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Abstract. We study a simulation method that uses the Wigner distribution function to incorporate wave optical
effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to
calculate point spread functions and show that it is accurate for paraxial systems but produces unphysical results
in the presence of aberrations. The cause of these anomalies is explained using an analytical model. ® 2018 Society
of Photo-Optical Instrumentation Engineers (SPIE) [DOI: [T 17/ TOH5 - 1:014104]
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1 Introduction

The consideration of multiple diffraction and field propaga-
tion becomes increasingly important due to the application in
devices, such as head-up displays and head-mounted dis-
plays, where diffraction and aberrations have to be precisely
accounted for in order to achieve optical designs with the
required visual quality. Knowledge of these ray-based propa-
gation methods and their limits can be of crucial importance
in the development of such devices.

Several methods that describe diffraction phenomena by
means of ray tracing exist (e.g., Refs. [Hf). They can be
powerful tools, in particular for simulating multiple diffrac-
tion or field propagation in the presence of aberrations.
However, every method involves approximations and has
a limited domain of applicability. Here, we report on the
approximations and limits of a ray-based simulation method
that uses the Wigner distribution function (WDF) to incor-
porate the effects of diffraction for monochromatic fully
spatially coherent fields.

The WDF is a bilinear transformation of a complex func-
tion, introduced in 1932 by Wigner.ﬂ Its definition is

W(x.&) = // E(x + x?/) E* <x - ’%) o6 2y, )

where W is the WDF, x = (x,x,) represents a point in a
plane in ordinary space, &€ = (£, &,) is a point in reciprocal
space, E is a monochromatic scalar complex field, and the
integral is over the auxiliary coordinates d’x’ = dx|dx;.
The WDF is always real but not necessarily positive (see,
e.g., Ref. ). When used in optics, the WDF can serve as
a representation of the scalar electric field, E. Such a repre-
sentation was first introduced by Dolinf and later again by
Walther! When describing the electric field using the WDF,
the frequency marginal of the WDF gives the spatial intensity
distribution, and the spatial marginal %ives the intensity of
the plane wave expansion of the field:
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I(x) = & / / W(x. ), @

EE)? = / / W (x,&)d%. 3)

If a field E is propagated through an optical system using
paraxial optics, the corresponding WDF changes by a mere
coordinate transformation. The effect of propagating the
field, in the paraxial regime through a homogenous medium
over a distance z, is, for instance, given by

W.(x.8) = Wo (x—%z,'g’), o)
where k is the wavenumber of the light in the medium.
This coordinate transformation is identical to the one that
describes the change in position and direction of a geomet-
rical optical ray, with directional cosines given by

&
Pj=7 5)
where the index j indicates the first or second element of a
vector. The coordinate transformations of the WDF and geo-
metrical optics are also identical for the propagation through
a paraxial lens or a paraxial system of lenses and free-space.H
For a more detailed treatment of these and other properties of
the WDF, the reader is referred to one of the early papers on
the WDF in opticsH and an extensive tutorial.B

Because the coordinate transformations of the WDF and
of paraxial rays are identical, the WDF remains constant
along paths followed by paraxial rays. To the knowledge
of the authors, the first usage of this property for ray-
based diffraction simulation was in the field of computer
graphics. Oh et al. rendered images that showed diffraction
patterns, e.g., of a light source behind a square aperture cast-
ing a diffraction pattern on a cubic box. They also computed
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point spread functions (PSFs) for two camera lenses with
different numerical apertures (NAs).H Although some of
the diffraction patterns were validated using Fourier optics,
the PSFs were only evaluated qualitatively. The method by
Oh et al. was further developed in the computer graphics
community (e.g., Refs. [IH[3), but PSF calculations were
never validated.

The aim of this paper is to assess such a ray-based trans-
port of the WDF for optical simulations. We will discuss
its potential and evaluate its limitations by comparing the
results to those of reference methods. The focus will be on
the simulation of the propagation of monochromatic spatially
coherent scalar electric fields through optical systems.

2 Method

The principles described in Refs. [JH[3 are implemented in
a simulation method, which we call Wigner-based ray tracing
(WBRT). The aim of WBRT is to simulate the propagation
of an electric field from an input plane, through an optical
system consisting of, e.g., free-space, lenses, and apertures,
and calculate the intensity distribution at an output plane. We
first presented this method in a preliminary form in 20158
A simulation consists of several steps, which are illustrated
in the flowchart in Fig. [l and described in the following
paragraphs.

