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Abstract
In the past years, data has become increasingly im-
portant to more and more domains, leading to more
efficient decision-making. As the amount of col-
lected data grows, there is an increased need for
tools that help with various Information Retrieval
(IR) tasks. One of the most widespread IR tasks is
ad-hoc retrieval which, for a given search query, re-
turns a list of relevant documents from a large cor-
pus ordered by their relevance. Initial Ad-hoc re-
trieval models were based on term matching, which
could not overcome vocabulary mismatch. On one
hand, initial strategies aiming to overcome seman-
tic limitations were adopting query expansion, aug-
menting the initial search query with new terms to
capture more relevant documents. On the other
hand, newer strategies rely on Natural Language
Processing (NLP) for ranking documents by se-
mantic similarity. One such example is retrieve-
and-re-rank models, which retrieve documents by
their lexical similarity and re-rank the retrieved
documents based on semantic similarities, by mak-
ing use of NLP embedding models. This research
focuses on analysing the performance of combining
RM3, a pseudo-relevance feedback query expan-
sion strategy, with the semantic re-ranking model
TCT-ColBERT. This model is compared with the
lexical retrieval model BM25 which serves as a
benchmark, as well as with its components RM3
and TCT-ColBERT. Results indicate that on certain
tasks, the model performs better (up to 7%), while
on other tasks it performs worse (up to 3%).

1 Introduction
Information Retrieval (IR) is the field of information science
which identifies and retrieves resources relevant to an infor-
mation need, usually specified as a search query. Ad-hoc
retrieval is an IR task which finds a list of relevant documents
from a larger corpus, ranking them by their relevance to the
search query. One popular example is web searches, which
list the most relevant web pages for a user’s query.

Initial models proposed for ad-hoc retrieval tasks, like BM25
[1], rely on term matching between search queries and
documents. This means that an important metric for ranking
documents is how often terms from the query occur within
the document. This method is computationally inexpensive,
given proper indexing data structures such as Inverted
Indices, but they are fairly limited. As these models rely on
the exact matching of terms, they ignore semantic similarities
between words, such as synonyms, which is illustrated in
Figure 1.

One of the solutions proposed to overcome the vocabulary
mismatch is query expansion, a technique which augments
a search query with new terms, aiming to infer user intent.
A popular strategy for query expansion is pseudo-relevance

Figure 1: Example of how term matching may lead to undesired
ranking.

feedback of retrieved documents (PRF QE), which first
identifies relevant documents and then adds terms important
terms from the relevant retrieved documents to the initial
search query and re-runs the retrieval stage with the newly
obtained query. One pseudo-relevance feedback query
expansion model is RM3 [2]. Although query expansion
may perform better than the standard BM25 model, it is still
heavily dependent on keyword-based searching and can’t
take contextual information into account.

Another approach to incorporate semantic meaning from
search queries proposes using state-of-the-art Neural Lan-
guage models such as OpenAI’s GPT-4 [3] or Google’s
BERT [4] for document ranking. As recent developments
in the field of Natural Language Processing (NLP) lead to
improved results of these models, literature analysed the per-
formance of these models for various Information Retrieval
tasks through various dense retrieval models. The main idea
is to represent both queries and documents as embeddings
in a high-dimensional space and rank documents’ relevance
based on the similarity between their vector representation.
These techniques can achieve good results for document
ranking, but they increase the computation cost and resource
utilisation by orders of magnitude [5] and are not explainable.

To overcome the limitations of dense retrieval models, a
combination of both dense and sparse retrieval was proposed
through semantic re-ranking. These models combine the
two approaches into a two-step process: first, the documents
are retrieved using a lexical model. Then, the retrieved
documents are re-ranked based on a combination of their
semantic similarity and lexical similarity.

This research proposes to analyse the utility of query expan-
sion for semantic re-ranking models. More specifically, the
performance difference is measured when adding an RM3
Query Expansion stage to the initial retrieval of seman-
tic re-ranking model TCT-ColBERT [6] - an adaptation of
the Bidirectional Encoder Representations from Transform-
ers (BERT) model for Information Retrieval tasks. The re-
search will cover the following sub-questions:

• RQ1: Does combining query expansion with semantic
re-ranking models lead to better results for ad-hoc re-
trieval tasks?

• RQ2: How does the number of retrieved documents in
the first stage impact the performance for query expan-
sion combined with a semantic re-ranking model?

• RQ3: What type of queries benefit from a query expan-
sion stage in a retrieve-and-re-rank pipeline?
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The motivation to test if the retrieve-and-re-rank benefit
from query expansion is that semantic re-ranking models
rely on lexical retrieval for the initial stage. However, it
may still happen that documents are not retrieved due to
lexical models’ inability to overcome vocabulary mismatch.
For example, if the query is “jaguar animal speed”, lexical
retrievers may ignore documents containing terms like “cat”,
as illustrated in Figure 1. The hypothesis is that models like
RM3 could help augment the initial query to include impor-
tant terms which are initially ignored by exact matching.

This paper is structured as follows. The first chapter explains
the background knowledge required for understanding this re-
search. The next chapter describes the methodology used,
including the experimental setup and datasets. Next, the re-
port will dive into the results, analysing for which tasks it
performs better and for which tasks it performs worse. After-
wards, the responsible research considerations are discussed,
followed by the limitations and future work. Lastly, the con-
clusion of the research is presented.

2 Background
This chapter aims to offer readers additional context on how
the information retrieval pipelines are structured. Each IR
pipeline consists of multiple stages (at least one). Each stage
takes an input, applies a transformation to it and returns the
resulting output. These stages can be chained together, to
allow for consecutive operations. There are three types of
transformations, described in the upcoming subsections.

