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Preface

Caminante, son tus huellas
el camino, y nada más;
caminante, no hay camino,
se hace el camino al andar.
Al andar se hace el camino,
y al volver la vista atrás
se ve la senda que nunca
se ha de volver a pisar.
Caminante, no hay camino,
sino estelas en la mar.

Antonio Machado, “Probervios y Cantares"
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This project has been possible due to the advice, company and help of many people, and I would like to
dedicate a few words to them. First, I would like to thank my supervisor, Dr. Ir. Erwin Mooij, who knew how
to motivate me to push through the harder phases of this project. His questions, although sometimes turned
quite existentialist, always helped me to gain more insight on the task at matter and guide my research. Also
a special mention to the graduation committee, Dr. Ir. Wouter van der Wal and Dr. Ir. Erik-Jan van Kampen
for agreeing to participate in this defence and taking interest in the topic.

I am truly fortunate that the number of people that have accompanied and encouraged me through this
process would not fit on a single acknowledgement page. I hope that these words can express my gratitude
towards the friends and family who participated in this experience. These years in Delft have been truly
special, and I believe that all my friends here (old and new) have made a great impact in my life. For all of
you who stayed the long hours at the library, cheering me up in times of debugging and celebrating in times
of successful results. For those who have seen me in "programming mode" for months (or years), and came
back the morning after. For those of you who invited me over for dinner when my fridge only contained
instant noodles and those who took advantage of every opportunity to come back and spend a few days in
Delft. For those who are with me from the beginning, and those who became inseparable in a very short time.
For all of you, thank you. I hope to have also risen to the occasion.

Finally, a very special mention to my family, who over the years could have gained a degree in engineering
just from hearing me study and worry about exams, projects and code. To my parents, Àngels and Fidel, and
my brother Andreu, simply thank you. For being always there and instilling in me the sense of curiosity.

Mireia Leon Dasi
Valencia, January 2022
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Abstract

The risk of collision between space objects has largely increased in the recent years, becoming a considerable
threat to satellite operations and human spaceflight. This problem is expected to aggravate in the following
years due to the deployment of satellite mega-constellations and the result of current collision events. There-
fore, accurately computing the risk of collision for any type of encounter is a requirement to ensure a safe
future for space activities. Current methods to compute collision probability can be divided into two cate-
gories: accurate methods that require a high computational load and faster methods that limit the type of
encounter geometry. There exists a research gap for methods that can accurately compute the risk of colli-
sion for low relative velocity encounters in a time that allows to perform the avoidance manoeuvre. Moreover,
current methods rely on simplified shapes for the satellites (generally a sphere), which introduce a large over-
estimation in the computation of collision risk, especially for big, elongated geometries such as the case of
the International Space Station (ISS). The goal of this research is to develop a method to compute the collision
probability for any type of encounter geometry with high accuracy and applicable to any vehicle shape.

The limitations from current methods come from four simplifications that are applied to reduce the com-
putational load. On one hand, in the uncertainty propagation segment, conventional methods linearise the
dynamics of motion and assume that the uncertainty distribution of the satellite position and velocity re-
mains Gaussian. On the other hand, in the collision probability calculation process, the problem is simpli-
fied to assume a two-dimensional encounter and the vehicles shape consists of simple geometries. To avoid
these simplifications, the methodology developed in this work relies on the hybrid Differential Algebra and
Gaussian Mixture Model method for uncertainty propagation, and a collision probability integration with a
multi-sphere model that can be adapted to any shape. The differential algebra methodology allows to inte-
grate the Taylor series expansion of the final state with respect to a deviation from the initial state by operating
in a computer environment based on Taylor series operations. This allows to propagate the uncertainty with-
out linearising the dynamics. Moreover, the Gaussian assumption for the satellite uncertainty is dropped by
using a combination of Gaussian probability density functions that can approximate any probability distri-
bution. Regarding the collision risk, it is computed by integrating the flux rate of probability over the surface
of the object over the time of the encounter. By following this methodology, no assumptions are made on the
relative velocity or uncertainties of the body, which allow to apply the technique to any type of encounter.
Finally, the method is extended from a single sphere to any geometry by developing a numerical quadrature
technique based on a combination of spheres to model the real volume. The combination of these method-
ologies to compute the collision probability is labelled as the DA-GMM method.

To test the method, a sensitivity analysis is run and five scenarios are simulated to compute the collision
probability: two with fictional data for verification and three real cases with tracking data. The sensitivity
analysis provides a reference for the recommended settings of the method depending on the intended ap-
plication. From this, it is concluded that using third order Taylor series expansion with 51 Gaussian mixture
elements provides the best results for general applications. The method is used then to verify two test cases
that present low velocity encounters. It is found that the method improves the accuracy in calculating the
collision probability by more that 70% with respect to the best result by conventional methods. Following,
an analysis of the effect of lead time and initial state uncertainty on the calculated collision probability is
performed for a scenario where the nominal trajectories lead to a collision. It is found that an improvement
in the tracking accuracy of one order of magnitude can result in a decrease in the computed collision proba-
bility of two orders of magnitude. This outcome is very useful for the interpretation of the following real-life
encounters.

For the real scenarios, tracking data is used to compute the collision probability and encounter time. The
first case studied is the Cosmos-2251/Iridium-33 collision that occurred in 2009. Second, the close encounter
between the rocket body Chang Zheng-4C and satellite Cosmos-2004 in 2020, that was predicted to have a
probability of collision of 20% but fortunately did not occur. Finally, a screening of close approaches between
the ISS and the debris resulting from the anti-satellite missile test that destroyed satellite Cosmos-1408 on
November 2021 is performed. The collision probability is calculated for those elements that enter within 25
km of the ISS. It is found that during this screening, one piece of debris presents a high threat to the ISS.
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iv Abstract

For this piece, the collision probability is calculated with the multi-sphere model to characterise the effect of
modelling the real shape of the satellite.

It was found that the DA-GMM method was able to accurately predict the maximum collision probability
within 0.2 seconds of the time of the collision/close approach. Moreover, the results obtained match with the
outcome of the encounter scenarios. For the ISS close encounter, it was established that by using the detailed
multi-sphere model as opposed to a single sphere to describe the collision volume, the collision probability
decreased by one to two orders of magnitude (depending on the inclusion off the solar panels). The result is
that an encounter that was catalogued as dangerous and required a collision avoidance manoeuvre, becomes
inoffensive. As a conclusion, it is verified that the method developed to compute the risk of collision with
space debris can accurately predict the collision probability for any encounter geometry fulfilling operational
constraints. Moreover, it is proven that modelling the real shape of the ISS has a large impact on the estimated
collision risk and the consequent actions.
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1
Introduction

“A threat to activities in outer space for years to come [...] posing a significant risk to the crew on the Inter-
national Space Station and other human spaceflight activities, as well as multiple countries’ satellites”. This
was the first statement from the U.S. Space Command commander Gen. James Dickinson, on the direct-
ascent anti-satellite (DA-ASAT) missile test that destructed Russian satellite Cosmos-1408 on November 15
2021, creating a field of debris in Low Earth Orbit (LEO) (U.S. Space Command, 2021). These declarations
transmit the challenges and hazards of space operations in the present and foreseeable future. During the
first decades of the space age, scientific advance was the main objective of the audacious space exploration,
with few considerations on possible long-term consequences. After this initial euphoria, the scientific com-
munity started to rise awareness on safe exploration topics and space debris mitigation. As the number of
Earth-orbiting objects rose, with the surge of satellite mega-constellations and affordable space technologies
such as CubeSats, the latter became of particular concern. Once the operational life of a man-made object
ends, it becomes a piece of space debris. The fate of these objects is clear: either re-enter Earth through an
atmospheric decay process, stay in orbit or be transported to a different orbit. The longer the debris stays in
orbit, the higher the probability that it will collide with another object, threatening space exploration.

The danger posed by space debris is twofold. First, the consequences of the collision itself, which can
be fatal for the satellite. For space debris of ∼ 1 mm, a collision in LEO can lead to the destruction of com-
ponents, while a debris of 10 cm causes a partial or complete break-up of the spacecraft. This leads to the
second threat posed by space debris, the cascade effect described by the Kessler syndrome. In this scenario,
each collision creates multiple pieces of debris, increasing the overall probability of encounter event between
space objects and leading to a debris belt encapsulating the Earth (Kessler and Cour-Palais, 1978). Therefore,
preventing the creation of space debris is of foremost importance, and multiple mitigation plans have been
devised. These include satellite end-of-life strategies to ensure that the operational bands are clear from in-
active satellite, design for demise strategies to reduce the risk of explosions and passive de-orbit techniques
to remove existing debris. However, until the space environment is completely clean of debris the risk is still
present, which demands for collision detection and avoidance strategies.

Estimation of collision risk is the first step to assess the need for collision avoidance manoeuvres that
prevent the destruction of active satellite and ensure the safety of space operations. This is the topic of this
thesis work. The risk of collisions cannot be directly assessed from the nominal trajectories of the satellites
due to the uncertainties in the orbit determination process and propagation environment. The concept of
collision probability is therefore introduced, to assess the risk of collision in this scenario. While this type of
uncertainty propagation problems are usually computed using Monte Carlo sampling techniques, this pro-
cess is extremely time consuming for this application and cannot be used for operational collision avoidance.
Therefore, alternative techniques have been developed, which have been traditionally divided into two cat-
egories. First, methods for high relative-velocity encounters that apply linear approximations and neglect
the uncertainty in velocity (Foster and Estes, 1992; Patera, 2001; Alfano, 2005). Second, methods for low
relative-velocity encounters that require a larger computational load and present some limitations in terms
of encounter geometry (Patera, 2003; Chan, 2004; Alfano, 2006). There exists a trade-off between computa-
tional load and accuracy, and some scenarios such as cases with very low relative velocity, cannot be correctly
predicted in time for collision avoidance.

The identified trade-off leaves a research gap for methods to increase the lead time in collision detection
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for all types of encounter geometries with high accuracy. Römgens (2011) approaches this topic by studying
the application of verified Taylor series integration to obtain a bound of the satellite state and therefore accept
or discard the risk of collision. While this can be very useful since it allows to rule out a collision with high
certainty, the method fails to estimate the risk when a potential collision is detected. The method developed
in this work is based on a combination of the differential algebra technique for Taylor series integration and
the Gaussian Mixture Model to obtain a fast and accurate propagation of uncertainty of position and velocity
of space objects. This method evades the linear propagation of uncertainty and the assumption of a Gaussian
uncertainty distribution, which limit the accuracy of traditional collision probability calculation methods.

A second aspect that requires further research is the inclusion of multiple three-dimensional shapes in
the encounter geometry. Traditional methods assume a spherical geometry and some methods have been
extended to account for parallelepipeds. The use of simplified satellite shapes is justified for most satellites
and pieces of debris with unknown shape. However, some space objects, such as rocket launchers, have very
elongated shapes which would benefit from a more detailed geometry. This is especially important for the
International Space Station (ISS). Up to now, the collision risk with the ISS has been overestimated to increase
the safety of the crew. However, recent events such as the Russian ASAT missile test have revealed the need
for a high-accuracy determination of the collision risk. Following this event, on November 30, 2021, an extra-
vehicular activity was delayed due to “ the lack of opportunity to properly assess the risk it could pose to the
astronauts”. Accurately determining the collision risk for the ISS by including the satellite geometry in the
collision probability estimation becomes the second topic of this research.

1.1. The space debris environment
The launch of Sputnik 1 on October 4, 1957, marks the beginning of the space age. To the present, more than
6,000 rockets have successfully launched, placing 10,680 satellites in Earth orbit (ESA, 2021b). Approximately
two thirds of this population has reached its end of life, and have either re-entered or stayed in uncontrollable
orbits, becoming the source of space debris. The term space debris refers to “all man made objects including
fragments and elements thereof, in Earth orbit or re-entering the atmosphere, that are non functional"(IADC,
2020). The high and rapidly increasing number of objects placed in Earth orbit elevates the risk of collisions.

Initially, the space debris is formed by objects launched to space (derelict satellites and rocket upper
stages). These objects have a large size and are easily tracked by space Surveillance Networks. However, due
to separation events such as explosions or collisions, the space debris population increases. As observed
in Figure 1.1, the number of objects in orbit has doubled in the past ten years, and most of this population
is found in LEO. Some of these separation events, such as surface degradation and release of fuel particles,
produce debris of size smaller than 1cm. The effect of such small pieces of debris on other satellites can be
mitigated through shielding. Larger pieces with sizes of 1-10 cm can cause the malfunction or breakup of
active satellites, contributing to aggravate the Kessler syndrome. In this figure, an abrupt increase in number
of objects is observed between the years 2009 and 2011. This is directly related to the collision that occurred
between the satellites Cosmos-2251 and Iridium-33, in February 2009. From this tragic event, over 2,000
pieces of debris larger than 10 cm were created, eventually spanning all the altitude shell and obstructing
satellite operations.

Based on the predominant regions exploited by satellite missions, the largest pieces of debris (>10 cm)
are located in the LEO and GEO regions, especially at 800 km altitude (Horstmann et al., 2018). Fragments
located at altitudes below 300 km naturally re-enter due to the drag effect from the still significant atmo-
spheric density. When reaching higher altitudes, the drag effect becomes negligible and the particles do not
naturally deorbit. To prevent the spatial density collapse in the regions of high interest, two protected ar-
eas with special debris mitigation guidelines are defined. The LEO protected region extends as a spherical
shell from the Earth surface to an altitude of 2000 km. The GEO protected region is a spherical shell segment
extending from the geostationary altitude with a radius of +/- 200 km and an angle of +/- 15 degrees (IADC,
2020). With the expected increase in objects launched to space,mainly due to the expanding sector of satellite
mega-constellations, several legal and operational actions are taken to minimise the footprint in the space
environment. To prevent the risk of self-fragmentation due to explosion, satellites undergo end of mission
passivisation, which includes depleting the batteries and disconnecting the solar arrays. To protect the satel-
lites from collisions with small pieces of debris, shielding mechanisms are developed. The satellites launched
into LEO must be able to clear the protected region in less than 25 years. Satellites in GEO-protected region
must be transferred to a graveyard orbit (ISO Central Secretary, 2019). And for objects that cannot deorbit
(e.g., due to mission failure), active debris removal systems are under research to clean the space environ-
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Figure 1.1: Evolution of number of objects > 10 cm identified in orbit (ESA, 2021a).

ment and ensure continued accessibility.
Despite the efforts taken to minimise the effects of space debris on active satellites, the risk of collision is

still present. To prevent this, the collision risk is monitored and satellite operators are notified. Improving the
prediction capability of space debris collisions is essential to the safety of the future space environment.

1.2. Collision avoidance practices
Space agencies and private satellite operators currently rely on the data provided by the U.S. Space Command
(USspaceCOM) to detect potential risk of collision. These entities then apply different collision probability
calculation methods to further constrain the collision risk and decide on the mitigation strategy. The process
begins with the formation of a space High Accuracy Catalogue (HAC) with the position, velocity and uncer-
tainties of objects larger than 10 cm with the satellite observations from the US. Space Surveillance Network
(SSN). These data, together with satellite ephemeris provided by satellite operators is propagated accounting
for special perturbations every 24 hours and is screened to detect possible collisions. When a possible colli-
sion is found, a notification is sent to the satellite operator via a Conjunction Data Message (CDM) and/or a
Close Approach Notification (CAN) email. The lead time and reporting criteria considered are summarised
in Table 1.1. Four cases are considered depending on the target orbit (LEO or Deep space) and the data
source (ephemeris or high accuracy catalogue). As observed, the criteria are more strict for LEO satellites, for
which the collision probability is computed. When a criterion is satisfied, a notification is sent to the satellite
provider. In case of no response, the satellite provider is contacted by phone when the risk becomes extreme
(Pc ≥ 10−2 in the case of LEO objects).

Table 1.1: Advanced reporting criteria established by the USspaceCOM (SpaceTrack, 2020, p9)

Notification
Method

CDM CDM& CAN email
CDM, CAN email & phone

call

Deep space
HAC

TCA ≤ 10 days & all results
w/in 5km x 5km x 5km

TCA ≤ 3 days & Overall
miss ≤ 5km

TCA ≤ 3 days & Overall
miss ≤ 500 m

Deep space
ephemeris

TCA ≤ 10 days & all results
w/in 20km x 20km x 20km

TCA ≤ 3 days & Overall
miss ≤ 5km

N/A

LEO HAC TCA ≤ 5 days & PC ≥ 10−7 TCA ≤ 3 days & Overall
miss ≤ 1km& PC ≥ 10−4

TCA ≤ 3 days & Overall
miss ≤ 1km& PC ≥ 10−2

LEO
ephemeris

TCA ≤ 7 days & all results
w/in 2km x 25km x 25km

TCA ≤ 3 days & Overall
miss ≤ 1km& PC ≥ 10−4 N/A

Although this methodology is generally effective for generic satellites, a different approach is required
for the ISS. In this case, the presence of astronauts and the complexity of the operations involved, require
for a more precise collision probability estimation procedure. The collision avoidance strategy of the ISS is
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decided by the Trajectory Operations Officer (TOPO) flight controller (Dempsey, 2018). The process starts
with the screening of all objects in the High Accuracy Catalogue against the ISS. This screening occurs every
eight hours. The TOPO is notified if an object is predicted to pass within a ±2km (local vertical) ×±25 km
×±25 km (local horizontal) volume in the next 72 hours.

When TOPO is notified, the collision probability is calculated with updated tracking data, and the fight
control teams in Houston and Moscow are notified if one of the following conditions are met:

• TC A ≤ 48 hours

• Local vertical miss ≤ 0.5 km or Pc ≥ 10−6

The collision probability is then continuously updated and the following levels of concern are defined:

• Green: Pc < 10−5. No action required.

• Yellow: Pc ≥ 10−5. A CAM should be attempted prior to TCA unless there is a major impact to the ISS
operations.

• Red: Pc ≥ 10−4. A CAM should be performed prior to TCA unless the burn itself will place the crew at
greater risk.

• Black: Pc ≥ 10−2. A CAM must be performed prior to TCA unless the burn is in the final minutes of a
docking operation.

As it is observed, a CAM is not always the safest option when dealing with a space debris threat. There are
a number of operations in the ISS that could be disrupted by a collision avoidance manoeuvre, which can
even lead to put the crew at risk. The collision probability with the ISS is calculated considering a spherical
shape, which overestimates the collision risk. The approach developed in this work is intended to reduce
overestimation, thus providing more information to deal with these safety trade-offs.

1.3. Research question
After careful review of the past and present literature regarding collision probability calculation, the research
questions for the thesis work are formulated. These questions will guide the direction of this research and
will be answered at the end of the work. The main goal of this thesis work is to develop a new method to com-
pute collision probability that can contribute to the task of space debris mitigation through a faster and more
accurate assessment of the collision risk for any type of encounter geometry. Through a literature review of
methods to propagate the uncertainty, the hybrid Differential Algebra and Gaussian Mixture Model method
(DA-GMM) has been selected as the most promising approach to achieve this goal. Although the summary
of alternative methods and the explanation of the DA-GMM technique is detailed in Chapter 2, a brief intro-
duction is provided here, to provide a background for the research questions. The term differential algebra
refers to a computational technique that allows to operate using Taylor series expansion coefficients instead
of floating point operations. The result is that the Taylor series expansion of the final state with respect to
a deviation from the initial state can be readily computed, providing extra information that is used in the
propagation of uncertainty. The concept of a Gaussian mixture model consists of approximating the proba-
bility density function by a mixture of Gaussian distributions, which allows to consider complex distributions
without introducing extra complexity.

The research questions aim to guide and provide a clear statement of the work objectives. First, the oper-
ational requirements that the DA-GMM method must meet are stated:

R1. The percentage error in the computed collision probability must be ∆Pc < 8% to correctly estimate the
order of magnitude of the collision risk.

R2. The method’s computational load must allow in any case to compute Pc by the last station passage
before time of closest approach (TCA).

With this insight, two research questions are formulated. The first one is related to the full DA-GMM method,
while the second one is specific to the computation of collision probability for the ISS using the method of
equivalent cross-section area (MECSA) proposed by Chan (2008). This method allows to consider the real
shape of the satellite for the cross-section perpendicular to the main debris flow, by converting every element
of the body to a sphere of equivalent area. The computation of collision probability for the ISS has been
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identified as a potential source of improvement. Collision probability must be carefully assessed in this case
due to the catastrophic consequences that the event would have, which impact human life and the future of
space exploration. However, the current methods to compute collision probability for the ISS induce large
overestimation, which leads to an average of one collision avoidance manoeuvre (CAM) a year. These ma-
noeuvres can also pose a risk to life and equipment in the ISS. Reducing overestimation can reduce the risk of
astronauts in the ISS and allow to make informed decisions when multiple risks are detected simultaneously.
Moreover, this involves a reduction in energy associated to these avoidance events and the posterior return to
the nominal orbit. The second research question is devoted to study the field of accurate collision detection
for the ISS, using the MECSA.

Q1. How can the hybrid DA-GMM method reduce the time to compute collision probability in LEO satisfy-
ing the operational requirements?

Q1.1. What is the error derived from propagating the trajectory using Taylor expansion integration in
the DA framework?

Q1.2. What environment and acceleration models can be included to meet the operational require-
ments?

Q1.3. What is the maximum lead time that can be achieved within the operational requirements?

Q1.4. How does the accuracy of the DA-GMM method relate to alternative collision detection algo-
rithms?

Q1.4. Is the method able to predict the Iridium-33/Cosmos-2251 collision and the encounter time?

Q2. How can the MECSA be applied to reduce the over-estimation of collision probability for the ISS?

Q2.1. What is the error derived from considering a constant attitude and only one cross section of the
vehicle?

Q2.2. Is the MECSA able to discard potential collisions identified by the verified interval orbit propa-
gation that did not occur?

Q2.3. Can this method be used to determine the best collision avoidance strategy?

The second research question is related to the ISS, since this is the reference vehicle under study. However,
the method developed is intended to be applicable for any satellite with a known three-dimensional shape.

1.4. Report outline
The thesis work that allows to answer the research questions is structured as follows. The first part of the
thesis provides the required background to perform this research. Chapter 2 introduces the mission her-
itage that allows to understand the developed theory on uncertainty propagation and collision probability
calculation methods. In this chapter, a literature review of the techniques developed for similar applications
covering their characteristics and limitations is provided. Moreover, the reference mission and vehicle are
introduced and the mission requirements are stated and a road-map to follow the methodology is provided.
Following with the framework required to develop the DA-GMM method, Chapter 3 discusses the dynamics
and environmental models involved in the propagation of trajectories that will be coded in the differential
algebra software. The relevant reference frames and frame transformations are introduced and the equations
of motion for the satellite are provided. Moreover, the perturbations in acceleration to be included in the
dynamics are motivated and the environmental models are selected. Chapter 4 is dedicated to the definition
and selection of the uncertainty models for the state and environmental variables. The types of uncertainty
distribution included in this work are mathematically introduced and the values selected for each uncertainty
distribution are related to measurement errors.

The second part of the thesis involves the mathematical description of the DA-GMM method for collision
probability calculation. In Chapter 5, the uncertainty propagation with the hybrid Differential Algebra and
Gaussian Mixture Model approach is introduced. This includes the theory and implementation of the Gaus-
sian Mixture Model, the description of Taylor series integration and how it is related to Differential Algebra
computation and the reconstruction of the final state uncertainty. The theoretical explanations are combined
with examples to facilitate the comprehension of the method. In Chapter 6, the two methods developed for
collision probability calculation are explained, again with simplified examples. The multi-sphere method of
collision probability developed in this work is explained and illustrated in detail.
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The third part of the thesis consists of the simulation, verification, sensitivity analysis and final results of
the DA-GMM method for collision probability calculation with space objects. Chapter 7 covers the simula-
tion, verification and validation plan for the developed method. First, the software involved in the simulation
and the capabilities developed in this work are explained. The architectural design is described with the help
of two flow diagrams and the code optimisation required to reduce the CPU load of the DA integration is
explained. Moreover, the numerical methods especially used for the applications developed in this work are
introduced, while the remaining numerical methods are explained in Appendix A. The code verification per-
formed for the propagation of uncertainty developed in the Differential Algebra software is detailed and the
verification and validation plan for the full model is introduced. Chapter 8 treats the sensitivity analysis on
the uncertainty propagation to test the behaviour of the method for different model and method parame-
ters. Finally, Chapter 9 covers the results of the collision probability calculation for a series of test cases that
include fictitious and real-life scenarios. The final test performs a screening of the space debris resulting
from the Cosmos-1408 destruction and computes the collision probability of the threatening pieces with the
single-sphere and multi-sphere model. Chapter 10 concludes the research and provides recommendations
for future extensions of this work.



2
Mission heritage

In this chapter, the mission heritage regarding the uncertainty propagation and collision probability methods
is introduced. In Section 2.1, the uncertainty propagation methods developed to date for several applications
are described. After a trade-off, the hybrid Differential Algebra and Gaussian Mixture Model method is se-
lected as the best option to develop in this thesis work. Section 2.2 introduces the state of the art of collision
probability calculation methods and details the assumptions and limitations of each technique. The refer-
ence missions and reference vehicles selected for this work are introduced in Section 2.3 and Section 2.4
respectively. Section 2.5 details the mission and system requirements that will guide the development of the
collision probability calculation method. Finally, Section 2.6 introduces a road-map describing the method-
ology followed through the document. The objective of this diagram is to provide the reader with an extra
guidance and a place to re-visit during the document.

2.1. Uncertainty propagation methods
In the event of a perfect system, where the satellite state and environment could be accurately modelled,
the propagated trajectory of the target and chaser would allow to predict or discard a collision with no need
of further calculations. However, this scenario does not occur in real operations. Uncertainty is introduced
in the problem, coming from multiple sources. The most apparent is the uncertainty in the satellites state
(position and velocity), which is limited by the orbit determination process. Current techniques allow to
determine the position of active satellites to centimetre accuracy. This does not apply to space debris, which
are more difficult to track and its position is determined with a precision of tens to hundreds of meters. In
any case, the uncertainty in the state can never be zero and therefore a collision can never be completely
discarded by simply propagating the nominal trajectory. Moreover, there are other sources of uncertainty,
such as the characteristics of the environment causing the satellite acceleration or the physical properties of
each orbiting body. As a result, a different approach must be followed to estimate the risk of collision with
space debris or other active satellites. Once the concept of uncertainty is introduced, the satellite is modelled
by a probability density function. From this point, the risk assessment process can be divided into two steps.
First, propagate the probability density function (PDF) to the TCA. Second, calculate the collision probability
from the propagated probability density function. In this section, a summary of the methods proposed to
conduct the first step is provided.

The analytical approach to tackle this problem is through the time evolution of the probability density
function p(x , t ) of the state vector x , described by the Fokker-Planck equation (FPE):

∂p(x , t )

∂t
=−

n∑
i=1

∂

∂xi

[
p(x , t ) f i (x , t )

]
+ 1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂x j

{
p(x , t )

[
G(t )P (t )GT (t )

]i j
}

(2.1)

where n is the number of dimensions in the problem, f (x , t ) defines the dynamical evolution of the state, P (t )
is the covariance matrix and G(t ) is the diffusion matrix. The analytical solution of the FPE can be obtained
for simple dynamics (e.g., the two body problem). When other perturbing accelerations are added to the
dynamics, this equation becomes unsolvable, and alternative solutions need to be found to propagate the
PDF. Subsection 2.1.1 summarises the existing approaches to propagate uncertainty and solve or approximate
Equation (2.1).

7



8 2. Mission heritage

Uncertainty propagation mehtods

Linear methods Nonlinear methods Hybrid methods

Local linearization 
LinCov

Statistical
linearization

Monte Carlo:
Random sampling

Unscented
Transform

Gaussian Mixture
Model (GMM)

Direct Quadrature of
moments 

State Transition
Tensor (STT)

Differential Algebra
(DA)

Direct PDF
propagation

Polynomial Chaos
(PC)

Sampling
methods

PDF
approximation

Dynamics
approximation Analytical

STT - GMM

DA - GMM

PC - GMM

UT - GMM

Figure 2.1: Overview of uncertainty propagation methods

2.1.1. Methods summary
As illustrated in Figure 2.1, multiple methods have been derived to propagate uncertainty through nonlin-
ear dynamics, which can be classified into three categories. First, linear methods involving linearisation of
the dynamics that have been traditionally used to obtain a first approximation of the propagated PDF. Sec-
ond, nonlinear methods that are able to propagate the uncertainty considering the full expression of the
dynamics. These are divided into sampling methods, methods that approximate the PDF, methods that ap-
proximate the dynamics and methods that solve Equation (2.1) analytically. Finally, there are hybrid methods
that combine several techniques to escape the drawbacks of the independent techniques. From these op-
tions, linearisation techniques are excluded since they offer a very low accuracy and are not suitable for the
purpose of high-accuracy impact prediction. The set of nonlinear methods present several drawbacks that
make them suitable for different applications. Sampling methods can offer a very high accuracy at the ex-
pense of a high computational cost. Methods that approximate the PDF allow to increase the fidelity of the
propagated distribution, but their accuracy is linked to the dynamics propagation method combined with
it. Finally, dynamics approximation methods are efficient in accurately integrating the nonlinear equations
of motion, but when used alone, these methods do not provide large advantages in terms of computational
time compared to regular sampling techniques. To complement the benefits of different techniques, hybrid
methods are developed, which allow to obtain a high accuracy with a reduced computational load. In this
section, a brief description of each category and the benefits and drawbacks of each method is provided to
introduce the trade-off that includes hybrid method and allows to select the best option.

Nonlinear - Sampling methods
Sampling methods rely on the selection of individuals from the initial probability distribution to be propa-
gated through the nonlinear dynamics and reconstruct the final probability. Two methods fall into this cate-
gory: Monte Carlo sampling and the unscented transformation (UT).

The Monte Carlo approach is the most widely used method to obtain a high accuracy estimate of the
propagated distribution. It consists of drawing a large number of random samples from the initial PDF, and
using a given method (e.g., numerical integration) to propagate each sample to TCA. In this method, the ac-
curacy is directly related to the population size. With a sufficient number of samples, the results show a very
high agreement with the analytical solution (Sabol et al., 2012). To obtain a collision probability with a stan-
dard deviation of 10−X , at least 10−(X+3) samples are required. For the accuracy required to accept/discard a
collision and the need of CAM, this imposes a minimum of 107 simulations for each satellite. This number
can suppose a prohibitive computational load, especially considering the importance of lead time and alert
time in this scenario. As a result, although this method produces results with very high accuracy, it cannot be
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used for operational collision avoidance.
To reduce the number of samples, deterministic sampling methods have been developed. From these,

the unscented transformation approach is the most widely used. The main concept consists in reducing the
population size by selecting samples (denoted asσ-points) that capture the mean and covariance of the orig-
inal distribution. With this method, the number of samples required is twice the number of dimensions in the
problem. This reduces the sample size to 12 points in the case of the two-body problem. Naturally, the draw-
back of this method is a decline in accuracy. This method can approximate the mean and standard deviation
of the propagated distribution, but fails to capture the nonlinear effects. Solutions to increase the number of
σ-points have been proposed by Adurthi and Singla (2015). However, a large number of points are required to
obtain a high accuracy, which would further increase if non-Gaussian distributions are considered. Therefore
this method is discarded for the application under study.

Nonlinear - PDF approximation methods
As an alternative solution to describing the population by its samples, the PDF approximation techniques are
introduced. These need to be coupled with an integration technique and allow to simplify the propagation
process.

A common drawback in uncertainty propagation algorithms is the limitation to propagate Gaussian dis-
tributions. However, when an initially Gaussian distribution is propagated trough nonlinear dynamics, it
becomes non-Gaussian. To overcome this issue, the Gaussian Mixture Model (GMM) provides an alternative
method to reconstruct a non-Gaussian PDF. In this approach, the non-Gaussian distribution is approximated
by the weighted sum of a set of individual Gaussian density functions. This concept is further explained in
Subsection 2.1.3 and illustrated in Figure 2.2. Coupled with traditional numerical integration, this technique
does not provide a large advantage, since the number of samples to propagate is still large, leading to a large
computational cost with no visible increase in accuracy. However, this technique can be coupled to other un-
certainty propagation algorithms, reducing the number of runs to the number of Gaussian mixture elements
(GMEs). This approach is referred to as hybrid method, as illustrated in Figure 2.1.

Similarly to the GMM, the direct quadrature of moments method makes use of a weighted sum of Dirac
functions to approximate the initial distribution. These are then propagated to reconstruct the final PDF.
However, the propagation of Dirac functions is more complex than that of Gaussian components. Due to the
reduced applications and high complexity of this method compared to the GMM, the direct quadrature of
moments is discarded as an option for uncertainty propagation.

Nonlinear - Dynamics approximation methods
The most efficient option to reduce the computational load of propagating the uncertainty is though simplify-
ing the dynamics. There are four methods developed to this end, which can be classified into two categories:
Taylor integration and response surface mapping. The methods relying on Taylor integration are the state
transition tensor, interval analysis and differential algebra. The response surface mapping can be achieved
through so-called polynomial-chaos expansions. The purpose and description of these techniques is intro-
duced in this section.

Starting with methods based on Taylor series integration, Park and Scheeres (2007) proposed a method
to propagate the initial uncertainties through the Taylor expansion of the dynamics. This was achieved by
solving the state-transition tensors, which are the higher-order partial derivatives of the dynamics. These
state transition tensors offer information from the final state of the solution related to a deviation from the
initial state. In this way, instead of obtaining information from only the central point being propagated, Tay-
lor series integration offers extra information about the final uncertainty distribution, and these integration
only needs to be conducted once, as opposed to the multiple propagation of samples required in Monte Carlo
techniques. However, to apply this method with high accuracy, high-order Taylor series expansion is required,
which increases the computational load. For a fourth order Taylor expansion, the number of partial deriva-
tives to be evaluated is ∼ 104, making the method invalid for operational use when combined with sampling
techniques.

Following the concept of a state-transition tensor (STT), interval analysis was introduced by Moore (1968).
In this case, upper and lower bounds are set to a truncated Taylor series expansion of the initial state. Through
Taylor series integration, the solution of each integration step becomes the initial value for the following
step. This results in a bound for the values that the final solution can take. The benefit of this approach is
that, instead of combining Taylor series expansion with a Monte Carlo sampling technique, which requires
to propagate multiple points, only the extreme values of each variable are propagated. This approach was
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followed by Römgens (2011) to predict collisions with space debris. The main drawback of this method is
the overestimation of the solution set. This is caused by the fact that taking the interval values propagate the
uncertainty as a box with constant probability inside and zero probability outside. This overestimates the
actual uncertainty and since the bounds of the box (which in reality have a low probability) are propagated,
this effect increases with time. As a result, the bounds of the final solution are overestimated and this effect
can grow exponentially. This method allows to rule out a collision, but it is impractical to evaluate the risk in
cases when a potential impact is detected.

Differential algebra offers an alternative way to deal with the state-transition tensors. It allows to compute
the Taylor expansion of an initial value problem in a computerised environment, creating a relation between
an initial state perturbation and the final state. In this case, the computational performance of the method
to obtain the Taylor series integration is much faster than the numerical integration of the partial derivatives
of the state transition tensor. However, if this method is combined with a Monte Carlo sampling algorithm
to obtain the density function of the satellite state at the final time, the computational load is still too high.
Morselli et al. (2012) found that the method required 19,000 seconds to compute the collision probability with
107 samples. Therefore, the method is still not valid for operational collision probability computation on its
own.

Finally, the polynomial chaos expansion method (PC) consists in approximating the solution of the dif-
ferential equation as a weighted sum of multivariate polynomials. To do so, a reduced number of samples is
drawn from the initial distribution and propagated through numerical integration (a Monte Carlo technique
with reduced sample size). The propagated solutions are used to fit a response surface of the final state as a
function of an initial state deviation, using polynomials. The accuracy of the method can be adjusted with
the sample size used for the fit and the polynomial order. The method has the advantage that it can be used
to propagate any initial distribution and that it is independent of the dynamical model considered. However,
the method can be complex to set up, depending on the technique used to fit the polynomial coefficients. The
techniques used include least squares regression (Jones and Doostan, 2013), stochastic collocation (Bhusal
and Subbarao, 2018), Monte Carlo sampling (Le Maître and Knio, 2010) and compressive sampling (Doostan
and Owhadi, 2010). The computational load can be too high if the method is coupled with a Monte Carlo
sampling to propagate the uncertainty of the initial state. Moreover, the polynomial chaos expansion pro-
vides the relation between a single final time and the initial state. If the relation between more integration
steps is required (e.g., to integrate the collision probability with time in a long term encounter), the polyno-
mial fit should be done in multiple time steps, leading to a prohibitive computational load.

Nonlinear - Analytical integration methods
Analytical integration methods rely on solving the Fokker-Planck equation, which describes the time evolu-
tion of the flow. The FPE reduces to Liouville’s equation when no process noise is considered. The advantage
of solving this equation is the high accuracy and low computational load that it requires. Moreover, it allows
to propagate the uncertainty from any initial probability density function. The method was used by Kumar
(2012) to propagate the uncertainty in the two-body problem, with excellent results. However, the analytical
solution can only be obtained for problems with simple dynamics. Adding the J2 perturbation already makes
the equation unsolvable analytically. Weisman et al. (2016) tried to adapt the technique to include the J2

perturbation by approximating its effect using mean element theory. However, this was already too complex,
and adding other perturbations is thus unfeasible.

Hybrid methods
None of the methods introduced so far appears to be useful to achieve a high accuracy propagation of the
state uncertainty with a medium-low computational load. Hybrid methods provide an alternative to improve
the uncertainty propagation process in terms of accuracy and computational load. Two functions can be
identified in the uncertainty propagation process: the treatment of the initial state and the propagation to
final time. The initial state can either be sampled (Monte Carlo approach or Unscented Transformation) or
approximated. The state propagation to final time can be done through numerical integration, dynamics
approximation methods (STT, DA, PC, Interval analysis) or analytical evaluation of the FPE. By properly com-
bining the treatment of the initial state with the propagation method the uncertainty propagation process
becomes optimal. The hybrid methods presented up to date consist in combining a Gaussian mixture model
with a dynamical approximation method.

When combining the GMM with STT or DA, instead of propagating each sample, the mean and covariance
of each GME can be obtained from the Taylor series expansion of the final state, and the final PDF can be
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reconstructed as the weighted sum. This reduces the number of samples to be propagated from 107 to the
required number of GMEs. Sun et al. (2019) applied this method to satellite state uncertainty propagation and
confirmed that the propagated PDF had a high accuracy, which increased with increasing number of GMEs
and Taylor expansion order.

Combining the GMM with PC follows a different procedure. In this case, dividing the initial PDF into
multiple GMEs with smaller standard deviation allows to reduce the order of the polynomial. This reduces
the number of coefficients to fit and therefore the computational load. The method was applied by Vittaldev
et al. (2016) to propagate the uncertainty in the state of satellites.

2.1.2. Trade-off
Based on the characteristics of the available uncertainty propagation methods, the following conclusions
have been drawn:

• The Monte Carlo approach requires a high computational cost to provide an accurate solution. As
a result, the method is very useful for verification but not valid to compute the collision probability
during satellite operations.

• Contrary to the Monte Carlo, the unscented transform method is very fast but cannot capture the non-
linear effects and provides a low accuracy solution. Therefore, this method is not valid for accurate
collision probability calculation.

• The state transition tensor method integrates the partial derivatives of the equations of motion to ob-
tain the Taylor expansion of the flow. This process of calculating the Taylor expansion results in a high
computational cost, for which the method is disregarded.

• Interval analysis is a very useful approach to rule out a collision. However, the method does not provide
an insight on the collision probability when a collision is detected. This method was already applied
to the topic of collision detection by Römgens (2011). For this work, the objective is to calculate the
collision probability and therefore interval analysis is not the selected method.

• Differential algebra offers an efficient approach to propagate the uncertainty through Taylor integra-
tion. However, this method alone does not provide much improvement compared to a traditional
Monte Carlo with numerical integration. The computational cost of this process is still prohibitive.

• The polynomial chaos expansion is also a good candidate, although complex method due to the poly-
nomial fitting. Moreover, the method by itself requires a high polynomial order to obtain an accurate
solution, which results in a high computational cost.

• Analytically solving the FPE is not possible if perturbations are added to the dynamical model. Having
a complete dynamical model is crucial to obtain an accurate solution and therefore this approach is
not selected.

• Hybrid methods are the best option to accurately propagate the uncertainty in the satellite state while
keeping a low computational cost. Two approaches are interesting, the hybrid DA-GMM and the hybrid
PC-GMM. The hybrid PC-GMM is more complex and presents the drawback of providing a response
surface for only one time step.

Based on the information gathered on each method and the characteristics in terms of accuracy, computa-
tional load and complexity, the hybrid DA-GMM method is selected. This method has already been tested in
the field of satellite state uncertainty propagation. In Subsection 2.1.3 and Subsection 2.1.4 a review of the
history of the Gaussian Mixture Model and Differential Algebra applied to the field of orbital mechanics is
provided.

2.1.3. Overview of the Gaussian Mixture Model
The basic concept of the Gaussian mixture model is to divide the initial PDF into a weighted sum of Gaussian
density functions as illustrated in Figure 2.2. There are several reasons to use this approach. First, by dividing
the initial distribution into a large number of elements, the uncertainty (standard deviation) of each element
is smaller. This allows to reduces the error in the propagation and allows to use lower-order techniques.
Moreover, reducing the uncertainty of each GME allows to assume that the distribution remains constant
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Figure 2.2: Example of one-dimensional GMM using three GMEs with µ= [0,3,5],σ= [2,0.7,1] and equal weights

during propagation through nonlinear dynamics. Second, using a GMM allows to employ techniques that
only propagate the mean and standard deviation of a distribution instead of using a Monte Carlo approach
that requires a large number of samples. This allows to reduce the number of simulation runs and therefore
the computational load.

As explained, the GMM needs to be combined with a propagation technique. Multiple approaches have
been tried in the field of orbital uncertainty propagation, which have proved that the method’s reliability.
Terejanu et al. (2008) used this approach combined with linear theory to propagate the uncertainty in non-
linear dynamic systems. Although the use of a GMM improves the accuracy of the propagation, the linear
propagation using state transition matrix is a very simplified method and is still not valid for high accuracy
applications. Continuing in this direction, Vishwajeet et al. (2014) combined the Gaussian mixture with the
use of unscented transform for uncertainty propagation in perturbed two-body orbits. Although the method
allowed to use a complex dynamical model including the J2 and drag perturbation, the accuracy of the un-
scented transform is still too low for propagation. With this approach, the mean and standard deviation of the
position PDF reached errors of 2 km after 5 hours of propagation. To improve the accuracy, the GMM needs
to be combined with high accuracy propagation methods. Vittaldev and Russell (2016) used a polynomial
chaos expansion to propagate the state uncertainty of objects in LEO and GEO. In this way, the accuracy of a
Monte Carlo simulation with 108 samples could be reached with only 104 runs. However, this results in the
instantaneous collision probability at TCA, but does not allow to integrate for long-term encounters. This is-
sue does not appear when combining GMM with differential algebra. Sun et al. (2019) tested this approach to
propagate the uncertainty of satellites in LEO, taking into account the J2 perturbation. In this case, the Monte
Carlo accuracy could be reached with 5,000 simulations, which correspond to the 5,000 GMEs that form the
Gaussian mixture.

One of the main challenges that the Gaussian mixture model presents is the potential need to update the
weights during the integration. In linear system the weights are constant, but for highly nonlinear systems
it can be required to modify the weights to keep following the Fokker-Planck equation. This process can be
very complex since it requires to perform an optimisation problem at each integration step for each GME.
Terejanu et al. (2008) developed two approaches to apply this update to simple nonlinear systems. For a large
number of elements, the computational load required to solve the optimisation problem would make the
approach invalid for operational use. Horwood et al. (2011) found that in the case of orbital state uncertainty
propagation, the weight update is not required if the correct set of coordinates is used (Kepler elements or
modified equinoctial elements). The research proved that in this case the effect of weight update can even be
counterproductive, reducing the accuracy.

2.1.4. Overview of Differential Algebra
Differential algebra is a computational technique to perform Taylor series integration in an efficient way.
On its own, this technique does not show many advantages compared to traditional numerical integration
methods. However, the mean and standard deviation of a variable distribution can be reconstructed from the
Taylor expansion coefficients of the variable. This makes differential algebra a powerful tool to avoid multiple
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sample propagation when combined with the concept of Gaussian mixture models.
Differential algebra has been well tested in the field of orbital dynamics, showing excellent results. Di

Lizia et al. (2008) applied this technique to integrate the trajectory in the case of Halo orbits in the circular re-
stricted tree body problem and to a Mars aerocapture problem. In both cases, the trajectory was propagated
using an eighth-order Taylor series expansion, which results in very high accuracy results. A benefit of this
approach is that it allows to easily perform a sensitivity analysis on the dynamical systems under study. A sim-
ilar research was conduced by Lunghi et al. (2018) for optimisation in atmospheric entry studies. Using the
Taylor series expansion it is possible to obtain information about the sensitivity of the solution to variations
in the optimisation variables.

Directly applied to the field of uncertainty propagation for collision risk estimation, Morselli et al. (2012)
researched on advanced Monte Carlo methods coupled with differential algebra. Although the work only con-
sidered the unperturbed two body problem, it demonstrated that differential algebra can be used to propa-
gate trajectory uncertainty in LEO and GEO. Valli et al. (2013) applies the same method to the perturbed
two-body problem (including the spherical harmonic up to degree and order four and the drag acceleration).
In this work, only uncertainty in the satellite position and velocity is considered. With this setup, the PDF
is propagated achieving an error in the position mean and standard deviation after five hours of propaga-
tion < 1 cm for the sixth-order Taylor expansion. In this study the eight-order Taylor expansion is used as
benchmark, proving that the method can be used for high-accuracy applications.

2.2. Collision probability calculation methods
The second step in the process of collision risk assessment is the calculation of the collision probability from
the propagated state uncertainty. This step allows to quantify the risk and set a threshold for mitigation strate-
gies to be applied. When no information on the state uncertainty was available, the only metric to assess the
risk was the miss distance at time of closest approach. However, this magnitude did not provide full informa-
tion on the risk. With the development of uncertainty propagation techniques, the collision probability can
be calculated. This metric can still cause to underestimate the risk due to a phenomenon called probability
dilution. When the initial covariance of one or both objects is too large, the final collision probability can
become small due to the lack of knowledge of the satellite real position. However, collision probability is still
the best metric to assess the risk of collision, and multiple techniques have been developed to calculate it.

