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Abstract

Olfactory learning in Drosophila larvae exemplifies efficient neural processing in a small-

scale network with minimal power consumption. This system enables larvae to anticipate

important outcomes based on new and familiar odor stimuli, a process crucial for survival

and adaptation. Central to this learning mechanism is the olfactory pathway model, which

embodies the principles of synaptic plasticity and associative learning through prediction

error coding mediated by specific neuromodulating neurons in the mushroom body,

like dopaminergic neurons. There is a pressing need to develop novel computational

frameworks that capture the spatio-temporal processes while remaining compatible with

the constraints of small-scale neural networks. These frameworks should draw inspiration

from the biophysical properties of neurons within the olfactory pathway model, enabling

accurate emulation of neural dynamics and efficient learning processes using spiking

neural networks. This thesis proposes a framework based on a phenomenological

conductance-based leaky integrate-and-fire (COBALIF) neuron model, inspired by the

olfactory pathway model of Drosophila larvae. By first prototyping the spiking neural

network in Intel’s Lava Python-based framework, we validated the design on a neuron

and system level for a neuromorphic hardware implementation. This was the foundation

of a programmable, neuromorphic FPGA architecture capable of adaptive optimization,

employed on a Zynq 7000 SoC FPGA. By implementing this architecture in a single-

precision floating-point format, we model the real-time neural dynamics of the COBALIF

neuron in one-tenth of a millisecond precision. Moreover, our FPGA implementation

serves as a feasible prototype for deploying such biologically inspired neurons and

their spatio-temporal dependencies in digital design, paving the way for scaling up to

small-scale networks.
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1.1 Schematic drawing of the processing pipeline of the Drosophila’s

olfaction model. At the input of the olfactory pathway, the odor’s chemi-

cal information is transduced and encoded into electrical signals. In this

example, the inputs are scents from flowers and litter. The processing of

the pathway aims to generate outputs to control the behavioral and motor

responses, which happens at the higher-processing center, i.e. the mush-

room body of the insect brain. In the mushroom body, the dense, sensory

information is sparsely encoded. The transformed, sensory information

then proceeds in the mushroom body where the processing and learning

of association happens. Finally, the mushroom body generates behavioral

outputs - e.g. to avoid or to approach - depending on the learned response

to a specific odor. This pathway model is the target of this thesis for neu-

romorphic hardware implementation. The cartoon of the Drosophila head

is extracted from [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Conceptual drawing of the chemo-sensory encoding inside the mush-

room body of the Drosophila. Each dot represents a neuron that is linked

to other neurons. From left to right, the mushroom body receives a dense

odor input, which is then transformed into a sparse code. This sparse code

takes a smaller area in its neural space, which is beneficial in lowering

the brain’s power consumption while processing information. In a sparse,

olfactory code, the number of connections between neurons is significantly

reduced. At the output of the mushroom body, a behavioral output is

generated from a sparsely-encoded, sensory cue, and other parameters,

which are not included in this drawing. . . . . . . . . . . . . . . . . . . . . 3

1.3 Difference between a spiking and an artificial neuron. A spiking neuron

receives discrete-valued spike trains (s1, s2, ...sn) from preceding neurons

at the synapses. The neuron then performs calculations using the spiking

input to update its neural membrane potential (Vneuron). If the membrane

potential exceeds a certain threshold value θ, the neuron will fire an action

potential, encoded as a spike at its output (sout(t)) which is transmitted to

other neurons. In this figure, the spiking neuron outputs a spike at time t1
upon exceeding the threshold. The artificial neuron, on the other hand, is

a simplified neural model that attempts to conceptually mimic a biological

neuron in its simplest form. The neuron multiplies the received inputs

(x1, x2, ...xn) with their respective weights (w1, w2, ...wn) and consequently

sums them. This result is passed on to an activation function (f ) which
determines the output value of the neuron (y). . . . . . . . . . . . . . . . . 4
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1.4 Overview of proposed designs of olfactory pathway models from

mammals and insects. The solutions are classified in their level of relative

bio-plausibility and the number of neurons. The designs from the figure

proposed solutions to mimic the computational principles and the neural

mechanisms of the olfactory pathway in an odor detection application with

offline training [42, 31, 39, 43, 41, 36, 44, 33, 29, 32]. This overview is

non-exhaustive and only includes models using SNNs. . . . . . . . . . . 6

2.1 Conceptual drawing of a pre-synaptic neuron i and a post-synaptic

neuron j. The dendrites, the soma, and the axon of the pre-synaptic

neuron i are indicated in the figure. The action potential from pre-synaptic

neuron i propagates to its axon terminal, where neurotransmitters are

released into the synapse. The neurotransmitters bind onto the cell mem-

brane of the dendrites of the post-synaptic neuron j. In other words, this

is how the pre-synaptic neuron transmits the action potential to the post-

synaptic neuron [53]. The illustration was made with BioRender. . . . . . 9

2.2 Action potential in a post-synaptic neuron A pre-synaptic stimulus

releases neurotransmitters to the synapse, which causes a depolarization

in the post-synaptic neuron. The depolarization accumulates for every

incoming spike until the membrane potential of the post-synaptic neuron

crosses its threshold voltage θ. Then, the post-synaptic neuron elicits a

spike, where its membrane potential rapidly rises and falls with a total

duration of about 1 to 2 ms [53]. The neuron quickly depolarizes due

to a large ionic inflow from the pre-synaptic neurotransmitters into the

channels of the post-synaptic neuron. Then, the neuron quickly repolarizes,

returning to its resting potential Vr. Due to a delay in closing the (voltage-

dependent potassium) channels of the post-synaptic neuron, the neuron

hyperpolarizes. This is internally resolved whereby the post-synaptic

neuron eventually returns to its resting state. The figure also shows a

refractory period during which the neuron cannot evoke another action

potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 SFA mechanism We assume that in both cases, the same inputs spikes

are given. (A) A neuron without SFA exhibits regular spiking to a sustained

spiking stimulus. (B) A neuron with SFA that has the same input, will decay

its spiking rate for a sustained stimulus. Its decay in spiking rate will decay

to a steady-state value, τeff. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Spiking neuron with two synapses The neuron has two dendrites, linked

to a pre-synaptic excitatory and inhibitory neuron. Note that in this case,

the contribution of the dendrite is neglected, analog to simply being an

ideal wire with zero resistance. The spike trains from both pre-synaptic

neurons (se(t) and si(t)) are sent to the soma. The soma computes the

membrane potential using the incoming spike trains and currents (Ie(t)
and Ii(t)). It generates a spike train sout(t) upon exceeding the threshold. 13

2.5 Equivalent circuit of a LIF neuron with conductance-based synapses

(COBALIF neuron) point-conductance model containing synaptic conduc-

tances. This includes the time-varying synaptic conductances. Cm is the

membrane capacitance. I(t) is the total current. . . . . . . . . . . . . . . 15
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2.6 Generation of a spike. Each spike that arrives at the neuron causes a

short current pulse of which the voltage decays exponentially. In this case,

only the excitatory current is included, which follows from the multiplication

between of the excitatory conductance and the potential difference. The

other elements from Equation 2.6 are excluded. The membrane potential

follows from integrating Equation 2.6. Only one spike is generated by the

neuron, which happens when the membrane potential V (t) exceeds the
threshold voltage Vth. The neuron then is in its refractory state for a given

refractory period τr and the membrane potential is at its resting potential Vt. 16

2.7 Illustration of the anatomy of an adult fly brain This figure illustrates a

female adult fly brain. The antennal lobe (AL) - in blue - and the mushroom

body (MB) - in orange - are highlighted and labeled, for one hemisphere.

The illustration is inspired by Aso et al [81]. . . . . . . . . . . . . . . . . . 17

2.8 Drosophila larva connectome and the olfactory pathway model From

left to right, the figure shows the olfactory pathway model starting from the

antenna to the mushroom body. In the antenna, 21 ORNs each receive a

unique train of stimuli from sensing the odors. The ORNs then project to

their cognate LNs and PNs within a glomerulus. In the antennal lobe, 21

pairs of LNs and PNs innervate with the ORNs where lateral inhibition is

employed by the LNs. This builds pattern separation. Then, the projection

neurons randomly project onto a subset of KCs. The feedback inhibition

between the APL and the KCs through all-to-one excitation and one-to-all

inhibition. The figure shows the readout and modulatory component of

the mushroom body, indicated by the MBONs and the DANs, respectively.

The MBONs send out signals which either evoke a Valence A (negative) or

Valence B (positive) signal. The connections are returned to themodulatory

DANs, which facilitate reward-punishment modulation. . . . . . . . . . . 19

2.9 MB compartments Two MB compartments are shown in the figure, which

is linked to either a positive valence (approach) or a negative valence

(avoidance). Each MB compartment consists of an opposite-valued DAN

which mediates in appetitive or aversive learning. . . . . . . . . . . . . . 22

2.10 Prediction error coding using dopamine Dopamine is used to update

a prediction for a given stimulus. When the same stimulus is presented,

the model will use the same prediction. If the model receives a reward

for the anticipated prediction, the prediction remains unchanged and the

prediction is zero. If the reward is never received, then a prediction error

is generated. Dopamine will be released as a result of a prediction error.