The first step of WBRT is to derive the WDF of the elec-
tric field in the input plane. For some frequently used input
fields, the WDF can be calculated analytically. The WDF of a
plane wave with amplitude A and a wave vector, whose com-
ponents parallel to the reciprocal plane are k = (k.. k,), is,
for instance, given by

W(x,&) = (27)*|A[*6(€ — k). (6)

WBRT performs a Monte Carlo sampling of the region of
the four-dimensional phase space for which W(x, &) # 0.
The algorithm chooses a (user defined) number of random
points within this region of phase space, using a probability
distribution function that is uniform in spatial and frequency
coordinates. Every such point in phase space is associated
with a ray with the same spatial coordinates x and directions
defined by Eq. () that carries the local WDF.

The second step is to use these rays to propagate the WDF
through an optical system, e.g., a series of lenses in free-
space. The lenses will affect the ray paths according to
Snell’s law but will not introduce diffraction unless they
are combined with an aperture. Within the paraxial theory
this procedure is exact, since the WDF remains constant
along the paths of paraxial rays. The underlying assumption
of WBRT is that this property is also a good approximation
beyond the paraxial domain.

Create Assign R Create
random WDF &y sec-
trace
rays at value to . ondary
. until
input rays Egs. aperture rays
plane (1, 5) P Eq. (8)

t

At an aperture or (complex) mask, the ray tracing is inter-
rupted. In WBRT, masks are treated within the thin element
approximation. As a result, the effect of a mask on the elec-
tric field is given by

E,o(x) = B(x)Ein(x), @

where the indices “in” and “o0” indicate the input and the
output, and B(x) is the complex mask function. By using
Eq. () and its inverse on Eq. ([]), one can derive

Wo(e.m) = @ / / W, )W (.17 — E)E, ®)

This means that the WDF directly after a mask can be
calculated by a convolution of the input WDF (W;,) with
the WDF of the mask (Wp) over the frequency variables.B
Since the mask function can be complex, it can be used
to describe aberrations within the thin element approxima-
tion. Such a procedure has, for instance, been used to
study the effect of aberrations in the exit pupil but requires
an additional (ray-based) method to calculate the aberrations.
In WBRT, aberrations are implicitly captured by the ray trac-
ing procedure, whereas diffraction is explicitly introduced by
convolving the WDF of the field and the aperture function.
Note that as a result of this convolution, the WDF is smeared
out over the frequency variables but remains localized in spa-
tial coordinates. In our ray-based model, this is implemented
by letting every ray initiate a set of new rays. These rays have
the same initial position but differ in directions and carry
a value of the WDF in accordance with Eq. (§). The set
of secondary rays is created using a Monte Carlo procedure
similar to the one used for the creation of the initial rays. This
follows the example of the work by Oh et al. [ and makes the
method very suited for parallel computing. In this paper, we
treat apertures using the Kirchhoff boundary conditions.
Therefore, the mask function B(x) reduces to a binary func-
tion with the value 1 inside and O outside of the aperture. The
WDF of a square aperture can be calculated analytically and
the result is given later in this paper. For the WDF of circular
apertures, Bastiaans derived a simplified integral equation. O

Further propagation through the optical system is again
carried out using ray tracing, and further apertures can be
treated in accordance with Eq. (§).

As a final step, the intensity distribution at the output
plane (or any other plane) is calculated. Since the intensity
distribution is given by the frequency marginal of the WDF
[see Eq. (@], the intensity in a pixel can be calculated by
summing the values of the WDF carried by each ray that
hits the pixel. Using these principles, one can obtain an inten-
sity distribution in a plane caused by the propagation of
a coherent field through an optical system.

Ray Add

no| trace WDF
until value of
output rays to
plane pixels

Fig. 1 A flowchart illustrating the steps of WBRT.
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3 Results

The procedure described in the previous section is imple-
mented in MATLAB and used to simulate the propagation
of a plane wave, through a thick and thin lens, for wavefronts
with and without aberrations.