The calculation process is divided into two categories: long-term and short-term encounters. The main
differences are the time span and relative velocities of the encounter, which allow to apply special assump-
tions to avoid time integration. Essentially, short-term encounters deal with the computation of a two-
dimensional collision probability, while long term encounters require time integration of the joint probability
density function.

2.2.1. Short-term encounter
Short-term or high-velocity encounters occur in LEO, where the relative velocity between the target and
chaser is very high (up to 15 km/s). This allows to apply certain assumptions to simplify the calculation
of the collision probability.

A1. The target and chaser trajectories can be represented by straight lines with constant velocity during the
encounter.

A2. The uncertainty in velocity can be ignored.

A3. The position uncertainty during the encounter is constant and equal to the value estimated at the
conjunction.

A4. The uncertainties in the position of the target and chaser follow a Gaussian distribution and are uncor-
related.

A5. Both bodies are modelled as spherical.

Foster’s method
The original method to compute the collision probability (Pc ) using these assumptions was developed by
Foster and Estes (1992). This method is still used and all modifications developed are intended to increase the
computational efficiency, not to modify the results. For this approach, it is required to know the covariance
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matrix (P ) and the state (position and velocity) of the target and chaser at the TCA. From these data, the
probability density function at TCA is obtained for each body and is merged into a combined PDF. To simplify
the collision, it is assumed that both objects follow a straight trajectory (which defines a linear encounter
geometry). This allows to define a conjunction plane, which contains the relative velocity vector and the
target and chaser velocity vector. This plane contains all the uncertainty in position, and allows to reduce the
problem to two dimensions. The remaining task is to project the uncertainty into the encounter plane and
evaluate the two-dimensional integral of the PDF to calculate Pc . Following this approach, the probability is
computed as:

Pc = 1

2π |P∗| 1
2

∫ R

−R

∫ p
R2−y2

−
p

R2−y2
exp

(−S∗)
dz dy (2.2)
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)
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ρ̃∗ = T ∗C ρ̃, ρ̄∗
o = T ∗C ρ̄o

(2.3)

P∗ is the covariance matrix projected in the conjunction plane, R is the combined radius, C and T are coordi-
nate transformation matrices, ρ̄, ρ̃ are the nominal and perturbed miss vector between both bodies respec-
tively.

The purpose of this method is to screen the collision probability of hundreds of thousands of space objects
against each other, and therefore a very low computational load is required. This was not achieved with
Foster’s formulation, and therefore several mathematical re-definitions of problem have been conducted to
increase the computational efficiency.

Patera’s method
To increase the computational load of the method, Patera (2001) proposed an alternative way to evaluate
Equation (2.2) by reducing the two-dimensional integral along the hard-body area to a one-dimensional in-
tegral along the hard-body perimeter. The hard-body is defined as the volume formed by the two colliding
bodies. While the assumptions concerning the geometry of the encounter and the state uncertainty still ap-
ply to this method, it allows for an easier numerical implementation with a reduced computational effort. A
small adjustment of the method was published by Patera (2005), which further reduced the computational
time, becoming 20 times faster than Foster’s method.

Besides the increased efficiency, this method presents a clear advantage with respect to equivalent for-
mulations regarding the allowed object shapes. Since the one-dimensional integral is conducted along the
perimeter of the body, it is not limited to a spherical shape anymore. In this case, the hard-body can be de-
fined by a set of polygons that form a completely closed surface. This increases the fidelity of the model. The
grid points defining the polygons are projected to the encounter plane to compute the collision probability.
This improvement makes this method the baseline for the development of derived methodologies for short-
term encounters. Moreover, this is the method of choice to compute the collision probability for short term
encounters in ESA’s software for Collision Risk Assessment and Avoidance Manoeuvre (CORAM), (Merz et al.,
2017).

Alfano’s method
Alfano (2005) developed an equivalent method to Patera’s in terms of accuracy and computational load, again
finding alternative ways to integrate Equation (2.2). However, this method assumes that he shape of the
satellites can be defined as a sphere. In this case, the double integral is reduced to a single integral by making
use of error functions (which in the end are defined as an integral, but are computationally more efficient to
calculate). The resulting equation is numerically integrated to obtain the probability of collision.

Chan’s method
Finally, Chan (1997) proposes a method to analytically compute the collision probability, with the assump-
tions defined so far. This is achieved by converting the two-dimensional Gaussian PDF into a one-dimensional
Rician PDF. The main advantage of this formulation is that it increases the computational efficiency as it is
1,000 times faster than Patera’s and Alfriend’s method. However, the method presents several limitations in
terms of the combined object size ([1 ≤ R ≤ 100] m), and the standard deviation of the position error at TCA
([1 ≤ σ ≤ 10] km). The method is included in the NASA Conjunction Risk Analysis (CARA) and STK software
for the computation of two-dimensional collision risk. While this approach requires the object to be spheri-
cal, Chan develops an approximation that transforms each surface into an equivalent circle and performs the
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two-dimensional integration on that circle. This method is labelled the Method of Equivalent Cross-Section
Area (MECSA) and was initially considered to be selected for this work, but finally an alternative technique
was developed and implemented as described in Section 6.3.

2.2.2. Long-term encounter
The assumptions described so far cannot be applied to cases of a long-term or low-velocity encounter. This
scenario occurs in higher orbits such as GEO and in cases where the relative velocity is low (e.g., if both
satellites are in very similar orbits). Therefore, an alternative approach needs to be derived for these cases.

There are two main approaches that have been followed to tackle this problem. The first approach is
based on the two-dimensional method described so far, usually Patera’s method due to the flexibility pro-
vided by using a line integral. For these cases, the encounter geometry is defined by a set of volumes (cylin-
ders, parallelepipeds, etc.) that can be divided into planar sections. In each time step, the two-dimensional
probability is computed for each section, assuming a linear motion and following Equation (2.2). Moreover, a
one-dimensional probability is computed along the relative velocity vector on the volume. For each volume,
the collision probability is obtained by multiplying the values obtained for these two probabilities. Finally, the
total collision probability is obtained by adding up the probabilities for the individual volumes. A common
limitation of these methods is that both objects must have a non-negligible relative velocity. Considering that
these methods are developed for long-term, slow encounters, there are cases where this condition will not be
satisfied. The second approach consists of computing the three-dimensional integral of the collision proba-
bility over time. This is done by defining the variable of collision probability rate, and calculating the flow of
this variable over the surface of hard-body volume during the encounter time interval. Finally, the collision
probability rate is integrated over time.

Patera’s method
Patera (2003) proposed an approach using contour integration, which did not require assumptions on the
trajectory of the target and chaser. The method follows the first approach and consists of transforming the
problem to a different frame in which the covariance matrix is symmetric in three dimensions. With this
methodology, the collision probability was calculated with an error of 6% for satellites in geo-synchronous
orbits. The method was been included in ESA’s software CORAM, for the calculation of collision probability
in long-term encounters. Since the two-dimensional collision probability in the encounter plane is calcu-
lated using Patera’s method with the line integral along the perimeter, in principle any shape composed by
parallelepipeds can be modelled. However, for simplicity a spherical body is assumed.

Chan’s method
Based on the work for two-dimensional collision probability developed by Chan (1997), the method was ex-
tended to long-term encounters (Chan, 2004). Following the first approach for this type of collisions, the two
dimensional probability is integrated for a section of the collision volume and then integrated along the vol-
ume. It is chosen to evolve the size of the volume with the change in the uncertainty ellipsoid. As a result,
the integration volume is set to be bounded by an envelope of a family of ellipsoids. Also in this case, Chan
uses the method of equivalent cross-section area, applied to the two-dimensional integration in each "slice"
within the integration volume.

Alfano’s methods
Salvatore Alfano developed three different methods to compute the probability of collision for long term
encounters by performing two-dimensional integration over the sections forming the volume and then one-
dimensional integration over the span of the volume (Alfano, 2006; Alfano, 2007). For the encounter volume,
three different options are proposed. The first method consists of adjoining tubes (cylinders) in Cartesian
space. The second method considers adjoining parallelepipeds to model the encounter volume. Finally,
a method that discretises the encounter geometry through volume elements (volumes) is presented. The
firsts two methods introduce an error due to the gaps that are created between the successive tubes/paral-
lelepipeds. This error can be reduced by incriminating the number of elements, which affects the computa-
tional load. The third method requires the definition of grid of voxels (or unit cubes), which becomes more
computationally intense than the previous two. According to Alfano (2006), even with a reduced number
of voxels the computation runs slower than real time, and therefore the method is only recommended for
reference case determination, similarly to the Monte Carlo methodology. The methods are included in the
commercial software STK to compute the probability of collision in long-term encounters.
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McKinley’s method
McKinley (2006) proposed a variation of the cylinder approach that bypasses the problem of gaps between
the different volumes by truncating the cylinders at their intersection. The three-dimensional integral of the
Gaussian probability over the cylinder is calculated taking into account the previously computed integration
limits for the truncated body. The collision probability is calculated for each volume and added up to obtain
the total value. This method is currently included in the NASA-CARA software and is the method selected for
long term encounters. The results provided by this method have an error within an order of magnitude of the
Monte Carlo results. However, this still has large room for improvement.

Coppola’s method
Finally, the only method developed up to date that follows the second approach is the time integration of
collision probability rate presented by Coppola and McAdams (2012). This method is the one selected by
NASA-CARA to calculate the collision probability for long-term encounters. The method includes both the
position and velocity uncertainties and allows for any encounter geometry. To solve the probability of col-
lision (a 12-dimensional integral), nine dimensions can be integrated analytically. The remaining three are
solved numerically through a two-dimensional integral over a sphere and a one-dimensional integral over
time. To do so, it is assumed that the probability distribution of the target and chaser are independent. More-
over, the method assumes that the probability is Gaussian and that the encounter geometry is a sphere.

2.3. Reference mission
In this section, the reference scenarios considered as a baseline for this work are discussed and motivated.
From the review of collision probability calculation methods, it is observed that the problem can be di-
vided into short-term and long-term encounters that require different assumptions. While the short-term
encounter has been deeply studied and computationally optimised, the long-term encounter remains a chal-
lenge. The methods developed up to date are either computationally expensive, or not applicable to all cases.
Therefore, this work aims to be valid for both long-term and short-term encounters.

Besides the encounter geometry, the allowed mission scenarios are also constrained by the orbital alti-
tude, which affects the dynamical model required for the propagation. Based on the density of space objects
at different altitudes, it is observed that LEO is the most crowded region and therefore presents the high-
est risk in the present and in the foreseen future. Accurate collision detection is fundamental in this region
and will become increasingly crucial with the deployment of satellite constellations. Therefore, the reference
mission will be placed in LEO, although the collision detection method will be extended and tested for higher
altitudes. Not all altitude bands in LEO pose the same risk to satellites. As observed in Figure 2.3, the peak
of concentration lies around 800 km altitude and it has increased significantly between the two dates de-
picted. This altitude band corresponds to the region where the Cosmos-2251/Iridium-33 collision took place
in February 2009, creating more than 106 pieces of debris larger than 1 cm. Due to this event, this altitude
region has become of high interest to perform collision risk detection and it is selected as a baseline for this
study.

A second area of interest is found at an altitude of 400-450 km, due to the presence of the International
Space Station(ISS). Until now, collision risk for the ISS has been overestimated, to ensure the safety of the
crew and the vehicle. However, nowadays there are multiple events that could lead to overestimation posing a
larger threat. For example, in the case that multiple debris are detected to potentially collide with the ISS, it is
required to know which of these objects pose a higher risk to perform the best collision avoidance manoeuvre.
The ISS orbit is therefore selected as the second reference mission.

Both of these reference missions have very low eccentricities and low altitudes. A third reference scenario
is created to include highest orbital altitudes and verify that the method can be used for orbits with high
eccentricity. The orbital parameters defining these orbits are presented in Table 2.1. The orbital inclination
of these orbits are also selected following the same reasoning. For the LEO case, an inclination of 60 degrees
is chosen, which represents the most crowded orbital plane at this altitude. For the ISS orbit, the inclination
coincides with the real inclination of the ISS (51.64 deg) and for the eccentric orbit, a retrograde trajectory
with 98deg inclination is selected to test all possible scenarios.

It must be noted that these reference missions are used to develop and test the uncertainty propagation
algorithm. Moreover, real verification and validation scenarios are simulated and analysed, and these will be
presented separately in Chapter 9. For this purpose, three real scenarios are considered. First, the Cosmos-
2251/Iridium-33 collision event is simulated to compute the risk of collision with the available tracking data.
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Figure 2.3: Spatial density of space objects >10 cm in LEO on 2009 and 2018 (Horstmann et al., 2018)

Table 2.1: Orbital parameters and initial velocity of reference missions.

Case a [km] hp [km] ha [km] e [-] i [deg] v [km/s]

LEO 7178.137 800 800 0 60 7.45

ISS 6800.137 419.416 424.58 0.00038 51.64 7.65

Eccentric 9378.137 655.46 5344.53 0.25 98 8.41

Second, the close encounter between the Chinese rocket body Chang Zheng-4C and the Cosmos-2004 satel-
lite that occurred in 2020 is simulated and compared to the predictions performed by LeoLabs 1. Finally,
after the anti-satellite missile test performed in November 2021 that destroyed the satellite Cosmos-1408, a
screening of potential approaches and collision probability estimation with the ISS is performed.

2.4. Reference vehicles
The reference vehicles are selected according to the mission scenarios that are studied as part of the valida-
tion. For the general application of the DA-GMM method of collision probability calculation with the single-
sphere assumption, the only parameters of the vehicle that are required are: ballistic coefficient (defined by
area, mass, drag coefficient) and the radius of the sphere fitting the body. For the case of the ISS, the multi-
sphere model is developed in Section 6.3, which takes into account the full three-dimensional shape of the
vehicle. For this, a three-dimensional model of the satellite is required. The following objects are involved in
the collision scenarios studied. From the satellites introduced, the full geometrical shape is only considered
for the ISS, due to its more elongated shape, and the need for an accurate collision probability estimation
regarding this inhabited vehicle.

Cosmos-2251
Cosmos-2251 was a Russian military communications satellite launched in 1993 and functioning until 1995
although the nominal mission duration was of five years. By the time of the collision with Iridium-33, the
satellite was defunct and there was no option to perform any collision avoidance manoeuvres. Although at
the time of satellite end-of-life there were no international regulations forcing to remove the satellite from the
congested orbit, this is currently a protected region and satellites need to be de-orbited or put in a graveyard
orbit in less than 25 years from nominal end-of-life. The satellite had a mass of 900 kg and a frontal area of 4
m2 is assumed.

Iridium-33
Iridium-33 was part of the Iridium constellation consisting of 66 satellites, 11 in each orbital plane, to pro-
vide global L-band mobile communication. The satellite was still controllable at the time of the collision with

1https://www.leolabs.space/

https://www.leolabs.space/
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Cosmos-2251 in 2009. The Iridium satellite operator had the power to perform a Collision Avoidance Ma-
noeuvre, but it was concluded that the collision risk was low and a manoeuvre was not required. The satellite
had a mass of 689 kg, and a frontal area of 2.2 m2 is assumed.

Cosmos-2004
Cosmos-2004 is a Russian military navigation satellite currently inactive. The satellite was involved in a close
encounter event with the Chinese rocket module Chang Zheng-4C in October 2020, and will be used as a test
case for the method presented in this work. The spacecraft has a mass of 825 kg and a frontal area of 13 m2

is assumed. The satellite has a large boom of 18 m which must be taken into account in the calculation of
collision probability.

Chang Zheng-4C
The Chang Zheng 4C (also known as Long March 4C) is a Chinese launch vehicle consisting of three stages.
The upper stage is currently orbiting Earth with a perigee and apogee altitudes of 977 km and 1210 km re-
spectively. With a mass of 50,000 kg and a height of 14.79 m, the consequences of a head-on collision with
another space object would have been disastrous. Fortunately, this event did not occur but it provides an
interesting case for study. Moreover, in this case the object is very elongated, and the effect of changing the
encounter geometry based on the orientation of the object can be evaluated.

International Space Station
The International space Station, launched in 1998, has been the centre of scientific research in micro-gravity
and demonstration for human spaceflight activities. From its deployment, the ISS has been home of 66 expe-
ditions with of a total of 251 crew members from 19 countries, including the visit of the first tourist, Yusaku
Maezawa who arrived at the station on December 8, 2021. Being an inhabited vehicle, collision risk estima-
tion is crucial and special guidelines and offices have been created to perform this task. However, these often
rely on overestimation, which can lead to a lack of knowledge of the real risk of collision. This can be critical
if the encounter occurs during a docking or extra-vehicular operation, or if multiple debris simultaneously
threaten the vehicle. The ISS has a span of 109 m and weights 444,615 kg. In this work, the complete shape
of the ISS is modelled and included in the collision probability calculation software by using a multi-sphere
mesh to approximate the surface integration of the probability flow.

2.5. Mission and system requirements
The following mission and system requirements are specified as a guideline that is followed through the de-
velopment of the DA-GMM method. First, the mission requirements setting the types of inputs and the ex-
pected outputs of the method are defined.

MISS-1 The error in Pc calculation of the DA-GMM method with respect to the Monte Carlo simulation must
be < 5%.

MISS-2 The method shall detect a potential collision with a lead time of at least two days with the specified
accuracy.

MISS-3 The method shall be applicable to all objects > 5 cm at an orbital altitude range of 400-3000 km.

MISS-4 The method shall be applicable to objects in any orbital plane (i.e., inclination range [0° 180°]).

MISS-5 Simplifications in the force and environment models shall have an acceleration error < 10−7 m/s2.

MISS-6 The method shall correctly predict/discard past events of potential collision such as the Iridium-
33/Cosmos-2251 collision or the CZ4C/Cosmos-2004 close approach.

MISS-7 The method shall predict the time span of the encounter.

MISS-8 The method shall be valid for all types of encounter geometries, including long-term and short-term
encounters.

The simulators is developed in this work to apply the DA-GMM method shall obey the following system re-
quirements:
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SYS-1 The method’s computational load must allow to compute Pc within the alert time before the last
station passage of the satellite under analysis.

SYS-2 The uncertainty model shall at least contain the uncertainty of the target and chaser state.

SYS-3 The possibility to add uncertainty in the atmospheric density and ballistic coefficient shall be in-
cluded in the simulator.

SYS-4 The rotational dynamics shall be neglected.

SYS-5 For each body, the hard body radius shall be an input to the model. For the ISS, a simplified geomet-
rical model shall be provided.

SYS-6 The integration error for numerical and Taylor series integration shall be at least three orders of
magnitude lower than the model acceleration threshold (10−10 m/s2).

SYS-7 The method shall provide as a result the Pc and the time history of the target and chaser state PDF.

Finally, this work relies highly on statistics, and therefore must satisfy the following statistical requirements:

STAT-1 The L2 error for the GMM splitting shall be < 10−7.

STAT-2 For the Pc calculation with time integration, the integration time shall contain the period when the
miss distance is < 30 km.

STAT-3 The number of GMEs shall allow the propagated GME to pass the specified Gaussian hypothesis
tests.

2.6. Methodology road-map
The methodology followed to develop the DA-GMM method for collision probability can become quite cum-
bersome and mathematically extensive. Despite the effort made to complement the mathematical concepts
with visual examples, the procedure can still be complex to understand. To assist the reader through the
immersion in the following chapters, a road-map is added. Along the explanation of the methodology, the
reader can refer back to the road-map to understand the bigger-picture.

The road-map is divided into four steps, which can be categorised into two different phases of the colli-
sion probability calculation process. The first three steps belong to the uncertainty propagation process, to
obtain the probability distribution of the satellites position and velocity at the time of the encounter. The
detailed mathematical explanation of this phase is provided in Chapter 5. To develop these method, a set of
environmental and force models are required to be coded in a differential algebra software, using analytical
expressions only. As observed, this is an input to Step 2. The theory and choices related to the environmen-
tal models are found in Chapter 3, and are introduced before diving into the methodology of the DA-GMM
method. Moreover, to develop the uncertainty propagation method it is required to have some insight on
the types of uncertainty distributions and the specific values that are expected for the satellites and missions
under study. This is also provided as complementary information to the methodology in Chapter 4.

The last step corresponds to the collision probability calculation phase, which is detailed in Chapter 6.
In this work, two different models are developed to compute this probability. First, a baseline model that
considers the shape of the satellite to be a sphere, and second, an extended model that allows to consider
any geometry. The choice of model does not have a large effect on the methodology. The full multi-sphere
DA-GMM methodology, summarised in these four steps, is therefore introduced in Chapter 5 and Chapter 6.

In Chapter 7, the methodology presented in this road-map is transformed into a software architecture
diagram, that presents all the processes and relationships involved in the computation of the collision prob-
ability. Although both diagrams share a same background, the software architecture includes details that are
defined later in the document, and is more related to the underlying mathematics.
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STEP 1. SPLITITING INTO A GAUSSIAN MIXTURE MODEL

Input
Number of Gaussian mixture elements (GMEs)
Initial state of the space objects (xA(t0),xB(t0))
Initial state covariance of the space objects (PA(t0),PB(t0))

Steps 1.1. Obtain univariate splitting library
1.2. Obtain multi-variate split via a refinement of the univariate division

Output Gaussian Mixture Model of the initial state uncertainty (Pi,μi,ωi)t0

STEP 2. TAYLOR SERIES INTEGRATION IN DIFFERENTIAL ALGEBRA

Input
Dynamics model coded in DA software with analytical expressions
Taylor expansion order, k
Encounter time span
Body properties (frontal area, mass, CD)

Steps
2.1. Initialise the variables in the DA environment 
2.2. Initialise the environmental model for the initial time of propagation 
2.3. Integrate the trajectory in the DA computer environment

Output Taylor expansion of the final state for a deviation from the initial
state, for each GME (𝓣(xA(ti)),𝓣(xB(ti))

STEP 3. UNCERTAINTY PROPAGATION FOR EACH ELEMENT

Input
Taylor expansion of the final state for a deviation from the initial
state, for each GME (𝓣(xA(ti)),𝓣(xB(ti))
Initial state covariance of the space objects (PA(t0),PB(t0))

Steps 3.1. Pre-compute the Hafnian operator
3.2. Re-construct the final state uncertainty for each GME

Output Gaussian Mixture Model of the final state uncertainty (Pi,μi,ωi)tf

STEP 4. COLLISION PROBABILITY CALCULATION

Input Three-dimensional geometry of the colliding objects
Gaussian Mixture Model of the final state uncertainty (Pi,μi,ωi)tf

Steps

4.1. Decide between multi-sphere or single-sphere method
4.2. Obtain sphere mesh of the body (if multi-sphere)
4.3. Obtain Lebedev quadrature points and weights
4.4. Surface integration to obtain the instant collision probability rate
4.5. Integrate to obtain the collision probability, Pc

Output Instantaneous hazard along the body surface
Collision probability, Pc

Figure 2.4: Road-map to follow the methodology of the multi-sphere DA-GMM method developed in this work.



3
Flight dynamics and environmental model

This chapter introduces the resources required to model the physical environment of the satellite and prop-
agate its trajectory. To correctly identify the state of the satellite in the trajectory and during the conjunction,
a set of reference frames are presented in Section 3.1. To operate between different reference systems, frame
transformations are developed in Section 3.2. Section 3.3 presents the different sets of elements that can be
used to model the state of a body, and their advantages and drawbacks. These include Cartesian coordinates,
Kepler elements, modified equinoctial elements (MEE) and unified state models (USM). In Section 3.4, the
equations of motion governing the dynamics in the different state models are introduced. Finally, Section 3.6
summarises the perturbation forces that act on the satellite for the reference mission presented in Section 2.3
and discusses their inclusion in the physical model.

3.1. Reference frames
This section summarises the reference frames required for the description of vector states in the context of
space debris collision probability. For each reference frame, the origin and the directions of each axis are
given and their application is described. Unless specified otherwise, the definition of the reference frames is
based on the work by Mooij (2016).

Earth Centred Inertial Reference Frame (I-Frame)
This reference frame is in reality pseudo-inertial due to the movement of the central body (Earth in this case)
about the centre of mass of the Solar System. However, this effect is negligible considering the proximity of
the objects to the central body and the short periods of time. For Earth, the J2000 frame is used, with the
X-axis pointing towards the Vernal Equinox at 12:00 UTC on 1 January 2000. The orientation of the prime
meridian of Greenwich with respect to the J2000 frame is denoted as Θ at time t .This reference frame is used
to describe and propagate in time the position and velocity of the satellites and space debris in LEO.

Origin Centre of mass of the Earth

X I axis Vernal equinox: intersection of ecliptic and equatorial plane

YI axis Completes the right-handed system

ZI axis Aligned with the rotation axis of the Earth

Earth Fixed Rotating Reference Frame (R-Frame)
This frame rotates along with the Earth, and is therefore fixed to its surface. Once a day the frame coincides
with the Earth Centred Inertial reference frame. The position of ground stations to track satellites and space
debris is specified in this frame.

Origin Centre of mass of the Earth

XR axis Intersects the equator at zero longitude

YR axis Completes the right-handed system

ZR axis Aligned with the rotation axis of the Earth

21
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Figure 3.1: Illustration of the Earth Centred Inertial, Earth Fixed Rotating and RTN Reference frames. ωR is the Earth’s angular velocity

Radial-Transverse-Normal Reference Frame (RTN-Frame)
This local frame centred in the spacecraft is used to represent the state uncertainties of the spacecraft and
debris and the encounter geometry as described by SpaceTrack (2020). This reference frame is also referred
to as Radial-Intrack-Crosstrack (RIC) and UVW in the literature. Figure 3.1 illustrates the relation between the
Earth Centred Inertial, Earth Fixed Rotating and RTN reference frames. It should be noted that the X −YRT N

plane coincides with the orbital plane.

Origin Centre of mass of the spacecraft

XRT N axis Unit vector of the satellite position from the centre of Earth

YRT N axis Completes the right-handed system

ZRT N axis Unit vector of the satellite’s angular momentum (normal to orbital plane)

Body Reference Frame (B-Frame)
This reference frame is used to represent the geometry of the spacecraft and allows to define the attitude
angles.

Origin Centre of mass of the spacecraft

XB axis Lies in the spacecraft plane of (longitudinal) symmetry, in the positive forward direction

YB axis Completes the right-handed system

ZB axis Lies in the spacecraft plane of (longitudinal) symmetry, in the positive downward direction

Trajectory Reference Frame (T -Frame)
The trajectory reference frame is included to orient the spacecraft’s velocity with respect to the rotating Earth,
which is essential to calculate the collision probability of the spacecraft with the incoming debris.

Origin Centre of mass of the spacecraft

XT axis Points in the direction of the spacecraft velocity relative to the Earth

YT axis Completes the right-handed system

ZT axis Lies in the vertical plane, pointing downwards to Earth

Conjunction Reference Frame (C-Frame)
This reference frame was introduced by Foster and Estes (1992) to simplify the calculation of collision proba-
bility for fast encounters by confining all the uncertainty in a plane, called the conjunction plane. This frame
was continued to be used in subsequent formulations of the collision probability calculation such as the
methods of Akella and Alfriend (2000) and Patera (2001). Considering the spacecraft and debris velocity vec-
tors respectively, vs and vd , and the relative velocity vector vr = vd − vs , the new reference frame is defined
as:
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î = v r

|v r |
, ĵ = v d ×v s

|v d ×v s |
, k̂ = î × ĵ (3.1)

In this formulation, all the uncertainty of the miss distance vector is restricted to the Y −Zc plane.

Origin Centre of mass of the spacecraft

XC axis Points the relative velocity between the spacecraft and the space debris

YC axis Points to the normal vector of the plane containing the velocity of the spacecraft and the debris

ZC axis Completes the right-handed system

3.2. Frame transformations
Working with different reference frames requires to transform the state variables from one frame to another.
This transformation is conducted through the rotation matrix. The transformation matrix from frame A to
frame B is denoted by: CB ,A . There are multiple ways to define the rotation between axis. The most common
which are treated here are unit axis rotations about Euler angles and directional cosine matrices. The basic
transformation about a single axis for an arbitrary angle α is:

Cx (α) =

 1 0 0

0 cosα sinα

0 −sinα cosα

 Cy (α) =

 cosα 0 −sinα

0 1 0

sinα 0 cosα

 Cz (α) =

 cosα sinα 0

−sinα cosα 0

0 0 1

 (3.2)

for rotations about the X, Y and Z axis respectively. Any rotation from frame A to B can be decomposed
into a series of unit axis rotations. The resulting transformation matrix is obtained by the multiplication of
the individual rotations in reversed order. Considering the case of a negative rotation of angles α1,α2 and a
positive rotation of α3 about the Y -axis, X-axis and Z-axis respectively, the resulting transformation matrix
is:

CB,A = Cz (α3)Cx (−α2)Cy (−α1)

And the inverse transformation is given by:

CA,B = C−1
B,A = CT

B,A = Cy (α1)Cx (α2)Cz (−α3) (3.3)

When the unit vectors of a reference frame can be expressed as a function of the unit vectors of the final
frame, the rotation matrix can be directly computed by means of a directional cosine matrix. This is the case
of the transformation to the conjunction reference frame. Consider a reference frame defined by the unit
vectors [î1, ĵ1, k̂1] and a second frame defined by the set of unit vectors [î2, ĵ2, k̂2]. Both reference frames can
be related by:

î1 = A11 î2 + A12 ĵ2 + A13k̂2 (3.4)

ĵ1 = A21 î2 + A22 ĵ2 + A23k̂2 (3.5)

k̂1 = A31 î2 + A32 ĵ2 + A33k̂2 (3.6)

where Ai j is the cosine of the angle αi j between axis i in frame 1 and axis j in frame 2. These components
are called directional cosines. The transformation matrix between these frames obtained by reconstructing
the directional cosines in a single matrix.

3.2.1. Reference angles
To conduct these transformations, the following set of reference angles is required. Table 3.1 introduces the
reference angles required for the derivation of the frame transformation matrices. Four categories are iden-
tified. First, the longitude and latitude angles are used to identify the location of the satellite with respect to
the rotating Earth. Second, the orbital angles u, i and Ω determine the location of the satellite in the orbital
plane. Third, the aerodynamic angles β,σ andα orient the satellite with respect to the velocity vector. Finally,
the attitude angles γ and χ define the orientation of the satellite with respect to the local horizontal plane.
The definitions are based on the work by Mooij (2016).
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Table 3.1: Definition of reference angles required for frame transformations

Symbol Name Range [deg] Definition

τ Longitude [0 360)
Angle between the projection of the secondary body
(e.g., spacecraft) position vector on the XY plane and
the X-axis of the R-frame

δ Latitude [-90 +90]
Angle between the spacecraft position vector and the
XY plane in the R-frame

u Argument of latitude [0 360)
Angle on the orbital plane between the ascending
node and the secondary body

i Inclination [0 180]
Angle between the XY plane in the I-frame and the
orbital plane

Ω RAAN [0 360)
Angle between the Vernal Equinox and the ascending
node (intersection of the orbit with the Earth’s
equatorial plane)

γ Flight path angle [-90 +90]
Angle formed between the velocity vector and the local
horizontal plane

χ Heading angle [-180 +180)
Angle of the projection of the velocity vector in the
local horizontal plane from the local north

α Angle of attack [-180 +180)
Angle between the XY plane in the T-frame and the
longitudinal axis of the spacecraft

β Sideslip angle [-90 +90]
Angle between the velocity vector and the projection of
the spacecraft longitudinal axis in the XY plane of the
T-frame

σ Bank angle [-180 +180)
Angle between the spacecraft longitudinal symmetry
plane and the Z-axis of the T-frame

3.2.2. Transformation matrices
To work with different frames, the rotation matrices shall be defined in a way that the state can be transformed
from any initial frame to all the frames considered. In this section, five rotation matrices are introduced.
Further frame transformations can be achieved by combining and transposing the matrices given.

Earth Fixed Rotating to Earth Centred Inertial Reference Frame (CI ,R )
The Earth fixed and the Earth centred inertial reference frames are chosen to coincide at time zero (t0 = 0).
For each Earth revolution, the R-frame completes a full rotation about the Z -axis. At a given time from epoch
(t ), the rotated angle equals ωE · t where ωE is the angular velocity of the Earth. The transformation matrix
between these frames is:

CI,R = C3 (−ωE · t ) (3.7)

Earth Centred Inertial to Radial-Transverse-Normal Reference Frame (CRT N ,I )
The RTN-frame defines the state with respect to the position of the satellite in the orbital plane. The trans-
formation from the inertial to the RTN-frame uses the angles which define the orbital plane and the position
within the orbit. It consists of three unit axis rotations. First, a rotation about the Z−axis to align the X−axis
with the ascending node. Then, a rotation about the X-axis to align with the orbital plane. Finally, a rota-
tion about the Z−axis to align the X−axis with the position vector. With the angles defined in Table 3.1 and
illustrated in Figure 3.3, the transformation matrix is given by:

CI,R = C3 (u)C1 (i )C3 (Ω) (3.8)

Body to Earth Fixed Rotating Reference Frame (CR,B )
The transformation from the B−frame to the R-frame uses the attitude angles defined, χ and γ and the aero-
dynamic angles α,β and σ. The derivation of this rotation matrix can be consulted in Mooij (2016).

CR,B = C3(−τ)C2

(π
2
+δ

)
C3

(−χ)
C2

(−γ)
C1 (σ)C3

(
β
)

C2 (−α) (3.9)
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Body to Trajectory Reference Frame (CT,B )
For this transformation, the aerodynamics angles allow to orient the vehicle with respect to the body velocity.
The transformation matrix is:

CT,B = C3(β)C2 (−α)C1 (σ) (3.10)

Conjunction to Inertial Reference Frame (CI ,C )
The definition of the conjunction reference frame is given in terms of the satellite and debris inertial veloci-
ties. Let us consider the following three auxiliary vector definitions.

v1 = v r

|v r |
v2 = v d ×v s

|v d ×v s |
v3 = v1 ×v2. (3.11)

where v s , v d are the satellite and debris velocity respectively in the inertial frame and v r = v d − v s is the
relative velocity.

The encounter frame, defined by the unit vectors [îC , ĵC , k̂C ] is formed by:

îC = v1 = v1x îI + v1y ĵI + v1z k̂I (3.12)

ĵC = v2 = v2x îI + v2y ĵI + v2z k̂I (3.13)

k̂C = v3 = v3x îI + v3y ĵI + v3z k̂I (3.14)

Which, following the procedure of the directional cosine allow to reconstruct the transformation matrix.

3.3. State models
The reference frame and transformation matrices defined provide the framework to describe the position
and velocity of the satellite. However, different state models can be considered to describe these variables.
The choice of state model has an effect on the accuracy of the propagation as well as the computational time,
since the equations of motion take a different shape for different models. The most commonly used state
models are the Cartesian coordinate system and Kepler elements due to their simplicity, physical meaning
and abundance of environmental models expressed in these frames. However, these models are not always
the most optimum representation of the trajectory, since they can introduce numerical errors due to large
variations in the state and singularities. Alternative state models have been developed that solve this issues,
at the expense of losing physical meaning and introducing more complexity. Some examples of alternative
state models are the modified equinoctial elements (Hintz, 2008), and the unified state models (Altman, 1972;
Vittaldev et al., 2012). Although these methods can provide multiple benefits in terms of computational ac-
curacy, they introduce an extra level of complexity. In this work, it is already required to create the dynamics
of the spacecraft including all the environmental models in the differential algebra software, and therefore it
is chosen to rely on Cartesian and Kepler elements for this first application of the DA-GMM method. In this
section, Cartesian coordinates and Kepler elements are introduced and related.

3.3.1. Cartesian coordinates
In Cartesian coordinates, the state vector is defined by the position and velocity components in the three-
dimensional space. This model is widely used due to its simplicity and the direct relation to the spacecraft
tracking data. The state of the satellites provided in ephemeris by satellite operators and space agencies are
described in these coordinates (SpaceTrack, 2020). Therefore, this set of coordinates is likely to be used to
determine the initial state of the satellite. The state vector (x) in Cartesian components is given by:

x = [ r v ]T = [ x y z vx vy vz ]T (3.15)

where r and v are the position and velocity vectors, respectively, in Cartesian components for a given ref-
erence frame. Figure 3.2 illustrates the defined state model for a body about a general orbit in the inertial
reference frame.

The main advantage of this representation is that the equations of motion are simple and allow to easily
include the perturbation models. Moreover, this representation does not require any assumptions on the or-
bit. In turn, since the Cartesian elements are not related to the orbital plane, the state suffers large variations
through the orbit, which result in large state derivatives. This can introduce high numerical errors, hinder-
ing the selection of the integration time-step. To prevent this problem, different representations have been
developed.
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zI 

Figure 3.2: Illustration of the Cartesian state model

3.3.2. Kepler elements
When considering the unperturbed two-body problem, the orbital solution can be represented by a set of
five constant components defining the shape, size and orientation of the orbit and a sixth component that
defines the position of the satellite within the orbit. When orbital perturbations are considered, the elements
defining the orbit are not constant anymore. However, the variations are small and this state representation
is still very useful and widely used to describe the position of satellites (e.g., in two-line element sets). The
position at each time is defined by the instantaneous Kepler elements that form the instantaneous orbital
plane.

The orbit is defined by a conical section, which is limited to an ellipse for Earth orbiting satellites. The
shape of this ellipse is determined by its semi-major axis (a) and its eccentricity (e). The orbit is contained
within a plane. The orientation of the orbital plane with respect to the reference plane of the central body is
defined by two angles: the right ascension of the ascending node (Ω) and the inclination (i ). The orientation
of the orbit within the orbital plane is defined by the argument of periapsis (ω). Finally, the position of the
satellite in the orbit can be described by several elements, the most common being the mean anomaly (M) or
the true anomaly (θ). The argument of periapsis ω and the true anomaly θ both define an angle in the orbital
plane and can be combined in a single variable, the argument of latitude u =ω+θ.

Figure 3.3 illustrates the Kepler elements defining the orientation of the orbit with respect to the reference
plane and the position of the satellite in the orbit. The state vector in Kepler elements is defined by:

x = [ a e i Ω ω θ ]T (3.16)

The main advantage of Kepler elements is that the variations in the state are smaller which reduces the
numerical error. Moreover, this representation is very related to the dynamics of the problem and it is useful
to visualise the motion of the spacecraft. The drawback of this method is that, when including the perturba-
tion it yields a more complex differential equation.

This representation encounter two singularities in the cases when e → 0 and/or sin i → 0. The first sin-
gularity derives from the fact that in a circular orbit (e = 0), the periapsis is not defined as there is no point
of closest approach. As a result, when an orbit is close to circular, the argument of periapsis (ω) continues to
shift in position. The second singularity occurs when the orbital plane is close or at the equatorial plane, it is
with inclinations close to 0 or 180 degrees (equatorial prograde and retrograde orbits). In this case, the con-
cept of ascending node does not apply and therefore the right ascension of the ascending node (Ω) cannot be
defined. For the reference missions considered in this work, the orbits are nearly circular, and therefore the
first singularity applies.

The state vector in Kepler elements can be obtained from the Cartesian representation as follows (Wertz
et al., 2001). First, the norm of the position and velocity vectors are defined as:

r = ‖r ‖ v = ‖v‖ (3.17)
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Figure 3.3: Illustration of the Kepler elements of a spacecraft (s/c) in the two-body problem

As auxiliary variables, the orbit angular momentum, h and the vector to the ascending node, N , are defined.

h = r ×v (3.18)

N = ẑ × ĥ (3.19)

where ẑ is the unit vector in the direction normal to the equatorial plane. The semi-major axis and eccentric-
ity can be computed from these magnitudes as:

a =
(

2

r
− V 2

µ

)−1

(3.20)

e = V×h

µ
− r

r
(3.21)

e = ‖e‖ (3.22)

The remaining elements (inclination, i , right ascension of the ascending node, Ω, argument of perigee, ω,
and true anomaly, θ are obtained as:

cos i = hz /|h| (3.23)

tanΩ= Ny /Nx (3.24)

cosω= ê · N̂ (3.25)

cosθ = r̂ · ê (3.26)

where the inclination is defined in the range 0° ≤ i ≤ 180°, Ω is defined in the range 0° ≤Ω< 360° and can be
calculated using the at an2 function,ω is in range 0° ≤ω≤ 180° when (N̂×e)h ≥ 0 and in range 180° <ω≤ 360°
otherwise and the true anomaly, θ, satisfies 0° ≤ θ ≤ 180° when (e× r)h ≥ 0 and 180° < θ < 360° otherwise.

3.4. Equations of motion
This section introduces the equations of motion that govern the dynamics of the vehicle in space under a
series of perturbation that will be described in Section 3.6. For each of the state models introduced, the
equations of motion are the variational equations of the state model elements with time. To simulate the
trajectory, these equations are integrated over time.

3.4.1. Cartesian coordinates
For Cartesian coordinates, the equations of motion follow a simple derivation form Newton’s laws of motion.
The dynamics of the vehicle are defined by the addition of the central gravitational force of the central body
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and the sum of perturbation forces. The acceleration caused by a central body acb is defined in Cartesian
coordinates as:

acb =− µ

r 3 r (3.27)

where µ is the gravitational parameter of the central body and r is the norm of the position vector.
The total acceleration of the body is obtained by:

d 2r

d t 2 =− µ

r 3 r+ fper t (3.28)

where

fper t =
∑

i F per t i

m
(3.29)

and Fper t i
defines each individual perturbing force vector and m is the vehicle’s mass. According to these

equations, and decomposing the total perturbing acceleration fper t into the Cartesian components, the
equations of motion of the state x in Cartesian coordinates are:

dx

d t
=



vx

vy

vz

− µ

r 3 x + fper t x

− µ

r 3 y + fper t y

− µ

r 3 z + fper t z


(3.30)

3.4.2. Kepler elements
Kepler elements are constant in the two-body problem. However, this does not apply when orbital pertur-
bations are considered. In this case, the motion of the vehicle can be defined by a set of osculating Kepler
elements which determine the evolution of the instantaneous orbit. To evaluate the dynamics of an object
in this representation, the variational equations of the Kepler elements under perturbing accelerations are
derived. This differential equations for Kepler elements and its derivation can be found in Wakker (2015). To
simplify this derivation, the total perturbing acceleration is decomposed in the components of the RTN-frame
described in Section 3.1. An equivalent form of this representation that uses the true anomaly θ opposed to
the mean anomaly M can also be derived. The equations of motion in Kepler elements are:

d a

d t
= 2

a2

p
µp

[
fR e sinθ+ fT

p

r

]
de

d t
=

√
p

µ

[
fR sinθ+ fT (cosE +cosθ)

]
di

d t
= fN

rp
µp

cosu

dω

d t
=−

√
p

µ

[
fN

r

p
cot i sinu + 1

e

{
fR cosθ− fT

(
1+ r

p

)
sinθ

}]
dΩ

d t
= fN

rp
µp sin i

sinu

d M

d t
= n − fR

[
2rp
µa

− 1−e2

e

√
a

µ
cosθ

]
− fT

1−e2

e

√
a

µ

(
1+ r

p

)
sinθ

(3.31)

where
p = a(1−e2) (3.32)

tan

(
E

2

)
= 1√

1+e
1−e

tan

(
θ

2

)
(3.33)

M = E −e sinE = n(t − tper i g ee ) n =
√

µ

a3 (3.34)
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Figure 3.4: Magnitude of the perturbing accelerations normalised with the central gravitational acceleration at Earth’s surface versus
orbital altitude. Credit: (Fortescue et al., 2011)

It should be noted that for this derivation no assumptions were made on the size of the perturbing accelera-
tions. Therefore this method is valid both for small and large perturbations. To solve the eccentric anomaly
E , a root finder algorithm is required.

3.5. Perturbing accelerations
The unperturbed two body problem only includes the satellite and the point-mass central body, and therefore
the satellite is only affected by the central body gravitational acceleration. The term perturbing accelerations
refers to the sources that contribute to the total acceleration of the satellite besides the central body, and that
produce a deviation from the Kepler orbit solution. As observed in Figure 3.4, the magnitude of these forces
depends on the spacecraft altitude. While a full environmental and acceleration model that adds all identified
perturbations could be included, this would increase the computational cost to prohibitive margins. There-
fore, it is required to define a threshold for the required precision in the acceleration model and select the
perturbing accelerations to include in the model accordingly. It must be noted that relativistic perturbations
are not included in this analysis due to its complexity and the fact that its effect is two orders of magnitude
smaller than the solar radiation pressure (SRP) and Drag accelerations (Eshagh and Alamdari, 2007).

In this section, the main sources of perturbation acting on Earth-orbiting satellites are presented, and the
equations describing these accelerations are introduced. The accelerations considered are the gravitational
acceleration of Earth (modelled using spherical harmonics), the third-body gravitational acceleration, the
atmospheric acceleration and the solar radiation pressure.Finally, the acceleration model to be used in the
DA-GMM method is selected and motivated.

3.5.1. Spherical harmonics gravity
The gravity field of real bodies does not perfectly correspond to a that of a point mass, but instead presents
deviations due to the irregularity in shape and density distribution. These deviations are introduced in the
gravitational potential through a set of spherical harmonics as defined in Equation (3.40). From a mathemat-
ical perspective, adding the spherical harmonics does not change the procedure to compute the gravitational
acceleration, as:

aG =∇UB (r B A) (3.35)

where body A is the satellite, body B is the central body and UB is the gravitational potential exerted by body
B. However, from an analysis point of view the effect of each spherical harmonic can be studied individually
to select to which degree and order the gravity field should be modelled. This is illustrated in Figure 3.4 by
individual lines corresponding to the effect of each spherical harmonic.
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3.5.2. Third body gravity
Third-body gravitational accelerations are obtained assuming a known position of the third-body (usually
retrieved from an ephemeris). In this case, the gravitational acceleration can be calculated in the same way,
through the gradient of the gravitational potential. However, in this case it must be taken into account that
the acceleration does not have an inertial frame origin anymore. Let’s consider the case of the third-body
acceleration of the Sun (body B) to a spacecraft (body A) orbiting Earth (body C). In this example, the gravita-
tional acceleration of the Sun affects the spacecraft but also the Earth. To account for this influence, the third
body acceleration on the central body is subtracted from the third body acceleration on the spacecraft as:

aG =∇UB (r B A)−∇UB (r BC ) (3.36)

For satellites orbiting Earth, the Sun and Moon are usually included in the model as third body perturbations
while other bodies such as Jupiter have a smaller effect and are usually discarded.

