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Abstract
Recent advances in Artificial Intelligence and Computer Vision have been showed to be promising for
automated land use classification of remotely sensed data. However, current state-of-the-art per-pixel
segmentation networks fail to accurately capture geometrical and topological properties on land use
segmentation, as these methods have inherently a lot of freedom. These geometrical and topological
properties of land use structures are crucial for describing land usage on topographical maps, as their
purpose is to present insight into topology and borders of land use structures. In order to preserve
the geometrical and topological properties of land use structures, a novel segmentation method is
introduced and tested on road structures in this thesis. Unlike current state-of-the-art segmentation
networks, this new method performs the segmentation task by utilizing shape regression techniques as
currently applied by state-of-the-art object detection networks. As modern object detection methods are
only able to perform regression on simplistic shapes, and road structures generally describe complex
shapes, a new topology preserving annotation generation method is introduced that subdivides a
complex road structure into a set of oriented rectangular shapes. Since not many publicly available
land use datasets contain both aerial images and per-pixel annotations, a new dataset based on aerial
images and land use annotations, covering large areas of the Netherlands, is introduced as well. The
results show that the novel segmentation method is capable of learning the newly introduced road
structure representation, which preserves geometrical and topological properties. The connectedness
property, however, is lost. The novel method does currently not outperform current state-of-the-art per-
pixel segmentation networks, although several directions for future work are proposed to improve the
segmentation performance of the shape regression based technique and preserve the connectedness
property.
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1
Introduction

The land use of the areas in the Netherlands are changing constantly. In about a years time, new
residential areas are constructed, roads are rerouted, and green areas are created to preserve nature.
Therefore, due to the ever changing environment in the Netherlands, the topographical maps that help
us navigate from A to B daily, as well as provide organisations with valuable information about the land
use of the country, need to be kept up to date frequently.

A topographical map is generally an abstract representation of highly detailed spatial information, so
that it can be represented on a comprehensible level of detail for the scale it is presented on. Figure 1.1
shows a topographical map, created by Centraal Bureau voor de Statistiek [5] (CBS), which represents
the land-use in the province of South-Holland, the Netherlands. The abstraction maps, in this case, the
individual buildings of, for instance, the city of Rotterdam to larger regions that cover large collections of
buildings. Consequently, these regions are not labeled as single buildings, but rather grouped together
as one class named urban (‘bebouwd’ on the map). This is only one example of a topographical map,
other examples include but are not limited to maps for navigation or vegetation charts that categorize
different types of vegetation in an area.

Figure 1.1: Topographical map of land-usage by CBS [5]

The construction of topographical maps of these large areas like the Netherlands aremostly manual,
time consuming tasks performed by cartographers, where they assess information e.g. from aerial
images and subdivide them into separate areas according to their land usage. Currently, these large
topographical maps like the Bestand Grootschalige Topografie [42] (BGT), which roughly translates
to “registry of large scale topography”, or the Bestand Bodemgebruik (figure 1.1), which translates to
“registry of land cover”, of Centraal Bureau voor de Statistiek [5] (CBS) “Central Bureau for Statistics”
are updated once every eighteen months in case of BGT, or even four years in case of the Bestand
Bodemgebruik of CBS.
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2 1. Introduction

Essentially, the task of subdividing areas in aerial images (figure 1.2 left) according to land use
could be seen as a per-pixel classification task. The topological land usage map is complete once
each pixel in the image is assigned to one certain type of land usage, as for instance agriculture, water,
or forest. In general, regions of land usage are defined by assigning one type of land usage to a group
of neighbouring pixels, rather than individual pixels themselves. This particular per-pixel classification
task, where the image is subdivided into regions of coherent pixels, is called a Semantic Segmentation
task (figure 1.2 right).

Figure 1.2: Aerial image (left) and corresponding Semantic Segmentation (right)

Recent advances in the field of Computer Vision and Deep Learning have greatly improved
performance of Artificial Neural Networks (ANN) at image classification tasks, whether it be recognizing
handwritten digits, dog breeds, estimating people’s poses or aiding doctors in their diagnosis of a
patient.
Nowadays, Deep Learning techniques have established themselves as state-of-the-art for a variety
of image classification tasks. Aside from image classification, Deep Learning has recently also been
shown to achieve state-of-the-art performance for semantic segmentation tasks, e.g. in the field of
autonomous driving, where a car perceives the world around it, segmenting its view of the world around
it into areas that it can drive into, areas to avoid, and areas that provide information on for instance
traffic rules.

Since the amount of computing power that is needed to perform these classification tasks has
become available to the masses, Rijkswaterstaat [10] is interested to find out if Computer Vision and
Deep Learning techniques could assist the cartographers in updating the topographical maps in order
to increase the frequency of the updates released. Rijkswaterstaat’s algorithm performed a two-class
(binary) segmentation task of aerial images, where road pixels were separated from non-road pixels.

1.1. Challenges
This section provides an overview of the challenges that are faced in this thesis. Firstly, the challenge
of defining an automated segmentation method that aims to preserve topological and geometrical
properties is addressed. As this segmentation task can not be performed without data, the challenge of
acquiring suitable data for this research is introduced secondly. Furthermore, the automated method
should be applicable to the problems that Rijkswaterstaat aims to solve besides the preservation of
topological and geometrical properties. This is described in the third subsection. In the last subsection,
practical challenges imposed by hardware constraints are described as the automated segmentation
task should be able to run on modern equipment.

1.1.1. Topology and geometry extraction
Cartographers generally annotate roads and other types of land usage by drawing abstract polygon
representations that preserve clear geometric and topological properties such as shape and genus.
Modern convolutional based segmentation methods struggle to preserve an objects geometrical and



1.1. Challenges 3

topological properties as they perform a per-pixel classification task, that inherenty has a lot of freedom.
The per-pixel segmentation method tends to violate topological properties of structures, as it does
not guarantee structure connectedness, nor does it prevent wrong predictions of “holes” in structures.
Figure 1.3 shows an example of violation of topological properties. It depicts a binary road / non-
road per-pixel segmentation task on an aerial image, where pixels belonging to the class road are
depicted in black. The annotated ground truth is depicted in the middle, whereas the predicted per-
pixel segmentation by an automated segmentation method is displayed on the right. Disconnected
“islands” of road pixels are clearly visible in the predicted segmentations, where from the perspective
of the non-road class these small islands are unrealistically small “holes” in the non-road class.

Additionally, the shape properties are not preserved in the prediction either. Where the annotation
shows sharp borders for the road class, the prediction shows rough, curvy lines. This lack of ability
to express sharp object boundaries is partly due to an inherent trade-off between object localization
accuracy and classification performance [18], which leads to “fuzzy” borders of objects in semantic
segmentation problems, as displayed in figure 1.3. Such fuzzy borders impose a problem for the
automated generation of topographical maps from aerial images, since many men-made objects are
defined by a rigid and straight shape. A Convolutional Neural Network generally combines information
from a multitude of receptive fields from different sizes, to determine what it is looking at and in what
context it should interpret it. Therefore it needs the small receptive fields to gain understanding of
what it is looking at, for instance, a road section from an aerial image. On the other hand it needs
a large receptive field as well, to be able to deduce that this piece of road is actually part of a park
instead of a highway. However, both of these come at a cost. Gather more information from the
smaller receptive fields and the network loses its ability to understand complex structures, whereas a
bias towards information from larger receptive fields results in loss of descriptiveness such as detailed
object borders.

Alternatively, if this problem would be defined as a regression problem on shapes instead of a per-
pixel classification problem, the shape and genus properties of the structures are preserved, whereas
connectedness is ensured as long as the right shapes are interconnected. Imagine for instance having
the ability to place three initial rectangles of a certain width and height on the aerial image. One could
then place two initial rectangles in a T-like figure at the T-junction and one rectangle on the thinner road
below the large road section. By squeezing the rectangles, one could alter its shape to become longer
and smaller until they fully overlap the T-junction depicted on the aerial image. Similarly the long, but
thin road section could be covered by squeezing the third rectangle as well. Covering the thin curved
road section is harder to achieve with this method, however it is not impossible, for instance if some
non-rigid deformations are allowed to alter the shape of the box. Furthermore, arbitrarily complex road
structures could be predicted by this method as long as one is allowed to place and squeeze as many
rectangles as one would like.

(a) Aerial image. (b) Annotated segmentation. (c) Predicted segmentation.

Figure 1.3: Binary segmentation of roads in an aerial image [10].

This concept of translating and scaling initial boxes is embedded in modern object detection
networks. These networks perform such regression tasks on rectangular shapes of different aspect
ratios to attain a coarse estimate of an object’s structure, as depicted in figure 1.4. The object is
subsequently classified based on, to some degree, the acquired shape information. Therefore an
object that appears to be taller than it is wide, is more likely to be classified to the class ‘person’ than
an object that is a bit wider than it is tall as the network learns by example to relate certain aspect ratios
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to certain objects.
As the segmentation networks currently lack detailed and coherent object border representations,

they could potentially benefit from the intrinsic (coarse) shape understanding trait of object detection
networks, especially for objects with a fairly simplistic shape such as roads. Therefore one of the
challenges in this thesis is to embed this particular trait into the segmentation network architecture.

Figure 1.4: Structure representation and classification for object detection. The car is localized by the red rectangle that is wider
than tall, where the person is detected by the blue, taller than wide, rectangle. Image modified from source [51]

1.1.2. Data acquisition
The Deep Learning technique used to train Neural Networks generally requires a large amount of data
to learn from. One of the reasons why Deep Learning is currently state of the art for Computer Vision
tasks such as image classification is due to the vast amount of example images accompanied by high
quality annotations.

Unlike scene classification, a single class label per image does not suffice for the task of semantic
segmentation as each pixel in an image has to be assigned to a certain class. Therefore the task of
creating a large dataset with high quality annotations, is a more time consuming one. Consequently
fewer semantic segmentation datasets are publicly available and generally contain fewer example
images. Since Computer Vision techniques are not widely adopted for Remote Sensing purposes
as of yet, gathering a sufficiently large amount of data with corresponding annotations for the semantic
segmentation and shape regression task is considered to be a challenge as well.

1.1.3. Network usability
This thesis introduces a novel method for segmentation of topographical maps by representing the
segmentation task as a regression task on polygonal shapes. As topographical maps can contain
arbitrarily complex shapes, the scope of this research is narrowed down to one particular class, ‘Road’.
Therefore, the initial network is not directly able to fulfill Rijkswaterstaat’s request of automatically
extracting topographical maps from aerial images as these maps generally contain multiple types of
structues besides roads.

Given that Rijkswaterstaat is currently experimenting with semantic segmentation networks for
segmenting aerial images and that these networks struggle with predicting well-defined borders of
roads, it is considered a challenge to find a way to utilize the newly introduced method’s potential to
segment highly specializedwell defined structures together with amore versatile semantic segmentation
network. If succesful, this hybrid network could benefit from the more strictly defined shapes that
approximate roads from the shape regression network, whilst maintaining the ability to perform the
multi-class segmentation task required by Rijkswaterstaat.



1.2. Research Questions 5

1.1.4. Architecture complexity
Training semantic segmentation networks is a relatively high computationally extensive task. These
networks generally consist of an encoder part, which are as complex as feature extractors of classification
networks, and a decoder part often of similar complexity as the encoder part. Since Rijkswaterstaat
is interested in a more accurate segmentation of road structures and multi-class segmentation, the
proposed additions to incorporate shape regression would further increase the complexity of an already
complex multi-class segmentation network.

As both the semantic segmentation network and the shape regression network both need a feature
extractor that operates on images, defining a common basis could be beneficial. This can reduce the
amount of duplication of both networks, which results in a decreased amount of learnable parameters
as well. Assuming that a common basis is possible, it could also open the way for combined, end-
to-end, training, which trains the semantic segmentation network and the shape regression network
simultaneously.

The complexity of the algorithm influences the training and inference times, as well as physical
resource requirements such as memory. Given that the algorithm should be able to both train and
perform inference in a reasonable amount of time on a large dataset with samples of adequate resolution
on modern hardware, it is considered a challenge to design the segmentation algorithm with efficiency
in mind.

1.2. Research Questions
Per-pixel semantic segmentation networks struggle to express well defined geometrical and topological
properties, such as shape and genus, due to the amount of freedom given by the per-pixel classification
task. State-of-the-art object detection networks, on the other hand, inherently express geometrical
properties of simplistic shapes, whereas topological properties like genus can be contained as well
as they locate and classify objects via (rectangular) shape localization and regression. It is therefore
proposed that the quality of semantic segmentations on aerial images can be improved by explicitly
adding information about an object’s geometry and topology to the segmentation process, by
representing the segmentation task as a shape regression task. In order to test this hypotheses, the
following research question is defined:

“Does introduction of geometrical and topological information to a segmentation task,
attained via object localization and shape regression, improve the segmentation of road
structures on Rijkswaterstaat’s aerial data?”

To address this question, several subquestions are formulated as well:

• Rijkswaterstaat aims to utilize a state-of-the-art segmentation network [49] for their multi-class
land use segmentation task on large amounts of data covering the Netherlands. Since this
network architecture was introduced as a solution for binary segmentation on very little data,
it needs to be assessed whether it is capable of operating in Rijkswaterstaat’s setting as well.
Additionally, the quality of the segmentation of the newly proposed shape regression technique
needs to be assessed and is therefore compared to a baseline semantic segmentation network.
As the proposed shape regression technique is initially tested on a binary road / no-road
segmentation task, the baseline semantic segmentation network needs to perform this semantic
segmentation task as well. The semantic segmentation network is not necessarily restricted to
a binary segmentation setting, although it is not certain if moving from a multi-class to a binary
segmentation task influences the segmentation quality of the class that both settings have in
common. In order to clear these uncertainties, the questions “How well does the performance of
Rijkswaterstaat’s per-pixel segmentation network scale with the amount of data?” and “What is
the impact on the segmentation performance of a state-of-the-art segmentation network when
moving from binary to a multi-class segmentation problem?” need to be answered.

• Rijkswaterstaat is interested in a multi-class segmentation task, whereas the proposed shape
regression technique focuses on a binary segmentation task initially. One of the aims is therefore
to research posibilities to combine the per-pixel segmentation task with the shape regression
segmentation task in a hybrid approach. Both the state-of-the-art per-pixel segmentation network
and the newly proposed shape regression network rely on a feature extractor based on
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convolutions, which could potentially be shared between both networks to reduce overhead. Each
method does however use a different feature extractor. Given the possibility of sharing one feature
extractor for both the per-pixel and the shape regression segmentation task, it would be interesting
to research the influence of utilizing a state-of-the-art feature extractor for both tasks, for which
the question “What is the influence on the segmentation performance if the feature extractor of a
segmentation network is exchanged for a state-of-the art feature feature extractor?” needs to be
answered.

• Road topology can vary in complexity from a simplistic straight road section to a variety of complex
shapes containing junctions, roundabouts and cross-roads. Modern day object detectors perform
shape regression solely on simplistic shapes such as rectangles. Before shape regression can
be applied to segmenting road topology, a topology preserving method needs to be defined that
localizes roads as a series of simplistic topological structures from aerial images that a shape
regression technique can segment. Thus an answer is required to the following question: “How
can an arbitrarily complex road structure be detected by locating a series of simplistic shapes such
that the original topological properties are preserved?”. Subsequently, a method that learns to
segment topology preserving road structures via shape regression on a set of simplistic structures
needs to be designed to perform the road segmentation task, for which the following question
needs to be answered: “How can a segmentation of a variety of pre-defined simplistic shapes
segment complex road structures, whilst preserving the original topology?”.

• Finally, a method needs to be devised to perform a multi-class segmentation task. As the new
shape regression based segmentation focuses on road structures, it is expected that combining
its output with a state-of-the-art multi-class per-pixel segmentation network is a suitable option to
achieve amulti-class segmentation task. However, it needs to be researched whether the addition
of the information provided by the shape regressionmethod indeed preserve their geometrical and
topological properties. For this reason the research question: “How can the road segmentation,
obtained from the shape regression network, be combined with a state-of-the-art per-pixel
segmentation network in order to perform a geometry and topology preserving multi-class
segmentation task?”



2
Related work

The research described in this thesis combines the fields of Remote Sensing with Deep Learning and
Computer Vision, as a segmentation task is performed by several Neural Networks on image data
acquired through remote sensors installed on either satellites or aircrafts. This chapter contains related
work from all three domains that is relevant to the research described in this thesis.

Section 2.1 focuses on the Remote Sensing domain containing related work with regard to Computer
Vision on aerial or satellite imaging. As this thesis introduces a new dataset that contains aerial images
accompanied with land use annotations, a set of related datasets is described in section 2.2. Previous
research performed at Rijkswaterstaat resulted in a semantic segmentation network that is based on
the U-net architecture. This network, as well as related semantic segmentation networks are included
in section 2.3.

Since this thesis aims to find a method that solves a semantic segmantation task of road structures
in aerial image using shape regression, the section 2.4 describes neural networks that utilize shape
regression for another computer vision task. These networks localize objects in images by bounding
them in a rectangular shape after which these objects are classified. Networks like this are called object
detection networks and form an inspiration for shape regression network introduced in this work.

The preservation of topology plays and important role in this thesis, as the per-pixel classification
networks do not guarantee topological properties such as genus and connectedness. In recent
literature, several groups have looked into preserving topology in neural network predictions on various
domains, which is described in section 2.5.

Some familiarity with neural networks, how they are constructed and the way they learn, is
considered to be preliminary knowledge. For an introduction to artifical neural networks the work of
Jain et. al. [31] is recommended. Their work describes the history of artificial neural networks, their
relatation to biological neural networks, as well as how they are constructed and how they learn. Deep
neural networks and an explanation of convolutional neural networks are described in the work of LeCun
et. al. [34]. The book of Goodfellow et. al. [27] mathematically describes the tasks that neural networks
attempt to solve, and what they learn in order to solve it in chapter six and is available online for free.
Additionally, they provide an overview of mathematical background related to this thesis in chapters
two, three and five. Furthermore, a survey on deep learning in remote sensing is provided by the work
of Ball. et. al. [14], which gives an overview of Computer Vision and Deep Learning approaches to
solving image classification, image segmentation and object detection problems on remote sensing
data.

2.1. Remote sensing
Artificial Intelligence is widely researched in the Remote Sensing domain, where Computer Vision has
been used on segmentation tasks and Deep Learning is now actively researched for image
classification tasks. A land use classification task is a task where images are assigned a label based
on the dominant type of land usage displayed in the image. An example is depicted in figure 2.1

Castelluccio et. al showed the potential of Convolutional Neural Networks (CNN) on the aerial
images of two scene classification datasets, where their GoogleLeNet based CNN outperformed the

7
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Figure 2.1: Aerial images with corresponding land use labels from the UC Merced Land Use Dataset [59]. Image acquired
from “A Comparative Study of Sampling Analysis in the Scene Classification of Optical High-Spatial Resolution Remote Sensing
Imagery” [29]

best reference techniques of both datasets with an accuracy of 97.10% on the UC Merced dataset [59]
and an accuracy of 91.83% on the Brazilian Coffee Scenes dataset [44]. Several papers looked into
feature extraction methods for Deep Learning on remote sensing data. Luus et. al. defined a data pre-
processing technique for Deep Learning [39] that extracts patches of a fixed size at different locations
of an image, at multiple scales of that image and combines them into a stack of views on which a
CNN performs the classification task. A couple of papers looked into reusing features from pre-trained
layers of CNN’s that were trained on other image classification tasks outside the remote sensing domain
[17, 28]. These works showed that the Deep Learning models consistently outperformed the classifiers
that were trained on handcrafted features.

