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We present a technique for the optical design of generalized-distribution GRIN lenses. Multi-element homo-
geneous lens designs are reconstructed as single GRIN media via smoothing of the homogeneous lens paraxial ray
paths. These continuous optical systems successfully replicate the first-order properties of their homogeneous
parent lens systems and serve as starting points for further optimization. When the technique is applied at several
wavelengths, the chromatic aberration correction of the homogeneous parent lens is also converted. The paraxial
reconstruction, finite-ray optimization, and evaluation of several lens designs are demonstrated. © 2024 Optica

PublishingGroup. All rights, including for text and datamining (TDM), Artificial Intelligence (AI) training, and similar technologies, are

reserved.

https://doi.org/10.1364/AO.532452

1. INTRODUCTION

In recent years there has been a resurgence of interest in
gradient-index (GRIN) optics. This is significantly due to
the development of a range of new manufacture methods that
address ongoing requirements to reduce size, weight, power con-
sumption, and cost (referred to as SWAP-C) of optical systems.
In particular, additive manufacture [1,2] and targeted modifi-
cation techniques [3] enable the manufacture of GRIN lenses
of arbitrary refractive index distribution. Such manufacture
approaches allow multiple lens components (and potentially
entire optical assemblies) to consist of as few as one GRIN lens,
where the optical work performed by several discrete optical
surfaces is instead performed by a continuous GRIN medium.
We refer to such optics as continuous optical systems, abbreviated
to COS herein. The combination of the degrees of freedom
for aberration correction provided by GRIN optics, with scal-
able yet flexible additive manufacture, promises a new route to
provide improved SWAP-C optics. There is therefore a strong
motivation to develop optical design tools for COS.

A significant decision in the optical design process is the
selection of a starting solution that, if chosen well, leads to a high
performing and cost-effective final design. Conversely, a poor
starting solution may quickly lead to a poor local minimum after
optimization of the design, resulting in a poorer performing
product and accruing significant extra cost over an extended
production run.

Due to the relative novelty of generalized GRIN tech-
nology, few such starting solutions exist for COS. Such lens

optimization problems may have a very large number of
complex degrees of freedom, accounting for the variation in
refractive index coefficients at multiple powers of lens apertures.
For more complex optical systems such as wide-angle lenses or
telecentric relay lenses, manual construction of a starting solu-
tion by manipulation of GRIN coefficients becomes extremely
difficult.

Our objective for this work is to devise a method to generate
COS starting solutions derived from the optical constructions
of homogeneous optical designs. Previous works in the literature
have addressed the problem of reconstructing a GRIN lens
from a conventional optic. In the field known as transformation
optics, components such as homogeneous lenses are converted
to inhomogeneous (also generally magnetic and anisotropic)
media by a coordinate transformation of the lens geometry [4].
The magnetic and anisotropic contributions are often small
and disregarded to yield a simpler all-dielectric solution (known
as quasi-transformation optics or qTO). While this is a pow-
erful technique, it is difficult to apply to multi-element lens
systems, with the boundaries between lens elements leading to
discontinuities in the resulting GRIN [5].

Several authors have addressed the inverse problem of refrac-
tive index distribution construction via a geometrical optics
approach. Nemoto and Makimoto [6] first demonstrated a
method to solve for a GRIN distribution given a known ray
curve, noting that in such a case, numerous paraxially equivalent
index distributions exist for a single ray path. In 2022, Kochan
et al. [7] demonstrated a method of reconstructing individual
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homogeneous surfaces as GRIN media, by use of a sigmoid
function GRIN distribution. In 2023, Gomez-Correa et al. [8]
demonstrated a means to solve for the GRIN distribution given
a finite ray path, exploiting an invariant quantity that arises
when Fermat’s principle is solved via a Lagrangian approach.
This invariant quantity was shown to enable analytical solutions
to ray paths within spherical and cylindrical gradient-index
media.

In the present work, we outline a simple and determinis-
tic method for the conversion of the first-order properties of
entire multi-element homogeneous lens systems to COS. This
is achieved first by approximating the segmented ray paths
of homogeneous lens systems as a smooth, curved ray trajec-
tory, followed by solving for the required GRIN distribution
using the Lagrange invariant of the system and ray paths of two
paraxial rays that are non-degenerate in field and aperture. The
paraxially reconstructed GRIN optic can then serve as a starting
point for subsequent finite ray optimization.

2. PARAXIAL RAYTRACING IN GRIN LENSES

The paraxial approximation assumes rays in an optical system
travel along a narrow, thread-like region about the optical axis
[9,10], which simplifies finite raytracing to a linear form. This
approximation trades raytrace precision for insight into the first-
order properties of the optic, and following further calculation,
the third-order aberrations.