3.5.3. Aerodynamic acceleration
As observed in Figure 3.4, the drag perturbation has a high effect for low altitudes but its effect quickly de-
creases as the atmospheric density drops with altitude. However, this acceleration can still be significant,
specially for objects in low orbits such as the ISS. Considering the effect of drag only, the aerodynamic accel-
eration is:

aD =−
(
ρv2

airCD Sr e f

2m

)
v̂air =−

(
ρv2

airK

2

)
v̂air (3.37)

where ρ is the atmospheric density at the satellite location, vair is the vehicle velocity with respect to the
atmosphere, Sr e f is the reference area, CD the drag coefficient and m the vehicle mass. If no wind model is
included, the basic model assumes a co-rotating atmosphere and the airspeed is equal to the ground-based
velocity. The last three variables can be grouped into the ballistic coefficient, K . The atmospheric density at a
given location is provided by the atmosphere model and the ballistic coefficient is an input that depends on
the satellite properties. This perturbation will be included in the model and the air density will be obtained
from the NRLMSISE-00 model, introduced in Subsection 3.6.3.

3.5.4. Solar radiation pressure acceleration
The last acceleration present in the diagram is Solar Radiation Pressure (SRP) which is caused by the transfer
of momentum by photons when encountering the satellite. This process depends on the type and roughness
of the satellite surface, which impact the photon reflection mechanism. To model this effect, the radiation
pressure coefficient (Cr ) is introduced, which is defined as one plus the mean reflection coefficient. The mean
reflection parameter ranges from 0 for a perfect black body to 1 for an ideal refractor (Wakker, 2015). The first
approximation to model the SRP acceleration is through the cannonball model, which assumes a spherical
satellite with constant properties through the surface. The acceleration due to SRP in this model is given by:

aSRP =
(

P

4πc

)(
Cr Sr e f

m

)
rB A

‖rB A‖3 (3.38)

where P is the total photon power output of the Sun, which can be obtained from environmental models
or considered constant for this purpose. Sr e f is the reference area, m is the mass of the satellite and c =
299,792,458 m/s is the speed of light in the vacuum.

3.5.5. Model selection
Including the full acceleration model is extremely time consuming, and it is not required to achieve an accu-
rate solution. To avoid this issue, a threshold is set for the minimum perturbing acceleration to be included.
The selection of perturbing accelerations to include in the model must be consistent, meaning that if a given
perturbation source is added, all perturbations with a larger effect must be included as well. In Figure 3.4 the
effect of each perturbing acceleration relative to the primary gravity is illustrated up to an altitude of 2,000
km. For higher altitudes, the effect of the spherical harmonics decreases and the effect of the lunar and solar
gravity increases

As a reference to set this threshold, the work of Flores et al. (2021) to find the acceleration model for an
accurate propagation of orbits applied to the Molniya case is used as a baseline. The Molnyia orbit covers a
wide range of orbital altitudes and velocities, and therefore it is a good upper limit for the required accuracy.
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In this work, it was found that the threshold required to have an accurate propagation of the Molnyia orbit
over 30 days for tracking purposes was of εa = 10−8 m/s2. This corresponds to an acceleration (normalised
with the local gravity of the Earth, g ) of approximately ε̂a = 10−9. However, this is an upper limit for the
threshold, which can suppose an excessive increase in the computational load of the method. Instead, the
threshold for the normalised acceleration is set to ε̂a = 10−8. This allows to discard the acceleration due to
the solar radiation pressure.

Adding the solar radiation pressure is not a trivial task, due to the fact that this acceleration is discontin-
uous. Differential algebra computation cannot deal with discontinuous functions, since it is based on the
Taylor series expansion of the function. Therefore, including the solar radiation pressure would require to
apply variable transformations that allow to model this acceleration as a continuous function. This largely
increases the complexity of the model and is considered outside the scope of this work. Only perturbing
accelerations that have a larger effect will be included. Although in Figure 3.4 it appears that the drag acceler-
ation is smaller than the solar radiation pressure effect for altitude higher than 500 km, it must be considered
that the graph shows the nominal drag acceleration. Due to variations in the atmospheric density, drag ac-
celeration can fluctuate in a range of three orders of magnitude and as a result, this acceleration must be
included.

To summarise, the accelerations included in the DA-GMM method (hereafter also referred to as full dy-
namical model) include the gravitational acceleration of Earth modelled as a spherical harmonics field up to
order and degree six, the central gravitational acceleration from the Sun and the Moon, and the atmospheric
acceleration.

3.6. Forces and environmental models
This section defines the models that are created to describe the environment of the satellite and the forces
to which it is subjected for the selected acceleration model. This includes a description of the gravity field
model and the spherical harmonics concept, the Earth shape and rotation model and the atmosphere model.

3.6.1. Gravity field model
The gravitational acceleration is the main driver of the dynamics of a spacecraft, and should therefore be
modelled with sufficient detail to accurately propagate the orbital trajectory of any vehicle. In the case of a
spacecraft in LEO, the gravitational pull from the central body (Earth) is the main acceleration acting on the
body, while the effect of further orbiting bodies (e.g., Sun and Moon) are considered third-body accelerations.

A simple gravitational model considers the body to be a point mass, which causes a central acceleration
(Mooij, 2016). The gravitational acceleration can be expressed as the negative gradient of the potential: aG =
−∇U . For the point mass acceleration, the gravitational potential is defined by:

U =−µ
R

(3.39)

where µ = GM is the gravitational constant of the central body and R is the distance to the central body.
However, when the central body is not a perfect sphere, the point mass acceleration does not accurately
describe the gravitational interaction between the vehicle and the central body. In this case, more complex
models have been derived. When the shape of the body is close to spherical (spheroid) the most common
approach is to make use of spherical harmonics to define the gravitational potential U . This model expresses
the potential as a summation of the central term and a series of correction terms for the mass asymmetry of
the Earth. In this approximation, the gravitational potential is expressed as:

U (R,τ,δ) = µ

R

{
1+

nmax∑
n=2

[(
Re

R

)n n∑
m=0

(Cnm cosmτ+Snm sinmτ)P m
n (sinδ)

]}
(3.40)

where Re is the radius of the central body (Earth), τ is the longitude, δ is the latitude, P m
n are Legendre poly-

nomials and Cnm ,Snm are the expansion coefficients of the spherical harmonics. For the Earth, the full ex-
pansion has been obtained, which arrives to degree and order 280.

Although the complete gravitational potential has been modelled, the inclusion of the all the coefficients
is not required. As seen in Figure 3.4, the effect of the J2 acceleration is two orders of magnitude smaller than
the central acceleration, and this further reduces for the following terms. It shall be analysed up to which
order the gravity field should be modelled to meet the accuracy requirements.
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Table 3.2: Body shape parameters of Earth (Mooij, 2016)

Equatorial radius Re [km] Polar radius Rp [km] Ellipticity e

6378.137 6356.751 3.3528 ·10−3

3.6.2. Shape and rotation model
Regular bodies such as the Earth are not perfectly spherical. Their shape is influenced by multiple parameters
such as the interaction with other bodies (e.g., gravitational tides) and Earth phenomena, such as motion of
tectonic plates. However, for a practical application in the field of propagation in LEO there is no need for
an extremely accurate shape model (Mooij, 2016). The approximation to a spherical Earth is sufficient in this
context.

Once the Earth shape is defined, the rotation model provides the relation between the Earth-centred in-
ertial frame and the Earth-fixed rotating frame. The rotation of the central body affects the accelerations that
are fixed to the body such as the gravity field and the planetary albedo. The basic model assumes that the
rotation is constant in rate and orientation. In this simplified model is considered, the rotation rate of the
Earth is:

ωe = 7.29220 ·10−5 rad/s (3.41)

Based on the short propagation times (in the order of days) required for this problem and the higher order
assumptions made in other parts of the problem (e.g., initial state uncertainty), the simplified shape and
rotation model of the Earth are selected.

3.6.3. Atmosphere model
The properties of the atmosphere have a direct effect on some of the accelerations acting on the spacecraft,
but most notably on the drag perturbation. To correctly model the trajectory of an object subject to this
acceleration, an atmosphere model has to be derived. The evaluation of an atmosphere model can be com-
putationally expensive. Several models have been derived with different capabilities to adapt to the needs of
each mission.

A first simplification is the exponential atmosphere model, which assumes ideal gas behaviour and con-
stant temperature. This approximation introduces large errors and therefore the model is constrained to
initial computations. Second, the United States Standard Atmosphere models with the last update in 1976 in-
troduces linear variations in temperature for given altitude ranges (Mooij, 2016). This model, however, does
not provide any information on the time or position variations of the atmospheric properties. These varia-
tions have shown to create significant differences in the position of satellites in LEO after days of propagation,
especially in the along-track direction. To overcome this issue, more complex models have been developed
which take into account temporal and position variations.

From the complex Earth atmosphere models that have been derived, the NRLMSISE-00 model is selected.
This model is an update from the MSIS-90 model that have been derived from temperature and composition
measurements, both from ground and from orbit. NRLMSISE-00 achieves to improve both the MSIS-90 and
the Jacchia-70 model by merging advantages of both (Picone et al., 2002). Besides from these advantages, the
NRLMSISE-00 is the only advanced atmosphere model currently included in Tudat, which is an important
factor for model selection. The NRLMSISE-00 atmosphere model requires to be build with a space weather
file 1 that contains information on solar flux, and magnetic flux as a function of time. These values are either
measurements from the past or predictions for the future. Moreover, the position (altitude, longitude and lat-
itude) and time are provided as inputs to the model. With this information, the NRLMSISE-00 model provides
multiple outputs. from which only the atmospheric density is required and will be used for this application.

1Available at: http://celestrak.com/SpaceData/. Accessed on: 10-12-2021.

http://celestrak.com/SpaceData/


4
Uncertainty Model

This chapter details the models to be used in the propagation of uncertainty for the satellite state and envi-
ronmental model. First, Section 4.1 introduces the basics of uncertainty modelling by formally defining the
concept of a probability density function and providing the mathematical description of the distributions
that are required in this work. These are the Gaussian, uniform and log-normal probability density distribu-
tions. Following, Section 4.2 describes the uncertainty model for the initial state (position and velocity) of the
satellites, accounting or the differences in orbit determination accuracy for the different vehicles and objects
considered. In Section 4.3, the uncertainty in the environment is studied and a model is proposed for the
atmospheric density and ballistic coefficient.

4.1. Probability distributions
This section introduces the preliminary concept of probability distributions that is required to understand the
methodology of uncertainty propagation for the state and environmental variables. To this end, the mathe-
matical descriptions of the probability distributions of interest are provided. These are the Gaussian, uniform
and log-normal distributions. In Chapter 5 it is explained how these distributions are converted into a Gaus-
sian Mixture Model. Finally, the covariance error ellipsoid is introduced, as it is a key piece in traditional
uncertainty propagation methods and it is used to illustrate the requirement for a Gaussian Mixture Model.

The concept of probability density function (PDF) is used to model the uncertainty in the position and
velocity of the satellite, as well as in other parameters of the model. It is a mathematical method to describe
the probability distribution of a random variable which. The value of a PDF evaluated at one point can be
physically interpreted as the likelihood that the random variable being equal to that point. The probability
that a random variable will be between an interval of points in a sample space S ∈ [a b] is obtained by the
integration of the PDF p(x) between the boundary points:

P [a ≤ X ≤ b] =
∫ b

a
p(x)d x (4.1)

Multiple probability density functions have been studied and associated to physical phenomena. For the
topic of this work, it is interesting to introduce the Gaussian, uniform and log-normal distribution, which will
allow to model the uncertainty in the satellite state and in environmental variables involved in the dynamical
model.

4.1.1. Gaussian distribution
The Gaussian or normal distribution is a common way of modelling natural phenomena and a pillar for the
development of alternative probability models. In the field of uncertainty propagation of space objects it is
particularly interesting, since the errors obtained by orbit determination methods can be closely defined as
Gaussian. As a result, all the collision detection methods presented so far have assumed this distribution to
define the uncertainty in the initial state of both the satellite and the chaser. A Gaussian or normal distribu-
tion is a type of PDF, which can be completely determined from the first two moments, the expected value, µ

33
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Figure 4.1: Gaussian distribution with µ= 3 and σ= 2.

and the variance, σ2. The general form of this distribution is given by:

p(x) = 1

σ
p

2π
e−

1
2

( x−µ
σ

)2

(4.2)

Figure 4.1 presents an example of a generic Gaussian distribution. The three coloured bands delimit
the span of the values that lie within the distance of once, twice and three times the value of the standard
deviation, respectively. As it can be observed, at a distance of 3σ from the centre of the distribution (x =
µ), the value of the PDF drops considerably. The values within the 1σ distance account for 68.27% of the
total probability. The 2σ limit covers 95.45% and the 3σ the 99.73%. Since the definition of the function
ranges from [−∞ ∞] it is required to select a threshold after which the probability is considered to be zero.
Depending on the required accuracy, this threshold is selected at a given nσ value. The application of the
Gaussian distribution in this work is purely mathematical and there is no need to define this threshold.

4.1.2. Uniform distribution
A uniform distribution models properties that take an arbitrary value within a given interval. Therefore, the
probability is constant within this range of values, which can be closed or open. The notation for a uniform
distribution between the bounds a,b is U (a,b) and is PDF is given by Equation(4.3). This distribution can
be used to approximate the behaviour of the ballistic coefficient, which is affected by the change in drag
coefficient due to the change in attitude of the orbital element.

p(x) =
{

1
b−a for a ≤ x ≤ b,

0 for x < a or x > b
(4.3)

The mean and standard deviation of the distribution are given by:

µ= a +b

2
(4.4)

σ= b −a

2
p

3
(4.5)

To convert the state distribution into a Gaussian Mixture Model, the full state vector needs to be modelled as a
multi-variate Gaussian distribution. To do so, the elements that are uniformly distributed must be converted
to a Gaussian distribution by a variable transformation. This procedure is summarised in Subsection 5.1.1.

4.1.3. Log-normal distribution
The log-normal PDF is useful to model phenomena that follow exponential relations. In this case, it is found
that this distribution is the most adequate to describe the uncertainty in the atmospheric density provided by
the NRLMSISE-00 model. A log-normal distribution is the probability distribution of a variable whose natural
logarithm follows a Gaussian distribution. Therefore, if the probability of a variable X follows a log-normal
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Figure 4.2: Covariance error ellipsoids up to the 1σ,2σ and 3σ boundaries

distribution, the variable Y = ln(X ) is normally distributed. The probability density function in a log-normal
distribution is defined as:

p(x) = 1

xσ
p

2π
e
− 1

2

(
(ln(x−µ))2

σ2

)
(4.6)

Unlike the Gaussian distribution, higher moments such as the skewness and kurtosis are non-zero. The result
is that the distribution can obtain an asymmetrical, peaky shape compared to a normal distribution. This type
of behaviour is common in biological processes and elements involved in exponential relations.

The DA-GMM method requires the initial uncertainty distribution to be Gaussian to apply the splitting
library to obtain the Gaussian mixture model. Although there are methods to approximate a log-normal
distribution to a Gaussian distribution, in this case it is more efficient to use of the fact that for the distribution
lognormal(X ), the ln(X ) is normally distributed. The variable ln(X ) becomes the state variable to include in
the model.

4.1.4. Covariance ellipsoid
The uncertainty of the satellite position is distributed in the three directions in space. Initially, the position
uncertainty in each direction is Gaussian, and the combination of uncertainty in three-dimensional space is
visualised in the Gaussian error ellipsoid centred at the satellite’s more likely position. When the satellite tra-
jectory is propagated through the nonlinear dynamics, the error ellipsoid deforms. As explained for the Gaus-
sian distribution, the error ellipsoid expands to infinity in the three-dimensional space. The deformation of
the uncertainty ellipsoid occurs mostly along the direction of the orbital trajectory. When the propagation is
performed for short time periods, the trajectory of the satellite between two points can be considered linear,
and therefore the Gaussian ellipsoid can accurately describe the uncertainty distribution. However, as the
uncertainty increases and it spans larger portions of the orbits, it begins to curve, forming a banana shape
that can no longer be represented by a Gaussian distribution (Luo and Yang, 2017). Figure 4.2 illustrates the
Gaussian error ellipsoid centred at (0,0,0) and with a covariance matrix:

P =

 1 0.5 0.2

0.5 1 0.4

0.2 0.4 1

 ·10−3 (4.7)

In the three-dimensional case, the 1σ ellipsoid covers only 19.87% of the total probability. Expanding to the
2σ-case increases to 72.85%, and the 3σ-rule covers 97.07%.

4.2. Initial state uncertainty model
The main source of uncertainty in the final position of the satellite comes from the initial state uncertainty. In
recent years, several techniques have been developed to accurately track the position and velocity of orbital
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Table 4.1: Correlation matrix for initial state in RTN- reference frame

rR rT rN vR vT vN

rR 1

rT 0.15 1

rN 0 0 1

vR -0.15 -0.9 0 1

vT -0.9 0.15 0 -0.15 1

vN 0 0 -0.15 0 0 1

objects. The most common techniques are satellite laser ranging, doppler tracking and determination with
global positioning systems. From these measurements, and taking into account the different sources of error
in the orbit determination (ionosphere and troposphere uncertainties, receiver and satellite clock, multi-path
etc.).

The initial state of the satellite can usually be modelled as a Gaussian distribution (Hilton et al., 2019).
The mean of the distribution corresponds to the expected position of the satellite, and the standard deviation
provides a measure of the tracking uncertainty. However, the uncertainty in the position and velocity compo-
nents is correlated, and it is also important to evaluate the effect of this correlation. Geul et al. (2017) studied
the uncertainty from two-line elements (TLEs) in the state of the GOCE mission and obtained the correlation
matrix for this scenario. Although this information is particular to every mission, the main conclusion from
this study is that the radial position and along-track velocity and the along-track position and radial velocity
have a high negative correlation ρ ≈ −0.9. For the remaining components, small correlations in the order
of ρ ≈ 0.1 were observed. Similarly, Bai and Chen (2018) studied the correlation in the initial state based on
the relative motion between the true state and the predicted space object. Using this approach, the strong
negative correlation between the radial and along-track components was physically explained. Another con-
clusion of this study was that small to no correlation was expected between the in-plane components (R,T)
and the out-of-plane component (N). Combining this information it is assumed that the correlation between
rR − vS and rS − vR are −0.9. The correlation between in-plane components and out-of-plane components
is assumed to be negligible and the remaining correlations are set to a magnitude of 0.15 with the sign as
obtained by Geul et al. (2017). This is summarised in the correlation matrix presented in Table 4.1 and is
used for every simulation unless stated otherwise. The diagonal elements are equal to one, by definition, and
the remaining components of the symmetric matrix represent the correlation between several position and
velocity variables. The values of zero indicate no correlation between in plane and out of plane components.
The uncertainty in the state is hereafter described by the standard deviation of each position in the RT N−
frame.

General satellite state
Depending on the satellite application, a technique of orbit determination with a given accuracy is used. For
active LEO satellites measured by GPS, the error is in the order of [1 10] m for position and [1 100] mm/s for
velocity (Montenbruck et al., 2002; Rongzhi and Kaizhong, 2020b). However, this accurate tracking data is not
publicly available and these advanced tracking technique are not applied to all satellites. In these cases, the
tracking information is obtained from the US Space Surveillance Data catalogue as TLEs. For LEO satellites,
the averaged standard deviation of the position isσR = 102 m,σT = 471 m andσN = 126 m in the RT N−frame
(Flohrer et al., 2008). When expressing the uncertainty in the RTN-frame it is observed that the absolute error
is dominated by the uncertainty in the along-track position (rT ) and in the radial velocity (vR ). The error in
the other components is usually smaller by a factor of four to ten. To stay on the safe side it will be assumed
that the error in other components is reduced by a factor of four.

The tracking data provided in TLEs represents the mean orbital elements of the satellite. To accurately
model the initial state it is required to convert this data from mean orbital elements to perturbed orbital
elements. This is done by using the SGP4 perturbations model (Vallado and Crawford, 2008).

ISS state
The ISS is a critical spacecraft since it is populated by a crew and requires a very precise orbit determination.
This allows to obtain a more accurate estimate of the collision risk and therefore lower the thresholds for
avoidance operations and increase the safety of life at the vehicle. With the available single-frequency GPS
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Table 4.2: Standard deviation in initial state given in RTN-components of position and velocity

Mission σR.R,σR.N [m] σR.T [m] σV.R [m/s] σV.T,σV.N [m/s]

ISS 0.2 0.8 0.004 0.001

General LEO satellite 1 4 0.01 0.0025

TLE 100 400 1 0.25

Space debris (Case 1) 250 1000 1 0.25

Space debris (Case 2) 10 40 0.1 0.025

receivers on board the ISS, an orbit determination accuracy of 1 m is reached, which further increases for
dual-frequency (Wermuth et al., 2012). The ACES mission on board the ISS has equipped the experiment
with a JAVAD GNSS receiver. With this instrument, the errors on the position have decreased to 0.03 m (Shum
et al., 2008). However, this data is not publicly available and this work is bounded to the precision of TLEs.

Space debris state
The position of the space debris is also tracked by the US Space Surveillance catalogue for objects up to 10 km
in diameter. However, in these cases the position uncertainty can go as high as 1 km. Velocity uncertainty also
increases for inactive satellites, being in the order of 0.1−1 m/s. The tracking uncertainty shows to be related
to the orbit inclination and eccentricity. This relation can be taken into account when modelling the initial
state of the space debris. Alternatively, a conservative approach can be adopted, selecting the maximum
uncertainty independently of the debris orbit.

Considering that uncertainty is generally larger in the transverse direction for position and radial direction
for velocity, and taking into account the typical values on tracking error on several missions, a set of reference
values for the standard deviation in tracking several objects is defined. The values summarised in Table 4.2
and will be used herein. Without further knowledge, any tracking data coming from a TLE is assumed to have
the accuracy corresponding to this method.

4.3. Uncertainty model in environment forces
The initial state of the satellite is not the only source of uncertainty. In Section 3.6 the different accelera-
tion models that describe the environment of the satellite along its trajectory are introduced. Although these
models have been designed to provide an accurate representation of the real environment, they till introduce
uncertainty due to imperfect knowledge or to the effect of simplification. Errors in the model can either be
parametrised as errors in the model variables or have to be studied as acceleration errors. If possible, the first
approach is preferred. To perfectly introduce all the uncertainty in the model, all the parameters included in
the simulation should be considered uncertain variables. This includes all the gravity field spherical harmon-
ics of the bodies considered, the parameters defining the Earth shape and mass and the parameters defining
the perturbing accelerations (drag and solar radiation pressure). Preliminary simulations run by Römgens
(2011) for a similar problem using verified interval propagation showed that including seven parameters as
uncertain variables resulted in a computational cost of 24 hours for an orbit integration of 24 hours. Although
this is just an estimation, which could be improved for the problem at hand with current software, it largely
exceeds the computational time that is aimed for operational collision detection. Therefore, the number of
variables modelled as uncertain parameters has to be limited to the variables that have a larger effect on the
problem.

The variables describing the gravitational spherical harmonics and the mass and size properties of the
Earth are known with high accuracy and therefore will be considered constant with no uncertainty. The drag
acceleration is subject to a higher uncertainty from the point of view of the model parameters. To account for
this, the atmospheric density and the ballistic coefficient are modelled as uncertain parameters. Finally, the
effects of simplification have to be included in the model. All perturbing accelerations that are not modelled
are merged in a single variable.

4.3.1. Atmospheric density
One of the important sources of uncertainty that can be added to the model is the atmosphere model, espe-
cially the atmospheric density. As discussed in Subsection 3.6.3, the NRLMSISE-00 atmosphere model will
be used in the simulations. The uncertainty in the density provided by this model has been treated in multi-
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ple ways. The first approximation is to use common probability distributions. Ronse and Mooij (2013) used a
uniform distribution to model the error in density and Yang et al. (2016) used a normal distribution. However,
these choices were not properly motivated in relation with the atmospheric models of choice. The approach
adopted by Hoogendoorn et al. (2017) tailors the distribution to the atmospheric model. In this work, a simi-
lar approach is followed and customised to the mission under study.

The study developed by Picone et al. (2002) analyses the NRLMSISE-00 atmospheric model and provides
extensive information on the atmospheric density and its comparison with orbital data from the NRLMSIS
database and other models. This study references the work by Hedin (1988), who proved that the residu-
als of the atmospheric density follow a log-normal distribution in the case of the MSIS-86 models. Picone
et al. (2002) use the same distribution for the NRLMSISE-00 and provide the parameters of the log-normal
distribution of the ratio of observed density ρd at a to model density ρmodel :

Xρ = ρd at a

ρmodel
(4.8)

ln Xρ ∼N (β,ω2) → Xρ ∼ lognormal(β,ω2) (4.9)

The parameters defining this distribution are the mean β and the standard deviation ω. A negative mean
indicates that the model overestimates the measured values on average. These parameters are not constant.
The standard deviation has been shown to increase with altitude and with active geomagnetic conditions.
Picone et al. (2002) provides the log-normal distribution parameters for the cases of quiet, active and average
geomagnetic conditions and for four altitude bands. Both of the reference missions under study fall within
the 400-800 km altitude band, where the statistical properties of the non-dimensional density ratio Xρ are:

β=−0.08 ω= 0.25 (4.10)

The relation between the parameters of the normal distribution of ln Xρ (β and ω) and the mean µ and stan-
dard deviation σ of the random variable Xρ is given by:

µ= exp(β+ω2/2) (4.11)

σ2 = exp(2β+ω2)(eω
2−1) (4.12)

For the values of β and ω associated to ln Xρ , the mean and standard deviation of the non-dimensional den-
sity ratio is are:

µ= 0.9524 σ= 0.2418 (4.13)

In the studies by Ronse and Mooij (2013); Hoogendoorn et al. (2017), the distribution was characterised by
µ = 1,σ = 0.12. In this case, the uncertainty in the density is larger since the problem develops in a higher
altitude region.

It is trivial that the observed density is ρd at a = Xρ ·ρmodel . The PDF of the density is therefore the PDF of
the product Xρ ·ρmodel , which is given by:

ρ ∼ lognormal(β+ ln(ρmodel ),ω2) (4.14)

4.3.2. Ballistic coefficient
To completely constrain the drag acceleration model, the ballistic coefficient is introduced and treated as a
parameter with uncertainty. The ballistic coefficient K is defined as:

K = CD A

m
(4.15)

where CD is the drag coefficient, A is the reference area and m is the mass. In this way, the uncertainty in the
drag coefficient is studied together with the uncertainty of the satellite mass (which changes during orbit and
is an unknown for space debris) and the uncertainty in the reference area.

The drag coefficient is known estimated to launch for a set of atmospheric conditions. Although a refer-
ence value is known for active satellites, this still includes uncertainties due to the variability of the coefficient
with the environment and the spacecraft attitude. An approach to calculate the drag coefficient is through
fitting of orbital measurements considering CD the only unknown variable. However, this technique is con-
sidered out of the scope of this work, and it is preferred to model the drag coefficient as a constant parameter.
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Figure 4.3: Mean debris mass and mean debris area based on the analysis of 24 satellite breakups and 200 pieces of debris with known
properties (Badhwar and Anz-Meador, 1989)

Table 4.3: Summary of the uncertainty model of environment forces

Symbol Parameter Distribution

Xρ Observed to model density ratio Log-normal (-0.08,0.25)

K

Ballistic coefficient ISS Uniform (0.0025,0.011)

Ballistic coefficient general spacecraft Uniform (K-0.015,K+0.015)

Ballistic coefficient general debris Log-uniform (10−4,5)

The spacecraft in reality will be changing its attitude and in the case of space debris even tumbling. Assuming
that the change in attitude (within a different range for each satellite) is constant, a uniform distribution is
selected as the best choice to model this behaviour. This approach has been used by Bhusal and Subbarao
(2019) to quantify the ballistic coefficient uncertainty of a CubeSat in LEO. Römgens (2011) assumed that the
ballistic coefficient was an interval variable in the range of 10−4 −1 m2/kg. In the mission under study, it is
possible to extract more detailed information of the satellites. Three models will be provided to model the
ballistic coefficient according to the reference mission: for the ISS, for generic LEO satellites and for a general
piece of space debris or unknown active satellite.

The ISS has been studied in detail to provide precise orbit determination and orbit propagation. From
initial studies, the engineering applications modelling the trajectory of the ISS such as the Station Reboost
Analysis Program (STRAP) used a ballistic coefficient of 1

12 ft2/lb ≈ 0.0035 m2/kg. NASA contractors later re-
ported that the ballistic coefficient falls in the range of 1

14− 1
15 ft2/lb ≈ 0.0028−0.003 m2/kg (Rylaarsdam, 1996).

This information provides a reference, but is not updated to the current configuration and orbital measure-
ments of the ISS. According to ESA (2008) the CD of the ISS is 2.07 and the cross-sectional area varies between
700−2300 m2. For a mass of 419,725 kg, this results in a ballistic coefficient of K ≈ 0.0034−0.011 m2/kg. To
include all this information and other potential sources of uncertainty, the ballistic coefficient is assumed to
vary uniformly in the range (0.0025−0.011) m2/kg.

For generic LEO satellites,it is common to assume that a spacecraft in LEO has a drag coefficient of 2.2.
This assumption is based on spherical spacecraft, and when expanding to cuboid shapes it increases to 2.7.
For this approximation the drag coefficient is assumed to have a uniform distribution in the range CD ∼ [2 3].
Assuming a spacecraft mass of 820 kg and 82 kg of fuel, the mass fluctuates in the range m ∼ [738 820]
kg. Assuming that the change in frontal area is accounted in the variability of the drag coefficient, and with
a frontal area of 18.86 m2 the ballistic coefficient is assumed to have a uniform distribution in the range
[0.046 0.076] m2/kg.

Modelling the ballistic coefficient of an unknown piece of space debris requires considering a wide range
of possibilities for the debris shape and mass. From the analysis of 200 pieces of debris and 24 satellite
breakups by Badhwar and Anz-Meador (1989), the power law relation illustrated in Figure 4.3 is obtained.
From this relation, the ratio A

m lies in the range of [10−3 1] m2/kg. Including the uncertainty in the drag
coefficient, the ballistic coefficient of an unknown piece of space debris is assumed to have a log-uniform
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distribution in the range [10−4 5] m2/kg. A log-uniform distribution represents that log(K ) presents a uni-
form distribution in the range [−4 log(5)]. The same distribution is assumed for a general spacecraft of which
no information is known regarding the size and mass.



5
Uncertainty propagation with Hybrid

DA-GMM method

This chapter focuses on the first phase of the collision probability calculation process, the propagation of un-
certainty. As explained in Chapter 2, the hybrid Differential Algebra and Gaussian Mixture Model (DA-GMM)
method is selected as the best candidate to perform this propagation. The objective of this algorithm is to
provide a valuable alternative to a Monte Carlo analysis with a significant reduction of the computational
time, which can be used during satellite operations. The method is clearly divided into two parts: the split-
ting of the initial distribution into a Gaussian mixture formed by N Gaussian Mixture Elements (GMEs) and
the uncertainty propagation of each individual GME to time of closest approach. The former addresses the
deformation of the initially Gaussian uncertainty into a non-Gaussian distribution due to the effect of nonlin-
ear dynamics. The latter allows to propagate a Gaussian uncertainty through the nonlinear dynamics without
simplifying to the state transition matrix.

In Section 5.1, the mathematical basis of the Gaussian Mixture Model is explained and applied to three
cases: the Gaussian, uniform and log-normal distributions. The final step of the GMM splitting is a quadratic
optimisation problem that solves for the weights of each GME. This process poses a computational challenge,
and the methodology followed to solve it is explained in Subsection 5.1.2. Once the splitting is complete, the
solution is tested to select the optimal number of elements. To explain the uncertainty propagation process,
the theory of Taylor series integration that forms the basis of this method is introduced in Section 5.2. Related
to this concept, the theory of differential algebra (i.e., the computational implementation of Taylor series
integration) is explained in Section 5.3. The result of this integration is the Taylor expansion of the final state
of the satellite at TCA with respect to a deviation of the initial state. The process to obtain the propagated
uncertainty from this Taylor expansion is not trivial, and is explained in Section 5.4.

5.1. Gaussian Mixture Model
This section introduces the concept of a Gaussian Mixture Model and covers the topic of splitting the proba-
bility density function into a sum of Gaussian distributions. To correctly include the GMM in the differential
algebra propagation tool, the initial probability density function must be a multivariate distribution includ-
ing all the elements with uncertainty. Since the main source of uncertainty (i.e., the satellite position and
velocity) is normally distributed, a multivariate Gaussian distribution is selected. However, as explained in
Section 4.3, not all the elements in the model follow a Gaussian distribution. To compensate for this fact, a set
of variable transformations is used. The concept of a GMM is first introduced and illustrated through Exam-
ple 5.1. In Subsection 5.1.1 the mathematical description of these transformations and the splitting process is
given. Once the theory is introduced, a description and comparison of the methods available to perform the
Gaussian split is presented in Subsection 5.1.2. The results are compared with the available verification data
and the approximation error is calculated. Once the splitting process is implemented, the method is tested
by performing a Gaussian hypotheses testing on the propagated GMEs. This allows to select the required
number of GMEs in Subsection 5.1.3.

41
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Example 5.1 - Concept of a Gaussian Mixture Model
A Gaussian Mixture model is an approximation of a probability distribution as a weighted sum of N
Gaussian distributions. This concept is formally expressed expressed by:

p̂(t , x) =
N∑

i=1
ωi pg

(
x ;µi ,P i

)
(5.1)

where N is the total number of Gaussian kernels, µi ,ωi and Pi are the mean, weight and covariance
matrix of the i th Gaussian density function pg

(
x ;µi ,P i

)
. To illustrate this concept, consider the case

of a satellite, whose position uncertainty follows a Gaussian distribution with covariance P i ni t :

P i ni t =

 4.15 −6 1.19

−6 12.41 −2.26

1.19 −2.26 1.42

m2 (5.2)

In this example, a reduced number of kernels (e.g., five) is selected to better illustrate the concept.
Then, the initial state uncertainty is approximated by a mixture of five Gaussian distributions with
the same individual covariance and different weight. The mathematical theory and process behind
this approximation are explained in Subsection 5.1.1 and Subsection 5.1.2, respectively. Figure 5.1
illustrates this concept. On the left, 5,000 samples drawn from the original Gaussian distribution are
represented, together with the 3σ covariance ellipsoid. On the right, the equivalent Gaussian Mixture
Model is represented through the samples drawn from the individual GMEs, illustrated in different
colours. Note that the mean of each Gaussian mixture element is distributed along the principal axis
of the ellipsoid and a larger weight is given to the central elements.
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Figure 5.1: Illustration of the three-dimensional Gaussian distribution. Left: Samples drawn from a Gaussian distribution in the
3σ ellipsoid. Right: Samples drawn from the corresponding GMM with five elements in the 3σ ellipsoid.

This example aims to illustrate how a Gaussian distribution for the satellite position can be repre-
sented as a Gaussian Mixture Model. On the following sections, the methodology to transform a mul-
tivariate Gaussian distribution into a Gaussian Mixture Model is explained.

5.1.1. Mathematical description
From the literature study performed, it is concluded that the main sources of uncertainty in the propa-
gation of the satellite trajectory come from: the orbit determination process, the atmospheric model and
the physical characteristics of the satellite. These sources of uncertainty are included in the propagation
through three categories: the satellite state including position and velocity (x = [r v ]), the atmospheric den-
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sity (ρ) and the ballistic coefficient (K = CD A
m ). Although the satellite state can initially modelled by a Gaus-

sian distribution, after the propagation of uncertainty through the nonlinear dynamics this distribution be-
comes non-Gaussian. To compensate for this effect, the Gaussian Mixture Model approach approximates
the initial Gaussian distribution by a weighted sum of Gaussian distributions with smaller standard devia-
tion. When these individual elements are propagated, their weighted summation will approximate the final
non-Gaussian probability density function.

To implement this method, the initial state must be modelled by a single multivariate density function,
which for simplicity is selected to be a multivariate Gaussian distribution. Referring back to the road-mao
presented in Chapter 2, this corresponds to Step 1. The variables forming the satellite state are correlated
and can be modelled as a multivariate Gaussian distribution, as explained in Section 4.2. However, the at-
mospheric density follows a lognormal distribution and the ballistic coefficient is uniformly distributed. To
correctly include it in the model, a variable transformation is applied to convert the uniform and lognormal
distributions into a Gaussian distribution that can be included in the multivariate model assuming no cor-
relation with the satellite state. In this section, the theory to apply these transformations is derived and the
mechanism for splitting a distribution into a Gaussian mixture is explained.

Uniform to Gaussian transformation
The objective of this section is to find a change of variable that can relate a uniformly distributed variable
(which in practice will represent the ballistic coefficient) with a normally distributed variable. The latter will
be used to obtain the GMM and the change of variable will be applied during the propagation in the DA
environment. Assuming that a random variable X has a probability density function f(x), by definition, the
probability that the random variable lies between two given values a and b is:

P(a É X < b) =
∫ b

a
f (x)d x (5.3)

By applying an arbitrary variable transformation y(X ), Equation (5.3) becomes:

P(y(a) É Y < y(b)) = P(a É X < b) =
∫ b

a
f (x)d x =

∫ y(b)

y(a)
f (x(y))

d x

d y
d y (5.4)

By defining the right-hand integrand in terms of y , g (y) = f (x(y)) d x
d y , the expression becomes:

P(y(a) É Y < y(b)) =
∫ y(b)

y(a)
g (y)d y (5.5)

which demonstrates that g (y) is the probability density function of the transformed variable. In this scenario,
the objective is to transform a uniform distribution f (x) =U (a,b) into a normal distribution g (y). To simplify
this process, the normal distribution is set to have µ= 0 and σ= 1, leaving:

f (x(y)) = 1

b −a
(5.6)

g (y) = 1p
2π

e(− 1
2 y2) (5.7)

Which, according to the definition of g (y), allows to express the differential equation:

dx = b −ap
2π

e(− 1
2 y2) dy (5.8)

This function can be integrated with the use of the error function, defined as erf(z) = 2p
π

∫ z
0 e−t 2

d t and match-

ing the centre of both distributions as boundary condition: x(0) = a+ b−a
2 . The resulting variable transforma-

tion is:

x = b −a

2
erf(

yp
2

)+ a +b

2
(5.9)

To illustrate this transformation, 107 samples are drawn from a unit normal distribution, and their histogram
is plotted in Figure 5.2. As observed, the sample size is large enough to replicate the shape of the probability
distribution. Then, Equation (5.9) is applied to the samples, and the histogram of the transformed data is also
represented in Figure 5.2. As observed, the transformed data follows a uniform distribution, with the bounds
specified by a and b.
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Figure 5.2: Transformation of data from original Gaussian distribution with µ= 0 and σ= 1 to uniform distribution with bounds a =−2
and b = 2. Illustration with 107 samples.

Lognormal to Gaussian transformation
In the case of the lognormal distribution, the transformation function is intrinsically defined. A random
variable X follows a lognormal distribution if:

ln X ∼N
(
µ,σ2) (5.10)

Therefore, in this case the relationship between the normally distributed variable Y and the log-normally
distributed variable X is given by:

x = e y (5.11)

Splitting theory
The approach to split a multivariate distribution into a GMM has been studied and implemented by Horwood
et al. (2011), DeMars et al. (2013), Vittaldev and Russell (2016), and Psiaki et al. (2015). The available meth-
ods can be divided into two categories: the univariate splitting technique and the linear matrix inequality
technique. The former method is based on producing the Gaussian sum approximation of the unit one-
dimensional Gaussian distribution, pg (x;0,1). This approximation, the univariate split, is then scaled to fit
any multivariate Gaussian distribution, pg (x ,µ,P ). The main benefit of this approach is that it provides a
high accuracy approximation and is valid for any number of GMEs. Moreover, the computational require-
ment is concentrated on the univariate split, which is only performed once. Therefore, this method is fast
and can be used for any type of problem. The linear matrix inequality method introduced by Psiaki et al.
(2015) has been used by Sun et al. (2019) for uncertainty propagation in the hybrid DA-GMM method. In this
case, the Gaussian split is performed to the full multivariate probability density function at once, assuming a
constant distribution of weights and means. In this method, the Gaussian mixture elements are selected so
that their covariances lie below a linear matrix inequality upper limit. The main disadvantage of this method
is that the accuracy depends on the number of Gaussian mixture elements, requiring more than 3,000 kernels
for a good approximation. Based on this limitation, the univariate splitting method is selected to perform the
Gaussian mixture splitting.

The univariate splitting method can be divided into two phases: optimisation and refinement. The for-
mer phase consists in splitting the univariate unit Gaussian distribution by solving a quadratic optimisation
problem. The latter consists in scaling the univariate split to approximate the distribution in the remaining
dimensions. The metric selected to evaluate the accuracy of the resultant mixture is the Lk , which measures
the distance between two distributions p and q . For a given order k, the metric is defined as:

Lk [p‖q] =
∫
Ω

∣∣p(x)−q(x)
∣∣k dx (5.12)

The distance metric L2 of order k = 2 is chosen to assess the accuracy, since it can be calculated analytically.
Although the concept is hard to interpret physically, a visual depiction of the relationship between L2 and
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the difference in uncertainty distributions is illustrated in Chapter 8. Based on this definition, the objective
function is set by Horwood et al. (2011) as 1

2 L2:

E = 1

2

∫ ∞

−∞

(
pg (x;0,1)−

N∑
α=1

wαpg
(
x;µα,σ2

α

))2

dx = 1

2
L2 (5.13)

The optimisation problem requires to minimise E , subject to

N∑
α=1

wα = 1, wα ≥ 0, α= 1, . . . , N (5.14)

µ1 ≤µ2 ≤ ·· · ≤µN (5.15)

σα ≤σ< 1, α= 1, . . . , N (5.16)

Considering that both distributions are Gaussian, Equation (5.13) can be expressed as:

E = 1

2
w T Mw −w T n + 1

4
p
π

(5.17)

where

(w )α = wα (n)α = pg
(
µα;0,σ2

α+1
)

(M)αβ =N
(
µα−µβ;0,σ2

α+σ2
β

)
(5.18)

This optimisation problem is still difficult to solve. To simplify the process, all the GMEs are set to have a
common standard deviation σα (homoscedastic assumption), and the means are evenly distributed along
the ±6σ range. Following these assumptions, Equation (5.17) can be minimised to find the weights of each
GME, wα.

Based on this theory, the following procedure is followed to approximate the initial multivariate Gaussian
distribution pg (x ;ν,Q). To do so, first the GMM for a univariate distribution is created, forming a so-called
univariate splitting library which approximates p(x;0,1) ≈∑N

α=1ωαpg
(
x;µα,σ2

)
(Horwood et al., 2011).

1. Select the standard deviation of the univariate splitting library σ ∈ (0,1), also referred to as the refine-
ment parameter. This selection can be either manual or following

σ= 2
p

c −1v1

3nt

√
Q66

Q11 (5.19)

where c > 1 is a tuning parameter that controls the growth of the component covariances, ν1 is the
mean of the first state variable, n =

√
µE /(ν1)3 and t is an upper bound for the total propagation time.

The variable Qab refers to element in row a and column b of the Q matrix.

2. Compute the number of terms N in the Gaussian sum according to N = 1+2m/σ, where m = 4 ifσ≥ 1/2
and m = 6 if σ< 1/2.

3. For α= 1, ..., N , compute the mean of each GME of the univariate distribution µα =−m +σ(α−1)

4. Compute the matrix M and the vector n formed by:

(M)αβ =N
(
µα−µβ;0,2σ2) , (n)α =N

(
µα;0,σ2 +1

)
(5.20)

5. Minimise the objective function defined by Equation (5.17) subject to the constraints defined in Equa-
tion (5.14) to obtain the weights of the unit univariate distribution. wα.

6. For α= 1, ..., N , compute the weights w̃α, means µ̃α and variation σ̃2
α of the unit univariate distribution

refined along the first coordinate of x , x1

w̃α =
p

2πp
1−σ2

wα exp
[

µ2
α

2(1−σ2)

]
µ̃α = µα

1−σ2 , σ̃2 = σ2

1−σ2

(5.21)
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7. For α= 1, ..., N , the univariate distribution is further refined to be defined on the interval (ν1−m
√

Q11,
ν1 +m

√
Q11), by a GMM with weights ŵα, means µ̂α and variation σ̂2

α defined as:

ŵα = w̃α, µ̂α = v1 +
√

Q11µ̃α, σ̂2 = σ̃2Q11 (5.22)

8. To obtain the GMM approximation of the multivariate distribution pg (x ;ν,Q) ≈ ∑N
α=1 w̄αN

(
x ; vα,Q

)
,

the univariate distribution refined along x1 is multiplied by pg (x ;ν,Q) and the resulting parameters of

the GMM, Q, vα and w̄α are computed as:

Q = (
σ̂−2e1eT

1 +Q−1
)−1

, vα = Q
(
σ̂−2µ̂αe1 +Q−1v

)
w̄α = ŵαpg

(
µ̂α−eT

1 v ;0, σ̂2 +eT
1 Qe1

) (5.23)

where e1 is a unit vector along the direction of the first state component.

9. Finally, the weights are re-normalised for α= 1, ..., N following w̄α = w̄α/
∑N
β=1 w̄β

5.1.2. Gaussian Mixture Splitting Methodology
Although the splitting procedure requiring to solve a quadratic optimisation problem is apparently straight-
forward, it can present a computational challenge. The number of Gaussian mixture elements determines
the number of unknowns in the optimisation problem, and therefore its complexity. To obtain an accurate
solution, traditional optimisation methods using double precision floating-point arithmetic are insufficient.
Instead, quadruple precision is required, which is not available in common software. In the literature con-
sulted, this problem is usually eluded by making use of pre-calculated univariate splitting libraries, such as
the one documented by Vittaldev and Russell (2016). However, these libraries have generated splitting data
up to N = 39 Gaussian mixture elements. For this work it is expected that a higher number of elements will be
required, and other alternatives are studied. In this section, different methods to solve the problem presented
in Equation (5.17) are compared and the final results with the winning method are provided.

Optimisation methods comparison
Three methods were implemented in different software to solve the optimisation problem in Equation (5.17):

• Matlab’s fmincon function: minimises constraint nonlinear multi-variable functions using the interior-
point algorithm. Matlab uses double-precision floating point for this computation.

• Maple’s QPSolve function: minimises a quadratic function subject to linear constraints using the active-
set optimisation method. In this case, the floating point precision can be selected, allowing to compute
using quadruple precision.

• Python’s Parallel Global Multi-objective Optimiser library pygmo: This library offers multiple genetic
algorithms to solve constrained and unconstrained optimisation problems. The Extended Ant Colony
Optimisation (GACO) was selected as the best option considering the characteristics of the problem
(single objective, constrained optimisation). The results of the algorithm were largely below the ex-
pected accuracy, and therefore the method was discarded and is not further analysed.