For the particular case of segmenting images according to various types of land usage, Deep
Learning has seemingly not been widely adopted as of yet, possibly due to a lack of open data. In
recent years many Kaggle segmentation challenges on remotely sensed data have been introduced,
many of which showed active participation. Published literature on used architectures and achieved
results on these challenges is on the other hand surprisingly very hard to find. The often restricted
use of the provided dataset and fixed time window for challengers to submit their results, might be a
possible explanation for the lack of publications on image segmentation in the Remote Sensing domain
compared to for instance scene segmentation tasks, for which large datasets with high quality annotated
segmentations are publicly available.

A semantic segmentation task for land use classification is described in the work of Maggiori et. al.
[40], where they introduce a Fully Convolutional Neural Network (FCN) for a binary building
segmentation task on satellite images. Their method is compared to a regular CNN based approach
and a Support Vector Machines (SVM) classifier applied to each pixel, from which they concluded that
thei FCN method outperformed the CNN and SVM method in terms of accuracy, with fewer visual
artifacts and shorter inference time.

Volpi et. al. designed and compared several multi-class semantic segmentation networks for per-
pixel classification of urban areas, two of which are image patch-based architectures, as well as one
architecture that operates on the full image and contains an encoder and decoder-like architecture [57].
Sherrah introduced a FCN that, unlike the encoder-decodr FCN architecture, does not downsample the
spatial resolution of the image [52] in the same multi-class semantic segmentation setting as Volpi et.
al., where Sherrah achieved significantly improved accuracies at the expense of increased complexity,
and a thus increased computation time.

2.2. Semantic segmentation datasets
This section discusses commonly used benchmarks and datasets that combine remote sensing data
with per-pixel annotations such that new automated per-pixel semantic segmentation methods can
be developed and subsequently compared to other reference methods. Important aspect that are
discussed here, are the different channels included in the images as well as their mode of acquisition
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and the distinct classes that are present in the annotations. Additionally, the spatial resolution of the
images and the number of included samples are mentioned for each dataset as well as different types
of acquisition modes capture images at different scales of detail.

2.2.1. ISPR
The International Society for Photogrammetry and Remote Sensing (ISPR) launched a 2D semantic
labeling contest, for which they provided aerial images and digital surface models (DSM) containing
height information of urban areas. The data is split in two major areas: the small village Vaihingen [3]
that contains many detached buildings and small multi story buildings, and Potsdam [2] that contains
large building blocks with narrow streets.

The aerial images of the Vaihingen set contain three bands consisting of near infrared, red and
green channels, whereas the DSM file contains one band gray scale levels that correspond to the height
information. For the Potsdam dataset, the aerial images are provided as the same infrared, red and
green channel images as the Vaihingen set, or regular red green blue channel images. Additionally, this
set also provides the union of the above mentioned bands, resulting in aerial images of four channels,
that contain a red, blue, green and infrared channel.

The spatial resolution of one pixel is 9 × 9𝑐𝑚 for both the aerial images as the DSM images of the
33 patches of the Vaihingen set, of which 16 patches are accompanied with ground truth annotations.
The spatial resolution of one pixel in the 38 patches of the Potsdam set is 5 × 5𝑐𝑚 for both the aerial
images and the DSM images, of which 24 patches are accompanied with ground truth annotations. The
segmentation challenge depicts a multi-class segmentation task with six defined classes: impervious
surfaces, building, low vegetation, tree, car and clutter / background.

2.2.2. DeepGlobe
The DeepGlobe dataset [22] started as a Kaggle Challenge, for which challengers were provided with
high resolution satellite images. Three types of annotations are provided for three distinct challenges,
namely road extraction, building detection and land cover classification. Even though one of the
challenges contains a per-pixel binary segmentation task of road structures, the land cover classification
challenge is more closely related to Rijkswaterstaat’s aim for automated land use classification.

The land cover classification challenge is a per-pixel classification task on satellite images that
consist of three channels: red, green and blue. 1146 image samples of 2448×2448 pixels are available,
each with a pixel-resolution of 50 × 50𝑐𝑚. These images are divided over a training, validation and
testing set of respectively 803, 171 and 172 images. Land cover annotations are provided and contain
6 distinct classes and an additional Unknow class. The other six classes are: urban land, agriculture
land, rangeland, forest land, water and barren land. Demir et. al. mention that they aim to make the
DeepGlobe datasets publicly available [22]. Unfortunately, it has not yet been published at time of
writing of this thesis.

2.2.3. Dstl Satellite Imagery Feature Detection
The Defence Science and Technology Laboratory (Dstl) designed a Kaggle challenge to classify
features on satellite images [1]. They provide satellite images either in three band red, green, blue
format, or in sixteen band format that contains spectral information in the ranges of multispectral and
short-wave infrared wavelengths. Each image spans an area of 1 × 1𝑘𝑚. Annotations are deliverd as
polygonal shapes, for which ten different classes are labeled: buildings, misc. manmade structures,
road, track, trees, crops, waterway, standing water, vehicle large and vehicle small. The rules on
intellectual property for this dataset describe that this dataset is solely available for the purpose and
duration of the Kaggle challenge, which ended in 2017.

2.2.4. Zurich Summer Dataset
The Zurich Summer Dataset, as described by Volpi and Ferrari [56] provides 20 multispectral satellite
images that contain four bands: near-infrared, red, blue and green. The images have an average size
of about 1000 × 1150 pixels and were acquired by the QuickBird satellite over the Swiss city Zurich in
August 2002. The pixel resolution is 0.61 × 0.61𝑚. Annotations are provided as superpixel images,
that contain 8 different urban classes: roads, buildings, trees, grass, bare soil, water, rails and pools.
This dataset is made publicly available and can be redistributed freely if the added acknowledgement
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and license are added to the distribution as well.

2.3. Segmentation networks
Semantic segmentation networks perform a per-pixel classification task on image data, where a certain
label is assigned to each pixel in the image. Currently, encoder-decoder semantic segmentation
networks achieve state-of-the-art results on image segmentation tasks. These networks utilize an
image classification network as a basis for the encoder, and a decoder method which utilizes an
upsampling method for converting the encoded feature representations into per-pixel label predictions
of the same spatial resolution as the input image.

The concept of this encoder-decoder based FCN’s for semantic segmentation is introduced by
Long et. al. [38]. Their network modified a VGG-16 image classification network into an encoder
by discarding the classification layers, and by converting the all fully connected layers to convolution
layers. In order to decode the abstract feature representations back to per-pixel predictions by three
upsampling operations on feature maps via backwards convolutions, also called deconvolutions,
upconvolutions or transpose convolutions.

Ronneberger et. al. developed a semantic segmentation network for Biomedical Image
Segmentation [49] based on the encoder-decoder FCN architecture. Their implementation differs from
the FCN introduced by Long et. al. in the sense that they remove the last pooling layer, thus reducing
the number of receptive fields. Furthermore, they added an additional upsampling operation such that
an upsampling operation and skip connection exists for each pooling operation. The U-net architecture
consists of a regular feature extractor, based on convolutional layers and pooling layers as can be seen
seen on the left side of the U-shaped architecture in figure 2.2, and an upsampler part, the right side
of the U-shape in figure 2.2 that decodes the compressed layers from the feature extractor back to
the original input size. Skip connections between each level of maxpool and upsamples ensure that
information from various detail levels are combined for the per-pixel classification task in the final layer.
The work of Kaiser et. al. applies this concept of a U-shaped segmentation network with so called

Figure 2.2: U-net architecture of Ronneberger et. al [49].

skip-connection on aerial images to segment buildings and roads [32].
The work of Badrinarayanan et. al. describes an architecture similar to U-net, although proposing

a few changes [13]. Contrary to U-net, SegNet keeps the amount of feature maps constant throughout
the network. Additionally, SegNet incorporates the full VGG-16 feature extractor, leading to a deeper
network and a larger receptive field due to an additional pooling layer. Furthermore Badrinarayanan et.
al. claim that SegNet is more memory efficient than U-net, due to the fact that SegNet only transfers
pooling indices over the skip-connections, whereas U-net transfers whole feature maps over the skip-
connections.
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Several methods have been researched to reduce the effect of the Localisation and Detection trade-
off that is inherent to these convolution and pooling based segmentation networks. One method of
achieving sharper borders from Convolution Neural Network predictions is by Conditional Random
Field (CRF) post processing. The CRF combines information from both local and remote neighbours
and weights that according to its spatial distance, in an attempt regain shape information that was lost
during during the convolution and pooling operations.

Chen et. al. reduced the inherent localization versus detection trade-off of Convolutional Neural
Networks by implementing Conditional Random Fields and appending them to the Convolutional Neural
Network in the form of Fully Connected Layers, resulting in an architecture called DeepLab [18].

The work in this thesis approaches this trade-off in a different way by performing regression on
actual topological information from provided shape files to obtain concise border representations. This
shape information could then be shared with the FCN segmentation network in order to obtain both
contextual information as well as detailed shape information. This could

2.4. Object detection networks
Where semantic segmentation networks encode objects as groups of pixels with the same label, an
object detection network highlights objects by encapsulating them in a rectangular shape, often referred
to as bounding box, and assigning a label to each rectangle as visualized in figure 2.3. The object
detection task they performed is therefore defined as a box regression task, where regression is
performed on its location and width and height, combined with a box classification task.

Figure 2.3: Example of object detection and localization. Modified from source [11].

The Regions with CNN features (R-CNN) as introduced by Girshick et. al. [26] forms the basis
for many modern day object detectors. Their method combines a region proposal algorithm to extract
regions that might contain objects. Each region is subsequently fed to a CNN that, in turn, performed
the feature extraction after which a Support Vector Machines (SVM) classifier assigns a class label to
the region. Fast R-CNN [25] improved the R-CNN architecture by creating one CNN that takes the
whole image and all region proposals as input, and produces a feature vector per region proposal. The
SVM is replaced by Fully Connected layers, that produce a region of interest feature vector. This vector
is then fed to a set of Fully Connected layers that perform the classification task and to a different set
of Fully Connected layers that perform the object localization task by regression on the bounding box
parameters. Ren et. al. included further improvements to the Fast R-CNN architecture that they call
Faster R-CNN [48]. They used a CNN to create a feature map of the whole input image, after which
a newly introduced region proposal network is applied in a sliding-window fashion on that feature map
to predict multiple regions of interest, called anchors, at each sliding-window location. Two sets of fully
connected layers are then used to perform box regression and box classification respectively for each
anchor box.

One of the down sides of the R-CNN methods is that it consists of several distinct algorithms, each
with their own task in the pipeline of creating seperate box locations and box predictions. Some of
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these algorithms are executed many times, resulting in relatively slow inference times when compared
to more recent object detectors. Several recent works presented solutions to perform a combined box
location and prediction operation [37, 45–47], where their most recent versions performed all disctinct
task in one FCN [37, 45, 46].

These networks use a set of convolutional layers and max pool layers to extract features from
an image similarly to the encoder part of FCN semantic segmentation networks. The feature maps
provided by the encoder are of size 𝑆 × 𝑆 × 𝐷, where 𝑆 represents the spatial width and height of the
feature map and 𝐷 is the depth of the feature maps, assuming that the input image had width 𝑤 and
height ℎ and 𝑤 = ℎ and 𝑆 < 𝑤. Each spatial location of that feature map represents the feature vector
of a cell in a coarse grid, that is overlayed on top of the input image. An example of such a grid is
shown in figure 2.4.

A set of 𝑘 anchor boxes of varying aspect ratios is defined for each grid cell, in order to localize and
detect certain types of object. A cyclist generally has a profile that is more tall than wide, whereas a
car is generally more wide than it is tall. Regression is performed on the anchor box parameters, as
well as box classification by a set of convolutional layers. As these networks generally predict far more
boxes (𝑆 × 𝑆 × 𝑘) than there are objects present in the image, a box confidence score is predicted as
well in order to predict whether an object is present in each box or not.

Figure 2.4: Visualization of the coarse grid of an input image. Anchor boxes of two objects are shown in blue, whereas the center
of the object is shown as a green dot. Image acquired from [6].

The Single Shot Multibox Detector (SSD) [37] is one particular implementation of the method
described above. Its FCN network architecture is based on a VGG-16 feature extractor, after which
extra feature layers are defined that each represent features at a certain scale. Feature maps at each
scale have their own set of anchor boxes. Box regression and box classification tasks are performed
on all individual anchor boxes at each scale, to ensure that objects of varying sizes at various locations
can be detected.

Another implementation is called YouOnly Look Once (YOLO) as introduced by Redmon et. al. [47].
Their second [45] and third [46] version follow a similar method as SSD, though with a few adjustments.
Instead of defining anchor boxes per feature map scale, they introduce a reconnect layer that is similar
to skip layer between two feature maps of different scales to obtain multi-scale features. Subsequently,
they perform box regression and box classification on the last feature map. In the second version of
YOLO, the anchor boxes are removed and prior boxes are introduced. These prior boxes are similar
to anchor boxes, except that they are not necessarily centered around a common point. YOLO’s prior
boxes are derived from the provided annotated boxes by a K-means clustering algorithm. This allows
for better box priors, under the assumption that object placement in the images generally follows a
certain pattern.

Several methods extend general object detection networks to perform tasks beyond box regression
and classification. The work of Liu et. al. extends the multibox detection by adding an orientation to
the predicted bounding boxes, in order to provide tighter object localizations [36]. This is particularly
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useful for object detection on images taken from a top-down perspective, such as satellite and aerial
images as is shown in an example of their work, depicted in figure 2.5.

Figure 2.5: Rotable bounding boxes from Liu et. al. [36].

2.5. Utilizing topology
Including topological knowledge in Deep Learning on itself is not new. Cao et. al., for instance,
introduced a Multi-Person 2D Pose Estimation [16] framework that detects people’s poses in images
by associating body parts, with individuals in an image. Their network predicts both part confidence
maps, which detects body parts in an image, and part affinity fields, that encode the topology of the
human body as part-to-part associations expressed in 2D vector fields. A post-processing step that
interconnects detected body parts of each indivdual is performed by defining a spanning tree skeleton of
human pose, after which the matching problem is subdivided into seperate bipartite matching problems
in adjacent tree nodes. An example is shown in figure 2.6

Figure 2.6: Example of Multi-Person 2D Pose Estimation. Image modified from [16].

Several recent works introduced neural networks that extract road topology from aerial images [15,
41]. DeepRoadMapper [41] utilizes a CNN to segment roads in aerial images via per-pixel classification.
Road centerlines are afterwards extracted from these segmented roads in a post-processing step that
constructs a road graph. Since the road segmentation process does not guarantee road
connectedness, several disjoint subgraphs could be detected, whereas they are not disjoint in the true
road topology. They therefore proposed a correction step that, firstly, interconnects leaf-nodes based
on inter-node distance and, secondly, chooses the best proposed connection based on the 𝐴∗ shortest
path algorithm. Bastani et. al. proposed several changes to DeepRoadMapper that creates a road
topology extraction method that they call RoadTracer [15]. They removed the post-processing step of
DeepRoadMapper. Instead, RoadTracer defines a a search method that starts at a point known to be



14 2. Related work

on the road, after which a decision function implemented in a CNN is iteratively invoked to take steps
along the road whilst proposing vertices and edges that lay on the road.

2.6. Contributions of this thesis
This thesis builds on the results of the first network of Rijkswaterstaat, where it aims to increase
the quality of the performed segmentation task. There are three main areas where it contributes to
the application of a combination of Artificial Intelligence, Deep Learning and Computer Vision on the
Remote Sensing domain.

First of all, a novel method is introduced that utilizes an object detectors capability to locate objects is
designed to localize road structures in aerial images. In contrast to the localization task that the modern
object detectors perform, as describe in section 2.4, this novel method performs an additional shape
regression task on rectangles in order to segment detected road structures in aerial images. As this is
a supervised method, a novel shape pre-processing method is proposed to create shape annotations
that subdivides complex topological structures into smaller, more simplistic shapes, whilst aiming to
preserve the roads topological properties. This novel method is based on the second version of the
YOLO object detection network [45], as Redmon et. al. consistently showed that the YOLO architecture
provides the flexibilty to change the architecture, whilst consistently achieving competitive results. The
newly introduced shape regression network produces individual simplistic road shape proposals, that
are conceptually very similar to the body part proposals described in the work of Cao et. al. [16]
as these shape proposals need to be interconnected to preserve the connectedness property of road
structures. The open pose framework introduced topological knowlegde to their neural network via part
affinity fields combined a post-processing step in order to inter-connect individual body part proposals
to produce estimated poses that are globally coherent. Whilst this globally coherent connection of local
structures is relevant and important for road segmentation, road topologies are less restricted than
the topology of the human body which makes pursuing global coherence a more complicated matter.
Therefore, initially, a simpler approach that purely aims to detect individual road shapes is proposed.
Individual road segment proposals are produced, in a similar fashion to the work of Liu et. al. [36], by
encapsulating them by oriented rectangular shapes.

Complementary, a new semantic segmentation network based on the Darknet-19 feature extractor
[45] and the U-net architecture [49], is introduced as well to enable the shape regression and per-
pixel semantic segmentation network to share the same base feature extraction. Rijkswaterstaat uses
a U-net architecture, which is based on the VGG-16 feature extractor. For the implementation of
YOLO V2, the authors switched from using a VGG-16 feature extractor basis towards their Darknet-19
feature extractor as they claim it significantly increased the detectors speed without a significant loss in
detection accuracy. In order to assess if U-net could benefit from a similar speed up, without giving in on
classification performance, a new U-net like architecture is introduced that utilizes the Darknet feature
extractor. This architecture, named Dark U-net, is designed to perform the same per-pixel semantic
segmentation task as U-net does.

Furthermore, a new, large, dataset aimed at both multi-class semantic segmentation and object
detection is made publicly available to assist further research on Artificial Intelligence for Remote
Sensing. Section 2.2 shows that there are not many publicly available datasets that provide both a
multi-class labelled land use segmentation task as well as a large amount of annotated samples for
semantic segmentation. Luckily, Rijkswaterstaat has access to a vast amount of aerial image data
and topographical maps of the Netherlands. The available topographical map covers the whole area
of the Netherlands, whereas the available set of aerial images cover a large area of the Netherlands
as well In this research a new dataset, based on these aerial images and the Bestand Bodemgebruik
annotations by CBS, is introduced and made publicly available. This dataset contains nearly 200 aerial
images with a spatial resolution of 0.5 × 0.5 meters, and a pixel resolution of 12500 × 10000 pixels,
where the annotations consist of 13 individual classes. The aerial images are complemented with
corresponding both per-pixel annotations and shapefile annotations, covering thirteen distinct classes.
Compared to the datasets in section 2.2, this novel dataset covers an impressively large area, with a
relatively high level of detail. Additionally, the annotations provide a 13 class semantic segmentation
land use setting covering both urban and rural areas of the Netherlands.
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Methodology

This chapter presents the proposed novel approach that represents semantic segmentation as a shape
regression problem, instead of a per-pixel classification problem. Current state-of-the-art semantic
segmentation networks perform a per-pixel classification task in order to segment an image into regions.
As solving the per-pixel classification problem allows for a lot of freedom, these segmentation networks
struggle to preserve the inherent geometrical and topological properties of the original structures in
their segmentation. Additionally, topographical maps for land use are generally stored as shapefiles
rather than regular RGB images, so the per-pixel classification methods need a post-processing step
to convert the pixel representations to polygonal shapes.