We define a paraxial optical system in Fig. 1. The quantity
y represents the height of a paraxial ray. u represents the parax-
ial ray angle in the anti-clockwise trigonometric convention
such that u ≈ ẏ , where dotted quantities represent differenti-
ation with respect to the optical axis coordinate, z. The optical
system itself is represented by the green box labelled ABCD.
Barred quantities are those associated with the paraxially traced
full-field principal ray, whereas unbarred quantities are of
the paraxial marginal ray. The subscripts O and I represent
quantities in the object and image spaces, respectively.

The linearization of raytracing in the paraxial region allows
us to represent the optical system as a 2× 2 matrix that relates
the height and angle of a paraxial ray in the object space to the
image space. We represent the optical system of Fig. 1 in this
way, treating the object and image space conjugate distances, zO

and z I , separately:(
y I

NI u I

)
=

(
1 zi/Ni

0 1

)(
A B
C D

)(
1 zO/NO

0 1

)(
y O

NOuO

)
,

(1)

Fig. 1. Schematic of a paraxial COS, ABCD. Rays traced are indi-
cated in blue (marginal ray) and red (principal ray). Barred quantities
refer to the principal ray.

Fig. 2. General rotationally symmetric GRIN decomposed into
planar, thin, elemental GRINs of thickness δz. The subscript, L ,
denotes the last surface of the GRIN.

where the quantities A, B , C , D fully characterize the first-order
properties of the system. In particular, the quantity−C is equiv-
alent to the focal power (the inverse of the focal length). The
ABCD matrix consists of contributions from individual surfaces
and ray transfer events between surfaces, representing the system
as a product of elemental matrices.

We define a general rotationally symmetric GRIN distribu-
tion as a series in even powers of the perpendicular distance from
the optical axis,ρ2

= x 2
+ y 2, as

N(ρ, z)=N0(z)+N2(z)ρ2
+N4(z)ρ4

+ . . . , (2)

where each radial index coefficient, Ni (distinguished from the
refractive index itself by use of the caligraphic N ), is a function
of position along the optical axis, z (constant coefficients would
represent a radial GRIN distribution). The equation of propa-
gation for a GRIN paraxial ray within a distribution of general
rotationally symmetric form is given by

2N2(z)y (z)−
d
dz
(N0(z)u(z))= 0. (3)

In the general rotationally symmetric case, the transfer matrix
of a GRIN has no analytical solution [11]. The paraxial raytrace
of the GRIN was therefore performed by slicing the COS into
L thin slices, as illustrated in Fig. 2. Following the derivation of
Sands [11] the ray path in a thin GRIN slice is then evaluated
locally about a point, z, based on a Taylor series expansion of the
N0 andN2 coefficients:

N0 (z+ δz)=N0(z)+ Ṅ0(z)δz+
1

2
N̈0(z)δz2

+ . . .

N2 (z+ δz)=N2(z)+ Ṅ2(z)δz+
1

2
N̈2(z)δz2

+ . . .

(4)

where δz is the small, finite thickness along the optical axis of
an elemental GRIN located at z. We also expand the ray vector
components,N0(z)u(z) and y (z), as a series:



7254 Vol. 63, No. 27 / 20 September 2024 / Applied Optics Research Article

y (z+ δz)= y (z)+ u(z)δz+
u̇(z)

2
δz2
+ . . . ,

N0(z+ δz)u(z+ δz)=N0(z)u(z)+
d
dz

[N0(z)u(z)] δz

+
1

2

d2

dz2
[N0(z)u(z)] δz2

+ . . . .

(5)

The solution to the thin ray transfer matrix has the general
form for the i th slice within the GRIN located at zi :

y i+1 (zi + δz)= Ai y i (zi )+ BiN0 (zi ) ui (zi )

N0 (zi + δz) ui+1 (zi + δz)=Ci y i (zi )+ DiN0 (zi ) ui (zi )

(6)
To express the equation for the ray trajectory in terms of y (z)

andN0(z)u(z), we collect expressions for u̇, d/dz[N0(z)u(z)],
and d2/dz2

[N0(z)u(z)], which we substitute into Eq. (5).
Expanding Eq. (3) yields

2N2(z)y (z)− u̇(z)N0(z)− Ṅ0(z)u(z)= 0, (7)

which solved for u̇ is

u̇(z)= [2N2(z)y (z)− Ṅ0(z)u(z)]N0(z). (8)

Substituting Eqs. (8) and (3) into Eq. (5), we obtain

y (z+ δz)= y (z)+ u(z)δz+
N2(z)y (z)− 1

2 Ṅ0(z)u(z)

N0(z)
δz2
+ . . . ,

N0(z+ δz)u(z+ δz)=N0(z)u(z)+ 2N2(z)y (z)δz

+
[
N2(z)u(z)+ Ṅ2(z)y (z)

]
δz2
+ . . . .