To analyse the results, the L2 distance is again selected as the metric for accuracy of the split. Moreover,
the resulting mixture (optimised weights) are compared to the results provided by Horwood et al. (2011) and
Vittaldev and Russell (2016) for N = 37. Figure 5.3a illustrates the distribution of the optimised weights as a
function of the mean location for each Gaussian Mixture Element. As observed, the reference univariate split
from Vittaldev and Russell (2016) occupies the range x ∈ [−4 4] while Horwood et al. (2011) selects x ∈ [−6 6].
As a consequence, the results from both methods are slightly different. Since the method will be applied with
> 1000 GMEs, the wider range x ∈ [−6 6] is selected for our optimisation problem. Moreover, the weight
distribution is strictly increasing for x < 0 and strictly decreasing for x > 0. In Maple, this can be set as an
extra constraint that further improves the optimisation result.

It can be readily observed that both fmincon (Matlab) and QPSolve (Maple) provide an accurate result for
the central weights. However, Matlab fails to correctly calculate the the extremes of the distribution, leading
to errors in the approximation of the univariate distribution. This effect is visible in Figure 5.3b, where the
reconstructed univariate probability density function is represented. As observed, the result from Maple
perfectly match the univariate split used as reference while the result from Matlab shows a deviation that
will affect the propagated probability distribution.
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Figure 5.3: Results of the univariate GMM splitting with N = 37 from the optimisation process in Matlab and Maple compared to the
database from Vittaldev and Russell (2016), and Horwood et al. (2011).
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Figure 5.4: L2 error between the univariate Gaussian distribution and its Gaussian sum approximation obtained using Matlab, Maple
and the results from Horwood et al. (2011).

Results
For this research objective, it is expected to require a large number of GMEs, in the order of 1,000. Therefore,
the method selected needs to perform well for a wide range of elements. To analyse this concept, the L2

distance between the original one-dimensional univariate distribution and the Gaussian sum approximation
is calculated for a selected number of GMEs and compared to the results provided by Horwood et al. (2011).
As observed in Figure 5.4, for the reference data, the error decreases with the number of GMEs until it reaches
a threshold value of 10−8, which is considered acceptable. In the case of Matlab, the computational error
derived from the limited floating point accuracy becomes more critical as the number of GMEs increases. As
a result, a maximum accuracy of 10−6 is achieved for the scenario with 11 GMEs, and the method becomes
invalid for higher number of elements. Finally, the computation with Maple using 34 digits provides the best
results. Similarly to the reference results, the accuracy improves with the number of GMEs until it stabilises,
in this case with an L2 error of 10−18. The computational time required for this calculation is significant (in
the order of days) when > 500 elements are required. However, this optimisation problem is only solved once
and the results are stored as a univariate splitting library for it use in any problem. Therefore, time is not a
critical constraint in this scenario, and QPSolve from Maple is selected as the tool to compute the weights
from the univariate split.

The univariate split is refined along the first coordinate to obtain its Gaussian sum approximation and
then it is further refined along the remaining directions, as explained in Subsection 5.1.1. The result is a set
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Figure 5.5: Correlation between state components derived from the Gaussian distribution (red) and Gaussian Mixture Model (grey).

of N weights and means, and a single covariance matrix that characterise the multivariate distribution as
a Gaussian mixture. To illustrate this result, Figure 5.5 shows the histogram and correlation of two sets of
data from a satellite state (position and velocity), drawn from the initial multivariate Gaussian distribution
and its corresponding GMM. The data sets consist of 5,000 samples and it can already be observed that both
distributions follow the same trend. For higher number of samples, both distributions agree, with a low error
as expected from the low L2 distance of L2 = 10−18 achieved.

5.1.3. Selection of required number of GMEs
The main benefit of modelling the initial distribution as a Gaussian Mixture Model is that the propagation of
the individual elements through the nonlinear dynamics will correctly approximate the final non-Gaussian
distribution. However, this implies that the individual GMEs are assumed to remain Gaussian during the
propagation. The validity of this assumption will depend on the number of Gaussian Mixture elements and
on the propagation time. In this section, the effect of these variables on the Gaussian hypothesis is analysed
and related to the final error in the uncertainty distribution to select the optimum number of GMEs. This is
done through two methods. First, the L2 error between approximations for a different number of elements
is calculated to evaluate the effect of adding more kernels on the final distribution. Second, several Gaussian
hypothesis tests are performed to check the validity of the assumption. It must be noted that in any case,
increasing the number of elements improves the accuracy of the propagated distribution with respect to the
case where the uncertainty remains Gaussian. Therefore, although this section aims to verify that it is valid to
assume that the individual GMEs remain Gaussian during the propagation, it is also valuable to prove that an
accurate solution can be found when increasing the number of elements. This information allows to define a
trade-off between computational time and accuracy.

Evaluation of L2 error
To evaluate the effect of increasing the number of Gaussian mixture elements on the final distribution, the L2

error is used, setting the distribution with 2001 elements as a reference. A nominal mission scenario is defined
(labelled as NOM-CASE-1 hereafter) with the characteristics defined in Table 5.1. The initial state uncertainty
is propagated during one and 30 orbital revolutions using the full dynamical model with perturbations. This
process is repeated for 13 sets of GMMs with different number of elements ranging from seven to 2001. The
computational time required to solve the optimisation problem increases quadratically with the number of
elements. For this reason, the selected GMMs are not uniformly distributed, with a denser grid on the lower
range of elements.
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Table 5.1: Initial state orbital elements of NOM-CASE-1.

Element a [km] e [-] i [deg] ω [deg] Ω [deg] θ [deg]

Value 7178.137 0 60 75 32 40

7 101 201 301 401 501 701
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Figure 5.6: L2 error between propagated distribution with 2001 Gaussian Mixture Elements and equivalent distributions for propagation
of 1 orbit and 30 orbits.

Figure 5.6 illustrates the difference between the same initial distribution with different number of Gaus-
sian kernels, with respect to the "reference" distribution with 2001 elements. As observed, the same trend
is observed for the cases with one and 30 orbit propagation. This result simplifies the selection of the op-
timal number of elements, since it removes propagation time from the decision variables. The L2 distance
monotonously decreases with increasing number of elements, as expected. To select the optimal number
of elements, considering the increase in computational time and the results from this analysis, a tolerance
threshold is defined. Following the discussions by Horwood et al. (2011), a threshold L2 distance of 5 ·10−7

is selected. It is then concluded that the optimal number of Gaussian mixture elements is 201. However, it is
important to note that selecting a higher number for cases where non-linearity in the propagation plays an
important role is possible and will result in a higher accuracy. Similarly, a lower number can also be selected
in cases where the available computational time is limited. In conclusion, the selection of the number of
Gaussian Mixture elements is case dependent and this section is only meant to provide reference informa-
tion on the effect of taking a given choice. Any Gaussian mixture model will represent an improvement with
respect to assuming a Gaussian distribution.

Gaussian hypothesis test
Once an optimum number of 201 elements has been set, the assumption stating that the individual Gaus-
sian Mixture Elements remain Gaussian during the propagation can be tested. To this end, several Gaussian
hypothesis test algorithms are selected and applied different the NOM-CASE-1 scenario with different prop-
agation times. Two types of hypothesis test are applied: single-variable and multi-variable. The former, only
allow to test that a single variable is normally distributed. Therefore, the test is individually applied to every
component of the propagated satellite state (i.e., every position and velocity component) and it is considered
successful when every component passes the test for a given confidence level. To this end, three single-
variable Gaussian hypothesis tests are applied: the Kolmogorov-Smirnov test (KS), the Anderson-Darling
test (AD) and the Pearson’s χ2 test. The research performed by Razali and Yap (2011) concluded that the
Anderson-Darling test provided the highest reliability amongst the chosen algorithms. This testing method-
ology assumes that the individual elements have to remain Gaussian, instead of testing the full multivariate
distribution, which is not ideal. To solve this issue, two multivariate normality tests are applied, although
these algorithms have been less researched and there is less information on their reliability. These are the
Henze-Zirkler and the Roy normality tests (Henze and Zirkler, 1990; Silvey, 1959). All these tests have in com-
mon that they allow to reject the null hypothesis that the data does not come from a normal distribution,
when the p-value overcomes a given threshold. More details on the mathematics behind these tests are pro-
vided in Subsection A.4.3. For this section, it the result of the test is just read as a pass/fail that determines
whether the data can be assumed to be normally distributed.
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Table 5.2: Gaussian hypothesis test on test case NOM-CASE-1. Red: failed test. Green: passed test.

nº GMEs 201 2001

Propagation time (hours) 2 6 10 31 62 2 6 10 31 62

Single-variable hypothesis tests

Kolmogorov-Smirnov

Anderson-Darling

Pearson’s chi-squared

Multi-variable hypothesis

Henze-Zirkler

Roy

Table 5.2 presents the results of these tests according to a pass/fail criteria established relative to a p-
value of 0.05. The tests are performed to individual GMEs coming from Gaussian mixtures of the same initial
distribution and with 201 and 2001 elements respectively. For the Gaussian mixture element coming from a
GMM with 201 elements, the tests reveal that the element remains Gaussian during six hours of propagation
and start to deviate afterwards. For ten hours of propagation, only some of the state components remain
Gaussian, and it is considered that the test is failed. The only exception is the Roy multi-variate normality
test, which concludes that the GME remains Gaussian after 10 hours and starts to deviate afterwards. When
increasing the model to 2001 GMEs, the elements remain Gaussian for longer propagation times. Excluding
the result from the Kolmogorov-Smirnov test, which results in a failure for every scenario, the remaining tests
allow to conclude that the individual elements remain Gaussian through the 62 hours propagation. Consid-
ering that AD presents higher reliability, the results from the KS method for this case are neglected.

This analysis provides an orientation on the validity of the Gaussian hypothesis assumption. The num-
ber of Gaussian elements considered optimum from the L2 error analysis turn out to fail the normality test
for propagation times longer than six hours. However, the computational burden of increasing the number of
elements might turn complying with the Gaussian hypothesis into an unfeasible problem. Therefore, the rec-
ommended number of elements for a general case is 201, but selecting a larger number of elements might be
beneficial in cases where the computational time is not an issue (e.g., problems with reduced collision inter-
val that require high sensitivity and long propagation hours). This is further investigated in Subsection 8.3.2.

5.2. Taylor series
In this section, the theory of Taylor series and Taylor series integration is first introduced, with the help of
Example 5.2. Then, the concept of optimal expansion order is discussed. This section provides the theory,
and Section 5.3 provides the computational frame required to integrate the Taylor series expansion of the
final state with respect to a deviation from the initial state. This corresponds to Step 2 from the road-map.

5.2.1. Theory
A Taylor expansion is a power series representation of a function as an infinite sum of terms formed by the
function derivatives evaluated at a reference point, a. The series is named after Brook Taylor, who proposed
the formulation in 1715. The Taylor series expansion of a function f (x) which is infinitely differentiable at a
real or complex number a is:

f (x) =
∞∑

n=0

f (n)(a)

n!
(x −a)n (5.24)

where n! is the factorial of n and f (n)(a) is the nth derivative of f evaluated at a. When the Taylor expansion
approximated by a finite number of terms, the truncation order k defines the maximum order of the deriva-
tives evaluated. The resulting expression is a Taylor polynomial, commonly referred to as Taylor expansion of
order k:

f (x) = f (a)+ f ′(a)(x −a)+ f ′′(a)

2!
(x −a)2 + . . .+ f (k)(x(a))

k !
(x −a)k +Rk (x) (5.25)

The remainder term Rk (x) encloses the remaining terms and determines the approximation error. To apply
this procedure to orbit propagation, consider the following ordinary differential equation (ODE) and initial
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value:
d x
d t = f (x(t )) x(t0) = x0 (5.26)

The integration of this equation at time t is:

x(t ) = x (t0)+
∫ t

t0

f (x(τ))dτ (5.27)

If the Taylor polynomial defining f (x) in Equation (5.25) is substituted in Equation (5.27). After analytical
integration of the Taylor polynomial the state at time t1 = t0 +∆t is:

x (t0 +∆t ) = x (t0)+∆t f (x (t0))+ 1

2!
∆t 2 f ′ (x (t0))+ . . .+ 1

n!
∆t n f (n−1) (x (t0))+Rn (5.28)

Example 5.2 - Taylor series
We consider the Taylor series expansion of f (x) = sin(3x)+ x centred at a = 0 (MacLaurin series). To
construct the series, we compute the derivatives of f (x). The first five derivatives are given by:

f (0)(x) = sin(3x)+x f (0)(0) = 0 (5.29)

f (1)(x) = 3cos(3x)+1 f (1)(0) = 4 (5.30)

f (2)(x) =−9sin(3x) f (2)(0) = 0 (5.31)

f (3)(x) =−27cos(3x) f (3)(0) =−27 (5.32)

f (4)(x) = 81sin(3x) f (4)(0) = 0 (5.33)

f (5)(x) = 243cos(3x) f (5)(0) = 243 (5.34)

The Taylor polynomial derived following Equation (5.25) is:

sin(3x)+x = 4

1!
x + −27

3!
x3 + 243

5!
x5 +R6 = 4x − 9

2
x3 + 81

40
x5 +R6 (5.35)

Figure 5.7 illustrates the approximation of f (x) by a MacLaurin series for different degrees of the Taylor
polynomials. It is clear that the accuracy increases with increased expansion order. The 4th order
expansion diverges at approximately x = ±0.7, while the 16th expansion correctly approximates the
function for approximately two periods.
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Figure 5.7: Taylor series approximation of order k = 4,10,16 of f (x) = sin(3x)+x

5.2.2. Optimal expansion order
The expansion order determines the accuracy of the propagated uncertainty, and therefore of the overall
collision probability calculation. An expansion order of one corresponds to the linear covariance propagation
performed by traditional methods. By using a differential algebra technique, an arbitrary value can be set for
the Taylor expansion order, at the expense of computational cost. For this application, it has been found
that a expansion order of four is the maximum that could be used for operational collision risk estimation.
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Figure 5.8: Number representation in a computer environment (left) and function representation in a differential algebra framework
(right) (Di Lizia et al., 2008)

Increasing the expansion order does not only affect the computational load of the propagation in differential
algebra, but also the load of reconstructing the propagated covariance.

The effect of expansion order in computational load and accuracy is studied as part of the sensitivity
analysis in Chapter 8. It is found that for most applications an expansion order of two or three should be
used. By selecting a expansion order of three it is ensured that the accuracy with increasing lead time will not
be compromised due to this parameter.

5.3. Differential algebra
The differential algebra approach was first studied by Berz (1999) to solve analytic problems with algebraic
means. The result of this study was the code implementation of a differential algebra package: COSY INFIN-
ITY, which was applied in the field of particle beam physics. The basic principle behind the DA approach is to
bring the treatment of functions to the computer environment in a similar way as the treatment of numbers.

The traditional approach to deal with functions in a computer environment is to evaluate the functions
at specific points. Following this method, the differentiation of a function following a Taylor series expansion
has a high cost and inaccuracies due to the multiple evaluations of the function derivatives and the accu-
mulation of rounding error. With the DA technique, the objective is to extract more information from the
function than just its numerical evaluation. To understand this concept, the analogy between the treatment
of real numbers and the treatment of functions is introduced and illustrated in Figure 5.8.

Consider two real numbers a and b and their floating point representation ā, b̄. We want to to apply an
arbitrary mathematical operation such as addition or multiplication represented by ×. The first option is
to perform this operation to the set of real numbers a and b and convert the result of this operation to its
floating point representation (in Figure 5.8, left illustrated in the path from upper-left to lower-left and lower-
left to lower-right. The second option is to transform the real numbers to their floating point representation
ā, b̄ and apply an adjoined operation to ×, ⊗ in the set of floating points. This is illustrated in the upper-
left to upper-right and upper-right to lower-right path from Figure 5.8. In the end, the diagram commutes
and the resultant operation from both options is the same. Now le us consider a similar scenario, with two
functions f and g . In this simile, the transformation of real numbers to their floating point representation
is analogue to the extraction of the Taylor series expansion of the functions F and G . If we want to apply
an operation to these functions in a computational environment, two options can be considered. The first
option, to perform the operation to f and g and then transform the result to its Taylor series expansion. The
second option, to convert both functions to their Taylor series representation F,G and operate on them on
the space of Taylor polynomials. Both options are equivalent and illustrated in the right diagram of Figure 5.8.
In this approach, the Taylor coefficients of a function and its evaluation can be computed with a fixed effort.
The implementation of the DA framework evolutioned to include complex operations on functions such as
differentiation and integration.

The application of Taylor series expansion is applied in the DA framework as follows. To this end let
us consider the ODE defined in Equation (5.26). To integrate the expression in a DA framework, the initial
condition x0 is initialised as a DA variable: [x0] = x0+δx0, where x0 is the reference point of the expansion and
δx0 is the perturbation. To explain the integration process, let us consider the Taylor expansion of order one
in Euler’s integration scheme following x1 = x0 +∆t · f (x0). If the variable is initialised in the DA framework:

[x1] = [x0]+∆t · f ([x0]) (5.36)

where the output of the first step, [x1] is the Taylor expansion of the flow of the ODE in x0 for t = t1. The
procedure is applied repeatedly until the last integration step is reached and the resultant solution is repre-
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sented by a Taylor polynomial map: xt f = Tk (δx0), where k is the order of the Taylor series expansion. The
evaluation of the Taylor polynomial directly supplies the solution xt f corresponding to the displaced initial
condition δx0. The same polynomial is evaluated to calculate the final state from any initial deviation.

Example 5.3 - Differential Algebra
To better understand the computational behaviour behind differential algebra, let us consider the
computation of the following function for a perturbation x with respect to the central value of a = 0:

f (x) = sin(x)+ex + log(1−x) (5.37)

In traditional floating point computation, to evaluate this expression at a given point x = 3, the indi-
vidual operations are computed and the floating point numbers are added with the defined floating
point accuracy:

f (0.3) = sin(0.3)+e0.3 + ln(0.7) = 0.29552+1.34985−0.35667 = 1.28870

However, in differential algebra the operations are not performed using floating points, but using the
Taylor expansion of the expressions. In this case, the Taylor expansion of the individual components
is given by:

sin x =
∞∑

n=0

(−1)n

(2n +1)!
x2n+1 = x − x3

3!
+ x5

5!
−·· ·

ex =
∞∑

n=0

xn

n!
= 1+x + x2

2!
+ x3

3!
+·· ·

log(1−x) =−
∞∑

n=1

xn

n

Therefore, the Taylor expansion for f (x) is:

f (x) =
∞∑

n=0

(
(−1)n

(2n +1)!
x2n+1 + xn

n!

)
=−

∞∑
n=1

xn

n
(5.38)

In differential algebra, this computation is internally done, with the expansion coefficients of each
individual operation up to the expansion order, k. For an example with k = 5, the expression obtained
in this computational algebra method would be :

f (x) ≈ 1+x + x3

3
+

(
1

4!
− 1

4

)
x4 +

(
2

5!
− 1

5

)
x5 = 1 · x0 +1 · x1 +0 · x2 −0.�3 · x3 −0.208�3 · x4 −0.18�3 · x5

which evaluated at x = 3 gives:
f (3) ≈ 1.288867

The result from the differential algebra software would be the Taylor expansion coefficients of the
solution, corresponding to each element:

f (x) =
k∑
0

ci · xi (5.39)

For this example, the differential algebra software would provide as an output a file with the Taylor
expansion coefficients summarised in Table 5.3.

Table 5.3: Taylor expansion coefficients of Polar to Cartesian conversion

Coefficient c0 c1 c2 c3 c4 c5

Value 1 1 0 −0.�3 −0.208�3 −0.18�3
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5.4. PDF reconstruction
The process followed to reconstruct the mean and covariance of the propagated state y is based on the deriva-
tion provided by (Valli et al., 2013), and corresponds to Step 3 from the road-map. The final state is expressed
as the Taylor series expansion with respect to the deviations δx of the initial state x :

[y] = f ([x]) = ∑
p1+···+pn≤k

c p1...pn ·δxp1
1 · · ·δxpn

n (5.40)

where c p1...pn are the Taylor coefficients of the polynomial expansion. The mean of the probability distribu-
tion of a random variable x is defined by its expectation (µ= E {x}). To compute the expectation it is required
to use the Hafnian operator, which is a challenge to computationally optimise. The numerical details of this
operator and its computation are given in Subsection 7.2.1. The linearity property of the expectation operator
satisfies that for N random variables Xi and constants ai :

E

{
N∑

i=1
ai Xi

}
=

N∑
i=1

ai E{Xi } (5.41)

Applying this property to the mean of the final state expressed by its Taylor series expansion yields:

µi = E
{[

y i

]}= E

{ ∑
p1+···+pn≤k

c p1...pn ·δxp1
1 · · ·δxpn

n

}
= ∑

p1+···+pn≤k
c i ,p1...pn E

{
δxp1

1 · · ·δxpn
n

}
(5.42)

Whereµi is the mean of the i th component of the final state, y i . The covariance of two random variables, x , y
is defined by P x y = E

{
(x −E {x})(y −E

{
y
}
)
}
. By using the linearity property of expectations, this expression

can be reduced to:

P x y = E
{

x y −xE
{

y
}− yE{x}+E{x}E

{
y
}}

= E
{

x y
}−E{x}E{x}−E{x}E

{
y
}+E{x}E

{
y
}

= E
{

x y
}−E{x}E

{
y
} (5.43)

Substituting for the covariance P i j between the final state components [y i ], [y j ], and using the expression of
the mean from Equation (5.42) results in:

P i j = E

{( ∑
p1+···+pn≤k

c i ,p1...pn ·δxp1
1 · · ·δxpn

n

)( ∑
q1+···+qn≤k

c j ,q1...qn ·δxq1
1 · · ·δxqn

n

)}
−µiµ j (5.44)

Applying the distributivity property of the summation operator, which satisfies that
(∑n

i=0 ai
)(∑n

j=0 b j

)
=∑n

i=0

∑n
j=0 ai b j , the expression can be rearranged as:

P i j = E


∑

p1+···+pn≤k
q1+···+qn≤k

c i ,p1...pn c j ,q1...qn ·δxp1+q1
1 · · ·δxpn+qn

n

−µiµ j (5.45)

Finally, applying again the linearity of the expectation operator, the propagated covariance matrix can be
calculated as:

P i j =

 ∑
p1+···+pn≤k
q1+···+qn≤k

c i ,p1...pn c j ,q1...qn ·E
{
δxp1+q1

1 · · ·δxpn+qn
n

}−µiµ j (5.46)

The following example demonstrates the output and result of the covariance propagation process for a simple
coordinate conversion.
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Example 5.4 - Polar to Cartesian coordinate conversion
To exemplify the propagation of covariance, the two-dimensional example of a conversion from Polar
to Cartesian components is introduced. For a given Polar state x = [x1 x2] = [r θ], the equivalent state
in Cartesian components y = [y1 y2] is defined as:

y1 = x1 ·cos y1

y2 = x1 · sin y1

For a polar vector x = [1 π/3], the nominal transformation to Cartesian components is y = [0.5
p

3/2].
Consider that the measurement in Polar coordinates presents an uncertainty with a standard devia-
tion of 0.02 me in x1 and 15π

180 rad in x2. The conversion of Polar to Cartesian components in this ex-
ample with Taylor expansion order of four can be expressed in the format from Equation (5.40). This
operation yields as an output the Taylor expansion of the converted state with respect to a deviation
of the nominal initial state displayed in Table 5.4.

Table 5.4: Taylor expansion coefficients of Polar to Cartesian conversion

Coefficient Order Exponents Coefficient Order Exponents

y1 δx1 δx2 y1 δx1 δx2

5.0 ·10−1 0 0 0 8.6602 ·10−1 0 0 0

−8.6602 ·10−1 1 0 1 5.0 ·10−1 1 0 1

5.0 ·10−1 1 1 0 8.6602 ·10−1 1 1 0

−2.5 ·10−1 2 0 2 −4.3301 ·10−1 2 0 2

−8.6602 ·10−1 2 1 1 5.0 ·10−1 2 1 1

1.4433 ·10−1 3 0 3 −8.3333 ·10−2 3 0 3

−2.5 ·10−1 3 1 2 −4.3301 ·10−1 3 1 2

2.0833 ·10−2 4 0 4 3.6084 ·10−2 4 0 4

1.4433 ·10−1 4 1 3 −8.333 ·10−2 4 1 3

To compute the mean and standard deviation of the converted variable, the Taylor expansion coeffi-
cients and the initial covariance are input to Equations (5.42) and (5.46). The result of the conversion
of uncertainty from Polar to Cartesian coordinates assuming that the final distribution is also Gaus-
sian is observed in Figure 5.9. In this case, the mean and covariance of the overall final distribution
assuming Gaussian uncertainty is correctly computed. However, the final distribution cannot be ap-
proximated as a Gaussian, due to the non-linearities in the propagation. To solve this issue, either a
larger expansion order is required (which is not compatible with the computation of the Hafnian) or
a Gaussian Mixture model can be used. The second option is selected for this work. In the propaga-
tion of uncertainty for satellite states, the effect of non-linearities in the dynamics are smaller and an
accurate propagation of uncertainty can be achieved with Taylor expansion order of two to three.

-0.5 0 0.5 1

y1 (m)

0

0.5

1

1.5

y 2 (
m

)

Gaussian propagation
Uncertainty conversion

Figure 5.9: Conversion of uncertainty in Polar coordinates to Cartesian coordinates for 5000 samples, analytically and using
differential algebra with a single Gaussian distribution
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6
Collision probability calculation methods

The hybrid Gaussian Mixture Model and Differential Algebra method introduced so far propagates the ini-
tial uncertainty of the satellite state in time. Although this technique informs to an extent about the posi-
tion of the objects at the time when a collision is suspected, it is not sufficient to quantify the collision risk.
As discussed in Chapter 2, collision probability is the preferred parameter to evaluate the risk of a fatal en-
counter. This chapter is dedicated to theoretically introducing and discussing the implementation of the
collision probability calculation methods selected to work together with the DA-GMM uncertainty propaga-
tion, which corresponds to Step 4 in the road-map. The conventional methods used to calculate the collision
probability and their main assumptions are introduced in Section 2.2. By understanding the limitations of
these techniques, the hot-spots for improvement are identified and taken into account in the development of
collision probability calculation algorithms. A summary of the main characteristics of conventional methods
for collision probability calculation is presented in Section 6.1. In this work, two methods of collision proba-
bility calculation are developed. First, the direct method relying on the calculation and time integration of the
collision probability rate is introduced in Section 6.2 based on the work by Coppola and McAdams (2012) and
extended to a mixture of Gaussian distributions. While this method overcomes important limitations from
the conventional methods, it still assumes that the bodies are spherical. Since the effect of this assumption is
not always negligible, a variation of the method that considering a complex geometrical model of the body is
developed here, applied to the International Space Station, and discussed in Section 6.3.

6.1. Conventional methods
The conventional methods for collision probability, divided into short-term and long-term encounters have
been discussed in Section 2.2, where their assumptions and limitations are explained. Table 6.1 summarises
these techniques and their characteristics. The column short-term assumptions refers to assumptions A1 to
A4 introduced in Subsection 2.2.1. Short-term extension refers to the long-term methods that perform the
two-dimensional integration for the short-term assumption followed by a one-dimensional integration over
the relative velocity. The relative velocity column refers to methods that apply assumptions on the relative ve-
locity (either that it is non-zero or that it does not present any uncertainty). The body shape column specifies
that types of encounter geometries that can be considered in any method and the last three columns indi-
cate whether the method is included in the main collision-detection software. As observed, each collision
probability calculation software contains at least one short-term and one long-term encounter algorithm, to
adequately adapt to different scenarios. While the short-term methods are efficient in computing the col-
lision probability for these encounters, the methods for long-term collision probability are limited in terms
of computational time and accuracy. The assumptions on relative velocity cause the methods to fail in cer-
tain encounter geometries. Moreover, the limitation to spherical shapes can greatly impact the risk estimate.
From these methods, the one developed by Coppola and McAdams (2012) presents the largest advantages,
with the limitations that it assumes a Gaussian uncertainty and assumes a spherical shape. The first limita-
tion is solved by extending the method for a mixture of Gaussian distributions, as derived by DeMars et al.
(2014). The second, is solved by applying the multi-sphere method, developed and presented in this work.
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Table 6.1: Summary of characteristics of existing collision probability calculation methods. Body shape can be a sphere (S), paral-
lelepiped (P) or any cross section using the method of equivalent cross-section area (MECSA).

Reference
Short-term

assumptions
Short-term
extension

Relative
velocity

Body
shape

NASA
CARA

ESA
CORAM

STK

Short-term encounter methods

Foster and
Estes, 1992

X X S

Patera, 2001 X X P, S X

Alfano, 2005 X X S

Chan, 2008 X X MECSA X X

Long-term encounter methods

Patera, 2003 X X P, S X

Chan, 2004 X X MECSA X

Alfano, 2006 X X P, S X

Alfano, 2007 X X P, S X

Coppola and
McAdams, 2012

S X

6.2. Time integration method
This section introduces the time integration method for collision probability calculation. The algorithm was
originally developed by Coppola and McAdams (2012) to compute the collision probability between objects
with Gaussian uncertainty. This method offers two main improvements with respect to the conventional
techniques described. First, it takes into account the uncertainty in the object’s velocity, therefore dropping
assumption A2. This is particularly important for the case of a collision space debris. While the velocity un-
certainty of a satellite with the current orbit determination techniques, this does not apply to space debris.
The effect of velocity uncertainty becomes non-negligible in this case, especially for long encounters. Second,
the method is applicable for short and long terms encounters, and the encounter time becomes a free param-
eter. This expands the applicability of this collision risk assessment method, not only to GEO encounters but
also to specific cases of LEO encounters, which require a long integration time. The time integration method
was extended by DeMars et al. (2014) to include include Gaussian Mixture Models. The computational load
of the model increases quadratically with the number of GMEs, which can become an issue for long-term
encounters. However, even if the optimal number of GMEs cannot be included in the collision probabil-
ity calculation, it already represents an improvement with respect to the Gaussian propagation scenario. In
this section, the direct method for collision probability is mathematically described. In Subsection 6.2.2, a
simplified example is provided to visualise the implementation and results of the method. Finally, the free
parameters that can tune the collision probability calculation are identified and analysed in Subsection 6.2.3.

6.2.1. Theory
The direct method is mathematically based on the time integration of the collision probability rate over the
encounter time. The collision probability rate calculated from the influx and outflux of the uncertainty distri-
bution over the hard-body sphere. This concept is similar to Reynold’s transport theorem, although applied
to the artificial variable of collision probability rate at a given time.

The probability that a collision occurs by time t , Pc (t ) can be obtained by the time integration of the
collision probability rate pc (t ) assuming that at time t = 0 the collision probability is zero:

Pc (t ) =
∫ t

0
pc (τ)dτ (6.1)

Based on the direct method of collision probability introduced by Coppola and McAdams (2012), and Akella
and Alfriend (2000), the collision probability rate is given by:

pc (t ) =
∫

S

∫
vn≤0

|vn |p (xt )dvt dS (6.2)
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where vn = v t · n̂ is the relative velocity (v t ) normal to the surface area element dS, S is the area of the hard
ball and p(xt ) is the joint probability density function of the relative position r (t ) = r t and relative velocity
v (t ) = v t , with the satellite state defined as xt = [r (t ) v (t )]. The expression can be rearranged using that
p(xt ) = p(v (t )|r (t ))p(r (t )) as:

pc (t ) =
∫

S

[∫
vn≤0

|vn |p (vt | rt )dvt

]
p (rt )dS (6.3)

The problem reduces to compute the joint PDF, p(xt ), which following the derivation from DeMars et al.
(2014), simplifies for a GMM to:

p (xt ) =
Na∑
i=1

Nb∑
j=1

w (i )
a,t w ( j )

b,t pg

(
xt ;µ(i j )

t ,Σ(i j )
t

)
(6.4)

where Na and Nb are the number of GMEs describing the PDF of satellites A and B respectively, w (i )
a,t , w (i )

a,t

are the weight of the i th GME of satellite A and B respectively at time t . µ(i j )
t = m(i )

a,t −m( j )
b,t and Σ(i j )

t = P(i )
a,t +

P( j )
b,t where m(i )

a,t ,m(i )
b,t ,P(i )

a,t ,P(i )
b,t are the mean and covariance matrices of the i th GME of satellites A and B

respectively at time t . To simplify the calculation of Equation (6.2), the joint mean and covariance matrix

µ
(i j )
t ,Σ(i j )

t can be decomposed into the position and velocity components as:

µ
(i j )
t =

[
µ

(i j )
r,t

µ
(i j )
v,t

]
and Σ

(i j )
t =

[
Σ

(i j )
r,t Σ

(i j )
r v,t

Σ
(i j )
vr,t Σ

(i j )
v,t

]
(6.5)

which substituted into Equation (6.4) and then into Equation (6.2) becomes:

pc (t ) =
La∑

i=1

Lb∑
j=1

w (i )
a,t w ( j )

b,t

∫
S

pg

(
rt ;µ(i j )

r,t ,Σ(i j )
r,t

)
ν (rt )dS, (6.6)

ν (rt ) =
∫

v
(i j )
n ≤0

∣∣∣v (i j )
n

∣∣∣pg

(
v′t ;

(
µ

(i j )
v,t

)′
,
(
Σ

(i j )
v,t

)′)
dv′t (6.7)

with v (i j )
n = v′t · n̂+ n̂TΣ

(i j )
vr,t

(
Σ

(i j )
r,t

)−1
rt . Assuming that both bodies are spherical, with a joint hard-body radius

R, the collision probability rate is simplified to:

pc (t ) = R2
Na∑
i=1

Nb∑
j=1

w (i )
a,t w ( j )

b,t

∫ 2π

0

∫ π/2

−π/2
pg

(
Rn̂;µ(i j )

r,t ,Σ(i j )
r,t

)
ν(n̂)cosθdθdφ (6.8)

where θ and φ are the elevation and azimuth angles respectively. For a spherical hard-ball, the integration
over velocity can be performed analytically, and ν(n̂) becomes:

ν(n̂) = σ(n̂)p
2π

exp

{
− ν2

0(n̂)

2σ2(n̂)

}
− ν0(n̂)

2

[
1−erf

{
ν0(n̂)

σ(n̂)
p

2

}]
, (6.9)

where ν0(n̂) and σ2(n̂) are:

ν0(n̂) = n̂T
[
µ

(i j )
v,t +Σ(i j )

vr,t

(
Σ

(i j )
r,t

)−1 (
Rn̂−µ(i j )

r,t

)]
σ2(n̂) = n̂T

(
Σ

(i j )
v,t −Σ(i j )

vr,t

(
Σ

(i j )
r,t

)−1
Σ

(i j )
r v,t

)
n̂

(6.10)

This expression can then be incorporated into Equation (6.8) and the remaining step is to perform the
flux integral over the surface of the sphere. This integration cannot be conducted analytically, and numer-
ical quadrature techniques are required instead. The most common numerical approximation is Lebedev’s
quadrature (Lebedev, 1976), which is further discussed in Subsection 7.2.2. This method selects a set of Nk

quadrature points on the surface of the sphere and assigns weights to approximate the integral by a weighted
summation of the function evaluation. These quadrature points are represented by unit vectors on the unit
sphere, n̂k . The resulting expression to evaluate the collision probability rate as a function of time is:

pc (t ) = R2
Na∑
i=1

Nb∑
j=1

w (i )
a,t w ( j )

b,t

Nk∑
k=1

wk pg

(
Rn̂k ;µ(i j )

r,t ,Σ(i j )
r,t

)
ν (n̂k ) (6.11)

This result is then numerically integrated over the encounter time interval (which can be found by speci-
fying a threshold value) to obtain the collision probability.
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Figure 6.1: Initial position uncertainty

6.2.2. Implementation
This section aims to introduce the implementation of the direct method for collision probability through a
simplified two-dimensional example representing a car crash. This example allows to visualise the geometry
of the encounter and better understand the results of the risk assessment. The temporal evolution of the
collision probability rate and the total collision probability are then presented.

Car crash
Consider the scenario of two cars moving at a constant speed on a two-dimensional grid in perpendicular
trajectories, such that their nominal path will collide at a certain time. However, there is an uncertainty in the
measurement of the initial position and velocity. In this case, it cannot be stated that a collision will occur,
and this introduces the need to calculate the collision probability. For this example, car A presents a Gaus-
sian uncertainty and car B is modelled as a Gaussian Mixture Model with five elements for demonstration
purposes.

Figure 6.4 illustrates the uncertainty contours of the initial position of both cars. Car A is located at a
mean position of x0,A = 100 m, y0,A = −100 m and car B at x0,B = −150 m, y0,B = −150 m. Knowing that the
cars move in the +y and positive +x directions respectively, the nominal collision would occur at xTC A = 100
m, yTC A = 150 m, at t = 180 s. The temporal evolution of the uncertainty is observed in Figure 6.2. It can
be noted that the size of the covariance contour increases with time. This is due to the uncertainty in the
velocity, which then affects the uncertainty in the position. If there was no velocity uncertainty, the shape of
the contours would remain constant. From this figure, it can readily be understood that although fast, the
collision does not occur instantaneously when there is uncertainty involved. It can be observed that there are
several time frames that overlap and therefore collision probability must be studied as a function of time.

The results of applying the direct method of collision probability to this example, assuming a hard-body
radius of 30 cm are displayed in Figure 6.3. The size of the hard-ball radius shall be at least one order of magni-
tude smaller than the position standard deviation, to avoid approximation errors in the Lebedev quadrature.
This is not an issue in the case of satellite conjunction assessment, but it forces to set a small radius for this car
crash example (which then becomes a remote control car crash example). In Figure 6.3a, it is observed that
the maximum collision probability rate is found at t = 180 s, which coincides with the expected collision time.
However, considering only that instant for the collision probability would bring a large error. It is required to
integrate the collision probability along the complete encounter interval to obtain an accurate estimate of
the collision risk, as observed in the evolution of the collision risk with time illustrated in Figure 6.3a.

6.2.3. Method parameters
In this section, the free parameters from the direct method of collision probability calculation are identified
and discussed. Although the effect of these parameters on the final result are heavily dependent on the case
under study, general trends and guidelines can be defined.
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Figure 6.2: Uncertainty evolution of cars A and B.
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Figure 6.3: Time evolution of collision risk in car crash example.

Integration time
The direct method for collision probability relies on the time integration of the collision probability rate.
Therefore, selecting the correct time period is crucial to correctly estimate the collision probability. In regular
scenarios where both satellites have different orbits and a punctual collision in time is detected, the collision
probability rate will monotonously increase until reaching the maximum value at time of closest approach
and then decrease, as observed in Figure 6.3a. In this case, selecting the integration time is straight forward,
and only requires setting a threshold value for the minimum probability rate that should be considered. For
this analysis, a threshold value of 10−12 is recommended. Another option is to select the integration time
based on a threshold value for the nominal separation distance. This allows to decide on the integration
period before performing the simulations, therefore minimising the use of unnecessary computational load.
Once the uncertainty propagation is done and the direct method is applied, it can be checked whether the
probability rate threshold is violated, and perform extra simulations, if required.

However, this is not always the case and there are scenarios, where the collision risk is not continuous and
the integration time cannot be simply set by a threshold. The criteria to select the integration time will then
depend on multiple case-dependent parameters such as tracking station passes and available computational
load.

Time step
The required time step is also a case-dependent variable that will be selected as a function of the shape of the
probability rate curve and the integration time. For very short term encounters, a shorter time step will be
required. For short term encounters (typically intervals of less than five seconds) a time step of 0.1 seconds is
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Table 6.2: Collision probability with change in time step with 1454 quadrature points.

Time step (s) 1 10 100 500

Collision probability (%) 0.24443 0.2442 0.2432 0.2281

% Error w.r.t∆t = 1 s - 0.09 0.5 6.6

Table 6.3: Collision probability with change in quadrature points with ∆t = 10 s.

Quadrature points 50 590 1000 1454 3074 5810

Collision probability (%) 0.2766552 0.244930 0.244217 0.2442129 0.2442169 0.2442170

% Error w.r.t 5810 points 13.282 0.291 0.0405 6.5777 ·10−4 2.89 ·10−4 -

recommended by Coppola and McAdams (2012). In these scenarios, using a time step of 1 second can lead to
errors of 10% in the collision probability. However, in long term encounters the collision probability is spread
over a longer time period, which allows to select longer time steps in the order of 10-60 seconds. As a general
rule, it is recommended to select 100-300 integration points along the integration time span and refine the
time step in fast changing areas if required.

To evaluate the effect of time step on a nominal satellite mission, the co-located satellite example that
will be discussed in Section 9.1, is considered. In this case, the encounter time is very long, due to the fact
that both satellites follow the same distribution. Moreover, the collision rate does not present narrow spikes,
which suggests that small step sizes (< 1 s) are not required. Table 6.2 presents the collision probability evalu-
ating the time integral with different time steps ranging from 1 to 500 seconds. From the analysis of the error
with respect to the 1 second computation, it can be concluded that for this scenario, up to 100 seconds would
be a valid time step, resulting in a 0.5% difference. When increasing to 500 seconds, the difference increases
to 6.6 %, which supposes a great increase compared to the change in computational load, but still provides a
result within the same order of magnitude.

Hard-ball radius
The hard-ball radius will depend on the geometrical specifications of the problem (i.e., the size of the satel-
lites). However, due to the approximation required to calculate the surface integration along the sphere with
Lebedev’s method, the method will fail when the sphere is too big compared to the position uncertainty. This
is not usually a problem due to the characteristic magnitude of the satellite uncertainty with respect to the
satellite size. However, it must still be taken into account when applying the method. For safety, the sphere
radius must be at least one order of magnitude smaller than the standard deviation of the position uncer-
tainty.

Quadrature points
The number of quadrature points selected will affect the accuracy of the flow integration over the surface
of the hard-body sphere and therefore the overall accuracy of the method. For a more detailed explanation
and visualisation of Lebedev’s quadrature, refer to ??. In general, the required number of quadrature points
will depend on the relative size of the sphere with respect to the position uncertainty. Moreover, the num-
ber of quadrature points linearly influences the computational load of the collision probability calculation.
The available computational time will depend on the encounter time, the number of GMEs, and the Taylor
expansion order. The selection of the optimal number of quadrature points would be the result of a case spe-
cific trade-off between computational load and radius to standard deviation ratio. This analysis is too specific
and would only be useful in extreme scenarios. Instead, a general number of quadrature points is proposed
for the standard scenario, which can be increased if needed. Table 6.3 presents the results with a range of
quadrature points from 50 to 5819, and the relative error with respect to 5810 points. From these results it can
be observed that for this scenario, an accurate computation can be achieved with approximately 1000 points.

6.3. Multi-sphere method
While the assumption of a spherical hard-body for the collision is valid for generic satellites, it introduces a
large error in the case of the International Space Station. In this particular case, collision probability calcu-
lation is of foremost importance, due to the safety requirement for the astronauts inhabiting the spacecraft.
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In nominal scenarios the collision probability is calculated considering a safety zone of 2 km (local vertical)
and 25 km×25 km (local horizontal), and a manoeuvre is applied when the detected collision risk is greater
than 10−5. However, there are specific scenarios when applying a collision avoidance manoeuvre can pose a
higher risk than the space debris itself. This is the case when astronauts are performing extra-vehicular activi-
ties and when there is a docking operation. In the unlikely event that these situations occur, the upper-bound
estimate for the collision probability does not provide enough information to correctly assess the risk. Using
a more detailed model of the vehicle offers a solution to this issue. Considering the case of a short-term en-
counter, with all the associated assumptions, Chan (2008) developed the method of equivalent cross-section
area, in which the cross-section of the ISS is divided into basic geometrical shapes which are converted to
circles with the same area. The limitations of this method are that it only serves for short-term encounters
and that it only considers one orientation of the satellite with respect to the debris trajectory (i.e., only one
cross-section). Following a similar principle, the multi-sphere method is introduced, aiming to apply the
theory of the direct method for collision probability to a three-dimensional model of the vehicle formed by a
mesh of spheres. To multi-sphere method is developed under the following assumptions:

A-MSPH-1 The effect of shadowing between components can be neglected.

A-MSPH-2 The orientation of the vehicle with respect to the orbital plane is constant.

A-MSPH-3 The body frame (B-frame) is aligned with the radial-transverse-normal frame (RTN-frame).

These assumptions can be avoided by developing specific geometrical models for each scenario and apply-
ing frame transformations to account for the orientation at every time. In this section, the mathematical
description of the multi-sphere model for collision probability calculation is introduced in Subsection 6.3.1.
In Subsection 6.3.2, the geometrical specifications of the ISS are discussed and the creation of the multi-
sphere model is explained. The implementation of the method, illustrated with a basic example is presented
in Subsection 6.3.3.

6.3.1. Theory
During the mathematical derivation of the direct method for collision probability, no assumptions are made
on the shape of the object until Equation (6.8), where the integration for a sphere is presented. The fact that
the surface integration cannot be performed analytically limits the applicability of the method to generic
shapes. While numerical quadrature techniques for the sphere have been widely studied, the extension to
other shapes is limited. Reeger et al. (2016) developed a method to extend the quadrature to arbitrary smooth,
closed surfaces. However, the method does not work for complex shapes such as the volume of the ISS. In
response to these limitations, a model is devised based on the additive property of the direct method for col-
lision probability. Considering a hypothetical case where the hard-body volume was two adjacent spheres,
and neglecting the effect of shadowing, the collision probability would be the sum of the individual prob-
ability for each sphere. If the hard-body was formed by two intersecting spheres, the collision probability
would be calculated by the surface integration over the resulting surface. The benefit of using a quadrature
technique is that the quadrature points in the boundary of the resulting volume can be readily identified,
allowing to compute the surface integral over the desired portion of the spheres. This concept can be gener-
alised to more complex structures, allowing to adapt the direct method of collision probability to any shape.
The following steps are required to implement the multi-sphere method.

1. Select the number of spheres Nsph to fit in the volume to create a sphere mesh. This number will
depend on the complexity of the shape and the computational load allowed. For this work, the ISS is
modelled with a total of 60,000 spheres.

2. Create a sphere-mesh representation, with variable radius. The output is be the centre and radius of
each sphere.

3. Sample Nk quadrature points from each sphere.

4. From the mesh of Nsph×Nk points, extract the external Nbnd boundary points which define the external
surface of the volume.

