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Abstract
We investigate theoretically and experimentally
the singlet-triplet Kondo effect induced by a
magnetic field in a molecular junction. Temper-
ature dependent conductance, G(T ), is calcu-
lated by the numerical renormalization group,
showing a strong imprint of the relevant low
energy scales, such as the Kondo tempera-
ture, exchange and singlet-triplet splitting. We
demonstrate the stability of the singlet-triplet
Kondo effect against weak spin anisotropy,
modeled by an anisotropic exchange. Moder-
ate spin anisotropy manifests itself by lowering
the Kondo plateaus, causing the G(T ) to devi-
ate from a standard temperature dependence,
expected for a spin-half Kondo effect. We pro-
pose this scenario as an explanation for anoma-
lous G(T ), measured in an organic diradical
molecule coupled to gold contacts. We uncover
certain new aspects of the singlet-triplet Kondo
effect, such as coexistence of spin-polarization
on the molecule with Kondo screening and non-
perturbative parametric dependence of an effec-
tive magnetic field induced by the leads.

Introduction
Electronic transport through single molecules
with open shells allows the investigation of
many fascinating phenomena which are rooted
in the physics of the Coulomb blockade. A
prominent example is the observation of an
underscreened Kondo effect on a single entity,
the Au+C60 junction.1 Other examples are the
SU(4) Kondo effect2,3 or a quantum phase tran-
sition driven by the gate voltage.4 The repro-
ducible and sharply defined chemical structure
of molecules could unveil new aspects of the
Coulomb blockade physics, such as many-body
quantum interference.5

Molecules with two open-shell orbitals share
certain features with the so-called double quan-
tum dots (DQDs) and can be theoretically mod-
eled by an Anderson or Kondo model with two
“impurity” spins. These models exhibit a rich
phenomenology, e.g., Refs. 6–11. Here we focus
on a specific case when the two spins couple
antiferromagnetically and are subjected to an
external magnetic field. The low-energy spec-
trum of such an isolated molecule can be ap-
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proximately captured by the Hamiltonian

ĤM = IS1 · S2 + gµBB · (S1 + S2) , (1)

expressed through the spin operators S1 and
S2. The first term in Eq. (1) describes the anti-
ferromagnetic interaction (I > 0) and the sec-
ond term is the Zeeman term, corresponding
to a homogeneous magnetic field B. We show
the magnetic field dependence of the molecu-
lar spectrum in Scheme 1c, adopting the units
gµB = 1. The ground-state has an acciden-
tal two-fold degeneracy if |B| = I. The result-
ing effective two-level system, when coupled to
leads, exhibits the Kondo effect, as predicted in
Refs. 12,13.

Recently, the DQD has gained renewed at-
tention, because it can host topologically-
protected Weyl points. The Weyl points
are particular ground-state degeneracies which
have incarnations in diverse physical contexts,
such as molecular conical intersections,14 semi-
metal band-structures,15 or quantum field the-
ory.16 In the DQD model, the Weyl points
emerge when spin-orbit effects are consid-
ered. Spin-orbit interaction effectively leads to
the addition of spin anisotropies in Eq. (1),
namely, anisotropic exchange interaction and
anisotropic (and dot-dependent) g-tensor.17,18

As long as the anisotropies are weak, a ground-
state degeneracy can be found for at least two
magnetic fields ±B0 related by time-reversal.
These Weyl points were recently reported in
InAs DQD19 by means of a transport spec-
troscopy. When the magnetic field is tuned to
the degeneracy, Scherübl et al. observe a Kondo
resonance.

Motivated by the significance of such
magnetic-field induced level crossings, we re-
visit the transport properties of the DQD near
a degeneracy point. We present a combined ex-
perimental and theoretical effort. In the exper-
imental part of this work, we show conductance
measurements of a molecular junction: a 2,4,6-
hexakis-(pentachlorophenyl)mesitylene diradi-
cal bound to gold contacts. This molecule (see
Scheme 1a) represents a prototypical molecular
DQD, where the two spins sit on the radical
sites. When the magnetic field is tuned to a

ground-state degeneracy, a Kondo-like zero-
bias anomaly (ZBA) is observed. Intriguingly,
the temperature dependence of the ZBA does
not follow a standard, universal behavior of a
Kondo impurity.

Thus motivated, we perform a comprehensive
theoretical analysis of the conductance of the
DQD model in the vicinity of the magnetic-
field induced ground-state degeneracy. Our re-
sults include the effects of weak spin anisotropy.
We calculate the conductance by the numerical
renormalization group (NRG) technique. Our
results complement earlier perturbative stud-
ies of the anisotropy effects in the DQD,18,20

because NRG allows us to address quantum
spin-fluctuations, which eventually lead to the
singlet-triplet Kondo effect. We offer a plau-
sible and robust explanation of the anomalous
temperature dependence observed in our exper-
iment. Moreover, we reveal and analyze certain
new aspects of the DQD, such as coexistence
of spin polarization and Kondo screening at the
degeneracy point and effective magnetic field
induced by the leads.