2.1 Retrieval Stage
The retrieval stage takes as an input a set of queries
and returns a set of (document, query) pairs. Each
(document, query) pair is associated a lexical score, where
the higher the score, the more relevant the document is for the
query. For this research, the model used for retrieval is Okapi
BM25 [1]. BM25 scores (document, query) based on the
following formula. Notations are explained in Table 1.

score(D,Q) =

n∑
i=1

ln(
N − n(qi) + 0.5

n(qi) + 0.5
+ 1)·

· fdoc(qi, D) · (k1 + 1)

fdoc(qi, D) + k1 · (1− b+ b · |D|
avgdl )

· (k3 + 1) · fq(qi)
k3 · fq(qi)

BM25 can be used together with stemming of words. Stem-
ming can be performed to match words that belong into the
same lexical family. For example, when indexing the corpus
of documents, the term “running” is removed its suffix and
is stored as “run”. For this research, Porter’s stemming
algorithm is used, with the aim of ranking documents with
terms from the same lexical family as terms in the search
query as more relevant.

For an efficient retrieval, the corpus of documents is indexed
using an inverted index data structure. For each term of the
dictionary, a posting list is stored which contains the fre-
quency of the term in each document, making the score cal-
culation efficient.

Table 1: Summary of notation for BM25 scoring formula.

Symbol Meaning

D represents a candidate document

qi represents a search term of the query

N the total number of documents in the collection

n(qi) is the number of documents containing qi

fq(qi) is the number of times that the keyword qi oc-
curs in the search query

|D| is number of terms in document D

avgdl is the average number of terms in the collection
of documents

k1, k3, b tunable parameters, which for this experiment
are set to: k1 = 1.2, k3 = 8, b = 0.75

2.2 Query Expansion Stage
The PRF QE stage takes as an input a set of
(document, query) pairs and returns a set with the re-
written queries. This research uses RM3, a pseudo-relevance
feedback model which assumes that good expansion terms
will occur frequently in the feedback set (therefore assumed
representative), but infrequently in the collection as a whole
(therefore assumed sufficiently discriminative). As described
by Abdul-Jaleel et al. [2], RM3 uses a modified version of
the Lemur language modelling toolkit to perform retrieval
with a maximum likelihood query model: P (w|Q), which
ranks documents based on Kullback-Leibler divergence with
P (w|Q):

score(D,Q) =
∑
w

P (w|Q) · log P (w|Q)

P (w|D)
(1)

The relevance model requires a prior ranking of the collec-
tion, based on the maximum likelihood query model. Let
R be the set of ranked documents for a given query. For
computational efficiency without noticeable performance de-
crease, R doesn’t include the entire collection of documents,
but rather only the highest-scoring k documents are used.
Firstly, RM3 computes the relevance models, as described in
Equation 2, where R is the set of relevant documents. Then,
terms are ordered in decreasing order of probability, out of
which the top M documents are chosen, with the weights nor-
malised to sum to 1. Lastly, because the original query is no
longer taken into account, the relevance model is interpolated
with the original query, based on Equation 3.

P (w|R) =
∑
D∈R

P (w|D)
P (Q|D)∑

D′∈R P (Q|D′)
(2)

P ′(w|R) = λ · P (w|R) + (1− λ) · P (w|Q). (3)

2.3 Semantic Re-ranking Stage
The semantic re-ranking stage takes as an input a set
of (document, query) pairs and returns a new set of
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(document, query) pairs by re-ranking each pair by incor-
porating a notion of semantic similarity. This stage enhances
traditional information retrieval systems by incorporating
contextual understanding, leading to more relevant search
results. Such methods leverages advanced natural language
processing techniques to better match the user’s intent with
the available documents. This research focuses specifically
on interpolation-based re-ranking using BERT-based dual-
encoders models.

During this stage, each query q is tokenised and its tokens are
encoded into a dense-represented space. For all relevant doc-
uments {d1, d2, ..., dm} retrieved for q, the vectorial repre-
sentations are retrieved from the indexed collection, based on
the documents’ unique identifiers. Next, the semantic score is
calculated: S(Q,D) =

∑n
i=1 maxm

j=1sim(Eqi , Edj
), where

sim(Eqi , Edj
) represents the similarity between ith token

qi ∈ q and jth token dj ∈ D, represented as their cosine
similarity.
Interpolation-based re-rankers account for both semantic and
lexical similarity, giving more importance to either of the two
components through a tunable α parameter. This implies each
(document, query) pair is re-ranked based on a linear com-
bination of their semantic and lexical scores:

scoreinterpolated = α · slexical + (1− α) · ssemantic (4)

The semantic index is pre-computed by embedding all doc-
uments in the corpus beforehand, using fast-forward in-
dices [7]. When indexing, each document is split into to-
kens. Each token is then encoded into a densely-represented
space. In this report, TCT-ColBERT [8] was used for both
query and document encoding. This model was pre-trained
on MS Marco Passage dataset [9].

3 Experimental Setup
This chapter describes how the experiments are set up, cover-
ing the models and datasets used. Next, this section explains
the evaluation metrics used for analysing the performance of
the models and the parameters choice.