The figure is inspired by Schultz et al. [111]. . . . . . . . . . . . . . . . . 23
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2.11 Von-Neumann architecture and (neuromorphic) non-Von-Neumann,

distributed architecture (A) A typical Von Neumann architecture with

the computing blocks separated from the memory [113] (B) A neuromor-

phic hardware architecture with neural cores consisting of one neuron,

synapses, and a communication block [113] (C) An example of a neuromor-

phic, analog architecture for a neuron. It shows one DYNAPs computing

node or neuron that is connected to four DPI circuits emulating synapses.

The neuron checks if the membrane potential has been exceeded. Then,

this information is encoded in an AER package in the AER interface, after

passing through a handshaking (HS) block [115]. . . . . . . . . . . . . . . 25

3.1 Synapse connectivity graph between PNs and KCs governed by the

connectivity matrix CM×N . The projection neurons (N = 21) are the

pre-synaptic neurons that are randomly connected to 2 to 7 KCs (M = 72). 32
3.2 Xilinx Floating-Point operator (V7.1) core schematic symbol [128].

The Floating-Point operator is divided into two input clusters (S_AXIS_A
and S_AXIS_B) and one output cluster (M_AXIS_RESULT), and follows the

AXI4-Stream porting protocol. The directions of the arrows indicate

whether the ports are input or output ports. Each cluster contains 32-bit

operand input (using single-precision floating-point format), which are

denoted by s_axis_a_tdata and s_axis_b_tdata for operand A and B, re-

spectively. The output operand is given by m_axis_result_tdata (32 bits).

All control signals are denoted by <control signal> and are enabled

with an active high. There are input control signals (s_axis_a_tvalid,
s_axis_b_tvalid, m_axis_result_tready) and output control signals

(s_axis_b_tready, s_axis_a_tready, m_axis_result_tvalid). All sig-

nals are synchronous to the aclk input, which is the system clock (clk) in
our design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Architecture of a single digital neuron unit (DGU). This DGU consists

of three main modules, which are the Membrane Update and Storage,

Conductance Update and Storage, and the Refractory Timer. Controllers

- not depicted in the figure - generate the control signals. The signals

adhere to a color-coding convention to enhance clarity. . . . . . . . . . . 36

3.4 Arithmetic operations in the DGU. The left-hand side of the diagram il-

lustrates three modules within the Membrane Update and Storage module:

the ISS Module, DV Module, and V Module, responsible for computing

Iss[t], dv[t], and V [t + dt], respectively. The DV Module and V Module

are governed by the EVALUATE signal. The V Module is controlled by

the COMPUTE signal. On the right-hand side, the Conductance Update

and Storage module is depicted, responsible for computing excitatory

(ge[t+ dt]), inhibitory (gi[t+ dt]), and adaptation (gIa[t+ dt]) conductances
for the subsequent timestep [t + dt]. This module necessitates an addi-
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the augmentation with SFA in the SFA module. . . . . . . . . . . . . . . 38
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corresponding result become available only when all control signals are ac-

tive high. This synchronization occurs in the third clock cycle (blue-colored

clock cycle), wherein the summation of A0 and B0 is presented following a

brief delay. Subsequently, as m_axis_result_tready transitions to a low
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Introduction

Studies on the insect nervous system have significantly contributed to our understanding

of the insect’s brain, physiology, and neurobiology [1]. The insect brain can process,

learn, and adapt to sensory input with a minimal power expenditure thanks to a small

brain. For example, a honey bee’s brain has a volume of less than 1 mm3 consisting of

about one million neurons with a brain power consumption of approximately 10 µW [2, 3].

The combination of low power consumption, adaptability, and online learning makes the

olfactory pathway model of the Drosophila particularly appealing to emerging neuromor-

phic computing and engineering. Conventional computing systems are subjected to the

end of Moore’s Law and Dennard scaling, which calls for a shift in the research landscape.

Neuromorphic computing explores new technologies to support the increasing demand

for computing performance. In the late 1980s, the term neuromorphic computing was

coined by the American scientist and engineer, Carver Mead [4, 5]. He showed how the

bio-physical processes can be emulated with silicon technology [4, 5, 6]. The advent

of neuromorphic computing systems contributed to the development of unconventional

computing systems, employing principles observed in animal nervous systems [7, 8, 9].

Edge computing has resulted in many applications in medicine, smart sensing, and

aerospace [10]. These applications are governed by power and size restrictions and

ideally have a low memory footprint for potentially highly exhaustive and variable input

data [10]. This is where we distinguish offline cloud-based deep learning from ”learning

at the edge”. In this case, the computations of data occur close to where the data is

collected, which is ruled by its power consumption that is not prioritized in the design

space of deep learning. Similar constraints are found in the neural systems of insects.

Despite their low neural footprint, they have excellent learning abilities and can perform

complex, multi-sensory tasks [11].

Olfactory pathway model of the Drosophila

Neurons are the principal units for performing computations and establishing commu-

nication of neural information in the brains and nervous systems of (in)vertebrates.

Specifically, the brain of the Drosophila (Melanogaster) - commonly referred to as the fruit

fly - is a well-studied model. Their brain is 331,565× smaller than the human’s brain [13,

14]. Many studies have been conducted to understand the fascinating relation between

complex, sensory processing and the reduced neural network sizes of the insect brain.

The small, olfactory pathway model of the Drosophila has received much attention due

to its ability to perform chemo-sensory processing to anticipate and learn behavioral

1
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Behavioral
Output

Approach

Avoid

Odor
Input

Mushroom Body

Target of this work for
neuromorphic hardware

implementation

Drosophila Insect Brain

Figure 1.1: Schematic drawing of the processing pipeline of the Drosophila’s olfaction

model. At the input of the olfactory pathway, the odor’s chemical information is transduced

and encoded into electrical signals. In this example, the inputs are scents from flowers and

litter. The processing of the pathway aims to generate outputs to control the behavioral and

motor responses, which happens at the higher-processing center, i.e. the mushroom body of the

insect brain. In the mushroom body, the dense, sensory information is sparsely encoded. The

transformed, sensory information then proceeds in the mushroom body where the processing and

learning of association happens. Finally, the mushroom body generates behavioral outputs - e.g.

to avoid or to approach - depending on the learned response to a specific odor. This pathway

model is the target of this thesis for neuromorphic hardware implementation. The cartoon of the

Drosophila head is extracted from [12].

outputs, e.g. to approach or avoid an odor source based on its learned response. Its

olfactory anatomy has been verified through in-vivo experiments [15, 16], which revealed

key biological principles for olfactory learning [12]. The olfactory processing center is

located in the mushroom body inside the insect brain, which is indicated in Figure 1.1.

The mushroom body enables the construction of biological, associative memory for odors

and olfactory learning. Learned and memorized experiences are used to anticipate the

correct behavioral response to familiar environments and new contexts [17]. Figure 1.1

shows a top-level illustration of how the sense of smell is processed in the Drosophila’s

olfactory pathway. The olfactory input to the olfactory pathway is detected and received

by the antennas of the insect. The input information consists of chemical cues, which

is transduced to electrical signals before entering the mushroom body. Then, in the

mushroom body, the dense, odorant information is transformed into a sparse code [18].

This sparseness is employed in space (spatial) and in time (temporal), resulting in a

spatio-temporal transformation. The odorant information in the mushroom body is repre-

sented by a small subset of all neurons (population or spatial sparseness) [19]. In other

words, the overall response reduces for at least ten times for a given odor spatially [20,

21]. Furthermore, each activated neuron elicits only few action potentials, accounting for

temporal sparseness [19]. The background firing rate in the mushroom body is very low

with a mean firing rate of maximally 0.4 Hz across the entire population [22, 18]. During

odor presentations, this rate increases to 5 and 20 Hz [23].
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In the mushroom body, the sparse code takes a spatially and temporally sparse spatio-

temporal format that is proven to be crucial in the efficient classification of odors on

a tiny neural area [19, 24, 25], supporting efficient encoding and dynamic processing

of olfactory data on its low neural footprint [26, 27, 28]. The concept of this olfactory

encoding is depicted in Figure 1.2. In Figure 1.2, at the front-end of the mushroom body,

the neurons form many links with other neurons, representing the dense representation

of the odor input. Lastly, at the end of the pathway, the sparse sensory codes are used

to generate behavioral outputs based on learned associations, e.g. to avoid or approach

an odor source.

Dense Olfactory
Encoding

Odor
Input

Behavioral
Output

Sparse Olfactory
Encoding

Mushroom body

Figure 1.2: Conceptual drawing of the chemo-sensory encoding inside the mushroom

body of the Drosophila. Each dot represents a neuron that is linked to other neurons. From

left to right, the mushroom body receives a dense odor input, which is then transformed into

a sparse code. This sparse code takes a smaller area in its neural space, which is beneficial

in lowering the brain’s power consumption while processing information. In a sparse, olfactory

code, the number of connections between neurons is significantly reduced. At the output of the

mushroom body, a behavioral output is generated from a sparsely-encoded, sensory cue, and

other parameters, which are not included in this drawing.