(9)

Collecting terms in N0(z)u(z) and y (z) then yields the
following equations for A, B , C , D of an elemental GRIN
ray-transfer matrix:

Ai = 1+ [N2(zi )/N0(zi )]δz2
+ . . . ,

Bi = δz/N0(zi )−
1

2
[Ṅ0(zi )/N0(zi )

2
]δz2
+ . . . ,

Ci = 2N2(zi )δz+ Ṅ2(zi )δz2
+ . . . ,

Di = 1+ [N2(zi )/N0(zi )]δz2
+ . . . . (10)

The full system ABCD matrix [as per Eq. (1)] of the COS for a
GRIN composed of L slices is given by(

A B
C D

)
=

(
1 0

c L (NI −N0(zL)) 1

) L∏
i=0

(
Ai Bi

Ci Di

)

×

(
1 0

c 1 (N0(0)− NO) 1

)
. (11)

As each internal elemental GRIN is planar (excluding the
end surfaces), the surface refraction contribution is the iden-
tity matrix and is disregarded. The quantity −Ci gives the
focal power of a GRIN ray transfer matrix, yielding the well
known formula for the focal power of a thin, radial GRIN lens,
KGRIN =−2N2t , for a GRIN of thickness, t . From this, the
distribution of N2(z) can be intuitively interpreted as the linear
optical power density of a COS.

The use of a numerical paraxial tracing approach means it
is necessary to ensure that enough thin slices are used to avoid
numerical errors in ray height and angle. Accuracy of the fit
is diagnosed by calculating the determinant of the system
ABCD matrix, which should have negligible deviation from
unity (in the Nu ray direction convention used). For the lens
reconstructions in this work, L = 2500 slices, which achieved
a determinant error less than 10−6 in all cases. We must then
perform the paraxial reconstruction by calculating N0(z) and
N2(z) for each GRIN slice within the system.

3. PARAXIAL RECONSTRUCTION

Our approach shall be to identify a GRIN distribution in the
form of Eq. (2), such that the ABCD matrix of a homogeneous
system is approximated within the same axial length. To achieve
a smooth GRIN distribution, we will convert the discrete and
segmented trajectory of the paraxial marginal and full-field
principal rays within a homogeneous optical system to a smooth
ray curve indicative of a GRIN medium describing ray height, y ,
as a function of the optical axis, z. The process for this we discuss
in Sections 4 and 5. An illustrative example of a smoothed ray
is shown in Fig. 3. Using these smoothed and fitted rays, we
will then solve for the refractive index distribution. To avoid
the requirement for a GRIN medium in the object and image
space, we bound the GRIN by the first and last surfaces of the
homogeneous optic.

Assuming the paraxial ray height, y (z), and its derivatives
are known from the reconstruction of the ray, we must devise a
procedure to reconstruct the axial and parabolic radial GRIN
coefficients,N0(z) andN2(z), at a point along the optical axis of
the lens. To calculate N2(z) and N0(z) from the smoothed ray
paths, we make use of the Lagrange invariant, a conserved quan-
tity of any rotationally symmetric optical system loosely related
to energy throughput. The Lagrange invariant is defined as

H =N0(z)[ū(z)y (z)− u(z) ȳ (z)]. (12)

The numerical value of H is obtained from the paraxial rays
of the parent homogeneous optical system. This, combined with
the reconstructed ray trajectories, gives us sufficient information

Fig. 3. Notional paraxial ray within a lens system (red line, not to
scale) and a reconstructed continuous GRIN trajectory (blue line). Ray
positions and angles in both cases are matched at first and last surfaces
of the lens system.
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to calculateN0(z) from Eq. (12). Ṅ0(z) is determined by differ-
entiation of the Lagrange invariant as

Ṅ0(z)[ū(z)y (z)− u(z) ȳ (z))+N0(z)
(
˙̄u(z)y (z)− u̇(z) ȳ (z)

]
= 0.

(13)

We then obtain the following expressions for N0(z) and
Ṅ0(z):

N0(z)= H/[ū(z)y (z)− u(z) ȳ (z)], (14)

Ṅ0(z)= [−N0(z)2( ˙̄u(z)y (z)− u̇(z) ȳ (z))]/H. (15)

Once N0(z) and Ṅ0(z) are known, we calculate N2(z) by
solving Eq. (7):

N2(z)=
1

2
[u̇(z)N0(z)+ Ṅ0(z)u(z)]/y (z). (16)

4. SELECTION OF A MATHEMATICAL
REPRESENTATION FOR RECONSTRUCTED RAY
PATHS

A key decision in paraxial reconstruction concerns selection of a
tool for the smoothed ray fit. Mathematical constructions were
assessed based on three key requirements.

• The fitted curve must match the position and slope of
the discrete ray path at the end-points to correctly account for
refraction at the end surfaces. This condition ensures that the
first-order properties will be accurately reconstructed.

• The curve must be smooth and continuous to at least the
second derivative in z to avoid discontinuities in the distribution
ofN2.

• The fitted curve should not rely upon least-squares
numerical fitting, which adds complexity to the process and
does not guarantee a good fit can be found for more complex
distributions of refractive index, being vulnerable to over-fitting
effects such as the Runge Phenomenon.