3.1 Models
Throughout the paper, 4 models have been used to compare
the performance for ad-hoc retrieval tasks:

1. BM25 [1] - a simple one-stage retrieval pipeline, which
serves as a benchmark for this research.

2. BM25 → RM3 [2] - a pseudo-relevance feedback query
expansion model, with three stages. The first stage
retrieves the most relevant k documents using BM25.
Next, a query expansion stage is employed, augment-
ing the initial search query with representative and dis-
criminative terms from the M most relevant documents
found in the previous stage. Lastly, another retrieval
stage takes place, which uses the same BM25 model,
but with the expanded search queries. The scoring func-
tion takes into account the weight assigned to each term
from the previous stage. For convenience, throughout
this paper this model will be referred to as “RM3”.

3. BM25 → TCT-ColBERT [6] [8] - a model which con-
sists of two stages. First, the retrieval stage retrieves
uses BM25 to get the most relevant k documents for a
search query and to compute the lexical scores. Next, for
each (document, query) pair, the re-ranking stage com-
putes a the interpolated score, based on the similarity be-
tween the embedded search query and the embedding of
the document and on the lexical score, as described in
Section 2.3 and re-ranks all (document, query) pairs.
The model used for embedding documents and queries
is TCT-ColBERT, which is available on Hugging Face1.
Fast-forward indices [7] are pre-computed on the entire
corpus, making the retrieval process more efficient. For
convenience, throughout this paper this model will be
referred to as “TCT-ColBERT”.

4. BM25 → RM3 → TCT-ColBERT - a combination of
the previous two models, with the following stages: first,
the retrieval stage, which uses a BM25 to retrieve the
most relevant k documents for each search query. Next,
the RM3 query expansion stage takes place, followed
by the second BM25 retrieval stage, which keeps only
the most relevant n documents (cutoff rank). Next, be-
cause of the issues with embeddings of stemmed words,
a transform stage rewrites the expanded query back to
the original search query. The last stage is the seman-
tic re-ranking stage, as described for TCT-ColBERT. For
convenience, throughout this paper this model will be re-
ferred to as “RM3+TCT-ColBERT”.

3.2 Evaluation Metrics
For evaluating how IR pipelines perform, there are set of stan-
dard scores which are widely used within the TREC (Text
REtrieval Conference) community. These scores are calcu-
lated based on:

• The qrels (query relevance), which is the score assigned
to each (query, document) pair by assessors, prior to
running the experiment, which are the expected relevant
documents.

• The ranking of documents for a given search query,
which is calculated by the tested IR pipeline.

This research focuses on three evaluation metrics, which are
the official measurements of the TREC DL conference:

1. Mean Reciprocal Rank (RR): a precision score which
is calculated based on the position of the first relevant
document for each query2. The formula is:

RR =
1

|Q|
·
∑
qi∈Q

1

rankqi

where rankqi represents the position of the first relevant
document in the top ranked documents for query qi and
Q represents the set of queries.

2. The normalized Discounted Cumulative Gain (nDCG):
uses a graded labels system and normalises which ranks

1https://huggingface.co/castorini/tct colbert-msmarco
2https://ir-measur.es/en/latest/measures.html#rr
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the highest graded documents on the top. The discon-
tinued cumulative gain is normalised with regards to an
ideal ranking, taking into account both precision of the
ranked documents and their position in the ranking 3.
This is calculated based on:

NDCG =
1

|Q|
·
∑
qi∈Q

DCGqi

IDCGqi

DCGqi =

n∑
j=1

relj
log2(j + 1)

where relj represents the relevance of the jht ranked
document for qi and IDCGqi represents the ideal rank-
ing for qi.

3. Mean Average Precision (MAP): measures the average
precision of a set of queries, where precision is defined
as the number of relevant documents in the top k re-
trieved4. Let Q be the set of queries and in:

MAP =
1

|Q|
∑
qi∈Q

AP (qi)

AP (qi) =
1

|Di|

|Di|∑
j=1

P (j)

j
· rel(j)

where |Di| is the set of ranked documents for query qi,
P (j) is the number of relevant documents for qi in top
j ranked documents and rel(j) is a binary function with
value of 1 if the document at rank j is relevant or 0 oth-
erwise.

Each of these measurements can accept a cutoff parameter
k. This means that for calculating the metric score, only the
highest ranked k documents are used. In the results section,
this is denoted as ”metric @ k” (eg. RR @ 10)

3.3 Datasets
In order to obtain accurate results, a subset of the following
large scale, open evaluation IR benchmark were used:

• BEIR (BEnchmarking IR) [10] - a collection of ro-
bust and heterogeneous evaluation. Out of 18 available
datasets, the following datasets were used: arguana (Ar-
guAna [11]: retrieval of counterargument without prior
topic knowledge), cq (CQADupStack [12]: StackEx-
change duplicate question retrieval) containing 12 sub-
sets with different topics, fiqa (FIQA-2018 [13]: finan-
cial opinion question answering), nfcorpus (NF Cor-
pus [14]: Nutrition Facts question answering), scifact
(SciFact [15]: fact verification) and webis-touche-v2
(Touchè-2020 V2 [16]: argument retrieval).

• TREC (Text REtrieval Conference) Deep Learning
track - evaluation of web searches based on the MS
Marco passage retrieval [9]. Three subsets were
used throughout this paper: trec-dl-2019 [17], trec-dl-
2020 [18] and trec-dl-hard [19], a challenging subset

3https://ir-measur.es/en/latest/measures.html#ndcg
4https://ir-measur.es/en/latest/measures.html#ap

of trec-dl-2019 and trec-dl-2020. The queries were re-
trieved from the Bing search engine’s history and the
query relevancies were judged by NIST (National Insti-
tute of Standards and Technology) assessors.