The exploration of these encoding schemes and chemo-sensory capabilities of the

Drosophila has been extensive. Considerable advancements have been made in iden-

tifying fundamental computational principles by modeling olfactory pathways inspired

by insects [29, 25, 30]. Various studies have used the model in Figure 1.1 to simulate

the olfactory pathway in software [31, 22, 32]. These investigations substantiated and

illustrated critical components, such as adaptability and plasticity features in learning.

Diamond et al. proposed a bio-inspired classifier within a framework incorporating real-

time input sensor data, leveraging sparseness, inhibition, and plasticity as computational

primitives. Their design focuses on GPU-based spiking simulations of the Drosophila’s

olfactory pathway [31, 33]. Rapp et al. proposed a bio-inspired model to explore the

computational power of a single spiking neuron for numerical cognition tasks with an

emphasis on pre-training the neuron using gradient descent [25]. Tuning of this neuron

required a large parameter space of approximately 10,0000 parameters. Recently, a

more comprehensive, computational model of the Drosophila larva has been successfully

created in a Python-based simulator for neural networks (Brian 2 [34]), which corrobo-

rated homeostatic control in insect-olfactory learning [29, 35]. It is related to the internal,

self-regulation of stabilizing the states of cells and neurons in dynamic environments.

Although significant advancements have been achieved via software simulations, explo-

ration of hardware implementations for the Drosophila’s olfactory pathway model remains

limited.
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Spiking neural networks

Spiking neural networks (SNNs) aim at emulating the way biological neurons exchange

sensory information using spikes. Figure 1.3a shows the mechanism of a single spiking

neuron, which is different from an artificial neuron used in artificial neural networks

(ANNs). In the case of an artificial neuron, as shown in Figure 1.3b, the neuron receives

real-valued inputs (x1, x2, ...xn) and performs a multiplication with respective weights

(w1, w2, ...wn). The weighted sum passes through an activation function f(). This function
determines the final output value of the neuron, denoted as y in Figure 1.3b. The spiking

neuron utilizes binary signals to communicate with other neurons. The spiking neuron

receives spikes (s1, s2, ...sn) and accumulates the spiking information over time t. It then
updates its membrane potential (denoted as Vneuron in Figure 1.3a) using information from

incoming spikes and only outputs a spike sout upon exceeding a threshold value θ, after
which it resets its membrane potential. This mechanism models the basic principle of a

biological neuron, referred to as the integrating and firing mechanism.

Spiking Neural Unit

(a) A spiking neuron

Artificial Neural Unit

(b) An artificial neuron

Figure 1.3: Difference between a spiking and an artificial neuron. A spiking neuron receives

discrete-valued spike trains (s1, s2, ...sn) from preceding neurons at the synapses. The neuron then

performs calculations using the spiking input to update its neural membrane potential (Vneuron).

If the membrane potential exceeds a certain threshold value θ, the neuron will fire an action

potential, encoded as a spike at its output (sout(t)) which is transmitted to other neurons. In this

figure, the spiking neuron outputs a spike at time t1 upon exceeding the threshold. The artificial

neuron, on the other hand, is a simplified neural model that attempts to conceptually mimic a

biological neuron in its simplest form. The neuron multiplies the received inputs (x1, x2, ...xn) with
their respective weights (w1, w2, ...wn) and consequently sums them. This result is passed on to

an activation function (f ) which determines the output value of the neuron (y).

Neuromorphic implementations of the Drosophila olfactory pathway

The first silicon-based, neuromorphic olfaction chip successfully used an SNN [36]. This

made an advancement since the first design of an analog electronic nose without an

SNN, introduced by Persaud and Dodd in 1982 [37]. The last decade has witnessed

a rise in attempts to simulate the olfactory pathway of the Drosophila, but has been

limited to odor detection and classification tasks using (supervised) offline training. For
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example, a Drosophila-inspired, supervised odor classification model was built on the

mixed-signal, Spikey chip and proposed a proof-of-concept for its usage in generic

multivariate classification, e.g. using the Modified National Institute of Standards and

Technology (MNIST) database [33]. However, this model is limited to offline training.

Little work has been dedicated to the exploration of the computational and processing

capabilities of the low-footprint Drosophila olfactory pathway applied to learning appli-

cations at the edge. Systems in edge processing applications require online learning

capabilities on highly variable and contextual data. The computing platforms in the

majority of olfactory-inspired studies are software simulators [25, 30, 29, 35]. Even

though software provides the convenient flexibility to build and simulate models, hard-

ware - and specifically silicon-based solutions - can closely emulate the actual electrical

behavior of a biological model [4]. However, analog and mixed-circuit designs require a

complex and relatively long design time, simultaneously subjected to process, voltage,

and temperature (PVT) variations, devices’ mismatches, and low programmability [38,

10]. In the realm of neuromorphic computing and insect-inspired olfactory emulation,

several digital hardware designs have been proposed, for example, using Intel’s Loihi

neuromorphic chip [39, 40], and FPGA-based platforms [41, 10]. Digital circuit designs

are advantageous to accelerate benchmarking and prototyping of neuromorphic comput-

ing hardware [10].

Figure 1.4 presents an overview of existing hardware and software designs related to ol-

factory pathway modeling ranging from a top-down approach for exploring computational

primitives to a bottom-up perspective of mimicking the human nose [10]. The figure

shows the relative position of the bio-plausibility level of the proposed solutions against

the number of neurons in the olfactory network.

Within the scope of this thesis, the main target is to evaluate bio-plausibility for small

neural networks. The bio-plausibility level of a proposed model can be ranked using the

following four criteria:

1. The model uses a spiking neural network, and utilizes spikes for the inter-neural

communication [4, 45].

2. The model implements a three-layered network identical to the anatomical pathway

of a Drosophila [46, 47, 19].

3. The model attempts to reproduce and implement computing rules for learning that

experimental evidence infers [48, 49].

4. The chosen neuron model exhibits features (synaptic plasticity, inhibition, spike

frequency adaptation and neuromodulation 1) close to the biological neuron [50].

The model of a larval Drosophila has the highest attainable score in biological plausibility

[15, 16] for a small network. Although, there are many other smaller organisms with even

a lower neural count, we focus on the Drosophila larva. For the sake of completeness,

Figure 1.4 also contains designs inspired by the mammalian, olfactory bulb. This is

also a well-studied model, but its neuron count is at least 100 times larger than for the

Drosophila, making them unsuitable for small-scale networks.

1These concepts will be further elaborated in Chapter 2.
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Network Size

Bio-Plausibility

Legend

Online learning and
Neurogenesis on Intel Loihi chip
Imam et al., 2020 [39]; Borthakur

et al., 2019 [43]

GPU-based adult
Drosophila olfactory model
Diamond et al., 2016 [31]

First silicon-based E-nose on
Austria 0.6μm 

Koickal et al., 2006 [36] 

Olfactory Bulb
Glomerular-Layeron chip 

Imam et al., 2012 [42] 

Supervised odor
classifcation on
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 Schmuker et al.,

2014 [33] 

Olfactory-bulb
FPGA-based

implementation
 Guerrero-Rivera
et al., 2007 [41]

This work

VLSI design of
Drosophila's
antennal lobe
Beyeler et al.,

2010 [44]

Drosophila larva
olfaction with
dopaminergic

neurons in Brian2
  Jürgensen  et al.,

2022 [29]

Drosophila larva
olfaction on

DYNAPs chip
Jürgensen  et al., 

2021 [32]

Drosophila-inspired,
Software design

Drosophila-inspired,
Hardware design

Mammalian-inspired,
Hardware design

A real
Drosophila

larva

Score: 1 Score: 4

Future Work:
Towards learning

Figure 1.4: Overview of proposed designs of olfactory pathway models from mammals

and insects. The solutions are classified in their level of relative bio-plausibility and the number

of neurons. The designs from the figure proposed solutions to mimic the computational principles

and the neural mechanisms of the olfactory pathway in an odor detection application with offline

training [42, 31, 39, 43, 41, 36, 44, 33, 29, 32]. This overview is non-exhaustive and only includes

models using SNNs.

Research gap

Although several studies have investigated how olfactory pathway models can be remade

with SNNs on hardware platforms, only few designs have focused on creating a bio-

plausible hardware implementation using the key features of prototyping a digital design,

such as modularity, adaptability and programmability [41]. Therefore, this thesis proposes

a design for a neuromorphic, FPGA-based hardware emulator of the larval Drosophila

olfactory pathway model as seen in Figure 1.1. We aim at scoring high in the bio-

plausibility level by satisfying our criteria list. We also propose a modular, neuromorphic

framework taking inspiration from existing, successful emulations of this pathway model,

used in odor detection. Despite the large number of studies investigating bio-plausible

emulations of chemical detection for artificial and natural odors, most models overlook

the efficacy of the olfactory neural design in dynamic environments. This thesis, however,

addresses this issue by introducing a strategy for bio-plausible emulation of the olfactory

pathway model of the Drosophila larva. To put it briefly, the research scope of the thesis

can be formulated in the following main research question:
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How can the olfactory pathway model of a Drosophila Melanogaster larva

support context-dependent processing at the edge using neuromorphic

hardware?

Main Research Question

The main research question is divided into four sub-questions:

1. Which biologically inspired neuron model could be used to closely emulate the

spatio-temporal dependencies of neurons in the Drosophila olfactory pathway

model?