Methods

Theoretical Methods
Double Quantum Dot in a Magnetic Field

We introduce a model of a molecule coupled
to two leads in which the singlet-triplet de-
generacy can be achieved by an external mag-
netic field. We shall assume that the low-
energy excitations are spin-excitations due to
exchange-coupled spins residing in two orbitals
(two “quantum dots”). Such a model can ap-
ply to organometallic complexes with two open-
shell transition-metal centers, organic diradi-
cals (see an example given in Scheme 1) and
other open-shell molecules with even number of
electrons (for instance, Ref.4).

Coupling the molecule to a pair of leads
induces Kondo correlations, which generally
involve two screening channels.5,13 The two
screening channels can be characterized by two
characteristic temperature scales (Kondo tem-
peratures), T1 and T2.13 In a general molecular-
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Scheme 1: (a) Illustration of a diradical molecule [2,4,6-hexakis-(pentachlorophenyl)mesitylene]
coupled to a pair of leads. (b) Schematic representation of the Hamiltonian: dot 1 couples to the
leads, each lead introduces single-particle level broadening ΓL, ΓR. The dot 2 couples to dot 1 with
an anti-ferromagnetic exchange. (c) Magnetic field dependence of the four lowest energy levels (eqs
3) of the double quantum dot. The accidental singlet-triplet degeneracy occurs when B = I. Inset:
zoom of the crossing. When Dzyaloshinskii-Moryia interaction, Eq. (4), is considered, the original
crossing (dashed lines) turns into an avoided crossing (purple lines) with the splitting 2|∆|.

electronic setup, the coupling of the first and
second dots to the leads is highly asymmetric,
implying an exponential separation of T1 and
T2. Unless T1 ≈ T2, the stronger coupled chan-
nel wins and the low-temperature behavior is
equivalent to a fully-screened Kondo impurity.
Thus, in a major portion of the parameter space
the physics is of a single-channel type. We shall
consider in this work single-channel effects only,
and for this reason we can make simplifying as-
sumptions on the details of the dot-lead cou-
plings. Specifically, we will consider that only
the first dot couples to the two leads, while the
coupling of the second dot to the leads vanishes.
We may thus disregard charge-fluctuations on
the second dot and consider only its spin degree
of freedom, represented by operator S2.

The Hamiltonian of the DQD can be written
as HDQD = H1+Hex+HZ, where the individual
terms read

H1 =
∑
σ

εdd
†
σdσ, + Und,↑, nd,↓ (2a)

Hex = I S1 · S2 (2b)

HZ = B
(
Ŝz,1 + Ŝz,2

)
. (2c)

The term H1 represents the first dot as an An-
derson impurity. The operator d†σ creates an
electron of spin σ ∈↑, ↓, nd,σ = d†σdσ is the num-
ber operator, εd is the onsite energy and U is the

charging energy. The term Hex represents the
antiferromagnetic exchange interaction (I > 0)
between both dots. The operator Si is the spin
operator of the respective dots. The operator
S1 can be expressed in terms of Pauli matrices
(σx, σy, σz) = σ as S1 = 1

2

∑
σ′′σ′ d

†
σ′σσ′σ′′dσ′′ .

Finally, the term HZ represents the homoge-
neous magnetic field in the z-direction; the field
strength B is represented in units of energy (i.e.
gµB = 1).

We investigate the properties of the DQD in
the Coulomb blockade regime, i.e. when the oc-
cupancy of the first dot is approximately one.
Hence, the following hierarchy of energy scales
is assumed: U, |εd| � |B|, I and εd < 0 < U .
Consequently, the lowest-lying eigenstates of
HDQD are triplet and singlet and their energies
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read

|T ↑〉 = |↑↑〉 , ET↑ = εd +B +
I

4
(3a)

|T0〉 = 1√
2
(|↑↓〉+ |↓↑〉) , ET0 = εd +

I

4
(3b)

|T ↓〉 = |↓↓〉 , ET↓ = εd −B +
I

4
(3c)

|S0〉 = 1√
2
(|↑↓〉 − |↓↑〉) , ES0 = εd −

3I

4
(3d)

where in the symbol |↑↓〉 the first (second) ar-
row represents the spin projection of the first
(second) dot, respectively. The spectrum of
HDQD is shown in Scheme 1c, where we can
recognize the ground-state degeneracy point at
B = I.