3.4 Model Parameters
This subsection elaborates on the parameters values used for
the models described in section 3.1. For RM3, the value of λ,
which controls the weight associated to the expanded terms,
was set to 0.6. The number of documents considered in the
set R was empirically set to k = 5 and M , the number of
documents consider for feedback, was set to 3. If k was set to
lower values than 5, it would usually lead to higher accuracy,
but lower exploration rates, while setting it over the value of 5
would result into the opposite. As such, these values would
strict the number of terms added but still leave enough room
for exploration of new terms. To make computation faster,
the retrieval stage of TCT-ColBERT and the second retrieval
of RM3+TCT-ColBERT were limited to 1000 documents.
This was done to make computations more efficient, as
it didn’t impact performance noticeably, but still allowed
enough documents to be re-ranked. The interpolation weight
α was set to 0.05 on most datasets, which yielded the best
results when tuning on the MS Marco train dataset. On
datasets with available train sets, the value of α was set to
the value for which TCT-ColBERT yielded the best RR score.

Tuning the parameters of RM3 doesn’t always lead to im-
proved scores. For finding the parameters which lead to the
best performance, an RM3 model was used, for which an
exhaustive search took place to measure which parameters
would yield the best RR score on the training subsets of fiqa,
scifact and nfcorpus. During the search, the combination of
two parameters were tested: M ∈ {3, 5, 7, 10}, representing
the number of documents for feedback, and n ∈ {3, 10, 15},
representing the number of terms added (total of 12 combi-
nations). Then, on the evaluation sets of the three datasets
mentioned before, two models were compared: RM3+TCT-
ColBERT with tuned parameters (the combination which
yielded the best results on the train set) and RM3+TCT-
ColBERT with the parameters described at the beginning of
the section. To test the hypothesis that these two models
perform similarly, a significance t-test was run, whose re-
sult can be seen in Table 2. Since the p-value was always
greater than 0.05, the hypothesis is rejected, which means the
models perform similarly.

4 Results
This chapter describes the outcome of these experiments, dis-
cussing the results for each research question mentioned in
the introduction. The detailed results can be found in the the
Appendix, Section A.3.

4.1 Performance evaluation when combining QE
with semantic re-ranking models

This subsection explores the performance impact when
adding a RM3 query expansion stage to a TCT-ColBERT
retrieve-and-re-rank pipeline. The results will be compared
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Table 2: Statistical t-test, which examines if tuned RM3 param-
eters yield better performance for RM3+TCT-ColBERT. Each col-
umn contains the p-value for the metrics described in the column
header for the t-test. The null hypothesis is that these models per-
form similarly.

Dataset RR @ 10
p-value

nDCG @ 10
p-value

MAP @ 100
p-value

scifact 0.392 0.516 0.280

nfcorpus 0.618 0.771 0.807

fiqa 0.895 0.887 0.539

against BM25, as well as against the individual sub-models
RM3 and TCT-ColBERT.

4.1.1 Tasks and Datasets
For running the experiments, a wide variety of tasks and
datasets have been chosen, described in Section 3.3. These
task are different by nature and topic, so the results should be
representative as a whole for general ad-hoc retrieval tasks.
More details about the used datasets are listed in the Ap-
pendix, in Table 4.

4.1.2 Experimental Findings
The results indicate that the performance of the models de-
pends on the nature of the IR task and dataset. As illustrated
in Figure 2, when using the official BEIR metric “nDCG”
with a cutoff parameter k = 10, RM3+TCT-ColBERT per-
forms considerably better than BM25 and RM3 on TREC DL
datasets (0.691 compared to 0.493 and 0.504 on trec-dl-2020,
0.718 compared to 0.479 and 0.515 on trec-dl-2019 and
0.404 compared to 0.274 and 0.270 on trec-dl-hard). On the
BEIR datasets, the performance varies: it is either slightly
better or worse, but overall quite close. The datasets where
RM3+TCT-ColBERT performs slightly worse are datasets
with specialised domains, like statistics (cq/stats: 0.265 and
0.264 compared to 0.249) or LaTeX (cq/tex: 0.234 and 0.229
compared to 0.221). When taking all datasets into account,
the average nDCG score increases from 0.334 (BM25) and
0.330 (RM3) to 0.367 (RM3+TCT-ColBERT). This improve-
ment can also be noticed when using “RR @ 10”: from 0.371
(BM25) and 0.354 (RM3) to 0.406 (RM3+TCT-ColBERT),
as well as “MAP @ 100”: from 0.261 (BM25) and 0.257
(RM3) to 0.289 (RM3+TCT-ColBERT).

When comparing the RM3+TCT-ColBERT to the standalone
TCT-ColBERT model, it performs better on most datasets.
The best result is obtained on the trec-dl-hard dataset, where
adding the extra QE resulted in a 7.7% improvement in RR
score, a 4% improvement in MAP score and 2.5% increase
in nDCG. The biggest negative performance hit was on the
arguana, where the decrease in RR is about 3.5%, 3.4% in
MAP and 2.6% in nDCG. On average, there is an overall in-
crease of approximately 1% in all three scores (“nDCG @
10” is increased from 0.366 to 0.368, “RR @ 10” from 0.402
to 0.406 and “MAP @ 100” from 0.287 to 0.289). The re-
sults when using “RR @ 10” and “MAP @ 100” metrics can
be seen in Figures 4 and 5, in the Appendix.