Since polygon shapes are default for representing land usemaps and polygons preserve topological
properties such as genus and connectedness besides shape, it is interesting to see if the semantic
segmentation can be defined as a task on shapes rather than pixels. Some of the object detection
networks described in section 2.4 perform regression on rectangular shapes in such a way, that they
localize and detect multiple objects in a scene by encapsulating them in a tightly fit box.

Let road structures be the main focus to simplify this idea. These structures are generally
represented by a connected set of oriented rectangles, or lines of a certain width. If these structures
could be subdivided into multiple interconnected road segments, represented by oriented rectangles,
the topological and geometrical properties of road structures can be preserved. An object detector could
possibly localize these individual road segments by encapsulating them in axis-aligned boxes. Now all
that is left to do is to fit an oriented rectangle on the actual road segment inside that localized box. By
defining road segmentation as a task of road segment localization and shape regression, complex road
structures could be segmented in a way that preserves both the geometric and topological properties
of a road structure.

However, this new representation only works on the binary road / no-road segmentation problem,
whereas multi-class segmentation is preferred. State-of-the-art per-pixel segmentation networks are
capable of performing multi-class segmentation problems. Possibly, the per-pixel segmentation
networks could benefit from the information that the novel shape regression based technique provides.
Therefore it is interesting to see if a hybrid system could preserve the geometrical and topological
information from the shape regression based network on a per-pixel multi-class segmentation task.

Several requirements need to be fulfilled before this new concept can be tested. First of all a land
use dataset is needed, which should consist of aerial images accompanied with shapefile annotations
that contain road structures. As no such dataset was publicly available and a large amount of aerial
and annotated data from various sources is accessible to Rijkswaterstaat, a new dataset is created.
The design of a novel dataset at Rijkswaterstaat for multi-class segmentation of registered land use
of the Netherlands is described in section 3.1. In that section, the methods used to acquire the data
as well as its properties in terms of spatial resolution, annotated classes and number of samples are
explained in further detail.

Furthermore, a per-pixel segmentation network needs to be constructed such that multi-class
segmentation remains possible for the novel segmentation method. Since per-pixel segmentation
is currently the state-of-the-art representation of the segmentation task, a general overview of this
task, as well as how a neural network aims to learn to perform this task is explained in section 3.2.

15
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The architecture and learning scheme of the per-pixel semantic segmentation network utilized by
Rijkswaterstaat is described in 3.2.1, whereas a novel semantic segmentation network, using the
state-of-the-art feature extractor as introduced by [45] is presented in 3.2.2. This network utilizes the
same feature extractor as the YOLO object detector, thus opening opportunities for sharing the feature
extractor of the per-pixel segmentation network and the shape regression segmentation network in the
hybrid approach.

Since this thesis aims to segment roads via shape regression and object detection networks perform
shape regression on rectangles, an object detection network might be a good basis for road
segmentation via shape regression. Therefore, an explanation of the object detection task is provided
in section 3.3. Subsequently, the YOLO V2 object detection network is briefly described, accompanied
by a more detailed description of how this algorithm can be extended to potentially perform the road
segmentation task via shape regression. Furthermore, a description of how the annotated data needs
to be processed to accomodate the novel road segmentation technique is included in that section as
well.

Lastly, a hybridmulti-class segmentationmethod that combines amulti-class per-pixel segmentation
network with the shape regression based road segmentation network is described in section 3.4.

3.1. Dataset
Several datasets for semantic segmentation on remotely sensed data are described in section 2.2.
However, most of these datasets contained very few samples with very little variation in environment,
as they cover data of one city [2, 3, 56]. The DeepGlobe [22] and DSTL [1] datasets contain more data,
of which deep neural networks would benefit, as well as a wider variety in scenery. Unfortunately, these
datasets are not publicly available at time of writing, although there are plans to make the DeepGlobe
dataset publicly available in the future [22].

Rijkswaterstaat would like to research the potential of automated land use segmentation for both
urban and rural areas, such that it is applicable to an area covering the Netherlands. Many topological
charts covering the Netherlands are visualized online at Publieke Dienstverlening op de Kaart [4]
(PDOK). Several of these charts are publicly available and can serve as annotations for the required
dataset. For this thesis a set of aerial images from 2012, provided by The Ministry of Agriculture, Nature
and Food Quality [8], and Bestand BodemGebruik (BBG) topological chart also from 2012, provided by
Centraal Bureau voor de Statistiek [5] (CBS) and Kadaster [7], are combined into an annotated dataset
containing 13 classes: Road, Water, Residential area, Agriculture, Forest, Industrial area, Open and
dry area, Railroad, Airport, Other terrain, Recreational, Greenhouse, Open and wet area. An overview
of the class occurrences in terms of pixels is depicted in table 3.1. The BBG annotations are supplied
in vector format, and are thus rasterized for direct use in segmentation networks. Additionally, a set
of elevation level images of the Netherlands is included as well, acquired from Actueel Hoogtebestand
Nederland (AHN), which is provided by Rijkswaterstaat [10]. These elevation levels can be used to
extend the red, green, blue channel encoded aerial images with a depth channel, although this is not
used for the work in this thesis. The combined aerial and topological data of 199 parcels with spatial
size 0.5×0.5 meters of urban and rural areas of the Netherlands in 2012 are packaged and distributed
for public use by Rijkswaterstaat [10].

All data is downsampled to the same spatial resolution of 0.5 × 0.5 meters, as the dataset is
created from several sources (AHN, aerial images, BBG), of differing spatial resolutions. This resolution
corresponds to the resolution of the coarsest data source. Another approach would be to upsample
the data of all lower resolution sources to the resolution of the finest data source, however licensing
agreements prevent publishing data in resolutions higher than 0.5×0.5meters. The data of all sources
are deliverd in the rijksdriehoek [9] (RD) coordinate system, of which 199 parcels of size 62.500×50.000
kilometers are cropped. The same extents are used to crop and store the BBG shapes. Additionally,
these cropped shapefiles are rasterized to a pixel resolution of 0.5 × 0.5 meters for the per-pixel
segmentation task. All images are stored in GeoTIFF format to preserve the geospatial meta-data.
This dataset will be made publicly available by Rijkswaterstaat in the near future.

These parcels are of a pixel resolution of 12500 × 10000 pixels, which is too large to train neural
networks on, as it exceeds the memory capacity of the equipment. Hence, these patches are pre-
processed by cropping out and storing over 99000 patches with a pixel resolution of 500 × 500 pixels
as shown in figure 3.1. The resolution of these patches are, however, not divisable by 32, which is a
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Figure 3.1: Cropping 500 regions from one large image patch.

requirement of the used segmentation networks as described in section . These networks perform four
or five max pool operations, leading to a spatial reduction of at most a factor 2 = 32 and are therefore
unable to handle images of dimensions that are not a multiple of 32. Consequently, these patches are
cropped to 480 × 480 pixels before passing them to the network, to satisfy that condition. An example
of such a patch is shown in figure 3.2.

Figure 3.2: Example of a × aerial image patch (left) and corresponding annotation (right).

3.2. Semantic segmentation network
A semantic segmentation network combines a segmentation task, that subdivides an image 𝑥 into
separate regions, with a classification task, where all pixels belonging to a certain region are assigned
to the same class. This semantic segmentation function 𝑓∗ operates on an image 𝑥 to produce the
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Table 3.1: Overview of class occurence in terms of pixels for all annotations of the dataset.

Class Number of pixels Frequency (%)

Agriculture 1.30e+10 52.2
Water 3.62e+09 14.6
Residential area 2.80e+09 11.3
Forest 1.29e+09 5.2
Recreational 1.07e+09 4.3
Industrial area 8.84e+08 3.6
Road 7.66e+08 3.1
Other terrain 5.40e+08 2.2
Open and dry area 3.42e+08 1.4
Open and wet area 3.09e+08 1.2
Greenhouse 1.17e+08 0.5
Railroad 9.52e+07 0.4
Airport 3.07e+07 0.1
Total 2.49e+10 100.0

segmented image 𝑦.
Let an image 𝑥 with width 𝑤 ∈ ℕ and height ℎ ∈ ℕ be defined as a set of 𝑤 ⋅ ℎ pixel values

(𝑟, 𝑔, 𝑏) ∈ [0, 1] , such that 𝑥 ∈ {1, 2, … , 480} ×[0, 1] and the set of all Red,Green,Blue (RGB) channel
images be 𝑋. Additionally the set of all segmented images is defined as 𝑌. Assuming that there are
𝑐 defined classes with 𝑐 ∈ ℕ and 𝑐 > 1, then a segmented image 𝑦 is defined as a set of 𝑤 ⋅ ℎ pixel
values 𝑦 ∈ {1, 2, … , 𝑐} ⋅ . A semantic segmentation network then operates as follows:

𝑓∗ ∶ {{1, 2, … , 480} × [0, 1] ∈ 𝑋} → {{1, 2, … , 480} × {1, 2, … , 𝑐} ∈ 𝑌}
𝑓∗ ∶ 𝑥 ↦ 𝑦 (3.1)

Unfortunately, this function 𝑓∗ is unknown, however it can be approximated by learning from
observations of RGB images and their corresponding segmented images. Let Ξ be the domain
containing tuples of all possible RGB images and their corresponding segmented images. Then,
given a large finite set of 𝑛 examples Ε = {(𝑥 , 𝑦 ), (𝑥 , 𝑦 ), … , (𝑥 , 𝑦 )} ⊂ Ξ, a set of 𝑘 parameters
𝜃, with 𝜃 ∈ 𝑅 can be defined to approximate 𝑓∗ with a function 𝑓 for which 𝑓(𝑥; 𝜃) = �̂�. Given the
examples Ε a neural network can be trained to find the values of 𝜃 for which the mapping 𝑓(𝑥; 𝜃) = �̂�
is the best approximation of 𝑓∗ under observations Ε. The better Ε represents Ξ, the better function
𝑓 will approximate 𝑓∗, under the assumption that the neural network has a sufficient large 𝑘 to match
the complexity of function 𝑓∗. How a neural network architecture actually translates to function 𝑓 is
considered to be outside the scope of this thesis. “Deep Learning” by Goodfellow et. al. [27] describes
how the architecture of a neural network defines function 𝑓 in further detail in the introduction of chapter
6 and section 6.1.

Supervised learning dictates that the network learns by example, and in order to do that, needs to
be able to compare its predicted segmentation �̂� with the provided true segmentation 𝑦. As the aim
is to find the optimal configuration for 𝜃 in parameter space ℝ , a dissimilarity function 𝐿 is defined for
a certain set of values for 𝜃 that captures the difference between 𝑓∗(𝑥) and 𝑓(𝑥; 𝜃). Let this function,
from here on defined as loss function, 𝐿∗ be defined as 𝐿∗(𝜃) = 𝑓∗(𝑥) − 𝑓(𝑥; 𝜃), where the operator −
is an abstract representation of a differentiable difference measure. Since the actual function 𝑓∗(𝑥) is
unknown, the set of observations Ε that contains a 𝑦 produced by 𝑓∗(𝑥), is used for that actual loss
function 𝐿(𝜃) = ∑ ∈ 𝑦 − 𝑓(𝑥; 𝜃). The calculation of �̂� and the loss function 𝐿 is called a forward pass
through the neural network as it takes an image 𝑥 as input and traverses the network in a forward
direction towards the prediction �̂�.

Finding the best approximation 𝑓 of 𝑓∗ can be defined as an optimization problem, now that the
difference between a prediction �̂� and 𝑦 is defined under a set of values for 𝜃. The best approximation
𝑓 is the set of values for parameters 𝜃 for the dissimilarity between �̂� and 𝑦 are minimal, hence the
set of values for parameters 𝜃 for which function 𝐿(𝜃) is at its minimum. A numerical optimization
algorithm, generally based on gradient optimization of 𝐿, is used to find the optimal optimal values for
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the parameters 𝜃.
New values for the parameters 𝜃 are calculated based on each neuron’s contribution to the total loss.

These loss contributions are calculated from the back of the network to the front, as the segmented
image �̂� is calculated on the output of the neurons in the last layer of that the network, that in turn
rely on information of one or more neurons from the layer before it. As each neuron is a function that
operates on input and the values of a subset 𝜔( ) ⊂ 𝜃, its contribution to the loss can be influenced by
changing the values of 𝜔( ) and by changing the input. Since the input of the neurons in the last layer
is a combination of the output of the neurons of the layer before it, the input of the neurons in the last
layer can be influenced by changing the values of the subset 𝜔( ) ⊂ 𝜃 the the neurons in the layer
before it operate on, as well as changing the input of those neurons This recursively propagates back
to the neurons up to the very first layer of the network. As the input of these neurons are the provided
data itself, their input is fixed and only the values of their subset of 𝜃 can be changed to influence the
loss function. The method that calculates the ∇ 𝐿(𝜃) based on the partial derivatives of each subset
𝜔 is known as the back-propagation algorithm and is further explained in the work of Rumelhart et. al.
[50] or in section 6.5 of “Deep Learning” [27]. A gradient based optimization algorithm is then used
to optimize the loss function, based on its gradient provided by the back-propagation algorithm. As a
result, it calculates the new set of values for parameters 𝜃( ). This procedure is known as a backwards
pass through the network.

After obtaining the new values for parameters 𝜃, another forward pass is performed to obtain 𝐿(𝜃( )).
Subsequently the gradient based optimization algorithm is run to obtain 𝜃( ). Alternating forward and
backward passes through the network are performed until convergence is declared by the optimization
algorithm after ℎ iterations after which the final set of values of the parameters 𝜃( ) are presumed to set
of values for which 𝑓(𝑥; 𝜃( )) approximates function 𝑓∗(𝑥) best. The “Deep Learning” book provides a
more detailed explanation of several optimization algorithms in chapter 8.

3.2.1. U-net per-pixel segmentation network
The network architecture that is used by Rijkswaterstaat to solve the initial road segmentation task
follows the U-net architecture as described by Ronneberger et. al. [49]. It is a fully convolutional
network as presented by Long et. al [38] that takes an image of dimensions width 𝑤, height ℎ and
depth 𝑑, where 𝑑 represents the amount of channels. U-net’s result is an image of dimensions of the
same dimensions 𝑤 and ℎ except for the depth 𝑑, which is one and contains values in range {1, 2, … , 𝑐},
where 𝑐 is the number of classes.

The U-net architecture is depicted in figure 3.3 and consists of an encoder part and a decoder part.
The encoder downsamples the spatial resolution of the feature maps by a factor 2 = 16 in each spatial
dimension, whereas the decoder upsamples the feature maps by a factor of 16 in each dimension, to
supply an output with the same spatial resolution as the input image.

The encoder part is subdivided in 4 blocks, each consisting of two consecutive 3×3 convolution and
rectified unit (ReLU) layers followed by a 2×2max pooling layer with a stride of two that downsamples
the width and height dimensions of the image by a factor of two. For each time the spatial dimensions
are reduced, the number of feature channels, provided by the convolution layers in the next block, are
doubled.

The decoder part is also subdivided in 4 blocks, where each block is the same as its corresponding
encoder part, except for the max pooling layers, which are replaced by transpose convolution layers,
or so called ‘up-convolution’ layers. These layers up-sample the feature maps to increase the spatial
dimensions by a factor of two. At each block with a max pooling layer, the feature maps of the last
convolution layer is concatenated with the up-sampled feature maps to counter the loss of information
by the interpolation performed during up-sampling. These so called ‘skip connections’ are shown as
grey arrows, where the concatenated feature maps are shown as white and blue boxes in figure 3.3.

The original U-net architecture describes a cropping step, to crop out the original image dimension
from the pre-processed image. The authors describe an overlap-tile strategy for seamless
segmentation of arbitraty large images [49]. They pad each image patch by mirroring the patch at the
boundaries, to providemissing input data at the boundary for the convolution layers. this pre-processing
step is not implemented in this research, hence the cropping steps in the U-net implementation are not
implemented either. In the domain of of bio-informatics, where U-net was applied on images containing
cells, the mirroring of patches at their boundary seems reasonable since cells are generally adjacent to
other cells. This assumption arguably does not hold for aerial images, where mirroring the boundaries
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Figure 3.3: Schematic representation of U-net architecture. As this image was acquired from the work of Ronneberger et. al.
[49], the width and height sizes of the feature maps, displayed vertically before each feature map, do not correspond to the width
and height sizes of the architecture used in this image. Since U-net is a Fully Convolutional Neural Network, only the operations
and the number of feature maps define the architecture of U-net as the width and height of the feature maps scale based on the
width and height of the input image.

could lead to strange structures, e.g. a small strip of sea in between two beach lines. Since a zero-
padding boundary conditions does not reuse parts of the image to add information at the borders,
whether it be a cyclic or mirror pattern, it can not introduce strange and unexpected structures in the
images and is therefore chosen as the padding strategy for this thesis.

3.2.2. Dark U-net per-pixel segmentation network
As this research focuses on a binary semantic segmentation task to extract roads from aerial images
by defining it as a regression problem on shapes whilst Rijkswaterstaat is interested in improving
their results on the multi-class segmentation task, a method to combine the binary shape regression
technique with the semantic segmentation network is proposed. Since both methods rely on a
convolution based feature extractor, it could be possible that both methods share the same feature
extractor, which in turn, reduces the overhead of the combined method.

U-net utilizes a feature extractor that is similar to the VGG-16 architecture that is described in the
work of Simonyan et. al. [53]. The YOLO V2 object detection network that serves as a basis for the
road segmentation via shape regression method utilizes their own Darknet 19, of which the architecture
is depicted in figure 3.4, as a feature extractor [45]. Redmon et. al. state in their work on YOLO V2
[45] that they exchanged their VGG-16 feature extractor for the original YOLO implementation [47]
for Darknet 19 as they concluded that VGG-16 was needlesly complex for their task, as Darknet 19
proved to be faster than VGG-16 whilst achieving only a slightly worse accuracy. YOLO has proven to
be capable of performing the object detection task well with either a VGG-16 or a Darknet 19 feature
extractor.

Since the combined network incorporates U-net, which uses a VGG-16 like encoder and a similarly
complex decoder, together with a YOLO based shape regression network, the combined network
has a higher complexity than either individual network even if the feature extractor is shared. This
high complexity potentially influences both training time and inference time drastically. As the VGG-
16 architecture is stated to be needlesly complex for the object detection task, and the semantic
segmentation task relies on the same feature extractor, the same statement could hold for the the
semantic segmentation task. Therefore, a Darknet 19 based semantic segmentation network that
follows the U-net architecture is introduced. This network architecture is called Dark U-net and is
depicted schematically in figure 3.5 bottom.

The encoder part of the u-shaped architecture consists of the darknet 19 architucture, where the
scene classification part, which is displayed under the double horizontal line in figure 3.4, is removed.
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Figure 3.4: Darknet 19 classification network as presented by Redmon and Farhadi [45]. The column “Output” represents the
width and height of each feature map of the Darknet 19 classification network. Since images with a different width and height
are used in this thesis, the Output column does not correspond to the width and height of each feature map of the Darknet 19
architecture used in this thesis.

