims to recover the clean speech signal
x ∈ RT from the noisy signal y = x+ v, where v represents
zero-mean noise uncorrelated with x. A causal model for
denoising reconstructs the clean speech x̂t = f(y1:t) ≈ xt

using noisy samples up to time t. In real-world applications, a
slight look-ahead, such as a delay of 5-6 ms for hearing aids
[26], [27], or up to 200 ms for video calls [28], is acceptable.
This work uses 16kHz audio with CleanUMamba, achieving
an algorithmic delay of 48 ms and 12 ms for 8 and 6 encoder
layers, respectively.

B. Network Architecture

Figure 1 shows the architecture of CleanUMamba, con-
sisting of an encoder-decoder structure with E layers. Each
encoder layer employs a 1D convolution with a kernel size
of 4 and stride of 2, followed by a ReLU activation and a
1x1 convolution with a GLU activation. These layers halve the

temporal resolution and include bypass connections to their
respective decoder layers. Decoder layers reverse this process
using 1D transposed convolutions, doubling the temporal res-
olution. The channels per layer start at H = 64 and increase
up to a maximum of 768.

In the bottleneck, three Mamba blocks perform sequence
modeling on the latent representation, which has a model
dimension of D = 512. Each Mamba block is preceded by
layer normalization and a residual connection, while the inner
dimension is set to I = 2048, corresponding to CleanUNet’s
fully connected layer output [10]. The state-space model uses
S = 64 channels.

C. Pruning Pipeline
Pruning aims to minimize the loss increase per pruned

parameter. Let L(θ) represent the loss function of the network
with parameters θ, and ∆L denote the change in loss due to
pruning. The objective is:

min
S

∆L(S)
|S|

(1)

where S is the set of parameters to prune, and |S| is its size.
Since exact loss sampling for every group is computationally
infeasible, the Group Taylor importance metric [13] is used. It
estimates the importance of parameter sets with both absolute
and squared gradients:

IS =
∑
s∈S

|gsws| (2)

IS =
∑
s∈S

(gsws)
2 (3)

IS =
∑
s∈S

|ws| (4)

Here, gs and ws represent the gradient and weight for
group s. Gradients are accumulated via backpropagation.
The pruning pipeline (Fig. 2) follows a standard train-prune-
finetune approach [29], accumulating micro-batch gradients
[30]. Pruning targets a percentage of groups, selecting those
with the lowest Group Taylor importance, while ensuring
compatibility with Mamba’s causal convolutions by pruning
in multiples of 8 channels.

Though effective, the Taylor importance metric may over-
or under-penalize groups of varying sizes or depths. To address
this, periodic calibration is applied by pruning 20% of groups
in a layer, measuring the loss increase, and adjusting the
global metric accordingly. An exponential moving average
filter smooths out any noise, preventing a single outlier from
disproportionately affecting the pruning process.

IV. EXPERIMENTAL SETUP

A. Evaluation Metrics
We evaluated the model using several objective metrics:

Perceptual Evaluation of Speech Quality (PESQ) [31], Short-
Time Objective Intelligibility (STOI) [32], and the Mean
Option Score (MOS) for signal distortion (CSIG), background
noise intrusiveness (CBAK), and overall quality (COVL) [33].
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(a) Model parameter count vs STOI

(b) Model MACs vs STOI

Fig. 3: Comparison of importance metrics for pruning
CleanUMamba without fine-tuning.

B. Dataset

The experiments used the Interspeech 2020 Deep Noise
Suppression (DNS) dataset [34]. This dataset includes speech
from 2150 speakers and 65,000 noise clips, yielding 500 hours
of training data, with signal-to-noise ratios (SNR) between -5
and 25 dB across 31 levels. During training, random 10-second
crops were selected.

C. Training Setup

We employed a loss function combining L1 loss and multi-
resolution short-time Fourier transform (STFT) loss [35]:

L(x, x̂) = ∥x− x̂∥+ STFT (x, x̂) (5)

STFT (x, x̂) =

m∑
i=1

(
∥s(x; θi)− s(x̂; θi)∥F

∥s(x; θi)∥F
+

1

T
∥ log s(x; θi)

s(x̂; θi)

)
(6)

STFT loss was calculated for FFT bins {512, 1024, 2048},
hop sizes {50, 120, 240}, and window lengths
{240, 600, 1200}. Both full-band and high-frequency
(4kHz-8kHz) STFT losses were tested [10].