4.2 Influence of the number of retrieved
documents on RM3+TCT-ColBERT
performance

This section aims to reason about how choosing different
number of retrieved documents by BM25 affects the rel-
ative performance of RM3+TCT-ColBERT with regards to
TCT-ColBERT. Let ∆RR be the difference in RR score of
the two models, calculated as: RRRM3+TCT−ColBERT −
RRTCT−ColBERT . Figure 3 shows how choosing different
cutoff values k increases or decreases ∆RR, depending on
the nature of the task and dataset. Figure 3a illustrates that
retrieving a smaller number of candidate documents yields
better relative performance for RM3+TCT-ColBERT, but as
k becomes larger ∆RR → 0. An important thing to note
is that the dataset used for Figure 3a, webis-touche-v2, has
very short queries, which seem to benefit from the extra terms
added by RM3 for smaller k values. On the other hand, for
trec-dl-hard and arguana, the opposite happens: ∆RR di-
rectly increases as the number of candidates k increases, as
seen in Figures 3d and 3c. Such conclusion cannot be drawn
for all datasets. For instance, Figure 3b shows that such cor-
relations don’t occur on the fiqa datasets. As a result, best the
number of candidate documents for query expansion depends
very much on the nature of the dataset; on some datasets a
lower number k achieves better comparative results, on other
datasets a higher k leads to a smaller ∆RR, while on the rest
of the datasets there is no direct correlation between relative
performance and the number of retrieved documents.

4.3 Examples of queries that benefit from QE in a
retrieve-and-re-rank pipeline

For an accurate understanding of which queries benefit from
query expansion, it is beneficial to look into some examples
where query expansion lead to an increased RR score,
when comparing RM3+TCT-ColBERT with TCT-ColBERT.
Queries from Table 3 lead to the highest individual increase
in RR which implies that QE lead to the model ranking a
more relevant higher. This is justified by the fact that RM3
yields a higher lexical score, which influences the result of
the re-ranking.

The first example is: “should social security be priva-
tized”, extracted from webis-touche-v2. Adding terms like
“invest-”, “poor-” and “incom-” lead to the retrieval of a
document which accurately captures the intent of the initial
search query, even if the added terms have a lower weight.
For the given search query, the most relevant document
has ID: “2d6f4e75-2019-04-15T20:22:43Z-00007-000”.
Both RM3 and BM25 rank the document on the third
position with lexical scores 28.741 and 26.665, respec-
tively. After re-ranking, RM3+TCT-ColBERT ranks this
document of the first position (leading to a RR score of
1) and TCT-ColBERT on the second position (leading to
a RR score of 0.5). This difference is due to the higher
∆scorelexical which has a 0.05 weight in the final score:
∆scoreinterpolated = (28.741− 26.665) ∗ 0.05 = 0.104 .

The second example is “anthropological definition of
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Figure 2: Results of running the experiments from RQ1 using the “nDCG @ 10” metric. The datasets used are described on the X-axis,
while the Y-axis contains the nDCG values for each model.

(a) webis-touche-v2 dataset (b) fiqa dataset

(c) arguana dataset (d) trec-dl-hard dataset

Figure 3: The difference in RR @ 10 scores, based on different numbers of candidate documents considered for RM3 query expansion. The
X-axis shows the number of candidate documents considered, while the Y-axis displays ∆RR.

environment” from trec-dl-hard. Because of the newly
added terms like “human” or “ecolog-”, the document
which is most relevant (Document ID: 8412683) has a
higher score for RM3+TCT-ColBERT (67.327) than for
TCT-ColBERT (67.293). This difference in score is given
by the difference in lexical score between RM3 and BM25:
∆scorelexical = 24.171 − 23.502 = 0.670. The lexical
score is then multiplied by α = 0.05 when calculating the
overall score, which leads to the difference in ranking of the
two models and to a ∆RR = 0.8.

The last example is a longer search query from fiqa: “for
insurance why should you refuse 4 000 year for only 10
years and prefer 500 year indefinitely”. After the query
expansion stage, the re-written query contains 15 terms
with low individual weights. The relevant document as
specified in the QRels is the document ID 462892. Be-
cause of the newly added terms by QE, the lexical score

before re-ranking is 31.191 for RM3+TCT-ColBERT
and 19.616 for TCT-ColBERT, leading to a total of
∆scoreinterpolated = (31.191− 19.616) · α(0.05) = 0.578.
As such, document with ID 462892 is ranked first by
RM3+TCT-ColBERT (with a score of: 68.173) and 8th

by TCT-ColBERT (with a score of: 67.594), resulting in
∆RR = 0.875.

To sumarise, it is difficult to identify a topology of datasets
which would benefit from query expansion in semantic re-
ranking models for all queries. The provided examples only
illustrate a higher ∆RR, but on some queries, ∆RR can be
negative. As such, the performance is highly dependent on
the nature of the query and of the dataset, which implies there
is no one solution which performs better on all tasks.
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Table 3: Examples of query expansions with highest gain in RR per query. Some documents, which were too long, were only cited partially.
The numbers in the paranthesis indicate the weight of each term and only new terms were highlighted. The terms have been stemmed.