2. What type of digital circuitry is able to simulate the neurons in the Drosophila

olfactory pathway model while maintaining accuracy?

3. How do time-multiplexed, hardware attributes impact the granularity of the olfactory

pathway model?

4. How can bio-plausibility be maintained at a footprint that is acceptable for edge

computing applications?

The scope of this thesis addresses these sub-questions, at the exception of the latter.

The fourth sub-question requires a complementary study, which is left for future work.

Ultimately, the contribution of the thesis is three-fold:

1. We propose a bio-plausible SNN inspired by the larval Drosophila olfactory pathway,

which relies on time-stepped simulation using the Lava framework toward solving

context-dependent tasks.

2. We present an FPGA-based hardware design of a bio-plausible neuron, relying on

a digital solver.

3. We introduce a strategy to utilize our modular design for prototyping olfactory-

inspired neurons on hardware.

Thesis outline

The rest of the thesis is organized as follows. Chapter 2 provides the necessary back-

ground to build a fundamental understanding of topics related to the thesis and the

research. Firstly, this chapter explains the relevant terminology in neuroscience, includ-

ing the anatomy of the olfactory pathway model and neuronal principles. Chapter 3

presents the proposed solution to the research question in two stages: (i) software design

and (ii) hardware design. Then, in Chapter 4, the results of the design is presented and

evaluated. Lastly, in Chapter 5, we present the conclusions of this thesis, summarizing

its contributions and elaborating on future work.
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Background

This chapter provides the context underlying the thesis research to establish an under-

standing of the proposed solution. Section 2.1 describes the principles of biological

neurons, introducing the anatomy and fundamental concepts. Section 2.3 introduces the

olfactory pathway model of the Drosophila, which is divided into (I) anatomy, (II) sensory

pre-processing, and (II) olfactory learning. Then, Section 2.2 elaborates upon spiking

neuron models that are relevant to the modeling of the olfactory pathway model. Finally,

Section 2.4 outlines proposed designs inspired by the olfactory pathway model of the

Drosophila larva to understand the state-of-the-art.

2.1. Principles of biological neurons
This section introduces the principles of biological neurons, starting with the anatomy

of the neuron. Then, the working principle of the neuron is explained. Lastly, cellular

mechanisms such as synaptic plasticity and spike frequency adaptation are introduced

to build a comprehensive understanding of the neuron on both a cellular and mechanistic

level.

2.1.1. Anatomy of the neuron
The biological neuron is the fundamental building block of any sensory system. Neurons

use biochemical reactions, allowing for signal processing and transmission. There are

three main neuron types: (1) sensory/input neurons, (2) motor/output neurons, and

(3) interneurons. Firstly, the sensory neurons are activated by sensory stimuli, e.g.,

odors. For example, the input neurons involved in olfaction are called olfactory receptor

neurons and are located in the antennae of the fruit fly. Secondly, output neurons are

responsible for transmitting signals out of the brain, for example, to exert movement.

Thirdly, interneurons establish communication between the input neurons and output

neurons. Typically, input neurons are not near output neurons, and therefore these

interneurons facilitate relays of signals to reach sensory or motor parts [51, 52].

Neurons transmit sensory information throughout the brain and nervous systems of

organisms. A biological neuron consists of three main parts: dendrites, the soma and

the axon [53, 54]. Figure 2.1 shows what a typical neuron looks like and highlights these

compounds of the neuron.

• The soma computes the state of the neuron expressed as the membrane potential.

A neuron only has one soma, the central processing unit, processing the receiving

8
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signals. The soma generates a pulse as an output signal, i.e. an action potential or

”spike” if its membrane potential exceeds a certain threshold (commonly denoted

as θ). The action potential is an impulse where the membrane potential rapidly

rises and falls, and causes a change in electric polarity across the (membrane of)

the axon.

• Dendrites collect the signals from other neurons and send them to the soma of the

neuron. Dendrites have (dendritic) branches with tiny protrusions, which we refer

to as ”claws”. This is visible in Figure 2.1.

• The axon is in charge of transmitting this output signal from the soma to other

neurons.

Dendrites

Soma

Synapse

Axon

Pre-synaptic neuron i Post-synaptic neuron j
Action potentials

Figure 2.1: Conceptual drawing of a pre-synaptic neuron i and a post-synaptic neuron j.
The dendrites, the soma, and the axon of the pre-synaptic neuron i are indicated in the figure.

The action potential from pre-synaptic neuron i propagates to its axon terminal, where neuro-

transmitters are released into the synapse. The neurotransmitters bind onto the cell membrane

of the dendrites of the post-synaptic neuron j. In other words, this is how the pre-synaptic neuron

transmits the action potential to the post-synaptic neuron [53]. The illustration was made with

BioRender.

Communication between neurons is established through synapses (indicated in

Figure 2.1), which are small gaps between the axon of the neuron and a dendritic branch

of a succeeding neuron. Typically, a single neuron in a vertebrate cortex arborizes with

more than 104 post-synaptic neurons [54]. The human brain contains approximately 100

billion neurons with 100 trillion synapses [55].
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2.1.2. Membrane potential dynamics
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Figure 2.2: Action potential in a post-synaptic neuron A pre-synaptic stimulus releases

neurotransmitters to the synapse, which causes a depolarization in the post-synaptic neuron. The

depolarization accumulates for every incoming spike until the membrane potential of the post-

synaptic neuron crosses its threshold voltage θ. Then, the post-synaptic neuron elicits a spike,

where its membrane potential rapidly rises and falls with a total duration of about 1 to 2 ms [53].

The neuron quickly depolarizes due to a large ionic inflow from the pre-synaptic neurotransmitters

into the channels of the post-synaptic neuron. Then, the neuron quickly repolarizes, returning to

its resting potential Vr. Due to a delay in closing the (voltage-dependent potassium) channels

of the post-synaptic neuron, the neuron hyperpolarizes. This is internally resolved whereby the

post-synaptic neuron eventually returns to its resting state. The figure also shows a refractory

period during which the neuron cannot evoke another action potential.

The membrane potential dynamics is generalized as the generation of action potentials

due to the release of neurotransmitters in the synapses. Figure 2.2 shows how a post-

synaptic neuron creates an action potential. The neuron normally rests, whereby the

membrane potential stays at the resting potential Vr. When a pre-synaptic neuron emits

a spike train, neurotransmitters are released in the synapse. The post-synaptic neuron

receives neurotransmitters through channels residing at the cell membrane (indicated in

Figure 2.1), inducing an ionic influx (i.e. an electric current). Consequently, the change

in incoming, electric currents influences the membrane potential of the post-synaptic

neuron [53]. This causes the neuron to rapidly depolarize and repolarize within 1 or

2 ms [53]. This spike traverses the axon, which - in turn - releases neurotransmitters

in the synapses with other downstream neurons. Figure 2.2 also indicates a so-called

refractory period during which the neuron cannot generate another action potential. This

typically happens when the neuron requires more time to re-stabilize after spiking, which

causes an undershoot, i.e. hyperpolarization. As the magnitude and the time course

are approximately the same for every action potential, the information is carried in the

number and timing of the spikes rather than the form of the action potential itself [54].
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2.1.3. Cellular mechanisms
Neurotransmitters play a crucial role in various physiological processes - including cog-

nition and emotion - and autonomic functions such as heart rate. Neurotransmitters

facilitate communication between neurons by relaying and modulating the signals be-

tween pre- and post-synaptic neurons upon their secretion (exocytosis). In other words,

they may inhibit or encourage the firing of the post-synaptic neuron. There are different

neurotransmitters, which are generally classified into two classes: excitatory (e.g. gluta-

mate [56]) or inhibitory (e.g. γ-aminobutyric acid [57]). However, some neurotransmitters

may be either, e.g. dopamine [58]. Two important cellular mechanisms moderate the

release of neurotransmitters, influencing the excitability of neurons (1) on synaptic level

through synaptic plasticity and (2) on neuron-level with spike-frequency adaptation (SFA).

Synaptic plasticity

Within a synapse, the neurotransmitters can undergo modifications to strengthen or

weaken the signal transmission between the pre- and post-synaptic neurons. This plays

a prominent role in the memory and learning of neural networks, commonly referred to as

synaptic plasticity [59]. The modulation of the synaptic transmission may vary in duration

ranging from milliseconds to days, which gives rise to the following categories:

1. Short-term synaptic plasticity: Synaptic plasticity lasting tens of milliseconds to

minutes is classified as short-term plasticity and may induce inhibition (short-term

depression) or excitation (short-term potentiation) of post-synaptic neurons [60, 59].

Short-term depression and synaptic facilitation in a post-synaptic neuron are both

mainly influenced by pre-synaptic calcium (Ca
+
) influx [61, 62].

2. Long-term synaptic plasticity: Long-term synaptic plasticity i.e. synaptic modifi-

cation which lasts for hours and even days, is formed by an ensemble of strongly

coupled neurons that encode a specific event. This is typically associated with

the formation of memory. In this case, we discern the inhibitory and excitatory

effects, i.e. depression (LTD) or potentiation (LTP), respectively [63]. Tradition-

ally, there are various examples of neurotransmitters, which facilitate long-term

memory through neuromodulation, e.g. acetylcholine and noradrenaline. However,

dopamine has been widely associated with two-fold, long-term synaptic plasticity

[64]. Dopamine mediation plays a crucial role in the learning ability of organisms

to predict future events based on experiences and continual environmental inputs

[65].