Bézier curves were considered ideal candidates based on
these criteria. Bézier curves are parametric polynomials in the
Bernstein basis [chapter 1.3.4 12] defined by a set of control
points (with polynomial order equal to the number of control
points minus one). The position and derivative of the curve end-
points are defined by the first and last control point segments,
fulfilling the first criterion. A set of at least three (non-collinear)
control points yields a smooth and continuous curve to the
second derivative. Furthermore, Bézier curves do not intersect
intermediate control points exactly but approximate them with
the property of diminished variation. This property minimizes
over-fitting effects and the resulting index gradients in the
reconstruction.

5. COMPUTATIONAL IMPLEMENTATION

The paraxial reconstruction approach was implemented using
the Python programming language. The bezier library
[13] was used to model the Bézier curves required for ray path

Table 1. Basic Parameters for the Parent Double
Gauss Lens

F/# 2.0
Focal length 100 mm
Back focal clearance 61.1 mm
Axial length 139 mm
Semi-field of view 14◦

smoothing, while elements of the scipy ecosystem [14] were
used for various other aspects such as spline fitting the resulting
index coefficient curves, N0 and N2, as a function of the optical
axis, z.

An example Double Gauss lens from the CodeV software was
used as a homogeneous “parent” lens system. Its basic optical
properties are listed in Table 1. A raytrace of this design is shown
in Fig. 4A.

Paraxial reconstruction was implemented via the procedure
summarized in Fig. 5. The discrete ray paths of the parent opti-
cal system were converted to piecewise linearly interpolated
functions at a reference wavelength of 587 nm. Sets of evenly
spaced control points were defined along each parent ray path
that define the Bézier curves. The closeness of the reconstructed
ray paths to the parent rays is affected by the number of control
points, which for the designs in this work was notionally set
to twice the number of optical surfaces of the parent system.
Increasing the number of control points results in reconstructed
rays that more closely track the parent ray path. This has the
effect of increasing the curvature of these rays, which in turn
results in a greater magnitude of N2 and therefore increased
index variation in the reconstructed design. The choice of
control points is therefore a trade-off between how precisely
the paraxial GRIN rays track those of the parent solution, and
minimization of index variation in the reconstructed design,
which is worthy of investigation in further work. Note that the
first-order properties of the design are unaffected by this choice,
as the constrained ray slopes and positions at the endpoints of
the lens determine this.

Following Bézier fits of the ray paths, these curves and their
derivatives with respect to z were input to Eqs. (14) and (16).
For computational convenience, a cubic spline fit was made to
the reconstructed N0(z) and N2(z) curves, with control points
placed at points along the Bézier curves. Fitting to splines retains

Fig. 4. (A) Raytrace of homogeneous parent Double Gauss lens.
Glass types (from the Schott catalogue) from left to right: N-SSK2
(Nd = 1.622), N-SK2 (Nd = 1.607), F5 (Nd = 1.603), F5, N-SK16
(Nd = 1.620). (B) Raytrace of optimized COS from paraxially
reconstructed starting point.
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Fig. 5. Flowchart for the paraxial reconstruction process.

Fig. 6. (A) Paraxial raytrace of parent homogeneous system based
on CodeV example F/2 Double Gauss lens. Refractive index of air gaps
between lenses is not shaded. (B) Paraxial reconstruction raytrace of the
same lens.

the desirable attributes from the shape of the Bézier curves
(which would not be obtained by directly fitting to splines),
while putting the curves in a mathematical representation that is
easier to model and optimize in optical design software.

A further benefit of a spline-distributed GRIN lies in its
ability to locally and stably control the axial distribution of
GRIN coefficients. For polynomial GRIN distributions of a
high degree in the optical axial coordinate, z, it is very difficult
to locally control the GRIN distribution at the far end of a thick
GRIN lens, relying on the balancing of several polynomial
terms, whereas, for a spline GRIN, tactile and local adjustments
can be made by changing only a single control point, leading to
better conditioning of the finite-ray optimization problem.

A paraxial reconstruction example of the Double Gauss lens
is shown in Fig. 6. The Bézier curve fits of the paraxial marginal
and principal rays are shown in Fig. 7. From these ray paths,
values forN0(z) andN2(z)were calculated. These distributions
are shown in Fig. 8. It is observed that the axial index distri-
bution broadly mirrors that of the parent design, with a noted
drop in index aligned with the system air gap. Similarly, the
N2(z) distribution correlates well with the expected distribu-
tion of optical power density (note that linear optical power
density is proportional to −N2). The regions at each end of
the system contain positive optical power density, whereas the

Fig. 7. Homogeneous segmented ray paths, control points, and
their Bézier reconstructions for the paraxial marginal and full field
principal rays. Double Gauss F/2 example lens.

central region of the paraxial reconstruction around the aperture
stop contains negative power density. This leads to the familiar
“hourglass” profile of the axial marginal ray we observe in the
Double Gauss solution. The focal length of the reconstruction
was 99.7 mm, a very close match to the parent design focal
length of 100 mm. Spline fits to the reconstructed distributions
are also plotted in Fig. 8. A natural cubic spline fit with knots
placed at the Chebyshev nodes provides a sufficiently accurate fit
to these reconstructed distributions with minimal oscillations.