5. Identify the associated Lebedev weights (wbnd ,k ) and sphere radius (Rk ) of the boundary points.
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(a) Simplified ISS model in Autodesk Fusion (b) Sphere tree of the ISS body with 50,000 spheres

Figure 6.4: Sphere modelling of the ISS

6. Calculate the collision probability rate with the adapted version of Equation (6.11):

pc (t ) =
Na∑
i=1

Nb∑
j=1

w (i )
a,t w ( j )

b,t

Nbnd∑
k=1

R2
k wbnd ,k pg

(
Rk n̂k ;µ(i j )

r,k,t ,Σ(i j )
r,t

)
ν (n̂k ,Rk ) (6.12)

where µ(i j )
r,k,t is the relative distance between the secondary object and the centre of each Lebedev

sphere, in the RTN reference frame.

7. Numerically integrate pc (t ) over the encounter time to obtain the total collision probability rate.

6.3.2. Geometry specifications
To apply the multi-sphere method, it is required to obtain a set of Lebedev points related to the spheres
forming the external boundary of the model. To achieve this, a three-dimensional model of the vehicle under
study is required (in this case, the ISS). Although multiple models of the ISS are publicly available, they are
ill-suited for this purpose. This is due to the high degree of detail in small components that impede the
generation of a sphere mesh. To solve this issue, a simplified three-dimensional model of the ISS is created
in Autodesk Fusion, as illustrated in Figure 6.4a. This model is based on the component division devised
by Chan (2008) for the method of equivalent cross-section area. It consists of 52 elements represented by
simple geometrical shapes (parallelepipeds and cylinders) that approximate the ISS at one of its possible
configurations.

To generate the sphere mesh, the software spheretree1 is used, which includes adaptive medial axis algo-
rithms for the construction of so-called sphere trees, developed by Bradshaw and O’Sullivan (2004). It was
readily identified that the meshing of the solar pannels would pose a problem due to their large surface re-
lated to the thickness. As a consequence, a large number of spheres would be required to correctly fit the
shape of the panel. This was computationally unfeasible, both for the computation of the mesh and for the
later calculation of the collision probability. To solve this issue, the solar panels are studied separately. The
body of the ISS is modelled as a sphere tree using 10,000 sample points and 50,000 spheres. The resulting
sphere mesh is illustrated in Figure 6.4b. Despite the complex shape of the body, the sphere mesh produces
an accurate replica of the real volume of the ISS.

For the solar panels, creating the sphere tree from the thin plates is unfeasible. Each panel has a surface
area of 420 m2 and a thickness of 10 cm can be assumed. Based on this, more than 50,000 spheres would be
required to approximate the shape of each solar panel, adding up to a total of > 420,000 spheres for the set
of eight solar panels. The root of the problem is the low thickness of the solar panel, which requires small
spheres to fit inside the model. However, small spheres are not a requirement to approximate a flat surface.
Therefore, an alternative solution is proposed, which consists in creating a thicker version of the solar pan-
els (10 m thick) to fit the spheres. Once the (substantially smaller) sphere tree is created, the boundaries are
extracted and the points forming the top and bottom faces of the parallelepiped are selected. The upper and
lower boundaries are then shifted to recreate the shape of the solar panel with a thickness of 10 cm. Fig-
ure 6.5b illustrates this concept. In grey, all the quadrature points sampled from the sphere mesh in the thick

1Available at : https://github.com/mlund/spheretree. Date accessed: 01/12/2021

https://github.com/mlund/spheretree
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(a) ISS body
(b) ISS solar panels

Figure 6.5: Boundary extraction from multi-sphere model with 50 quadrature points per sphere. Grey: internal points. Red: boundary
points.

Figure 6.6: ISS representation with boundary points from multi-sphere model. Grey: main body formed by 50,000 spheres. Blue: solar
panels formed by 5,000 spheres each.

parallelepiped are represented. These points fill the entire volume. A boundary extraction algorithm is then
used to identify the external points, from which the upper and lower 5 cm slices are selected, illustrated in
red. Essentially, these represent the quadrature points forming the external boundary of an equivalent paral-
lelepiped with 10 cm thickness. In Figure 6.5a, the same concept is illustrated for the body of the ISS, with the
internal points sampled from the sphere mesh in grey and the points forming the external boundary in red.
Once all the boundary points are identified, the body and the solar panels can be combined as illustrated in
Figure 6.6. Note that this figure does not represent a mesh point of the ISS. It represents a set of quadrature
points, with associated weights, that can be used to numerically integrate the flow of a given variable over the
surface of the ISS.

6.3.3. Implementation
To illustrate the implementation of the multi-sphere model for collision probability, the two-dimensional car
crash example is again used. In this case, a simplified version of the multi-sphere model formed by only
two spheres will be used, to easily exemplify the how the method works. The single sphere model can be
easily understood, as the sphere represents the volume than can be occupied by the satellites for a collision
to occur, and the probability is computed as the integration of the collision probability rate as a flux over
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Figure 6.7: Simplified multi-sphere model with two spheres.

Table 6.4: Collision probability for single-sphere to multi-sphere example.

Geometry Pc

Single sphere 0.0015

Two separated spheres 0.0030

Two intersecting spheres 0.0019

this collision volume. To gradually understand the multi-sphere model, let us first consider a case where the
collision volume can be defined by two spheres, separated by a distance of 66 cm from centre to centre as
illustrated in Figure 6.7a. In such a case, the collision probability will be approximately double than the one
in case of the single sphere. It is not exactly double because neither of the spheres are located at the centre
anymore and therefore the distance between the uncertainty flux and the sphere is different. The collision
probability in this case is equal to adding the individual probability of each sphere.

To understand the concept of the multi-sphere model, let us now assume that the combined shape of the
two objects equals two intersecting sphere, with the centre of the spheres separated by 24 cm. To calculate
the collision probability for this type of body, the flux of collision probability rate must be integrated along the
surface of this volume. There is not an analytical way to perform this integration, and therefore quadrature
methods must be used. However, there is no quadrature method that directly integrates the flux over this
shape. Making use of the concept of Lebedev’s quadrature for a single sphere, and the additive property of
collision probability, the method can be extended to account for two intersecting spheres. Such a geometry
is illustrated in Figure 6.7b. In grey, the quadrature points defining both spheres can be observed. In red, only
the external quadrature points that form the surface of this new volume are visualised. By performing the
surface integration considering only the external quadrature points and its associated weights, the flux over
this shape can be computed. For this calculation, each sphere is shifted to the centre and the mean of each
GME is moved accordingly. The collision probability for the car crash example described in Subsection 6.2.2
with the three geometries described is summarised in Table 6.4. As observed, the collision probability that
results from considering two spheres is double than when considering only one. This result was expected
since the separation of the spheres from the centre is very small compared to the magnitude of the position
uncertainty.

When considering the intersection of two spheres, the collision probability represents 63.3% of the prob-
ability associated to the separated double sphere. To analyse whether this is feasible, two properties are
inspected, the volume and the surface area of the volume. For the intersection of spheres, the combined
volume represents 78.4% of the total volume of two spheres, while the surface area is 70%. Therefore, the
magnitudes observed are reasonable. To understand why the exact value represents a lower percentage with
respect to he surface area, it is recalled that the geometry is complex and the relation between flux integral
and surface area is not linear, since it also depends on the orientation of the surface with respect to the flow.



7
Simulation, verification and validation

In this chapter, the simulation environment and verification and validation of the DA-GMM method are dis-
cussed. Section 7.1 covers the simulation process, by discussing the external software used and developed in
this work, detailing the architectural design and the interaction between blocks of code and explaining the
procedure followed for code optimisation and CPU time reduction. In Section 7.2, the numerical methods
required for this work are introduced. These are the covariance propagation with the Hafnian operator and
the Lebedev quadrature. Following, the verification process for the trajectory integration in the differential
algebra software is treated in Section 7.3. This process includes unit, integration and system tests that ensure
a correct propagation of the satellite orbits. In Section 7.4, the verification of the remaining pieces of code that
form the pre- and post- processing of the method is explained. Finally, the guide for validation is presented
in Section 7.5.

7.1. Simulation
This section covers the elements of the simulator developed to estimate the probability of collision between
bodies in space. First, the external software is described and the main functionalities that have been used and
developed are summarised. The architectural design is then introduced, distinguishing between three main
elements of the simulator: pre-processing, propagation and post-processing. The latter is explained in more
detail due to its complexity and relevance within the work. Finally, considering the importance of reducing
the computational load in uncertainty propagation problems, a section is dedicated to software optimisation,
covering the evaluation and steps applied o improve the performance of the code.

7.1.1. External software
To conduct the collision probability estimation using the DA-GMM method, three types of software are re-
quired. First, a differential algebra software that allows to obtain the Taylor series expansion of the flow by
computing with Taylor expansion coefficients instead of floating points.The Differential Algebra Computa-
tional Engine (DACE), a differential algebra library developed in C++ and created by Dinamica srl. for ESA
is selected for this purpose (Rasotto et al., 2016). This tool is open source and can be freely combined with
other libraries. Second, an astrodynamics propagation tool is required to verify code developed and compare
the results with traditional Monte Carlo techniques. The TU Delft Astrodynamics Toolbox (Tudat 1. Accessed:
26-12-2021) is selected. It consists of a set of libraries developed in C++ that contain verified functions to
numerically propagate trajectories and provide access to the required environmental and numerical models.
Finally, a computer environment such as Matlab or Python is required for the pre- and post-processing of the
propagation results and the calculation of collision probability. In this case, Matlab is selected as the soft-
ware of choice, and Maple is used to compute the univariate splitting as explained in Section 5.1. In addition
to these, a software is required to develop the multi-sphere ISS model, for which spheretree is selected and
described in this section.

1Tudat software documentation available in: https://tudat.tudelft.nl/
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DACE
The Differential Algebra Computational Toolbox (DACE) is a set of libraries coded in C++ that allow to operate
with the Taylor series approximation of functions instead of using floating point numbers. The main advan-
tage of using this tool with respect to other differential algebra software such as COSY Infinity is that it can
be combined with other C++ libraries and interfaces. This is particularly helpful to develop the dynamical
model of the satellite, including the libraries that allow to compute the perturbing accelerations. DACE has
been validated with existing DA software with excellent results. In the recent years, this software has been
the selected choice for most aerospace applications. Massari et al. (2017) relied on this software to propagate
uncertainty in the unperturbed, two-body problem and Lunghi et al. (2018) used it for re-entry uncertainty
propagation in Mars landing.

Within DACE, several functionalities have been developed to propagate the uncertainty of space objects
in a perturbed dynamical model that includes spherical harmonics up to degree and order six, aerodynamic
acceleration and third-body acceleration from the Sun and the Moon. Moreover, two existing libraries have
been adapted. The following external libraries have been included in the DA-GMM application:

NRLMSISE-00 From the existing atmosphere models of Earth, the NRLMSISE-00 is selected and adapted to
DACE. The model developed by Picone et al. (2002) is provided as C source code 2 and has been adapted
to C++ by a C++ wrapper provided by Tudat.

SPICE The position of the Sun and the Moon required to compute the third-body acceleration is extracted
from the SPICE toolkit, provided as a C library 3 and adapted to C++ by a C++ wrapper provided by
Tudat.

Boost The Boost C++ library is required as part of the C++ wrappers that read the Spice and atmospheric
interfaces, and provides multiple functionalities in the fields of linear algebra operations, pseudo-
random number generation and unit testing.

Eigen The Eigen C++ library is required as part of the C++ wrappers that read the Spice and atmospheric
interfaces to perform linear algebra operations.

The following main functionalities have been developed within the DA-GMM application to propagate the
uncertainty of space objects.

Frame transformation To compute the total acceleration in the I−frame, several frame transformations are
used, as explained in Section 3.2. The differential algebra computation requires all functions to be
analytical, and therefore all frame transformations are individually coded as template functions that
can be accessed with DA variables.

Integrator To integrate the trajectory, the RK78 integrator is used. Its code is adapted to access the integrator
with all the required model and body parameters.

Legendre polynomials The Legendre polynomials are part of the computation of the spherical harmonics.
While Legendre polynomials are usually recursively computed using floating points, this is not valid
for the DA computation. The analytical expression of each normalised Legendre polynomial and its
derivative up to degree and order six is coded and included in the DA software.

Spherical harmonics acceleration An individual function computing the spherical harmonics acceleration
for Earth up to degree and order six.

Aerodynamic acceleration An individual function computing the aerodynamic acceleration assuming that
the body frame is aligned with the trajectory frame.

Third body acceleration An individual function computing the third body perturbation from the Sun and
the Moon central gravitational acceleration.

Total acceleration Function computing the total acceleration of the space object, including: spherical har-
monics of Earth up to degree and order six, aerodynamic acceleration and central gravitational accel-
eration from the Sun and Moon.

2NRLMSISE-00 library available at: https://github.com/magnific0/nrlmsise-00; Accessed: 19-12-2021
3SPICE library available at: https://naif.jpl.nasa.gov/naif/toolkit.html; Accessed: 19-12-2021

https://github.com/magnific0/nrlmsise-00
https://naif.jpl.nasa.gov/naif/toolkit.html
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Properties class All the dependent variables defining the body (e.g., mass, area, CD , etc.) and the environ-
ment (e.g., start epoch) are collected in the properties class, which can be written and accessed from
the main code.

Tudat
To conduct the code verification using Monte Carlo simulations, the TU Delft Astrodynamics Toolbox (Tudat)
is selected 4. Tudat is a set of C++ libraries, which combined offer powerful simulation capabilities for a wide
set of astrodynamics problems, including the missions under study. This software has been developed by
members of the Aerospace Engineering faculty at the Technical University of Delft, and is under continuous
development. The propagation algorithms and libraries included are already verified, and therefore can be
used as reference to test the output of the DA software. The main function of this software is to simulate
the reference trajectories that will allow to verify the results of the DA-GMM method with a Monte Carlo
approach.

Spheretree
To apply the multi-sphere method of collision probability, it is required to obtain a three dimensional mesh
of the object under study, created with spheres. Fitting spheres to a body has been studied in the field of
video-games and interactive simulations to study whether two objects intersect. Bradshaw and O’Sullivan
(2003) studied this problem and combined several sphere-fitting algorithms into the spheretree software 5.

As input to the software, a three-dimensional model of the object to be fitted with spheres in .obj format is
provided. Eight different algorithms are then available to perform the fitting, for which the branching factor of
the sphere tree and the minimum number of spheres used can be selected. All the algorithms were tested with
different settings based on the examples provided by the Spheretree software and tuning the values. Based
on the results of this process, the Hubbard’s medial axis algorithm algorithm is chosen. This is not the fastest
method but provided the best approximation with less spheres outside the ISS core. Since the operation only
needs to be performed once, computational time is not an issue. This algorithm produces tight fitting sets of
spheres with high accuracy.

7.1.2. Architectural design
This section summarises the architectural design of the DA-GMM method to propagate the uncertainty in
position an velocity of space objects and compute the probability of collision between two bodies. First, the
architecture of the complete method is explained, keeping the uncertainty propagation in the differential
algebra software as a black box. Second, the architecture of the propagation code block performed in DACE
is summarised.

Software architecture
The DACE-GMM method of collision probability can be divided into five code blocks, which are illustrated
in Figure 7.1. The inputs to the method are highlighted in yellow, and correspond to the settings of the algo-
rithm (number of GMEs, Taylor expansion order, integration step) and the characteristics of the space objects
(mass, area, encounter period, etc.). The blue boxes correspond to actions that only need to be performed
once, and their output can be stored for later usage. The green boxes correspond to output of the method
(both intermediate and final).

The first code block consists of the splitting of the initial distribution into a Gaussian mixture. This code
block is extremely computationally efficient and outputs the Gaussian Mixture Model of the initial state,
which is then an input to the uncertainty propagation in differential algebra. For every Gaussian mixture
element, the state is propagated in the DA software and the output is the Taylor series expansion of each ele-
ment at time ti with respect to the initial time t0. This information is then provided to the uncertainty recon-
struction code block, which uses the Hafnian operator to obtain the mean and covariance of each Gaussian
mixture element at time ti . The combination of all these elements conforms the Gaussian mixture model of
the satellite state at the final time. This information, together with the quadrature points (which are simply
the Lebedev points in the case of the single-sphere model and the extracted boundary points in case of the
multi-sphere model), is provided to the collision probability rate code block. Using the definition of surface
flow integration, the collision probability rate at time ti is calculated. When this process is finalised for all
the points in the encounter time interval, the collision probability rate is integrated to obtain the collision
probability.
4Tudat software documentation available at: https://tudat.tudelft.nl/. Accessed: 26-12-2021
5Available at: https://github.com/mlund/spheretree. Accessed: 31-12-2021

https://tudat.tudelft.nl/
https://github.com/mlund/spheretree
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Figure 7.1: Software architecture of the DA-GMM method of collision probability calculation between two space objects, A and B. Black
box represents propagation code block, whose architecture is illustrated in Figure 7.2.
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DACE architecture
The propagation code block defined in Figure 7.1 as a black box plays an important role in the architecture of
the DA.GMM method. While conventional applications that require the propagation of orbits in a perturbed
environment can make use of already existing astrodynamics software, this is not possible for the DA-GMM
method. The reason is that, to integrate in a differential algebra environment such as DACE, it is required to
provide an analytical expression for all the functions involved in the propagation. This includes the calcula-
tion of the Legendre polynomials and the frame transformations. In Tudat, these operations are numerically
evaluated, and therefore cannot be used in this context.

The software architecture for the propagation code block implemented in DACE is illustrated in Figure 7.2.
As it can be observed, the architecture is divided into four blocks. The first three blocks contain the diverse
dynamical models that are required to compute the total acceleration acting on the space object. The final
block discusses the numerical integration of the equations of motion to obtain the Taylor expansion of the
final state with respect to a perturbation from the initial state. In reality, the integrator will be continuously
accessing the acceleration function to propagate the trajectory from a given time to the following time step.

The acceleration blocks work as follows. First, the initial state of the satellite is provided as a differential
algebra variable. This state is transformed to the different reference frames that are required to calculate the
parameters (orientation angles) involved in the calculation of environment variables. These include, calcu-
lating the longitude and latitude, the flight-path angle and the heading angle. With these variables, it is pos-
sible to extract the atmospheric density at a given location and to transform the aerodynamic forces from the
aerodynamic reference frame to the inertial reference frame. With the remaining spacecraft parameters ob-
tained from the properties class, the aerodynamic acceleration can be computed. Regarding the gravitational
acceleration from the Earth considering the spherical harmonics up to degree and order six, the Legendre
polynomials need to be computed analytically. This is done in an adding loop until the total potential gra-
dient in spherical coordinates is calculated. It can then be converted to Cartesian coordinates to obtain the
spherical harmonics acceleration in the correct form. Finally, the third body acceleration from the Sun and
the Moon is easily calculated once the position of these bodies is retrieved from the ephemeris in the SPICE
library.

7.1.3. Software optimisation
During the development of the DA code block in DACE, it was readily noticed that some operations in com-
putational algebra were highly time consuming. To perform the uncertainty propagation, it is required to
integrate the equations of motion along the desired time interval for every Gaussian mixture element. This
entails multiple evaluations of the code. Therefore, a small reduction in computation of each operation will
result in a large increase in computational efficiency. Considering this, code optimisation becomes of crucial
importance to this work. To this end, the computational load related to each operation in the differential
algebra software is evaluated, and alternatives for the same operation are considered. With the resulting in-
formation, several CPU-reduction techniques are devised and applied to the code.

CPU load of DACE operations
Performing operations in the differential algebra computational environment requires a large computational
load compared to traditional floating-point computations. This method operates based on the Taylor series
expansion coefficients of each expression instead of its evaluation. While this approach provides extra in-
formation on the derived expressions and allows to propagate the uncertainty without the need of a Monte
Carlo simulation, the time required for a single propagation is higher. The software DACE includes a class DA
where the mathematical expressions are redefined to operate with the Taylor expansion coefficients of the
variables. To work within this environment, the DA class needs to be initialised with the expansion order and
the maximum number of components that a variable can have. Then, the variables can be initialised as part
of the DA class. The operations applied to these variables will be conducted with the expansion coefficients.

Due to the use of Taylor expansion-based arithmetic, the computational load does not follow the rules
of traditional operations (e.g., a power can be evaluated in less time than its equivalent multiplication). To
gain understanding on this logic and optimise the coding method, the computational time of each individual
operation in the differential algebra environment is evaluated.

Table 7.1 presents the CPU time required to conduct 106 evaluations of several operations in the dif-
ferential algebra environment. The computational time associated to operations in the differential algebra
environment is immense compared to the same operation performed with a double variable. As a conse-
quence, any detail in the code can have a large repercussion in its performance. From these results, several
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Figure 7.2: Software architecture of the propagation code block in DACE (C++)

observations can be made which are crucial to optimise the code.
First, the time required for the initialisation and declaration of a DA vector is proportional to the number

of components. Therefore, no special attention should be paid to the vector size. Second, it is noted that
the computational load for initialisation and declaration of a variable is very significant. In principle, this
would mandate to minimise the number of variables to use. However, re-declaration of a variable takes ap-
proximately one tenth of the time of declaring the variable. The declaration of extra variables can therefore
be an advantage when the same operation is used in multiple places of the code. As an example, if the term
si n3(x) needs to be used in several equations, the operation will be performed each time at a cost of 4.3 ·10−3

ns. However, if a separate variable is created to compute this operation, reusing the variable to evaluate each
equation will only take 1.3 ·10−5 ns. Finally, the fact that the operations are conducted based on the Taylor
series expansion provides unexpected results regarding the computational time. For example, the time re-
quired to evaluate a power is always smaller than the time required to evaluate the equivalent product and a
division takes more than three times longer than the equivalent product.

CPU reduction techniques
Based on the information summarised in Table 7.1 regarding the computational time associated to each ex-
pression, the following recommendations are issued and applied to the code:
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Table 7.1: CPU time of 106 evaluations of operations in the DA environment.

Operation Expression in DACE Time [ns]

Initialise vector of 6 components AlgebraicVector <DA> vec6 ( 6 ) ; 460

Initialise vector of 3 components AlgebraicVector <DA> vec3 ( 3 ) ; 285

Initialise variable DA var ; 73

Declare vector of 6 components vec6 [ 0 ] = 0.0 + DA( 1 ) ; 1050

Declare vector of 3 components vec3 [ 0 ] = 0.0 + DA( 1 ) ; 520

Declare variable var = 3.0 + DA( 1 ) ; 168

Re-declare variable var = var2 ; 13

Multiply with a double var = var2 * 0 . 5 ; 85

Divide by a double var = var2 / 2 . 0 ; 88

Multiply with a DA variable var = var2 * var3 ; 291

Divide by a DA variable var = var2 / var3 ; 911

Sine of a DA variable var = sin ( var2 ) ; 642

Cosine of a DA variable var = cos ( var2 ) ; 634

Tangent of a DA variable var = tan ( var2 ) ; 2053

Square root of a DA variable var = sqrt ( var2 ) ; 586

DA variable powered to 0.5 var = pow( var2 , 0 . 5 ) ; 587

DA variable powered to 2 var = pow( var2 , 2 . 0 ) ; 221

DA variable powered to 3 var = pow( var2 , 3 . 0 ) ; 414

DA variable powered to 4 var = pow( var2 , 4 . 0 ) ; 434

DA variable powered to 5 var = pow( var2 , 5 . 0 ) ; 688

DA variable powered to 6 var = pow( var2 , 6 . 0 ) ; 756

Initialise and declare sin2(x) DA var = pow( sin ( var2 ) , 2 . 0 ) ; 819

Declare sin2(x) var = pow( sin ( var2 ) , 2 . 0 ) ; 835

Re-declare sin2(x) var = var2 ; 13

Initialise and declare sin3(x) DA var = pow( sin ( var2 ) , 3 . 0 ) ; 1090

Declare sin3(x) var = pow( sin ( var2 ) , 3 . 0 ) ; 4355

Re-declare sin3(x) var = var2 ; 13

1. Remove repeated products: it is more efficient to declare an auxiliary variable defining the equivalent
product.

2. Declare variables only once: ensure that no re-declaration of variables is present inside functions or
loops.

3. Enter vector rotation functions with sin(angle) and cos(angle) to avoid trigonometric function repeti-
tions.

4. Create a single function with all accelerations to avoid multiple evaluations of rotation functions.

5. Create the atmosphere model once and pass it as a pointer. The creation of the atmosphere model is
extremely time consuming and therefore must be done in the main code and passed to the integrator
as a pointer.

6. Substituting division by product: as observed, the equivalent product is more efficient than performing
a division (e.g., coding a ×0.5 instead of a/2).

The result of applying these recommendations on the CPU time of evaluating different functions is sum-
marised in Table 7.2. As observed, the largest time reduction comes from the creation of the aerodynamic
acceleration model, which was initially done inside the acceleration function. Besides this, with the code op-
timisation techniques previously described it is achieved to reduce the computational time of all functions.
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Table 7.2: CPU time of 104 function evaluations before and after code optimisation.

Function Initial time [µs] Optimised time [µs]

computeSphericalHarmonicsAcceleration 441 302

computeThirdBodyMoonAcceleration 8.1 8.0

computeThirdBodySunAcceleration 8.1 8.0

computeAerodynamicAcceleration 3114474 90

computeTotalAcceleration 3114474 388

Creation of the atmosphere model 3114931 2883011

convertGradientSphericaltoInertial 15.62 12.31

computeNormalisedLegendrePolynomial 1.1-1.9 0.9

computeNormalisedLegendrePolynomialDerivative 1.1-1.9 1.1

convertInertialtoLlr 9.7 7.7

convertInertialtoBodyFixed 1.3 0.8

convertBodyFixedtoInertial 1.2 0.8

convertInertialVelocitytoBodyFixed 1.3 -

convertBodyFixedtoVertical 11 2.8

convertVerticaltoBodyFixed 11 2.4

convertTrajecorytoVertical 11 8.5

convertVectorTrajecorytoInertial 55 10

The final function required to integrate the trajectory in the differential algebra software, which combines
all the perturbations is computeTotalAcceleration, which calculates the acceleration at a given time, adding
the effect of the spherical harmonic gravitational acceleration, the third body acceleration from the Sun and
the Moon and the aerodynamic acceleration. Each evaluation of this function is performed in approximately
39 ns, which is sufficiently fast to integrate the trajectory for multiple Gaussian mixture elements. Approxi-
mately 75% of the computational load of the method corresponds to the computation of the spherical har-
monics acceleration, mainly due to the analytical evaluation of the Legendre polynomials. This implies that
increasing the degree and order of the spherical harmonics would result in a large increase in computational
load that could result unfeasible for operational collision probability estimation.

7.2. Numerical methods
To develop the DA-GMM method for collision probability calculation, several numerical techniques are re-
quired. These techniques can be divided into two categories. First, numerical methods that are widely used in
most astrodynamics problems and are therefore treated in Appendix A. These include the root finding meth-
ods used for the optimisation of the GMM splitting; interpolation methods used to estimate the numerically
integrated trajectory at mid-points; numerical integration techniques to propagate the trajectory and statis-
tical sampling and solving methods. Second, there are two methods involved in methodologies developed
in this work that require a more careful description. On one hand, the methodology developed to propagate
the uncertainty using the Hafnian operator with pre-computed matrices and matrix algebra, which turns the
method 3,700 times faster. On the other hand, the Lebedev quadrature for the flux integration over the sur-
face of a sphere, which is used to compute the collision probability and is a basis for the multi-sphere model
developed.

7.2.1. Covariance propagation with the Hafnian operator

One of the main benefits of using the Differential Algebra method for uncertainty propagation is that the final
state uncertainty can be obtained from the Taylor series expansion of the initial state, following Equation
(5.46), as demonstrated in Section 5.4. Although the expression appears simple, it involves the calculation of
the expectation of a product of normal random variables, which is not straight forward. A formula for this
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expression was originally derived by Isserlis (1918), and involves the use of the Hafnian operator:

E
{

xs1
1 xs2

2 . . . xsn
nn

}={
0, if s is odd

Haf(P ), if s is even
(7.1)

where s = s1 + s2 + ...+ sn . Considering that the expression in this case comes from a Taylor series expansion,
the maximum value of s coincides with the Taylor expansion order. When s is even, the expectation of that
term is equal to the value of the Hafnian operator evaluated for the initial state covariance matrix P . For this
calculation, an expanded state vector needs to be defined from the original random vector δx , as:

z∗ = [
z11′s1

, z21′s2
, . . . , zn1′sn

]′ (7.2)

where 1′si
is a unit vector of size equal to the exponent of element δx i , si . The initial state covariance matrix

P is now associated to this extended random vector and the Hafnian operator for a given matrix Σ defined by
components σi , j is calculated with (Valli et al., 2013):

Haf(Σ) =
∑

p∈Πs

s
2∏

i=1
σp2i−1,p2i (7.3)

where Πs is the set of permutations of 1,2, ..., s that satisfy the property p1 < p3 < p5 < ·· · < ps−1 and p1 <
p2, p3 < p4, . . . , ps−1 < ps . Although this might seem complex, this operator is simply a sum of the product of
the covariance matrix elements corresponding to every value of each permutation. The complexity of the op-
erator does not come from the coding itself, but for the high number of function evaluations that are required
as the number of permutations increases. As observed, there are multiple sum and product operators that
indicate that each calculation needs to be performed multiple times. The Taylor expansion for each compo-
nent is formed by a large number of terms. For the covariance propagation, the number of evaluations of
the expectation operator is equal to the number of components of each coefficient to the square, for each
element in the covariance matrix. Therefore, despite being a simple operator in terms of programming, it
requires a large computational load, that becomes quickly unfeasible. It must be taken into account that for
the DA-GMM method, the propagation of covariance is performed for every Gaussian mixture element at
each time step. This can require up to 100,000 evaluations for a given encounter scenario. Therefore, having
a low computational load for the evaluation of Equation (5.46) is of foremost importance. By evaluating the
full expression for a state consisting of six components (three-dimensional position and velocity), the com-
putational load for this evaluation is of 190 seconds and ten hours for Taylor expansion order three and four
respectively. In any case, this is invalid for performing timely uncertainty propagation with the full Gaussian
Mixture Model and considering multiple time stamps.

To reduce the computational time, it is noted that the computation of the expectation operator in this con-
text is a function of the initial state covariance matrix and the Taylor expansion exponents of each random
variable for each expansion term. While the former changes for every propagation, the latter it is constant.
Based on this idea, it is here developed a method to divide the expectation and Hafnian operator into a con-
stant part and a variable part, that can be expressed as two matrices. Therefore, the constant matrix can be
loaded once and the full expectation can be computed as a simple matrix product. By computing the sum-
mation along all Taylor expansion coefficients as a matrix product as well, the full uncertainty propagation
can be reduced to a few matrix operations. The mathematical theory behind this concept is easier explained
with an example. For such, let’s assume a simpler scenario with two-dimensional motion. For a given sum-
mation term in Equation (5.46), the expectation can be computed as a function of only the covariance matrix.
In this example, the covariance matrix is P4×4 and for a given term of the summation, the evaluation of the
expectation operator results in the expression f (δx ,P ):

f (δx ,P ) = 3P1,1P1,2 +4P 2
2,1P2,2 +5P 3

1,1P1,2P2,2 (7.4)

This operation can be performed for every summation term in the covariance propagation equation, resulting
in a total of n2

coe f f s expressions, where ncoe f f is the number of terms in the Taylor series expansion of each

component. The number of addends in these expressions will be equal or lower than the maximum number
of permutations in Pis , nper ms . Based on this information, two matrices are defined, regarding the coeffi-
cients and exponents of these expressions. For each matrix, each row will correspond to an addition term
in the summation operator of Equation (??), and the rows are linked to elements in the covariance matrix.
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Table 7.3: Computational time associated to covariance propagation for six state components with the original and simplified methods
of obtaining the Hafnian operator.

Taylor expansion order Full Hafnian Matrix simplification

3 190 s 0.051 s

4 >10 h 1.63 s

The coefficients matrix has n2
coe f f s rows and nper ms columns, where the value of each column, n represents

the coefficient that multiplies the nth addition term in the expression. The exponents matrix has n2
coe f f s

rows and nper ms ·n2
comp columns, where ncomp is the number of state components, in this case four. In this

example, the first row of the coefficient and exponent matrices is:

coeffs = [3 4 5] (7.5)

exp = [1 1 0 0 0 0 2 1 3 1 0 1] (7.6)

To compute the propagated covariance with matrix operations, the initial state covariance needs to be rede-
fined as a vector and repeated nper m times, such that:

Avec = [P11 P12 P21 P22] (7.7)

A = [Avec Avec · · · Avec ]︸ ︷︷ ︸
nper m

[1×n2
comp ·nper ms ] (7.8)

With this format, the result of the expectation operator can then be computed with matrix operations as:

B = Aexp
[1×n2

comp ·nper ms ] (7.9)

C =
nper ms∏

i=1
Bi

2·nper ms∏
i=nper ms+1

Bi · · ·
n2

comp ·nper ms∏
i=(n2

comp−1)·nper ms+1


︸ ︷︷ ︸

ncomp

[1×n2
comp ] (7.10)

Di = coeffsi ·Ci [1×n2
comp ] (7.11)

Matrix D contains in each row the expectation corresponding to each addend of Equation (7.4). The remain-
ing addition can be very efficiently calculated in Matlab using matrix operations. By making use of the pre-
computed elements of the Hafnian for a given expansion order and number of components in the coefficients
and exponents matrices, the computational load of the uncertainty propagation is largely reduced.

As observed in Table 7.3, the computation of the uncertainty propagation is > 3,700 times faster using
the simplified method for Taylor expansion k = 3, and > 22,000 times for k = 4. This has a huge impact on
the computational efficiency of the DA-GMM method and on the settings that are allowed. Thanks to this
reduction in computational time, it is possible to estimate the collision probability in a timely manner for
complex models that include a large number of GMES and long encounter periods.

7.2.2. Lebedev’s quadrature
Calculating the surface integral of a flow over a given volume cannot always be done analytically. As an ex-
tension of numerical integration techniques for one-dimensional problems, surface quadratures have been
developed to calculate these type of surface integrals. These quadratures have been widely researched for
spheres (Lebedev, 1976), and recently investigated for other closed, smooth surfaces (Reeger et al., 2016).
From the available quadrature techniques for a sphere, Lebedev’s method is the most widely used since it pro-
vides the best accuracy for a given number of quadrature points. The nodes and weights are pre-computed,
which largely increases the computational advantage of using this numerical method to integrate the flow
over a sphere.

The numerical quadrature is used to compute the surface integral of a function f (x) over the unit sphere
S2 = {

x ∈R3 : ‖x‖2 = 1
}
.

I [ f ] ≡
∫
S2

f (x)dΩ=
∫ 2π

0

∫ π

0
f (ϕ,θ)sinϕdϕdθ (7.12)
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where ϕ,θ are the polar coordinates of the sphere, the polar angle and azimuth angle respectively. A numeri-
cal quadrature approximates the integral I [ f ] by a quadrature Q[ f ] such that;∫

S2
f (x)dΩ≈

N−1∑
i=0

wi f (xi ) ≡Q[ f ] (7.13)

Therefore, in this case it is only required to evaluate the function at each quadrature point and perform the
weighted sum of the result.

The calculation of the Lebedev quadrature relies heavily on the concept of spherical harmonics. It is as-
sumed that the function on the unit sphere can be expanded in terms of the spherical harmonics orthogonal
basis of the unit sphere (Atkinson and Han, 2012). By selecting a given degree for the spherical harmonics, the
integration over the sphere becomes a system of non-linear equations. This yields a large system of equations
of difficult solution. To reduce this computation, Lebedev bases the quadrature on the subset of the spherical
harmonics according to the theorem proposed by Sobolev (1962), which states that a quadrature scheme is
excact for a subset of rotations of the sphere if and only if it is exact for all the invariant harmonics of this
degree. This allows to reduce the system of equations by computing the quadrature for symmetry groups of
octahedron rotations. The weights and quadrature points for Lebedev’s method are retrieved from the Matlab
function getLebedevSphere6.

7.3. DACE verification
This section describes the verification of the DA code block performed in DACE. Although this code block
only represents one part of the collision probability calculation algorithm, it is a crucial element that must
be carefully verified due to its high complexity. The DA code block is verified in three steps. First, a set of
unit tests are performed that cover all the functions developed within this software. For comparison, analyt-
ical results are used when possible, and equivalent results from Tudat are used in the rest of cases. Second,
integration tests are performed to ensure that the different functions are correctly related. This involves test-
ing the treatment of time, since different time units are required as input to the different functions/libraries.
Finally, system tests are performed to verify the computation of the total acceleration and the integrated tra-
jectory.

7.3.1. Unit tests
The unit tests can be divided into three segments depending on the functions and capabilities under study.
First, it is verified that the properties class is properly created and accessed. Second, that all the frame trans-
formations are correct and output the required value. Finally, the integration of external libraries and custom
functions is verified.

Properties class
The properties class includes all the variables of the problem that can be customised, both inputs related to
the geometry of the satellite and the mission and model parameters such as the rotation rate of Earth. This
class includes multiple functions that allow to set and get the values for these parameters. This functions can
be manually tested to ensure that the values obtained match the expected results. The set of tests performed
on the properties class are summarised in Table 7.4, showing the name of the test, the input and output, the
expected outcome and the result. To pass these tests, the output must be equal to the expected outcome,
since no computations are involved and no threshold is defined. All the tests are passed, which verifies that
the properties class is correctly constructed and used within the method.

Frame transformations
Multiple reference frames are used in the method, as described in Section 3.1. Transformation between ref-
erence frames is required, not only for the position but also for the velocity and spherical gradient of the
potential. These operations are highly sensitive since they include trigonometric operations and can result
in singularities. To avoid these issues, each function is tested for eight initial states, spanning all four quad-
rants and checking singular values. For this tests, a threshold of 10−12 is defined as pass/fail criterion for the
percentage error. To verify the results, two different methods are employed. First, by a manual calculation
of the expected outcome. Second, the frame transformation is checked against the already verified functions
available in Tudat.
6Available at: https://www.mathworks.com/matlabcentral/fileexchange/27097-getlebedevsphere.

https://www.mathworks.com/matlabcentral/fileexchange/27097-getlebedevsphere
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Table 7.4: Unit tests of body properties class (PC)

ID Test description Input Output Expected outcome
Pass
/ Fail

Class construction

PC - 1.1
Test successful default con-
struction of the body class.

- -
Class is constructed and can
be accessed.

Pass

PC - 1.2
Test successful custom
construction of the body
class.

Start date,
CD ,CL ,CS ,
A,m

-
Class is constructed and can
be accessed.

Pass

Get properties

PC - 2.1 Test getVehicleMass - m
1 kg for default construc-
tion, custom value for cus-
tom construction

Pass

PC - 2.2 Test getVehicleArea - A
1 m2 for default construc-
tion, custom value for cus-
tom construction

Pass

PC - 2.3 Test getEquatorialRadius - RE RE = 6378.137 km Pass

PC - 2.4 Test getMuEarth - µE µE = 398600.4418 km3s−2 Pass

PC - 2.5 Test getMuSun - µS µS = 1.327122 ·1011 km3s−2 Pass

PC - 2.6 Test getMuMoon - µM µM = 4902.801076 km3s−2 Pass

PC - 2.7 Test getStartEpoch - Start date
0 JD for default construc-
tion, custom value for cus-
tom construction

Pass

PC - 2.8
Test getAerodynamicCoef-
ficients

- CD ,CL ,CS
Custom value from custom
construction

Pass

PC - 2.9 Test getSineCoefficient
degree (n),
order (m)

Sn,m Sine and cosine expansion
coefficient match values of
model EMG2008 (Pavlis
et al., 2012)

Pass

PC - 2.10 Test getCosineCoefficient
degree (n),
order (m)

Cn,m Pass

Set properties

PC - 3.1 Test setVehicleMass m m Retrieved mass equals input Pass

PC - 3.2 Test setVehicleArea A A Retrieved area equals input Pass

PC - 3.3 Test setMuEarth µE µE Retrieved µE equals input Pass

PC - 3.4 Test setMuSun µS µS Retrieved µS equals input Pass

PC - 3.5 Test setMuMoon µM µM Retrieved µM equals input Pass

PC - 3.6 Test setStartEpoch Start date Start date Retrieved date equals input Pass

PC - 3.7
Test setAerodynamicCoef-
ficients

CD ,CL ,CS CD ,CL ,CS
Retrieved coefficients equal
input

Pass

In Table 7.5, the description and results of these unit tests are summarised. All the tests are successfully
completed for all input values.

External libraries and custom functions
A third set of unit tests is devised to verify the integration of external libraries inside the main code. Although
these libraries provide multiple functionalities, these are already verified. Therefore in this section, only the
functionalities required by the DA-GMM method are tested. For the SPICE library, this involves the function-
ality of retrieving the position of the Moon and the Sun at a given ephemeris time, and the functionality of
converting an ephemeris date into a Julian date. To verify this functionalities, the results obtained in DACE
are compared to the results obtained in Tudat. The same method of verification is used to test the retrieval of
atmospheric density from the NRLMSISE-00 model at a given location and time. Since these functionalities
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Table 7.5: Unit tests of frame transformation functions (FT)

ID Test description Input Output Expected outcome
Pass
/ Fail

FT - 1.1 Test convertInertialtoLlr r I , ERA r̄ ,τ,δ Output equals result
from independent
multiplication of each
individual rotation
matrix with input vector.
Output also equals
result from equivalent
frame transformation in
Tudat. Every function is
called with eight
different input values
for each angle to verify
all combinations.

Pass

FT - 1.2 Test convertInertialtoRotating r I , ERA r R Pass

FT - 1.3 Test convertRotatingtoInertial r R , ERA r I Pass

FT - 1.4 Test convertRotatingtoVertical r R ,τ,δ r V Pass

FT - 1.5 Test convertVerticaltoRotating r V ,τ,δ r R Pass

FT - 1.6 Test convertTrajectorytoVertical r T ,γ,χ r V Pass

FT - 1.7 Test convertTrajectorytoInertial
r T ,γ,χ,τ,δ,
ERA

r I Pass

FT - 2.1
Test convertInertialVelocity-
toRotating

r R , v I v R Pass

FT - 2.2
Test convertGradientSpherical-
toInertial

∆U S ,r R ,
ERA

∆U I Pass

do not involve any computations, a threshold error of 10−15 is set as acceptance criteria for these unit tests.
Besides the fame transformations and the functions computing the acceleration on the space object, there
are two other custom functions created for this method which need to be carefully verified. These are the cal-
culation of the Legendre polynomial and its derivative for a given degree, order and latitude angle. The values
obtained are verified with hand calculations and with an equivalent function publicly available on Matlab.

The results from these unit tests are found in Table 7.6. As observed, all the functions provide the expected
result and the inclusion of external libraries and custom functions is verified.

7.3.2. Integration tests
Integration tests are performed to check that all components are correctly combined and the correct inputs
are provided to every function. This is done first by a visual inspection of every function call. There is an
element of the code to which special attention must be paid. It is the time variable, which is required by
several functions in different formats. There are two main units of time used in the code. First, ephemeris
time, which is defined as seconds passed since J2000 (January 1, 2000 at 12:00 TDB). This time variable is
used to retrieve the position of the Earth and the Moon from the SPICE library and the density from the
NRLMSISE-00 library. For other internal operations, time is expressed as a Julian date while the TLEs provide
the observation time as the calendar day and the fractional portion of the day passed.

To ensure that time is being correctly handled, several integration tests are performed. In the DA code
block, epoch time defined as seconds since J2000 is the main time variable used and is transformed to any
other units when needed. First, the unit transformations from epoch time to Julian days or calendar date
are coded and verified with the equivalent transformation in Tudat. In this case, the transformation must be
exact and therefore, no threshold for the allowable error is defined. Second, it is inspected and checked that
every function is accessed with the correct time unit.

7.3.3. System tests
The final verification test to be performed is the system test, which checks that the full DA code block works as
expected and correctly integrates the Taylor series expansion of the final state with respect to a perturbation
in the initial state. To do so, the individual acceleration functions for each perturbation are verified as well
as the total acceleration function. Moreover, the integrated trajectory is also tested. To compare the results,
the outcome of the same function in Tudat is used, and a percentage error threshold of 10−14 is selected. To
verify that the results do not depend on the initial state, the test is performed for four different input values
regarding the satellite state and initial time. The description and results of these tests are summarised in
Table 7.7. Every test has been successfully performed, and it is concluded that the DA code block is correctly
implemented and verified.
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Table 7.6: Unit tests of external libraries (EL) and custom functions (CF)

ID Test description Input Output Expected outcome
Pass
/ Fail

External libraries

EL - 1.1
Test getting the Moon position
from the SPICE library

Ephemeris
time

r I
M

Equals value retrieved in
Tudat

Pass

EL - 1.2
Test getting the Sun position
from the SPICE library

Ephemeris
time

r I
S

Equals value retrieved in
Tudat

Pass

EL - 1.3
Test conversion of Julian date to
ephemeris time

Julian date
Ephemeris
time

Equals value retrieved
from Tudat

Pass

EL - 1.4
Test getting the atmospheric
density from the NRLMSISE-00
library

r̄ ,τ,δ,
time from
J2000

ρ
Equals value retrieved in
Tudat

Pass

Custom functions

CF - 1.1
Test calculation of Legendre
polynomial

degree (n),
order (m),
δ

P m
n Equals hand calculation Pass

CF - 1.2
Test calculation of Legendre
polynomial derivative

degree (n),
order (m),
δ

dP m
n

dδ Equals hand calculation Pass

Table 7.7: System tests for acceleration functions (ST).

ID Test description Input Output
Expected out-
come

Pass
/ Fail

ST - 1.1 Test third body acceleration Moon x I , t ẋ Moon Output equals
result from
Tudat. Test
performed with
four different
initial state of the
satellite, x I

Pass

ST - 1.2 Test third body acceleration Sun x I , t ẋSun Pass

ST - 1.3 Test aerodynamic acceleration
x I , t , at-
mosphere

ẋ Aer o Pass

ST - 1.4 Test spherical harmonic acceleration x I , t ẋE ar th Pass

ST - 1.5 Test total acceleration
x I , t , at-
mosphere,
Body

ẋTot al Pass

ST - 1.6 Test trajectory integration
x0

I , t , at-
mosphere,
Body

x f
I Pass

7.4. Pre- and post-processing code verification
This section explains the verification of the pre- and post- processing code blocks that include the GMM
splitting methodology, the covariance reconstruction and the collision probability calculation. In this case,
verification has been performed by comparing the results of each function to results from equivalent meth-
ods found in research. In this section a brief explanation of how each process has been verified is provided,
referring to the tests and comparisons provided in previous chapters and explaining additional checks per-
formed.