The scene classification part is not suitable for the per-pixel classification task at hand, since it gives a
single prediction based on the output of the last layer, whereas a class label for each pixel of the input
image is required.

In order to achieve this per-pixel classification, five up-sample layers are needed to compensate for
the five max pooling layers of the Darknet 19 architecture, which downscale the spatial resolution by a
factor of 2 = 32 in both the 𝑤 and ℎ dimension. Similar to U-net, these up-sample steps are performed
by 3 × 3 transpose convolution layers with strides of two in both the 𝑤 and ℎ dimension. Basically, the
convolution layers with 1024 and 512 filters after the last max pooling layers form the bottom ‘horizontal’
part of the u-shape, where the base of the right part is a copy of the left part. This copy is, however,
modified in three ways. Firstly, the max pooling layers are replaced by the transpose convolutions.
Secondly, the same, so called, skip connections that the U-net architecture uses are introduced to
Dark U-net as well. These connections concatenate the output of the convolution layers before each
max pooling layer of the left side of the network with the output of each transpose convolution layer on
the right side of the network and are portrayed by the grey arrows and the white and blue box in figure
3.5. This ensures that features extracted from kernels with varying receptive fields flow back up into
the network towards the per-pixel classification layers. Thirdly, a convolution layer with kernel size 1×1
is added on top of the last layer. This last layer converts the 32 output filters to 𝑛 filter banks, where 𝑛
represents the number of class labels. A softmax layer, applied to the output of the last layer, provides
the estimated per-pixel a posteriori probabilities for each class. The final decision is then made by
assigning each pixel to the class where its a posteriori probability is largest.

In order to train these semantic segmentation networks, a loss function needs to be defined. The
U-net semantic segmentation network as described by Ronneberger et. al. utilizes a softmax cross-
entropy loss [49], which is therefore used for both U-net and Dark U-net in this thesis as well.

The discrete Cross-entropy between the true distribution, an array 𝑦, containing the class
annotations for all 𝑁 pixels of the sample, and the estimated distribution, an array �̂�, containing class
predictions for each pixel of the sample, is defined as follows:

𝐿(𝑦, �̂�) = −∑𝑦 log �̂� (3.2)

Since 𝑦 contains class membership probabilities per pixel position, the array 𝑦 must contain the
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Figure 3.5: Architecture of Unet (top) and Dark Unet (bottom)

true class membership values per pixel position, which is achieved by a one-hot encoding of the class
label. This one-hot encoding creates an array with𝑀 elements, where𝑀 is the number of classes. Let
this bijective mapping function 𝑓, that maps a natural number 𝑛 to its corresponding one-hot encoded
vector 𝑛, be defined as follows:

𝑓 ∶ {1, 2, … ,𝑀} → {ℎ ∈ ℕ | ∀𝑖 ℎ ∈ {0, 1}and∑ℎ = 1}

𝑓 ∶ 𝑛 ↦ 𝑛

(3.3)

Where 𝑛 is defined as:

𝑛 = (ℎ ) , 𝑠.𝑡. ℎ = 1, 𝑎𝑛𝑑 ∀𝑖 ≠ 𝑛 ℎ = 0 (3.4)
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The cross entropy then becomes:

𝐿(𝑦, �̂�) = −∑∑𝑦 log �̂� (3.5)

A softmax function is applied to the output of the network, 𝜆, in order to obtain, per pixel, class
membership probabilities that sum up to 1. �̂� is thus defined as follows:

𝑓(𝑥; 𝜃) = �̂� = 𝑒
∑ 𝑒

(3.6)

Now convert the loss function 𝐿 to a function of the parameters the neural network 𝜃 on all rgb images
𝑥 ∈ 𝑋 and corresponding annotations 𝑦 ∈ 𝑌, function 𝐿 is rewritten as:

𝐿(𝜃) = ∑
∀ ∀ s.t. ( , )∈

−∑∑𝑦 log 𝑓(𝑥; 𝜃) (3.7)

For the semantic segmentation networks to be able to learn from their observations, a backward
pass needs to be defined. The back-propagation algorithm is used to calculate the partial derivates of
the configuration for 𝜃, after which an optimizer is defined to minimize the loss function. Ronneberger
et. al. described using Stochastic Gradient Descent (SGD) for optimizing the loss function of U-net.
The loss function of YOLO V2 is also optimized using SGD as described by Redmon et. al., although
they used a different set of values for the parameters of SGD. The semantic segmentation networks in
this thesis use the ADAM optimzer as introduced by Kingma and Ba [33], as they describe that ADAM
is computationally efficient and has little memory requirements. Their results show that the training cost
of ADAM is lower than that of SGD with momentum for convolutional neural networks, which is the main
reason why ADAM is used. Training the per-pixel semantic segmentation networks on the large dataset
introduced in section 3.1 is expected to require a lot of time, due to the computationally expensive back-
propagation algorithm. This expensive algorithm is performed on the complex network architecture for
each batch of images in an epoch, which indicates that all training samples are processed exactly
once. However, each batch can only contain a few images due to memory limitations of the hardware
whilst the dataset contains a large amount of images. Consequently, the expensive back-propagation
algorithm has to be performed many times, as it is run seperately for each batch in an epoch.

Moreover, the network is expected to train for many epochs as no pre-trained weights are used for
any of the networks. If pre-trained weights were used, only a subset of the trainable parameters would
have to be trained as the other trainable parameters are made constant. This is done by loading their
optimized weights from another network that had trained these same parameters before. The networks
in this thesis do unfortunately not utilize this possibility, due to time constraints given the complexity of
implementing pre-trained weights in the used deep learning framework, for all networks in this chapter.

By choosing an efficient optimization algorithm, that converges in fewer epochs than a less efficient
optimization algorithm, the expensive back-propagation algorithm is performed considerably less often
which in turn shortens the training time considerably. Therefore ADAM is considered a suitable choice
for this research.

3.3. Object detection network
An object detection network aims to localize one or more objects in images and detect to what class
the object belongs. It is therefore a combination of a localization task and a classification task. Objects
are generally localized by encapsulating them in a rectangle that aligns with the image’s axis, which
is called an Axis-Aligned Bounding Box (AABB). Additionally, the localized objects are classified by
assigning a label to each bounding box.

Let an image 𝑥 with width 𝑤 ∈ ℕ and height ℎ ∈ ℕ be defined as a set of 𝑤 ⋅ℎ pixel values (𝑟, 𝑔, 𝑏) ∈
[0, 1] , such that 𝑥 ∈ {1, 2, … , 480} × [0, 1] and the set of all Red,Green,Blue (RGB) channel images
be 𝑋. Additionally an AABB 𝑏, with 𝑏 ∈ {ℝ ⋅ℕ}, is defined as a set of five parameters (𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 ),
where 𝑏 and 𝑏 form the AABB’s center coordinates and 𝑏 and 𝑏 are the width and height of the
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box respectively. Assuming that there are 𝑐 defined classes with 𝑐 ∈ ℕ and 𝑐 > 1, the parameter 𝑏
represents the class to which the object encapsulated by the AABB belongs.

Given that each image in 𝑋 contains one or more objects, let 𝑘 be the number of objects in an
image 𝑥, with 𝑘 ∈ ℕ and 𝑘 > 1. The localization and detection vector 𝑦 contains the 𝑘 boxes 𝑏 such
that 𝑦 ∈ {ℝ ⋅ ℕ }. Let 𝑓∗ be a function that operates on an image 𝑥 to produce 𝑘 AABB’s. Then 𝑓∗ is
defined as:

𝑓∗ ∶ {{1, 2, … , 480} × [0, 1] ∈ 𝑋} → ℝ × ℕ
𝑓∗ ∶ 𝑥 ↦ 𝑦 (3.8)

Similar to the explanation in section 3.2, a neural network with parameters 𝜃 is defined as function
𝑓(𝑥; 𝜃) = �̂� that approximates function 𝑓∗(𝑥). In order for the network to learn the optimal set of values
for parameters 𝜃, a loss function 𝐿(𝜃) is optimized.

3.3.1. YOLO object detection network
In this thesis an existing object detection network architecture is extended to perform the road shape
regression task on aerial images. Redmon et. al. showed that the YOLO object detection architecture
is flexible as they described multiple architectural modifications that improve their original state-of-
the-art architecture, described in “You Only Look Once: Unified, Real-Time Object Detection” [47], in
their recent work that describe version two [45] and version three [46] of the object detector. Keeping
this proven flexibility in mind, the YOLO architecture is chosen as the basis for the shape regression
network for road segmentation. More specifically, version two of the YOLO architecture [45] is chosen
as a basis, as it is the first version that follows a fully convolutional architecture which falls in line with the
previously mentioned semantic segmentation networks. Given the aim of combining the two networks
later on, choosing the fully convolutional architecture for the object detection network ensures that the
main benefit of a fully convolutional architecture namely, allowing input images of an arbitraty size,
is preserved for the combined architecture. In comparison with version three, the second version of
the YOLO architecture is less complex as it uses the Darknet 19 feature extractor instead of the more
complex Darknet 53 feature extractor that is introduced in version three.

The YOLO v2 architecture consists of the Darknet 19 feature extractor, excluding the classification
part, and several convolutional layers before a 1×1 convolutional layer that produces the box and class
predictions. The architecture is depicted in table 3.2. Since the architecture contains five maxpool
layers, the original width and height dimensions of the input image are reduced by a factor of 32. This
leads to a coarser × grid overlayed on the original image, where 𝑤 ∈ ℕ and ℎ ∈ ℕ and are
both divisable by 32. The parameter 𝜆 in table 3.2 represents the number of parameters to predict
per grid location. Let there be 𝑚 boxes to predict and 𝑛 known classes. YOLO encodes each box as
four location parameters 𝑏 = (𝑏 , 𝑏 , 𝑏 , 𝑏 ), with 𝑏 ∈ ℝ , one box confidence parameter 𝑏 , with
𝑏 ∈ ℝ, and a one-hot encoded class vector 𝑏 , with 𝑏 ∈ ℕ s.t. ∀𝑖 𝑏 ∈ {0, 1} and ∑ 𝑏 = 1. The
total number of predicted parameters for each grid location is then defined as 𝑚 ⋅ (4 + 1 + 𝑛).

Version two of the YOLO network does not predict the exact location, width and height of the
annotated boxes, but instead predicts the offset for a set of pre-defined candidate boxes called prior
boxes. These prior boxes are found by performing a K-means clustering on all annotated boxes to
find a set of prior boxes that are assumed to be good starting candidates for all predictions. This K-
means clustering is not performed in this thesis, as it is assumed to be a refinement step that would
take additional time to implement. A set of five candidate boxes is defined instead, which follow the
principle of the anchor boxes of different aspect ratios, each centered around the center of a grid cell.
An example of four candidate boxes is depicted in figure 3.6. The anchor boxes used in this thesis
have the following width heigh ratios which are defined relative to the width and height of the grid cell:

anchors = {(0.57273, 0.677385),
(1.87446, 2.06253),
(3.33843, 5.47434),
(7.88282, 3.52778),
(9.77052, 9.16828)}

(3.9)

These anchor boxes are not optimal for the problem at hand as several boxes have a near equal width
and height even though road segments rarely have a 1 ∶ 1 aspect ratio. The anchor boxes are originally
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designed for object detection on scene classification images, as they are used for object detection on
the Microsoft COCO dataset [35]. Nevertheless, this set of boxes are assumed to be a good starting
point, as they do capture a variety of aspect ratios and sizes.

Figure 3.6: Example of anchor boxes centered around a grid cell. For visual clarity, the anchors are only drawn for two grid cells.
Image modified from [37].

The values for 𝑏loc are then defined the same way as introduced by Redmon and Farhadi [45], which
is as follows:

𝑏 = 𝜎(𝑡 ) + 𝑐
𝑏 = 𝜎(𝑡 ) + 𝑐
𝑏 = 𝑝 𝑒
𝑏 = 𝑝 𝑒

(3.10)

Where 𝑐 and 𝑐 are the center coordinates of a grid cell, 𝑝 and 𝑝 are the absolute width and height
of the anchor boxes, thus the relative width and height times the width and height of the grid cell.
The parameters (𝑡 , 𝑡 , 𝑡 , 𝑡 ) are the anchor box offset and scale parameters predicted by the YOLO
network, where function 𝜎(𝑎) is a sigmoid activation function applied to parameter 𝑎.

Redmon et. al. describe in “YOLO9000: Better, Faster, Stronger” [45] that they added a
passthrough layer, similar to U-net’s skip connections, from the last 3 × 3 × 512 layer to the second to
last convolutional layer. It is assumed that they meant the second to last 3 × 3 × 1024 convolutional
layer. Batch normalization is added to each convolutional layer [45]. Additionally, the leaky ReLU
activation function, with 𝛼 = 0.1, is applied to each convolutional layer as explained in the first YOLO
[47] publication. In order to learn how to detect objects from aerial images Redmon et. al. [47] described
the loss function, depicted in equation 3.11, for YOLO version one. The coefficient 𝜆 = 5 is
a weighting coefficient to increase the penalty for box localization errors, whereas 𝜆 = 0.5 is
a coefficient that decreases the penalty of the box confidence scores for boxes that do not contain
objects, probably as a counter measure to the object / no object imbalance. These weights were
deemed necessary to prevent the optimization from diverging early on.

𝐿𝑜𝑠𝑠 =𝜆 ∑∑𝟙 [(𝑥 − �̂� ) + (𝑦 − �̂� ) ]

+ 𝜆 ∑∑𝟙 [(√𝑤 − √�̂� ) + (√ℎ − √ℎ̂ ) ]

+∑∑𝟙 (𝐶 − �̂� ) + 𝜆 ∑∑𝟙 (𝐶 − �̂� )

+∑𝟙 ∑
∈

(𝑝 (𝑐) − �̂� (𝑐))

(3.11)



26 3. Methodology

Table 3.2: YOLO v2 [45] architecture, where is defined as the number of predictions (#boxes⋅( #classes)). The horizontal
line between the convolutional layers indicates the transition from the Darknet 19 feature extractor to the part that predicts object
locations and class membership.

type Filters Size/Stride

Convolutional 32 3 × 3
Maxpool 2 × 2/2

Convolutional 64 3 × 3
Maxpool 2 × 2/2

Convolutional 128 3 × 3
Convolutional 64 1 × 1
Convolutional 128 3 × 3

Maxpool 2 × 2/2
Convolutional 256 3 × 3
Convolutional 128 1 × 1
Convolutional 256 3 × 3

Maxpool 2 × 2/2
Convolutional 512 3 × 3
Convolutional 256 1 × 1
Convolutional 512 3 × 3
Convolutional 256 1 × 1
Convolutional 512 3 × 3

Maxpool 2 × 2/2
Convolutional 1024 3 × 3
Convolutional 512 1 × 1
Convolutional 1024 3 × 3
Convolutional 512 1 × 1
Convolutional 1024 3 × 3
Convolutional 1024 3 × 3
Convolutional 1024 3 × 3
Convolutional 1024 3 × 3
Convolutional 𝜆 1 × 1

The first version of YOLO is only able to predict one class for all boxes in a certain grid cell, which
is not the case for YOLO version two. YOLO’s second version is capable of detecting𝑚 boxes per grid
cell, where each box has its own class confidence score. Therefore the last term of the loss function
should be rewritten to:

∑∑𝟙 ∑
∈

(𝑝 (𝑐) − �̂� (𝑐)) (3.12)

𝟙 is a binary mask that contains the value one at each grid cell 𝑖 where an object is present
and at each box 𝑗 that is responsible for detecting that object and zero otherwise and 𝟙 = ¬𝟙 .
Additionally 𝑆 represents the number of grid cells, and 𝐵 the number of predicted bounding boxes per
grid cell. 𝑥 and 𝑦 represent the box center coordinates, where 𝑤 and ℎ represents its width. 𝐶 is the
box confidence score that allows for non-maximum suppression during inference, and 𝑝 symbolises
the one-hot encoded class confidence vector. The loss is originally optimized by SGD, however, in this
thesis, the ADAM optimizer is used instead of SGD.

3.3.2. Shape regression based segmentation method
The YOLO network described in subsection 3.3.1 is potentially able to localize roads or road sections,
if suitable annotations are supplied. Localizing roads in aerial images is not a trivial task, as it could
be solved in numerous different ways, all of which could lead to correct localizations. One could for
instance either draw one large box around the whole road in the image, or split the road in smaller
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segments by placing multiple boxes of varying sizes around locally coherent sections. However, these
different methods might not all be suitable for the greater goal of performing shape regression for road
segmentation. In case of localizing roads in an image by placing one large box around the road, the
actual shape of the road inside could be rather simplistic such as one straight road section or terribly
complex like several hairpin corners with several junctions or even a roundabout. As it is currently not
feasible to perform regression on arbitrarily complex shapes, this particular choice of road localization
is, although correct, not suitable for localizing roads for shape regression.

Therefore, an important part of this thesis is to define a method that divides a road in an image in a
consistent way such that each individual segment has a rather simplistic shape. As the road localization
task is aimed to be solved by a supervised deep learning method such as the YOLO object detection
network, this subdivision method should preferably be automated so that the required annotations can
be generated consistently on large quantities of data in a relatively short amount of time, instead of
being created manually.

YOLO localizes an object by subdividing an image into separate regions, called grid cells, after
which each cell detects an object of the object’s center is present in that cell. Another characteristic is
that it generally detects objects with a width and height larger than each individual cell.

Taking this into account, a simplistic method is created to subdivide complex road polygons in
smaller, less complex sections. The complete road polygon is subdivided into separate regions, similar
to YOLO’s subdivision of an input image. In order to ensure that road sections can be larger than YOLO
grid cells, the polygon grid is of a coarser scale of 3 × 3 cells. Per grid cell, the occurrence of a road
subsection polygon is detected and stored. For each road subsection polygon its AABB is calculated
by finding the individual minimum and maximum 𝑥 and 𝑦 values of the polygon 𝑝’s points.

A Polygon 𝑝 can always be represented by the ordered set 𝑃 of 𝑁 successive corner point
coordinates, (𝑥 , 𝑦 ) with 𝑖 ∈ {1, 2, … , 𝑁}, where all successive points are to be connected and the last
point connects to the first point in order to form a closed polygon.

𝑃 = ((𝑥 , 𝑦 ), (𝑥 , 𝑦 ), … , (𝑥 , 𝑦 )) (3.13)

Let 𝑋 = (𝑥 , 𝑥 , ..., 𝑥 ) be a set containing all 𝑥 coordinates of 𝑝 and 𝑌 = (𝑦 , 𝑦 , ..., 𝑦 ) be a set that
represents all 𝑦 coordinates of 𝑝. Then the minimum values are defined as:

𝑥 =min𝑋
𝑦 =min𝑌 (3.14)

Similarly the maximum values are defined as:

𝑥 =max𝑋
𝑦 =max𝑌 (3.15)

The axis aligned bounding box is then defined by the following two extreme points:

𝑣 = (𝑥 , 𝑦 )
𝑣 = (𝑥 , 𝑦 ) (3.16)

This procedure is visualized in figure 3.7, where the original polygons are shown in figure 3.7 (a) with
the road presented in red. The coarse 3×3 grid is depicted in figure 3.7 (b), where each road segment,
after subdividing the road polygon by the 3 × 3 grid, is shown in a unique color in figure 3.7 (c). Their
corresponding axis-aligned bounding boxes are subsequently depicted in figure 3.7 (d).