3.1 Thick Lens

The results of the propagation of a plane wave through a
thick lens are shown in Figs. [} and [§. Apart from the WBRT
results, the figures also show the results of a Rayleigh—
Sommerfeld exit pupil diffraction integral (RSED)E
obtained with an in-house optical simulation software pack-
age. Figure [] shows the results for axial imaging by a singlet
with an NA of 0.2 that introduces no third or fifth order
spherical aberrations to the wavefront. The results from
WBRT and RSED are in very good agreement. For the
other singlet, which has an NA of 0.04, and wavefront
aberrations with root mean square (rms) values of 0.23

1
. —— WBRT
£ 08 -~~~ RSED
=]
g
g 0.6
o]
8
= 0.4
g
S 0.2
Z .
0 T S s
2 3

x ()

Fig. 2 Cross-section of the PSF of a singlet at a wavelength of
600 nm calculated using WBRT and the RSED. The system has
an NA of 0.2 and an aperture radius of 100 mm and produces a wave-
front free of noticeable aberrations. The results from WBRT are
averaged over the polar angle. The convergence is better at larger
distances from the origin, because the average there is taken over
a larger number of Monte Carlo samples. Near the origin one can
notice the statistical noise due to the lower Monte Carlo sampling.

—— WBRT
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iz -=-=- RSED
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2 05
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Fig. 3 Cross-section of the PSF of a singlet at a wavelength of
600 nm, calculated using WBRT and the RSED. The aperture has
a radius of 20 mm and the system has an NA of 0.04. The main aber-
rations are defocus and spherical aberrations. The results from WBRT
show unphysical negative intensities.
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wavelengths for defocus and 0.12 wavelengths for primary
spherical aberrations, WBRT results in negative intensities,
which is clearly unphysical. It also indicates that WBRT
results in a distribution other than the WDEF, since the mar-
ginals of the WDF are always nonnegative (see, e.g., Ref. fJ).

These results indicate that the validity of WBRT mainly
depends on the wavefront aberrations. This is further sup-
ported by Figs. f] and [, where the agreement between the
WBRT and RSED simulation is quantified in the L2-differ-
ence of the simulated PSFs, defined by

> ,lA(p) - A(p)]?

where A’(p) is the amplitude at pixel p predicted by the
RSED and A(p) is the corresponding amplitude given by
WBRT. The figures show the results for one spherical and
three aspherical singlets with varying aperture radii. For

- Spherical

-E} Asphere A
-+ Asphere B
0.4 || *#k- Asphere C

0.6 -

L2-error

*
(= EEEEP R R

Aperture radius (mm)

Fig. 4 The L2-difference between WBRT and RSED simulations of
four lens designs at varying aperture radii. All systems consist of a
singlet followed by a circular aperture and a free-space propagation
over 500 mm. The systems are illuminated at 600 nm by a plane wave
or a point source 800 mm in front of the lens (asphere B). The error
increases sharply at aperture radii of around 10, 90, and 120 mm,
respectively.

06 - - Spherical ]
’ -E} Asphere A x,'
-3+ Asphere B e
8 -3fc- Asphere C *'"
t‘ 04 [ * .“,: 'I
[«0] KA .
I RO
— e "'I
0.2 TS
te” X
_ - <K
LU Ll L1l L1l TRt

0
107° 104 1073 10~2 1071

rms wavefront error ()

Fig. 5 The L2-difference between WBRT and RSED simulations of
the four lens designs used in Fig. B simulated at the same aperture
radii as for Fig. . The horizontal axis shows the rms wavefront error
(excluding tip/tilt and defocus). For all four systems, the L2-difference
starts to increase significantly for rms wavefront errors onward of 10—2
wavelength.
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these singlets, the radius at which the WBRT and RSED
results start to diverge (see Fig. []) varies between 10 and
120 mm, corresponding to NAs of 0.02 and 0.23. In Fig. f,
the same results are plotted but with the rms wavefront
error (excluding tip/tilt and defocus) instead of the aperture
radius on the horizontal axis. From rms wavefront errors of
around 1072 wavelength onward, the L.2-difference between
the WBRT and RSED results starts to increase for all four
singlets. Although the exact rms wavefront error at which
this occurs is different for every system, simulations at differ-
ent NAs and for different spherical and aspherical singlets
show similar results: the results of WBRT and the RSED are
in good agreement until spherical aberrations start influenc-
ing the PSF. Unless future research finds a way to solve this
difficulty with an approach that differs significantly from
the present one, it is safer not to use WBRT for thick lenses
that suffer from aberrations.

Other simulations show that for systems with very small
aberrations and NAs larger than 0.3, the results from WBRT
and RSED also diverge, indicating the limits of WBRT due
to nonparaxial effects. For the aberration-free wavefronts,
we did not encounter negative intensities.