A. Finite Raytracing and Seidel Aberrations

Paraxial reconstruction does not guarantee the resulting system
will have equivalent third-order aberrations to the parent sys-
tem. The aberrations of a quadratic, radial-GRIN medium are
generally different to those of a spherical surface of equivalent
optical power. Furthermore, the GRIN distribution gener-
ates GRIN surface aberration contributions in addition to the
homogeneous surface contributions at the surface vertices [15].
The Seidel aberration contributions of both the homogeneous
Double Gauss and COS reconstruction are shown in Fig. 9. It
is observed that while the cumulative distribution of the Seidel

Fig. 8. Reconstructed GRIN coefficients for the Double Gauss
design example, with coordinate system origin at the lens front
vertex. (A): reconstructed distribution for the axial index, N0(z).
(B): reconstructed distribution for the quadratic radial coefficient,
N2(z).
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Fig. 9. Cumulative Seidel aberration contributions for the F/2
Double Gauss lens (blue) and its COS paraxial reconstruction
(orange). S1–5 represent the Seidel aberration coefficients of spherical
aberration, coma, astigmatism, Petzval curvature, and distortion,
respectively. The discontinuous changes in cumulative aberration are
caused by the discrete Seidel contributions of optical surfaces.

aberrations bears some similarity between the homogeneous
and COS starting points, there is ultimately a progressive differ-
ence between the two that results in significant Seidel aberration
residuals within the GRIN system. Whether this is problematic
depends on the aperture, field, and level of aberration. It is
sometimes useful to control the Seidel aberrations of the starting
point to allow finite raytracing for optimization (such as in very-
wide-angle “fisheye” systems that require significant distortion).
Reduction of the aberrations can however be achieved more
simply by temporarily reducing the field and aperture of the
system, restoring them after successive optimizations.

If control of the third-order aberrations is required, then
additional degrees of freedom are available to the designer prior
to optimization with finite rays. First, aspheric surface terms
can be applied to compensate for surface GRIN contributions.
Second, the quartic GRIN coefficient, N4(z), can be used to
control aberrations. Neither of these interventions affects the
first-order properties of the reconstructed system.

B. Lens Optimization and Analysis

The resulting paraxially reconstructed starting point was
optimized in CodeV using the damped-least-squares “AUT”
option to minimize the RMS spot size. The refractive index
was constrained to lie between 1.4 and 1.75 within the volume
bounded by the rays of the system. These refractive index lim-
its were notional and not indicative of any particular current
manufacture technology. The curvature of the rearmost surface
was constrained to be convex to preserve back focal clearance
(a typical space envelope constraint for photographic lenses).

Table 2. RMS Spot Size over Field for Homogeneous
and GRIN Reconstructed-Optimized Double Gauss
Solutions

Field (◦)
Homogeneous RMS Spot

Size (µm)
GRIN RMS Spot

Size (µm)

0.0 26.4 7.6
10.0 29.8 11.0
14.0 42.6 17.3

The aspheric terms added to aid initial finite raytracing were
optimized to near zero using weighted constraints then removed
altogether to leave spherical surfaces in the final design. Back
focal distance was kept identical to the homogeneous parent
solution. A raytrace cross-section is shown in Fig. 4B with
overlaid GRIN distribution.

The RMS spot size (at 587 nm wavelength) of the GRIN
solution was smaller than that of the homogeneous lens, which
is shown for reference in Table 2; however one must consider
with caution that making a direct comparison of performance is
not a fair test, as the parent design was corrected for chromatic
aberrations, and was presumed to be optimized accordingly,
while the GRIN was not.

6. FURTHER WORKED EXAMPLE:
LITHOGRAPHIC RELAY LENS

We demonstrate the application of the paraxial reconstruc-
tion method to a complex lithographic lens design [16]. Such
lens designs feature large numbers of lens elements of modest
optical power and produce ray structures that closely resemble
the curved ray trajectories of a GRIN. A 14-element stepper
lens of NA = 0.2, 589 nm reference wavelength, and 50 mm
image diameter at −1 magnification (finite raytrace of the
original homogeneous lens shown in Fig. 10A) was paraxially
reconstructed as a GRIN. Paraxial traces of the homogeneous
parent system and paraxial reconstruction are illustrated in
Fig. 11. Distortion and telecentricity of such optical systems
are of high importance to the lithographic process. The paraxial
reconstruction approach maintains the telecentric entrance and
exit pupil locations with a strong degree of fidelity, with both the
entrance and exit pupils located over 50 m from the lens vertices.
Magnification of the paraxial reconstruction is very similar to
the parent design, being−1.0011 and−1.0000, respectively.