Spike frequency adaptation

In contrast to the synaptic plasticity mechanisms mentioned above, SFA addresses an

individual neuron rather than a collection of neurons. It plays a crucial role in neural

information processing which is largely influenced by three main ionic currents, i.e.

the adaptation currents [66]. These are M-type currents [67], afterhyperpolarization

(AHP)-type currents [68], and sodium (Na+) currents [69]. These adaptation currents

accommodate the neuron’s excitability and act in an inhibitory manner to limit further

action potential discharge upon neuron activation, decreasing the firing activity of the

respective neuron [68]. Due to SFA, the firing frequency of the neurons decays to some

steady-state value (f∞), which is approximated by an effective adaptation time constant

(τeff), in the range frommilliseconds to seconds [66]. Short-term depression at the synapse
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vesicle pool (the bulbs in the axon terminal in Figure 2.1) drives the neurotransmitters in a

depression state. During this phase, the signals from the pre-synaptic neuron cannot be

transmitted through the synapse to the post-synaptic neuron [70, 71]. SFA improves the

efficiency of sensory information [72] and consequently optimizes its transmission [73].

Figure 2.3 illustrates the SFA mechanism, whereby a sustained input stimuli is given to a

neuron with and without SFA.

(A) Without SFA (B) With SFA

V
t

Sustained input stimuli

t t

Figure 2.3: SFA mechanism We assume that in both cases, the same inputs spikes are given.

(A) A neuron without SFA exhibits regular spiking to a sustained spiking stimulus. (B) A neuron

with SFA that has the same input, will decay its spiking rate for a sustained stimulus. Its decay in

spiking rate will decay to a steady-state value, τeff.

2.2. Spiking neuron models
A spiking neuron model is a mathematical characterization of biological neurons, by

modeling their attributes and mechanisms. These models typically contain at least the

soma, which is considered to be the computing centre [50]. The outline of spiking neuron

models, modeling the dynamics of the neuron and its spatial structures (i.e., synapses and

dendrites), range from sophisticated conductance-based models (e.g. Hodgkin-Huxley)

to generalized point-neuron models (e.g. leaky-integrate-and-fire neuron) mimicking the

minimum attributes of the neuron. In synaptic modeling, we distinguish between current-

based and conductance-based synapses. The former aims at modelling ionic current

with a fixed amplitude. The latter computationally models the mechanisms from the ionic

changes in the dendrites [50]. Conductance-based neuron models are more advanced

and biophysically accurate models but are computationally expensive exhaustive due

to solving coupled partial differential equations. We will compare the more advanced

conductance-based design, modelling both the synapses and the dendrites, with a LIF

neuron with conductance-based synapses, excluding the dendritic structures.

2.2.1. Synaptic modelling
The synapses capture the dynamics of the neurotransmitters propagating from the

pre-synaptic neuron to post-synaptic neurons. The released neurotransmitters from

post-synaptic neurons generate an ionic charge due to the potential difference between

the interior and exterior of the cell. This is caused by the movements of ions in the



2.2. Spiking neuron models 13

synapse, which is modeled as a current I(t):

I(t) = Cm
Vr − V (t)

dt
(2.1)

where Cm denotes the cell membrane capacitance, V (t) is the membrane potential at

a time t, and Vr is the resting potential of the neuron. In order to solve the membrane

potential, an integration over time must be computed. This is covered in Section 3.1,

focusing on the actual compuations of the neuron.

Ie(t)

Ii(t)

se(t)

si(t)

sout(t)

Soma

Synapse

Figure 2.4: Spiking neuron with two synapses The neuron has two dendrites, linked to a

pre-synaptic excitatory and inhibitory neuron. Note that in this case, the contribution of the dendrite

is neglected, analog to simply being an ideal wire with zero resistance. The spike trains from both

pre-synaptic neurons (se(t) and si(t)) are sent to the soma. The soma computes the membrane

potential using the incoming spike trains and currents (Ie(t) and Ii(t)). It generates a spike train

sout(t) upon exceeding the threshold.

Figure 2.4 shows a neuron with one excitatory and one inhibitory input current (denoted

as Ie,1(t) and Ii,1(t), respectively). The synaptic inputs from pre-synaptic neurons mediate

in the excitation and inhibition of post-synaptic neurons, thus providing an excitatory

current (Ie(t)) or an inhibitory current (Ii(t)), respectively. These currents influence the

membrane potential of the post-synaptic neuron.

• Current-based (CUBA) synapses: Current-based synapses model the ionic

charge as an ionic current with a fixed amplitude. In this case, the product of

the potential difference and the capacitance in Equation 2.1 is assumed to be a

parameter with a fixed value, which is referred to as a fixed synaptic current efficacy

Jsyn expressed in Ampere [74], yielding

ICUBA(t) = Jsynssyn(t), (2.2)

where ssyn(t) is a function that models the time course of pre-synaptic spiking

occurrence [74, 50], similar to an exponential time constant.

• Conductance-based (COBA) synapses: Conductance-based synapses consider

that ionic currents depend on the conductance of the different channels. Further-

more, in conductance-based synaptic modeling, the ionic current follows from

multiplying with a time-varying potential difference between the interior and exterior

of the cell (soma), rather than a fixed value. Conductance-based synapses describe

the synaptic dynamics in a more biologically accurate fashion [50]

ICOBA(t) = gsynssyn(t)(Vsyn − V (t)), (2.3)
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where gsyn and Vsyn are respectively the conductance and the reversal potential of

the synapse.

The difference between ICUBA(t) in Equation 2.2 and ICOBA(t) in Equation 2.3 lies

in whether they account for or omit the temporal influence of ionic currents.

2.2.2. Conductance-based spiking neuron models
Conductance-based models are biophysically plausible models whereby the level of

resemblance with biological neurons may be adjusted according to the research scope

from close biophysical modeling with the Hodgkin-Huxley neuron to simplified leaky

integrate-and-fire neurons.

Hodgkin-Huxley

The Hodgkin-Huxley (HH) model is a biophysical interpretation of neurons that closely

examines the ionic dynamics, by modeling a neuron’s soma, dendrites, and synapses

[75]. In this case, the ionic current is related to the currents created by sodium (INa)

and potassium (IK) ionic charge. Furthermore, a leakage term is included that models

the passive properties of the neuron cell, IL. Therefore, the total ionic current I(t) in a

Hodgkin-Huxley is modeled as:

I(t) = INa(t) + IK(t) + IL(t) (2.4)

The three terms from Equation 2.4 are further dissected and equated with the definition

of the total current of the neuron in Equation 2.1 revealing the conductances (gNa, gK , gL),
and the time-varying potential difference for each ion channel:

I(t) = Cm
dV (t)

dt
= gNam

3h(V (t)− VNa) + gKn
4(V (t)− VK) + gL(V (t)−VL) (2.5)

where V (t) is the membrane potential of the post-synaptic neuron at time t. Dendritic
modeling is covered by the variablesm and n, which are related to sodium and potassium

activation, and h is the sodium inactivation variable. These variables vary between 0

and 1 and are dimensionless. They represent the time course of the action potential,

which is governed by differential and subsidiary equations [75]. The resting potential of

the sodium and potassium channels are VNa and VK , respectively. The leakage potential

of the neuron is denoted as VL. Equation 2.5 involves integration over time to compute

the membrane potential at any given time. Consequently, this constitutes a system of

four-dimensional ordinary differential equations [76, 50]. The Hodgkin-Huxley model is

an elegant model that accurately models neurons in their sub-threshold regime, which

requires extensive computational resources. However, it is possible to approximate the

(sub-threshold) dynamics of the HH model. Specifically, in research where a detailed

(ionic-based) neuron model is unnecessary, the HH model can be approximated by a

simplified conductance-based neuron model using the dynamics of conductance-based

synapses. This leads to a plausible combination of one of the simplest, point-neuron

models - called the leaky-integrate-and-fire neuron - with conductance-based synapses

[77, 50].

LIF neuron with conductance-based synapses

The LIF neuron was introduced by Louis Lapicque in 1907 [78, 79]. The biological neuron

is modeled as a point model (without dendrites) with a membrane that is described
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as an RC circuit, where R is the cell resistance and C is the membrane capacitance.

The structure is leaky to represent the ion diffusion through the membrane, which has

previously been used in equations as the leaky current IL. Figure 2.5 shows an equivalent
circuit of a LIF neuron with conductance-based synapses (COBALIF neuron). In the

figure, the inverse of the resistance, i.e. conductance g, is used in labeling resistors.

+

+

+

Figure 2.5: Equivalent circuit of a LIF neuron with conductance-based synapses (COBALIF

neuron) point-conductance model containing synaptic conductances. This includes the time-

varying synaptic conductances. Cm is the membrane capacitance. I(t) is the total current.