3.2 Thin Lens

To study the effects of aberrations on WBRT, the simulation
of a singlet was repeated using a thin-element model. Within
the thin-element approximation, all effects of the lens (i.e.,
phase changes or changes in ray direction) occur in a plane.
The effect of a thin lens that introduces aberrations can be
modeled by two separate stages. First, the lens will change
the direction of each ray in accordance with perfect imaging.
Second, the aberrations will cause small additional direc-
tional changes of the rays.

The results of the thin-lens model, for a lens that introdu-
ces aberrations and a lens that does not, are shown in Fig. fi.
The Airy pattern, which is plotted as a reference, and the
result for the thin lens in the aberration-free case, are in
very good agreement. Note that the thin lens has an NA of
0.45. When spherical aberration is introduced, WBRT gives
unphysical results in the form of spatial regions with a neg-
ative intensity.

1p
----Ideal lens
z — Spherical aber.
S \N [ Airy disk
g
Z 051
S
=
g
3
Z. "
0 =

02 04 06
x (pm)

Fig. 6 Cross-section of the PSF of an ideal thin lens and a thin lens
that introduces spherical aberrations calculated using WBRT. The
lenses have an NA of 0.45, an aperture radius of 10 mm, and
the wavelength is 600 nm. The result of the ideal thin lens is in
good agreement with the corresponding Airy disk.
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3.3 Analytical Model

These results suggest that the negative intensities observed in
WBRT simulations are the effect of an inaccurate model of
aberrations. In order to rule out other causes, e.g., inadequate
sampling, we investigate an analytical model based on
WBRT.

The analytical model is derived for the simplified case of
a thin lens with only one spatial dimension perpendicular
to the optical axis. The WDF of the one-dimensional plane
wave that is incident on the lens is given by

Wi(x1,61) = 2m8(&) — ky). (10)

The one-dimensional aperture is a slit of width 2w with
a WDF of

%sin[§2(w —|x])] if x| <w

0 if x| >w

Wp(x.§) = { an

The result of the convolution [see Eq. (§)] between these
two WDFs is

Wi(xp,8,) = { w %f bl < e (12)
0 if || >w
The propagation through the thin (aberrated) lens to the
image plane is treated in two steps. First, the effect of the
aberrations is modeled by a coordinate transformation of
the ray direction:

W3(x3,&3) = Walxs, &3 — f(x3, k)], (13)

where the function f, in accordance with geometrical optics,
is the derivative of the wavefront aberration with respect to
the spatial pupil coordinate (x3). For spherical aberration,
this is f(x3,k,) = ax3, with a a constant. The rest of the
system can now be considered to be an ideal imaging system,
which maps a spatial frequency in the pupil plane (£3) to a
position in the image plane (x;). Characterizing this mapping
by a magnification factor M, the intensity in the image plane
is given by

I(x;) :/W3(x3vxi/M)dx37 (14)
= [i sin { |:%_f(x3»kx) - kx:| 2(W - |)C3|)},
2 dxs. (15)

%_f(x&kx) _kx

For the aberration-free case, this results in the sinc
[sinc(¢) =sin(z)/¢] pattern, familiar from the Fraunhofer
diffraction pattern of a square aperture:E

I(x;) = 4w?sinc?[(x; /M — k,)w)]. (16)

In the case of aberrations, an analytical evaluation of
Eq. ([3) is nontrivial. A numerical evaluation of the integral,
using the integral function of MATLAB, for different types
of aberrations is shown in Fig. [], along with the result for the
aberration-free imaging. Negative intensities can be observed
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Fig. 7 Numerical solutions of Eq. ([3) for different aberrations. The
half-width of the slit, w, and the magnification factor, M, are set to
one. Both the result for coma and spherical aberrations (Spher.)
show negative intensities, although the minimum intensity for spheri-
cal aberrations is only —0.02. When adding some defocus to the
spherical aberration (Comb.), the negativity is more pronounced.
The result for the ideal lens corresponds to Eq. (T8). Intensity patterns
for the ideal lens were calculated for a wide range of defoci. All these
defocused intensity patterns were strictly positive. The figure shows
one typical result (Def.).

for spherical aberration and coma, whereas the results for
the ideal and defocused systems remain strictly positive.

The fact that the analytical model reproduces the effects
observed in the other WBRT simulations shows that the
unphysical results are inherent to the underlying model of
WBRT and not related to the (numerical) implementation
of the method. In simulations over a wide range of NAs,
the negative intensities were only encountered in the pres-
ence of aberrations. It therefore appears that, specifically,
the model of aberrations in WBRT is inaccurate.