The cumulative Seidel aberration contributions of the par-
ent and reconstructed starting system are shown in Fig. 12.
Spherical aberration is not corrected by the reconstruction
approach but can be corrected in near isolation by changing

Fig. 10. (A) Finite raytrace of parent homogeneous lithographic
lens. (B) Optimized COS solution from paraxially reconstructed
starting point, with overlaid GRIN distribution.
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Fig. 11. (A) Paraxial trace of lithographic lens and (B) GRIN parax-
ial reconstruction.

Fig. 12. Cumulative Seidel aberrations of the paraxially
reconstructed lithographic lens and homogeneous parent design.

the N4(z) coefficient spline knots close to the aperture stop
of the system. Coma and distortion are well corrected by the
symmetry of the lens. Petzval curvature is observed to gradually
diverge from the homogeneous solution, despite a very similar
power construction. This is due to a fundamental difference in
aberration theory between powered GRIN media and refractive
homogeneous lenses [17]. In Eq. (17) we note that for a thin,
radial GRIN medium, Petzval curvature depends on power

Fig. 13. Lithographic lens paraxial reconstruction outputs. (A)
N0 distribution and associated spline fit. (B) N2 distribution and
associated spline fit.

divided by square of the axial index N0, whereas for homo-
geneous lenses the dependency is on optical power divided by
the lens refractive index:

S4GRIN =−H2 KGRIN

N 2
0

,

S4hom =−H2 K lens

Nlens
. (17)

The result of this difference in aberration theory is a change in
the power construction of the GRIN solution following RMS
spot size optimization in CodeV of the paraxially reconstructed
starting point. It is observed that the characteristic “central
bulge” of the parent lens is absent in the optimized GRIN
solution, being replaced by a negatively powered “waist” with
a higher axial index. The resulting design is shown in Fig. 10B.
The GRIN distribution consisted of 20 spline knots as illus-
trated in Fig. 13, with individual knots placed at the Chebyshev
nodes (this particular distribution of knots being more con-
centrated at the ends of the GRIN where more structure exists
in the distribution). Distortion, telecentricity error (defined
as the principal ray incidence angle at the image plane), RMS
wavefront error, and RMS spot size are all comparable to the
parent solution, as listed in Table 3.

Table 3. Telecentricity, RMS Spot Size, and RMS Wavefront Error with Image Height for the Optimized Paraxially
Reconstructed GRIN and Homogeneous Parent Solution

Image
Height
(mm)

GRIN
Telecentrity

(◦)

Hom.
Telecentricity

(◦)

GRIN RMS
Spot Size

(µm)

Hom. RMS
Spot Size

(µm)

GRIN RMS
Wavefront

Error (Waves
at 589 nm)

Hom. RMS
Wavefront

Error (Waves
at 589 nm)

GRIN
Distortion

(%)

Homogeneous
Distortion

(%)

0.0 0.0 0.0000 0.271 0.309 0.0063 0.0056 0.0000 0.0000
5.0 0.0799 0.0705 0.306 0.303 0.0066 0.0096 −0.0237 −0.0328
10.0 0.1351 0.1243 0.455 0.939 0.0088 0.0328 −0.0199 −0.0290
17.5 0.1134 0.1347 0.984 1.688 0.0290 0.0780 −0.0089 −0.0180
25.0 0.1271 0.0018 1.819 1.743 0.0450 0.0432 −0.0091 0.0000
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7. CHROMATIC PARAXIAL RECONSTRUCTION
TO A THREE-MATERIAL GRIN

GRIN lenses are frequently used to correct the chromatic aber-
rations of optical systems, which motivates us to extend the
paraxial reconstruction technique to polychromatic systems. As
primary axial and lateral color are caused by the variation of the
paraxial properties of an optical system with wavelength, we can
accurately reconstruct the color correction of the parent lens, by
paraxial reconstruction at three sequential defining wavelengths
spanning the operating waveband, λshort <λmid <λlong. With
these three paraxial reconstructed systems we define two key
quantities, the axial GRIN dispersion N0λ and the distributed
GRIN second-order dispersionN2λ(z), defined as

N0λ(z)=N0(λlong, z)−N0(λshort, z),

N2λ(z)=N2(λlong, z)−N2(λshort, z). (18)

Once these dispersion curves are known, we fit the recon-
structedN0(λmid, z),N2(λmid, z),N0λ(z), andN2λ(z) profiles
to a basis of constituent materials that form the GRIN starting
solution. Fitting a GRIN to a spatial distribution of base materi-
als enables improved design for manufacture, by expressing the
GRIN lens in terms of what can be made. For a GRIN consisting
of two base materials, the axial and radial GRIN dispersion is
constant (with paraxial reconstruction at a single wavelength
all that is required). A three-material GRIN is required to fit
the base index, N0(z), axial dispersion, N0λ(z), index gradi-
ent, N2(z), and gradient dispersion, N2λ(z), as a function of
position.