Augmented Query Retrieved Document

webis-touche-v2: “should social security be privatized” (Query ID: 5)

social(0.28) invest(0.016)
privat(0.260) elderli(0.031)
benefit(0.026)
system(0.016) secur(0.279)
poor(0.045) retire(0.020)

incom(0.022)

Privatizing social security would enable investment of savings. Commentator Alex
Schibuola argues that: ”If Social Security were privatized, people would deposit their
income with a bank. People actually save resources that businesses can invest . We, as

true savers, get more resources in the future.”[1] As a result private accounts would also
increase investments , jobs and wages. Michael Tanner of the think tank the Cato
Institute argues: ”Social Security drains capital from the poorest areas of the country,

leaving less money available for new investment and job creation. Privatization would
increase national savings and provide a new pool of capital for investment that would be
particularly beneficial to the poor .” [...] (Document ID:
2d6f4e75-2019-04-15T20:22:43Z-00007-000)

trec-dl-hard: “anthropological definition of environment” (Query ID: 19335)

human(0.043)
attempt(0.022)
ecolog(0.055)

environ(0.233)
definit(0.200)
journal(0.022)
understand(0.022)
anthropolog(0.316)
societi(0.044) rel(0.022)
influenc(0.022)

“ Ecological anthropology is defined as the study of cultural adaptations to environments.
The sub-field is also defined as, the study of relationships between a population of
humans and their biophysical environment .he abstract noun anthropology is first

attested in reference to history. Its present use first appeared in Renaissance Germany in
the works of Magnus Hundt and Otto Casmann. Their New Latin anthropologia derived
from the combining forms of the Greek words anthrōpos (ánthrōpos, ) human and
(logos, lógos ). study” (Document no: 8412683)

fiqa: “for insurance why should you refuse 4 000 year for only 10 years and prefer 500 year indefinitely” (Query ID: 5155)

indefinite(0.100) 10(0.096)
salari(0.048) year(0.050)
current(0.022)

hous(0.036) 000(0.090)
onli(0.050) average(0.060)
500(0.091)
scenario(0.027)

prefer(0.050) refuse(0.05)
insur(0.075) 4(0.050)

“The breakeven amount isn’t at 8 years. You calculated how many years of paying $500 it
would take to break even with one year of paying $4000. 8 x 10 years = 80 years. So by
paying $500/year it will take you 80 years to have spent the same amount ($40000 total)
as you did in 10 years. At this point it may seem obvious what the better choice is.
Consider where you’ll be after 10 years: In scenario 1 you’ve spent $5000 ($500*10)
and have to continue spending $500/year indefinitely. In scenario 2 you’ve spent $40000
($4000*10) and don’t have to pay any more, but you currently have $35000 ($40000 -
$5000) less than you did in scenario 1. [...]” (Document no: 462892)

5 Responsible Research

This section describes how the principles of responsible re-
search were implemented throughout the project. First, re-
producibility will be discussed, illustrating the steps taken to
make it accessible for anyone to reproduce the results. Next,
ethical considerations will be presented.

5.1 Open Science and Reproducibility

This research was thought from the beginning to adhere to the
principles of the “Netherlands Code of Conduct for Research
Integrity 2018”: Honesty, Scrupulousness, Transparency, In-
dependence, Responsibility. Firstly, for a transparent and re-
sponsible research, all the source code used in this report is

made publicly available on Github5. The code is built on top
of PyTerrier6, an open-source framework which allows for a
declarative implementation of retrieval pipelines. The mod-
els used are made available through a PyTerrier plugin7 in
the case of RM3, and through Huggingface8 in the case of
TCT-ColBERT. The datasets9 and evaluation methods10 are
standard benchmarks for IR tasks, which makes them both
popular and publicly available. The datasets have also been

5https://github.com/tomighita/ir-query-expansion
6https://github.com/terrier-org/pyterrier
7https://github.com/terrierteam/terrier-prf/
8https://huggingface.co/castorini/tct colbert-msmarco
9https://ir-datasets.com

10https://ir-measur.es/en/latest/measures.html
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curated to ensure that no sensitive information can be leaked.
Secondly, for an honest and scrupulous research, the exper-
iments results are genuine. They present both positive and
negative results, without cherry-picking. The variety in the
datasets used should be representative enough to support the
conclusions drawn. Lastly, the independence was achieved
through the way the course was organised. Authors were
given freedom to decide the direction of the research, but of-
fering enough support through ethical oversight of the super-
visors and through organised peer-review amongst students.

5.2 Ethical Considerations
As recent developments in the field of NLP push for more
powerful and resource-intensive models, this report wishes to
anaylse a different path for IR tasks. The intended results is to
discover models that are both capable and efficient. By com-
bining both efficient lexical retrieval with performant seman-
tical re-ranking models, good performance can be achieved
without compromising the efficiency of the model. Focusing
the research on more sustainable approaches, the impact of
such studies can have positive environmental consequences.

6 Limitations and Future Work
This chapter will discuss the limitations imposed by the time
and resource constraints and will suggest recommendations
to further elaborate on the topic.

6.1 Limitations
The results shown in this paper are constrained by two
factors: time, given the project’s nine week duration, and
hardware limitations, as most of the results were run on
a single machine (Apple M1 Macbook Pro with an M1
processor and 16GB of RAM). With the current setup, some
of the experiments, like indexing datasets, were too complex
in terms of resource consumption and had to be executed on
DHCP [20], to run on dedicated GPUs.

Because of the aforementioned constraints, these experiments
only include one query expansion strategy, namely RM3, and
one semantic re-ranking model, TCT-ColBERT. There are
newer and better performing models [21] [22], but which
have an increased implementation complexity or significantly
larger sizes. Working with such models would increase the
experiments’ running time drastically. The constraints also
impacted the amount of datasets used, both in number (only
20 datasets were used) and in size (more comprehensive
datasets such as msmarco-passage-v2 exist, but these datasets
are order of magnitudes larger - 138M passages vs 8M in
msmarco-passage-v1).