Anisotropic Exchange

The Hamiltonian HDQD introduced here en-
joys rotational invariance in the spin space.
This is an approximation, because the spin is
not a good quantum number due the to spin-
orbit interaction (SOI). We shall assume that
the latter is associated with the smallest en-
ergy scale (compared to U and I), which holds
true for, e.g., organic molecules. The pres-
ence of weak SOI can be accounted for by
anisotropies in the exchange (Hex) and Zeeman
(HZ) terms.17 Since we consider effects related
to the singlet-triplet crossing, the main effect
of the anisotropies will be to split the degen-
eracy of the |S0〉 and |T ↓〉. As a function of
B, the crossing becomes avoided, as shown in
Scheme 1c.

Without loss of generality, we can con-
sider a specific form of the anisotropy, the
Dzyaloshinskii-Moriya interaction

HA = −2
√
2∆

(
Ŝx
1 Ŝ

z
2 − Ŝz

1 Ŝ
x
2

)
, (4)

where 2|∆| yields the singlet-triplet gap at B =
I. The above interaction exhibits a special di-
rection, the y-axis, which is commonly refer-

enced to as a Dzyaloshinskii-Moriya vector. We
note that the level crossing induced by HA can
be restored by rotating the magnetic field to the
y-axis.18

Coupling to the Leads and Conductance

The complete Hamiltonian of the molecule cou-
pled to (left and right) leads consists of three
terms H = HDQD + Hl + Ht, where the sub-
script labels denote the double quantum dot,
leads and tunneling. The lead Hamiltonian has
a standard form

Hl =
∑
x,kσ

εx,kc
†
x,kσcx,kσ, (5)

where c†x,kσ is a canonical creation operator
and εx,k are single-particle energies. The in-
dices denote spin σ, lead x = L,R (for left
and right) and the remaining quantum num-
bers (e.g. bands and wave-numbers) are encap-
sulated in k. The coupling between the leads
and the DQD is given by the tunneling Hamil-
tonian Ht of the form

Ht =
∑
x,kσ

Vx,kc
†
x,kσdσ + h. c., (6)

where Vx,k is the hybridization matrix element
and h.c. stands for Hermitian conjugate. Each
lead gives rise to a single-particle hybridization
function defined by Γx(ε) = π

∑
k |Vx,k|2δ(ε −

εx,k). We employed hybridization functions
that are constant within a bandwidth 2D, i.e.:
Γx(ε) = Γxθ(D − |ε|).

Near the degeneracy point, the Hamilto-
nian H [Eqs.(2, 4-6)] describes a single-channel
Kondo problem. As stated earlier, a non-
vanishing coupling of the dot 2 to the leads
would imply a two-channel problem, however,
the latter is not commonly expressed in molec-
ular junctions, as the dominant screening chan-
nel takes over, so the problem is effectively sin-
gle channel. A further consequence of hav-
ing both dots coupled to conduction elec-
trons is that an effective exchange coupling
IRKKY S1 ·S2 of the Rudermann-Kittel-Kasuya-
type emerges.8 Hence, the effect of the coupling
of dot 2 to leads can be seen as a renormaliza-
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tion of the exchange I.
For the (linear) conductance the following re-

lationship holds

G(T ) =
2e2

h

4ΓLΓR

(ΓL + ΓR)2

×
∫ ∞

−∞
dω πΓA1(ω)

[
− n′

F(ω)
]

(7)

where Γ ≡ ΓL+ΓR, the derivative of the Fermi-
Dirac distribution is denoted by n′

F, and A1(ω)
is the spectral function of the first dot. The only
effect of the asymmetry of the couplings to both
leads is to modify the prefactor of the integral
in Eq. (7). This motivates us to introduce the
conductance unit

G0 ≡
2e2

h

4ΓLΓR

(ΓL + ΓR)2
. (8)

Estimates of the Energetic Scales in the
Molecular Problem

The model that we introduced is based on con-
siderable simplifications of the electronic struc-
ture of the molecule coupled to leads. The
simplifications can be justified by the fact that
the emergent low-temperature Kondo physics is
always governed by only few parameters (e.g.
TK, G0, I, ∆). However, these parameters do
not directly relate to the energy scales of the
molecule in isolation due to interactions be-
tween the molecule and contacts. We give our
estimates in what follows.