The circuit in Figure 2.5 is similar to the electrical circuit that describes the Hodgkin-

Huxley model [75]. However, in this case, the ionic, injected sodium and potassium

current (INa and IK) are approximated by excitatory and inhibitory synaptic currents (Ie
and Ii) [75, 50]. This model approximates each component of the total ionic current as

the conductance of the ion with the difference between the membrane potential and the

respective ion. For this neuron model, the total current I(t) in Equation 2.5 simplifies to

a non-ionic specific description:

Cm
dV

dt
= ge(Ee − V (t))− gi(Ei − V (t)) + gL(EL − V (t)) (2.6)

where the ge and gi are the excitatory and inhibitory conductances, respectively.

The resting potentials for each term in the equation are denoted as Ee, Ei and EL,

whereby it holds that Ei ≤ Vr < Ee [50]. The leakage potential falls within the same

regime but is typically not constrained in the same fashion. These potentials arise

from the equilibrium potentials of the ion channels, which introduce non-linearity to the

synaptic input summation. The reversal potentials of the excitatory (Ee) and inhibitory

conductance Ei) are 0 mV and -75 mV, respectively [80]. The parameters ge and gi
represent the non-negative excitatory and inhibitory conductances, which are small in

magnitude and non-negative in this model [50]. Figure 2.6 illustrates how a neuron

generates spike upon integrating the incoming spikes from a pre-synaptic neuron, which
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is governed by Equation 2.6. A pre-synaptic neuron sends spikes that cause short

excitatory current pulses (denoted as Ie). For each spike, the membrane potential

augments and approaches the threshold potential (Vth). The neuron triggers a spike

when the membrane potential reaches a firing threshold Vth. The neuron then immediately

discharges its current to arrive at its resting potential Vr. The neuron then generates an

output spike. Afterward, the neuron enters its refractory state during which the potential

of the neuron is at rest and cannot spike, which lasts for a refractory period τr. The LIF

neuron with conductance-based synapses as described above has been used in various

spiking neural networks, modeling the olfactory pathway model of Drosophila larvae [25,

29, 32].

Input spike

Ie(t)

V(t)

t

Vth

Vr

Output spike

Figure 2.6: Generation of a spike. Each spike that arrives at the neuron causes a short current

pulse of which the voltage decays exponentially. In this case, only the excitatory current is

included, which follows from the multiplication between of the excitatory conductance and the

potential difference. The other elements from Equation 2.6 are excluded. The membrane potential

follows from integrating Equation 2.6. Only one spike is generated by the neuron, which happens

when the membrane potential V (t) exceeds the threshold voltage Vth. The neuron then is in

its refractory state for a given refractory period τr and the membrane potential is at its resting

potential Vt.

2.3. The Drosophila olfactory pathway model
This section is focused on giving background of (i) the connectome of the Drosophila

larva, (ii) olfactory pre-processing and (iii) olfactory learning and memory. Firstly, we
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will cover the identity and functionalities of the neurons in more detail. Secondly, the

olfactory processing is discussed which explains how olfactory sensory information is

processed according to a four-stage procesing. Furthermore, this subsection is dedicated

to explaining olfactory learning andmemory. We will examine the olfactory pathwaymodel

by firstly introducing the underlying sensory (pre-)processing pipeline. Finally, olfactory

learning and memory will be explained, which happens after the pre-processing. This

involves the understanding of the mechanisms that are related to learning, memorizing,

and recalling odors. Furthermore, we will explain how outputs of this pathway model are

shaped.

2.3.1. Drosophila larva connectome

MB

AL

20 μm

1 mm

Figure 2.7: Illustration of the anatomy of an adult fly brain This figure illustrates a female

adult fly brain. The antennal lobe (AL) - in blue - and the mushroom body (MB) - in orange - are

highlighted and labeled, for one hemisphere. The illustration is inspired by Aso et al [81].

In the past decade, the study of the olfactory nervous system has significantly progressed

to the point that many characteristics of its anatomical structure and mechanisms are

identified [82, 83]. The processing pipeline of olfactory information in a mammal cor-

responds with the one from the Drosophila larva [84]. The olfactory pathway of the

Drosophila employs a layered architecture to process odors, which is similar to the

olfactory bulb of vertebrates [85, 86, 46]. However, the connectome of the mammal

consists of millions of neurons and constitutes a large network [13]. The connectome

- a comprehensive collection of neural pathways in the brain - of the insect brain is

approximately 331,565 ×smaller. With about 3,016 neurons and 548,000 synapses, the

connectome of a Drosophila larva is one of the most well-studied small brains to date [14].

Figure 2.7 shows an illustration of the fly brain is shown, where two important regions

are highlighted: the antennal lobe (A) and the mushroom body (MB). These regions

are involved in processing sensory information, facilitated by a network of neurons.The

olfactory pathway model consists of different neuron types, which are characterized by

their types of neurotransmitters (i.e. excitatory or inhibitory) and their functionalities in

processing of olfactory information. Figure 2.8 shows the connectome of the Drosophila

larva for olfactory processing. This figure shows the neurons, their location in the brain,

and connections within the network, and the various processing stages. An overview of
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the different neuron tupes are presented in Table 2.1, covering the total count within a

region, the neurotransmitter type and the respective processing stage.

Table 2.1: Overview of the neuron types in the olfactory pathway model.

Neurotransmitter type
Processing stage Neuron type Abbreviation Region

Total

count Excitatory Inhibitory

I Olfactory receptor neuron ORN Antenna 21 X

Projection neuron PN AL 21 X
II

Local interneuron LN AL 21 X

Anterior paired lateral neuron APL neuron MB 1 X
III

Kenyon cell KC MB 72 X

Dopaminergic neuron DAN MB 2 X X

Mushroom body interneuron MBIN MB 2 X XIV

Mushroom body output neuron MBON MB 2 X X

The olfactory pathway model starts at the sensory periphery, where the antennas

are located. The olfactory receptor neurons (ORNs) in the antennas detect odors and

transmit the sensory information encoded as action potentials to secondary processing

centers. The secondary processing centers consist of the (i) antennal lobe (AL) and (ii)

the mushroom body (MB). Inside the antennal lobe, there are two types of interneurons:

the local interneurons (LNs) and the projection neurons (PNs). Their synaptic interactions

with the ORNs form the first stage in processing odor information [15]. Lastly, the

mushroom body is the main olfactory processing center where odors are learned and

memorized. In the mushroom body, stimuli-specific activation of Kenyon cells (KCs)

plays a prominent role in efficient odor-encoding [48]. Then, the output neurons of the

mushroom body (MBONs) transmit the output pulses which induce behavioral actions.

Generally, the MBONs do not directly encode the odor, but rather a negative or positive

valence, anticipating the behavioural response, i.e avoidance and approach, respectively

[49, 84, 81].
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Figure 2.8: Drosophila larva connectome and the olfactory pathway model From left to right,

the figure shows the olfactory pathway model starting from the antenna to the mushroom body.

In the antenna, 21 ORNs each receive a unique train of stimuli from sensing the odors. The

ORNs then project to their cognate LNs and PNs within a glomerulus. In the antennal lobe, 21

pairs of LNs and PNs innervate with the ORNs where lateral inhibition is employed by the LNs.

This builds pattern separation. Then, the projection neurons randomly project onto a subset of

KCs. The feedback inhibition between the APL and the KCs through all-to-one excitation and

one-to-all inhibition. The figure shows the readout and modulatory component of the mushroom

body, indicated by the MBONs and the DANs, respectively. The MBONs send out signals which

either evoke a Valence A (negative) or Valence B (positive) signal. The connections are returned

to the modulatory DANs, which facilitate reward-punishment modulation.

2.3.2. Olfactory sensory pre-processing
Sensory information is typically distributed in nervous systems with large neural net-

works and advances through multiple processing layers. Consequently, stimulus-specific

sensory information is transformed into a useful format that can be used to generate

behavioral outputs [87, 88]. Downstream sensory coding governs the mapping and

transformation of highly dense stimulus-specific information to a limited number of be-

havioral outputs [88]. The Drosophila learns a given odor through encoding the sensory

information, which is transformed throughout the stages and finally represented by only

a few activated Kenyon cells in the mushroom body. The activation and association

between an odor and the Kenyon cells are unique to each fly. The fruit fly learns through

its own experiences what a given odor means and learns to associate a given odor with

a behavioral output on a reward-punishment basis [84]. We will cover the stages from

input to readout to understand the neural circuitry supporting this sophisticated form of
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odor encoding. The connectome of Drosophila larva for one hemisphere is shown in

Figure 2.8. The stages related to olfactory pre-processing are labeled as follows: (I)

Detection, (II) Pattern Separation, (III) Convergent Encoding.

Stage I - Detection

A smell is a mixture of many chemical compounds, called odorants. When an insect

detects an odor, the odorants bind to the cell surface proteins of olfactory receptors,

which are located on the fly’s antennas. These olfactory receptors are the chemore-

ceptors, expressed in the cell membranes of olfactory receptor neurons (ORNs), and

are responsible for the detection of odorants which give rise to the smell. The ORNs

generate odor-specific electrical signals (action potentials or pulses) in response to the

binding of the odorants to the membranes [89, 15]. Activated ORNs trigger pulses,

transmitting information about the odor to the processing centres in the insect brain. The

Drosophila adult has about 1300 ORNs, whereas the Drosophila larva has 21 ORNs

[90, 45]. Contrarily, the olfactory system of vertebrates has about thousands of ORNs

[91]. The architecture of the olfactory pathway systems of the vertebrates are surprisingly

identical to the one of the Drosophila [83]. Consequently, the olfaction of a Drosophila

larva is one of the smallest well-studied olfactory pathway models.