7.4.1. GMM splitting
The Gaussian Mixture splitting methodology can be divided into two steps. First, the generation of a univari-
ate splitting library and second, the refinement of the split over different dimensions.

The univariate split has been performed in Maple for up to 2001 Gaussian Mixture Elements. The verifi-
cation of this procedure has been performed in two ways. First, by calculating the L2 error, which determines
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the difference between two distributions, in this case the univariate Gaussian distribution and the univariate
Gaussian mixture. Figure 5.4 shows the result of this procedure, and it is observed that the error obtained is
smaller that in equivalent methods, such as the one presented by Horwood et al. (2011). Second, the results
of the univariate splitting are compared to the ones from Horwood et al. (2011); Vittaldev and Russell (2016).
The results follow the same curve, as observed in Figure 5.3a, with small differences due to the improved
accuracy and different splitting range.

The split refinement over different dimensions is verified by calculating the L2 distance between the mul-
tivariate Gaussian and Gaussian Mixture Model, result of the Gaussian splitting. In this case, the L2 error
obtained with 1001 elements is three orders of magnitude smaller than the one reported in research for simi-
lar methods. Moreover, the result from this split is visualised in Figure 5.5, by plotting a set of samples drawn
from each distribution. From these tests, it is concluded that the splitting methodology is correctly verified.

7.4.2. Covariance reconstruction
The covariance reconstruction process allows to obtain the mean and covariance matrix of the propagated
state uncertainty, knowing the covariance of the initial state uncertainty. To verify this process, the uncer-
tainty propagation is first applied to the two-dimensional car example presented in Subsection 6.2.2. For
this case, the uncertainty propagation can be calculated analytically, since the motion is linear. Comparing
the expected results with the mean and covariance obtained with the propagation of uncertainty using the
Hafnian operator, a perfect match is obtained.

To verify the covariance reconstruction with a more generic case, a sample from the initial state is cre-
ated for the two-body problem. This case is very convenient since the analytical solution of the equations of
motion is available, and therefore, the exact final state of each sample can be obtained. This allows to com-
pute the final uncertainty of the propagated sample and compare it with the covariance reconstructed using
the Hafnian operator. Following this process, it is concluded that the covariance reconstruction algorithm is
verified.

The covariance reconstruction process can be easier visualised by drawing samples from the propagated
GMM and comparing them to the results of a Monte Carlo analysis. This gives a better visual interpretation
than the L2 parameter. To do so, the propagation for nominal scenario #1 is considered, with the full dynamics
model. Figure 7.3 presents the results for the samples drawn from the propagated uncertainty with 37 and 501
GMEs and for 1, 5, 15 and 30 orbital periods. It is observed that up to 5 revolutions, both distributions visually
present the same direction and span. It must be considered that the number of samples drawn is limited
from the Monte Carlo computational load, and therefore this is only a visual estimation. When increasing to
15 orbits, the uncertainty distribution presents a curvature (cannot longer be assumed to be Gaussian), due to
the nonlinear dynamics. With the GMM, it is possible to replicate this curvature, even with only 37 elements.
For 30 orbits it is observed that the data sampled from the Gaussian Mixture Model expands further than
the one from the Monte Carlo simulation. In this case, it cannot longer be assumed that both distributions
match.

7.4.3. Collision probability calculation
The final element to verify is the collision probability calculation using the direct integration method. From
this algorithm, two elements are checked. First, that the time of maximum collision probability is correctly
estimated. Second, that the collision probability estimated is correct. To do so, again the first test is performed
with the two-dimensional, linear example provided by the car crash. In this case, the time of maximum
collision probability is known, since it is the time of the nominal crash at t = 180 s. To compute the collision
probability, a Monte Carlo simulation is performed, which consists in drawing a set of samples from the initial
distribution of each car and propagating the trajectory of each sample to compute the ratio of encounters
that result in a collision. With this procedure, it is verified that the method works for a linear encounter in
two dimensions.

To verify the method for the calculation of collision probability between satellites in three-dimensional
space, a large number of Monte Carlo samples (i.e., 107 are required to produce an accurate result. Due to
the large impact that this has on computational load, it is chosen to follow the examples simulated by Alfano
(2009) that provide the collision probability for given scenarios with very high accuracy. This allows, not
only to verify the collision probability calculation performed in this work, but also to compare the results to
alternative methods. This analysis is detailed in Section 9.1 for two test cases. The outcome of this analysis
ensures that the collision probability calculation is correctly performed and it is concluded that the DA-GMM
method is verified.
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Figure 7.3: 3000 samples drawn from Monte Carlo simulation (red) and from the covariance propagation with the DA-GMM method
(blue) for 31 and 501 GMEs, and 1,5,15,30 orbital revolutions.

For the multi-sphere model, the example case with two intersecting spheres discussed in Subsection 6.3.3
demonstrates that the method can be used to model a volume with a combination of two spheres. Due to
the additive property of collision probability computed via integration of the collision probability rate, it is
verified that the procedure can be applied to a given number, N , of spheres.

7.5. Validation
Once verification has been correctly performed, it is required to validate the applicability of the developed
method for the application intended, and determine if it satisfies the specified requirements for its intended
use. The ideal way to perform validation is by comparing the results of the model with real-life measurements.

With the combination of tests, which is presented in Chapter 8 and Chapter 9, it is concluded that the DA-
GMM method is validated for its intended application. A brief description of the scenarios studied is provided
here. From past and present close encounters, it is possible to test the model with three real-life collision sce-
narios. First, with the Cosmos-2251/Iridium-33 collision event that occurred in 2009 leading to the creation
of thousands of new debris. This event is further discussed in Section 9.3. In this case, the time of collision is
precisely known, which allows to validate the accuracy in predicting the encounter time. Second, the method
is tested with a close encounter detected by LeoLabs in 2020 between the inactive satellite Cosmos-2004 and
the rocket body Chang Zheng-4C, further discussed in Section 9.4. Although this encounter did not occur,
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the risk detected by the company LeoLabs was very high. With this analysis, it can be tested if such a high risk
is also estimated and. Finally, the results from the anti-missile satellite test that occurred in November 2021
and destroyed satellite Cosmos-1408, threatening the ISS is used to validate the multi-sphere method of col-
lision probability. It is still unclear what risk are these debris are posing to the vehicle crew and with this more
precise method, the risk is estimated over a period of two weeks. For each of these test cases, tracking data
is obtained from SpaceTrack in the form of Two-Line elements and is converted to account for special per-
turbations using the SGP4 model. However, the initial state uncertainty of this data is not optimum and does
not provide the best results compared to radar tracking data such as the one obtained by LeoLabs. This must
be taken into account when performing validation and comparing the results to the predictions performed
by companies or space agencies.

Fortunately, the number of collision events that have been documented in the recent years is reduced but
it still allows to test a variety of encounters. However, alternative methods have to be developed to complete
model validation. First, to test the behaviour of the DA-GMM method of uncertainty propagation for different
types of orbits and integration time, a sensitivity analysis is performed in Chapter 8. As a result, this analysis
provides the limitations of the methods and a guideline the recommended settings to achieve the desired
accuracy depending on the satellite orbit and integration time. Second, the tracking data used to validate the
real-life scenarios is obtained from TLEs, which have the same accuracy. Therefore, an additional validation
test is created to check the effect of changing the initial state uncertainty. To do so, a scenario where the
nominal trajectory leas to a collision is simulated and the collision probability is calculated form different
initial times and initial state uncertainties. The results from this analysis are then extrapolated to complement
the discussion of the results from the real-life test cases.
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8
Sensitivity analysis

This chapter presents the sensitivity analysis of the uncertainty propagation using the DACE-GMM method.
The main objective of this analysis is to understand the effect of each parameter involved in the propagation
on the accuracy of the results and identify its limitations. To this end, three nominal scenarios are introduced
in Section 8.1. These cases represent the baseline for the sensitivity analysis and are closely related to the ref-
erence missions selected for Chapter 9. Moreover, the reference settings for the method are set. In Section 8.2,
the effect of changing the trajectory is studied, with an independent analysis for each orbital element. In Sec-
tion 8.3, the effect of modifying the settings of the method is analysed and related to the method accuracy
and computational load. Finally, Section 8.4 treats the change in initial state uncertainty and how it affects
the accuracy of the method for a given lead time. The chapter concludes with a summary of the findings of
this sensitivity analysis and a guideline of the recommended settings for different applications.

8.1. Nominal scenarios
Studying the performance of the DACE-GMM method presents a challenge. First, the number of simulations
that can be performed in the sensitivity analysis becomes limited due to the large computational time as-
sociated with the Monte Carlo verification technique. Moreover, the encounter between two satellites can
present infinite geometries depending on the combination of orbital parameters and initial uncertainties.
This complicates the sensitivity analysis and brings developing a detailed guide on the optimum parameters
for each encounter out of the scope of this work. Instead, a reduced number of cases is studied, considering
the boundary values for each parameter to understand the limits of the method. As a basis to perform the
sensitivity analysis, three nominal scenarios are designed with an associated "baseline" choice of settings for
the propagation with the DACE-GMM method. In this section, the geometry for the nominal scenarios is
presented, together with examples of the propagated distribution compared to the equivalent Monte Carlo
samples.

The selection of the nominal cases is based in two criteria related to the objectives of the sensitivity anal-
ysis. Table 8.1 presents the orbital parameters and the initial state in the Earth Centred Inertial Reference
frame (I−Frame) defining these nominal scenarios. First, this analysis aims to reflect how the choice of set-
tings for the DACE-GMM method affects the accuracy of the results, allowing to select appropriate values for
the cases under study in Chapter 9. Therefore, the nominal scenarios must be similar to the reference mis-
sions (i.e., satellites in circular orbits at 800 km altitude and the ISS). This criterion determines the selection
of the nominal scenarios #1 and #2. Scenario #1 represents a circular orbit at 800 km altitude and in the most
crowded inclination, at 60 degrees. Scenario #2 matches the orbit of the ISS, with a slightly eccentric orbit, a
semi-major axis altitude of 422 km and an inclination of 51.65 degrees. Second, the sensitivity analysis will
uncover the limitations of the method and therefore a trajectory with higher altitude and larger eccentricity
is selected for nominal scenario #3. In this case, the orbit is retrograde with an inclination of 98 degrees. It
must be noted that the choice of nominal scenarios mainly affects the analysis in Section 8.3 and Section 8.4,
for which the trajectory is fixed.

The geometry of these cases is illustrated in Figure 8.1, with the resulting trajectory after 1 orbital pe-
riod (dark) and after 100 orbital periods (light). It can be observed how the change in orbital altitude affects
the perturbing acceleration, therefore creating a larger spread in the propagated trajectory. The method set-
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Figure 8.1: Illustration of the nominal scenarios propagated for 100 orbits (light trajectory) and for 1 orbit (darker trajectory),

Table 8.1: Orbital parameters and initial state of the nominal scenarios

Case h [km] e [-] i [deg] x [km] y [km] z [km]
ẋ

[km/s]
ẏ

[km/s]
ż

[km/s]

# 1 800 0 60 -4296.3705 1150.9621 5634.0161 -4.8929 -4.9142 -2.7273

# 2 422 0.00038 51.64 1844.5697 5763.9978 3103.7357 -4.3208 4.0133 -4.8801

# 3 3000 0.25 98 3469.5104 5030.4799 3482.5761 -1.2256 -4.1517 7.2180

tings for the nominal scenarios are introduced in Table 8.2 and will be kept constant through the sensitivity
analysis unless specified otherwise. The number of samples drawn for the Monte Carlo simulation is lim-
ited by the computational load of this computation. The samples are generated using the Mersenne Twister
pesudo-random number generator and the seed is changed and documented in each simulation. The num-
ber of Gaussian mixture elements is selected according to the analysis performed in Subsection 5.1.3 and the
number of Monte Carlo samples is limited by the computational load. During the sensitivity analysis, the
uncertainty will be propagated during 5 orbital periods, which corresponds to 8.4, 7.75 and 12.55 hours for
nominal scenarios #1, #2 and #3 respectively.

For this analysis, the L2 distance is used as the metric to evaluate the difference between the propagated
Gaussian mixture and the Monte Carlo samples. This performance parameter includes more information
than simply comparing the error in covariance between both distributions, since it also considers higher-
order moments. In this case, to evaluate the L2 distance, the Monte Carlo samples are fitted to a Gaussian
mixture model, and it is compared to the GMM propagated with the differential algebra software. It must
be noted that this parameter is therefore approximated. Moreover, the number of Monte Carlo samples also
affects the accuracy of the propagated distribution and therefore the L2 distance. Knowing the limitations of
the calculated L2 distance, only the order of magnitude will be studied. The L2 error is not a quantity that
can be directly related to any physical property. It is the integral of the squared difference between two dis-
tributions. As such, it is a non-dimensional quantity, hard to understand. To visualise what the L2 magnitude
represents, Figure 8.2 illustrates examples for distribution samples propagated with DACE and Monte Carlo,
with a L2 distance ranging from 10−5 to 2. It can be observed that for the sample sets with an error of 10−5

and 10−3, both distributions, propagated following a Monte Carlo approach and with the DA-GMM method
respectively, match and there is no visible difference. For L2 = 0.1, the distribution is more elongated as it
corresponds to a longer time propagation. In this case, both distributions follow the same direction and have
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Table 8.2: Method parameters for nominal scenarios

Parameter Value Units

Nº GME 201 -

Nº Monte Carlo samples 10000 -

Taylor expansion order 3 -

Reference Area 1.5 m2

Mass 3.3 kg

Radius 0.7 m

CD 1.2 -

Start date 0 seconds from J2000

Propagation time 5 Orbital period

[σR ,σT ,σN ] [1,4,1] m

[σVR ,σVT ,σVN ] [0.01 0.0025 0.0025] m/s

the same span. Again, it is noted that this visual inspection is performed with a limited number of samples,
and therefore it is only for illustration purposes. For L2 = 0.5, a similar behaviour is observed, where both
distributions follow the same direction but some outlier points are present. When increasing to L2 = 1, the
difference between both distributions becomes clearly visible , as it can be appreciated a change in orienta-
tion, which is no longer acceptable. Finally, with L2 = 2 the distributions follow different directions and the
error becomes extreme. Based on this, it is recommended to keep the error below the threshold of L2 = 0.6.

8.2. Effect of orbital elements
In this section, the uncertainty propagation with the DACE-GMM method will be compared to the equivalent
Monte Carlo simulation by means of the L2 distance for a range of mission geometries. The goal of this
analysis is to identify the limitations of the method in terms of the orbital elements that can be propagated. To
this end, independent simulations are performed to study the sensitivity of tree parameters: orbital altitude,
eccentricity and inclination.

Through this analysis, the percentage change in L2 with respect to the percentage change in input value
from the nominal condition is used to evaluate the effect of each variable. The value of the variable is nor-
malised in the range studied. This performance parameter is hereby defined as SL2 , as:

SL2 =
%∆L2

%∆p
=

|L2i −L2nom |
L2nom

|p̄i− ¯pnom |
¯pnom

(8.1)

where p̄i is the value of the independent parameter, and ¯pnom is the value of the independent parameter in
the nominal setting. These parameters are normalised for the studied range. In this way, the SL2 parameter
quantifies the sensitivity of the error in the uncertainty propagation for each independent variable present in
the model. A positive change represents a positive correlation, and vice-versa. By normalising the values, it
is possible to compare the results between different parameters.

8.2.1. Change in altitude
The DACE-GMM method was originally conceived to cover the propagation of objects in LEO, which has
determined the perturbing accelerations included in the dynamical model. To test if this requirement has
been met, a sensitivity analysis is performed for the orbital altitude, keeping a constant eccentricity of zero
and a constant inclination of 60 degrees. With the limitation in computational time for the Monte Carlo
simulations used for verification, the altitudes must be carefully selected. The boundary for LEO is typically
set at 200 km altitude, which then determines the lower bound for this sensitivity analysis. Due to the fast
change in density at this altitude band, the second study point is set at 400 km altitude. With the nominal
altitude set at 800 km, the remaining step is to define an upper limit. While the boundary for LEO is set at
2000 km altitude, a safety factor is added to test the limiting case, and an altitude of 3000 km is selected.
Finally, to test the accuracy of the method outside the initially determined boundaries, an extreme case is
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Figure 8.2: Example of L2 error between Monte Carlo samples and DACE samples.

Table 8.3: L2 error for changing altitude. Nominal altitude set at 800 km. Shaded cells indicate simulations that violate the threshold for
accuracy.

Altitude [km] 200 400 800 3000 35786

Baseline dynamical model

L2 with Monte Carlo 1.3775 0.0522 0.0199 0.0093 0.0251

SL2 -68.1546 -2.4280 - -0.1450 0.4808

Full dynamical model, non-displaced mean

L2 with Monte Carlo 1.3798 1.2137 1.2037 1.0770 1.253

SL2 -0.1463 -0.0125 - -0.0287 0.0713

Full dynamical model, displaced mean

L2 with Monte Carlo 1.4190 0.0593 0.0214 0.0094 0.0273

SL2 -65.3090 -2.6584 - -0.1529 0.4796

selected, corresponding to a satellite in GEO. The objective is to explore the capability to extend the method to
higher altitudes than initially conceived. Two sets of Monte Carlo simulations are performed for this analysis:
with the nominal dynamical model defined in Subsection 3.5.5 and with a "full" dynamical model. The latter
includes, in addition to the nominal accelerations, the spherical harmonics up to degree and order ten, the
solar radiation pressure and the third-body acceleration of Mars and Venus.

Table 8.3 summarises the results of the sensitivity analysis for the orbital altitude with respect to three
dynamical models. First, with respect to the baseline, "reduced" dynamical model. Second, with respect to
the "full" dynamical model. A third scenario is created by shifting the mean of the uncertainty propagated in
DACE to match the nominal trajectory simulated with the full model. First, it is observed that the comparison
with the baseline dynamical model results in the lowest L2 error, as expected since both simulations are
propagated with the same equations of motion. When comparing the results with the Monte Carlo simulation
run with the full dynamical model, L2 increases to the order of 1. However, this error does not come from
the covariance but from a shift in position. By shifting the mean of the distribution to match the nominal
trajectory, the error reduces again to the order of magnitude observed in the comparison with the baseline
dynamical model. This reveals a valid alternative to increase the accuracy of the dynamical model without
requiring additional Monte Carlo simulations besides the nominal trajectory.
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Regarding the accuracy, it is observed that the DACE-GMM method presents a large error for the lower
bound, with 200 km altitude. This error decreases below the threshold for an altitude of 400 km and becomes
of the order of 10−2 for higher altitudes. The reason behind this large increase in error for low altitudes is
the larger effect of drag. The drag acceleration is calculated by retrieving the density from the NRMSISE-00
aerodynamic model. This density is highly dependent on the position (e.g., for low altitudes of 400 km, a
difference in 10−4 m in position can lead to a 3% change in density). For very low altitudes, drag becomes
the main perturbing acceleration and this deviation propagates with every integration step, leading to large
errors in the propagated uncertainty. For an altitude of 400 km, this effect becomes much smaller and the
error is of the same order of magnitude as for higher altitudes. Regarding the upper limit, it is observed that
the error is still well below the threshold for the geo-stationary orbital altitude. It can be concluded that the
DACE-GMM method is valid for Earth orbits in LEO, MEO and GEO, when the perigee altitude is higher than
400 km.

8.2.2. Change in eccentricity
Considering the results from the altitude sensitivity analysis, two different scenarios are studied for the ec-
centricity analysis: changing eccentricity with a perigee altitude of 200 km and 600 km respectively. It has
been observed a dependency between the uncertainty propagation accuracy and the orbital altitude, related
to the aerodynamic acceleration. By selecting a set of orbits with perigee altitude of 600 km, it is possible to
individually study the effect of changing the eccentricity in an altitude range that escapes this effect. How-
ever, it is still interesting to study how the change in orbital shape is correlated with the error derived from
low altitudes. It is expected that for orbits with perigee altitude of 200 km, increasing the eccentricity would
decrease the L2 error, since a larger part of the orbit would be at higher altitudes. By selecting this second
scenario, this hypothesis can be tested.

For every scenario, five values of eccentricity are selected, with the aim to test the method for the limiting
cases and adding two intermediate cases that allow to study the evolution of the performance parameter SL2 .
For the lower threshold, a circular orbit is considered and taken as the baseline parameter. For the upper
threshold, the Molniya orbit is taken as reference, with an eccentricity of 0.74. Since orbits with such high
eccentricity are uncommon in LEO, the intermediate values selected for the eccentricity are: 0.05,0.1 and 0.2.

For the orbits with perigee altitude of 600 km, it is assumed that the results are uncorrelated with the error
related to the atmospheric acceleration. This is a valid assumption since, according to Table 8.3 the effect of
altitude change after 600 km altitude is smaller than the variations observed in eccentricity. In Table 8.4 it can
be observed that for a perigee altitude of 600 km, the L2 error increases with eccentricity. Up to an eccentricity
of 0.2, the error remains in the order of 10−2 while for the Molnyia orbit it increases to 0.32. The reason behind
this behaviour is the change in integration time related to the change in orbital period. Since every case is
propagated for five orbits, the increase in semi-major axis results in an increase in the integration period,
which affects the accuracy as further analysed in Subsection 8.3.1. The magnitudes observed for the change
in eccentricity are consistent with the results obtained for circular orbits with the equivalent integration time.
Therefore, it is concluded that eccentricity, as an isolated variable, does not influence the accuracy of the
method.

Regarding the scenario with perigee altitude of 200 km, it is confirmed that the large error found for the
circular orbit rapidly decreases when increasing the eccentricity. With an eccentricity of 0.05, the apogee
altitude rises to 892 km and the portion of the orbit at lower altitudes decreases. After this initial decrease in
error, the increasing error with increasing integration time trend becomes dominant again. It is observed that
for e = 0.1,0.2,0.7 the error the scenarios with hp = 200 km is approximately double the error when hp = 600
km. This suggests that even with a very high apogee, the low altitude passage will cause a significant error.

8.2.3. Change in inclination
Beforehand, orbital inclination is not expected to have a large effect on the method accuracy. However, there
are some magnitudes that depend on the orbital orientation, such as the value of the spherical harmonic
coefficients and the atmospheric density, which does not only depend on the altitude. Since small errors
in position are known to greatly effect the error in density, it is decided to briefly investigate the effect of
inclination through five sample points. First, the inclinations of 0 deg and 90 deg are selected to verify that
the method does not present any singularities. An inclination of 98 deg is included to test the method in
retrograde orbits. Finally, an inclination of 60 deg is selected as the baseline, and an inclination of 23 deg

1Not normalised by nominal eccentricity to avoid division by zero.
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Table 8.4: L2 error for changing eccentricity. Shaded cells indicate simulations that violate the threshold for accuracy.

Eccentricity [-] 0 0.05 0.1 0.2 0.74

Perigee altitude of 200 km

Integration time 7h 22’ 7h 57’ 8h 38’ 10h 18’ 55h 37’

L2 with Monte Carlo 1.3775 0.0457 0.1274 0.1303 0.7612

SL2
1 - -19.3 -9.1 -4.5 -0.6

Perigee altitude of 600 km

Integration time 8h 3’ 8h 42’ 9h 26’ 11h 15’ 60h

L2 with Monte Carlo 0.0111 0.0315 0.0576 0.0681 0.3206

SL2
1 - 27.2 31.0 10.0 27.9

Table 8.5: L2 error for changing inclination.

Inclination [deg] 0 23 60 90 98

L2 with Monte Carlo 0.015 0.0519 0.0199 0.0047 0.0139

SL2 0.2459 -2.6041 - -1.5293 -0.4761

completes the set.
Table 8.5 summarises the results of the sensitivity analysis for the change in inclination. It is observed

that the L2 distance ranges from 0.01 to 0.037 for all cases. Taking into account the limitations of this L2

calculation derived from the number of samples in the Monte Carlo simulation, these differences do not
allow to infer any correlations between accuracy an orbital inclination. Focusing on the SL2 parameter, there
is no clear trend linking the accuracy values with the inclination. Therefore, it is concluded that the effect of
this parameter on the accuracy of the results is negligible.

8.3. Effect of DA-GMM model parameters
This section examines the effect of model parameters, also referred to as model settings, on the accuracy of
the results. Although the number of cases studied does not allow to provide the optimal settings for every
geometry, this analysis intends to offer recommendations depending on the desired accuracy and available
computational load. First, the effect of increasing the integration time is studied. This is a crucial step since
it will determine the lead time for the encounter simulation. Second, the performance of the GMM method
is tested by increasing the number of GMEs. The impact on computational time is stored for analysis. Third,
the differential algebra method is analysed by changing the Taylor expansion order. Finally, the effect of
integration tolerance is studied.

8.3.1. Lead time
During the uncertainty propagation, the Taylor expansion truncation error and the numerical integration er-
ror accumulate with time. It is crucial to investigate this effect and understand the limits of the DA-GMM
method in terms of integration period, which directly effects the maximum lead time achievable for the col-
lision probability calculation. The evolution of error with integration time will also depend on the simulated
trajectory (mainly on the orbital altitude), as can be concluded from Section 8.2. Since it is not possible to
conduct the analysis for every geometry, the three nominal cases are taken as reference. It must be noted that
these cases were originally selected to cover a wide range of orbital parameters which are closely related to
the reference mission.

Each scenario is propagated during 1, 5, 15, 30 and, 100 orbital periods, which cover a range of integration
times from 2 hours up to 10.5 days. Taking into account that the second phase of collision warning, the
Conjunction Approach Notification, is sent 3 days before TCA, achieving a lead time of 30 orbits (equivalent
to 2 days for Scenario #2 and >3 days for Scenario #3) would allow to evaluate the risk of collision considering
multiple scenarios and refining the estimation with newly acquired data.

In Table 8.6, the results for each scenario propagated with 1 and 201 GMEs are studied. The first observa-
tion made is that increasing the number of Gaussian mixture elements improves the accuracy in all the cases,
leading to longer valid trajectory integration. For Scenario #1, this entails increasing the maximum computa-
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Table 8.6: L2 error for changing propagation time. Shaded cells indicate simulations that violate the threshold for accuracy.

Orbital periods [-] 1 5 15 30 100

Nominal Scenario #1

L2 with Monte Carlo
1 GME 0.0694 0.0861 0.2981 0.6456 1.0499

201 GME 0.0033 0.0199 0.1586 0.4694 0.8432

SL2

1 GME 0.1942 - 0.9854 1.0401 0.4715

201 GME 0.8336 - 2.7889 3.6142 1.7419

Nominal Scenario #2

L2 with Monte Carlo
1 GME 0.0902 0.1071 0.4238 1.0434 1.2340

201 GME 0.0394 0.0446 0.3778 0.9132 0.9736

SL2

1 GME 0.1579 - 1.1821 1.3980 0.4428

201 GME 0.1175 - 2.9879 3.1159 0.8769

Nominal Scenario #3

L2 with Monte Carlo
1 GME 0.1031 0.1653 1.1487 1.2236 1.2308

201 GME 0.0016 0.0260 0.5495 0.5607 0.9108

SL2

1 GME 0.3764 - 2.3795 1.0243 0.2714

201 GME 0.9393 - 8.0687 3.2968 1.4355

tional time from 15 orbits to 30 orbits. For Scenario #2, although the error is still smaller with 201 GMEs, the
difference between both settings is smaller and with the selected propagation times, the increase in lead time
is not visible and the limiting integration time is set at 15 orbital periods. This result is consistent with the
previous analysis, since Scenario #2 corresponds to the ISS orbit at a 422 km altitude. Therefore, this scenario
is affected by the error related to the atmospheric drag, resulting in a lower lead time. Regarding Scenario #3,
the behaviour observed is similar to Scenario #1. In this case, the orbital period is longer, which explains the
larger L2 error for the same number of orbital periods integrated.

It is interesting to study the evolution of SL2 as the propagation time increases. Firs, it is observed that
this parameter is always positive, which confirms that the error always increases with increasing integration
time. The interesting result is that SL2 does not present an increasing trend with integration time. In all
the scenarios, SL2 for integration time of 100 orbits is lower than for integration times of 15 and 30 orbits.
This implies that the evolution of the L2 error with time is not linear. A direct consequence of this is that an
improvement of X% in the L2 error for 5 orbits will produce an increase the lead time > X%.

This analysis verifies that the DA-GMM method is valid to propagate the collision probability for > 60
hours when the orbital altitude is ≥ 800 km and for at least 30 hours for an altitude of 400 km.

8.3.2. Number of GMEs
The number of Gaussian mixture elements is a driver parameter on the accuracy and computational load of
the DA-GMM method for uncertainty propagation. To study its effect, the nominal scenarios are propagated
with N = 1, 37, 51, 101, 201, 501 GMEs. From the Gaussian hypothesis testing performed in Subsection 5.1.3
it was concluded that for 201 Gaussian mixture elements, the error with respect to a propagation with 2001
GMEs was L2 < 5 · 10−7. Therefore, this number is selected as the nominal scenario. Due to the quadratic
increase in computational load with respect to an increase in number of GMEs, 501 elements is selected
as the upper bound for this analysis. As observed in Figure 5.6, the rate of error reduction with number of
GMEs is very high for lower numbers of elements and becomes steadier as the elements increase. For this
reason, the L2 error is studied for 37, 51 and 101 sample points. The case with 1 sample point (i.e., Gaussian
uncertainty propagation) is also added for comparison.

The results are summarised in Table 8.7. First, it is observed that for all scenarios, the largest reduction
in error occurs when increasing the number of Gaussian mixture elements from 1 to 37. This leads to an
improvement of one order of magnitude, which makes a large difference in the propagated uncertainty and
in the potential to increase the lead time for the simulation. For scenarios #1 and #3, the difference in accu-
racy resulting from selecting 37 with respect to 201 GMEs remains significant and the error decreases when
increasing to 51 and 101 GMEs respectively. By inspecting the sign of SL2 it is concluded that this tendency
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Table 8.7: L2 error for change in number of GMEs. Nominal setting of 201 GMEs.

Nº GMEs 1 37 51 101 201 501

Nominal Scenario #1

L2 with Monte Carlo 0.0861 0.0254 0.0206 0.0199 0.0199 0.01758

SL2 -3.3266 -0.3371 -0.0469 < 10−8 - -0.0777

Nominal Scenario #2

L2 with Monte Carlo 0.1971 0.0465 0.0435 0.0404 0.0446 0.0446

SL2 -3.4193 -0.0520 0.0329 0.1883 - < 10−8

Nominal Scenario #3

L2 with Monte Carlo 0.1653 0.0334 0.0285 0.0261 0.0260 0.0255

SL2 -5.3577 -0.3471 -0.1282 -0.0077 - -0.0128

does not occur in Scenario #2. In this case, the error obtained with 201 and 501 elements is larger than the
error obtained with 101 elements. This can be related to the orbital parameters of this scenario and the re-
sultant deviation in the drag acceleration. Imagine the error in acceleration as a push to the position mean
of each Gaussian mixture element in a certain direction. Each mean will receive a different push depending
on the location of the mean and this will change the direction of the propagated distribution with respect to
a case without error. For a large number of Gaussian mixture elements, this effect accumulates as it occurs
on every element, explaining the observed trend. This effect is analogous to the scattering of the space debris
after a collision. Every piece of debris is initially in the same location, but receives a different velocity after
the impact, which sets the pieces in different orbits. This effect propagates with time. Therefore, for cases
with low altitudes (e.g., 300 - 600 km) it is counter-productive to select a larger number of elements.

Focusing on the magnitude of L2 it is noticed that for 501 elements it is in the order of 10−2 in all cases,
which questions the need to select more elements when considering the associated increase in computa-
tional load. Effectively, the difference between selecting 101 and 201 elements becomes insignificant for
Scenarios #1 and #3, which renders impractical to select more than 101 GMEs.

Although in Scenarios #1,#3 the evolution of error with number of GMEs follows a slightly different trend
compared to Scenario #2, due to the effect of atmospheric drag, a single conclusion can be made for all sce-
narios. Selecting more than 101 elements does not provide major benefits in terms of accuracy and it causes
a large increase in computational load. Therefore, it is recommended to select 51 elements and increase to a
maximum of 101 if a high accuracy or a long integration time are required.

8.3.3. Taylor series expansion order
The main parameter controlling the differential algebra computation is the Taylor series expansion order.
This parameter sets the truncation order of the computation and therefore the accuracy of the Taylor expan-
sion of the final state from a disturbance in the initial state. Moreover, this parameter has a large impact on
the computational load, both during the integration process and during the post-processing of the Taylor
expansion coefficients to obtain the final distribution. In this section, the effect of changing the Taylor ex-
pansion order on the accuracy of the propagated distribution is analysed, for the three nominal scenarios.
Although the DACE software allows to perform the computation with very high expansion order (e.g., order
20), the computational load is a limiting factor that allows to use a maximum order of four. Therefore, the
study is performed for Taylor series expansion order ranging from one to four.

Table 8.8 collects the L2 error evolution with a change in Taylor series expansion order. First, it must be
noted that in all cases the error has an order of magnitude of 10−2, which is below the threshold set for a
valid propagation. However, this analysis has been conducted for an integration of 5 orbits. As observed
in Table 8.6, when L2 ≈ 0.02 after 5 orbital periods, the uncertainty propagation is still valid after 30 orbits.
However, the cases with L2 ≥ 0.04 after 5 orbital periods fail before 30 orbits. Selecting an expansion order
k = 1 with 201 GMEs has a similar impact on the accuracy as selecting a Gaussian propagation (1 GME).
However, the reduction in computational load is negligible in comparison to the latter. Therefore, this option
is discarded and will not be studied further.

The error shows a decreasing trend with increasing expansion order, as expected. However, analysing
the SL2 parameter it cannot be extracted a clear relation between the amount of change and the expansion
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Table 8.8: L2 error for change in Taylor expansion order. Nominal setting of k = 3.

Taylor expansion order 1 2 3 4

Nominal Scenario #1

L2 with Monte Carlo 0.0505 0.0205 0.0199 0.0152

SL2 -1.5377 -0.0603 - -0.4724

Nominal Scenario #2

L2 with Monte Carlo 0.0896 0.0448 0.0446 0.0213

SL2 -1.0090 -0.0090 - -1.0448

Nominal Scenario #3

L2 with Monte Carlo 0.0301 0.0284 0.0260 0.0292

SL2 -0.1577 -0.1846 - 0.2462

Table 8.9: L2 error for change in integration tolerance. Nominal setting of ε= 10−12.

Tolerance 10−8 10−10 10−12 10−14

Nominal Scenario #1

L2 with Monte Carlo 0.0205 0.0203 0.0199 0.0197

SL2 -0.0302 -0.0402 - -0.0201

Nominal Scenario #2

L2 with Monte Carlo 0.0446 0.0446 0.0446 0.0446

SL2 < 10−8 < 10−8 - < 10−8

Nominal Scenario #3

L2 with Monte Carlo 0.0286 0.0287 0.0260 0.0260

SL2 -0.1000 -0.2077 - < 10−8

order. For Scenarios #1 and #2, improvement from k = 3 to k = 4 is larger than the improvement from k = 2 to
k = 3. However, for Scenario #3 the error actually increases when setting k = 4. Therefore, with this analysis
it cannot be clearly stated that setting k = 4 will provide the best performance in every case. This will be
further analysed in Subsection 8.3.5. For these scenarios, and considering the large jump in computational
load required to increase from k3 to k = 4, it is recommended to limit the settings to k = 2,3.

8.3.4. Integration tolerance
Finally, the effect of the tolerance for the numerical integration algorithm is studied. The objective of this
analysis is to select a value that is suitable for any orbit in LEO. Since the number of cases that can be tested
is limited, a conservative approach is taken while aiming to keep a low computational time.

For similar problems, the range of integrator tolerances that have been studied is ε = [10−9 10−14] (Valli
et al., 2013; Jones and Doostan, 2013). Using this as a reference, and taking into account that the default
setting for integration tolerance provided in the DACE software is 10−12, the analysis will be performed for
ε= 10−8,10−10,10−12,10−14.

The L2 errors for the nominal scenarios with these settings are provided in Table 8.9. First, it is observed
that the change in L2 obtained by changing the integrator tolerance is very small compared to the variation of
other parameters. Based on the three cases studied, it is expected that this parameter has a low sensitivity on
the results. The general trend observed is a reduction of the error for stricter tolerances. The computational
time required for tolerances of 10−8 −10−12 is similar, while for a tolerance 10−14 there is a jump in computa-
tional time of one order of magnitude. Coupled with the fact that the improvement observed by reducing the
tolerance from 10−12 to 10−14 is very small or even negligible, the setting of ε= 10−12 is selected.

8.3.5. Combined analysis
The analysis conducted so far provides a general idea of the effect of several orbital and model parameters
on the accuracy of the DA-GMM method. It is concluded that from the orbital geometry, the altitude plays
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(a) Uncertainty propagated for 5 orbital periods.
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(b) Uncertainty propagated for 30 orbital periods.

Figure 8.3: Pareto front for L2 accuracy against computational time for the uncertainty propagation of Nominal Scenarios #1,#2 and #3
with Taylor expansion order k = 2,3,4.

an important role in the accuracy of the results while the other variables do not have a significant effect.
From the model parameters, the results match the expected behaviour. The model accuracy decreases with
an increase in lead time.This effect can be counteracted by an increase in the Taylor expansion order and
the number of Gaussian Mixture Elements. Since all these parameters are connected, a combined analysis
is performed for the combination of parameters using the nominal scenarios described in Section 8.1. To
account for the effect of lead time, two cases are considered by simulating the uncertainty propagation with
an integration time of 5 and 30 orbital periods respectively.

Figure 8.3 illustrates the results of this combined analysis and presents the Pareto front of optimal settings
for each scenario. The performance parameters considered for this analysis are computational accuracy as
described by the L2 error and computational time. The latter includes the time required for the Taylor series
integration in the DA software and the reconstruction of the final state uncertainty. By analysing the Pareto
lines of optimal results it is observed that for every scenario studied, nominal scenario #1 provides the best
results. The main factor difference between nominal scenarios comes from the change in orbital altitude.

Focusing on the Taylor expansion order, it is observed that the optimal setting depends on whether the
computational time or the accuracy are prioritised. If the computational time is prioritised, the optimal
Pareto results are found for simulations with k = 2. For low integration times this setting provides an ac-
curacy below the threshold of L2 = 0.6 in all cases and therefore it is preferred. When moving to longer inte-
gration periods (e.g., 30 orbits as observed in Figure 8.3b) longer computational times are required to satisfy
the accuracy threshold. For the settings tested, the threshold accuracy is not always met for long integration
periods. If the accuracy is prioritised, it is required to increase the Taylor expansion order with the associated
increase in computational time. Although an increase in Taylor expansion order is usually linked to a better
accuracy, this does imply that a Taylor expansion order of four offers the optimal solution. Inspecting the
optimal Pareto fronts it is observed that for higher accuracy the Pareto front is composed by Taylor expansion
order three, since it is more efficient to increase the number of Gaussian Mixture Elements. Based on these
results, it is recommended to use a Taylor expansion order k = 2, when computational load is a priority and
k = 3, when accuracy is a priority or for long integration times.

Regarding the number of Gaussian mixture elements, represented by the colour of the markers, the con-
clusion from the individual analysis performed in Subsection 8.3.2 is confirmed. First, it is observed that
going form a Gaussian uncertainty propagation to a GMM has the largest impact, both in accuracy and com-
putational time. Therefore, if the integration time is low (less than ten hours), it is reasonable to prioritise
computational time and perform a Gaussian uncertainty propagation. However, if a high accuracy is desired
or the integration time is long it is required to use a Gaussian Mixture Model. Increasing the number of ele-
ments from 37 elements has a larger effect on the computational time than on the accuracy, as observed by
the decrease in slope of the Pareto fronts. Therefore, in this case the recommendation of using 51 elements is
kept.

Although every case is unique and this analysis cannot determine the optimal settings for every possible
encounter geometry, it provides more insight on the interactions between settings. For the following analysis
it is decided to select a Taylor expansion order of k = 3 and 51 Gaussian Mixture Elements, to stay in the upper
bound of recommended settings that allow to obtain a good performance for a general scenario.
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Table 8.10: L2 error for change in initial state uncertainty with k = 3 and 201 GMEs.

Factor 0.1 1 100

Nominal Scenario #1

L2 with Monte Carlo 0.1940 0.0199 0.1178

SL2 -12.8046 - 0.0671

8.4. Effect of uncertainty
So far, the effect of the orbital parameters and the method settings on the accuracy of the propagated distri-
bution have been analysed. There is one last parameter involved in the uncertainty propagation, which is the
magnitude of the initial uncertainty. This section analyses the effect of the initial uncertainty for the position
and velocity of the satellite and describes the expected effect of the uncertainty on the ballistic coefficient
and atmospheric density.

8.4.1. Initial state uncertainty
The initial state uncertainty plays two roles on the DA-GMM method that could affect the accuracy of the re-
sultant uncertainty propagation. First, the magnitude of the uncertainty determines the spread of the mean
values for the position of the Gaussian mixture elements. For a larger initial state uncertainty and the same
number of Gaussian mixture elements, the problem scales up and it becomes equivalent to having the smaller
initial state uncertainty with a lower number of elements. Therefore, it is expected that increasing the initial
state uncertainty will increase the error, but this can be avoided by increasing the number of elements. Sec-
ond, the initial covariance is used by the Hafnian operator to obtain the uncertainty distribution of the final
state with respect to the initial state. This process involves several products between the covariance compo-
nents. If the covariance (of the Gaussian Mixture element) is very small, this can introduce numerical errors.
In this case, it is recommended to select a lower number of GMEs.

To study the effect of a change in the initial state uncertainty, the nominal values for the standard devi-
ation displayed in Table 8.2 are multiplied by a factor of 0.1 and 100. This covers initial state uncertainties
in the range of 40 cm to 400 m, which covers the range of accuracy reached with satellite orbit determina-
tion techniques. Table 8.10 presents the results of this analysis for Scenario #1. The error in the propagated
uncertainty increases for both deviations from the nominal initial state uncertainty, while staying within the
acceptable region. Inspecting the SL2 parameter it is observed that the effect is more pronounced for a de-
crease in initial state uncertainty than for an increase. From a practical point of view this is a positive result,
since the error can be bypassed by selecting a smaller number of Gaussian mixture elements. Moreover, the
typical accuracy reached for LEO is in the order of 100 meters, which can improve up to 3 cm if advanced
tracking techniques are used Rongzhi and Kaizhong (2020a). This combination of factors allows to conclude
that the method is valid for current operational scenarios.

8.4.2. Ballistic coefficient and atmosphere density uncertainty
As discussed in Section 4.3, the initial state is not the only variable of the dynamical model that is known with
uncertainty. The two main parameters that can be included in the uncertainty model are the atmospheric
density and the ballistic coefficient. The atmospheric density for a given location fluctuates with time, pre-
senting variations of two orders of magnitude in the LEO region. Although these time variations have been
modelled by the NRLMSISE-00 atmosphere, there are still discrepancies with respect to the measured data.
Picone et al. (2002) concluded that the modelled atmospheric density can be assumed to have a standard
deviation equal to 25% of the measured density. Regarding the ballistic coefficient, it combines the uncer-
tainty on the mass, area and drag coefficient. The dynamical model presented in this work does not include
the orientation of the satellite, in the orbit. This affects the effective area in the velocity direction relative
to the atmosphere and therefore the drag acceleration. Therefore, both parameters are related to the drag
acceleration.

The DA-GMM model has been developed with the possibility to add an uncertainty in these parameters.
The uncertainty in the atmospheric density is modelled as a lognormal distribution, while the ballistic co-
efficient is assumed to follow a uniform distribution. To understand the effect of these parameters on the
propagated uncertainty, a sensitivity analysis could be performed on these parameters. However, from the
analysis performed in Section 8.2, it was concluded that a change in the atmospheric acceleration (in this
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case due to a numerical error), had a large effect on the error in the propagated uncertainty for low altitudes,
but became acceptable for altitudes of 400 km and negligible after 800 km altitude. These results can be ex-
trapolated to a change in atmospheric acceleration due to an imposed uncertainty instead of a numerical
error. Following this reasoning and due to time constraints, it is decided to exclude the sensitivity analysis on
these parameters.

8.5. Summary of findings
In this chapter, a detailed analysis of the uncertainty propagation for a range of orbit and model parameters.
The results of the propagation of uncertainty with the DA-GMM method are verified, by computing the L2

error with respect to the Monte Carlo analysis. The results from this analysis allow to identify the limitations
of the methods and the recommended settings for different types of scenarios, which are hereby summarised.

• For very low altitudes (200 km), the error in uncertainty propagation is above the allowed threshold due
to the larger effect of the atmosphere perturbation.

• For 400 km altitude, the method is already one order of magnitude more accurate than the threshold
value. The method has a very high accuracy for LEO and MEO.

• Orbit eccentricity and inclination are not found to have a highly significant effect on the accuracy. For
low perigee altitudes, higher eccentricity provides better results since a larger part of the orbit is spent
at higher altitudes. Once this effect is bypassed by setting higher perigee altitudes, no correlation is
observed.

• For inclination, no significant correlation with accuracy is observed.

• With a sufficient number of GMEs, a propagation time of 60 hours can be achieved for altitudes > 600
km. For orbits at 400 km, at least 30 hours are achieved with high accuracy.

• The accuracy increases by one order of magnitude when using a Gaussian Mixture Model with respect
to Gaussian uncertainty propagation. This allows to double lead time with the same accuracy.

• Using 37-51 GMEs is sufficient to obtain a very high accuracy. Adding more elements increases the
computational load without additional benefits in terms of accuracy.

• Using a Taylor expansion order of four is computationally unfeasible, and and expansion order one is
insufficient in most cases. It is recommended to use an expansion order of two for applications where
computational time is prioritised and an order of three when accuracy is prioritised.

• All the range of characteristic initial state uncertainty can be used in the model. However, an initial
state uncertainty of one meter offers the best accuracy.

• Ballistic and atmosphere density uncertainty have been adapted to the model but have not tested in
this sensitivity analysis due to the low effect for higher altitudes concluded from the altitude analysis
and the time constraints.



9
Results

With the DA-GMM method for collision probability calculation fully developed and verified, it can be applied
to several test cases to study the risk of past and present encounter events and determine whether the method
supposes an improvement with respect to existing techniques. To do so, a combination of fictitious and
real scenarios is analysed. Section 9.1 focuses on two test cases for which the collision probability with an
accurate Monte Carlo analysis and alternative techniques has been reported in literature. This allows to assess
the accuracy of the method developed in unique encounter scenarios. To evaluate the effect of the initial
state uncertainty and lead time, Section 9.2 studies a fictitious case where the nominal trajectories lead to a
collision. The outcome from this analysis are useful to interpret the results of real-life scenarios.