The exchange coupling I characteristic of iso-
lated organic diradicals can be (typically) 40
meV > I > 0.4 meV.21 As we remarked, the
hybridization of both “dots” with the leads can
slightly renormalize I. The parameter ∆ causes
spin anisotropy, and can be estimated by zero-
field splittings. For the diradicals, the values
≈ 50µeV have been reported, for instance in
Ref.22 The value of U can be obtained from
charging energy in the gas-phase, however, the
latter is considerably screened by the lead elec-
trons. We estimate the value of the order of
U ≈ 100 meV. The energy scale |εd| of an An-
derson impurity is, in principle, the approxi-
mate ionization energy of the molecule coupled
to the leads. It is unfortunately not possible

to estimate εd from gas-phase ionization lev-
els because the alignment of the ionization level
with the Fermi energy of the metal contacts is
affected by partial charge transfer. Moreover,
some molecular transport experiments operate
with a gate voltage, allowing the effective tun-
ing of the value of εd. The single-particle ener-
getic broadening Γ is on the order of 5 meV23

and it is sensitive to the binding geometry.

Numerical Renormalization Group Cal-
culations

For the numerical analysis of the present
double-dot model, we have utilized the open-
source code NRG LJUBLJANA.24,25 The spec-
tral functions have been obtained by the full
density matrix algorithm based on the com-
plete Fock-space concept.24,26 The interleaved
method has been used to smoothen the result-
ing spectral functions24,26 while the logarithmic
discretization parameter has been set to Λ = 2.
All results are obtained for εd = −U/2.

Experimental Methods
The molecule used here is a 2,4,6-hexakis-
(pentachlorophenyl)mesitylene diradical27 de-
picted in Scheme 1a. The single-molecule de-
vice used for the transport measurements is
similar to the one used in Ref. 23. By elec-
tromigration28 and self-breaking29 of a gold
nanowire, a nanometer-sized gap is formed, in
which molecules can be trapped to realize a
single-molecule junction. After electromigra-
tion, a dilute solution of the molecules of in-
terest is drop-cast on a chip with 24 electromi-
grated gold nanowires. After pumping away the
solution and cooling down the system in a dilu-
tion refrigerator (T ≈ 40 mK), we typically find
transport signatures of single molecules in 2 to
5 junctions per chip. We measure the DC cur-
rent I through the single-molecule devices as a
function of the applied bias voltage V over the
junction, the voltage applied to a capacitively
coupled gate electrode Vg, the temperature T
(20 mK < T < 4.2 K), and the magnetic field
B.
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Results and discussion

Temperature Dependence of the
Conductance
For the sake of reference, we start by present-
ing the conductance of the SIAM. We note that
when B = I = 0 in Eq. (2), the transport prop-
erties of the DQD are equivalent to the SIAM,
because the second dot is decoupled. We choose
the parameters U = D (used throughout the
whole paper) and Γ = 0.05D, which correspond
to the Coulomb blockade regime. In Figure 1
the black curve represents the temperature-
dependent conductance G(T ), which exhibits
a familiar low-temperature plateau due to the
Kondo effect with TK(SIAM) ≈ 5 · 10−5D (esti-
mated from G(TK) = G0/2). For intermediate
temperatures the conductance is suppressed,
until T reaches the temperature scale of the
charge excitations U/2.

In the next step we couple the second dot:
we choose I = 10−3D so that the lowest-
lying states of the isolated DQD are |S0〉 and
|Tσ′〉, i.e. singlet and triplet states. Figure 1
shows the conductances for different values of
the Zeeman energy B, chosen so that B ∼ I.
The high-T part of G(T ) is almost identical
to SIAM, the differences show up at low tem-
peratures, when T . I. For B = 0.8I the
ground state of the isolated DQD is |S0〉 and
the lowest-lying excited state is |T ↓〉, separated
by an energy gap I − B > TK(SIAM). The
Kondo plateau is thus suppressed for this value
of B. The bump for 10−5 < T < 10−2 corre-
sponds to energy scales of spin excitations. In-
deed, within the independent-particle picture,
the elevated conductance can be traced to two
effects: the thermal population of the |Tσ′〉
states and the thermal broadening of the Fermi
distribution of conduction electrons (see, e.g.,
Ref. 30).

When increasing the value of B toward I, the
singlet-triplet degeneracy point is approached
and the low-temperature plateau emerges.
When B = 0.9I, the spectral function shows
a split-peak (inset of Figure 1), in qualitative
agreement with Ref. 31. For B = 0.915I, G(0)
reaches the unitary limit (red curve in Fig-

ure 1). When the temperature dependences are
compared to the SIAM, we observe two signifi-
cant differences: First, the Kondo temperature
of the DQD is suppressed by a factor ≈ 10−1.
Second, the spin excitations give rise to the
bump at T ≈ I.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

G
(T

)/
G

0

T [D]

SIAM
B = 0.915 I
B = 0.905 I
B = 0.900 I
B = 0.800 I

 0

 0.1

 0.2

 0.3

-4 -2 0 2 4

A
 [

1
/Γ

]

ω  [10
-5

D]

Figure 1: NRG results on the double-dot model:
temperature dependence of the conductance in
units of G0 (eq 8) for the exchange coupling
I = 10−3D, broadening Γ = 0.05D and vari-
ous values of B. For comparison, we also show
the conductance of the single-impurity Ander-
son model (I = B = 0). The inset shows the
corresponding zero-temperature spectral func-
tions.