Previous works [18,19] have outlined mathematical repre-
sentations for the refractive index of GRIN lenses consisting of
three or more materials as a weighted average of the relative com-
position of the constituent materials. We define the refractive
index of a three-base-material GRIN lens as

N =
NAm A(ρ, z)+ NB mB (ρ, z)+ NC mC (ρ, z)

mT(ρ, z)
, (19)

where mT(ρ, z)=m A(ρ, z)+mB (ρ, z)+mC (ρ, z). We
require the values of m A(ρ, z), mB (ρ, z), and mC (ρ, z), as well
as a defined set of base materials, NA(λ), NB (λ), and NC (λ), to
fully define the GRIN distribution at a given point. m(ρ, z) for
the nth material is given by

mn(ρ, z)=mn0(z)+mn2(z)ρ2
+mn4(z)ρ4

+ . . . . (20)

We constrain that mT(ρ, z)= 1, which allows us to easily
decompose Eq. (19) into contributions from each material,
giving

m A0(z)+mB0(z)+mC0(z)= 1, (21)

m A2(z)+mB2(z)+mC2(z)= 0. (22)

This then yields refractive index coefficients

N0(z)= NAm A0(z)+ NB mB0(z)+ NC mC0(z), (23)

N2(z)= NAm A2(z)+ NB mB2(z)+ NC mC2(z). (24)

Using Eq. (18) yields the GRIN coefficient dispersion

N0λ(z)= NAλm A0(z)+ NBλmB0(z)+ NCλmC0(z), (25)

N2λ(z)= NAλm A2(z)+ NBλmB2(z)+ NCλmC2(z), (26)

where the dispersion of the nth basis material is given by
Nnλ = Nn(λlong)− Nn(λshort). Equations (21)–(26) form a
set of six linear equations, while we have six unknowns: m A0(z),
mB0(z), mC0(z), m A2(z), mB2(z), and mC2(z). This therefore
allows this system of equations to be solved exactly, giving:

m A0(z)= [NB NCλ − NC NBλ +N0(z) (NBλ − NCλ)

− N0λ(z) (NB − NC )] φ
−1, (27)

mB0(z)= [−NA NCλ + NC NAλ −N0(z) (NAλ − NCλ)

+ N0λ(z) (NA − NC )] φ
−1,

(28)

mC0(z)= [NA NBλ − NB NAλ +N0(z) (NAλ − NBλ)

− N0λ(z) (NA − NB )] φ
−1, (29)

m A2(z)= [N2(z) (NBλ − NCλ)−N2λ(z) (NB − NC )] φ
−1,

(30)

mB2(z)= [−N2(z) (NAλ − NCλ)+N2λ(z) (NA − NC )] φ
−1,

(31)

mC2(z)= [N2(z) (NAλ − NBλ)−N2λ(z) (NA − NB )] φ
−1,

(32)
where φ = NA NBλ − NA NCλ − NB NAλ + NB NCλ +

NC NAλ − NC NBλ. Computationally, these coefficients
were determined via an analogous method to that outlined
for monochromatic paraxial reconstruction. N0(z, λ) and
N2(z, λ) were calculated via the fitting of Bézier curves to the
paraxial rays of the parent optical system at λshort, λmid, and
λlong. The paraxial raytrace at the central reference wavelength
was used to define N0(z, λmid) and N2(z, λmid), while the dif-
ference between the short and long wavelength systems was used
to define N0λ(z) and N2λ(z). The resulting curves for N0(z),
N2(z), N0λ(z), and N2λ(z) were then input to Eq. (27)–(32)
to yield curves defining the relative composition coefficients
of the lens. Spline knots were then fitted to these curves, with
these knots being the outputs of the code that was input to a
spline-based, three-material GRIN dynamic-link-library (DLL)
to raytrace the system in CodeV. Three materials and their
associated properties were defined as input parameters for the
reconstruction. In principle, any three unique materials (with
non-identical index and dispersion) can be used to fit relative
composition; however the index and dispersion space defined by
materials A, B , and C should be comparable to that defined by
the materials of the parent system. If the range of index and dis-
persion values differs significantly between the parent lens and
GRIN reconstruction, then significant regions of unphysical
negative composition may exist in the paraxial reconstruction.
While such regions are generally simple to address through
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Table 4. Optical Specification for the Cooke Triplet
Parent Lens Design

Focal length 50.00 mm
F/# 5.0
Field of view 40◦

Wavelengths 486.1, 546.1, 656.3 nm
Spectral weight 1, 2, 1
Glass types N-SK16, N-F2, N-SK16
Back focal clearance 38.71 mm
Overall length 57.55 mm

optimization, correction of excessive material errors can lead to
poor local minima in the optimized design.

A Cooke triplet example lens system (sample lens provided
with CodeV) was reconstructed over a finite waveband. The
specification of this lens is listed in Table 4. For consistency,
the GRIN basis materials A, B , and C were equivalent to the
parent system (N-SK16, N-F2, and air). While this design is
not indicative of any current GRIN manufacture approach,
it is used to demonstrate the technique and the first-order
equivalence of the reconstructed solution.