4 Discussion

The negative intensities observed in WBRT can be explained
by the simplified model of aberrations. In the thin element
approximation, aberrations can be introduced using a phase
mask and Eq. ([]). The effect on the WDF is a convolution
between the WDF of the phase mask and the input field
[Eq. ()]. The WDF of a function with a complex quadratic
exponent, e.g., the quadratic phase function of defocus,
reduces to a (double) delta function. As a result, the effect
on the WDF of, e.g., defocus is a coordinate transformation.
This coordinate transformation is implicitly implemented in
WBRT by ray tracing and explicitly introduced in the ana-
lytical model by Eq. ([3). However, coma and spherical aber-
ration have third and fourth order phase functions. It was
shown by Lohmann et al. H that the effect of such aberrations
in the exit pupil on the WDF is twofold. First, they lead to a
coordinate transformation in accordance with geometrical
optics [Eq. (T3], and second, they lead to differential oper-
ators that change the shape of the WDF. For a cubic phase
function, this results in a WDF concentrated around a second
order function but blurred by the Airy integral. Zl In WBRT,
the coordinate transformation is implemented, but the blur-
ring by the differential operators is neglected. Our results
show that for the simulation of PSFs, this second effect is
of crucial importance. But, since in WBRT, a ray only carries
the local value of the WDF, one cannot apply the differential
operators on the individual samples but must first rebuild the
entire WDF. This would complicate the model and increase
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the computational load of WBRT to a great extent. Further-
more, an additional simulation method would be needed to
calculate the aberrations. Some WDF simulations might ben-
efit from modeling aberrations by coordinate transformations
and differential operators or by a direct convolution with a
WDF describing the aberrations, but we consider it infeasible
for WBRT due to the above-mentioned reasons. Contrary to
hopes expressed elsewhere in the literature, 38 our results
show that it is insufficient to model aberrations by mere coor-
dinate transformations of the WDF.

Although WBRT is unsuited for systems with aberrations,
it can be used for modeling aberration-free systems with
moderate NAs. We have validated WBRT for the propaga-
tion of a coherent field through an aperture and a single
lens but expect the method to hold for any combination
of paraxial lenses, mirrors, and multiple apertures. As has
been stated before, the effect of paraxial systems (i.e., sys-
tems for which all wavefronts, propagators, and optical sur-
faces are approximated by quadratic functions) on the WDF
is a coordinate transformation,H which is implemented in
WBRT by ray tracing. Therefore, WBRT in the paraxial
limit can be seen as the Monte Carlo integration method of
paraxial wave optical propagators. For the Fresnel propaga-
tor, for instance, this equivalence was shown both numeri-
cally and analytically.

Interestingly, our results show that WBRT produces
accurate results for thick lenses with NAs up to at least
0.2 (see Fig. P) and for thin lenses with NAs as high as
0.45 (see Fig. f). The quadratic approximation of paraxial
optics is inaccurate at an NA of 0.2 and clearly violated at
an NA of 0.45. It thus appears that WBRT can be used for the
simulation of systems beyond the paraxial limit, if they are
free of aberrations.

An advantage of WBRT is that the WDF can easily be
adjusted for the representation of spatially partially coherent
light. The WDF can be defined in terms of the mutual
coherence function by replacing the product of the fields at
the positions x +x’/2 and x —x’/2 in Eq. (), by their
correlation over time.B8 A question that deserves a separate
research (inspired by work of AlonsoB) is whether the
negative intensities observed in WBRT in the presence of
aberrations are less pronounced for partially coherent fields.
Compared to numerical implementations of paraxial wave
propagation methods (i.e., the Collins integralﬂ), WBRT
has a relatively high computational demand but an extremely
low memory usage, which makes it very suited for parallel
computing. Simulation times can be significantly reduced by
using importance sampling and performing calculations on
the GPU.H

5 Conclusions

We have implemented a Wigner-based ray tracing tool for
diffraction calculations. The WDF of the input field is
sampled using a Monte Carlo algorithm, the effect of lenses
is assumed to be the coordinate transformations encountered
in geometrical optics, and apertures are treated using the
Kirchhoff boundary conditions. Our simulations lead to the
conclusion that aberration-free systems with moderate NAs
can be modeled correctly. In the presence of aberrations or
large NAs, the assumption that the propagation can be mod-
eled by coordinate transformations, breaks down dramatically.
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This limits the domain of validity of WBRT to simulations in
and near the paraxial domain.
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