YOLO prefers its annotations to be stored as a list of; box center coordinates, width, height and
class. Therefore for each axis-aligned bounding box 𝐵, its center coordinates (𝑐 , 𝑐 ), width 𝑤 and
height ℎ are extracted. Since only segments belonging to the class road are localized, the class
confidence vector 𝑝 can be ignored. Given that the number of classes 𝑛 = 0, and that there are four
box parameters (𝑐 , 𝑐 , 𝑤, ℎ) and one box confidence parameter, the network’s number of predicted
variables per grid cell 𝜆 is then reduced to 𝑚 ⋅ (4 + 1), where 𝑚 is the number of predicted boxes per
grid cell. The box confidence parameter is not stored explicitly in the annotations, as each annotated
box has automatically a confidence score of one, whereas all other boxes are initiated as zero. This
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Figure 3.7: Process of annotation generation. From left to right: a) Original shape, with road in red. b) Coarse grid. c) Intersection
of road shape with grid cells. d) envelope shape per road segment.

(a) An example of a convex polygon [20] (b) An example of a concave polygon [19]

Figure 3.8: Example of a convex and concave polygon shown in green, with points and inside the polygon.

network is referred to as road localization network from here on.

𝑐 = 1
2(𝑥 + 𝑥 )

𝑐 = 1
2(𝑦 + 𝑦 )

𝑤 = 𝑥 − 𝑥
ℎ = 𝑦 − 𝑦

(3.17)

Eventually the localized road segments should be approximated, for which a straight line is used.
This road segment representation assumes near straight road sections. Therefore, only patches that
solely consist of straight road sections are sampled from the dataset. In order to oblige to this
assumption, only road sections that are (near) convex polygons are sampled.

A polygon 𝑃 is considered convex if and only if for any set of 𝑛 points 𝑉 = {𝑣 , 𝑣 , ..., 𝑣 }, with 𝑛 > 1
and ∀𝑖 𝑣 ∈ 𝑃 with 𝑖 ∈ {1, 2, ..., 𝑛}, and any set of 𝑛 values Λ = {𝜆 , 𝜆 , ..., 𝜆 } such that ∀𝑖 𝜆 ∈ [0, 1] and
∑ 𝜆 = 1, the following equation holds:

∑𝜆 𝑣 ∈ 𝑃 (3.18)

Figure 3.8 shows an example of a convex polygon (a) and a concave set (b). Given the green
polygons and two points, 𝑋 and 𝑌, inside the polygon, the line section between these two points depict
all possible linear combinations of the two points as described in equation 3.18. For the concave set
depicted in 3.8 (b), the red part of the line exceeds the boundaries of the polygon, thus violating the
description that any valid linear combination of 𝜆 𝑋 ⋅ 𝜆 𝑌 should be inside the polygon. Therefore the
polygon is depicted in (b) is not convex and thus concave.

The criteria of adding samples to the dataset based on all road segments being convex is a rather
strict one which drastically reduces the amount of available samples. This criteria is therefore loosened
a little bit, by defining convexity as a soft constraint. The soft constraint dictates that road segments
are considered near-convex if the difference between its area and the area of its convex hull is less
than threshold 𝑡.
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The convex hull of a polygon 𝑃, consisting of points 𝑝 for 𝑖 ∈ {1, … , 𝑛} is a polygon that describes
the intersection of all convex sets containing all points 𝑝 in 𝑃 [58]. Figure 3.9 shows an example of
the convex hull in blue, of a set of points in black. One could could describe the convex hull of a set of
points based on an analogy, where the set points are represented by unmovable pillars and the convex
hull by an elastic band. The convex hull of the set of points is then found by expanding the rubber band
such that all pillars are inside its perimeter, depicted in the black outline in 3.9. Once the elastic band
is released, it snaps closely along the outer pillars, representing the convex hull of the pillars.

Figure 3.9: Convex hull in blue, of a set of points in black [21]. The black outline with inward arrows depict the elastic band
analogy to describe the convex hull of a set of points.

Let ℎ(𝑥) be the convex hull of 𝑥, then 𝑥 is considered to be near-convex iff:

𝑡 = 0.01 ⋅ area(𝑥)
area(ℎ(𝑥)) − area(𝑥) < 𝑡 (3.19)

Since the convex hull of a convex polygon is equal to the original convex polygon, all convex polygons
automatically meet this criteria. Polygons that share an overlap in area of at least 99%with their convex
hull, are in this case considered to be near-convex. Consequently, the sample is added to the dataset
if all other polygons in that sample meet this criteria as well.

Note that the top left road segment in 3.7 (c) is not convex, thus this example image would be
discarded from the dataset.

Now that the road segment localization annotations are defined, all that is left is to add the annotated
road segment shapes to the annotations. Under the assumption that all the localized segments contain
(near) convex road segments, one can approximate the shape of a road segment by defining a line
between the two points where the road segment hits its encapsulating box, where the width of the line
is defined by the boundaries of the road segment’s polygon.

The modified YOLO v2 architecture is expected to learn to represent road polygons by performing
regression on the parametrization of each individual road segment’s shape. Where the parametrization
of each road segment line, which is encoded as two pairs of (𝑥, 𝑦) coordinates accompanied by a road
width parameter 𝑤. The road localization network, that is based on YOLO v2, is further expanded to
predict the road segment parameters as well.

Continuing from the point where the road polygons are subdivided by the 3 × 3 grid of the previous
method, depicted in the image on the left of figure 3.10. The middle image of that figure shows the
road localization boxes, and the right most image shows the outline of the road segments in red, with
their line approximation in blue. The road width is not taken into account for sake of the visualization.
Aside from that, this example shows the importance of the convexity property of each individual road
segment. The segment on the bottom right clearly violates this property, resulting in a bad road segment
representation, as the blue line nearly exceeds the border of the actual segment.

The two points for each segment are derived from the intersection between the outline of the actual
road segment, which is shown in red in the right most image of figure 3.10, and the outline of its
corresponding localization box, depicted in the middle image of that same figure. These intersections
are depicted as green lines in figure 3.10 (right). This intersection generally contains two line segments
per road segment, of which their middle points 𝑝 and 𝑝 describe the line segment that approximates
the road shape. These points are shown in orange in the right most image of figure 3.10.

Now that the road segment’s direction is known, the width of the road needs to be estimated in order
to attain a valid approximation of the segment’s shape. As a line has a constant width throughout the
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Figure 3.10: Subdivision of road polygon (in red) in the left image, with road localization annotations in the middle image, whereas
the road line estimation (in blue) is depicted in the right image.

whole segment and the original road segments could still vary in width from one end to the other, a
simplification is needed to estimate the road segment’s width by a constant 𝑤.

For this constant one could choose for instance the smallest width, leading to a smaller road section
than originally described in BBG, or the largest width, leading to a larger road section than originally
provided, or something in between by taking for instance the average width. For the sake of simplicity
the largest width is chosen, so that it at least covers the whole road section and, unfortunately, it covers
some areas that are not annotated as road as well.

The largest width is easily calculated by the shortest side of the minimum area oriented bounding
box around the original road segment, as a road segment is assumed to be longer than that it is wide.
This oriented bounding box is calculated by the rotating calipers algorithm [54]. After which the width of
the road is defined as the length of the shorted line segment of the outline of the oriented box. Intuitively,
one could describe the rotating calipers method as iterating over each edge 𝑣 for 𝑖 ∈ {1, … , 𝑛} of the 𝑛
edges of the convex polygon. For each edge 𝑣 , it then performs a change of basis transformation from
vector space 𝑈, with the standard basis 𝐸 to a vector space 𝑆 ∈ ℝ of the polygon to a coordinate
system with basis 𝐷 = {𝑣 , 𝑣 } , described by the mapping 𝑇 ∶ 𝑈 ↦ 𝑆 In this coordinate system, the
axis aligned bounding box 𝐵 of the polygon is calculated, of which the area 𝐴 is stored as well. Let
the axis aligned bounding box 𝐵 be the bounding box with the smallest area:

𝑗 = arg min𝐴

𝐵 = 𝐵
(3.20)

The minimum area oriented bounding box 𝑂𝐵𝐵 is then derived by mapping 𝐵 back to 𝑈 by
the inverse mapping 𝑇 ∶ 𝑆 ↦ 𝑈.

𝑂𝐵𝐵 = 𝑇 (𝐵 ) (3.21)

Visually, this could be interpreted as rotating a caliper around the polygon, while measuring the distance
between the two blades each time the bottom blade aligns with one of the polygon’s edges.

Road width estimation𝑤 is then defined as the length of the side 𝑙 for ℎ ∈ {1, 2, 3, 4} of the rectangle
𝑂𝐵𝐵 that has the shortest length.

𝑤 = min
∈[ ,…, ]

|𝑙 | (3.22)

The annotations of each segment are then stored as a list of localization box center coordinate
(𝑐 , 𝑐 ), localization box width 𝑤 , localization box height ℎ , road segment point one 𝑝 = (𝑥 , 𝑦 ),
road segment point two 𝑝 = (𝑥 , 𝑦 ) and road width 𝑤 , where 𝑝 and 𝑝 are normalized over the
box width and height and in range 𝑥 ∈ [0, 1], 𝑦 ∈ [0, 1] for 𝑖 ∈ {1, 2}. Where the coordinate (0, 0)
corresponds to the bottom-left corner of the localization box and (1, 1) corresponds to the top-right
corner of the localization box.

Several further modifications of the YOLO v2 architecture need to be made for the network to be
able to learn the newly introduced representation of road segments. That modified network is from here
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on referred to as the shape regression network. In order to accommodate the extra five parameters that
have to be estimated, the number of output nodes of the network is increased, so that each predicted
box now predicts a total of ten parameters instead of the five box parameters of the road localization
network.

In order to perform regression on the shape of the individual road segments, the loss function from
equation 3.11 has to be extended as well. Where the previously used loss function solely calculated
the loss of the localization box coordinates and the localization confidence, the extended version also
takes into account the loss of the road segment parameters. These road segments are defined as
lines, for which a start point 𝑝1, an end point 𝑝2 and a width 𝑤 are defined. Each of these two
points is defined by an 𝑥 and 𝑦 component. These 𝑝1 , 𝑝1 and 𝑝2 , 𝑝2 network predictions are very
similar to the prediction of 𝑏 and 𝑏 in equation 3.10. In fact, as these components are offsets relative
to the origin of the predicted localization box, their constant is equal to 0. As the points 𝑝1 and 𝑝2 are
defined similarly to the box center prediction point prediction their loss is calculated in the same way as
well. Thus, the sum of squared differences is used to calculate the loss of the road segment line point
predictions:

𝐿𝑜𝑠𝑠 =∑∑𝟙 [(𝑝1 − ̂𝑝1 ) + (𝑝1 − ̂𝑝1 ) ]

𝐿𝑜𝑠𝑠 =∑∑𝟙 [(𝑝2 − ̂𝑝2 ) + (𝑝2 − ̂𝑝2 ) ]

(3.23)

Besides points 𝑝1 and 𝑝2, a road line segment is defined by a certain width 𝑤 as well. Since
the width of a road can vary largely, it is more similiar to the behavior of the width and height of the
localization boxes than to the box center coordinate predictions. 𝑤 is therefore predicted in a similar
way as the width of the localization box 𝑏 , shown in equation 3.10, is predicted. 𝑏 is predicted as a
coefficient to the width of an anchor box. The width and height of an anchor box act as some form of
regularization on the width and height prediction of localization boxes. As the chosen anchor boxes do
not represent the width of the road well, this term has to be subsituted. The width of a grid cell does
not directly relate to the width of the road, however it could act as a decent regularization term as it is
constant and the width of the road is for instance larger than a quarter of the width of a grid cell and not
larger than two or three times the width of a grid cell. Since the width of the road is parametrized similar
to the width and height of the localization boxes, the term for the loss of the road width parameter is
treated the same as term of for the width and height of the localization boxes. Therefore, the sum of
squared differences of the square root of the width estimation and annotation is used to calculate the
road width loss term:

𝐿𝑜𝑠𝑠 =∑∑𝟙 [(√𝑤 − √ ̂𝑤 ) ] (3.24)

The updated loss function, which includes the loss of the road segmentation parameters, is then as
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follows:

𝐿𝑜𝑠𝑠 =𝜆 ∑∑𝟙 [(𝑥 − �̂� ) + (𝑦 − �̂� ) ]

+ 𝜆 ∑∑𝟙 [(√𝑤 − √�̂� ) + (√ℎ − √ℎ̂ ) ]

+∑∑𝟙 (𝐶 − �̂� ) + 𝜆 ∑∑𝟙 (𝐶 − �̂� )

+∑∑𝟙 [(𝑝1 − ̂𝑝1 ) + (𝑝1 − ̂𝑝1 ) ]

+∑∑𝟙 [(𝑝2 − ̂𝑝2 ) + (𝑝2 − ̂𝑝2 ) ]

+∑∑𝟙 [(√𝑤 − √ ̂𝑤 ) ]

(3.25)

3.4. Hybrid segmentation method
A hybrid approach of the state-of-the-art per-pixel segmentation method combined with the novel
shape regression based segmentation method is introduced, such that topological and geometrical
information acquired from the shape regression network is fed back into the per-pixel segmentation
network. The architecture of the hybrid network is depicted in figure 3.11. This hybrid network shares
the Darknet 19 [45] feature extractor for both the Dark U-net per-pixel segmentation network and
the shape regression based road segmentation network. The network branches at the end of the
feature extractor, which is depicted at the bottom right part of the U-shape in figure 3.11. From that
point onwards, the network splits in the Dark U-net network going upwards, whilst the architecture
of the shape regression based road segmentation network is completed downwards. Non-maximum
suppression is applied on the ouput of the shape regression network in order to filter out all low-
confidence road localisation predictions in a similar way as described by Redmon et. al. [45]. The
road segment predictions are subsequently rasterized to obtain a binary per-pixel segmentation map
containing roads and background pixels. This binary per-pixel segmentation map has the same spatial
resolution as the original input image and can thus be appended to the upper right part of the U-
shape via a skip connection. Afterwards the Dark U-net segmentation network performs its per-pixel
classification task on the information acquired from both the per-pixel segmentation network and the
shape regression based segmentation network.

This network can be trained by training either a Dark U-net or a shape regression network first,
after which the trainable parameters of the feature extractor can be exported. Subsequently the hybrid
network can be constructed, where the previously acquired weights, or a subset of it, are loaded and
made constant. One can then train both the rest of the Dark U-net and shape regression network
architecture seperately.
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Figure 3.11: Architecture of a hybrid per-pixel and shape regression based segmentation method.





4
Experiments

The experiments described in this chapter are implemented in Python, where TensorFlow [12] is used
as the deep learning framework. Scikit-Image [55] is used to proces image data, whereasMatplotlib [30]
provided the necessary tools to visualize them. Shapefiles are loaded and processed using GeoPandas
and Shapely [23] and rasterized using Rasterio [24]. The experiments are performed on a NVIDIA DGX-
1, of which one NVIDIA Tesla V100 graphics card with 16 GB of video memory is utilized for training
the neural networks.

The first experiment, described in section 4.1, assesses the potential of the U-net architecture
on a multi-class semantic segmentation task, provided by the DeepGlobe benchmark that provides
a large amount of satellite images combined with multi-class per-pixel annotations. Its performance is
subsequently compared to the newly introduced Dark U-net semantic segmentation network.
Additionally, the impact of data augmentation on the learning procedure is assessed.

As the novel shape regression technique focuses on a binary segmentation problem, the per-pixel
semantic segmentation network needs to perform a binary segmentation task as well for comparison.
The per-pixel semantic segmentation network is, however, able to perform a multi-class semantic
segmentation task. In order to ascertain that road segmentation performance of the per-pixel network
is not influenced by the total number of classes of the semantic segmentation problem, the second
experiment is performed as described in section 4.2.

The experiment described in section 4.3 assesses an object detector’s capability of understanding
the novel road segment representation that is introduced in section 3.3.2 by training it on the generated
road segment annotations.

Section 4.4 describes the experiment that is conducted to assess the performance of the road
shape regression technique on images that contain (near) convex road structures. A Dark U-net per-
pixel binary segmentation network is used as baseline for comparison of the networks’ performance on
the binary road segmentation task.

4.1. Feature extraction for segmentation
Since both the semantic segmentation network and the object detection network need a convolution
based feature extractor, it would be beneficial in terms of resources if both networks could share
the same feature extractor. Therefore, the performance of U-net is compared to Dark U-net on a
segmentation task to assess the potential of both feature extractors. Additionally, the suitability for
segmenting images according to land use is tested as well, for which a baseline is required.

This experiment aims to answer the research question “How well does the performance of
Rijkswaterstaat’s per-pixel segmentation network scale with the amount of data?”. U-net follows a
similar encoder-decoder architecture that is used by the work of Long et. al. [38], which is known to
perform well on multi-class segmentation tasks. Similarly, the feature extractor of U-net is based on the
VGG-16 image classification network. This feature extractor is known to perform well on multi-class
image classification tasks [53]. It is therefore expected that the U-net architecture also performs well
on a multi-class semantic segmentation task. The networks on which U-net is based all proved to be
effective on large dataset such as PASCAL VOC or ImageNet as well, thus it is expected that U-net

35
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performs well on large quantitities of data as well.
A suitable dataset, for which a reference score is available, is needed for this experiment as there

is no reference of the performance of a proven network architecture on the dataset that is introduced
by Rijkswaterstaat. This lack of a benchmark renders this dataset unsuitable for the task of comparing
network architectures for suitability of the segmentation task in general.

Unfortunately, not many datasets for land use segmentation are publicly available. The DeepGlobe
dataset provides a similar setting, namely land use classification, on images taken from satellite images
above the United States [22]. A DeepLab based network achieved amean Intersection over Union (IoU)
score of 0.433 at epoch 30 with a 512 × 512 patch size, where the class ‘undefined’ was not included
in the calculation.

According to the DeepGlobe paper [22] the dataset should come available, where they hope it will
become a valuable benchmark, although it is at time of writing of this thesis, not made publicly available
yet. As this experiment is performed early on in the research it was expected that the DeepGlobe
dataset would have been published near the end of the thesis project. The intention was to re-run
the experiment on the public dataset at the end of the thesis, however the dataset is still not publicly
available. As no other dataset, that provides a similar land use segmentation problem, is available, only
the training set of the DeepGlobe dataset is acquired for this thesis. Due to the fact that the dataset is
currently not publicly available, no qualitative results are published in this thesis.

The acquired training set contains 803 images of 2448×2448 pixels, which are split in four patches
of size 608 × 608. As a training and validation set are required for training and a test set is required
for evaluation, the original DeepGlobe training set is subdivided. The patches of width and height
608×608 are randomly added to either the training, validation or test set with a chance of [0.8, 0.1, 0.1]
respectively. By this random assignment of patches a split of roughly 80 percent for training, 10 percent
for validation, and 10 percent for testing is achieved, whilst decreasing the chance of assigning whole
images to either the training, validation or testing set.

