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Analysis of the effect of extreme weather on the US domestic air network. A 
delay and cancellation propagation network approach 

Alessandro Bombelli a,*,1, Jose Maria Sallan b,*,1 

a Delft University of Technology, Air Transport and Operations, Faculty of Aerospace Engineering, P.O. Box 5015, 2600 GA Delft, the Netherlands 
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A B S T R A C T   

Flight delays are one of the most discussed, yet not fully understood, topics in the aviation industry. In this paper, 
we shed more light into propagation of flight delays by providing a spatio-temporal analysis of flight departure 
delays of the US domestic air network for the year 2017. The analysis focuses on four US air carriers (full-service 
and low-cost) and two time events characterized by extreme weather conditions, in addition to a baseline case 
free of extreme weather conditions. We constructed a Delay Propagation Network (DPN) for each (time event, 
airline) pair detecting patterns of causality between hourly delays in airports using a Granger Causality 
approach. In addition, we identified four (time event, airline) pairs with a volume of cancellations large enough 
to construct a Cancellation Propagation Network (CPN), analogously to DPNs. For the baseline case, we observed 
that central nodes of the airport network (i.e., hubs) usually act as absorbers or intermediary nodes in the DPN. 
DPNs were more homogeneously distributed in space for point-to-point than for hub-and-spoke networks. For 
extreme weather events, we observed that the size of a DPN increases with the percentage of canceled flights as 
long as this stays below 10%. Conversely, it suddenly decreases when the percentage exceeds such tipping point 
because most causal relationships among delays are lost due to the volume of cancellations. We also observed 
that some airports located in the region of the extreme weather event were among the central nodes of the DPN. 
Those airports, together with the hub airports, acted as the top generators, absorbers, or intermediary nodes of 
the DPN. On the other hand, CPNs monotonously increased in size with the proportion of canceled flights. CPNs 
are less noisy and therefore easier to interpret than DPNs, as cancellations stem primarily from the extreme 
weather event only. In CPNs, hubs act as cancellation absorbers, due to the larger volume of resources that 
airlines allocate there.   

1. Introduction 

Flight delays represent a major problem for all the stakeholders in 
the air transport supply chain, as they affect passengers, airlines, air-
ports, and air navigation service providers. They also result in huge 
economic losses, which were estimated by the Federal Aviation 
Administration (FAA) to be around $33 billion in 2019 (FAA, 2022), 
with roughly 55% attributable to passengers' discomfort. Delays in air 
transport networks can propagate in a snowball fashion because of 
connected resources related to an initially delayed flight. Such resources 

are the aircraft itself, passengers, crew, and the airport. As the same 
aircraft generally performs multiple flight legs in a day, delay of an 
earlier flight might have consequences on the subsequent flight legs. 
Flight crew might also switch between aircraft, causing the delay from 
one flight to propagate across multiple flights, similarly to connecting 
passengers. 

The Bureau of Transportation Statistics (BTS) started collecting 
monthly numbers of flight delays from airlines in June 2003, with air-
lines reporting the causes of delays in five broad categories (BTS, 
2022a). They are (i) air carrier, (ii) extreme weather, (iii) National 
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Aviation System (NAS), (iv) late-arriving aircraft, and (v) security.2 

According to BTS (BTS, 2022b), before COVID-19 late-arriving flights 
were consistently the main cause of delay. For example, in July 2019 
77% of flights were reported on-time, with late-arriving aircraft and air 
carrier the two major cause of delays (8 and 6% of flight, respectively). 
In this work, we decided to focus on category II, extreme weather, as we 
believe that delay generation and propagation that is concurrent with an 
extreme weather event is mostly attributable to the weather event itself 
and only secondarily to other causes. In addition, in the last decades 
there has been a staggering rise in extreme weather events, with their 
number almost doubling between the period 1980–1999 and 
2000–2019 (YaleEnvironment360, 2022), as Fig. 1 highlights. As such, 
the impact of extreme weather on air transport is expected to increase in 
significance (Yahoo! News, 2022), justifying the focus of this paper on 
extreme weather-induced delays. 

Due to an increased availability of flight data, research on flight 
delay propagation has intensified in the last decade. Techniques such as 
complex network theory (Zanin, 2015; Fleurquin et al., 2014), statistical 
analysis (Kafle and Zou, 2016; Tan et al., 2021), and machine learning 
(Wu and Law, 2019; Sismanidou et al., 2022) have been employed to 
mostly assess the role of airports in flight delay propagation. Airports 
represent the merging points where all the aforementioned resources 
interact and, hence, play a crucial role in delay management. Avail-
ability of flight data can be leveraged to compute flight delay patterns 
experienced by airports using reported scheduled and actual departure/ 
arrival times. Such delays can be generally represented as time-series. 
Analyzing the magnitude of delays across airports can already provide 
insights into their propagation. Notwithstanding, from a methodological 
stand-point many research efforts have been devoted towards finding 
causal relationships between delays in airports (Du et al., 2018; Zanin, 
2015, 2021). This approach entails considering the delay propagation 
problem from the perspective of delay time-series interdependence and 
assessing if a delay in one airport has some explanatory power with 
respect to a (future) delay in a different airport. Furthermore, flight data 
provide also information about canceled flights, so it is possible to 
examine the propagation of cancellations. To this avail, the objective of 
our research is to analyze patterns of propagation of disruptions in the 
context of extreme weather events. For that aim, 2017 is a fitting year as 
it was characterized by extreme storms and hurricane Irma (Wikipedia, 
2022b). As those events usually lead to a significant volume not only of 
delays, but also of cancellations, we analyze those two types of disrup-
tions separately. Propagation of flight delays is generally associated to a 
dis-utility for passengers and airports, but it does not necessarily imply 
an interruption of service. Cancellation of flights has more severe effects 
on the air transport network and the stakeholders involved. Our 
contribution to the literature is threefold. First, we focus on propagation 
of disruptions associated to specific events, instead of extracting time- 
series of disruptions of large periods of time. We believe that adopting 
this approach increases the explanatory power of the observed disrup-
tion propagation patterns. A better understanding of propagation of 
delays can help to better apply propagation mitigation strategies, like 
scheduled buffers (Brueckner et al., 2021) or integrated recovery models 
(Evler et al., 2022). Secondly, we examine not only Delay Propagation 
Networks (DPNs), but also Cancellation Propagation Networks (CPNs). 
Cancellations of flights occur when aircraft or crew of a canceled flight 
are not available for subsequent flights. The volume of canceled flights 

in extreme weather events can be large enough to make propagation of 
cancellations observable. Thirdly, we contribute to the examination of 
the behavior of airport networks regarding to delays and cancellations in 
the context of extreme events. As those events are likely to increase with 
climate change, we believe that this analysis is of increasing relevance. 
The rest of the paper is organized as follows. In Section 2 the most 
relevant academic literature on flight delay propagation is presented 
and the scientific gap is identified. Then, Section 3 describes the input 
data and how data was processed. Section 4 provides an overview of the 
methodological framework that was applied in the paper, while Section 
5 presents results in terms of delay and cancellation propagation net-
works. Finally, in Section 6 a critical discussion of our results, conclu-
sions, and future research avenues is provided. 