6.2 Future Recommendations
Following the limitations described in the previous subsec-
tion, the recommendations to expand on this study follow two
dimensions: models and datasets. More precisely, the recom-
mendation would be to experiment by combining newer and
better performing embedding models like gte large [23] or
arctic-embed [24] as the re-rankers, as well as other query
expansion strategies such as BertQE [22] which can provide

contextualised query expansion. As new embedding models
also come in multiple sizes (which vary in the dimension of
vectors), another recommendation would be to compare the
impact of QE on different-sized models. The final recom-
mendation would be to run these experiments against larger
and more comprehensive datasets, like msmarco-passage-v2.

7 Conclusion
The goal of this research was to to analyse the utility of
query expansion for semantic re-ranking models. To test how
adding a QE stage impacts a retreve-and-rerank pipeline,
experiments have been run against different ad-hoc retrieval
tasks, with datasets ranging from general topics to specialised
content like Financial or Health data.

Results indicate that adding a query expansion stage can lead
to both better and worse performance, depending on the na-
ture of the dataset. When adding new terms to the initial
search query through PRF, the retrieved documents can be
aligned with the user intent or far from it. QE adds an ex-
ploratory approach to retrieving documents with the intent to
overcome vocabulary mismatch, where the results are depen-
dent on how discriminative and representative of the under-
lying language models are. It is difficult to come up with a
model that performs well on all tests, so fine-tuning for each
tasks is highly advised for achieving the best performance.
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A Appendix
A.1 Datasets

Table 4: Table presenting the datasets used to run the experiment for RQ1. The entire list of datasets can be found at: https://ir-datasets.com/
beir.html.

Dataset # Documents # Queries # QRels Task

trec-dl-2020 3213835 43 16258 Queries from TREC Deep Learning 2019, sampled from
MS Marco, judged by NIST assesors

trec-dl-2019 3213835 45 9098 Queries from TREC Deep Learning 2020, sampled from
MS Marco, judged by NIST assesors

trec-dl-hard 3213835 50 8544 A challenging subset of the MS Marco document dataset

arguana 8674 1406 1406 Argument Retrieval

nfcorpus 3633 323 12334 Medical Information Retrieval (Nutrition Facts)

fiqa 57638 648 1706 Financial Opinion Question Answering

scifact 5183 300 339 Scientifical Fact Verification

webis-touche-v2 3633 323 12334 Argument Retrieval

cq/android 22998 699 1696 Subset of Stack Exchange android sub-forum used for du-
plicate question retrieval

cq/english 40221 1570 3765 Subset of Stack Exchange english sub-forum used for du-
plicate question retrieval

cq/gaming 45301 1595 2263 Subset of Stack Exchange gaming sub-forum used for du-
plicate question retrieval

cq/gis 37637 885 1114 Subset of Stack Exchange Geographic Information Sys-
tems sub-forum used for duplicate question retrieval

cq/mathematica 16705 804 1358 Subset of Stack Exchange Mathematics sub-forum used
for duplicate question retrieval

cq/physics 38316 1039 1933 Subset of Stack Exchange Physics sub-forum used for du-
plicate question retrieval

cq/programmers 32176 876 1675 Subset of Stack Exchange Programming sub-forum used
for duplicate question retrieval

cq/stats 42269 652 913 Subset of Stack Exchange Statistics sub-forum used for
duplicate question retrieval

cq/tex 68184 2906 5154 Subset of Stack Exchange LaTeX sub-forum used for du-
plicate question retrieval

cq/unix 47382 1072 1693 Subset of Stack Exchange Unix sub-forum used for dupli-
cate question retrieval

cq/webmasters 17405 506 1395 Subset of Stack Exchange webmasters sub-forum used for
duplicate question retrieval

cq/wordpress 48605 541 744 Subset of Stack Exchange Wordpress sub-forum used for
duplicate question retrieval
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A.2 Extra Results

Figure 4: Results of running the experiments from RQ1 using the “RR @ 10” metric. The datasets used are described on the X-axis, while
the Y-axis contains the RR values for each model.

Figure 5: Results of running the experiments from RQ1 using the “MAP @ 100” metric. The datasets used are described on the X-axis,
while the Y-axis contains the MAP values for each model.
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A.3 Detailed Results

Table 5: Results of the experiment on the msmarco-passage/trec-dl-
2020 dataset:

RR(rel=2)@10 nDCG@10 AP(rel=2)@100

BM25 0.614675 0.493627 0.275282

RM3 0.586464 0.504314 0.299899

TCT-ColBERT 0.789506 0.686044 0.446461

RM3+TCT-ColBERT 0.796649 0.691352 0.457449

Table 6: Results of the experiment on the msmarco-passage/trec-dl-
2019/judged dataset:

RR(rel=2)@10 nDCG@10 AP(rel=2)@100

BM25 0.639655 0.479540 0.232165

RM3 0.606681 0.515595 0.251896

TCT-ColBERT 0.807752 0.692802 0.388712

RM3+TCT-ColBERT 0.857364 0.718088 0.403819

Table 7: Results of the experiment on the msmarco-passage/trec-dl-
hard dataset:

RR(rel=2)@10 nDCG@10 AP(rel=2)@100

BM25 0.415056 0.274333 0.135798

RM3 0.389222 0.270870 0.143734

TCT-ColBERT 0.531222 0.394371 0.221447

RM3+TCT-ColBERT 0.572056 0.404091 0.230071

Table 8: Results of the experiment on the arguana dataset:

RR@10 nDCG@10 AP@100

BM25 0.225617 0.342442 0.236988

RM3 0.207798 0.308206 0.222128

TCT-ColBERT 0.214414 0.319316 0.227657

RM3+TCT-ColBERT 0.206548 0.296615 0.218786

Table 9: Results of the experiment on the nfcorpus dataset, with
α = 0.5:

RR@10 nDCG@10 AP@100

BM25 0.534378 0.322219 0.143582

RM3 0.523259 0.331467 0.154988

TCT-ColBERT 0.544943 0.328974 0.148259

RM3+TCT-ColBERT 0.534144 0.333020 0.153332

Table 10: Results of the experiment on the fiqa dataset, with α =
0.05:

RR@10 nDCG@10 AP@100

BM25 0.310271 0.252589 0.208640

RM3 0.264714 0.228014 0.183207

TCT-ColBERT 0.382270 0.312334 0.260618

RM3+TCT-ColBERT 0.371894 0.308762 0.255465

Table 11: Results of the experiment on the scifact dataset, with α =
0.1:

RR@10 nDCG@10 AP@100

BM25 0.632427 0.672167 0.626749

RM3 0.562431 0.622227 0.559660

TCT-ColBERT 0.652175 0.686199 0.644616

RM3+TCT-ColBERT 0.641512 0.680644 0.632925

Table 12: Results of the experiment on the webis-touche-v2 dataset:

RR@10 nDCG@10 AP@100

BM25 0.622846 0.342774 0.209593

RM3 0.567282 0.346563 0.219955

TCT-ColBERT 0.630977 0.356660 0.224018

RM3+TCT-ColBERT 0.636451 0.356520 0.226307

Table 13: Results of the experiment on the cq/android dataset:

RR@10 nDCG@10 AP@100

BM25 0.225617 0.342442 0.236988

RM3 0.207798 0.308206 0.222128

TCT-ColBERT 0.229278 0.345821 0.241444

RM3+TCT-ColBERT 0.221094 0.336209 0.233351

Table 14: Results of the experiment on the cq/english dataset:

RR@10 nDCG@10 AP@100

BM25 0.308292 0.305562 0.279482

RM3 0.298654 0.299227 0.271920

TCT-ColBERT 0.334736 0.326068 0.294369

RM3+TCT-ColBERT 0.335160 0.325327 0.294291

Table 15: Results of the experiment on the cq/gaming dataset:

RR@10 nDCG@10 AP@100

BM25 0.451437 0.468988 0.428994

RM3 0.403317 0.435731 0.386717

TCT-ColBERT 0.454453 0.466276 0.432399

RM3+TCT-ColBERT 0.456849 0.468423 0.434427
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Table 16: Results of the experiment on the cq/gis dataset:

RR@10 nDCG@10 AP@100

BM25 0.275023 0.294736 0.267279

RM3 0.245500 0.270527 0.242725

TCT-ColBERT 0.2511052 0.269571 0.242997

RM3+TCT-ColBERT 0.2531759 0.270903 0.245564

Table 17: Results of the experiment on the cq/mathematica dataset:

RR@10 nDCG@10 AP@100

BM25 0.213123 0.214626 0.186297

RM3 0.190267 0.201326 0.171837

TCT-ColBERT 0.199041 0.203824 0.174633

RM3+TCT-ColBERT 0.201007 0.205585 0.175706

Table 18: Results of the experiment on the cq/physics dataset:

RR@10 nDCG@10 AP@100

BM25 0.329452 0.332119 0.292656

RM3 0.326568 0.329985 0.292167

TCT-ColBERT 0.347660 0.349216 0.311791

RM3+TCT-ColBERT 0.349334 0.350632 0.311989

Table 19: Results of the experiment on the cq/programmers dataset:

RR@10 nDCG@10 AP@100

BM25 0.248566 0.250200 0.223630

RM3 0.242422 0.245588 0.219096

TCT-ColBERT 0.296837 0.290960 0.261580

RM3+TCT-ColBERT 0.297944 0.292677 0.262992

Table 20: Results of the experiment on the cq/stats dataset:

RR@10 nDCG@10 AP@100

BM25 0.257951 0.265192 0.244461

RM3 0.252610 0.264646 0.239736

TCT-ColBERT 0.239209 0.247859 0.226616

RM3+TCT-ColBERT 0.241359 0.249655 0.228460

Table 21: Results of the experiment on the cq/tex dataset:

RR@10 nDCG@10 AP@100

BM25 0.230964 0.234625 0.209105

RM3 0.225147 0.229494 0.204637

TCT-ColBERT 0.219527 0.220506 0.196252

RM3+TCT-ColBERT 0.220484 0.221305 0.197070

Table 22: Results of the experiment on the cq/unix dataset:

RR@10 nDCG@10 AP@100

BM25 0.274394 0.277035 0.251039

RM3 0.264915 0.271276 0.244572

TCT-ColBERT 0.268316 0.272659 0.246095

RM3+TCT-ColBERT 0.270348 0.274693 0.247698

Table 23: Results of the experiment on the cq/webmasters dataset:

RR@10 nDCG@10 AP@100

BM25 0.287533 0.289924 0.261102

RM3 0.284346 0.289954 0.259468

TCT-ColBERT 0.282458 0.284944 0.256601

RM3+TCT-ColBERT 0.284427 0.287200 0.257534

Table 24: Results of the experiment on the cq/wordpress dataset:

RR@10 nDCG@10 AP@100

BM25 0.219477 0.237277 0.215881

RM3 0.213735 0.231421 0.210678

TCT-ColBERT 0.206146 0.220715 0.198848

RM3+TCT-ColBERT 0.206480 0.220006 0.199380
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