Section 9.3 documents the catastrophic encounter between satellites Cosmos-2251 and Iridium-33. The
effect of the dynamics model, number of Gaussian mixture elements and lead time in the estimated risk is
analysed. Following, the close encounter between the Chang Zheng-4C rocket body and Cosmos-2004 is
analysed in Section 9.4. This encounter did not lead to a collision despite the very high risk predicted. It
is interesting to research how the results with the DA-GMM method compare to these predictions and the
real outcome of the encounter. Finally, Section 9.5 introduces the screening of close encounters between the
ISS and the debris resulting from the Cosmos-1408 destruction. For the detected approaches, the collision
probability is calculated with the single-sphere method, and the highest risk encounter is then simulated
with the multi-sphere method to test the effect of modelling the real shape of the satellite. The summary of
findings from this chapter is presented in Section 9.6.

9.1. Collision probability verification
The accuracy of a collision probability calculation method is typically assessed by comparing the results with
Monte Carlo simulations. However, the accuracy of a Monte Carlo analysis is highly dependent on the num-
ber of samples simulated. To predict a collision probability of 10−N , a number of at least 10N+1 samples are
required. As explained, the number of samples that can be propagated with the available computational re-
sources is limited to 10,000, which would only allow to predict, with a low accuracy, a collision probability of
Pc ≥ 10−3. Instead, a database of satellite conjunction with Monte Carlo analysis performed by Alfano (2009)
is used for verification. Alfano studied 12 different cases for close encounters at LEO, MEO, HEO and GEO
with 108 Monte Carlo samples and considering only the central gravitational acceleration. Generating such a
set of samples with the astrodynamics propagation software used in this work considering the full dynamics
with perturbations would take more than one year, due to the limitations in available computational capac-
ity. Considering that the two-body problem presents an analytical solution, it is expected that the Monte
Carlo samples for this case can be obtained in a more reasonable computational time. However, since for
each satellite the position is evaluated at 2840 time stamps, it is still expected that this computation will be
time consuming. Alfano (2009) compared the results from five alternative collision probability calculation
methods. These methods are the ones included in the NASA-CARA and ESA-CORAM software to compute
the collision probability in non-linear encounters. By selecting these scenarios, the DACE-GMM method of
collision probability can be verified and its accuracy can be compared to that of the main approaches cur-
rently used. In this section, the cases are first described and the input data for the simulations is presented.
Finally, the results obtained with the DA-GMM method are provided and compared to the verification data.

97
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Table 9.1: Verification scenarios: initial state (Alfano, 2009, p.34, p.49).

Initial Position x [km] y [km] z [km]

Case 7
Satellite A 6337.9665365122 1889.3098033002 1889.3098033002

Satellite B 6338.6705812339 1888.2177447937 1888.1503615517

Case 12 Satellites A & B 6878.137 0.0 0.0

Initial Velocity ẋ [km] ẏ [km] ż [km]

Case 7
Satellite A -2.9571994197397 4.9601786006789 4.9601786006789

Satellite B -2.9552934327179 4.9608101452466 4.9606245630827

Case 12 Satellites A & B 0.0 7.6126081732239 0.0

Table 9.2: Verification scenarios: initial uncertainty (Alfano, 2009, p.34, p.49).

Covariance Case 7, Sat A Case 7, Sat B Case 12, Sat A & B Units

σx,x 3.4099738463705 ·10−4 3.4107282833791 ·10−4 8.578274700986899 ·10−6

[
km2]σy,y 2.3400130768148 ·10−4 2.3395737435097 ·10−4 4.4217252990131 ·10−6

σz,z 2.3400130768148 ·10−4 2.3396979731112 ·10−4 4.0 ·10−6

σx,y 9.8966443775773 ·10−5 9.8916238832886 ·10−5 −1.3895230358788 ·10−6

σx,z 9.8966443775773 ·10−5 9.8912538411159 ·10−5 0.0

σy,z −1.6599869231852 ·10−4 −1.6603641405277 ·10−4 0.0

σẋ,ẋ 8.5060718872296 ·10−11 8.5079820985814 ·10−11 1.0 ·10−14

[
km2

s2

]σẏ ,ẏ 5.7969640563852 ·10−11 5.7958516779401 ·10−11 1.0 ·10−14

σż,ż 5.7969640563852 ·10−11 5.791662234785 ·10−11 1.0 ·10−14

σẋ,ẏ 2.5057999830694 ·10−11 2.5045288093237 ·10−11 0.0

σẋ,ż 2.5057999830694 ·10−11 2.5044351157813 ·10−11 0.0

σẏ ,ż −4.2030359436148 ·10−11 −4.2039910463489 ·10−11 0.0

9.1.1. Mission description and initial state
From the cases studied by Alfano, cases 7 and 12 present special properties and are therefore selected. Case
7 involves the relative motion between two satellites in LEO which results in a low collision probability of
Pc ≈ 10−4. This allows to test and compare the accuracy of the method to predict collisions with a very low
risk. It must be noted that 109 Monte Carlo samples are required to compute this probability with sufficient
accuracy. Case 12 presents a peculiar scenario of two satellites co-located in identical LEO orbits and with
the same initial state uncertainty. The propagated state and uncertainty will be identical for both satellites,
but a collision does not necessarily occur. This is a special event, since the encounter develops continuously.
The collision probability methods selected by Alfano (2009) for comparison do not offer a good result for this
scenario and therefore it is a good challenge for the algorithm developed in this work.

Table 9.1 presents the initial position and velocity of the satellites involved in the two cases selected. The
initial state uncertainty is introduced in Table 9.2. It must be noted that the covariance elements excluded
from the table are set to zero and that the covariance matrix is symmetric (i.e., σx,y =σy,x ).

9.1.2. Simulation parameters
In the simulations run by Alfano (2009), the encounter time is set from TCA −1420 s to TCA+1420 s. To be
consistent with the results from the Monte Carlo analysis, the same time span is selected for the collision
probability calculation with the DA-GMM model. According to the results from the sensitivity analysis per-
formed in Chapter 8, and considering that the collision probability has to be integrated over a long period, the
simulations are performed with Taylor expansion order three. The main drivers for the computational load
on the Pc calculation process using the time integration method are the number of GMEs and the number
of integration steps (which depend on the encounter period and the time step). Following the recommen-
dations from Chapter 8, a maximum of 51 elements is selected for the Gaussian mixture model. A second
analysis with 37 GMEs is performed to test the sensitivity of the method. The time step is set to 10 seconds.
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Figure 9.1: Evolution of collision risk for Case 7 with 51 GMEs.
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Figure 9.2: Evolution of collision risk for Case 7 with 51 GMEs.

9.1.3. Results and discussion
With the specified settings, the DA-GMM method is run to compute the collision probability in Cases 7 and
12. This method not only provides the total collision probability, but also the evolution of the collision prob-
ability rate and the cumulative collision probability over time. This provides more information than simply
outputting the risk as a single number. In Figure 9.1, the evolution of the risk for Case 7 with a lead time of
48 hours is presented. As observed, the real duration of the encounter is only about 300 seconds which is
relatively small with respect to the 2840 second window studied. On Figure 9.2a it is observed that in Case 12,
the risk of encounter spans through the entire time studied, which is expected since both satellites follow the
nominal trajectory. Although the collision probability obtained for Case 12 is one order of magnitude higher
than that of Case 7, the probability rate is in the same order of magnitude in both cases. This hints that only
looking at the total collision probability might be insufficient in some scenarios. The results obtained are
verified with the results from a Monte Carlo analysis, see Alfano (2009, Fig A7, Fig A12).

The interesting outcome of this analysis is that it allows to compare the final collision probability with the
values obtained with the main conventional methods and to verify the results with the results of an extensive
Monte Carlo simulation. Before discussing the results, it is worth to recapitulate the main characteristics of
the alternative methods. The linear Alfano (Alfano, 2005) and linear Patera (Patera, 2005) assume that the
relative velocity between the objects is constant over the collision interval, and that there is no error in the
velocity. This allows to compute the collision probability as a two-dimensional integral, following different
computational methods. These techniques are fast, but result in a low accuracy in long-term encounters
with low relative velocity. On the other hand, the three-dimensional methods allow to introduce the effect of
nonlinear motion: the voxels, the adjoining cylinders and the parallelepipeds. In these cases, each volume
(e.g., cylinder) is broken into slices where the linear probability can be computed and its product is multiplied
with the one-dimensional integral of the collision probability along the relative velocity. This process is highly
time consuming, slower than real time and therefore only recommended for determining reference cases
(Alfano, 2006).
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Table 9.3: Results of collision probability calculation for reference methods and DACE-GMM (Alfano, 2009, p.32, p.48). Shaded cells
represent results from the DA-GMM method that improve the accuracy compared to alternative methods analysed by Alfano.

Method Pc ∆Pc(%) Pc ∆Pc(%)

Case 7 Case12

Monte Carlo (106 samples) 1.51 ·10−4 -6.48 2.55 ·10−3 0.23

Monte Carlo (109 samples) 1.61462 ·10−4 - 2.55595 ·10−3 -

DA-GMM (51 GMEs) 1.615292 ·10−4 0.04 2.444178 ·10−3 4.37

DA-GMM( 37 GMEs) 1.609087 ·10−4 -0.34 2.443488 ·10−3 4.40

Voxels n = 50 1.64414 ·10−4 1.83 3.656683 ·10−3 43.07

Voxels n = 100 1.61719 ·10−4 0.16 3.079178 ·10−3

Adjoining cylinders n = 50 1.61677 ·10−4 0.13 0.0 100.00

Adjoining cylinders n = 100 1.61677 ·10−4 0.13 0.0 100.00

Parallelepipeds n = 50 1.61761 ·10−4 0.18 0.0 100.00

Parallelepipeds n = 100 1.61701 ·10−4 0.15 0.0 100.00

Linear Alfano n = 50 1.58147 ·10−4 - 2.05 1.917488 ·10−3 -24.98

Linear Alfano n = 100 1.58147 ·10−4 -2.05 1.917487 ·10−3 -24.98

Linear Patera n = 50 1.58146 ·10−4 -2.05 1.917487 ·10−3 -24.98

Linear Patera n = 100 1.58146 ·10−4 -2.05 1.917487 ·10−3 -24.98

Table 9.3 presents the resultant collision probability calculated with the method developed in this work
(DA-GMM) and compared to alternative methods provided by Alfano (2009). Highlighted in green are the
cases when the computed collision probability improves upon the alternative methods. For case 7, an error of
0.4% is achieved, which shows an improvement with respect to the linear and non-linear alternative methods.
Moreover, the total time to compute the collision probability over the 2840 second interval with a time-step
of 10 seconds is of three hours and less than one hour for the cases with 51 and 37 GMEs, respectively. This
allows to compute the collision probability with sufficient time to conduct an avoidance manoeuvre and
therefore it can be used during operations. For case 12, the results obtained by the alternative methods are
greatly improved both using 37 and 51 Gaussian mixture elements. The poor performance of the alternative
methods is due to the fact that there is no relative velocity, leading to a zero cumulative probability. A similar
effect is produced in scenarios with low relative velocities, such in formation flying. For these scenarios, the
non-linear methods fail and the linear methods provide a low accuracy due to the large encounter times.
Moreover, these methods under-estimate the collision probability, which can lead to unexpected casualties.
In comparison, the DA-GMM method estimates the collision probability with an error of 4.37%, providing
the closest approximation to the real magnitude of the risk.

To summarise, the application of the DA-GMM method for these test cases has proven that:

• A collision probability error of 0.04% can be achieved with a lead time of 48 hours.

• The method is not limited to cases with large relative velocity

• A high accuracy estimate can be obtained with 37 Gaussian Mixture Elements.

• Very low collision probabilities (Pc ≈ 10−4) can be correctly predicted.

• The accuracy in Pc calculation is improved by > 70% with respect to the best alternative method.

• An accurate collision probability computation for the three-dimensional geometry and applicable to
any encounter geometry can be obtained within five minutes for one GME and within one hour for the
case with 51 GMEs, which allows to use the method for operational collision avoidance.

9.2. Crash scenario
With the sensitivity analysis performed in Chapter 8 and the collision probability calculations compared with
Monte Carlo results, it is verified that the DA-GMM method correctly propagates the uncertainty and esti-
mates the encounter risk. Before going into the simulation of real encounter scenarios, it is useful to gain
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Figure 9.3: Illustration of nominal trajectories of Galatea and Acis leading to a collision.

more insight on what a given number of Pc represents and how it relates to the initial state uncertainty and
lead time. To do so, the collision probability for a scenario where the nominal trajectory leads to a collision is
simulated. In this section, the collision scenario is introduced and the simulation parameters are presented.
The results from this simulation provide a guideline to interpret the risk estimation for real collisions.

9.2.1. Case summary
The main issue when computing the risk of collision is the uncertainty in the initial state that propagates to
the encounter time leading to the phenomena of uncertainty dilution (Alfano, 2004). This occurs when the
covariance of one or both objects is large, leading to a small collision probability due to the limited knowl-
edge on the satellite position. The position accuracy provided by TLEs is in the order of 450 m, which already
affects the estimated risk. Although most of the objects studied in this chapter are tracked through radar
measurements by different space agencies and private companies, this information is not public. Therefore,
the results of this analysis are limited by the accuracy of tracking data. To provide some baseline for compari-
son, a fictitious collision is simulated. Two satellites (named Galatea and Acis) in different, intersecting orbits
are positioned initially in the same location. The position of both trajectories is propagated backwards with
the perturbed dynamics model for 1, 3, 6, 12, 24, 48 and 72 hours. From these new initial states, the collision
probability at TCA is calculated, assuming an initial state uncertainty. This analysis allows to inspect the ef-
fect of uncertainty dilution in a case where, with zero uncertainty, the collision probability would be Pc = 1.
The simulation scenario is illustrated in Figure 9.3. Acis follows a retrograde orbit, which leads to an almost
head-on collision. This is the worst case scenario for an encounter and it presents an interesting case for the
collision probability. Despite the high relative velocity of the satellites, which would lead to short encounter,
the uncertainty is distributed along the trajectory of the spacecraft, increasing the encounter period. This is
complicated to model in short-term methods but it does not pose a challenge when using this method.

9.2.2. Simulation parameters
At the time of closest approach the nominal trajectories of both satellites intersect with an angle of three
degrees, leading to an almost head-on collision. The encounter geometry is summarised in Table 9.4 and the
initial state for each collision simulation is obtain by back propagating from this scenario.

For all the simulations it is selected to use a Taylor expansion order of k = 3 with 51 GMEs. According
to the objective of this analysis, two different scenarios are considered for each simulation. First, a scenario
with larger initial state uncertainty setting σr = 100 m and σv = 10−3 m/s in each component. This scenario
approaches the uncertainty provided by TLEs, which are the main source of tracking data used in this work.
Second, a scenario with medium state uncertainty setting σr = 10 m and σv = 10−4 m/s in each component.
This approaches the accuracy achieved with radar measurements by tracking companies such as LeoLabs.
For some satellites, more advanced tracking techniques are used which provide an orbit-determination ac-
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Table 9.4: Kepler elements of the satellites at TCA.

Satellite a [km] e [-] i [deg] Ω [deg] ω [deg] θ [deg]

Galatea 7078.137 0.03 50 30 70 20

Acis 7441.707 0.0942 129.98 -152.05 128.44 -39.76
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Figure 9.4: Evolution of collision risk for change in lead time

curacy under a meter. However, this is excluded from the analysis, since there are no results available for
comparison that use such orbit determination techniques. Regarding the integration step for the collision
probability determination, it is adjusted from 0.5 seconds to 10 seconds depending on the span of the en-
counter and the evolution of the collision probability rate.

9.2.3. Results and discussion
The evolution of the estimated risk as a function of lead time is illustrated in Figure 9.4. Focusing first on the
predicted collision probability, it is observed that the estimated risk decreases as the lead time increases. This
is expected since for the same initial state uncertainty, a longer lead time results in a higher final state uncer-
tainty, therefore contributing more to the effect of uncertainty dilution. The decreasing trend approximates
a linear relation in the logarithmic scale, which suggests that for this trajectory, the following relation can be
established for the lead time measured in hours:

Pc (tl ead ) = 10(C1−0.0375·tl ead ) (9.1)

Pc (tl ead ) = 10(logPc (1)+0.0375·(1−tlead )) (9.2)

Continuing with Figure 9.4a, it is surprising the effect of the difference in initial state on the collision prob-
ability. From the conclusion that both trends can be modelled as a line with the same slope in logarithmic
scale, it follows that the difference in collision probability is approximately constant in this scale. In this sce-
nario it is found that for the same lead time, the collision probability differs in two orders of magnitude for
a decrease of one order of magnitude in the initial state uncertainty. This leads to a crucial conclusion: that
the collision probability for a given encounter geometry using two sets of measurements made at the same
time, but with different uncertainty, cannot be simply compared. The level of accuracy of the measurements
must be taken into account when assessing the risk of collision. For this work, this implies that the results
found for collision scenarios using two-line elements cannot be directly compared to the collision probability
estimates performed by entities with accurate tracking data.

Focusing on Figure 9.4b, an increase in the encounter time is associated with an increase in lead time
for the same initial state uncertainty. This is specially visible in this scenario since the encounter is head-on,
and therefore the principal direction of the uncertainty ellipsoids are approximately aligned. In this case, the
length of the encounter directly depends on the initial uncertainty, and therefore the curves do not have the
same slope.

The main outcome of this study is a reference magnitude for the difference in collision probability as-
sociated to a change in initial state uncertainty, and how this value changes with lead time. It is concluded
that, since there is a linear relation between lead time and collision probability in the logarithmic scale, this
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Table 9.5: Time history of the predicted closest approach between Iridium-33 and Cosmos-2251 (Aida et al., 2009)

Days before TCA 7 6 5 4 3 2 1

Miss distance Iridium-33/Cosmos-2251 [m] 1752 1812 117 1243 688 984 584

Table 9.6: Collision probability for the Cosmos-2251/Iridium-33 encounter detected by NASA and the RSSS (Agapov et al., 2009).

Entity Time before TCA Detected Pc

NASA 1 day 10−10

RSSS 10 minutes 3 ·10−5

difference is kept approximately constant and is equal to two orders of magnitude. Although the numbers
found in this section are only valid for this particular case, this study provides a baseline to assess the validity
of the collision risk computed in further sections.

9.3. Cosmos-2251/Iridium-33 collision
The Cosmos-2251/Iridium-33 is the largest collision event that has occurred, which resulted in more than
1,000 pieces of debris larger than ten centimetres in diameter (Kelso, 2009). The severity of the impact re-
sponds to the fact that both bodies were intact satellites heavier than 600 kg each, and the encounter oc-
curred at an almost 90◦ angle and a relative velocity of nearly 11.65 km/s. Despite the fatal consequences of
the encounter, the risk detected was not high enough to notify the satellite providers. By that time, the Irid-
ium constellation was not included in the conjunction screenings of the U.S and Russian military. Moreover,
the Iridium constellation was often found to have potential encounters with other objects, but due to the
inaccuracy of the TLE data, most of these encounters were disregarded. After the collision, the security pro-
tocols were reinforced and the Iridium constellation was included in the high accuracy screening performed
by the Joint Space Operations Centre (JSpOC). This collision event is an excellent source of data to predict a
collision event and validate the collision probability calculations. In this section, the Cosmos-2251/Iridium-
33 collision is simulated with the DA-GMM method using the publicly available information from the TLEs
for different settings.

9.3.1. Case summary
The main issue that lead to the catastrophic event was the lack of warning. This was due to the fact that nei-
ther the U.S or Russian military screening programs included the Iridium-33 or Cosmos-2251. The protocol
has improved and currently the U.S space Command (USspaceCOM) includes in the screening all objects
larger than 10 cm in diameter. In the coming years, it is planned to include debris up to 5 cm in diameter
(NASA, 2020).

However, the satellites were included in the screening process of the Satellite Orbital Conjunction Reports
Assessing Threatening Encounters in Space (SOCRATES) software. SOCRATES is a tool provided by CelesTrack
which uses STK to propagate the trajectory and provide the miss distance at TCA and the maximum collision
probability. This software uses the public data from the TLE and therefore the results are treated as an initial
estimation which should be reviewed by the satellite operator with more accurate tracking data. SOCRATES
tracked the satellites and predicted the minimum distance from seven days prior to TCA, as presented in Ta-
ble 9.5. Although a close approach of 117 m was predicted five days prior to TCA, this value increased to more
than 1 km on the following data update, and therefore did not raise further concern. Moreover, it should be
noted that during this period, the Iridium-33/Cosmos-2251 encounter was not the closest approach detected
for the entire Iridium constellation, nor for the Iridium-33 satellite itself. As a result, the Iridium-33/Cosmos-
2251 encounter did not rank high on the priority list and the potential collision was not notified to satellite
operators.

After the collision, the scenario was run by NASA and the Russian Space Surveillance System (RSSS) with
accurate radar surveillance data ten minutes and one day prior to TCA, respectively. The collision probability
predicted by these entities is summarised in Table 9.6.

The collision took place on 10 February of the year 2009 at 16:55:59.806 UTC at an altitude of 788.6 km.
The event occurred at 97.9◦ longitude, 72.5◦ latitude above the Taymyr peninsula in Siberia. This constituted
the first accidental collision between catalogued satellites.
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Figure 9.5: Evolution of the Iridium-33/Cosmos-2251 debris cloud after collision (Kelso, 2009).

Table 9.7: Orbital characteristics of the satellites 10 minutes before the collision (Agapov et al., 2009)

Satellite ha (km) hp (km) i (◦) e (-) Ω(◦) Velocity (km/s)

Iridium-33 796 756 86.4 0.0028 121.3 7.46

Cosmos-2251 794 767 74.0 0.0019 17.3 7.45

Directly after the encounter, both satellites produced over 1,400 pieces of debris larger than 10 cm and
nearly 3·106 pieces larger than 1 mm which scattered in a wide range of orbital altitudes. Figure 9.5 illustrates
the evolution of the fragments after the collision. In only three hours the debris, which have different sizes and
were oriented in a different direction after the collision, are already scattered close to the original orbit. With
time, the scattering process continues, eventually covering the full orbital sphere at the collision altitude. The
pieces of debris will collide with each other, reducing the number of larger pieces. Due to the scattering of
the debris across altitude and the reduction of size due to collisions, the spatial density of debris larger than
1 cm in the collision altitude has decreased by a factor of three after ten years.

9.3.2. Simulation parameters
The satellites forming the Iridium constellation are located at a highly crowded orbital band, which caused
multiple collision warning events. Table 9.7 provides the orbital characteristics of both satellites at the last
radar measurement, at 16:46h on 10 February 2009, ten minutes before collision. Both orbits share a range of
orbital altitudes and have a similar inclination.

The position of each satellite prior to collision is available as TLE on SpaceTrack, which are updated two
times a day. The tracking accuracy of the radar measurements available to the satellite operators and space
agencies was 2.6 m and 1.7 m for Iridium-33 and Cosmos-2251, respectively. However, this information is not
publicly available. To recreate the collision event, the data from TLE will be used, taking into account that the
resultant collision probability could be improved with higher-accuracy data. The initial state of the satellites
retrieved from the last TLE published before the collision is presented in Table 9.8. Since the data comes from
a TLE, the correlation between the uncertainty in each component follows the trend studied by Geul et al.
(2017). The values selected are summarised in Table 4.1. Regarding the magnitude of the standard deviation
for the initial state uncertainty, the values are selected following the results from Flohrer et al. (2008). The
settings used for the simulation of the Cosmos-2251/Iridium-33 encounter summarised in Table 9.9.

Table 9.8: Cartesian state of the satellites in the Earth Centred Inertial reference frame at 00:00 UTC on 10 February 2009.

Satellite x [km] y [km] z [km] ẋ [km/s] ẏ [km/s] ż [km/s]

Iridium-33 -3240.99 4759.60 4246.546 2.01107 -3.9914 5.98213

Cosmos-2251 2689.06 2726.88 6049.935 -6.53545 -1.16479 3.40109
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Table 9.9: Method parameters for Cosmos-2251/Iridium-33 encounter. Uncertainty given in the RTN-frame.

Parameter Cosmos-2251 Iridium-33

Nº GME 1. 37, 51 1, 37, 51

Taylor expansion order 3 3

Reference Area [ m2] 4.0 2.2

Mass [kg] 900.0 689.0

Radius [m] 2.5 2.5

CD [-] 2.2 2.2

[σR ,σT ,σN ] [m] [100,400,100] [100,400,100]

[σVR ,σVT ,σVN ] [m/s] [1 0.25 0.25] [1 0.25 0.25]

9.3.3. Collision probability estimation
Once the model parameters have been defined, several simulations can be executed to estimate the risk of
collision with the available data. First, the effect of modifying the uncertainty model is studied, by simulating
the encounter considering only the central body acceleration, and then including the full dynamical model
developed. Second, the effect of using a larger number of Gaussian Mixture Elements is analysed. Finally, to
assess the effect of lead time, the initial state from the TLE is propagated forward in time and the collision
probability is calculated from that fictional scenario. Due to the large uncertainty in the TLE, the result of
this analysis does not necessarily represent the real encounter. It would be more revealing to perform the
same analysis with the real tracking data with lower uncertainty. However, with the available resources, this
analysis still allows to study the evolution of collision risk as the encounter time approaches.

Effect of dynamics model
The trajectories of Cosmos-2251 and Iridium-33 are propagated from the last TLE, 16 hours and 56 minutes
before the collision event. To study the impact of the dynamical model on the predicted risk, the simulations
are run for a simplified model considering only the central gravitational acceleration from the Earth, and with
the full model described in Subsection 3.5.5.

For the simplified model, the maximum collision probability is detected 75 seconds before the actual
encounter time. The collision probability in this case is Pc =∼ 10−51, which can be approximated as zero.
Therefore, the simplified model fails to predict the risk of an encounter, and situates the encounter time more
than one minute away from the real time of closest approach. This confirms that excluding the perturbing
accelerations is unacceptable.

When adding the perturbation of the spherical harmonics up to degree and order six, the central grav-
itational acceleration from the Sun and the Moon and the atmospheric acceleration, the detected collision
probability with a Gaussian uncertainty propagation becomes Pc = 9.3511 ·10−7. This result proves that the
dynamics model has a large influence on the detected collision probability. Moreover, in this scenario the
maximum probability is registered at 16:55:58 UTC, 0.8 seconds before the actual collision.

Effect of number of GMEs
Once it is established that the full dynamics model is required, the collision risk estimation is run with in-
creasing number of Gaussian mixture elements to improve the prediction. Based on the results from the sen-
sitivity analysis, it is decided to perform extra simulations with 37 and 51 elements respectively. The results
are displayed in Table 9.10. First, it is noted that the predicted collision probability increases with increasing
number of elements, but by small percentage. The discrepancy between using one and 51 elements is < 1%,
which does not affect the order of magnitude of the predicted error. When increasing to 37 elements, the
change with respect to 51 decreases to < 0.1%. Therefore, it is concluded that 37 elements are sufficient to
correctly estimate the risk of collision.

In Figure 9.6, the time distribution of the probability rate for different number of elements is illustrated.
First, it is noted that the distribution for one GME is displaced to the right with respect to the other two
scenarios. By increasing to 37 elements, the difference between the maximum probability rate and the actual
collision time reduces to 0.2 seconds. This result supports the importance of modelling for non-Gaussian
uncertainties, since in a time-span of 1 second, the relative position of the satellites can change by more than
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Table 9.10: Collision probability predicted 16h 55 min 58.806 s before the collision.

Nº GMEs PC ∆Pc (%)

1 9.3511 ·10−7 0.9302

37 9.4329 ·10−7 0.0639

51 9.4389 ·10−7 -
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Figure 9.6: Evolution of collision probability rate for Cosmos-Iridium collision with 1, 37 and 51 Gaussian mixture elements.

10 km, which completely modifies the encounter geometry. It is also observed that the curves for 37 and 51
elements match, which supports the decision of limiting the model to 37 elements.

Effect of lead time
With the available data from the TLEs, the last information available is from 16 hours and 56 minutes before
the collision. However, it is interesting to analyse how this prediction changes with a decrease in lead time. To
do so, it is assumed that both spacecraft follow the nominal trajectory designated from the last TLE. This is not
the ideal scenario, considering the low accuracy associated to these measurements. With new starting condi-
tions defined 1, 3, 5 and 7 orbital revolutions before the collision, the simulation is repeated. Figure 9.7 shows
the initial position of both satellites at these initial conditions. As it is observed, although in an unperturbed
orbit all these points would match, in this case the initial conditions are displaced by hundreds of kilometres.
This exemplifies the level of complexity of orbital dynamics when including the effect of perturbations.

The results from these simulations are illustrated in Figure 9.8. The evolution of the probability rate with
time is depicted in Figure 9.8a. As expected, the encounter time-span increases with increasing lead time.
Moreover, it is observed a change in the time of maximum collision probability rate. However, there is no
clear relation between the total collision probability and the lead time. As observed in Figure 9.8b, the maxi-
mum collision probability is observed when starting the propagation three revolutions before time of closest
approach. Starting the propagation from the same nominal orbit but one revolution before time of closest
approach yields a collision probability one order of magnitude smaller. This confirms that extrapolating the
initial state from a TLE is not a valid approach to create input data. The estimation of collision risk is an
extremely sensitive process that requires adequate tracking data. This data is available to space agencies
and satellite operators, but open to the general public, which limits the possibilities to study in depth the
Cosmos-2251/Iridium-33 collision.

9.3.4. Results summary
The collision event between Cosmos-2251 and Iridium-33 changed the course of satellite operations and
forced a tightening of the space debris mitigation guidelines. This event is an excellent source of verifica-
tion, and allows to extract important conclusions regarding the accuracy of the method and its applicability
to space operations. By analysing the effect of using a simplified model versus a full dynamics model it is
confirmed that the two-body problem is not valid for collision probability estimation. A change of meters in
the nominal position completely shifts the closest approach time and changes the encounter geometry. In
this case, the collision probability detected for the simplified dynamics model is negligible. Regarding the
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Figure 9.8: Evolution of collision risk for Cosmos-2251/Iridium-33 collision with changing time from TCA

application of a Gaussian Mixture Model to represent the satellite uncertainty, it is concluded that adding
37 elements improves the accuracy, but for propagation times of 16 hours a Gaussian propagation would be
sufficient. The addition of extra elements is useful for larger propagation times, as studied in Chapter 8. This
is a fortunate conclusion, since longer lead times also allow for a larger computational load. Therefore, the
method can be used with a higher accuracy and still obtain the result in time to decide on the application of
a collision avoidance manoeuvre.

The collision probability estimated 16 hours before the time of closest approach is Pc = 9.4329 ·10−7. By
itself, this value does not seem like a big threat to raise concern, However, it must be considered that this
analysis has been done with TLE data, which have a low accuracy. From the analysis performed in Section 9.2
it is observed that for a scenario where the nominal trajectory leads to a crash, the TLE accuracy predicts
a collision probability of Pc = 1.2 · 10−6, 12 hours before TCA. The conclusion from this analysis was that
increasing the accuracy by one order of magnitude leads to a reduction in the estimated risk of 2-3 orders of
magnitude. This indicates that the real collision probability estimated with higher accuracy measurements
could be at least in the order of Pc ≈ 10−5. This estimate agrees with the estimates computed by Agapov et al.
(2009) with accurate tracking data. Therefore, it can be concluded that the DA-GMM method is capable of
accurately estimating the time of maximum risk of collision. The flexibility of the method allows to increase
the accuracy to obtain a risk estimate for long lead times. Moreover, although it cannot be validated with
real data, the verification of the method with Monte Carlo simulations and the simulations for the nominal
crash scenario suggest that the DA-GMM method would have predicted a significant risk of collision for the
Cosmos-2251/Iridium-33 encounter. With accurate tracking data, the method could have been subsequently
used with new measurements to refine the risk prediction and decide on a collision avoidance manoeuvre
with sufficient time.
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Table 9.11: Orbital characteristics of the satellites at 22:56 UTC, 2 hours before TCA.

Satellite ha (km) hp (km) i (◦) e (-) Ω(◦) Velocity (km/s)

Chang Zheng-4C 1203.4 969.7 100.36 0.0156 201.1 7.30

Cosmos-2004 1012.8 969.9 82.95 0.0029 8.12 7.35

9.4. Chang Zheng-4C/Cosmos-2004 close encounter
The encounter between the upper stage of the Chang Zheng-4C rocket (CZ-4C herein after) and the Cosmos-
2004 satellite offers an interesting case for study. In October 2020, the space monitoring company LeoLabs
warned the space companies and satellite operators of a potential collision between CZ-4C and Cosmos-
2004 (Corbett, 2020). Both objects were inactive and uncontrollable, which entailed that no mitigation action
was applicable. The combined mass of both objects was 2,800 kg, twice that of the Iridium-33/Cosmos-2251
encounter. Moreover, the relative velocity at TCA was estimated to be 14.65 km/s as the collision geometry
was head-on. These conjunction characteristics would result in fatal consequences in case of a collision.
Fortunately, despite the high risk detected the collision did not occur. This encounter provides excellent data
to replicate the event and estimate the collision probability. Although nowadays active debris removal is still
under development and no measure could have been taken to prevent this collision, increasing the lead time
will enable timely mitigation actions in the future.

9.4.1. Case summary
The CZ-4C and Cosmos-2004 objects have a slightly eccentric orbit with a perigee altitude of 969 km. This
altitude band presents a lower density of satellites and space debris and therefore a lower risk of collision.
However, an impact of such magnitude would create a large cloud of debris, altering this scenario. The orbital
characteristics of both objects on 15 October at 22:56 UTC (two hours before TCA) are provided in Table 9.11.
The data is obtained from the TLEs publicly available at SpaceTrack.

It should be noted that the CZ-4C upper stage orbit had a perigee-apogee altitude difference larger than
200 km, and the orbital eccentricity has continued to increase. The object is uncontrollable and at such a
high altitude aerodynamic re-entry cannot be expected in the next decades. Therefore, this object does not
comply with the IADC mitigation guidelines which state that satellites and bodies launched into LEO must
be cleared from the protected region within 25 years of end of mission (IADC, 2020).

The scenario evaluated by LeoLabs at 17:24:52 UTC predicted a close approach of 25 m with a collision
probability of Pc = 3.8·10−2. Leolabs has independent satellite tracking data measured from a network of four
radar sites, which offers an average orbit determination accuracy of 53 m (LeoLabs 2021). This tracking data
is private and therefore the same scenario cannot be replicated. The collision probability is calculated with
the accuracy provided by the TLE and the behaviour observed in Section 9.2 is used to relate this results with
the predictions from LeoLabs.

9.4.2. Simulation parameters
For this simulation, the TLE measured on 15 October at 20:03:30 UTC and 20:06:04 UTC for Cosmos-2004 and
CZ-4C respectively will be used. The reason for discarding the last TLE measured before the collision is that
with a lead time of less than two hours it cannot be assured that the collision risk will be calculated before
the last station passage before the closest approach. Therefore, this does not allow to make a timely decision
and the results would not be useful in an operational context. The initial state of the satellites used for this
simulation, obtained from the TLE and converted to include the effect of orbital perturbations as modelled
by the SGP4 model is presented in Table 9.12.

For this scenario, only one simulation will be performed, as the effect of changing the method parameters
has already been discussed. To this end, the settings are selected according to the results of the sensitivity
analysis and the collision scenarios simulated so far. Since only one simulation is being performed, compu-
tational time is not a leading factor and therefore it is chosen to use 51 GMEs. This leads to a simulation time
of less than one hour and produces highly accurate results. Although at this high altitude the effect of the
atmospheric acceleration is reduced, this perturbation is introduced in the model. The dimensions and mass
of both satellites are retrieved from available catalogue data (NASA, 2021a) and completed with the ballistic
coefficient information available from the TLEs. The combined object radius is nominally set to 16m, to ac-
count for the boom extending from Cosmos-2004. However, two other scenarios are studied considering that
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Table 9.12: Cartesian state of the satellites in the Earth Centred Inertial reference frame on 15 October 2020 at 20:03:30 UTC and 20:06:06
respectively.

Satellite x [km] y [km] z [km] ẋ [km/s] ẏ [km/s] ż [km/s]

Cosmos-2004 7312.25 1018.98 -14.55 -0.09857 0.89297 7.28887

CZ-4C -7042.13 -2664.88 13.59 -0.53034 1.18656 7.12962

Table 9.13: Method parameters for Cosmos-2251/Iridium-33 encounter. Uncertainty given in the RTN-frame.

Parameter Cosmos-2004 CZ-4C

Nº GME 51 51

Taylor expansion order 3 3

Reference Area [ m2] 13.8 2.2

Mass [kg] 825.0 1575.0

Radius [m] 2.5-10 10-20

CD [-] 2.2 2.2

[σR ,σT ,σN ] [m] [100,400,100] [100,400,100]

[σVR ,σVT ,σVN ] [m/s] [1 0.25 0.25] [1 0.25 0.25]

the elongated shape of the rocket body requires to account for different encounter geometries. The setting
used for the simulation of the Cosmos-2004/CZ-4C encounter are summarised in Table 9.13.

9.4.3. Results and discussion
The collision probability calculated five hours before the encounter is presented in Table 9.14 for four dif-
ferent encounter radius. The encounter radius has a large effect on the computed collision probability. In
this case, due to the cylindrical shape of the rocket and the boom extending out from the body of Cosmos-
2004, there are multiple encounter geometries that should be considered. The best case scenario assumes a
combined encounter radius of eight meters, which corresponds to adding the minimum dimensions of both
bodies. On the other hand, a combined radius of 30 meters is set for the worst-case scenario considering the
rocket height and the boom. Two intermediate values are selected to represent the nominal scenario.

Analysing first the magnitude of the collision probability, it is concluded that the risk is significant. Even
with the accuracy provided by the TLEs, the DA-GMM method detects a collision with a maximum probability
less than one second away from the time of closest approach. The results for different encounter geometries
confirm that that the encounter radius has a large impact on the perceived collision risk. Failing to prop-
erly identify this radius can lead to fatal consequences, and overestimating the radius can largely reduce the
confidence on the assessed risk. LeoLabs estimated a collision probability of 3.8 · 10−2 for this encounter,
which raised an alarm. The combined radius used by LeoLabs to compute this risk has not been published
and the input data for the satellite states is taken from radar measurements with an average of 53 m error
in accuracy. Therefore, the results from this study cannot be directly combined with the risk estimates from
LeoLabs. However, the encounter geometry is heads-on, very similar to the event studied in Section 9.2. Us-
ing the crash scenario as a baseline, it can be assumed that a reduction in the initial state uncertainty of one
order of magnitude will lead to a reduction in collision probability of two orders of magnitude. Following this
principle, the collision probability for this event with the initial state uncertainty from the measurements by
LeoLabs would be in the range Pc = [2 ·10−3 2 ·10−2] depending on the encounter radius. The risk estimated

Table 9.14: Collision probability for Cosmos-2004/CZ-4C encounter evaluated 5 hours before TCA.

Combined radius [m] Pc

8 1.9824 ·10−5

12 3.9101 ·10−5

16 7.9293 ·10−5

30 2.7873 ·10−4
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Figure 9.9: Distribution of space debris from Cosmos-1408 on November 30, 2021.

by LeoLabs is slightly larger than the estimated range. Considering the outcome of the encounter, this could
imply that the results from LeoLabs slightly overestimated the encounter risk.

9.5. ISS screening
The final scenario to study with the DA-GMM method is between the International Space Agency (ISS) and a
screening of selected space debris. On November 15, 2021 the inoperative intelligence satellite Cosmos-1408
was destructed in a Russian anti-satellite test (NASA, 2021a). This event produced over 1,500 pieces of debris
which after two days span up to altitudes of 800 km. The crew sheltered at at the Dragon and Soyuz MS-19
capsules due to the unknown risk that the debris posed. Fifteen days later, an extra-vehicular activity was
postponed due to "the lack of opportunity to properly assess the risk it could pose to the astronauts”(NASA,
2021b). This scenario offers a perfect opportunity to test the DA-GMM method to compute the collision
probability with the space debris resulting from this event.

First, all the available space debris tracking data resulting from this event as published by December 13,
2021, will be screened to find potential objects that could intersect the ISS orbit. To do so, all the objects
that have a perigee and apogee altitude both lower or higher than hI SS ±20 km are discarded. The remaining
objects are propagated using the perturbed dynamical model and their closest approach with the ISS are
calculated. All objects that violate the "pizza-box" safety distance of 25 km from the ISS are selected for
further study. This process is summarised in Subsection 9.5.1. For these scenarios, the collision probability
with the ISS is calculated considering a the body as a single sphere. For the scenario with the largest collision
probability, a refinement of the risk calculation is performed using the multi-sphere model of the ISS with the
aim to obtain a more accurate estimate.

9.5.1. Case summary
On December 2, 2021, the tracking data of 300 pieces of debris resulting from the anti-missile satellite test
destroying Cosmos-1408 were published as TLEs by Space-Track1. From these objects, 179 were located at
orbits passing comprising altitudes within 20 km of the ISS orbit.These objects are selected for further study.
Figure 9.9 presents the Gabbard diagram of the destruction event. The collision occurred at an altitude 50
km higher than the ISS orbit. As observed, this causes the debris cloud to scatter along altitude bands that
comprise the station, leading to potential threats. It is observed that most pieces of debris have perigee alti-
tudes within the danger zone. From the all the debris studied, only 15 pieces have perigee and apogee altitude
below the danger zone. This entails that most of the debris is at altitudes that will continue to pose a threat.
Moreover, as the debris in lower altitudes start to decay, the pieces that have been ejected into higher altitudes
will begin to pose a threat to the ISS. Therefore, this collision event will continue to pose a hazard to the ISS
and it is crucial to properly assess the risk of collision accurately and timely. For the 179 pieces of debris that
have been found to pose a potential threat to the ISS, the following process is followed. First, the nominal
trajectory of all the objects is propagated using the full dynamical model from the successive TLEs. With the

1https://www.space-track.org. NORAD IDs 49516 - 49721, 49781 - 49807 and 49820 - 49999. Some of the objects in this range had
already decayed by the time of TLE publication.

https://www.space-track.org/auth/login
https://www.space-track.org
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Figure 9.10: Orbit of the ISS (red) and Cosmos-1408 debris (grey) when close approach of <25 km are detected. Position of debris at TCA
presented in blue.

Table 9.15: NORAD ID and characteristics of close encounters with the ISS. Shaded cells represent encounters that pose a significant risk
to the ISS.

NORAD ID ∆r [km] Time of closest approach Pc

49597 24.84 December 3, 2021 01:21:44 UTC ∼ 0 (10−318)

49633 13.48 December 2, 2021 21:30:13 UTC ∼ 0 (10−74)

49633 6.11 December 11, 2021 17:44:20 UTC 1.1115 ·10−4

49654 23.62 December 6, 2021 02:57:08 UTC ∼ 0 (10−236)

49669 15.61 December 5, 2021 01:24:16 UTC ∼ 0 (10−40)

49683 20.53 November 30, 2021 20:40:47 UTC ∼ 0 (10−106)

49835 9.05 December 8, 2021 02:12:17 UTC ∼ 0 (10−35)

49865 9.23 December 7, 2021 23:06:17 UTC ∼ 0 (10−21)

49843 13.35 December 9, 2021 20:48:05 UTC ∼ 0 (10−95)

49859 7.47 December 12, 2021 12:19:08 UTC ∼ 0 (10−55)

resulting trajectories, the closest approaches between each debris and the ISS are calculated. All the objects
that enter within a 25 km distance of the ISS are selected for further study. These objects are then propagated
to TCA using the DA-GMM method and the collision probability is calculated assuming a that the encounter
geometry is a sphere surrounding the ISS.

For the settings of the DA-GMM software, it is chosen to use a single Gaussian Mixture Element (i.e., a
Gaussian uncertainty propagation). As concluded from previous analysis, for short integration times the col-
lision probability can be estimated with an accuracy within 1% with a single GME, which allows to properly
estimate the order of magnitude of the collision risk. Since this analysis requires to analyse multiple sce-
narios, it is decided to perform a Gaussian propagation with Taylor expansion order three. The initial state
uncertainty is set accordingly to the accuracy of the TLEs as σR,N = 100 m, σT = 400 m, σVT ,VN = 0.25 m/s,
and σVR = 1 m/s. The remaining input parameters are obtained from the TLE.

9.5.2. Collision probability: single sphere
The screening of objects with the data published by December 13, 2021, led to the detection of ten potential
close approaches with miss distances lower than 25 km. The geometry of the encounter is illustrated in Fig-
ure 9.10. Four close approaches were located over the northern hemisphere crossing of the orbital planes and
six over the southern hemisphere. The characteristics for these approaches are summarised in Table 9.15, or-
dered by catalogue number. From the identified approaches, only four are below the 10 km miss distance
threshold. Although these present the highest potential, the encounter geometry plays an important role in
the resultant collision probability, and all the scenarios are analysed.

Table 9.15 also includes the collision probability calculated for these close encounters. For Pc < 10−10

only the order of magnitude is presented. Inspecting the results, it is first observed that although there is
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Table 9.16: Collision probability for the close approach of SAT #49633 on December 11, 2021, at 17:44:20 UTC.

Geometry Encounter period (s) Pc

Single-sphere 1.9 1.1115 ·10−4

Multi-sphere, full body 1.3 1.4902 ·10−5

Multi-sphere, no solar panels 1.2 1.8184 ·10−6

a correlation between the miss distance and the collision probability, the collision risk cannot be evaluated
from the miss distance. For example, object #49859 has a miss distance of 7.47 km and a collision probability
much lower than objects #49835 and #49865 with greater miss distances. Second, it can be concluded that
in nine out of the ten approaches the collision risk is negligible and there is no need for warning. However,
object #49633, which threatens the ISS twice in the span of ten days, poses a very significant risk. A collision
probability of 1.11 ·10−4 is calculated which, according to the ISS operation guidelines requires to perform a
collision avoidance manoeuvre (CAM) unless the burn itself will place the crew at greater risk. However, no
CAM or collision risk was notified on this date. A possible explanation is that using more accurate tracking
data leads to a smaller collision probability that assures a safe encounter.

This single collision event has caused one encounter with a significant risk of collision in the span of
two weeks. In light of the rapidly rising amount of objects that populate LEo, this scenario is expected to
repeat with increasing frequency. The debris of Cosmos-1408 will continue to be a threat to the ISS in the
following years. Moreover, the deployment of satellite constellations, such as StarLink, increases the risk of
a cascading effect. The result from this screening confirms the importance of accurate and fast collision
detection techniques, that allow to assess the risk of multiple debris simultaneously.