2. Literature review 

Flight delay propagation has been studied quite extensively in the 
last 15 years. In this section, we describe the relevant literature on the 
topic and provide a critical analysis of papers addressing causality re-
lationships between delays at airports, identifying the research gap 
addressed by this paper in the process. Additionally, in Appendix A we 
summarize the reviewed references highlighting publication year, 
methodology, geographical focus, and main findings. One of the first 
approaches to model delay propagation was AhmadBeygi et al. (2008). 
The authors use a propagation tree approach to simulate how an initial 
delay can propagate through the network. Branching from a node (i.e., a 
specific flight) recognizes the fact that a single delay can generate 
multiple distinct delays downstream (due to the interconnected use of 
multiple resources). As an example, this occurs when the aircraft and the 
cockpit crew are scheduled to operate additional flights from a desti-
nation. The idea that shared resources across flights are the most rele-
vant internal factors in spreading of flight delays is confirmed by 
Fleurquin et al. (2013) and Campanelli et al. (2016), with a focus on 
passenger and crew connectivity. Sismanidou et al. (2022) focused on 
the role of airports and used machine learning techniques to analyze the 
impact of connecting passengers on delay propagation for the twenty- 
one US airports with the most delays in July 2018. It was found that a 
correlation between arrival delays and carrier (departure) delays is 
stronger in airports featuring a single dominant carrier, as more re-
sources are directly connected. Further research has explored other ex-
planations for flight delays. In Zanin (2015), the author compares flight 
delay propagation patterns in a network comprising the fifty busiest 
European airports and the twenty largest airlines. Delay causality be-
tween airports is computed by analyzing flight delay time-series data 
using both Granger Causality (GC) and Transfer Entropy (TE). The 
research shows that aggregating networks of different airlines into a 
single one might lead to biased results. This is because airlines may share 
resources such as airspace and airports, but operate different business 
models and have different network structures. Hence delay propagation 
analysis needs to focus on each airline independently. Du et al. (2018) 
pair complex network theory with GC to analyze delay propagation 
patterns in domestic China using data covering the whole month of July 
2012. It is found that large airports generally mitigate delays, while 
smaller airports propagate delays. GC is also used in Zanin (2021), 
where it is paired with agglomerative clustering techniques. That 
research sought causality clusters, which are groups of generators of 
delay and absorbers of delay, in contrast to more traditional approaches 
which group generators and absorbers of the same delay. This research 
introduces the concept of intermediary airports that act as delay brokers 
in the network. In follow-up work, Pastorino and Zanin (2021) analyze a 
dataset of sixteen non-continuous months between 2015 and 2018 for 
the fifty largest European airports, with the key finding that dissipation 
of delays is a process where all airports contribute, irrespective of their 
size. This last finding is at odds with other works such as (Du et al., 
2018), creating an opening for further analysis. To the best of our 
knowledge, this is the first paper where the application of GC is utilized 

2 The five categories are briefly described as follows. (i) cancellation or delay 
due to circumstances within the airline's control, (ii) significant meteorological 
conditions that delays or prevents the operation of a flight, (iii) delays and 
cancellations attributable to NAS and related to a broad set of conditions, such 
as non-extreme weather conditions, airport operations, and air traffic control, 
(iv) delay due to the previous flight with the same aircraft arriving late, and (v) 
delays or cancellations caused by evacuation of a terminal or concourse, re- 
boarding of aircraft because of security breach, etc. 
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with some methodological caveats to improve the quality of results. A 
key example is the use of an upper bound limiting the lags when 
comparing two time-series with a GC test. The particular example is the 
use of a six hours limit (which is the duration of the longest intra- 
European flight). This research also used a correction technique to 
reduce the false discovery rate by lowering the p-value threshold to limit 
type I errors. Another recent innovation involves data pre-processing 
techniques and the current paper follows that approach. It does so 
with some critical differences from the research done previously. First, 
most of the cited papers consider a single time-horizon and, hence, a 
single time-series when assessing delay causality between airports. 
Furthermore, some works (e.g., Zanin (2015); Pastorino and Zanin 
(2021)) use a de-trend process for each time-series by subtracting the 
average delay observed on the same day, in the two previous and pos-
terior weeks, at the same hour. We argue this approach might conceal 
some delay propagation patterns, especially in the case of extreme 
weather events, where assessing the proper time-interval to study 
propagation effects due to the particular event itself is critical. Second, 
canceled flights seem to be overlooked in the literature. They are either 
omitted or artificially converted into delayed flights with an ad-hoc 
assigned delay (e.g., three hours in Du et al. (2018)). This array of 
research shows that the factors relevant to delay and its propagation 
between airports involves a complex array of factors. Airline operations 
and network configuration stand out as key factors, but their importance 
seems to vary from one study to another. One way to extend our un-
derstanding here is to explore the impact of the major delays associated 
to extreme weather events and to show how they are addressed by 
different airline networks. To pursue this goal and obtain unbiased re-
sults, it is paramount to study delay propagation within each identified 
weather event. In addition, extreme weather events cause canceled 
flights, whose effect is propagated through the transport network in a 
different manner to that of common delay propagation and creates 
different problems for airlines and passengers, so it should be assessed 
separately. Hence our goal is to study both DPNs and CPNs in air 
transport that emerge with extreme weather events and contribute to the 
current literature on the topic. That is the research agenda addressed in 
this paper. 

3. Description of dataset 

In our work, we assess delay propagation and causality relationships 
between airports by using as input hourly departure delays in each 
considered airport. To compute such departure delays, we processed the 

Airline On-Time Performance and Causes of Flight Delays dataset provided 
by the BTS (BTS, 2022a). The original dataset, which refers to the year 
2017, contains information on each domestic commercial flight in the 
form of a row entry of the dataset. From the original columns of the 
dataset, we have retained the carrier operating the flight, the origin and 
destination airports, the tail number of the aircraft, and the flag indicating 
if the flight has been canceled. We have calculated the following features: 
the departure delay in minutes, as time difference between actual and 
planned departure time, the planned flight time in minutes, as the time 
difference between planned arrival and departure time, and the planned 
departure hour in UTC, including the date. 

The resulting dataset includes 5,665,109 observations, representing 
the planned flights between US airports in 2017. These flights were 
operated by twelve airlines, namely American Airlines (AA), Alaska 
Airlines (AS), JetBlue Airways (B6), Delta Airlines (DL), ExpressJet (EV), 
Frontier Airlines (F9), Hawaiian Airlines (HA), Spirit Airlines (NK), 
SkyWest Airlines (OO), United Airlines (UA), Virgin America (VX), and 
Southwest Airlines (WN). Overall, 317 airports appeared in the filtered 
dataset (see Appendix B for a visual representation). As it concerns 
airport names, we will rely on their International Air Transport Asso-
ciation (IATA) codes both in the text and in all visualizations. For ease of 
understanding, in Appendix D we list all the airports that were 
mentioned at least once providing their full name, IATA code, 
geographical location, and passenger traffic. 

4. Methodology 

We divide this section into four parts as follows. First, in Section 4.1 
we define how we detected the time-periods of interest for our analyses. 
Then, in Section 4.2 we describe how we processed the raw data pre-
sented in Section 3 to obtain time-series of hourly mean departure delays 
and number of cancellations. Then, in Section 4.3 we briefly outline the 
theory behind GC and how we determined causal relationships between 
airports using the aforementioned time-series. Finally, in Section 4.4 we 
provide an overview of the complex network theory indices and metrics 
we used to complement our analysis. 

4.1. Time events detection and choice 

In order to understand which time-periods to consider in our anal-
ysis, we studied the total number of daily domestic cancellations in the 
year 2017, to identify days or longer time-periods characterized by some 
form of disruption. We identified five time-periods with peaks of 1,500 

Fig. 1. Number of extreme weather events per year. From NCEI (2022).  
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daily canceled flights or more. Upon further analysis, each of those time- 
periods was characterized by an extreme weather event in the conti-
nental US. The five weather events, in chronological order, are (i) 
January 04–08, 2017 North American winter storm: major snow and ice 
storm that affected the conterminous US with winter weather (Wikipe-
dia, 2022c); (ii) the February 09–11, 2017 North American blizzard: 
blizzard affecting the Northeastern US with winter weather and 
maximum snowfalls exceeding 60 cm (Wikipedia, 2022a); (iii) the 
March 09–18, 2017 North American blizzard: late-season blizzard 
affecting the Northeastern US and extending towards the Ohio Valley 
with maximum snowfalls exceeding 90 cm (Wikipedia, 2022d); (iv) an 
outbreak of severe thunderstorms: thunderstorms that pounded the 
Southwest from April 02, 2017, shifting into the mid-Atlantic region and 
moving towards East affecting the Northeast and Georgia (CNN Busi-
ness, 2022; The Weather Channel, 2022), and (v) hurricane Irma: hur-
ricane that, after causing havoc in the Caribbeans, moved to the 
Southeastern portion of the US, mostly affecting Florida and causing 
floods, widespread power outages, and more than 9,000 flight cancel-
lations to or from Florida (Wikipedia, 2022b; The Points Guy, 2022). 