Renormalization of the Resonant
Magnetic Field
The above observations are consistent with the
Kondo effect, which is induced by magnetically
tuning the DQD to a degeneracy point, as pre-
dicted by Pustilnik et al. in Ref. 12. The uni-
tary conductance is, however, not observed at
B = I, as we demonstrate in Figure 2, where
we show the zero-temperature conductance as
a function of B. We denote the location of
the maxima of the conductance as B∗ and ob-
serve that the latter are consistently shifted to-
ward lower values, below the “bare” degener-
acy condition B = I. The difference I − B∗

can be understood as an effective magnetic field
generated by the leads. This effect was de-
scribed as a shift of the degeneracy point in
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Refs. 12,13,18,31,32 but it was not analyzed in
more detail.33

To inspect the effective magnetic field more
closely, we fixed I and changed the hybridiza-
tion strength Γ. The values of G(0) plotted
against the external magnetic field B are pre-
sented in Figure 3. The width of the resonant
peak tends sharply to zero with decreasing Γ.
This observation can be rationalized by the con-
comitant (exponential) decrease of TK, caus-
ing the Kondo resonance to be less robust as
the magnetic field departs from the degeneracy
point. The resonance field B∗ tends to the bare
value I as Γ decreases, as shown in the inset
of Figure 3. The effective field can be fit by a
power-law I −B∗ ∝ Γα with α = 2.22± 0.08.
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Figure 2: Theoretical zero-temperature conduc-
tance G(0) as a function of the external mag-
netic field B for various values of I (Γ = 0.05D
is fixed). The locations of the maxima define
the resonant field B∗. The difference I−B∗ can
be interpreted as an effective field generated by
the leads. Lines are only for visual guidance.
The inset shows the dependence of the normal-
ized effective magnetic field (I − B∗)/I on I.

The presence of an effective magnetic field
acting on the DQD is rooted in the fact that the
two states |S0〉 and |T ↓〉 have a different orbital
structure. Thus, the leads renormalize the en-
ergies ES0, ET↓ in a different way. This can be
contrasted with the SIAM, where the spin-up
and spin-down states are related by an inver-
sion of the spin quantization axis. The latter
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Figure 3: Theoretical zero-temperature conduc-
tance G(0) as a function of the external mag-
netic field B for various values of Γ (I = 10−3D
is fixed). Lines are only for visual guidance.
The inset shows the dependence of the normal-
ized effective magnetic field (I −B∗)/I on Γ.

is a symmetry operation of the leads. Conse-
quently, no effective magnetic field can be gen-
erated in the SIAM. The intriguing parametric
dependence of B∗ points to a non-perturbative
nature of the effective magnetic field.

Spin-Polarization of the Kondo-
Screened Dots
We explore another peculiar consequence of the
broken spin-inversion symmetry. In Figure 4 we
plot the z-component of the spins of the two
dots as a function of I. We emphasize that
the magnetic field is always tuned to the reso-
nance B∗, i.e., the conductance is unitary. Sur-
prisingly, despite the Kondo screening, the two
dots exhibit fractional spin polarization, which
depends continuously on I.

We can understand the expectation values of
spin in two simple limits: I � TK(SIAM) and
I � TK(SIAM). For I = 0 it is seen that
Sz(1) = 0, as expected for the SIAM with
the first dot fully screened. The second dot is
decoupled and its spin aligns along the field.
When 0 < I � TK(SIAM), the second dot cou-
ples antiferromagnetically to the local Fermi-
liquid excitations of the first Kondo-screened
dot. It is known that when B = 0, second-
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stage Kondo screening develops, with a charac-
teristic temperature T

(2)
K , below which the con-

ductance is suppressed.9 In our case, the exter-
nal magnetic field is always tuned to achieve
G(0) = 1 · G0, so that the two-stage screening
is avoided.

In the opposite limit of large I we can see
that both spins approach −1/4. As long as
charge-fluctuations can be neglected, the lat-
ter result can be rationalized as follows: in the
large-I limit, the DQD can be approximately
described as a two-level system (TLS), the lev-
els being |S0〉 and |T ↓〉. The expectation values
of spin of either dot (i = 1, 2) in these states
are 〈S0| Ŝz(i) |S0〉 = 0 and 〈T ↓| Ŝz(i) |T ↓〉 =
−1/2. The interaction of the TLS with the
leads can be described by an anisotropic Kondo
Hamiltonian, as elaborated in Ref. 13. When
B = B∗ (and T = 0) there is the Kondo effect,
so that the two states have equal weights in the
reduced density matrix. It follows that the ex-
pectation value of spin on both dots must be
the equal average of 0 and −1/2, i.e., −1/4.