The relative composition of the paraxially reconstructed
GRIN starting point is shown in Fig. 14. Notably, there are
significant regions of negative composition in N-F2 (material
B), with a corresponding excess of N-SK16 (material A). This
is due to the very similar refractive index between these two
materials. Such material space errors are corrected through the
imposition of constraints during finite-ray optimization. The
similar index of these materials allows restoration of all positive
mn(ρ, z) values within the lens without significant disturbance
to the optimization that may cause descent into a poor local
minimum.

The paraxially converted starting point is shown alongside a
paraxial trace of the parent solution in Fig. 15. The focal length
of the converted system matches the parent solution closely,
at 49.62 mm compared to 50.00 mm. The focal length versus
wavelength of the paraxial reconstruction and parent design is
shown in Fig. 16. It was observed that the chromatic aberration
closely replicates that of the parent solution, being offset by

Fig. 14. Reconstructed relative composition distribution of Cooke
triplet parent design. (A) Axial relative composition m0 versus z. (B)
Second-order m2 distribution for each constituent material.

Fig. 15. (A) Conventional Cooke triplet paraxial raytrace. (B)
Paraxially reconstructed GRIN paraxial raytrace.

Fig. 16. Focal length versus wavelength of the paraxial
reconstructed GRIN Cooke triplet lens and its homogeneous parent.

an approximately constant amount as a result of the ray path
smoothing.

Following optimization in CodeV, the GRIN system and
homogeneous parent lens are shown in Fig. 17. Optical per-
formance of the GRIN solution is significantly better than the
homogeneous starting solution (listed in Table 5); however we
note that the GRIN design has more degrees of freedom than the
homogeneous solution and is not based on any current GRIN
technology. Rather, this solution is intended to demonstrate
the utility of the paraxial reconstruction technique, yielding a
GRIN analogue to a homogeneous design. The relative com-
position of the optimized GRIN solution is shown in Fig. 18.
The distribution of material within this lens is analogous to
the homogeneous parent solution, with a higher concentration
of N-SK16 close to the two refractive surfaces at each end of
the lens, and a negatively powered central region. One notable
difference is the shift of concentration of N-F2 from the center
of the lens to the lens surfaces. The large central region of the

Fig. 17. (A) Conventional Cooke triplet design. (B) Converted and
optimized COS design.
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Table 5. Polychromatic RMS Spot Size of Cooke
Triplet Homogeneous Parent Lens and Optimized GRIN
Solution from Paraxially Reconstructed Starting Point

RMS Spot Size, Table 4 Waveband (µm)

Field Angle (◦) Homogeneous Parent GRIN Optimized

0.0 10.2 6.8
7.0 14.9 5.6
14.0 34.3 8.3
17.0 35.9 10.5
20.0 22.6 13.8

Fig. 18. Relative composition of optimized COS reconstructed
from the Cooke triplet.

lens dominated by air indicates that should a smaller1N GRIN
combination be required for manufacturing feasibility, the
solution may function well as two lenses separated by an air gap
containing the aperture stop.

8. CONCLUSIONS

The optical design of generalized GRIN continuous optical
systems (COS) is a significant optical design challenge, due
to a very large parameter space and computationally intensive
raytracing. We have demonstrated a method to simplify the
optimization approach by starting point generation, based on
the choice of COS that share equivalent paraxial properties to
homogeneous lenses. This was achieved by smoothing of the
discrete, segmented paraxial ray paths of homogeneous systems
to target paraxial GRIN ray trajectories, followed by calculation
of the requisite GRIN properties using a paraxial raytracing
equation for GRIN media and the Lagrange invariant; a tech-
nique we refer to as paraxial reconstruction. These converted
designs successfully replicate the first-order optical properties of
the parent design with strong fidelity.

We have demonstrated several paraxial reconstructions of
common lens system types, yielding COS with comparable
optical performance to their homogeneous parent solutions
following finite-ray optimization. Furthermore, we have
demonstrated that the technique is extensible to finite waveband
systems through reconstruction at multiple wavelengths.

With the present technique, the Seidel aberrations of the
parent system are not converted; however lens design principles
such as bilateral symmetry of rays about the aperture stop apply

for GRIN media, yielding starting points corrected for aberra-
tions such as coma, lateral color, and distortion. Aberrations of
the COS solution can be further addressed through manipula-
tion of the fourth-order N4(z) coefficient and through aspheric
end surfaces without affecting the first-order properties, or quite
simply by optimization of a finite ray model. Promisingly, if
this technique is augmented by a fitting approach for a finite
marginal ray on axis, in a manner similar to those outlined in
[6,8], then a deterministic procedure for a starting solution
corrected for spherical aberration and coma is possible (by con-
straining the image plane ray to fulfill the Abbé sine condition).
With continuing development, paraxial reconstruction may
serve as the foundation of a powerful suite of techniques to
simplify generalized GRIN design and optimization problems.
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