We defined the aforementioned five time-periods Time Events (TEs) 
and added a numerical indicator (TE1,⋯,TE5) in chronological fashion. 
We fixed start and end times to encompass the abnormal rate of can-
cellations around the dates of each TE. On top of these five major 
disruptive events, we have added a baseline event TE6 which corre-
sponds to a Business As Usual (BAU) situation. This event, spanning the 
week from May 27th to June 2nd, represents a period of time where the 
weekly number of flights and average delay were roughly equal to the 
mean for the whole year 2017. The start and end times selected for each 
TE are presented in Table 1, while Fig. 2 shows daily and weekly do-
mestic flight cancellations in the US and the six TEs highlighted with 
different shades. It can be noted that while TE3 is the one with the 
highest impact on daily cancellations, TE5 has a longer impact spanning 
multiple weeks. 

Given the TEs in Table 1, we computed for each airline of interest the 
percentage and number of canceled flights. We used these values as 
proxies to assess the severity of each extreme weather event. We report 
results in Fig. 3, where TE4 and TE5 appear as the events that caused the 
most damage to the US domestic air traffic. As a consequence, we chose 
these two events for further analysis, together with the baseline case 
TE6. As for airlines, we selected American Airlines (AA), Delta Airlines 
(DL), United Airlines (UA), and Southwest Airlines (WN). These are, 
respectively, the third, second, fifth and first airlines in the 2017 do-
mestic US market by number of flights, representing the 65.78% of total 
flights. We excluded the fourth airline by number of flights, SkyWest 
(OO), as it was less affected by meteorological events than the other four 
according to our preliminary analysis. The four selected airlines repre-
sent two different business models (Klophaus et al., 2012): while WN is a 
low-cost carrier planning point-to-point flights, the other three are full- 
service carrier planning connecting flights within a (multi) hub-and- 
spoke networks. The set of three events and four airlines selected for 
in-depth analysis covered 206,419 flights and 167 distinct airports. 

The impact of events TE4 and TE5 on airlines is heterogeneous. TE4 
affects mainly DL, which has roughly the 23.09% of its flights canceled. 
TE5 has a higher impact on most airlines, higher than 30% in the case of 
NK. Among our sample of airlines, AA suffers the highest impact in 

relative values, followed by WN and DL. 

4.2. Flight delay and cancellations time-series extraction 

To obtain a DPN through GC analysis, we need a time-series of 
average hourly delays for each origin airport, airline, and TE. A CPN 
requires an analogous set of time-series with hourly number of cancel-
lations at the origin airport. We start building the time-series extracting 
from the dataset all flights included in the event time-window for each 
airline. Then, we are removing airports that have no departing flights in 
the time-window of interest (even if there may be flights arriving at 
these airports), as we assume they can play no role in delay or cancel-
lation propagation due to our focus on departure delays/cancellations. 
Afterward, for each hour in the time-window and for each origin airport 
and airline we obtain the average departure delay (in minutes) and the 
total number of cancellations. Previous works on delay propagation 
have considered both arrival and departure delays as proxies to assess 
delay propagation (Fleurquin et al., 2014; Campanelli et al., 2016; Du 
et al., 2018). We have chosen departure delays as we consider that they 
better represent the nature of delay propagation: if an aircraft departs 
late, it is likely that the next flight in the rotation of that aircraft will also 
be delayed, irrespective of how airlines define time of arrival. In addi-
tion, arrival delays are harder to assess due to the common practice of 
schedule padding (BBC, 2022), i.e., the tendency of airlines to inflate 
flight times to increase on-time performances and conceal arrival delays. 
For hours and origin airports with no flights operated, we set average 
delay and number of canceled flights to zero. 

In addition to the time-series for each airport, we obtain all Origin- 
Destination (OD) airport pairs (i,j) with at least one direct, non- 
canceled flight. All these pairs constitute the airport network for the set 
of flights considered after filtering by airline and time-window. For each 
OD pair, we evaluate the planned flight time tij as the average of all 
planned flight times. 

4.3. Determining delay and cancellation propagation networks 

To obtain each DPN, we use the hourly delay time-series and the OD 
pairs obtained in the previous section to evaluate if delays in destination 
airports are related to delays at origin airports using a GC test. This test 
requires establishing a hierarchical regression model for each OD pair, 
with the following two models. The first model, sometimes called un-
constrained model, predicts hourly delays at destination airport j at time 
(hour) t using previous hourly delays in the same airport as shown in Eq. 
1: 

Table 1 
Start and end times for each event (times in UTC).  

Time Event start time end time 

January snowstorm (TE1) 2017-01-06 11:00:00 2017-01-10 11:00:00 
February blizzard (TE2) 2017-02-06 00:00:00 2017-02-11 00:00:00 
March blizzard (TE3) 2017-03-09 12:00:00 2017-03-16 12:00:00 
April severe storms (TE4) 2017-04-05 08:00:00 2017-04-10 12:00:00 
September hurricane Irma (TE5) 2017-09-07 08:00:00 2017-09-15 12:00:00 
Business As Usual (TE6) 2017-05-27 00:00:00 2017-06-02 23:00:00  

Fig. 2. Canceled flights (daily and weekly) in the US domestic air network 
in 2017. 
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Fig. 3. Cancellations for each TE considered.  
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djt =
∑u

p=l
αpdj,t− p + εt (1) 

The second model, sometimes called constrained model (Eq. 2), adds 
terms including prior delays at origin airport i: 

djt =
∑u

p=l
αpdj,t− p +

∑uij

q=lij

βiqdi,t− q + ε′

t (2) 

We have set l = 1 and u = 3 for all destination airports. With this 
choice, we hypothesize that hourly delays depend on hourly delays in 
the three previous hours. We assume this to take into account airport- 
specific events in previous hours (e.g., congestion or extreme weather) 
that can create delays in the considered hour. We have adopted values of 
l and u similar to previous GC analysis of delays (Du et al., 2018). The 
values of lij and uij are different for each (i, j) pair: we set lij = tij and uij =

tij + 2, where tij is the planned flight time in hours. By doing this, we 
assume that delays at airport j can appear because delayed flights 
coming from airport i bring resources (aircraft or crew) necessary for 
flights departing from j. Previous research (e.g, Zanin (2015)) has 
examined the relationship between delay time-series between pairs of 
airports with no direct flights. As there is no transference of crew and 
aircraft between those pairs of airports, we argue that there can be no 
direct causal effect between their respective delay time series. As an 
additional measure to avoid post hoc ergo propter hoc effects, we evaluate 
relationships between hourly delays time-series only for pairs of airports 
connected with direct flights. As a consequence, the delay propagation 
network will be a subset of the nodes and edges of the airport network 
that the GC test deemed statistically significant. 

We evaluate the hierarchical regression models for delays with Or-
dinary Least Squares (OLS) regression. If the delays at destination j 
depend on delays at origin i, the constrained model will have more 
explanatory power than the unconstrained model. We assess the 
explanatory power by comparing both models with an ANOVA test. For 
each time event and set of airlines considered, we need to evaluate as 
many F-tests as the edges of the directed airport network. The evaluation 
of multiple statistical tests requires lowering the threshold of p-values to 
be considered significant, as the probability of committing Type-I errors 
increases with the number of comparisons. To avoid this inflation of 
probability of Type-I errors, we have adopted the false discovery rate 
controlling procedure described in Benjamini and Yekutieli (2001), 
estimating the false discovery rate with the method proposed by Dal-
masso et al. (2005). The application of this procedure lowered the 
minimal p-value to discard null hypotheses from 0.05 to adjusted min-
imal p-values ranging from 2.61e-5 to 1.83e-3. 