Furthermore, the research questions “What is the influence on the segmentation performance if
the feature extractor of a segmentation network is exchanged for a state-of-the art feature feature
extractor?” is answered by the results of this experiment as well. Since both U-net and Dark U-net
are based on the encoder-decoder architecture with skip connections, any difference in performance
should be attributed to the different feature extractor architectures. It is expected that the Dark U-
net architecture will improve the multi-class semantic segmentation task since it adds an extra set of
convolutional layers and an additional maxpool layer which increases the network’s receptive fields.

YOLO achieved significant speed ups in computational time by switching the VGG-16 feature
extractor for Darknet-19 whilst losing very little performance in terms of object detections. U-net does
not utilize the full VGG-16 feature extractor, as it contains only four maxpool operations, therefore
already reducing the complexity of the original VGG-16. On the other hand, the encoder-decoder
architecture results in a significant increase of complexity as the encoder is basically duplicated to
serve as a basis for the decoder as well. Therefore it is expected that a smaller reduction in complexity
when compared to the full VGG-16 feature extractor still becomes noticable as that smaller reduction
is basically applied for the decoder part of the architecture as well.

Both a U-net and a Dark U-net architecture are constructed with a batch size of 4, a cross-entropy
loss function and are trained on the training set via the ADAM optimizer with learning rate 𝛼 = 1𝑒 ,
𝛽 = 0.9, 𝛽 = 0.999 and 𝜖 = 1𝑒 . Due to random initialization of the weights, it is assumed not fair
to compare individual networks. Therefore the experiment is performed on five networks, where their
performance metrics will be averaged over those five runs.

Additionally, the average Intersection over Union (IoU) is measured per class, as this is the
benchmark metric for the DeepGlobe dataset. This metric shows how well the areas of the predicted
pixels of a certain class overlap with the areas of the pixels of that same class in the ground-truth image.
It measures the intersection of the predicted and ground-truth areas in terms of pixels and divides them
by the union of their respective areas. In the per-pixel semantic segmentation task, this corresponds to
the amount of True Positives (TP) divided by the sum of TP, False Positives (FP) and False Negatives
(FN) per class. Therefore, an IoU for class 𝑗 for all images 𝑖 ∈ {1, 2, … , 𝑛}, where 𝑛 are the number of
images as described in the DeepGlobe paper [22]. It is defined as:

IoU =
∑ TP

∑ TP + ∑ FP + ∑ FN
(4.1)
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The mean IoU is then the mean over the individual IoU’s of all classes.
An early stopping condition is defined for the optimization scheme in order to prevent overfitting.

The stopping condition takes into account the achievedmean IoU on the whole validation set, where the
optimization algorithm is stopped if the best mean IoU is not improved over three consecutive validation
epochs. To reduce the total training time, the validation scores are only calculated once for every five
training epochs.

Data augmentation is applied on the aerial images to increase the variation in training samples
as well as reduce the chance that the neural network learns to classify based on unrelated patterns.
Take for example a dataset containing images of cars and trucks and a neural network is trained to
distinguish cars from trucks. If by any chance, all cars are facing to the right and all trucks are facing to
the left, the network could learn to classify based on vehicle orientation rather than the, for us obvious,
visual differences in vehicle size and design. Augmenting these data samples by randomly flipping
them, ensures that the network trains on examples of both left and right facing cars and trucks, thus
avoiding classification based purely on vehicle orientation.

The previous example is an obvious visible pattern, which designers of networks should be able to
notice fairly quickly. Other patterns, however, are not so easy to detect by humans especially on large
datasets that contain tens of thousands of images. For this thesis, a set of commonly used random
data augmentation operations is used to reduce the chance of severe overfitting of the neural networks.
It is not claimed that this is the best combination of augmentation techniques for this particular domain,
as this is considered to be outside the scope of the thesis.

An example of each of the individual augmentation techniques is displayed in figure 4.1. Subfigure
4.1 (a) shows the original, unmodified patch and its annotation.

A random crop of a sub-patch, figure 4.1 (b), is introduced to increase spatial variety in the images.
Subsequently, by randomly picking from a variety of crop sizes for the sub-patch, the objects in the
patch are displayed at different scales as well, potentially increasing the network’s scale invariance.
Since the network expects images of a fixed dimension during training time, the patches are up-scaled
to match the dimensions of the original image. Another way to introduce more spatial variety in the
image, is to perform a random rotation and / or a random flip of the input image, which is shown in
figure 4.1 (c) and (d).

Variation in illumination conditions, introduced by applying random brightness, contrast and
saturation, decreases the network’s reliance on certain lighting conditions. Examples are shown in
figure 4.1 (e-g). High-frequency features are often susceptible to noise, and are therefore less suitable
for a robust classification network. The network’s reliance on these high-frequent features is reduced
by distorting these high-frequent features. For this reason, Gaussian noise is applied to the image,
where 𝜎 is randomly chosen per input sample.

The pixel values could unfortunately exceed the bounds of [0,1] due to these augmentation steps.
Therefore a clipping operation is performed, where values outside the boundaries are clipped to the
boundary values.

4.1.1. Results
TheDeepGlobe 2018 dataset is used as a benchmark to assess the potential of U-net andDark U-net on
a large multi-class dataset for the Remote Sensing domain. Figure 4.2 depicts the mean Intersection
over Union of all land usage classes, except the “other” class, for consistence with the DeepGlobe
paper [22]. For both U-net and Dark U-net, the mean Intersection over Union of the networks trained
on augmented data are depicted. As five networks are trained for each architecture, the bars of U-net
and Dark U-net actually depict the average mean Intersection over Union, whereas the black error bars
indicate their standard deviation.

This graph indicates that both U-net and Dark U-net achieve a higher mean Intersection over
Union than the DeepLab reference network. However, as the training, test and validation sets are
not identical for the (Dark) U-net implementation and the DeepLab implementation, it is not fair to draw
any conclusions on which architecture is better. Additionally, DeepLab is just trained for 30 epochs,
where U-net and Dark U-net are trained for at most 305 epochs. These results do prove that both Dark
U-net and U-net show potential for performing a segmentation task in the Remote Sensing domain.

The impact of the data augmentation is measured on the test set of the DeepGlobe 2018 dataset,
in terms of Intersection over Union per class. Figure 4.3 shows the results as a bar graph for the
U-net architecture (a) and the Dark U-net architecture (b), where the blue bar indicates the measured
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(a) The original aerial image patch (left) and corresponding
annotation (right) (b) Random crop and rescale.

(c) The random rotation data augmentation operation. (d) The random flip, either horizontal or vertical.

(e) The random brightness. (f) Random contrast.

(g) The random saturation data augmentation operation. (h) Gaussian noise with random standard deviation.

Figure 4.1: Individual data augmentation steps performed on an original image patch and corresponding annotation.

Intersection over Union of the network that was trained without Data Augmentation. The red bar depicts
the average performance of the five networks that were trained with Data Augmentation, where the
black error bars indicate the standard deviation. The same results are listed numerically in table 4.1

When taking the variation between the five runs of the networks that are trained on augmented
data into account, the overall performance in terms of IoU appears to have a slight advantage over the
network that is trained without augmented data. When comparing the standard deviation on the mean
IoU values of the networks trained on augmented data with the networks trained on not augmented
data, depicted in the bottom row of table 4.1, it becomes apparent that the standard deviations on the
networks trained on augmented data is significantly lower.

Additionally, the difference in learning curves between a network that is trained on augmented data
versus a network with the same architecture trained on non-augmented data shows that training on
augmented data reduces the chance of severe overfitting on the DeepGlobe 2018 dataset. Figure
4.4 shows the largest difference and smallest difference between training curves in subgraph (a) and
(b) respectively. As this behaviour was apparent for both the U-net and Dark U-net network based
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Figure 4.2: Average Intersection over Union of U-net, Dark U-net and DeepGlobe reference DeepLab

Table 4.1: Comparison of segmentation performance in terms of Intersection over Union per class for both U-net and Dark U-net
when trained on the DeepGlobe dataset either with or without data augmentation. The results on augmented data are averaged
over five runs and their standard deviations are added as well. The Mean results on augmented data are calculated over the
average IoUs of each run.

U-net Dark U-net

Labels Pristine Data Augmented Data Pristine Data Augmented Data

Water 0.743 0.769 ± 0.032 0.686 0.777 ± 0.007
Forest 0.716 0.673 ± 0.026 0.694 0.679 ± 0.025
Range-Land 0.213 0.246 ± 0.060 0.192 0.239 ± 0.009
Agriculture 0.836 0.827 ± 0.013 0.819 0.823 ± 0.010
Urban 0.740 0.763 ± 0.011 0.744 0.766 ± 0.008
Barren 0.481 0.500 ± 0.027 0.464 0.520 ± 0.028
Mean 0.621 0.630 ± 0.026 0.600 0.628 ± 0.010

networks, therefore the network architecture is not named for this graph. The red lines indicate the
learning curve on the training set of the network that is trained without data augmentation, whereas
the orange lines indicate the learning curve on the training set of the network that is trained with data
augmentation. Similarly, the light blue line shows the learning curve on the validation set of the network
that is trained without data augmentation, whereas the dark blue line shows the learning curve on the
validation set of the network that is trained on augmented data.

Figure 4.4(a) shows severe overfitting of the network without data augmentation on the training
set, whereas the network that is trained on augmented data shows a more natural learning curve.
Figure 4.4(b) shows similar signs of overfitting, althoug less severe than in graph (a). It is interesting
to point out that, for the network that is trained on augmented data, the performance on the validation
set is generally above the performance on the training set. This is possibly due to the rather invasive
data augmentation techniques which are only applied to the training samples. As these techniques
are not applied to the validation images, these images are potentially more pristine, thus making the
segmentation task more clear on these images.

Figure 4.5 shows the per class IoU averaged over the five runs per network architecture, where
their respective standard deviations are displayed as black error bars. Dark U-net and U-net appear
to have similar performances, where some classes are slightly in favor of U-net and others are slightly
in favour of Dark U-net. Figure 4.2 and table 4.1 show that, on average, Dark U-net performs similarly
well as U-net as well, where the slight difference in performance is not deemed significant. Both figures
show that the U-net networks shows a larger standard deviation in segmentation performances, both
on average, and per class than the Dark U-net networks, which shows that Dark U-net is a more stable
architecture for this dataset.

From figure 4.6(a) it is apparent that U-net generally converges towards a (local) minimum quicker
than Dark U-net, as the average amount of epochs is significantly lower for U-net when compared with
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(a) U-net

(b) Dark U-net

Figure 4.3: Comparison of both Dark U-net and U-net in terms of per class IoU with and without data augmentation on DeepGlobe
test set

Dark U-net. On the other hand, figure (b) shows that Dark U-net trains quicker in terms of elapsed
time when compared to U-net, even though Dark U-net has more trainable parameters than U-net.
A possible explanation for this could be that Dark U-net has very few trainable parameters in the
top few layers when compared to the deeper layers, whereas U-net has a more even distribution of
parameters along all layers. When the loss is calculated, the filters contributing to the error are updated
via backpropagation. However, the calculation of the gradients for backpropagation consume quite a
lot of time. Since the top layers create general purpose feature maps, that deeper layers make use of to
create more specialized features, the top layers contribute to many different filters in the deeper layers.
Thus an error attributed to one deeper filter, propagates back to many filters in the top layers, leading
to many parameter updates in the top layers. A network architecture with more trainable parameters
in the top layers, could therefore train slower than an architecture that has more trainable parameters
in total, whilst containing fewer parameters in the top layers, due to the amount of gradients that have
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(a) Learning curve of Dark U-net with and without data augmentation for the class Forest.

(b) Learning curve of Dark U-net with and without data augmentation for the class Urban.

Figure 4.4: Train and validation learning curve for the classes Forest and Urban

to be calculated during backpropagation.

4.1.2. Discussion
As both the U-net architecture and Dark U-net architecture achieved better scores than the benchmark
score of the segmentation network on the DeepGlobe dataset, it can be concluded that both the U-net
and the Dark U-net architecture are able to perform a multi-class segmentation task that is competitive
with modern day standards of automated image segmentation on aerial images.

Unfortunately the results of Unet and Dark U-net show a mean IoU of below 70 percent on the test
set, which indicates that both these networks are not able to perform the intended segmentation task
on new unseen data perfectly. This could however be partly explained by the quality of the supplied
annotations, as well as the seemingly loosely defined classes. It is for instance rather complex to
understand what the actual criteria is for a patch of land to be considered as belonging to the class
‘Range Land’. Arguably, most humans would not achieve a perfect score in terms of IoU when given
the original aerial images either. As The benchmark semantic segmentation network presented in the
DeepGlobe paper, did not achieve near perfect scores either, and since the DeepGlobe dataset was
purely used to verify the hypothesis that U-net and Dark U-net are adequately complex to learn to
perform a segmentation task on aerial images, the actual reason for why these networks did not obtain
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Figure 4.5: Comparison of U-net and Dark U-net, with data augmentation on DeepGlobe test set.

(a) Train duration of U-net and Dark U-net in terms of hours (b) Train duration of U-net and Dark U-net in terms of epochs

(c) Inference duration in seconds of U-net and Dark U-net on 1000
batches, where each batch contains four images.

Figure 4.6: Training and inference duration measurements in terms of epochs and time of U-net and Dark U-net.

a perfect score was not pursued.
From the resuls on data augmentation one can conclude that the use of data augmentation results in

a smaller performance gap between predictions on the training set and the validation set. This indicates
that the network that is trained on the augmented data learned a more general representation of the
segmentation than the network that was not trained on augmented data. Therefore the network that
was trained on augmented data should be able to cope with new unseen data better than the network
that was not trained on augmented data. This is also shown in figure 4.3, where the network that
was trained on augmented data performed better overall in terms of IoU than the network that was not
trained on augmented data. The class ‘Forest‘, did not seem to benefit from data augmentation and,
in fact, was predicted less well by the network trained on augmented data. Both U-net and Dark U-net
networks that were trained on augmented data showed a drop in performance on predicting regions that
belong to the class forest. As forests, viewed from above, do not have any clear orientation or shape, it
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is deemed unlikely that the random rotations had any influence on the drop of performance. Similarly,
the brightness and saturation do not influence the distinct green and brown hues that characterize a
forest either. Possibly, the random crop and scale operations could distort the patches in such a way
that the network is unable to learn a good representation. The individual trees, branches or leaves
could be magnified extremely by this operation, which potentially results in an unnatural representation
of a forest.

When comparing the segmentation performance of U-net with those of Dark U-net, it is apparent
that they perform similarly in terms of IoU. However, there are indications that the Dark U-net network
is more stable than the U-net architecture, as after training several networks independently, the Dark
U-net networks seem to show a lower variance between the individual predictions compared to the U-
net networks. Aside from that, if training time is valuable, Dark U-net seems to learn the segmentation
task quicker than the U-net network despite generally needing more epochs to converge.

4.2. Influence of binary versus multi-class segmentation
This experiment aims to find an answer to the research question: “What is the impact on the
segmentation performance of a state-of-the-art segmentation network when moving from binary to
a multi-class segmentation problem?”. As a per-pixel semantic segmentation network predicts an
individual class confidence score for each label at each spatial position, it is expected that the
segmentation performance of class 𝑘 is not influenced when additional classes are added to the
segmentation task, assuming that these classes do not change the annotations of class 𝑘.

In order to measure the impact of switching from a binary classification task towards a multi-class
classification task, thus increasing the range {2, 3, … , 𝑛} with 𝑛 > 2 , five datasets were created. These
datasets all contained the same aerial images, however the class annotations were edited. The first
dataset merged all classes except the class road into one class, “other”, to create a binary annotation.
The second dataset merged all but three classes, to create a four class annotation. Similarly, a six and
eight class annotation was created, whereas the last dataset kept all the original classes for a thirteen
class annotation. Table 4.2 shows an overview of which classes were included in which dataset.

For this experiment, the semantic land use dataset introduced by Rijkswaterstaat is used. a set of
24662 image patches with a resolution of 480 × 480 pixels were divided in a train, validation and test
set according to a random [0.8, 0.1, 0.1] split respectively. A separate Dark U-net network is trained
per dataset, of which its performance is measured in IoU per class. These networks are configured
in the same way as in the previous experiment except for the batch size which is increased to six.
Additionally, the data augmentation and early stopping criterea from the previous section are used for
this experiment as well. Since the class road is included in all datasets, the performance of Road
classification in terms of IoU can be compared across the five networks. Similarly, the classification
performance for classes Water and Residential area can be evaluated across the networks trained on
CBS 4 to CBS 13, whereas the performance for classes Forest and Industrial area can be compared
for the networks trained on CBS 6, 8 and 13.

One important factor that could potentially influence this experiment is class imbalance. Especially
in the binary annotation, the amount of pixels that belong to the class Road are either zero, or a small
fraction of the total amount of pixels in the image. Therefore, a huge imbalance is introduced where,
generally, over 90% of the pixels belong to the class Other in an image. The influence of the class
imbalance gradually decreases as more classes are introduced, and the dominance of the Other class
disappears, however the original class imbalance of the original dataset will always remain. Semantic
segmentation datasets, especially in the domain of Remote Sensing, are hardly ever balanced, due to
geographical properties. The Netherlands is a, mostly flat, country with many waterbodies and areas
dedicated to agriculture, hence pixels belonging to Water or Agriculture are in abundence, whereas
there are only a few, and relatively small, Airports resulting in very few samples of pixels belonging to
the class Airport.

Several solutions for solving class imbalances exist in literature, where simply resampling the
dataset such that all classes are equally represented is one of the easiest solutions. However, this
solution would drastically reduce the amount of data samples in this case, as it could only sample as
many pixels from every class, as the amount of pixels belonging to the least well represented class.

For this experiment, a class balancing scheme is utilized such that each occurring class in an image
contributes to the loss evenly. A weighted loss is defined where all pixels in a batch belonging to a class
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Dataset

Class CBS 2 CBS 4 CBS 6 CBS 8 CBS 13

Road × × × × ×
Water × × × ×
Residential area × × × ×
Agriculture × × ×
Forest × × ×
Industrial area × ×
Open and Dry area × ×
Railroad ×
Airport ×
Other terrain ×
Recreational ×
Greenhouse ×
Open wet area ×
Other × × × ×

Table 4.2: Included classes per dataset.

𝑖 with 𝑖 ∈ {1, 2, … ,𝑚} are weighted by , where𝑚 represents the number of classes. 𝑛 represents the
number of pixels present in the batch that belong to class 𝑖.

4.2.1. Results
This section contains the quantitative and qualitative results of the impact of the amount of available
classes on the segmentation performance of a Dark U-net network. These results were attained on the
publicly available aerial image dataset provided by Rijkswaterstaat.

Figure 4.7 shows the results of the performance in terms of IoU of five instances of a Dark U-net
network, each trained on the same aerial data, however on different annotations. These annotations
varied from binary class labels to a multitude of multi-class annotations of different amounts of classes.
For each subplot, the bars show no significant difference in IoU when increasing the amount of classes
of the multi-class segmentation problems. However, a large difference is noticeable for the binary class
segmentation problem. The class ‘Road’ has an IoU of 0.0 for the binary class segmentation problem,
whereas the IoU for all the other multi-class problems containing ‘Road’ showed an IoU above 0.3 as
displayed in table 4.3. This is caused by the class imbalance in the dataset, which is especially evident
in the binary class problem.