9.5.3. Collision probability: multi-sphere
The results of the screening of potential encounters between the ISS and the debris of Cosmos-1408, object
#49633 is identified as a potential threat. With a collision probability of Pc = 1.11 · 10−4, a collision avoid-
ance manoeuvre should be performed. However, this collision probability is obtained considering an over-
dimensioned ISS, leading to an over-estimate of the risk. Nominally, this would be considered as an addi-
tional safety factor that improves the safety of life and operations at the ISS. However, as the recent events
have proven, this is not the case. Overestimating the risk can be harmful in some scenarios, where the real
collision probability is required. Imagine a scenario in which multiple debris pose a simultaneous threat to
the ISS, but the collision probability has been calculated with the spherical body assumption. In this case,
the real risk from each debris is unknown, which complicates the task of deciding on a collision avoidance
manoeuvre. In other scenarios, the collision avoidance manoeuvre might pose a higher risk than the colli-
sion itself. This is the case of manoeuvring during a docking operation. In these cases, it is crucial to know
the real probability of collision to compare it to the risk of alternatives. With this objective, the multi-sphere
collision probability model was designed to eliminate the assumption of a spherical shape for the ISS. To test
this model, the threatening scenario presented by object #49633 is assessed and its collision probability is
compared to the result obtained with the single-sphere model.

For this simulation, the model settings from the single-sphere simulation are kept except for the hard-
body shape. For this, the ISS is modelled as a set of spheres, from which quadrature points are extracted
and the boundaries are obtained as explained in Section 6.3. The body of the vehicle is formed by 20,000
spheres and the solar panels by 5,000 spheres each. To achieve a sufficient accuracy, 590 quadrature points are
selected on each sphere. Since only one configuration for the solar panels is studied, the collision probability
considering only the body of the ISS is also calculated. This provides a lower bound for the collision risk in
the case where the arrays are aligned with the principal axis of the position uncertainty distribution.

Table 9.16 summarises the collision probability for this event detected assuming that the ISS is bounded
by a sphere and considering the full body and the satellite without solar arrays respectively. Considering the
real shape of the ISS results in a decrease of the collision risk of one order of magnitude. This risk reduces
another order of magnitude by removing the effect of the solar panels. Therefore, it can be concluded that the
collision probability of this encounter with the ISS lies in the range [10−5 10−6]. With a collision probability
< 10−5 it is not required to perform any collision avoidance manoeuvre. Therefore, although the initial results
indicated that the debris posed a significant risk that required action, a more detailed analysis of the event
proves that no action is required.

Figure 9.11 presents the evolution of the rate of change of collision probability with time. It is observed
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Figure 9.11: Collision probability rate for the close approach of SAT #49633 on December 11, 2021 at 17:44:20 UTC with the single-sphere
and multi-sphere model.

that the multi-sphere model predicts a shorter collision which is displaced forward in time. This suggests that
one second before time of closest approach, the risk was detected in the edge of the sphere, away from the
ISS. For this reason, when considering a more complete model the collision probability is almost zero at this
time. Since a difference of one second represents a change of approximately 7 km in the position of the ISS,
the multi-sphere model allows to predict the encounter geometry and plan a mitigation strategy.

With these results, it is proven that assuming a spherical volume as the body of the ISS has a large impact
on the estimated collision probability. This model allows a higher accuracy without a significant increase in
in computational time and can be used for operational collision avoidance. A second advantage of the multi-
sphere model is that the collision probability rate is calculated for every node on the surface of the satellite
and then it is added up. Therefore, it is possible to obtain the results of the collision probability rate detected
at each node. This allows to evaluate the relative risk within the spacecraft, identifying the regions with a
higher change of impact and therefore the best option for a collision avoidance manoeuvre. An example
of this effect is illustrated in Figure 9.12. Although the numbers found are difficult to interpret, since they
represent the collision probability rate on every node, which needs to be added up and integrated over time
to compute the total collision probability, the relative orders of magnitude are interesting to inspect. In this
case, the maximum probability rate observed is in the order of 10−12, represented by yellow colours, and the
lower threshold for collision probability rate is set to five orders of magnitude lower. By analysing the views
of the ISS with this colour code, it is observed that the back view presents a larger collision probability, in
particular the central area. By observing the side view, the difference in collision probability between the
front and the back can be clearly observed. The largest rate on the central nodes is due to the largest size of
these spheres. Therefore, some sort of normalisation with the sphere radius would be required to visualise
the collision risk without this dependence on size. In any case, this method allows to compute the areas of
larger risk taking into account the full non-Gaussian state uncertainty of the target and chaser, and not only
the nominal trajectory of the objects.

9.6. Results summary
In this chapter, five types of scenarios have been simulated to validate the collision probability calculation
and study the risk of current events. This has allowed to draw several conclusion regarding the behaviour of
the method for different initial state uncertainties and lead time. A summary of the findings obtained from
the simulations performed for real and test cases with the DA-GMM method of collision probability follows:

• For short term encounters and 48 hours of lead time, the method achieves an error of 0.04%, provid-
ing better accuracy than all the methods tested by Alfano (2009), which correspond to the methods
included in the collision probability calculation software by NASA and ESA.

• For methods with very low relative velocity and long-term encounters, the method achieves an accu-
racy of 4.4% compared to the ≈ 25% error obtained as the best estimate from conventional methods.

• The method does not have any limitations in terms of encounter geometry.
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Figure 9.12: Collision probability rate between the ISS and SAT #49633 on each quadrature point evaluated at TCA.

• From the nominal crash scenario analysis, it is concluded that a reduction in initial state uncertainty of
one order of magnitude yields to a reduction in collision probability of two orders of magnitude, due to
uncertainty dilution.

• For the same scenario, an increase in lead time yields decrease in collision probability and increase in
encounter time span, due to uncertainty dilution.

• It is crucial to include perturbations in the acceleration model to accurately calculate the collision risk
and encounter time.

• The time of the Cosmos-2251/Iridium-33 is accurately predicted, although the collision probability is
low. A more accurate initial state measurement is required to improve the risk estimate.

• For the Chang zheng-4C/Cosmos-2004 close encounter, the time of closest approach is correctly esti-
mated. The collision risk, extrapolated to the initial state uncertainty of 50 meters, is slightly lower than
the predictions by LeoLabs.

• From the screening of debris resulting from destruction of Cosmos-1408 over a period of 15 days, ten
close encounters with the ISS are identified. From these, only one has a significant collision risk.

• Assuming a spherical encounter geometry, the collision probability calculated is above the allowed risk
and a CAM should have been performed.

• Applying the multi-sphere model, the collision probability decreases by one order of magnitude when
the full body is considered and by two orders of magnitude when the solar panels are neglected.

• For this scenario, the highest risk of collision is detected on the rear side of the ISS.
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Conclusions & recommendations

This final chapter outlines the conclusions and recommendations from the work performed in this thesis.
In Section 10.1, the main findings from this study are summarised and the research questions posed in Sec-
tion 1.3 are answered. Moreover, this section reflects about the contributions of the DA-GMM method of
collision probability calculation to the scientific community and the limitations of this work. In Section 10.2,
the recommendations for future work expanding or relating to the method developed here are provided.

10.1. Conclusions
This research has developed a new method to compute the collision probability between space objects that
can be applied to any encounter geometry and can be extended to include the three-dimensional shape of the
satellites. The main finding from this process is that it is possible to reduce the computational time required
to perform high accuracy propagation of uncertainty by using the hybrid Differential Algebra and Gaussian
Mixture model (DA-GMM) method. This allows to avoid the traditional assumptions on linearisation of the
dynamics and normality of the state distribution. Moreover, this method can be easily combined with the
direct approach for collision probability calculation, which does not apply any assumptions on the satellites
position or velocity and therefore can be used for all types of encounter scenarios. By expanding the surface
integral with the Lebedev quadrature to a multi-sphere model, the collision probability can be computed
considering any shape, which improves the accuracy of the prediction.

Regarding the uncertainty propagation part, a key finding is that the accuracy can be customised by mod-
ifying the expansion order and number of Gaussian Mixture Elements, for a given lead time. An increase in
lead time will require a higher number of Gaussian Mixture Elements and potentially higher expansion or-
der, which increase the computational load. However, for a higher lead time, the available time to compute
this probability also increases. With the DA-GMM method, a lead time of three days is achieved with very
high accuracy, and a greater lead time can be achieved but with accuracy below the specified threshold of
L2 = 0.6. The L2 is the variable used through this work to measure the error in the uncertainty distribution, as
it represents the integral of the squared difference between two probability density functions.

Regarding the collision probability calculation process, it has been verified to accurately predict the time
of the encounter and the collision probability with a high accuracy, improving in some scenarios the results
form traditional methods. The time required to compute the collision probability between two objects ranges
between a few seconds to approximately an hour depending on the accuracy desired, the encounter time and
the number of time-steps considered. Some key findings from the test cases studied are the need to include
perturbations in the dynamical model and the important effect of the initial state uncertainty on the detected
collision risk. By applying the collision method to the real-life scenarios of the Cosmos-2251/Iridium-33
collision and Chang Zheng-4C/Cosmos-2004 close encounter, it was validated that the time of maximum
probability lied within 0.2 seconds from the time of closest approach. Moreover, by computing the collision
probability rate as a function of time, the collision risk can be evaluated at different moments of the encounter
and the encounter period is also known. Although the test cases simulated match the observed behaviour, it
would have been interesting to perform the simulations with more accurate tracking data to avoid the effect
of uncertainty dilution.

Finally, the screening of close encounters from the debris of the Cosmos-1408 satellite resulting from the
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Russian anti-satellite missile test (ASAT), provide relevant findings. First, it is concluded that this event will
continue to pose a risk to the crew inhabiting the ISS. In the time-span of two weeks of data analysed, ten close
encounters were identified that violate the bounding box defined by NASA to consider a high risk encounter.
From these ten encounters, one of them was found to have a collision probability above the threshold that
requires to perform a collision avoidance manoeuvre. Since no manoeuvre was performed, it is assumed that
the collision probability with more accurate tracking data was below the threshold. For this case, the collision
probability was calculated considering the three-dimensional shape of the ISS, leading to a reduction in one
to two orders of magnitude on the collision risk depending on the inclusion of the solar panels. With this
decrease, a collision avoidance manoeuvre was no longer needed. This test confirms the utility of the multi-
sphere model for collision probability, especially in the current times of increasing space debris population.

This thesis aimed to answer two research questions and corresponding sub-questions. The second sub-
section was posed when the objective was to use the method of equivalent cross-section area (MECSA) to
compute the collision probability for an arbitrary shape in two dimensions. This method was proposed by
Chan (2008) and is developed for the short-term scenarios that consider a planar encounter geometry. In-
stead of using this method, a new method was developed in this work, which allows to compute the collision
probability for an arbitrary shape and for any type of encounter. Therefore, research question Q2 will be an-
swered for the multi-sphere method instead of the MECSA. The research questions have been answered as
follows:

Q1. How can the hybrid DA-GMM method reduce the time to compute collision probability in LEO satisfying
the operational requirements?

Q1.1. What is the error derived from propagating the trajectory using Taylor expansion integration in
the DA framework?
Depending on the Taylor expansion order, number of Gaussian Mixture elements and propaga-
tion time, the error ranges between L2 = 10−5 and L2 ≈ 5. The threshold for admissible error to
achieve the desired accuracy is set to L2 = 0.6.

Q1.2. What environment and acceleration models can be included to meet the operational require-
ments?
It is required to include the Earth gravitational acceleration with spherical harmonics up to de-
gree and order six, the third-body, central gravitational acceleration from the Moon and the Sun
and the aerodynamic acceleration.

Q1.3. What is the maximum lead time that can be achieved within the operational requirements?
The maximum lead time achieved is three days.

Q1.4. How does the accuracy of the DA-GMM method relate to alternative collision detection algo-
rithms?
For long-term, low-velocity encounters, the method has proved to improve the accuracy in com-
puting collision probability. For the cases studied, the error in collision probability calculation
is reduced by 70% and 82%, respectively, with respect to the best result by alternative methods.

Q1.4. Is the method able to predict the Iridium-33/Cosmos-2251 collision and the encounter time?
Yes, the method detects the maximum collision probability within 0.2 seconds from the real
encounter time and computes a collision probability of ≈ 10−6, 16 hours before the encounter
and based on TE measurements. It is expected that data from closer to the encounter event and
with higher tracking accuracy would have predicted a higher collision risk.

The second research question was regarding the method of cross sectional area to compute the collision
probability accounting for the satellite shape. In this case, instead of applying this method, which is used
for short-term encounters that assume a two-dimensional encounter geometry and therefore only consider
a cross section of the satellite, the multi-sphere method has been developed. Therefore, these research ques-
tions will be answered for the multi-sphere method instead.

Q2. How can the MECSA be applied to reduce the over-estimation of collision probability for the ISS?

Q2.1. What is the error derived from considering a constant attitude and only one cross section of the
vehicle?
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In the multi-sphere method, this does not apply anymore. The full shape of the satellite is con-
sidered instead of a single cross section. The attitude of the satellite is considered to stay con-
stant for this application, but this is not a limitation of the multi-sphere method developed. By
applying frame transformations to the radial, transverse, normal (RTN) frame from the body
frame, the attitude of the satellite at any time can be included in the model.

Q2.2. Is the MECSA able to discard potential collisions identified by the verified interval orbit propaga-
tion that did not occur?
Yes, for the collision detected between the ISS and the piece of debris from Cosmos-1408, ap-
plying the multi-sphere method reduces the risk in one to two orders of magnitude (depending
on the inclusion of the solar panels), and therefore allows to discard the need for a collision
avoidance manoeuvre.

Q2.3. Can this method be used to determine the best collision avoidance strategy?
Yes, this method provides the collision risk for each segment of the ISS and therefore allows to
establish the best direction for an avoidance manoeuvre. Moreover, this process can be used,
when a combination of debris are threatening the ISS.

The research questions have been successfully answered and the DA-GMM method of collision probabil-
ity in combination with the multi-sphere model has proven to fill the research gap in computing the collision
risk for low-velocity encounters in a timely manner and considering the real shape of the object. This soft-
ware can be used independently with public tracking data and has the potential to be embedded in a system
that takes sensor measurements in addition with tracking data.

Finally, it is important to restate the limitations of the DA-GMM method for collision probability. First,
the minimum altitude that can be propagated is set to 400 km, since the method fails at lower altitudes due
to the accumulation of error from the atmospheric perturbation. Moreover, the method cannot be applied in
cases where the uncertainty (standard deviation) is in the same order of magnitude as the hard-body radius
of the encounter. This is due to the numerical approximation from Lebedev’s quadrature. Although this is
not usually the case, it must still be taken into consideration. Moreover, by using the multi-sphere model, the
geometry can be divided into smaller spheres if this was the case. Finally, it is difficult to include more degrees
of spherical harmonics due to the exponential increase in computational load that it entails. Therefore, if the
method was used to compute collision scenarios around another body (e.g., the Moon), that required more
spherical harmonics, alternative solutions would be needed.

10.2. Recommendations
This section reflects on extensions of the method that could be developed in future work and elements of
the research that could be more profoundly studied and have not been included due to time limitations. The
following recommendations are made:

• The uncertainty in the atmospheric density and ballistic coefficient has been coded in the method, but
has not been tested due to time constraints. It would be interesting to test the effect of adding this
uncertainty and to check how it affects the results as a function of altitude.

• The weight of each Gaussian Mixture Element has been kept constant after the propagation of uncer-
tainty. However, it is possible to update the weights by solving an additional optimisation problem.
Although from the literature study it was concluded hat the error from keeping the weight constant is
negligible, it would be interesting to study the effect in accuracy and computational time of updating
the weights.

• The acceleration perturbations included are limited by the computational load of the propagation. Al-
though the difference with respect to the full model has been found to be negligible, to obtain a more
accurate propagation of uncertainty it is possible to include an extra variable representing the uncer-
tainty in the dynamical model.

• The initial state uncertainty and propagation time have been found to have a large effect on the com-
puted collision risk, due to the so-called uncertainty dilution. It would be interesting to find a method
to quantify this effect and take these variables into account in the interpretation of the collision proba-
bility calculated.
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• The multi-sphere method for collision probability has been developed assuming that the attitude of
the satellite coincides with the RTN-frame. This simplification can be avoided by including the frame
transformation from the body reference frame to the RTN-reference frame in the collision probability
calculation.

• For the case of the ISS, the solar panels do not have a constant orientation. Instead, they rotate to align
with the Sun vector. This can be added as a variable to model the shape of the ISS in the multi-sphere
model and obtain an accurate collision probability calculation. This can be applied to any satellite, if
the attitude is known.

• This collision probability calculation can be embedded in a system that incorporates sensors and a
flight computer to perform these calculation autonomously on-flight.

• With the collision probability rate estimated on each node along the surface, it is possible to compute
the direction for a collision avoidance manoeuvre in the scenario that multiple debris are threatening
the vehicle simultaneously.
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A
Numerical methods

This chapter introduces the numerical methods that are required for the development of the DA-GMM method
and can be found in generic engineering applications. Section A.1 explains the procedure for finding the roots
of a function, required to solve the optimisation process and convert from Cartesian components to Kepler
elements. In Section A.2, the interpolation methods used to compute the trajectory of the satellites between
the numerically integrated points, are explained. Section A.3 details the numerical integration methods and
their settings and Section A.4 treats the statistical sampling and solving techniques used in this work.

A.1. Root-finding methods
A root finding method is an algorithm for calculating the values x for which a function f (x) = 0, also called
the roots or zeroes. This functionality is commonly used in any engineering problem. In this case it is required
to calculate the optimisation problem for a general GMM splitting, for the GMM splitting of a uniform distri-
bution and to solve the eccentric anomaly to calculate the position of the satellite in the orbit. To be able to
cover a range of root-finding problems, the three most general methods which are implemented in MatLab,
Python are introduced in this section through a pseudo-code demonstrating how to implement them and
showing their logic.

A.1.1. Bisection method
The bisection method is one of the simplest root finding algorithms and one of the most widely used. The
method is very simple but in turn it can be very slow to reach the converged solution. As a result, this method
will be used to obtain an initial approximation of the root and use it as the initial value for other root-finding
schemes. The method is applied to continuous functions, generally in one dimension although it can be

Algorithm 1 Bisection method

Input: Function f , initial values a,b, tolerance ε, maximum iterations nmax

Output: Root = approximate root with tolerance less than ε

1: procedure CODE

2: n = 1
3: while n ≤ nmax do
4: c = (a +b)/2
5: if f (c) = 0 or (b −a)/2 < ε then
6: r oot = c
7: end
8: if sign( f (c) = sign( f (a)) then
9: a = c

10: else
11: b = c
12: n = n +1
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Algorithm 2 Newton-Raphson method

Input: Function f , function derivative f ′, initial value x0, tolerance ε, maximum iterations nmax

Output: Root = approximate root with tolerance less than ε

1: procedure CODE

2: n = 1
3: while n ≤ nmax do
4: y = f (x0)
5: y ′ = f ′(x0)
6: x1 = x0 − y

y ′
7: if |x1 −x0| < ε then
8: r oot = x1

9: end
10: x0 = x1

11: n = n +1

expanded to multiple dimensions with a considerable increase in complexity. In this case, only the one-
dimensional case is considered.

This algorithm is based on the intermediate value theorem, which states that if a continuous function is
evaluated a two points a,b that take opposite values, there exists a root in the interval [a,b]. The bisection
method starts with two points with different function evaluation signs and calculates the midpoint c = a+b

2
and the function evaluation f (c). If f (c) is zero then the root is already found. Otherwise, wither f (a) or f (b)
has opposite sign to f (c). The sub-interval which contains a root crossing (different sign function evaluation)
is selected and the process is repeated. In each step, the width of the interval is reduced to half. The process
is repeated until the width of the interval is smaller than the tolerance specified. Algorithm 1 presents a
pseudo-code of the bisection method.

The main benefit of this algorithm is that only the function has to be evaluated, and there is no need to
compute any function derivatives. Therefore this algorithm will be used in cases where a one-dimensional
solution is required and where the required tolerance allows to obtain the solution without a high number of
iterations. More complex algorithms are introduced for the cases where these conditions don’t apply.

A.1.2. Newton-Raphson method
The Newton-Raphson method was derived in the 17th century to solve root-finding problems of continuous
differentiable variables. This technique is powerful since the convergence speed is quadratic. This method
will be used to solve the optimisation problem that allows to calculate the standard deviation of each GME
required to split a uniform distribution into a GMM.

Starting with an initial guess (which for the method to converge fast it should be close to the root), the
function at this point is approximated by its tangent and the x−intercept is calculated. This value will be
a closest approximation to the root and will be used as the initial point for the next iteration. Algorithm 2
introduces the pseudo-code for this method.

The main drawback of this method is that it requires to calculate the function derivative f ′(x) analytically.
In some cases this calculation might not be available or might be computationally prohibitive to calculate in
a recursive way. The secant method presents a solution to this problem. A second drawback of this method is
that it can fail to converge due to the initial point selected, to overshoot or to encountering a stationary point.
The initial point problem can be overcome by using a simpler method (e.g. bisection method) to calculate a
first estimate of the root. The overshoot issue is consists in the divergence of first derivative for a given point.
Finally, if a stationary point is encountered ( f ′(x) = 0), the tangent line estimate encounters a division by zero
and the method fails.

A.1.3. Secant method
When the derivative of the function f (x) cannot be easily calculated, an approximation can be used in the
root-finding algorithm. This applies to the optimisation problem required to update the weights of a GMM.
In this case, the objective function is already difficult to solve and requires numerical integration. Calculating
the derivative is not a feasible option, and the secant method will be used if required to solve this problem.
This method approximates the derivative to a straight line between two points of the function. Compared
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to the Newton-Raphson method, the secant method takes more iterations (order of convergence is ≈ 1.618
instead of 2). However, the overall cost of the method can be smaller than for Newton-Raphson’s method
depending on the cost of evaluating the derivative. In the secant method, the function derivative at point x1

is evaluated using the finite difference approximation:

f ′(x1) ≈ f (x1)− f (x0)

x1 −x0
(A.1)

and therefore, the calculation of the root x2 starting from the initial values x0 and x1 is calculated following:

x2 = x1 − f (x1)
x1 −x0

f (x1)− f (x0)
(A.2)

and similarly to the Newton-Raphson algorithm, the process is iterated until |xn −xn−1| < ε.

A.2. Interpolation methods
Interpolation is required to calculate the values of a function at an arbitrary point x when only a set of discrete
data points of the function is known. This often happens in trajectory propagation problems, since many of
the parameters defining the environmental model of the propagation are tabulated values. Moreover, when
solving a problem by numerical integration, the solution is only calculated at a set of points determined by
the integration step and interpolation will be required if the function evaluation is required at other values.

In the problem under study, the environmental model includes a set of parameters which are tabulated,
such as the ephemeris of third bodies (Moon and Sun), the time variation of the gravity field coefficients and
the parameters defining the atmosphere model. In aerodynamic software, the interpolator used for each of
these variables can be customised. In the case of Tudat, a sixth order Lagrange interpolator is selected by
default for the ephemeris and spherical harmonics. For the atmospheric models a linear interpolator is used
by default. Based on the current information on the problem, these default interpolation methods will be
kept.

For the result of numerical integration, interpolation is required. Two situations can be recognised. First,
interpolation of the target and chaser trajectories to find the TCA. Second, to integrate the collision prob-
ability over a period of time, for which the numerical integration step size might be insufficient and more
data points can be required. In his case, cubic splines are recommended as the interpolation method. Two
types of cubic spline are commonly used: standard and Hermite cubic splines. Bergsma (2015) argues that
standard splines are more suitable to integrate the results of numerical integration, since the method pro-
duces more accurate results when the original data is smooth. However, the method can encounter under-
and over-shooting issues which reduce the accuracy. Both methods will be considered for the interpolation
of the numerical integration results and the most accurate will be selected after testing. In this section, the
interpolation methods that will be used in the problem are introduced following the description by Klees and
Dwight (2020).

A.2.1. Linear interpolation
Linear interpolation is the simplest method to obtain the values of a function f which is only known at dis-
crete points. The method is based in fitting the points using linear polynomials, in a way that the linear in-
terpolant becomes a set of straight lines joining the known points. This approach is very limited but it can be
useful for cases where the function to approximate is quasi linear or when a large number of points is known
in a way that the linear approximation between points is acceptable. To solve for a point y = f (x) which is
located in the interval bounded by two known values y0 = f (x0) and y1 = f (x1), the following expression is
applied:

y = y0 + (x −x0)
y1 − y0

x1 −x0
(A.3)

By default, Tudat uses this method to interpolate the values of the atmospheric density obtained from the tab-
ulated results of the NRLMSISE-00 model. Since Tudat has been thoroughly tested and verified, it is assumed
that this method will be valid for this application and will be kept as the method of choice.

A.2.2. Standard cubic spline interpolation
A cubic spline interpolation is the most widely used algorithm for function interpolation. The underlying
idea is similar to the linear interpolation: to connect the known points with a polynomial. In this case, a poly-
nomial of order three is used which allows to better approximate the function since it solves one of the main
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limitations of the linear method, that the derivative is usually discontinuous. Using third order polynomials
allows to match the first and second order derivatives of the splines connecting at a point in addition to the
values. This method is chosen to interpolate the trajectory of the satellites to obtain the closest approach.

Let’s define a problem where a total of p + 1 points (nodes) are known. This allows to fit a total of p
polynomials Pi , which should satisfy the conditions Pi (x) = Pi+1(x), P ′

i (x) = P ′
i+1(x) and P ′′

i (x) = P ′′
i+1(x) for

i 6= p. The general form of a general cubic polynomial Pi and its first and second derivatives is:

Pi (x) = ai (x −xi )3 +bi (x −xi )2 + ci (x −xi )+di (A.4)

P ′
i (x) = 3ai (x −xi )2 +2bi (x −xi )+ ci (A.5)

P ′′
i (x) = 6ai (x −xi )+2bi (A.6)

From this relation, when the function is evaluated at each node xi , Pi (xi ) = di = f (xi ), where f (xi ) is the
known value of the node. From the relation P ′′

i (xi ) = P ′′
i+1(xi ) and P ′′

i (xi ) = 2bi = Mi /2 where Mi is the yet
unknown value of the second derivative at node i , the coefficient ai is:

ai = Mi+1 −Mi

6(xi+1 −xi )
= Mi+1 −Mi

6hi
(A.7)

where hi = xi+1−xi . Inserting these expressions for ai ,bi and di the expression for Pi+1(xi+1), the expression
for ci is obtained as:

ci = fi+1 − fi

hi
− hi

3
Mi − hi

6
Mi+1 (A.8)

And Equation (A.4) becomes:

Pi (x) = Mi+1 −Mi

6hi
(x −xi )3 + Mi

2
(x −xi )2 +

(
fi+1 − fi

hi
− hi

3
Mi − hi

6
Mi+1

)
(x −xi )+ fi (A.9)

The remaining task is to compute the values of the second derivative at each node Mi . From the first deriva-
tive condition P ′

i (xi ) = P ′
i+1(xi ), the following system of p −1 equations and p +1 unknowns is defined:

hi−1

6
Mi−1 + (hi−1 +hi )

3
Mi + hi

6
Mi+1 = fi+1 − fi

hi
− fi − fi−1

hi−1
(A.10)

To find a unique solution, two constraints should be imposed. Several approaches can be defined, such as
the natural cubic spline which sets the second derivatives at endpoints to zero.

A.2.3. Hermite cubic spline interpolation
Although cubic spline interpolation is one of the most widely used methods, it presents an issue when the
derivatives of the function at the known points present fast changes. This results in under- and over-shooting
which impacts the accuracy of the interpolation. Hermite interpolation highly reduces this problem (Rabbath
and Corriveau, 2019). In this case, instead of imposing the condition of equal first and second derivatives at
the connecting splines, the first derivative is at the data points is known and the first order derivative of
the splines are matched to this value. Higher order Hermite interpolation matches higher order derivatives
to its value at the data points. This approach allows to preserve two important characteristics of the data
point. First, the spline is monotonic in intervals where the data points are monotonic (strictly increasing or
decreasing). Second, the minimums and maximums of the spline match the minimums and maximums of
the data points. For cubic spline polynomials, Pi , four conditions should be satisfied at each point:

Pi (xi ) = Pi+1(xi ) = f (xi ) = fi P ′
i (xi ) = P ′

i+1(xi ) = f ′(xi ) = f ′
i (A.11)

The interpolation polynomial between node i and node i + 1 can be written with Hermite basis functions
h00,h10,h01,h11 in the form: Pi (x) = h00(x) fi +h10(x) f ′

i +h01(x) fi+1 +h11(x) f ′
i+1. For an arbitrary interval

interpolating x between the nodes xi and xi+1, this expression is:

Pi (x) = fi

(
1+2

x −xi

xi+1 −xi

)(
x −xi+1

xi −xi+1

)2

+ f ′
i

(
x −xi

xi+1 −xi

)(
x −xi+1

xi −xi+1

)2

+ fi+1

(
1+2

x −xi+1

xi −xi+1

)(
x −xi

xi+1 −xi

)2

+ f ′
i+1

(
x −xi+1

xi+1 −xi

)(
x −xi

xi+1 −xi

)2
(A.12)
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Which can be represented in the form of Equation (A.4), with coefficients:

ai = 2 fi− fi+1

h3
i

+ f ′
i + f ′

i+1

h2
i

bi = 3 fi+1− fi

h2
i

−2
f ′

i + f ′
i+1

hi

ci = f ′
i

di = fi

(A.13)

where again hi = xi+1 −xi .
The main drawback of this interpolation method is that it requires the knowledge of the function deriva-

tives at all the data points. This information is not always available. In the case of interpolating the trajectory
obtained from numerical integration, the derivative is known at any time. Therefore, this method can be eas-
ily applied and is the best option to reduce under- and over- shooting the results. This method is selected to
interpolate the trajectories, both to obtain an integrated value of the collision probability and to find the TCA.

A.2.4. Lagrange interpolation
The use of Lagrange polynomials allow to create an interpolator by a polynomial of order k. In Tudat, by de-
fault interpolation of order six is applied to the tabulated data from the ephemeris and spherical harmonics.
This interpolation method will be kept for these applications. For the complete proof and derivation of this
method, see the work by Gautschi (2011).The basis of this method is the Lagrange polynomial:

`i (x) =
k∏

j=0
j 6=i

x −x j

xi −x j
= (x −x0)

(xi −x0)
· · · (x −xi−1)

(xi −xi−1)

(x −xi+1)

(xi −xi+1)
· · · (x −xk )

(xi −xk )
, i = 0,1, . . . ,k (A.14)

This function evaluation results in `i (xi ) = 1 and for all other points j 6= i , `i (x j ) = o since there is always a
numerator x j −x j .

By multiplying this polynomial by the value at each node fi = f (xi ), the Laplace polynomial produces
the correct value at xi . If the polynomials are added, the resulting polynomial correctly interpolates all the
points:

p(x) =
k∑

i=0
fi`i (x), (A.15)

This polynomial of order k can be used to approximate a function of k +1 points. Since the total number of
discrete points will usually be larger than k+1, a set of interpolating polynomials will be defined to interpolate
the complete function.

A.3. Numerical integration methods
The approach suggested in this work is to propagate the trajectory uncertainty by means of Taylor series
integration using differential algebra. This is itself a numerical integration procedure that does not require the
traditional numerical integration routines. However, traditional integration will still be required to propagate
the trajectory using a Monte Carlo method as means of verification.

Numerical integration algorithms have been developed as a way to solve ordinary differential equations
subject to initial conditions. Multiple algorithms have been developed, and their performance depends on
the problem to solve. Therefore there is not a single answer to what is the best integrator to use. In this
section, a brief description of the available integration methods is provided, followed by a trade-off to select
the best integrator type for the reference mission.

A.3.1. Description of numerical integration methods
A general description of the numerical integrator methods is provided, tailored to the methods available in
Tudat. Three type of integrators are considered: multi-stage, multi-step and extrapolation methods, repre-
sented by Runge-Kutta (RK), Adams-Bashforth-Moulton (ABM) and Bulirsch-Stoer (BS) respectively. For each
method, a description of the algorithm and its benefits and drawbacks is provided.

Multi-stage integration
In multi-stage methods, every time step requires multiple function evaluations. The Runge-Kutta family is
one of the most widely used integrator methods. It can be used with fixed or variable time step The general
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structure of a Runge-Kutta algorithm is (Klees and Dwight, 2020):

y(tn+1) = y(tn)+
N∑

i=1
ci ki (A.16)

where N is the number of stages required, ci are weights and ki depends on the time step and the function
evaluation. An extension of the Runge-Kutta approach is the Runge-Kutta-Fehlberg (RKF) method. This con-
sists in combining two RK methods of order p and p − 1 with common intermediate steps. Assuming that
the higher-order method provides a better result, it is possible to estimate the integration error of the lower-
order integrator. This allows to adapt the integrator step-size such that the estimated integrator error is lower
than a given user-defined threshold: the relative and absolute tolerance. Once the step size is estimated, the
propagation can be performed with the lower-order method or with the higher-order method. In Tudat, the
former approach is available for the integrators RKF4(5), RKF5(6) and RKF7(8) while the latter is approach
(labelled Dormand-Prince method) is available for the integrator DOPRI8(7). These algorithms have shown
to provide a good solution for a wide range of problems, and specially for high eccentricities.

Multi-step integration
Single-step methods such as RK use function evaluations from a single step to predict the following state. In
turn, multi-step methods use information of several previously calculated steps. This approach requires to
store the values from previous function evaluations but in general the number of function evaluations re-
quired for a given order of accuracy is reduced. The multi-step method included in Tudat, which will be con-
sidered in this algorithm selection is the Adams-Bashforth (explicit) and Adams -Moulton (implicit) methods.
The general expression governing these methods is:

y (tn+1) = y (tn)+∆t
N∑

j=a
b j f

(
tn− j , ȳn− j

)
tn− j = tn − j∆t

(A.17)

where a = 0 for explicit methods and a =−1 for implicit methods. This method requires the knowledge of N
data points for initialisation. For the implicit method, a predictor-corrector approach is followed, there the
explicit method is used to estimate the state y (tn+1) and this value is used to evaluate the implicit method and
correct the result. This combination is called the Adams-Bashforth-Moulton (ABM) method. This method is
useful for low to moderate eccentricities and therefore should be considered as an option for this problem.

Extrapolation integration
The Bulirsch-Stoer (BS) integrator combines the concept of extrapolation with a multi-stage integrator. The
concept consists in performing the integration of a given step with varying number of integration sub-steps.
Assuming that with more sub-steps the solution will improve, the results from different number of sub-steps
is extrapolated to infinite sub-steps. This approach is very useful for long-term integrations, for which there
is no need for a dense output. However, this is not the case of the reference mission under study. To calculate
the TCA of objects in LEO, a dense output is required and therefore this method is discarded.

A.3.2. Selection of numerical integration method
Integrator type
From the integrator types presented and available in Tudat, two families can be considered for to integrate
the trajectory of objects in LEO with a dense output. These are the Runge-Kutta family (which includes the
Dormand-Prince variation) and the Adams-Bashforth-Moulton which has variable order. In this section,
without entering into the selection of the step-size or the tolerance, the integrator to be used in the prob-
lem to carry the Monte Carlo simulations for verification is selected. To do so, several studies which compare
the performance of these integrator types are analysed.

Bradley (2015) studied the performance of a set of numerical integration methods to improve the compu-
tational performance of orbit propagation. The performance was studied in terms of the root-mean-square
of the position error and the number of function calls. It was concluded that both for LEO and for highly
eccentric orbits (Molniya) the DOPRI8(7) algorithm outperformed the rest of lower order integrators of the
Runge-Kutta family, being the optimum pareto front. Somodi and Foldvary (2011) performed a similar anal-
ysis to compare the performance of the ABM, BS and the RK family. The Dormand-Prince integrator was not



A.4. Statistical sampling and solving methods 131

included in this study. This study found that for LEO, the ABM method outperformed the BS and RK4 by two
orders of magnitude in the position error, and achieved this with shorter runtime.

Therefore, the methods to trade-off are the DOPRI8(7) and the ABM. Aristoff and Poore (2012) compares
the performance of these two methods to the Gauss-Legendre implicit Runge-Kutta method (GL-IRK). Al-
tough the latter shows to outperfrom DOPRI8(7) and ABM, this method is discarded since it is not included
in Tudat and the benefit of coding it does not balance the improvement in accuracy and runtime. This
study shows that the DOPRI8(7) and ABM have approximately the same accuracy and runtime, with the best
method depending on the tolerance. Therefore the choice in terms of performance is not clear. To make
a decision, two other criteria are considered: the use of the integrator method in similar problems and the
simplicity. In other space debris collision analysis problems, the DOPRI8(7) algorithm is commonly used as
the method to develop the verification solution as in the case of Valli et al. (2013); Jones and Doostan (2013).
Adding this to the fact that the DOPRI8(7) method does not require previous data points for initialisation, this
algorithm is selected to perform the numerical integration of the problem.

Integrator tolerance and step size
Once the DOPRI8(7) integrator is selected, the settings have to be specified. To do so, first it is decided
whether a variable or fixed step size will be chosen and then, the bounds of the step size and the value of the
absolute and relative tolerance is selected. In this election it must be taken into account that the DOPRI8(7)
integrator misbehaves for very strict tolerances (≤ 10−15). The selection of integrator settings depends on the
performance of the integrator in terms of runtime and integration error.

To select the step size, it is first required to gain insight on the problem. From a review of studies that
have performed numerical integration in similar scenarios, it is concluded that the characteristic step size
for LEO integration is one second (Somodi and Foldvary, 2011; Hoogendoorn, 2016; Shuster, 2017). However,
this value can also go as low as 10−4 seconds and as high as 30 seconds (Papanikolaou and Tsoulis, 2016).
Taking the interval (10−4 − 30 s) as reference, a study of the position error as a function of step size will be
performed to determine the boundary between rounding and truncation error. Once this threshold step size
is encountered, the effect of the step size in runtime will be analysed. Since the numerical integration method
will be used for verification purposes, the runtime is not a major concern, and solution accuracy will be of
primordial importance.

A similar analysis can be performed to select the integrator tolerance. For similar problems using the
DOPRI8(7) integrator the range of relative absolute tolerance included is (10−9 − 10−14) (Valli et al., 2013;
Jones and Doostan, 2013). The effect of tolerance in final position and velocity accuracy and runtime will be
studied. Unless a tolerance results in prohibitive integrator time (e.g. resulting in a one-week propagation to
generate 105 Monte Carlo runs), the tolerance which provides the highest accuracy is selected.

A.4. Statistical sampling and solving methods
The use of statistical method is crucial in the propagation of space debris collision probability. The main
algorithm to be used relies on Taylor series integration by differential algebra and directly works with the
statistical descriptors obtained from Taylor coefficients. However, a Monte Carlo approach is followed to
validate the results and calculate the accuracy of the method. For this approach, statistical sampling and
solving methods are required to generate the initial population of each random variable and estimate the
final probability density function.

A.4.1. Statistical sampling
To validate the results from the DA-GMM uncertainty propagation, the initial states will be sampled according
to their probability density function and propagated to the final state following a Monte Carlo approach. For
the variables under study, three distributions will be sampled: normal, log-normal and uniform.

The most common method to obtain a random sample from a PDF is the inverse transformation method,
which is based on the property that the cumulative density function (CDF) of the random variable x, F (x)
is uniformly distributed in the interval [0,1] (Thomopoulos, 2013). Therefore, the random samples derived
from a given probability distribution can be obtained from uniformly distributed random variables as:

x = F−1(u) (A.18)

where u is a uniform random number in [0,1]. The inverse transformation method is already implemented
for the common probability distributions (including the ones required for this study) in commercial program-
ming software such as Matlab and Python. Tudat also has a an integrated implementation of this method.
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The problem has reduced to generating a uniform random sample. Multiple algorithms to generate ran-
dom samples have been developed and are already integrated in commercial software. For reproducibility
of the results it is important to document which algorithm is selected and which seed is used to generate
the random value. Moreover, since different software will be used for propagation and post-processing, a
single algorithm will be used in case the sampling method has to be reproduced by a different software. In
Tudat, the Mersenne Twister method as described by Matsumoto and Nishimura (1998) is used by default to
generate uniform random samples. This is one of the most widely used pseudo-random number generation
algorithms and is also available in Matlab and Python. This algorithm is selected as the basis to generate
pseudo-random uniform samples which in turn will be mapped to values of a random variable x which fol-
lows a given probability distribution.

A.4.2. Parameter estimation
While statistical sampling is used to draw individuals from a known probability distribution, parameter es-
timation allows to approximate the parameters of the distribution that governs a given data set. This will be
required for two applications. First, to estimate the uncertainty distribution of the perturbing accelerations
not included in the model simplification. From different orbits and initial conditions the difference between
the simplified and the full model acceleration will be computed, and this data will be fitted to a given distri-
bution. Ideally, the error could be approximated to a Gaussian distribution and it would be directly added as
a state variable. Second, this method is used to validate the GMM assumption which states that for a large
number of GMEs with low standard deviation, the final distribution of each GME that has been propagated
through the nonlinear dynamics can still be modelled as a Gaussian. To test this assumption, the propagated
samples drawn from an initial GME will be approximated by a Gaussian distribution and the distribution pa-
rameters will be compared to those obtained by the DA-GMM method. In Subsection A.4.3 the method to
evaluate the goodness of fit is explained.

Matlab and Python contain built-in functions to estimate the parameters that approximate a data set to a
number of distributions. In general, the method of maximum likelihood estimation is applied. For the Gaus-
sian and log-normal distributions the parameters can be directly computed from the data-set without need of
further fitting. It should be noted that since the data set is formed by random samples, the estimated param-
eters are also random variables. This means that if the two data sets are drawn from the same distribution,
the estimated parameters will not necessarily be equal. To assess this effect and get a more accurate estimate
of the distribution parameters, multiple sets of Monte Carlo simulations can be run, with the samples drawn
from the same initial distribution to obtain an estimate of the range of values that the estimated parameters
can obtain.

A.4.3. Hypothesis testing
The DA-GMM approach is based on the assumption that by dividing the initially Gaussian distribution into
a large set of sub-distributions which are also Gaussian, the propagation of the individual elements through
the non-linear dynamics will correctly approximate the final non-Gaussian distribution. This implies that the
error in keeping the individual GMEs as Gaussian distributions through the propagation is negligible. Testing
this hypothesis will be part of the validation process and will also be used to select the number of GMEs that
is required. To this end, a goodness of fit test will be conducted on the propagated GMEs to assess if the
hypothesis of keeping a Gaussian distribution can be accepted. Several goodness of fit procedures have been
designed to test if a given data set is normally distributed. The most common tests are Pearson’s χ2 test, the
Kolmogorov-Smirnov (KS) test and the Anderson-Darling (AD) test.

Agu and Francis (2018) evaluated the performance of the χ2 test and the KS test applied on normal distri-
butions. This study concluded that the KS goodness of fit is more precise than that of the χ2 method. Razali
and Yap (2011) performed a similar study to compare the power of several normality tests methods and con-
cluded that the AD test is more powerful than the KS test. However, all methods have low reliability for small
sample sizes. Since this variable is controllable in the case of a Monte Carlo approach, the sample size will be
selected to be sufficiently large.

These tests are developed for univariate distributions, while the uncertainty in the satellite state that we
wish to evaluate is a multi-variate distribution. Therefore, two algorithms to evaluate the uncertainty in a
multi-variate distribution are used: Henze-Zirkler’s Multivariate Normality Test (Henze and Zirkler, 1990)
and Roy’s normality test (Silvey, 1959)

Based on this, the five tests are performed on the Monte Carlo propagation results for multiple GMEs
drawn from the initial Gaussian distribution. The number of GMEs must be selected so that the Gaussian as-
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sumption is valid for the propagated GMEs according to the three methods. Once this threshold is calculated,
several runs of the DA-GMM method will be conducted with varying number of GMEs to observe the effect
of this variable on the method error. The hypothesis testing algorithms are available in Matlab and Python as
built-in functions and will form part of the pre-processing to calculate the required number of GMEs.

Kolmogorov-Smirnov
The KS test is based on comparing the sample to an empirical distribution (Gaussian in the case of a normality
test). To do so, the samples are standardised and compared to a normal distribution and the conclusion of
the test depends on the chosen significance level. The KS statistic is defined as:

D = max
1≤i≤N

(
F (Yi )− i −1

N
,

i

N
−F (Yi )

)
(A.19)

where F is the empirical cumulative distribution to which the samples are compared, Yi are the sample
points, and N is the number of samples. The result of the KS test is that the hypothesis regarding the form of
the distribution (in this case that the data comes from a normal distribution) can be rejected if D is greater
than the critical value for a specified significance level.

Anderson-Darling test
Following the same concept of the test statistic, the AD statistic is defined as:

A2 =−N −
N∑

i=1

(2i −1)

N
[lnF (Yi )+ ln(1−F (YN+1−i ))] (A.20)

Again, the hypothesis regarding the form of the distribution can be rejected if A is greater than the critical
value for a specified significance level.

χ2 test
The chi-square (χ2) test is an alternative to determine if the samples are randomly distributed. In this case,
the statistic depends on the choice of bins o define the histogram of the distribution, since it is based on the
frequency, Oi , and expected frequency Ei of each bin, i . The χ2 statistic is defined as:

χ2 =
k∑

i=1
(Oi −Ei )2 /Ei (A.21)

where the expected frequency of each bin is defined as:

Ei = N (F (Yu)−F (Yl )) , (A.22)

with Yu and Yl being the upper and lower bounds of the data in bin i , respectively. Again, the hypothesis
regarding the form of the distribution can be rejected if χ2 is greater than the critical value for a specified
significance level.

Henze-Zirkler test
The HZ statistic is based on measuring the distance between the observed and expected probability distribu-
tions, whixh is calculated as:

HZ =
∫

|P (t )−Q(t )|2 fb(t )d t (A.23)

where P and Q are the cumulative functions of the sampled data and empiric distribution respectively and
fb(t ) is a weight distribution given by:

wβ(t ) = (
2πβ2)−d/2

exp

(
−‖t‖2

2β2

)
(A.24)

being β a fixed constant, and d the number of dimensions.

Roy test
In this case, the the test relies on eigenvalues of the test matrix and can take into account the full multivariate
distribution. It is an extension of the univariate Shapiro Wilk normality test. The details of this algorithm are
complex and will not be discussed further. The purpose of these normality tests for this work is to provide an
extra input in the selection of the optimum number of GMEs. Therefore, these tests are used as a black-box
that outputs an acceptance/rejection of the null hypothesis for a given acceptance level.
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