The set of significant relationships between delays at airport i and 
airport j allows us to construct the Delay Propagation Network, a 
network representation of propagation of flight delays for each (TE, 
airline) pair. This DPN is a graph G D =

(
N D,ℰD), where N D is the set of 

nodes and ℰD is the set of edges. Each graph G D is characterized by an 
adjacency matrix A D

|N D|×|N D|
, where element aij

D is unitary if airport i 

causes delays in airport j, and zero otherwise. Given the problem at 
hand, G D is a directed graph and A D is generally a non-symmetric 
matrix. 

To obtain the CPNs, we define models analogous to the DPNs, 
replacing average departure delays with number of cancellations. The 
resulting hierarchical regression models are modelled with Poisson 
regression models, as the number of cancellations can be modelled as a 
Poisson distribution of counts. We evaluate the explanatory value of the 
constrained model over the unconstrained with a Chi-squared statistic of 
the difference of deviances. As with DPNs, the p-values threshold 
selected to include edges in the CPN were selected to control for false 
discovery rate. The obtained adjusted minimal p-values ranged from 
1.70e-06 to 2.04e-03. 

Analogously to DPNs, we define a CPN as a graph G C =
(
N C,ℰC)

with an adjacency matrix A C with elements aij
C equal to one if cancel-

lations in airport i are causing cancellations at airport j and zero 
otherwise. 

4.4. Network metrics for propagation networks 

For each DPN node k ∈ N D, we define the in- and out-degree as, 
respectively, kD

in(k) =
∑

i∈N D aD
ik and kD

out(k) =
∑

j∈N D aD
kj. They do repre-

sent the number of nodes that are directly upstream (resp., downstream) 
of node k. 

While in- and out-degree provide some indications of the centrality 
of a node in terms of connections within G D, they fail to identify how 
strong each connection is. To this avail, we can define an edge-specific 
measure, or weight, wij

D, that maps a certain key performance indicator 
or feature that is relevant for the problem at hand. In transport networks, 
examples of weights might range from distance, to travel time, travel 
cost, passenger flows, just to cite a few examples. We define edge 
weights for the DPN wij

D as the summation of all flight delays ≥15 min 
along arc (i, j). With this definition, we define the net delay3 of node k as 
Δdk =

∑
j∈N D wD

kja
D
kj −

∑
i∈N D wD

ikaD
ik. Intuitively, Δdk > 0 means that 

airport k generates a net delay as outgoing flights have more delay than 
incoming flights, while Δdk < 0 is associated to an absorption behavior. 

We have used node unweighted betweenness bi to find the most 
intermediary nodes in the network. It is defined as bi =

∑
i∕=j∕=kn(i)jk/njk, 

where njk is the number of shortest paths between any pair of nodes j and 
k and n(i)jk is the number of those paths including node i. 

For cancellation propagation networks, in- and out-degree are 
defined in the same way as with delay propagation networks, and edge 
weights wij

C are the number of canceled flights departing from i and with 
destination in j. With those weights we can define net cancellation of a 
node k ∈ N C as Δck =

∑
j∈N C wC

kja
C
kj −

∑
i∈N C wC

ikaC
ik. Nodes with Δck >

0 are generators of cancellations and nodes Δck < 0 act as absorbers of 
cancellations. We adopt a visualization code similar to the delay prop-
agation networks, with node (airport) size proportional to the absolute 
value of its net cancellations. Intermediary nodes in a CPN are defined in 
the same way as in a DPN. 

5. Results 

5.1. Summary of the size of delay and cancellation propagation networks 

In order to assess which DPNs and CPNs to consider in the analysis, 
we initially computed all DPNs and CPNs for the three TEs under scru-
tiny (TE4, TE5, and TE6). Table 2 summarizes the size of each network 
in terms of number of nodes |N | and edges ∣ℰ∣. 

As it concerns TE6, despite the lack of an extreme weather event, 
DPNs are non-negligible for all airlines. This is in line with the 
perspective of this paper. We expect extreme weather events to cause 
abnormal delays and/or cancellations, but flight delays in air transport 
are generated by a plethora of causes apart from the weather. On the 
other hand, all CPNs for TE6 are either not defined, or too limited in size 
to be significant. In absence of a major disruption (such as extreme 
weather or an operational one), we expect a very low cancellation rate. 

For TE4 and TE5, most DPNs are significant in terms of |N | and ∣ℰ∣. 
For TE4, the DPN of DL is the smallest, but its CPN is by far the largest. 
Hence, the size of the DPN is caused by the high cancellation rate. For 
the other three airlines, the cancellation rate appears to have been much 
lower as the associated CPNs are not significant. For TE5, both DPNs and 
CPNs seem significant, with UA being the least affected by hurricane 
Irma according to |N | and ∣ℰ∣ values. 

In terms of DPNs, we will analyze all twelve networks (three TEs, 

3 In the rest of the paper, we will drop the term net when describing net delay 
generators or absorbers. 
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four airlines). A discussion of the DPNs of TE6, i.e., our baseline case not 
associated to an extreme weather event, is provided in Appendix C to 
show an example of how delays propagate in situations lacking an 
explicit disruption. The other two TEs are described in Section 5.2 
instead. For CPNs, we will focus on the following four cases that we 
deemed significant: (TE4, DL), (TE5, AA), (TE5, DL), and (TE5, WN). 
The values of |N | and ∣ℰ∣ for all combinations of (TE, airline) and type of 
network (DPN or CPN) that will be analyzed later in the section are 
highlighted in bold in Table 2. 

5.2. Delay propagation networks in extreme weather events 

In Figs. 4 and 5 we present the DPNs for the four analyzed airlines in 
events TE4 and TE5, respectively. In these plots we analyze in a 
graphical way some results obtained in the previous analysis. The DPNs 
of (TE4, UA) and (TE5, UA) are similar to the ones of a baseline event 
(see Appendix C), which is related with the low proportion of canceled 
flights. For events (TE4, AA) and (TE4, WN), related to a low proportion 
of canceled flights, we observe denser DPNs than in the baseline case. 
While in the case of (TE4, AA) the network seems to concentrate around 
the geographical location in the event, the spatial distribution of (TE4, 
WN) is similar to the baseline case, but denser. For events characterized 

by a medium percentage of canceled flights, we observe a similar 
pattern. The DPN of (TE5, DL) tends to concentrate in the immediate 
north of the geographical location of the event. TE5 is more localized 
than TE4, so the geographical effect is less salient in this case. On the 
other hand, the DPN of (TE5, WN) is evenly distributed across the US. 
For low and medium values of canceled flights, the DPNs of AA and DL 
tend to concentrate around the location of the event, while in the case of 
WN, as the proportion of cancellations increases (from TE6 to TE5), its 
DPN maintains the same spatial structure. Finally, for events (TE5, AA) 
and (TE4, DL), characterized by a high proportion of canceled flights, we 
observe smaller and geographically sparser DPNs. 

In Tables 3 and 4 we present the top-5 generators, absorbers, and 
intermediary nodes for TE4 and TE5. Generators are the nodes with 
highest Δd, absorbers the ones with most negative Δd, and intermediary 
nodes the ones with the highest betweenness. In addition to the main 
airports, we have also airports located in the specific geographical 
location of the event. In the cases of (TE4, DL) and (TE5, UA) there were 
no nodes (airports) with betweenness different from zero due to the lack 
of paths longer than two nodes in the resulting graph. This is due to the 
high sparsity and low density of such graphs. Hence, we left the columns 
mapping intermediary airports blank for those cases. 