Therefore, a weighted loss function is introduced to counter for this class imbalance, for which the
results are displayed in Figure 4.8 and table 4.4. The problem, where the class ‘Road’ is not detected
in the binary segmentation problem is solved as it is in line with the rest of IoU’s for the multi-class
problems. On the other hand, the weighted loss function introduced a larger variance between different
networks, as the difference in IoU’s per class between multi-class annotations is increased.

Dataset

Class CBS 2 CBS 4 CBS 6 CBS 8 CBS 13 Mean ±std

Road 0.000 0.337 0.331 0.342 0.348 0.272 ± 0.152
Water N/A 0.747 0.739 0.746 0.752 0.746 ± 0.001
Residential area N/A 0.682 0.673 0.684 0.682 0.680 ± 0.005

Table 4.3: Intersection over Union of Dark U-net trained without class weights on a binary segmentation task (CBS2), and several
multi-class segmentation tasks with 4,6,8 and 13 labels in CBS 4, CBS 6, CBS 8 and CBS 13 respectively.

Figure 4.9 depicts several examples of Dark U-net’s predicted segmentations on the test set. For
each example, the left most image depicts the aerial image fed to the network, the middle image its
prediction, and the right image the annotation assumed to be the ground-truth. The network has not
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Figure 4.7: Comparison of Intersection over Union scores of Dark U-net network on various classes, on binary or a multitude of
multi-class annotations. No class weights are used in the loss function.

Dataset

Class CBS 2 CBS 4 CBS 6 CBS 8 CBS 13 Mean ±std

Road 0.351 0.350 0.356 0.345 0.334 0.347 ± 0.009
Water N/A 0.712 0.711 0.728 0.702 0.713 ± 0.011
Residential area N/A 0.644 0.647 0.651 0.619 0.641 ± 0.014

Table 4.4: Intersection over Union of Dark U-net trained with class weights on a binary segmentation task (CBS2), and several
multi-class segmentation tasks with 4,6,8 and 13 labels in CBS 4, CBS 6, CBS 8 and CBS 13 respectively.

seen the annotations for these examples, and are purely added for visual comparison.
Two examples are shown per trained network. Figure 4.9 (a) shows the results trained on the binary

segmentation set, whereas (b) depicts results on the 4-class segmentation set. subfigures (c), (d) and
(e) show results on the 6-class, 8-class and full 13-class segmentation sets respectively.

When comparing the results vertically, it is clearly visible that all networks learned to predict roads
in a similar way, although not exactly similar. The same can be said for the residential areas depicted in
orange, although the residential areas on the left side of the right examples show more variation. When
comparing the predictions of the class ‘Road’, it is noticeable that the network trained on the binary
segmentation task only predicted one large road section in the right example, whereas the networks
trained on the multi-class segmentation task did predict the second road section on the left of the water
body as well.

4.2.2. Discussion
From this experiment it is concluded that class imbalance is potentially a serious issue for segmentation
networks. This becomes apparent in the binary segmentation task, where an image is subdivided in
regions belonging either to the road class or other. Since roads occupy a relatively small area of a total
image, the misclassification of “road” pixels as “other” contributes far less to the overall loss function
than the misclassifying pixels belonging to “other” as “road” pixels if each pixel contributes to the loss
equally. This results in a network that simply classifies all pixels as belonging to class other due to
the optimization of the loss function’s convergence to a local minimum, as mistakes of misclassifying
road pixels are hardly punished by the loss function. By leveling the contribution of misclassifications
between all classes to the total loss, the network is forced to take the minority class into account as
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Figure 4.8: Comparison of Intersection over Union scores of Dark U-net network on various classes, on binary or a multitude of
multi-class annotations. Class weights are used in the loss function

well as it gets punished just as much for misclassifying the pixels belonging to the major class as ones
of the minor class as it gets punished for misclassyfing pixels belonging to the minor class as ones
belonging to the major class.

Assuming that all class labels are independent of each other, the information on which the network
learns to discriminate between pixels that either belong to a certain class or do not belong to that class
stays the same. Combining this with the network’s inherent ability to predict a confidence score per
individual class, it should be able to achieve the same confidence score, for example of class road, when
trained on the same data, regardless of how many other classes are available in the dataset. Based on
the results depicted in this chapter, this hypothesis is confirmed as it shows that a difference in number
of classes does not influence a network’s discriminative ability, meaning that there is no significant
difference in segmenting roads in a binary segmentation setting in comparison with segmenting roads
in a multi-class setting.

The small deviations in performance between the binary andmultiple multi-class segmentation tasks
can potentially be addressed to the random instantiation of each network’s trainable parameters. As
the previous chapter showed, training one particular network architecture several times on the same
data, results in a small variance in segmentation performance. The variation between the segmentation
performance shown in figure 4.8 are relatively small and show no correlation with the amount of classes
included in the segmentation task. These variations are therefore deemed more likely to be caused
by the random initialization as shown in the previous chapter, rather than due to the difference in the
number of available classes of the segmentation task.

4.3. Road Segment Localization
This experiment aims to find an answer to the research question: “How can an arbitrarily complex
road structure be detected by locating a series of simplistic shapes such that the original topological
properties are preserved?”. Modern object detection networks perform shape regression on simplistic
shapes, such as rectangles, to detect objects in images. By modifying an object detection network to
just a localization network as described in section 3.3, and subsequently training it on samples from
the dataset as described in section 3.1 with generated road localization annotations as described in
section 3.3.2, the localization network is expected to learn the proposed road segments representation
of complex road structures.

The following experiment is performed to measure an object detector’s capability to locate road
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(a) CBS2

(b) CBS4

(c) CBS6

(d) CBS8

(e) CBS13

(f) Legend

Figure 4.9: Examples of segmented images from the test set on a binary or a multitude of multi-class annotations. Two example
images are shown in the columns, where each row indicates the same sample from the CBS 2,4,6,8 and 13 dataset respectively.
Each example consists of an aerial image, the predicted segmentation and the annotated segmentation respectively. The color
white is used for pixels that belong to the class “other” due to the merging of several classes in order to create the CBS 2,4,6 or
8 datasets. The model is trained with a class weighted loss.



48 4. Experiments

Metrics

Labels IoU Precision Recall

Road localization 0.626 0.760 0.781
Other 0.944 0.973 0.969

Table 4.5: Intersection over Union, Precision and Recall of rasterized road segment localization boxes.

segments in an image. As this is only a part of the algorithm that should learn to detect roads by
performing shape regression, it is crucial that this algorithm learns a representation of roads that allows
for shape regression in latter stages. Since roads could be localized in images in various different
ways, which might not all suit the goal of segmenting roads by shape regression, this localization task
is defined as a supervised learning task. This ensures control about the representation of roads that
the algorithm attempts to learn.

An object detection network, inspired by YOLO, is used to learn the road segment localization task.
Originally, YOLO localizes objects and assigns them to a certain class. The classification part of the
network is discarded, as all detections belong to class road.

The network is trained on patches with a width and height of 480 × 480 pixels that all contain road
sections. They are sampled from the original dataset with aerial images and corresponding annotations
of regions of the Netherlands, taken in 2012. This dataset with aerial images and annotations is
subsequently randomly split in a train, test and validation set with ratios [0.8, 0.1, 0.1] respectively.
Since this architecture is more memory efficient than the semantic segmentations networks from earlier
experiments, the batch size could be increased to a size of 32 samples. Thanks to that, a train set
consisting of 20.000 images is trained in just a couple of hours. The validation and test set each
consist of 5120 samples, so that they are dividable by 32 as well.

The network is then trained on the train set with the adapted YOLO v2 loss functions as depicted in
equation 4.2, for which the ADAM Optimizer is used with the same parametrization as in the previous
experiments. Additionally the early stopping condition is also used for this experiment to prevent
overfitting, where the stopping criteria is based on the YOLO loss instead of the IoU of the previous
experiments. Non-maximum suppression is used on the predicted localization boxes, where a simple
threshold 𝜏 = 0.25 is introduced. All boxes with a box confidence score lower than 𝜏 are discarded.
This type of non-maximum suppression is rather simplistic and the value of 𝜏 is not actively researched
due to time constraints.

𝐿𝑜𝑠𝑠 =𝜆 ∑∑𝟙 [(𝑥 − �̂� ) + (𝑦 − �̂� ) ]

+ 𝜆 ∑∑𝟙 [(√𝑤 − √�̂� ) + (√ℎ − √ℎ̂ ) ]

+∑∑𝟙 (𝐶 − �̂� ) + 𝜆 ∑∑𝟙 (𝐶 − �̂� )

(4.2)

The validation loss is calculated once every 3 epochs of training on the train set. The network is trained
until the best validation loss has not been improved for 3 consecutive validation iterations. The model
is then run on the test set, for which the loss is measured as well.

4.3.1. Results
Figure 4.10 displays road segment localization by predicting boxes in red, whereas underlying ground
truth annotations are displayed in green. The numbers next to the class indication “Road” and the
separator symbol “-” shows the box prediction confidence, which is a measure for the localization
confidence. It is a number in range [0.0, 1.0]. However, no confidence lower than 0.25 is generally
showed, as it predicted boxes with a lower confidence score than 0.25 are filtered out. This is a form of
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non-maximum suppression which ensures that localizations with a low confidence are not considered
as valid predictions as they are unlikely to be a good candidate for the localization of a road segment.

Table 4.5 depicts the IoU, precision and recall for the road localization predictions on the test set.
These measurements are taken on the rasterized output of the network and are thus performed per-
pixel. Precision and recall for class 𝑗 for image 𝑖 with 𝑖 ∈ {1, 2, … , 𝑛} are then defined as:

Precision =
∑ TP

∑ TP + ∑ FP

Recall =
∑ TP

∑ TP + ∑ FN

(4.3)

The figure shows that most predictions in red are similar if not equal to their annotated counterparts,
where the predictions are generally a bit larger than the annotations. In the bottom two images, there
is more than one prediction for the annotated road segment localization box, which shows that the
currently used non-maximum suppression scheme is not strict enough as of yet.

In general the predicted boxes that show high similarity with their corresponding annotations also
have a high box confidence score. An exception however, is the image on the bottom right, where box
confidence scores are lower than 0.5 whilst they are still similar to their annotations. Moreover, there
is a false positive in that same image in the top left corner with a rather high confidence above 0.8. It
is up for debate whether the false positive is indeed a false positive, or that the annotations are not
correct here. Contrarily it could be stated that, if the network indeed believes that the false positive is
an actual road segment, the road segment below it should have been localized as well. Arguably that
is considered to be more consistent and more logical as well, as road sections are generally connected
to other road segments.

Aside from that, the road segment that is falsely predicted is a concave segment, which even violates
the earlier assumption of exclusively localizing convex road segments. All annotated concave shapes
were removed form the dataset. On the other hand, there were many examples of road like patches,
which were not annotated as roads by CBS. Therefore non-convex road-like patches are still in the
dataset.

Many false positives occurred in regions where clearly visible road like structures are indeed
present, as is shown by figure 4.11. Aside from that, the network sometimes fails to detect road
segments, where there is an actual annotated road segment. A few examples of these false negatives
are depicted in the top left and right images of figure 4.11. The top left image is a rather peculiar
example of this, as the network “falsely” predicts a road segment in the top right of that image, whilst
failing to predict a seemingly similar road segment at the bottom of the image. In the top right image of
figure 4.11, the network fails to detect a partly obfuscated road segment, whilst falsely detecting a road
segment in the top left and bottom right of that same images.

Not all false positives are patches that actually look like road segments, as depicted in figure 4.12.
Occasionally patches that contain straight lined edges, such as a line of trees, small canals, or even a
line of crops, are falsely detected as road segments. These false positives still have high box confidence
scores, sometimes exceeding 0.9, and can thus not be prevented by simply increasing the threshold of
the non-maximum suppression step. It is noticeable that these false positives generally follow a strict
pattern. They all seem to represent structures that are visually distinct from its surroundings and are
shaped as a straight line, which to be fair, is a characteristic of a convex road segment. It is however,
definitely not the full description of a road segment, as road segments are generally grey, could contain
markers and might have cars on top of them.

4.3.2. Discussion
Based on these results, it is shown that a localization network is able to learn a predefined
representation of road segments on aerial images through regression on the parameters of rectangular
boxes. The visual representation shows that the network predicts boxes that show high similarity to
their annotated counterparts on many occasions.

The results are far from perfect though, as the images in figures 4.11 and 4.12 suggest. This is
partly due to the quality of the annotations, where sometimes road like structures that even people
would directly recognize as roads are not annotated as road. In some cases this is understandable,
as roads in a residential area are part of the residential area and are thus annotated as residential
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Figure 4.10: Aerial images with predicted localizations of road segments and annotated localizations. Red boxes are predictions,
whereas annotated boxes are displayed in green. The values near each box display the confidence of the prediction of the box,
which for all annotated boxes.

area rather than road. In other cases the choices made by CBS seem less obvious to the human
eye. Aside from the sometimes confusing looking annotation choices made by CBS, the automatic
annotation generation method that provides the annotation of individual road segments by subdividing
road polygons is far from perfect either. Figure 4.13 shows an example of a seemingly odd subdivision
of a road in smaller segments. As the road polygon is located near the borders of the grid cells, the
road polygon is even split horizontally, as can be seen in the right most picture where each segment is
depicted as a box with a distinct color. In such cases it would probably make more sense to merge the
horizontally adjacent boxes. Unfortunately there are more corner cases, where for instance very small
portions of road polygons cross a certain cell, resulting in a very small road section that sticks out from
the rest of the sections. Fixing most of these corner cases is not impossible, although it would take
time to tackle and implement them leading to a more complex annotation method altogether.

Aside from these problems, one structural problem becomes apparent as well. This network
localizes road segments on a local scale, which does not guarantee inter-segment connections.
Therefore the predicted boxes are, unlike the annotated boxes, not always connected to each other
perfectly. This means that sometimes they either slightly overlap each other, or that they are disjointed.
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Figure 4.11: False positives and false negatives of road-like segments

That particular trait is undesirable, as road segments belonging to the same road polygon should be
connected to each other. In this case one could argue that an overlap is less bad than segment
disjointness, as the intersection points could be seen as the true beginning and end points of
neighbouring road sections. Disjointed segments on the other hand are more problematic, as simply
connecting them to the nearest road segment could lead to wrong attachments, of which the chances
get higher the further the segments are apart. This indicates that any attempt at correcting overlap
or disjoint segments on a local scale does not necessarily guarantee a better approximation of the
whole road polygon, as the information of which segment should attach to which other segment, is not
available on this scale.

As this network lacks any constraints on global coherence of road segments, and instead focuses on
localizing individual segments on a local scale, it is suggested to utilize this network solely for localizing
road segment candidates on a local level. An extension can be devised to take into account the global
coherence of the candidate localizations of road segments, however in the end one is only interested
in reconstructing the final road polygon, rather than localizing all segments with boxes that cover the
whole polygon. Therefore the discussion on the global coherence of the prediction is continued in
the next experiment where, aside from road segment localization, the shape and orientation of the



52 4. Experiments

Figure 4.12: False positives of non-road-like segments
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Figure 4.13: Illogical subdivision of road segment

individual road segments shapes are approximated as well.

4.4. Road Segmentation
The last experiment seeks an answer to the research question: “How can a segmentation of a variety
of pre-defined simplistic shapes segment complex road structures, whilst preserving the original
topology”?.

Where the previous experiment focusses on the localization of road segments by encapsulating
them with boxes, this experiment attempts to approximate the actual shape of the road segment within
each box. Under the assumption that all the localized segments contain (near) convex road segments,
one can approximate the shape of a road segment by defining a line between the two points where the
road segment hits its encapsulating box, where the width of the line is defined by the two boundaries
of the road segment.

A neural network is expected to learn to represent road polygons by performing regression on
the parametrization of each individual road segment’s shape. Where the parametrization of each
road segment line, which is encoded as two pairs of (𝑥, 𝑦) coordinates accompanied by a road width
parameter 𝑤. The road localization network, that is based on YOLO v2, is further expanded to predict
the road segment parameters as well, as described in section 3.3.2.

In order to assess the quality of the road polygon approximations, the predicted segment lines are
rasterized to achive a per-pixel binary segmentation of road and not-road. The intersection over union
is then measured to provide a quantitative score of the per-pixel road segmentation, which is to be
compared to the same score of the Dark U-net per-pixel binary segmentation network. This Dark U-net
network is trained on the same data as the shape regression network with the exception that rasterized
versions of the original road polygons are used as annotations. As the results described in section
4.2 showed no significant difference between predicting roads in a binary segmentation setting and
road predictions in a multi-class segmentation setting, the baseline for this experiment is performed
on the binary setting for easier visual comparison between the results of the semantic segmentation
network and the shape regression network. The Dark U-net network requires per-pixel annotations and
since it does not depend on the subdivision of road polygons, the original road polygons are used as
this experiment aims to assess the performance of the shape regression network against the standard
segmentation network.

The standard Dark U-net network architecture, trained on the same dataset as the one used in the
road localization experiment, to solve the binary road / non-road segmentation of the data. It is trained
with a categorical cross entropy loss, where convergence is declared if the intersection over union on
the validation set does not improve in five consecutive validation runs. The ADAM optimizer is used
with the same parameters as the previous experiments.

The shape regression network for road segmentation is trained on the same train set, after which
its predicted line segments on the test set are rasterized and evaluated via a per-pixel IoU metric in
order for comparison with the Dark U-net reference network. The loss is the adapted YOLO loss as
described at the end of section 3.3.2. It is optimized with the same ADAM optimizer, using the same
parameters as the networks in the previous experiments, where the optimization stops if the best loss
is not improved for five consecutive validation epochs.
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4.4.1. Results
For comparison with Segmentation networks, the IoU with the raster annotations is calculated on the
rasterized output of the shape regression network and on the output of the Dark U-net network. The
results are displayed in table 4.6.

There is a clear difference between the IoU scores of the Shape Regression network and Dark
U-net network on the Road class. Dark U-net achieves an IoU score more than twice as high as
the Shape Regression network. The difference in IoU of the Other class is rather small, leading to a
smaller gap between both network’s mean IoU scores. As the goal of this experiment is to measure
the road segmentation performance of both networks, only the IoU scores on the road class should be
compared, which is highly in favor of the Dark U-net semantic segmentation network.

Table 4.6: Binary segmentation performance in terms of Intersection over Union per network type per class.

IoU

Network Road Other Mean

Shape Regression 0.319 0.954 0.637
Dark U-net 0.787 0.975 0.787

Table 4.7: Road segment box localization performance in terms of Intersection over Union, Precision and Recall.

Road Localization Boxes

Network IoU Precision Recall

Shape Regression 0.581 0.672 0.812
Localization 0.626 0.760 0.7806

In order to visually assess why the Shape Regression networks performs significantly worse than
the semantic segmentation network in terms of IoU, several shape regression predections are to be
inspected visually.

Figure 4.14 shows a few examples of an aerial image with ground truth annotation boxes shown in
green and predicted boxes and road line estimations in red. These images show that, in general, the
box localization parts are fairly similar to the annotated boxes.

An exception of that is visible in the top left image, where for the beginning and end of the road
section, the network opted for a larger segment localization box, whereas the annotations split that
section in two section both containing one relatively large segment and one small segment. Although
the network did differ from the annotation, the road segment prediction does not seem to suffer much
from its decision, with a rather accurate estimation of the road’s direction. Another observation is that,
even though the roads in these images seem to have a rather constant width, the predicted width per
segment is less consistent.