The network was trained with the ADAM optimizer (learn-
ing rate 0.0002, β1 = 0.9, β2 = 0.999) using a linear warm-up
for the first 5% of training followed by cosine decay. PyTorch
AMP was applied for mixed-precision training.

Fig. 4: Pruning CleanUMamba with 6 and 8 encoder layers
with fine-tuning: Model parameter count vs STOI

A Wiener filter baseline [36], implemented with the Py-
roomacoustics library [37], used an LPC order of 10, window
size of 256, 2 iterations, smoothing alpha of 0.5, and threshold
set for 16% noise classification. The output was mixed with
50% unfiltered audio to optimize quality.

V. EXPERIMENTAL RESULTS

A. Ablation Study of Mamba

In Table I, we compare the performance of Mamba in the
bottleneck layer against Multi-head Attention, Mamba S4, and
LSTM. All models use the same encoder-decoder architecture
with E = 8 layers, starting with H = 32 channels in the first
layer and H = 64 channels in subsequent layers. Each model
employs a bottleneck with a model dimension of D = 64.

For the multi-head attention variant, 4 heads were used, each
with a dimension of 16, followed by an MLP expanding to
d inner = 128, in line with the architecture in [10], but with
fewer parameters. The Mamba model uses an inner dimension
of d inner = 128 and a state size S = 16, while Mamba S4
uses the same configuration but replaces the selective state
space with the S4 state space [39]. The LSTM model consists
of 3 layers with a hidden size of 64.

All models were trained on the DNS dataset for 1M
iterations with a batch size of 16. The ADAMW optimizer was
employed, with a weight decay of 0.1, using the full STFT
loss. Autocast was disabled for Mamba S4 due to training
errors.

B. CleanUMamba

In Table II, we present the results of training
CleanUMamba with the same procedure as CleanUNet,
using N = 3 bottleneck layers and encoder depths of
E = 6 and E = 8. When trained with high-band loss,
CleanUMamba outperforms both the same-size and
larger CleanUNet models. However, under full-band
loss, CleanUMamba slightly underperforms compared to
CleanUNet.

The model with E = 6 performs marginally worse than the
E = 8 version but has fewer than 75% of the parameters.
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TABLE II: Evaluation results for denoising on the DNS no-reverb testset.

Model Params MACs look
ahead

PESQ
(WB)

PESQ
(NB)

STOI
(%)

pred.
CSIG

pred.
CBAK

pred.
COVRL

raw noisy waveform - - - 1.585 2.164 91.6 3.091 2.539 2.304
wiener filter - - 32ms 1.645 2.237 91.6 3.099 2.558 2.336
DEMUCS [7] 33.53M - 40ms 2.659 3.229 96.6 4.145 3.627 3.419
FullSubNet [38] 5.6 M - 32ms 2.777 3.305 96.1 - - -
CleanUNet N5 full [10] 46.07M 13.66G 48ms 3.146 3.551 97.7 4.619 3.892 3.932
CleanUNet N5 high [10] 46.07M 13.66G 48ms 3.011 3.460 97.3 4.513 3.812 3.800
CleanUNet N3 full [10] 39.77M 13.18G 48ms 3.128 3.539 97.6 - - -
CleanUNet N3 high [10] 39.77M 13.18G 48ms 3.006 3.453 97.3 - - -
CleanUMamba E8 full (ours) 41.37M 13.38G 48ms 3.067 3.507 97.4 4.502 3.870 3.829
CleanUMamba E8 high (ours) 41.37M 13.38G 48ms 3.017 3.471 97.2 4.456 3.840 3.775

Pruned CleanUMamba E8 high (ours)