Stage II - Pattern Separation

The ORNs encode qualitative, quantitative and spatio-temporal information about the

odors, which are relayed to the neurons located in the antennal lobe (AL) [92]. The ORNs

form afferent projections into the antennal lobe. There are two types of interneurons

identified in the AL, namely the local interneurons (LNs) and the projection neurons

(PNs) [93]. The antennal lobe is the primary olfactory association center, that consists of

spherical bodies, called the glomeruli. Each ORN arborizes within its unique glomeruli,

and thus there are 21 glomeruli. Within a glomerulus, the axon of one ORN synapses

with the dendrites of its cognate LN and PN [93], summing up to a total of 21 LNs and 21

PNs. The sensory code takes a different representation in the AL, which are governed

by the interactions happening inside the glomeruli. Only the projection neurons send

out signals from the antennal lobe to the next brain region, i.e. the mushroom body.

The transmission of the signals of the LNs remains within the AL. As the Drosophila

larva only has 21 ORNs to encode a thousands of odors, many odors will elicit similar

patterns of input activity. This is where pattern separation comes into play, which is the

process that minimizes the overlap between patterns of neuronal activity with similar input

profiles. A fitting analogy is to discern between the letter A and the same letter with an

asterisk A* [94]. Studies have shown that odors may activate the same subset of ORNs,

which activates the same subset of glomeruli as the ORNs activate the cognate LNs and

PNs homogeneously [95, 96]. As a consequence, pattern separation - moderated by

local inhibition on the PNs - facilitates the ability to discern between odors with similar

activation profiles. The PNs mirror the neural activity of their monosynaptic ORN input

[20, 97, 98]. The same monosynaptic ORN input evokes the activity of the coupled,

local interneurons [99]. The LNs, consequently, release the inhibitory neurotransmitter

γ−aminobutyric acid (GABA), exerting an inhibitory control on the excitation of projection

neurons [57]. This GABA-mediated inhibition influences particularly the activity of PNs

in the discrimination of similar odorants, i.e. to amplify contrast between similar odor

profiles [99, 57]. Each local interneuron forms an one-to-all connectivity with the projection
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neurons, e.g. one LN transmits a widespread local inhibition to all PNs within the antennal

lobe [93, 100]. Although, on a molecular level, there are different types of PNs and LNs

[98, 20], governed by the type of ligand and the release of neurotransmitters, we will

only focus on the most prominent features and mechanisms as explained above, without

affecting its conclusions.

Stage III - Convergent encoding

The mushroom body (MB) receives the arborizations of the projection neurons and further

transforms the sensory code [101]. The Drosophila adult has approximately 2200 Kenyon

cells per hemisphere [49], and 72 in its larval phase [48]. The convergence from PNs

to KCs employs a random connectivity, which is not subjected to plasticity or learning,

but has an innate, taxon-specific connectivity [84]. Each KC typically has a dendritic

branch with on average two to seven claws, which form random contacts to different

PN>KC synapses [102, 103]. As a result, the overall response selectivity in the KCs

reduces from 50% in the projection neurons to approximately 5% KC activation to a

given odor [20, 21]. This is assumed to be the basis for the highly stimulus-specific

response properties of the entire Drosophila’s olfactory pathway, resulting in a sparse

spatio-temporal representation of an odor [92].

Each hemisphere in the Drosophila has a single GABAergic anterior paired (APL) [104].

The APL facilitates olfactory learning by forming a feedback inhibition with the Kenyon

Cells [104]. The APL neuron forms a feedback loop with the KCs through a one-to-all

connection. This is illustrated in Figure 2.8. This process is innate and therefore does

not induce synaptic plasticity.

2.3.3. Olfactory learning and memory
The fruit fly - just like any other animal - can survive in a dynamic environment with

familiar and new stimuli. The olfactory pathway of the fruit fly can continuously learn

how to act when encountering new odors. Studies have demonstrated that clusters

of neurons create a recurrent system within the mushroom body (MB). They are the

substrates that are highly involved in odor learning and associative memory, referred

to as MB compartments [105] (see Figure 2.9). This part is referred to as Stage IV in

Figure 2.8 including the DANs, MBONs and MBINs in the mushroom body.

MB compartments

In a Drosophila mushroom body, 15 MB compartments were discovered, containing the

arborizations of KCs, MBONs, and DANs [87]. The outputs of the MBONs are fed back

via so-called mushroom body interneurons (MBINs) into the DANs. Each DAN of an

MB compartment evaluates the reward or punishment signals received at a time, and

subsequently translates the pattern of the KC activity to an MBON output. It results in

skewing the behavior by modifying attraction or aversion [87]. The assignment of valence

to a sensory stimulus is a form of adaptive mechanism, which is stored and recalled

upon presentation of the same odor stimulus [49, 106]. The mechanistic operation of the

MB-compartments is still under investigation, and thus computational and physiological

studies are involved in gaining more insight into the underlying mechanism of biasing

the outputs of the compartments, i.e. biasing the MBONs [87]. Figure 2.9 explains

the motif that MBONs (- or + ) convey a valence (-/+) to the dopaminergic neuron (+/-).

Each MBON forms an excitatory connection to the MBIN in the same MB compartment.



2.3. The Drosophila olfactory pathway model 22

G

1:72
72:1KC

APL

PN

DAN+

MBON-

MBON+

D

D

DAN_

MBIN 1

MBIN 2

+

-

Inhibitory
Excitatory

G GABA

D Dopamine

Aversive

Approach

Appetitive

Avoid
1:72

1:72

Figure 2.9: MB compartments Two MB compartments are shown in the figure, which is linked

to either a positive valence (approach) or a negative valence (avoidance). Each MB compartment

consists of an opposite-valued DAN which mediates in appetitive or aversive learning.

This MBIN inhibit the DAN in the opposite MB compartment [48]. There are additional

modulatory neurons (MBIN), of which the identity of the neurotransmitter is unknown.

This circuit motif, however, satisfies Dale’s law [107], making it a plausible substrate.

Dale’s law postulates that a neuron cannot transmit both excitatory and inhibitory signals

(i.e. a neuron releases the same type of neurotransmitters) [107]. For this reason, an

intermediate neuron (MBIN) is necessary to provide the lateral inhibitory effect to the

opposing MB compartment [48]. Consequently, each compartment is innervated by one

MBON, one MBIN, and one opposite-valued DAN. Figure 2.9 graphically shows two MB

compartments driving avoidance or approach through MBON- and MBON+, respectively.

When MBON 1 is potentiated, it transmits excitatory signals to the opposite-valued

DAN+ in the same MB compartment. Dopamine is then released, which depresses the

KC>MBON synapses. Simultaneously, through MBIN 1, DAN− is inhibited. Therefore,

the output of the mushroom body will be biased in favor of avoidance.

Dopaminergic facilitation

The fruit fly adapts its behavior by anticipating whether it should approach or avoid an

odor source based on the ”goodness” of the odor [87]. This decision-making process

guides the selection of the action for any odor, which is mediated by dopaminergic

neurons (DANs) [108]. The principle of dopaminergic facilitation in learning originates

from conditioning paradigms. Conditioning is a physiological process - discovered by

the Russian physiologist Ivan Pavlov - whereby an animal learns to associate a given

stimulus with an action. It involves a form of reinforcement to drive the desired, behavioral

response to the stimulus [109].

In a classical conditioning process, a stimulus with no intrinsic reward value will function

as a rewarding stimulus after being repeatedly associated in time with a rewarding

object. This rewarding object is called an unconditioned stimulus (US). After repetitive

conditioning trials, the subject has learned to associate the rewarding object with an

intrinsic reward value. Then, this stimulus is called a conditioned stimulus (CS) [110].
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The generation of intrinsic values is modulated by the DANs in the mushroom body of the

Drosophila, which effectively serves as a ”teacher” that corrects the animal’s behavior

through neuromodulation [65]. The fruit fly learns to continuously make predictions in

dynamic environments that favor them. These predictions are then paired with a specific

behavioral action, which is then ”stored” in the synaptic response of DANs [88]. The

underlying motif of dopamine neurons resembles the idea of prediction error coding [65]

in reinforcement learning.

Prediction error

A prediction error is the difference between the predicted and the real received reward.

The reward is either better than, equal to, or worse than the prediction. This prediction

error influences future behavior, i.e. induces learning. If the reward deviates from its

prediction, a prediction error exists and the prediction should be updated to modify the

behavior. In the case of a positive prediction error, the actual reward is better than

predicted, and thus the previous behavior must be adjusted to receive the reward in the

future. On the other hand, if the real reward is worse than predicted (i.e., a negative error

prediction), the behavior will be adjusted accordingly to avoid the wrongly-anticipated

action in the future. Lastly, if the prediction error is zero, there is no difference between

the prediction and the reward, and thus the behavior remains the same. In this case, there

is no learning [111]. Figure 2.10 explains how dopamine release mediates in prediction

error coding. When the received outcome differs from the prediction, an error, either

negative or positive, arises. The valence of this prediction error is encoded by dopamine

release, which updates the prior prediction. Dopamine plays a crucial role in computing

prediction errors and facilitating them through top-down signaling. It is a teaching signal

that affects the synaptic plasticity in associative learning in the Drosophila [111].