The results of these tables are harder to interpret than in the TE6 

Table 2 
Size in terms of |N | and ∣ℰ∣ for DPNs and CPNs related to TE4, TE5, and TE6. Values in bold are associated to networks that are analyzed further in this work.   

TE4 TE5 TE6  

DPN CPN DPN CPN DPN CPN 

Airline |N D | |ℰD | |N C | ∣ℰC∣ |N D | |ℰD | |N C| ∣ℰC∣ |N D| |ℰD| |N C| ∣ℰC∣ 
AA 47 66 5 4 31 54 37 86 19 15 10 10 
DL 16 12 118 191 75 105 85 119 26 27 0 0 
UA 28 29 0 0 11 9 13 22 23 20 0 0 
WN 64 154 6 4 77 321 50 134 61 85 2 1  

Fig. 4. DPNs for TE4. Node size is proportional to absolute value of delay.  
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case. While in TE6 there was a common pattern for the role of the main 
airports, here each airline displays a different behavior regarding the 
role of airports located in the event and main airports, which also de-
pends on the evolution of the canceled flights. Many relevant airports of 
the DPNs of AA are located in the event, acting in all roles although 
mainly as generators. The presence of airports located in the event in 
(TE5, AA) is smaller than in (TE4, AA) case as cancellations increase. In 
the case of DL, the role of ATL is highly relevant. Note that ATL is the 

main hub of DL and that it is located where both TE4 and TE5 take place. 
In TE5, ATL acts as both a generator and intermediary airport. As WN 
has a more homogeneous network, both spatially and in terms of con-
nections between airports (network density), airports located in the 
event are less relevant regarding generation, while hubs keep having an 
important role. The different business model operating a point-to-point 
network is evident as delay propagation occurs in a much denser DPN, as 
Fig. 4 and Fig. 5 suggest. UA is less affected by the considered events, 

Fig. 5. DPNs for TE5. Node size is proportional to absolute value of delay.  

Table 3 
Top-5 delay generators (G), absorbers (A), and intermediary (I) airports for TE4. In italics, airports located in the zone of event. In bold, main hubs of the airline. In 
bold and italics, main hubs of the airline that are also located in zone of event.  

AA DL UA WN 

G A I G A I G A I G A I 

MCO CLT CLT MSY ATL – ORD EWR EWR BWI PHX ATL 
FLL MIA PHL BOS JFK – BOS DEN IAH TPA MDW TPA 
RDU DFW JAX LAS MSP – IAH SAN ORD MCI DEN MDW 
PBI PHL ORD DEN SLC – TPA SFO LAX SNA DAL STL 
ATL JFK STL CVG MCO – LGA PHX IAD DCA HOU BWI  

Table 4 
Top-5 delay generators (G), absorbers (A), and intermediary (I) airports for TE5. In italics, airports located in the zone of event. In bold, main hubs of the airline. In 
bold and italics, main hubs of the airline that are also located in zone of event.  

AA DL UA WN 

G A I G A I G A I G A I 

MCO CLT CLT ATL EWR ATL SFO LAS – SAN PHX DAL 
BNA DFW TPA CMH MSN LAS DFW EWR – MDW OAK DEN 
RSW MIA SFO DTW RDU LAX AVL PHL – SNA DAL BWI 
PHL LGA MIA MCI SAT MCO PBI CLE – LAX LAS ATL 
PBI PHX PHL MCO BWI DTW MCO RDU – TPA SJC MDW  
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except for its hub IAH in TE4. As a result, the DPNs of UA have more 
hubs than other airports located in the geographical area of the event 
among the top-5 generators, absorbers, and intermediary nodes. 

5.3. Cancellation propagation networks 

In Fig. 6 we show the four significant CPNs that were identified in 
Table 2. Unlike DPNs, where the magnitude of delays across the different 
airports was comparable, the role of hubs is much more dominant in all 
CPNs. A clear hierarchical structure can be identified where hubs are 
strong cancellation absorbers. The most prominent example is DL with 
its main hub ATL. In both (TE4, DL) (Fig. 6(a)) and (TE5, DL) (Fig. 6(c)), 
ATL is on the receiving end of several cancellation edges, albeit with 
different geographical features. In (TE4, DL), cancellations are scattered 
around the whole continental US from the Midwest to the East Coast. In 
(TE5, DL), cancellations stem from Florida and closely follow the dy-
namics of hurricane Irma. 

In (TE4, DL), ATL features a Δc of − 1,137 (with the second-ranked 
absorber being DTW with a Δc of − 95). In (TE5, DL), ATL features a 
Δc of − 428 (with the second-ranked absorber being, again, DTW with Δc 
of − 16). In both cases, the strong imbalance between outbound/in-
bound flights from/to ATL is remarkable. Note that outbound cancel-
lations are still non-negligible in both (TE, airline) pairs, as Fig. 7 
suggests. (TE4, DL) features a more widespread effect on cancellations 
that spans more than three days, while cancellations for (TE5, DL) are 
more localized on September 11th. 

As it concerns ATL-inbound canceled flights for the two (TE, airline) 
pairs, in Fig. 8 we report the origin airports belonging to the CPNs that 
satisfied both conditions: (i) percentage of canceled flights vs. scheduled 
flights within the TE greater or equal to 20%, and (ii) number of 
canceled flights greater or equal to ten. The spatial patterns of the 
interested origins mimic closely the patterns of Fig. 6. The combined 
analysis of Figs. 7–8 suggests that the effect of hurricane Irma (TE5) on 

DL operations in ATL was much more localized than the effect of the 
extreme thunderstorms (TE4). While the geographical extension of the 
two extreme weather events might have hinted at this, our outcome 
extends beyond the geographical aspect as it is based on causal 
relationships. 

For the two remaining CPNs, i.e., (TE5, AA) and (TE5, WN), the 
initial effect of hurricane Irma on Puerto Rico is still appreciable, as well 
as the high concentration of cancellation generators in Florida. Some 
airports that were generators for DL are now absorbers, such as MIA for 
AA and FLL for WN. They are, respectively, a main hub and operating 
base for the two airlines. If we extend our analysis beyond Florida, the 
same trend occurs for the AA hubs CLT and DFW and for the WN 
operating bases ATL, FLL, and HOU. 

The four CPNs presented in Fig. 6 are easier to interpret than the 
DPNs for the same (TE, airline) pair. We observe delay propagation 
patterns even in periods of time with no extreme events, like TE6. On the 
contrary, we can appreciate significant cancellation patterns only in 
specific contexts, like extreme weather events that affect airline opera-
tions significantly. As a result, DPNs are denser, but also noisier, than 
CPNs. In a DPN we observe propagation patterns that can be attributed 
to a number of causes different from weather (e.g., airline operations, 
late-arriving aircraft, or security). What we observe in CPNs can be 
attributed to extreme weather events only. If we consider the four CPNs, 
a common pattern is identifiable. Main hubs for flag carriers (and, 
equivalently, operating bases for WN) function as cancellation absorbers 
regardless of their geographical location with respect to the extreme 
weather event causing cancellations. We believe this characteristic is, at 
least partially, attributable to the higher number of resources that air-
lines concentrate in those airports and that can be leveraged to still 
provide a minimum number of outbound operations as compared to 
inbound ones. 