In Figure 4 we see that even when I �
TK ≈ 10−4D, the deviation of Sz(i) from −1/4
amounts to 10% or more. While the observa-
tion of Kondo plateaus (see Figure 1) can be
consistently accounted for by the anisotropic
Kondo Hamiltonian, other observables, such as
the spin, are not consistent with this model.
The spin polarization hints at sizable admix-
ture of states |T0〉 and |T ↑〉 in the many-body
ground-state. An effective low-energy model of
the DQD should also include the latter states
in order to account for the spin polarization.

Effects of Anisotropic Exchange
We have shown that despite the presence of
the effective magnetic field generated by the
leads, the Kondo plateaus can be reached by
tuning the external magnetic field slightly away
from the bare resonance condition B = I. We
show below that this does not hold true, if
the anisotropic exchange (AX) of the form in
Eq. (4) is introduced.

Figure 5 shows the dependence of the conduc-
tance at zero temperature for a varying mag-
netic field. The effect of AX is to lower the peak

-0.5

-0.25

 0

 0  0.01  0.02  0.03  0.04

S
z

I[D]

Sz(1)
Sz(2)

Figure 4: z-component of the spin of the pri-
mary (label 1, red full curve) and secondary
(label 2, blue dashed curve) dot as a function
of I. Lines are only for visual guidance.

value of the conductance and shift its location.
The lowering of the peak value is caused by low-
ering of the Kondo plateaus in the temperature
dependence, as shown in Figure 6.

This behavior can be understood in a sim-
pler physical picture of the TLS on the sub-
space spanned by the two lowest-energy states
|S0〉 and |T ↓〉. We shall denote the two states
by |↑̃〉 and |↓̃〉. The matrix elements of HA in
the TLS are identical with the matrix elements
of ∆σx, where σx is the Pauli matrix. On the
other hand, the energy gap between the two
states can be represented by 1

2
B̃zσz. The B̃z

incorporates the bare splitting I − B, as well
as the effective field. In the TLS picture it is
easy to see that the AX destroys the Kondo ef-
fect and that the latter can not be restored by
tuning B, because ∆σx causes an avoided level
crossing.

We underline two important observations
made from Figure 6: First, the conductance
plateaus are not destroyed by small AX (∆ =
10−6D < TK). Second, the Kondo peak dimin-
ishes and splits with increasing ∆. This behav-
ior is reminiscent of the behavior of a standard
spin-half Kondo impurity in a magnetic field.
There, a small Zeeman splitting (much smaller
than the Kondo temperature) does not destroy
the conductance plateau (it is a “marginal”
term) and leads to the peak splitting.34–36 Con-
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cluding, we have shown that the robustness of
the Kondo plateaus is consistent with the inter-
pretation of the AX as a pseudo-magnetic field
acting on the TLS.

While in our calculation, we use only a spe-
cific form of the AX with the Dzyaloshinskii-
Moriya vector (DMV) aligned with the y-axis,
it can be seen that a general DMV translates
into the TLS as a pseudo-magnetic field, rep-
resented by a linear combination of σx and σy

matrices. Only when the DMV is parallel with
the z-axis (the direction of the external mag-
netic field), the matrix elements of the AX in
the TLS vanish. The crossing is preserved in
this special case, as pointed out also in Ref. 18.
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Figure 5: NRG results on the double-dot model
with anisotropic exchange: Dependence of the
zero-temperature conductance G(0) on external
magnetic field B for various ∆ (I = 10−3D and
Γ = 0.05D). Lines are only for visual guidance.

Anomalous Temperature Depen-
dence of a Kondo Resonance in a
Diradical Molecule
In the following, we present an experimental
demonstration of the Kondo effect at a singlet-
triplet degeneracy, measured in the diradical
single-molecule junction described in the Ex-
perimental Methods. We show that the temper-
ature dependence of this Kondo effect strongly
deviates from the standard spin-1/2 Kondo ef-
fect and we show that this deviation may stem
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Figure 6: NRG results on the double-dot model
with anisotropic exchange: Temperature de-
pendence of the conductance for selected values
of ∆ (I = 10−3D and Γ = 0.05D). The mag-
netic field has been tuned to the corresponding
value of resonant B∗(∆) from Figure 5. The
temperature equivalent to ∆ is indicated by ar-
rows. The inset shows the spectral functions at
zero-temperature.

from the anisotropic exchange discussed in the
previous section.