The segments do hardly ever seem to be connected either which is, as mentioned earlier, an
undesired trait of this network. Sometimes the road line predictions even seem to start and end in
the middle of the localization box, as is depicted in the top most segment of the bottom-left image of
figure 4.14. Unfortunately, the network has too much freedom to predict the start and end points of the
road line, which makes these predictions possible.

As the IoU measurements of the Shape Regression network indicates, many road line estimates
were actually not as good as figure 4.14 shows. Many examples were more in line with the bottom
most line estimation of the bottom-right image of that figure. Figure 4.15 shows many false positives
and false negatives, and overall quite terrible road line estimates. The results in this image show a
worse result, when compared to the false positives and negatives of the localization network described
in the previous chapter. This shows that the combined task of road segment localization and shape
estimation as a line consisting of two points and a width is a much harder task than solely localizing
road segments in an image as even the road segment localization seems to be worse when compared
to the results of the previous network.

Aside from that the road direction estimation seems to be inconsistent, as they can either be near
perfect or almost perpendicular.
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Figure 4.14: Aerial images with predicted localizations of road segments and annotated localizations combinedwith road segment
line estimations in red and annotated localization boxes in green.

Similarly to the previous experiment, the network seems to generalize in surprising situations at
times, of which examples are depicted in figure 4.16. At times, the network arguably predicts the road
polygon better than the provided annotations, as is visible in the top-left picture. The annotation only
provided the middle section of a road polygon, whereas the network did in fact predict the whole road.
In the top-right picture, it fails to predict the bottom-right most section. However, it does predict a road-
like structure on the left hand side of that image. Although, to be fair, it is understandable that the
annotations do not include these kinds of roads, as they seem to be part of an area of agriculture. The
same holds for the example in the bottom-left image of figure 4.16, where the network wrongly detects
road segments on small canals.

4.4.2. Discussion
Initial limitations of this approach is that road polygons that consist solely of convex shapes can be
approximated, which is only a small subset of all possible road polygons. As this is a novel method, the
initial scope is set to just this simplified case in order to assess the method’s potential. Once proven
successful, this method allows the required freedom to expand to representations of more complex
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Figure 4.15: A selection of various failure cases of predicted localizations of road segments and annotated localizations combined
with road segment line estimations.

shapes, such as corners and roundabouts, by adding parameters of for instance additional points inside
the localized box to estimate a corner via spline fitting, or a point and a radius for predicting a circle in
case of a roundabout.

Another limitation is the global coherence of the segments that is mentioned in the chapter on road
segment localization as well. By increasing the freedom of the network to predict the segments actual
entry and exit points on the box, and the roads width per individual segment, the global coherence of the
segments is disrupted even further. Since the prediction of entry and exit points of the road contains too
much freedom, the points can actually be predicted inside the box, leading to further disjointness if the
localization boxes are already disjoint. Additionally, even if the localization boxes were perfectly joined,
the individual angles of the predicted road lines can still cause the predicted segments to be disjoint.
Therefore the need for a method that aims to achieve global coherence is of increased essence for
this method. However, due to time constraints no further research is done on such a method. Some
initial thoughts for a method that maintains global coherence are added tot he future work section of
this thesis.

Based on the results in the previous section, it has to be concluded that the shape regression
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Figure 4.16: A selection of various false positive cases of predicted road segment localizations and annotated localizations
combined with road segment line estimations.

network is not able to learn the provided representation of road structures well. It could possibly help
to add a restriction that ensures that the predicted points are always on the border of the segment
localization box.

As in some cases, the network does predict the road segment shapes rather well, it can be
concluded that a neural network is able to learn a representation of road segments by performing shape
regression. Although it is questionable whether this particular representation of road segments with this
particular network can lead to consistently accurate predictions.

When compared to the qualitative results of the previous chapter, even the localization part of the
network seems to suffer from the added task of performing shape regression. The precision and recall
results shown in table 4.7 confirm this, as the precision of the segment localization part of the shape
regression network decreases compared to the precision of the segment localization network of the
previous experiment. This indicates that the amount of false positives have increased. Additionally,
the recall of the localization part of the shape regression network increases when compared to the recall
of the segment localization network of the previous experiment. That shows that the shape regression
network does produce more relevant road segment localization predictions, however when combined
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with the decreased precision, it indicates that this comes at a cost of more false positives. This
phenomena can be addressed to the combined loss function, where localization and shape regression
are contributing to the same loss function. The original YOLO network, introduced separate weights for
the localization and detection parts of the loss, which indicates that this architecture needs fine-tuning
before it can successfully perform both tasks well. Aside from that, it makes intuitively more sense to
first learn how to localize road segments well before attempting to predict the road entry and exit points
on the localized box. At this time both localization and shape regression tasks are learned at the same
time, due to the combined loss function, which could explain not only the the degradation in localization
performance, but the inconsistent predictions of road entry and exit points as well.

As mentioned earlier, the width estimation of individual road sections is inconsistent as well. After
visually inspecting the road polygons of several images, it is concluded that the width of the annotated
roads are rather complex. Sometimes the width of the road aligns well with the actual visible road, other
times it aligns well with the road shoulders, whereas some roads are not even annotated at all. For
an average person, without inside knowledge on how road annotations are defined by CBS, it is near
impossible to give a consistently accurate prediction of the width of the road when provided the same
aerial image as the network, whereas it is sometimes even impossible to predict which roads should be
annotated as road and which roads should not. Figure 4.17 shows an example of three aerial images
with roads and their annotations. Even though the roads on the images seem to be of similar width,
the annotated widths of the road polygons differ immensely.

Figure 4.17: Seemingly inconsistent road width annotations of three samples of aerial images with their corresponding
annotations. Roads are depicted in red on the annotations.



5
Conclusion

In section 4.1 Rijkswaterstaat’s U-net showed to be capable of achieving a competitive segmentation
performance in terms of average IoU, when trained on the large six class segmentation problem of the
DeepGlobe dataset of nearly 2600 images with pixel resolution 608×608 as it achieved a significantly
higher score than the reported reference network. Unfortunately the DeepGlobe benchmark has not
been made publicly available at time of writing, therefore U-net could not be trained nor tested on the
full DeepGlobe benchmark. Consequently, no claims are made about whether the tested per-pixel
segmentation networks outperform the reference network. Assuming that the acquired DeepGlobe
training data is a good representation of the test data, it is concluded that the U-net architecture performs
well on both large amounts of data and in a relatively largemulti-class segmentation setting. The answer
to the research question: “How well does the performance of Rijkswaterstaat’s per-pixel segmentation
network scale with the amount of data?” is therefore that Rijkswaterstaat’s U-net scales well with the
amount of data. However, in order to measure how well it performs on a, for Rijkswaterstaat relevant,
dataset a public benchmark dataset is needed. Until DeepGlobe becomes publicly available, or any
other multi-class per-pixel land use classification dataset becomes available, this part of the question
will remain unanswered.

Additionally, the newly introduced Dark U-net architecture is compared to U-net as the influence of
a network’s feature extractor is measured. The Dark U-net architecture utilizes a Darknet-19 feature
extractor, which is more complex than U-net’s VGG-16 based feature extractor. The results show that
the U-net performs slightly better in terms of mean IoU when trained on pristine data, whereas the
difference in segmentation performance between U-net and Dark U-net is negligible when trained on
augmented data. On augmented data the Dark U-net network tends to be more stable than U-net in
terms of training as it shows a significantly lower standard deviation on both mean IoU, training time and
number of training epochs. Changing the feature extractor to a more compex feature extractor does not
necessarily increase the network’s segmentation performance, however it can significantly influence
both training time and stability as well as inference time, which answers the following research question:
“What is the influence on the segmentation performance if the feature extractor of a segmentation
network is exchanged for a state-of-the art feature feature extractor?” For the YOLO object detector,
Redmon and Farhadi experienced a slight drop in performance in exchange for faster inference [45].
However it has to be noted that Redmon and Farhadi compared their Darknet-19 feature extractor to the
full VGG-16 feature extractor for YOLO version two, whereas U-net uses a part of VGG-16. Redmon
and Farhadi therefore concluded that their Darknet-19 is less complex than the full VGG-16, whereas
it has to be concluded in this thesis that Darknet-19 is slightly more complex than U-net’s VGG-16
based feature extractor. Since the shape regression based segmentation network is an extension of
YOLO version two, the described state-of-the-art feature detector is already incorporated. As only the
amount of output nodes and the loss function of the YOLO architecture are modified, the influence of
the exchange of the feature extractor is expected to be the same as its influence on the original YOLO
architecture. The conclusion in terms of performance, therefore, remains unchanged, as segmentation
performance is similar when compared to U-net, whereas Dark U-net’s training and inference time is
significantly better.

Besides these research questions, the effect of data augmentation is assessed in section 4.1 as
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well, where it is tested on both the U-net and the Dark U-net architectures. From that experiment it is
concluded that, although it does not necessarily increase the segmentation performance in terms of IoU,
it does increase the overall stability of the training process as it shows fewer signs of severe overfitting
as well as a significantly lower standard deviation of the mean IoU when comparing the performance
of five seperately trained U-net and Dark u-net networks. It is not ruled out that data augmentations
can increase the segmentation performance, although further research has to be conducted to assess
the potential of the individual techniques for land use classification.

From section 4.2 it is concluded that the amount of classes of multi-class segmentation problems
do not influence the segmentation performance of the classes these segmentation problems have in
common. The little variances in the performance do not show a consistent pattern when observed for
the different multi-class segmentation problems and are therefore addressed to random initialization
of the variables and variations in the training data induced by the augmentation techniques, for which
the random crop and scale operations is assumed to be most influental. This provides an answer
to the research question: “What is the impact on the segmentation performance of a state-of-the-art
segmentation network when moving from binary to a multi-class segmentation problem?”.

The experiments described in section 4.3 and section 4.4 focus on the shape regression network
for road segment localization and detection. Road segment localization performance is assessed in
section 4.3, where a YOLO version two object detection network is stripped of its classification task
to perform road segment localization. As road segment localization annotations, the newly introduced
annotation generation method is utilized to subdivide a complex road polygon in simplistic road
segments. These individual road segments preserve the original topology, as both the genus and
connectedness property is preserved. From the results of this section it is concluded that the road
segment localization network is able to learn the newly introduced road polygon representation using
individiual road segments. This partially answers the research question: “How can an arbitrarily
complex road structure be detected by locating a series of simplistic shapes such that the original
topological properties are preserved?” as the results prove that road structures can be detected by
locating a series of simplistic shapes. This network was solely trained on convex road structures, thus
it is unknown if arbitrarily complex road structures can be detected. However, the annotation generation
method for localization does work on complex road structures. Given the fact that the feature extractor
is able to learn the representation of the annotations, combined with the fact that the feature extractor
is able to detect more complex road structures (as observed from the per-pixel segmentation network),
it is expected that the road segment localization network is able to localize arbitrarily complex road
structures. Due to time constraints this hypothesis has not yet been tested, and is thus considered to
be future work.

Additionally it has to be concluded that the road localization performance is not yet optimal. The
recall measurement indicates that the network fails to localize a significant amount of annotated road
segments. Furthermore, the precision measurements shows that the network predicts a significant
amount of road segments, where no road segment is present in the annotations. From a visual
inspection of the patches of aerial images and their original annotations for this experiment,
it is concluded that the newly introduced dataset contains many patches where road-like structures in
the aerial image are not annotated in the shapefiles. Based on the context visible in the image patches
it is often not clear to the human eye which road structures in the aerial image do actually appear in the
annotations, without having seen the annotations first. These, sometimes counter intuitive, annotations
could influence the precision and recall of the network as the network receives contradictory feedback
for visually similar looking patches. Further research should be conducted in order to back up this
hypothesis. One could for instance replicate this experiment on a dataset that contains more consistent
road annotations in both urban and rural areas, for which OpenStreetMap [43] data might be a suitable
candidate.

Another factor of influence is the newly introduced annotation generation method that splits a road
polygon into smaller sections. Due to its naive splitting condition, subdividing the annotation space
in a 3 × 3 grid, the road polygon can get subdivided in an illogical way. Counter measures should
be researched to correct illogical annotations. A possible research direction could be to utilize the
current method to produce candidate segments, whereafter a more sophisticated merging operation is
performed to merge candidates. This merge operation could for instance take into account the area
of a segment as well as whether adjacent segments share their shortest or longest edge, which is an
important indication of whether a road segment is split along the road or over the width of the road.
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As a result, merging based fixes probably violate the condition that a road segment is fully inside one
of the defined grid cells, thus changing the representation of a road polygon. Whether this change of
representation is beneficial for the road segment localization network is considered to be future work.

Aside from these observations, the localization network only operates on a local scale where
individual road segments are localized. Even though the annotation generation method does preserve
the topological connectedness property, it has to be concluded that the network is not able preserve
this property in its predictions. Since the loss function only takes into account the parameter values
of the individual segments, it does not incorporate any measure for global coherence of the predicted
segments. Therefore, global coherence is not guaranteed by this shape localization network, which in
turn violates the topological connectedness property. For future work it could be interesting to see if
topology can be preserved by encoding global coherence into the loss function of the network. It could
be possible to add a term to the loss function that encodes the sum of the distance between predicted
segments for each annotated pair of connected segments. This might improve connectedness of
localization boxes. On the other hand, since this part solely includes segment localization, the actual
shape and orientation of the predicted road segments are not taken into account and thus
connectedness of the segmented road sections are still not guaranteed.

The road segmentation results, where road segments are approximated by a line segment per
localized box, show that this interconnectedness is not guaranteed at all by the shape regression based
road segmentation network. Other neural networks that deal with the same connectedness problem
apply post-processing steps that aim to operate on the local structures to achieve global coherence.
Body part predictions combined with part affinity fields are post-processed in order to interconnect the
corresponding body parts in the pose estimation framework [16], whereas Deeproadmapper attempts
to correct disconnected road sections by interconnecting nodes based on a shortest-path criteria.

It is believed to be crucial for the road segmentation network to achieve global coherence for which
further research needs to be conducted. Based on the current implementation, the post-processing
step utilized by Deeproadmapper is assumed to be the easiest option to implement, as the current
representation of road segments are lines, for which two nodes and an edge are defined. This is
in line with the graph representation of Deeproadmapper. However, the current results show that
simply interconnecting the disjoint roads is too naive as the predicted segments do not consistently
align well with the annotated road section. For that method to work, the road segmentation prediction
needs to improve, for which the parametrization of the road segment should be revised. The current
parametrization allows for too much freedom as the nodes of the road segment are allowed to be
inside the localization box, whereas the annotations only allow these nodes to be on the outline of the
localization box. One possible solution is to keep the current parametrization and apply a ‘snapping’
function as post processing, that snaps the predicted points to the nearest point on the perimeter of the
predicted box before calling the loss function. Possibly, splitting the network in two successive networks
could be beneficial as well, as road segment shape predictions rely on road segment localizations.

On the other hand, there are also some positives as the shape regression based segmentation
network shows to be capable of learning a representation of individual road segments, although it
has to be concluded that its performance is far from stable. This does however show that shape
regression has the potential to learn simplified simplifications of complex structures. Therefore, the
research question: “How can a segmentation of a variety of pre-defined simplistic shapes segment
complex road structures, whilst preserving the original topology?” is partially answered.

Similarly to the previous research question, this research question can not be fully answered as the
network has only been tested on rather simplistic road structures, namely convex road segments. The
current parametrization does not allow for segmenting complex road segments, as only straight lines
are predicted. Further research has to be done on more complex road segments. For a start, curved
roads could be approximated by predicting extra two points inside the road localization box, after which
a spline can be fitted through the points to approximate a curved road segment, whereas crossroads
could be approximated by predicting two extra points on the road localization box. Let these parameters
be called template parameters, that include the current two points and width parameter as well as a set
of additional parameters for the extra points introduced by the new templates. The next problem would
be to be able to predict which type of template should be used for which localized box. This basically
introduces the classification task again, where the predictions can be extended by one-hot encoded
vector that predicts which template suits the structure at a certain localization box best after which the
template parameters are used to construct the actual road segment.
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Rijkswaterstaat is interested in solving their multi-class segmentation problem, for which it was
initially intended to combine the shape regression based road segmentation network with the per-pixel
segmentation network in order to assess whether the road segmentation would improve by the newly
added information. However, due to the current state of the network, the issues specified as future
work in the paragraphs above should be given a higher priority before an attempt at combining the
networks, described in section 3.4, should be made. At this point in time it is unlikely that the per-
pixel segmentation network would benefit from the current output of the shape regression based road
segmentation network. Therefore, the research question: “How can the road segmentation, obtained
from the shape regression network, be combined with a state-of-the-art per-pixel segmentation network
in order to perform a geometry and topology preserving multi-class segmentation task?” can currently
not be answered as the combined shape regression and per-pixel network is not constructed. For
future work, it could be interesting to construct the hybrid network if the before mentioned issues are
solved. It could then be interesting to look into end-to-end training of the hybrid network. In order to
do this, the loss function of both the Dark U-net network and the shape regression network can be
combined into one loss function. Since the shape regression network utilizes an aggregated loss of
the individual components, depicted in equation 3.25, it could easily be extended by a per-pixel loss
function as well. As the other terms in that equation are calculated via a sum of squared differences
between predicted values and annotated values, this function could be applied to the one-hot encoded
class values to calculate the per-pixel loss as well. Possibly, a weight coefficient has to be defined for
the per-pixel loss term in order to bring its priority in line with the other terms, similar to the 𝜆 values
used in equation 3.25.

Alternatively, instead of the hybrid network described in section 3.4, the networks could also be
combined in a sequential way, where the rasterized output of the shape regression network could be
concatenated to one of the first feature maps of the Dark U-net network so that the newly provided
information is processed by the full network. It would be interesting to see whether this method would
suffer from the same loss of shape and topology information as the original Dark U-net network, since
the new information follows the same path through the network as the original RGB image data. On
the other hand, the combined network where Dark U-net and the shape regression network are put in
parallel, is not expected to suffer from this loss of shape, as the new information is only appended at
the end, in its original resolution.

The main research question of this work is:

“Does introduction of geometrical and topological information to a segmentation task,
attained via object localization and shape regression, improve the segmentation of road
structures on Rijkswaterstaat’s aerial data?”

Unfortunately the results in section 4.4 show that the shape regression network performed significantly
worse than the Dark U-net segmentation network on the same dataset, meaning that the introduction
of geometrical and topological information, attained using road segment localization and shape
regression, does not improve the performance of road segmentation of Rijkswaterstaat’s aerial data
at this point in time. However, the results showed that the network is capable of learning the newly
introduced road polygon representation. It is expected that a more consistent and natural looking
annotation, combinedwith amore restricted shape parametrization, will increase the shape regression’s
network performance although it is only fair to assume that still many steps have to be taken until it
will perform close to or better than state-of-the-art segmentation networks, especially when taking into
account global coherence of the road segments and road segment complexity.

Representing segmentation as a shape regression task is an interesting problem. The proposed
method looks promising, despite its inability to beat the state-of-the-art per-pixel segmentation methods
at this moment in time. New insights into solving segmentation problems on remotely sensed data have
been gained and engaging opportunities are unveiled in order to extend and refine this novel method. It
is believed that the proposed direction has the potential to be a great step forward in Rijkswaterstaat’s
objective to utilize automated land use classification for either monitoring land usage or maintaining
topographical maps.
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