We provide an alternative representation of delay and cancellation 
propagation for all DPNs and CPNs with Sankey diagrams (Plotly, 2022) 

Fig. 6. CPNs for the different combinations of (TE, airline) analyzed. Node size is proportional to value of cancellations.  
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in the online repository https://rpubs.com/jmsallan/dpn_cpn_jtg, 
together with supplementary material that complements this analysis. 
Originally created to visualize energy and material flows (Schmidt, 
2008), Sankey diagrams display flows with curved lines of thickness 
proportional to flow transferred which, in our case, is the actual delay/ 
cancellation being propagated along every OD pair of interest. While our 
graph-oriented visualizations highlight quite well the magnitude of de-
lays and cancellations at the airport (node) level via the size of each 
node, they do not highlight differences in flows being transferred across 
different edges. Sankey diagrams explicitly map that instead. The second 
advantage of such representation is that it explicitly highlights feedback 
loops (i.e., a delay or cancellation that back-propagates to the starting 
location). 

In Fig. 9 we present two examples of Sankey diagrams for the CPNs of 
(TE5, AA) and (TE5, WN). In the first case, we observe a behavior similar 
to DL (please refer to the online repository for the other Sankey dia-
grams). AA hubs CLT, MIA, and DFW act as main nodes of the CPN and 
as absorbers, although the incoming flows to those nodes is smaller than 
for the DL CPNs. Like in (TE5, DL), we observe loops between hubs and 
airports located in the geographical scope of TE5 (such as MIA and TPA). 
It must be noted that two of the three AA hubs are out of the 
geographical location of the extreme weather event. This can explain the 
smaller impact of propagation of cancellations for (TE5, AA) with 
respect to (TE5, DL). Finally, the CPN of (WN, TE5) is sparser than the 
other three. As in the network plot, we observe the relevance of ATL and 
FLL as absorbers. The sparsity of (WN, TE5) compared with the other 
events can be attributed to the business model of WN, which relies on 
point-to-point flights rather than on centralization of operations in hubs, 
hence having a more de-centralized concentration of resources. In a 
similar fashion to DPNs, we summarize results for the CPNs considered 
in terms of top generators, absorbers, and intermediate airports in 
Table 5. 

5.4. Inter-dependencies between propagation of delays and cancellations 

To assess the evolution of DPNs in the time events considered, in 
Fig. 10 we present for each event and airline the number of nodes |N D|

and edges |ℰD|, together with the proportion of canceled flights. First, 
UA seems to be unaffected by events TE4 and TE5 as the proportion of 
canceled flights is lower than the rest of airlines. Second, the size of the 
DPN of WN is larger than the ones of AA and DL. This remains true even 
after scaling by the number of nodes and edges of the WN airport 

network. Finally, we observe that in (TE5, AA) and (TE4, DL), i.e., the 
(TE, airline) pairs with the highest number of cancellations, the size of 
the DPN shrinks when compared to the other cases. 

To complement the analysis, Fig. 11 presents the same metrics for 
CPNs. Here we observe that the size of the CPN increases quasi- 
monotonically with the percentage of cancellations. The largest CPN 
in absolute value is the one of (TE4, DL), the (TE, airline) pair with the 
highest percentage of cancellations. 

In Fig. 12, we compare the evolution of DPNs and CPNs for the two 
disrupted time events we considered (TE4 and TE5) and for the three 
airlines that were highly impacted (AA, DL, and WN). For each (TE, 
airline) pair, we compare the percentage of canceled flights with the size 
of the resulting DPN and CPN represented by the number of edges (y- 
axis) and nodes (size of the circle). For small percentages of cancella-
tions (≤7%), no significant CPN was identified. This is the case for (TE4, 
AA) and (TE4, WN), as the preliminary analysis of Section 5.1 suggested. 
As the percentage of cancellations increases, yet remains lower than a 
tipping point (≃10%), the size of both DPNs and CPNs grows. The 
disruption is causing a significant propagation of delays, but cancella-
tions are now significant enough to define their own propagation 
network. It can be assessed, again, the different performance between 
the large size of the DPN of WN, with a number of edges almost 
quadruple than its counterparts. Finally, the DPN size decreases 
dramatically as cancellations increase. This behavior is evident for (TE5, 
AA), where a cancellation rate of 13% already halves the size of the DPN 
when compared to TE4. The effect is even stronger for (TE4, DL), where 
the DPN is completely dismantled and the associated CPN is larger than 
any other flag-carrier DPN or CPN presented in Figs. 10–11. 

In summary, we have identified an emerging property mapping the 
inter-dependencies between DPNs and CPNs. For very low values of 
flight cancellations, only DPNs are defined, as cancellations do not affect 
in a significant manner the network. For low values of flight cancella-
tions, both the DPNs and the CPNs increase in size as cancellations are 
now significant enough to define their own CPN. Simultaneously, they 
still act as indicators that the system is malfunctioning and generating 
larger delays. Once a tipping point is reached, cancellations become the 
dominant factor and cause a rapid decrease in size of any DPN (note, 
again, that this does not imply that delays are disappearing from the 
system, but that delay causality relationships are). Hence, the shape of a 
DPN expressed as (% canceled flight, |ℰD|) resembles an inverted-V, with 
the tipping point in the [7,12]% range. 

Admittedly, our final data set only included six (TE, airline) pairs 

Fig. 7. Scheduled vs. canceled DL departures (hourly) from ATL for TE4 and TE5.  
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with a number of cancellations large enough to identify significant CPNs 
to be compared with their associate DPNs. The observations that 
allowed us to detect the decline of the size of DPNs for a fraction of 
cancellations above 10% (right-hand side of Fig. 12(a)) involved full- 
service carriers only. A dataset spanning extreme weather events of 
multiple years would allow assessing if the inverted V-shaped behavior 
defining the evolution of the size of a DPN, observed for full-service 
carriers, can also be observed for low-cost carriers. 

6. Discussion and conclusions 

The analysis of the baseline case (TE6) gave us insight into the 
structure of delay propagation networks in a period of (allegedly) 
normal operations. As the number of canceled flights was low, hardly 
any cancellation propagation could be observed. The DPN of (TE6, WN) 
has more nodes and edges than the rest of airlines, reflecting that low- 
cost carriers have airport networks larger than flag carriers (Lordan 
et al., 2016). Sankey diagrams revealed that DPNs of full-service carriers 

are more hierarchical than the DPN of WN. They also revealed bidi-
rectional relationships in the DPNs. This means that a route operating 
the same aircraft with round-trip flights may accumulate delays that are 
causally relevant along the day. As a consequence, we can expect that 
airports triggering delays may have not only outgoing edges, but also 
incoming edges in the propagation networks. The analysis of main 
generators, absorbers, and intermediary nodes showed the presence not 
only of central nodes of the airport network (hubs or main bases), but 
also of peripheral airports. Delays can have many causes: airline oper-
ations, security, weather, or late-arriving aircraft, among others (BTS, 
2022b). The complex patterns of delays that emerge can cause some 
peripheral airports to be central nodes in the DPN. Nevertheless, central 
airports of airlines have usually a central role in the DPNs as well. The 
main airports of an airline usually act as absorbers (propagate less delay 
than they receive) and/or intermediaries (they are in the middle of a 
path of delay propagations without severely affecting the magnitude of 
such flow), rather than as generators. This has also been observed in 
previous DPN analyses (Du et al., 2018). As airlines concentrate more 

Fig. 8. Origin airports in the CPNs of TE4 and TE5 featuring a percentage of canceled flights vs. scheduled flights ≥20% and a number of canceled flights ≥10 
towards ATL. ATL is represented with a black square. 
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resources (aircraft and crew) in their main airports, they can undertake 
more actions to mitigate delays there than in peripheral airports 
(AhmadBeygi et al., 2008), as long as these delays are limited. 

The first result of the observation of the impact of extreme weather 
on delay propagation was that the effects are heterogeneous across 
airlines. The metric which best describes this impact is the proportion of 
canceled flights. We identified three relevant groups of (TE, airline) 
pairs:  

1. ≤ 7% of cancellations: (TE4, AA) and (TE4, WN).  
2. [7,12]% of cancellations: (TE5, DL) and (TE5, WN).  

3. ≥ 12% of cancellations: (TE5, AA) and (TE4, DL). 