The diradical molecule used for these mea-
surements consists of two unpaired spins in its
ground state. When embedded in a single-
molecule junction, the spins in the diradical
molecule have a relatively weak exchange cou-
pling I ∼ 1 meV. As a result, the energies
of the spin singlet and one projection of the
spin triplet can become degenerate in an achiev-
able magnetic field, as schematically depicted in
Scheme 1c. This property opens up the possibil-
ity to experimentally observe the singlet-triplet
Kondo effect in the diradical molecule.

We probe the spin states of the single-
molecule device by measuring the differential
conductance (dI/dV ) as a function of V and
B. The results of this experiment are shown
in Figure 7, which contains two dI/dV maps
of the same device, recorded at different gate
voltages Vg = −1.7 V (a) and Vg = −2.8 V
(b). First, we focus on Figure 7a, which at
B = 0 T shows a stepwise increase in the dI/dV
at V ≈ ±0.7 mV, resulting from added trans-
port channels involving excited states. The ex-
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citation steps split as the magnetic field is in-
creased and follow three different slopes. This
splitting is a clear manifestation of the Zeeman
effect in a spin system with a singlet ground
state and a triplet excited state, with an ex-
citation energy equal to the exchange coupling
I ≈ 0.7 meV. At about B ≈ 6.6 T one projec-
tion of the triplet state becomes degenerate in
energy with the singlet state and at even higher
magnetic fields this projection becomes the new
spin ground state. Only two spin excitations
are observed after this spin ground-state tran-
sition (B & 6.6 T), as expected from the spin
selection rules.37
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Figure 7: (a,b): Experimental differential con-
ductance (dI/dV ) maps showing the magnetic
field evolution of the spin excitations between
the singlet and triplet states in the diradical
single-molecule device, measured at (a) Vg =
−1.7 V and (b) Vg = −2.8 V. In part b,
the singlet-triplet Kondo resonance appears at
B ≈ 6.6 T. (c,d) dI/dV spectra at different
magnetic fields, corresponding to vertical line-
cuts of the dI/dV maps in (a) and (b), respec-
tively. The magnetic fields at which the spectra
in (c) and (d) are recorded are indicated by the
colored arrows in (a) and (b), respectively.

By changing the gate voltage we were able
to tune the single-molecule device closer to a

charge degeneracy point, which typically results
in an increase of the overall conductance and a
stronger Kondo coupling. This behavior can
be observed in the dI/dV map of Figure 7b,
which is recorded at Vg = −2.8 V. The exci-
tation steps seen in Figure 7a appear in Fig-
ure 7b as peaks rather than steps. These peaks
are fingerprints of higher-order transport pro-
cesses, which give rise to Kondo correlations.38

At the singlet-triplet degeneracy (B ≈ 6.6 T),
a zero-bias resonance develops, which can be
attributed to the singlet-triplet Kondo correla-
tions.

The low-temperature behavior of the singlet-
triplet Kondo effect is equivalent with the low-
temperature behavior of a standard spin-half
Kondo effect.12 Our theoretical results on the
DQD confirm this equivalence, as long as T � I
(see Figure 2). Accordingly, the linear con-
ductance as a function of temperature should
approximately obey the well-known universal
curve39

G(T ) = G0

[
1 +

(
21/s − 1

)( T

T0

)2
]−s

+Gb,

(9)
where T0 is the approximate Kondo temper-
ature, Gb the background conductance, and
s = 0.22. To experimentally obtain G(T ), we
recorded dI/dV spectra at fixed B = 6.6 T and
Vg = −2.8 V at various temperatures. The lin-
ear conductance was determined by fitting the
Kondo peaks to Lorentzian functions and by ex-
tracting the peak height to estimate G(T )−Gb.
The obtained values are normalized to G0 and
plotted in Figure 8a, along with the universal
curve with the spin-1/2 value s = 0.22 (blue
dashed line) and a modified universal curve
with s = 0.7 (red full line). Remarkably, the
experimental data strongly deviates from the
universal curve for a standard spin-1/2 system
(s = 0.22). A good agreement with the ex-
perimental data is found by choosing a signifi-
cantly higher value for the empirical parameter
s, which illustrates the anomalous behavior of
this Kondo effect.

Here, we propose an explanation for the
anomalous temperature dependence, based on
comparison with the theoretical results from
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previous sections. The main panel in Figure 8b
shows how G(T ) (thin solid lines) in NRG
calculations is influenced by increasing the
anisotropic exchange ∆. The low-temperature
conductance decreases for higher ∆ and a bump
appears at T ∼ 10−5D for the blue and green
curves. We find that in a restricted temper-
ature range, the NRG curves can be well ap-
proximated by Eq. (9) with s > 0.22. The cor-
responding fits are drawn in the main panel of
Figure 8b as thick solid lines. The small panels
of Figure 8b show the normalized NRG results
(plus signs) for each ∆, along with the fit (solid
line) to Eq. (9) and the corresponding s values.
This analysis effectively shows that nonzero val-
ues of ∆ may result in significantly higher val-
ues of s coming from the fits. From this ob-
servation we conclude that the presence of an
anisotropic exchange interaction is a possible
explanation for the anomalous temperature de-
pendence of the singlet-triplet Kondo effect ob-
served in this experiment.