14.90M 6.08G

48ms

2.910 3.397 97.0 4.393 3.742 3.682
6.00M 3.87G 2.888 3.359 96.9 4.380 3.711 3.661
3.22M 2.09G 2.746 3.253 96.4 4.272 3.599 3.530
1.94M 1.97G 2.707 3.222 96.3 4.244 3.570 3.495
0.99M 1.29G 2.558 3.102 95.8 4.125 3.466 3.356
492K 807M 2.426 2.980 95.3 3.996 3.351 3.219
201K 403M 2.189 2.745 94.2 3.784 3.163 2.986

CleanUMamba E6 high (ours) 27.21M 13.48G 12ms 2.935 3.400 97.1 4.415 3.785 3.710

Pruned CleanUMamba E6 high (ours)

13.50M 7.49G

12ms

2.855 3.346 96.9 4.366 3.710 3.637
7.31M 4.97G 2.799 3.291 96.8 4.331 3.659 3.590
1.95M 2.14G 2.602 3.128 96.1 4.171 3.499 3.402
1.00M 1.36G 2.431 2.967 95.5 4.033 3.365 3.241
457K 858M 2.237 2.796 94.8 3.855 3.218 3.048
207K 483M 2.096 2.660 94.0 3.715 3.104 2.902

Despite this, the number of multiply accumulates per second
(MAC/s) remains comparable due to the longer input to the
bottleneck layer.

With E = 8, most of the computations occur in the encoder
and decoder, leading to a doubling of MAC/s after 18 minutes,
making Mamba’s fixed state size less significant. Reducing the
encoder depth to E = 6 quadruples the bottleneck sequence
length and reduces MAC/s in the encoder-decoder. As a result,
after just 80 seconds, MAC/s with multi-head attention doubles
compared to Mamba.

C. Different Importance Metrics without Fine-Tuning

To assess the effectiveness of different importance metrics,
the CleanUMamba network trained with high loss was pruned
without fine-tuning, as shown in Figure 3. At each pruning
step, 24 of the least important groups were removed, with
128 audio samples used for gradient accumulation in the
Taylor importance metric. The calibrated runs, denoted C10,
recalibrate the importance metric every 10 pruning steps, and
the exponential moving average, E5, applies a smoothing
factor of 0.5.

Results indicate that the Group Taylor importance metric
effectively reflects global importance. The squared Taylor loss
slightly outperforms the absolute Taylor loss at higher pruning
levels. In contrast, weight magnitude performs poorly as a
global importance metric, with significant performance drops
after pruning the first few layers.

With calibration, Taylor loss initially shows better results,
but stability decreases over time. Filtering the calibration
improves quality per parameter, while uncalibrated Taylor loss
consistently delivers superior quality per MAC/s.

D. Pruning with Fine-Tuning

For pruning with fine-tuning, CleanUMamba models with
E = 6 and E = 8 encoder layers pre-trained using high loss
were pruned using squared Taylor importance. The metric was
recalibrated every 20 steps with a smoothing factor of 0.5. At
each step, gradients were accumulated over 128 samples, and
the model was fine-tuned on 40,960 training samples every
5 steps. The importance pruned was limited to 3e-13, with 4
channels pruned per step once this limit was reached.

However, both E6 and E8 models became under-trained
below 6M and 4M parameters, respectively. To address this,
models at 200K, 500K, 1M, and 2M parameters were fine-
tuned for an additional 100K iterations with a batch size of
16.

Figure 4 shows the STOI scores during pruning, and Table II
presents a subset of the full evaluation. At 3.22M parameters,
CleanUMamba matches the performance of DEMUCS with
8× fewer parameters and nearly matches FullSubNet with 2×
fewer parameters.

VI. CONCLUSION

In this study, we introduce CleanUMamba, a real-time
speech denoising model that operates in the waveform do-
main and investigate its size reduction through pruning. We
evaluated the model on the Interspeech 2020 Deep Noise Sup-
pression challenge and compared it to the self-attention-based
CleanUNet. While both models perform similarly with an
encoder depth of 8, Mamba’s linear time complexity becomes
more advantageous with a reduced depth of 6, achieving a
12 ms latency. Our pruning pipeline further reduces model size,
achieving performance comparable to LSTM-based DEMUCs
with 8× fewer parameters.
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