The analysis of these combinations shows a pattern of inter- 
dependency between DPNs and CPNs. While CPNs grow with the pro-
portion of canceled flights, DPNs shrink for proportions of cancellations 
in the [7,12]% interval. For relatively high values of canceled flights, 
the possibilities of connectivity of airlines decrease severely, thus 
reducing the number of edges and nodes of the DPN. Medium values of 
canceled flights allow for larger DPNs, that is, with more nodes and 
edges. For those networks, propagators tend to be located in the 
geographical region of the event, while hubs or main airports act as 

Fig. 9. Sankey diagrams of cancellation flows for (TE5, AA) and (TE5, WN).  

Table 5 
Top-5 cancellation generators (G), absorbers (A), and intermediary (I) airports for significant CPNs. In italics, airports located in the zone of event. In bold, main hubs 
of the airline. In bold and italics, main hubs of the airline that are also located in zone of event.  

(TE4, DL) (TE5, AA) (TE5, DL) (TE5, WN) 

G A I G A I G A I G A I 

MIA ATL ATL MCO MIA MIA MIA ATL ATL TPA ATL TPA 
BOS DTW DTW LGA CLT ORD PBI JFK FLL BWI FLL ATL 
MCO MSP SLC DCA DFW CLT MCO DTW JFK DCA HOU MSY 
DCA LGA LAS SJU ORD DFW LGA MSP DTW IND DAL RDW 
FLL SLC MSP FLL DEN TPA JAX BOS MCO MCO DEN FLL  
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absorbers and intermediary nodes. 
The events with medium and high percentages of canceled flights 

allowed us to examine CPNs. They are obtained in an analogous way to 
delay propagation networks, replacing average hourly delay by hourly 
number of cancellations. Those networks emerge in major disruptions of 
air transport, like extreme weather. Cancellations are more related to 
the disruptive event than delays, so the appearance of high number of 
cancellations in other regions is the result of propagation effects. Prop-
agated cancellations come from the absence of key resources (aircraft 
and crew) coming from airports where traffic was disrupted. The four 
CPNs obtained here prove this, as they show how cancellations starting 
in the region of the event spread through all US territory. The origin of 
CPNs is more localized than DPNs: for the (TE4, DL) case a concentration 
of nodes through the South and East can be observed, and for the events 
related to TE5 airports located in Puerto Rico, Florida, Georgia, and 
Alabama are present in the CPN. Like in DPNs, the CPN of the low-cost 
carrier WN is more homogeneous and more distributed spatially than 
the ones of AA and DL. Sankey diagrams of CPNs reveal that the main 
flows pass through hubs, like ATL for DL or through large airports 
located in the zone of extreme weather, like MIA for AA and FLL for WN. 
Airports located in the zone of events act as central nodes in the CPN as 
generators, absorbers of intermediary, with hubs mostly playing the role 
of cancellation absorbers. 

In addition to the contribution of description of propagation patterns 
in the context of extreme meteorological events, this research has also 

methodological implications regarding the analysis of propagation 
networks. Firstly, the heterogeneous behavior across airlines observed 
for each disruption shows that propagation networks are better 
modelled as multi-layered networks, as suggested in Zanin (2015). The 
role of common resources in delay and cancellation propagation (Li and 
Jing, 2021) calls for examining relationships only in OD pairs where 
each airline operates direct connections. Finally, the evaluation of 
causal paths of propagation requires performing a large number of sta-
tistical tests. Therefore, researchers need to control for p-value inflation 
limiting the false discovery rate (Benjamini and Yekutieli, 2001). 

This research has implications for operational management of air-
lines. For airlines operating a hub-and-spoke route network, the hubs 
can act as absorbers of delays in normal conditions (Du et al., 2018). 
Airlines concentrate most of their resources in those airports, so they can 
reduce the impact of delays and avoid propagation of cancellations. But 
those hubs can act as a double-edged sword when extreme events occur. 
If many flights arrive late at the airport because of late departures, 
airlines can decide to delay connecting flights, so that the hub switches 
from being an absorber to being a generator. This is the case in (TE4, DL) 
and (TE5, DL), where the DL hub ATL is acting as generator of delays. In 
the case of (TE4, DL), the propagation is reduced because of the large 
number of cancellations. Additionally, in both (TE4, DL) and (TE5, DL) 
ATL generates delays, but acts as a cancellation absorber as it can still 
operate more outbound flights with respect of the many inbound can-
cellations. As such, the different behavior of ATL in the DPNs and CPNs 

Fig. 10. Number of nodes N D and number of edges ℰD of the DPNs (in orange, left y-axis) and percentage of canceled flights (in red, right y-axis) for events TE4, 
TE5, and TE6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 11. Number of nodes N C and number of edges ℰC of the CPNs (in orange, left y-axis) and percentage of canceled flights (in red, right y-axis) for TE4, TE5, and 
TE6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Comparison between percentage of canceled flights and size of the resulting network for six (TE, airline) pairs of interest.  

A. Bombelli and J.M. Sallan                                                                                                                                                                                                                  



Journal of Transport Geography 107 (2023) 103541

15

of (TE4, DL) and (TE5, DL), i.e., a delay generator but a cancellation 
absorber, is corroborated by its own mega-hub role. On the other hand, 
airlines operating a point-to-point route network have longer delay 
propagation patterns scattered all over the US. The damage of airlines 
adopting point-to-point route networks like WN is more severe in terms 
of airports and routes affected than hub-and-spoke adopters, even after 
scaling by nodes and edges of the airport network. These airlines suffer 
for a more dispersed propagation patterns, although smaller in total 
volume of delays. As airlines schedule aircraft and crew prioritizing high 
resource utilization for higher efficiency, they are less able to absorb 
disruptions (AhmadBeygi et al., 2008). The effect of these disruptions 
can be mitigated by adopting aircraft and crew scheduling patterns 
which not only minimize use of resources, but also maximize resilience 
to air traffic disruptions. 

This research was limited by our data, which covered domestic 
flights in the US during 2017. As we eventually used six data points to 
highlight the emerging property that links DPNs and CPNs as a function 
of canceled flights, a larger dataset and data-processing campaign is 
needed to fully corroborate our findings. In addition, we explicitly 
focused on extreme weather events. This means that other sources of 
major disruptions, like air traffic controllers strikes, could not be 
examined in the current setting. More research is needed about delay 
and cancellation propagation for those events, which can be substan-
tially different from extreme weather events. Propagation patterns can 
be different in more fragmented air transport markets like the European 
airspace or intercontinental flights, where airline alliance members 
collaborate in offering connecting flights. Additionally, differences in 
the management of delayed flights by Air Traffic Control between 
Europe and US (Campanelli et al., 2016) can lead to different delay and 
cancellation propagation patterns. 

The trend towards a higher occurrence of extreme weather events 
driven by climate change is a call for researchers and practitioners of 

airline management to define policies to tackle such events, that will be 
more frequent in the near future. A future line of research can address 
mitigation techniques like air and ground buffer scheduling (Brueckner 
et al., 2021) or turnaround and aircraft recovery models (Evler et al., 
2022), considering the generator, absorber, and intermediary roles of 
airports in the disruption propagation networks. 
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Appendix A. Overview of relevant publications addressing delay propagation  

Table A.1 
Overview of the main previous works addressing flight delay propagation, sorted by publication year.  