Discussion of the Temperature Depen-
dences

The larger values of s which result from fit-
ting the theoretical temperature dependences
[Figure 8b, main panel] can be attributed to
two effects: First, the G(T ) does not reach
the maximum value G0 due to the anisotropic
exchange between the two spins. Second, the
high-temperature minimum of G(T ) in the re-
stricted temperature range is larger than in
the standard case (i.e., SIAM), because of the
bump caused by spin excitations. We conclude
that the interval of temperatures in which an
apparently anomalous behavior can be observed
is set by two energy scales: ∆ and I. It fol-
lows that for the molecular junction studied
here, I & 0.4 meV (corresponding to the high-
est temperature 4.2 K). This bound is consis-
tent with the value of I = 0.7 meV given by
the zero-field splitting in Figure 7. Similarly,
we can estimate ∆: based on Figure 6 we de-
duce that ∆ marks the onset of the conduc-
tance decrease. Consequently, from Figure 8a
we get ∆ ≈ 0.4T0 = 20 µeV. This value is more
difficult to compare. We remark that spin-orbit

interaction in planar graphene-related systems
also lies in the sub-milielectronvolt range.40 In
principle, lowering the temperature below ∆
could lead to splitting of the zero-bias peak as
seen in Figure 6, allowing the more precise de-
termination of ∆.

As we argued in the Methods section, the cho-
sen form of the AX in Eq. (4) is not generic and
other terms (such as Ŝx

1 Ŝ
y
2 ) can be expected

in the molecular junction. Arguments based
on molecular symmetry are not applicable here
because the molecular geometry is in general
distorted due to binding to the leads. More-
over, anisotropic g-tensors could also result
from spin-orbit interaction. Naturally, these
different anisotropy terms can not be easily dis-
entangled in a transport measurement. How-
ever, as long as the anisotropies are weak (com-
pared to I), their main effect is the avoided
crossing with the energy scale ∆. On the ba-
sis of these considerations we propose that the
anomalous temperature dependence observed
in the molecular diradical junction is caused by
spin anisotropy terms with a characteristic en-
ergy scale ∆ ≈ 20 µeV (for a given direction of
the external magnetic field).

As an alternative scenario of the anomalous
temperature dependence of the conductance we
mention two-channel Kondo (2CK) physics. As
we argued in Methods section, the 2CK effect
can be manifested in a smaller portion of the pa-
rameter space. Mitchell et al.5 found a temper-
ature dependence similar to that in Figure 8 at
the so-called quantum-interference node. The
latter represents a special point of the molecu-
lar 2CK, which can be reached by tuning the
gate voltage. In our case, the gate voltage was
not tuned, and therefore, we think that an in-
trinsic mechanism, the anisotropic exchange, is
more plausible. Moreover, the theoretical re-
sults of this work apply to a wider parametric
window.

Conclusions
We have analyzed the double quantum dot
model at the singlet-triplet crossing in the
regime of strong quantum fluctuations (Kondo
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effect) with the numerical renormalization
group. We have focused on the shift of the
singlet-triplet degeneracy, which can be inter-
preted as an effective magnetic field generated
by the leads. Its parametric dependence is non-
trivial (apparently non-perturbative), pointing
to the role of strong quantum fluctuations.
When the external magnetic field is tuned to
the degeneracy and Kondo plateaus emerge in
the conductance, the two dots still exhibit a
sizable spin-polarization. This is surprising,
in view of the traditional picture of Kondo-
screened moments.

Furthermore, we have studied the effect of
an anisotropic exchange (AX). Our data shows
that the singlet-triplet Kondo effect is stable
against weak AX. The AX of the order of
TK causes lowering of the Kondo plateaus in
the temperature dependence of the conduc-
tance, G(T ). The calculated temperature de-
pendences G(T ) bear a strong imprint of the
two low-energy scales, ∆ and the exchange I.

We have presented experimental data on a
molecular junction containing an organic di-
radical coupled to Au leads. The differential
conductance as a function of magnetic field
shows a characteristic fingerprint of the singlet-
triplet splitting. The zero-bias resonance at the
singlet-triplet degeneracy point has a temper-
ature dependence which deviates greatly from
the universal curve expected for standard spin-
1/2 Kondo systems. We propose an explana-
tion based on the lowering of the conductance
plateaus caused by anisotropy terms.
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