Reference Methodology Geographical focus Main findings 

AhmadBeygi et al. 
(2008) 

Propagation trees Domestic US The severity, depth, and magnitude of a single flight delay propagation decrease as the origin time 
of the root flight increases 

Fleurquin et al. 
(2013) 

Agent-based model Domestic US Passenger and crew connections most effective single mechanism to induce network congestion 

Zanin (2015) Complex network theory and 
Transfer Entropy (TE) 

Europe Properties of networks representing a single airline are often lost when a multi-layer 
representation is built 

Campanelli et al. 
(2016) 

Agent-based model Domestic US and 
Europe 

First Come First Serve (FCFS) performs worse than Air Traffic Flow Management (ATFM) 
approach in managing flight delays 

Du et al. (2018) Complex network theory and 
Granger Causality (GC) 

Domestic China Large airports are generally affected by upstream airports but impact fewer downstream airports 

Pastorino and Zanin 
(2021) 

Complex network theory, GC, 
and clustering 

Europe Delay propagation network dominated by triangular routes and large airports 

Zanin (2021) GC and clustering Europe Causality clustering approach to group airports based on similar roles in the network rather than 
based on community structure 

Sismanidou et al. 
(2022) 

Neural Network (NN) Domestic US The presence of a unique dominant carrier in an airport translates into a stronger correlation 
between arrival and carrier delays with respect to airports where the market share is more evenly 
distributed  

Appendix B. Airports considered in the study 

In Fig. B.1 we show all the airports that were part of the original dataset, excluding Antonio Won Pat airport (GUM) in Guam and Pago Pago 
International airport (PPG) in American Samoa. 
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Fig. B.1. US airports included in the analysis (excluding GUM and PPG).  

Appendix C. Delay propagation network in the baseline case 

The baseline event TE6 represents a week without extreme meteorological events. The DPNs for the four airlines in TE6 are presented in Fig. C.1.

Fig. C.1. DPNs for TE6. Node size is proportional to absolute value of delay.  

Although we may expect some relationship between number of flights and delay, large absorbers or generators are not necessarily hubs or bases of 
the airline. Examining the size (in terms of number of nodes and edges) of the DPNs of the four airlines, we observe that the network of the low-cost 
WN is larger and sparser than the other three, as there are more edges and nodes than in the other three networks. As WN operates a point-to-point 
basis, it shows more complex delay propagation patterns than companies operating hub-and-spoke route networks. 
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The Sankey diagrams of (TE6, DL) and (TE6, WN) point out the differences between the two DPNs. The one of DL is hierarchical, with most 
intermediary traffic going through JFK (mainly an absorber), BOS (mainly a generator), and ATL which absorbs and generates delays. Meanwhile, the 
DPN of WN is not only larger, but less hierarchical, as the flow of delays is propagated through more intermediary airports.

Fig. C.2. Sankey diagrams of delay flows for some DPNs related to TE6.  

We finish the analysis of the baseline event TE6 presenting in Table C.1 the top-5 generators, absorbers, and intermediary nodes of the DPN of each 
airline.  

Table C.1 
Top-5 delay generators (G), absorbers (A), and intermediary (I) airports for TE6. In bold, main airports of airline.  

AA DL UA WN 

G A I G A I G A I G A I 

MIA DFW CLT BOS JFK ATL BOS EWR IAH HOU BWI DAL 
BOS PHL ORD MCO ATL MSP TPA ORD EWR LAX SFO PHX 
ORD DCA RDU FLL LGA CVG FLL BDL BNA ATL MCI STL 
IAH MCO SJU MSY MEM TPA PBI PHX LAS DAL PHX LAX 
SNA BWI PHX SAN CMH DTW MCO LAS ORD BOS MSY TUL  

With the exceptions of ORD in AA and DAL in WN, hubs or bases tend to be either absorbers or intermediary airports in the DPN. Main airports can 
act as absorbers of delay propagation because airlines tend to concentrate more resources in those airports, so they have more operational flexibility to 
smooth delays than secondary airports. If airlines cannot mitigate delay propagation at main airports, those can also act as intermediary nodes in the 
DPN. This intermediary role is reinforced by the reciprocal flows observed in the Sankey diagrams. Finally, we observe that most of the generators, low 
rank absorbers, and intermediary nodes do not belong to the top-5 list of airports of each airline. This shows that generation of delays can also be 
triggered at peripheral nodes of the airport network. 
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Appendix D. Airport specifications 

In Table D.1 we report the specifications of the main airports cited in the paper. Airports are sorted by descending order of enplanements in 2017. 
The term enplanements refers to the total number of revenue passengers boarding an aircraft in a specific airport, and includes both origin and transfer 
passengers.  

Table D.1 
Specifications of the main airports cited in the paper. Adapted from https://www.faa.gov/airports/planning_capacity/passenger_allcargo_stats/passenger/previous_ye 
ars.  

Airport name IATA Code Major cities served State Enplanements 

Hartsfield-Jackson International Airport ATL Atlanta GA 50,251,964 
Los Angeles International Airport LAX Los Angeles CA 41,232,432 
O'Hare International Airport ORD Chicago IL 38,593,028 
Dallas/Fort Worth International Airport DFW Dallas, Ft. Worth TX 31,816,933 
Denver International Airport DEN Denver CO 29,809,097 
John F. Kennedy International Airport JFK New York City NY 29,533,154 
San Francisco International Airport SFO San Francisco CA 26,900,048 
Harry Reid International Airport LAS Las Vegas NV 23,364,393 
Seattle-Tacoma International Airport SEA Seattle WA 22,639,124 
Charlotte Douglas International Airport CLT Charlotte NC 22,011,251 
Newark Liberty International Airport EWR Newark, New York City NJ 21,571,198 
Orlando International Airport MCO Orlando FL 21,565,448 
Phoenix Sky Harbor International Airport PHX Phoenix AZ 21,185,458 
Miami International Airport MIA Miami FL 20,709,225 
George Bush Intercontinental Airport IAH Houston TX 19,603,731 
Logan International Airport BOS Boston MA 18,759,742 
Minneapolis-Saint Paul International Airport MSP Minneapolis & Saint Paul MN 18,409,704 
Detroit Metropolitan Airport DTW Detroit MI 17,036,092 
Fort Lauderdale-Hollywood International Airport FLL Fort Lauderdale FL 15,817,043 
LaGuardia Airport LGA New York City NY 14,614,802 
Philadelphia International Airport PHL Philadelphia PA 14,271,243 
Baltimore/Washington International Airport BWI Baltimore MD 12,976,554 
Salt Lake City International Airport SLC Salt Lake City UT 11,615,954 
Washington Dulles International Airport IAD Washington, D.C. VA 11,506,310 
San Diego International Airport SAN San Diego CA 11,139,933 
Midway International Airport MDW Chicago IL 10,912,074 
Tampa International Airport TPA Tampa FL 9,548,580 
Dallas Love Field DAL Dallas TX 7,593,361 
St Louis Lambert International STL St. Louis MO 7,194,745 
Nashville International BNA Nashville TN 6,902,771 
William P Hobby HOU Houston TX 6,538,976 
Metropolitan Oakland International OAK Oakland CA 6,413,842 
Norman Y Mineta San Jose International SJC San Jose CA 6,130,878 
Louis Armstrong New Orleans International MSY New Orleans LA 6,022,318 
Raleigh-Durham International RDU Raleigh, Durham NC 5,692,659 
John Wayne Airport-Orange County SNA Anaheim, Irvine CA 5,082,716 
Cleveland-Hopkins International CLE Cleveland OH 4,446,555 
San Antonio International SAT San Antonio TX 4,382,127 
Southwest Florida International RSW Fort Myers FL 4,364,224 
Luis Munoz Marin International SJU San Juan PR 4,203,766 
John Glenn Columbus International CMH Columbus OH 3,689,570 
Cincinnati/Northern Kentucky CVG Greater Cincinnati OH 3,269,979 
Bradley International BDL Windsor Locks CT 3,164,647 
Palm Beach International PBI West Palm Beach Fl 3,110,450 
Memphis International MEM Memphis TN 2,102,739 
Tulsa International TUL Tulsa OK 1,374,424 
Dane County Regional-Truax Field MSN Madison WI 943,363 
Asheville Regional AVL Asheville NC 478,061  
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