Use prediction

Update prediction

Receive 
outcome

Keep prediction 
unchanged

Error

Reward = 
prediction

Reward ≠ 
prediction

Dopamine 
release

Figure 2.10: Prediction error coding using dopamine Dopamine is used to update a prediction

for a given stimulus. When the same stimulus is presented, the model will use the same prediction.

If the model receives a reward for the anticipated prediction, the prediction remains unchanged

and the prediction is zero. If the reward is never received, then a prediction error is generated.

Dopamine will be released as a result of a prediction error. The figure is inspired by Schultz et al.

[111].
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2.4. State-of-the-art hardware solutions
We will have a look at the state-of-the-art solutions of olfactory hardware implementations

with a focus on neuromorphic designs. Neuromorphic hardware significantly differs from

hardware with a Von Neumann architecture. Figure 2.11A shows a typical Von Neumann

architecture where the computing resources (CPU/GPU) are separated from the memory

[112]. A spiking neural network that runs on a Von Neumann computer constantly

exchanges data back and forth, which creates a bottleneck in applications where high

throughput and speed are necessary [113]. Therefore, neuromorphic computing proposes

a novel architecture that is inspired by a network of biological neurons, where computing

and memory are co-located. As seen in Figure 2.11B, one core constitutes one neuron,

multiple synapses, and a communication block. In this way, data transmission is done in

a more distributed and parallel way [113]. A spiking neural network is built by connecting

multiple (neural) cores. In neuromorphic hardware architectures, the address-event

representation (AER) scheme is the de facto communication protocol. It encodes the

time of spike and address of the firing neuron in a data package which is routed to other

neurons in the connectivity scheme [114].

Generally, neuromorphic designs using spiking neural networks can be categorized

into two classes (i) large-scale neural networks focused on high computing performance

and parallelism, and (ii) small-scale networks exploiting biophysical principles and target-

ing biologically realistic modeling. The SpiNNaker [116] , TrueNorth [117], and Intel’s Loihi

[40] chips belong to the former. In olfactory studies, large-scale networks have been recre-

ated in software and hardware, which targeted the mammalian olfactory bulb [42, 31, 39,

43, 41]. In these studies, underlying principles such as feedback inhibition, reinforcement,

or neuromodulation have been excluded. On the other hand, other studies focused on

closely reconstructing the olfactory pathway model of the Drososophila larva via software

simulations using for example the Brian2 simulator [29, 32]. The Brian 2 simulator [118] is

a neural simulator written in Python that provides a platform to simulate a single neuron or

a network of neurons in detail. The work from Jürgensen et al. in [29] utilizes the olfactory

pathway model as described in Figure 2.8, which is an elaborate software model targeted

on simulating this model. Only a few studies have implemented this model to explore its

efficacy in hardware [36, 44, 33], which is the focus of the thesis. In the following, we

will cover the main hardware designs on which odor classification has been benchmarked.

DYNAPs

DYNAPs is a chip with one thousand VLSI neurons, distributed among four neural cores

with an address-event representation (AER) bus for data transmission [115]. Each core

has 256 neurons based on an LIF neuron model [119]. Furthermore, the synapses are

modeled by producing inhibitory and excitatory post-synaptic currents (IPSC, EPSC) with

time constants ranging from microseconds to milliseconds [120, 119]. This chip employs

an in-memory computing architecture thanks to the distributed memory elements (SRAM

and capacitors). This is different from other fully digital designs, that time-multiplex (i.e.,

having a shared module for updating logic and a central storage unit [10]) the computing

resources and still face the transmission of state memory from different computing areas

to memory storage, e.g. the TrueNorth architecture [113]. Figure 2.11C shows the

architecture of one DYNAPs node, i.e. one neuron. The figure shows that the neuron
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Figure 2.11: Von-Neumann architecture and (neuromorphic) non-Von-Neumann, dis-

tributed architecture (A) A typical Von Neumann architecture with the computing blocks sep-

arated from the memory [113] (B) A neuromorphic hardware architecture with neural cores

consisting of one neuron, synapses, and a communication block [113] (C) An example of a

neuromorphic, analog architecture for a neuron. It shows one DYNAPs computing node or neuron

that is connected to four DPI circuits emulating synapses. The neuron checks if the membrane

potential has been exceeded. Then, this information is encoded in an AER package in the AER

interface, after passing through a handshaking (HS) block [115].

and the synapses are clustered in the same processing element, merging computing and

storage. The state of the neuron is packaged in the handshaking block using the AER

protocol, after which it is distributed with other neurons via the AER interface bus.

This implementation has been successfully used in demonstrating odor specificity and

similarity, for three artificial odors with an overlapping odor profile. The model uses a

similar model as shown in Figure 2.8, excluding the Stage IV neurons (DANs, MBONs,

and MBINs). This implementation deploys a small, non-plastic larval network that demon-

strated similarities with (1) inhibitory feedback from the APL through inhibitory currents

and (2) short-term effects with SFA. However, the biasing of the currents encountered

instability issues specifically for SFA. An enhanced version of DYNAPs, DYNAP-SE2,

was introduced at the start of 2024 [121]. It has a dedicated block for spike frequency

adaptation that may improve the process of biasing. Furthermore, this chip includes

adaptation on a longer timescale through a homeostasis mechanism. On this chip,

this synaptic scaling ensures that the excitability stays within a target range. However,
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DYNAP-SE2 has not been used for the modeling of the olfactory network.

Intel Loihi and Lava framework

In 2018, Intel’s Neuromorphic Research Lab introduced the Loihi neuromorphic chip with

a fully digital architecture [40]. A Loihi chip integrates 128 neuromorphic cores, each

comprising 1,024 primitive spiking neural units grouped into sets of trees, forming neurons.

These cores feature LIF neuron models, utilizing forward Euler. The approximations

of the LIF neuron model are modeled be constant voltage decay factor λ ∈ 0, 1, which
accounts for leakage and is typically pre-trained [122]. All parameters and values in this

chip use fixed-precision format. It accommodates any weight precision ranging from one

to nine bits, whether signed or unsigned. Notably, all signals in the system are digital,

and the networks operate as discrete-time dynamical systems.

For instance, Imam et al. demonstrated lifelong learning by identifying odors from

high-dimensional noisy olfactory signals using chemosensor arrays [123], leveraging

other biologically inspired mechanisms implemented on Intel’s Loihi [39]. This model

is inspired by the mammalian olfactory bulb, comprising at least 10,000 neurons. The

algorithm’s high performance is attributed to various mechanisms, including neuromod-

ulatory optimization of circuit properties and local learning rules. Additionally, sparse

excitatory and dense inhibitory networks were utilized to temporally encode information.

An inference cycle - modelling a ”sniff” - required 2.75 ms and consumed 0.43 mJ of

energy, of which 0.12 mJ is dynamic energy [39].

The new Loihi 2 chip has programmable neurons, which are described by microcode

instructions [122]. Furthermore, Loihi 2 supports up to 1 million neurons and 123 million

synapses. Its enhanced external connectivity includes GPIO and SPI communication

buses. Intel offers access to Loihi (1 and) 2 hardware via the Neuromorphic Research

Cloud, which is a cluster of virtual machines (VMs) and Loihi systems that can be

accessed from an SSH terminal. These can be used to develop and benchmark custom

neuromorphic algorithms and applications. Furthermore, for prototyping neural networks,

Intel launched an open-source Python-based framework for neuromorphic applications,

called Lava [124]. Lava offers a software platform to develop and evaluate spiking neural

networks for Loihi 2, with many libraries describing software models of neurons. Only

models which are also programmed in microcode for the virtual Loihi 2 can be used

in tests on the Loihi 2. As it is an open-source framework, the platform is constantly

expanding and evolving. It offers distinct advantages over other software frameworks,

such as Brian 2, PyNN, PyTorch, and TensorFlow, in neuromorphic computing. SNNs in

Lava can either run on GPU or on a cloud-based version of Loihi 2, thereby supporting

the option to run them on a neuromorphic platform. Lava facilitates mapping neural

networks onto hardware platforms, circumventing the design overhead of transitioning

from the software model to its hardware counterpart. Additionally, Lava provides a low-

level interface for mapping neural networks onto neuromorphic hardware, facilitating a

seamless integration. Lava possesses characteristics such as modularity, and software-

to-hardware extensibility. Appendix A elaborates on setting up a neural network using

Lava and explains how new neuron models can be created within the framework. Lava

and Loihi 2 have not tyet been explicitly used in modelling any type of olfactory pathway

modelling.
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FPGAs

Field-programmable gate arrays (FPGAs) provide a hardware platform which is more re-

configurable and flexible than analog and mixed-signal designs. FPGAs can also be used

in the early stages of hardware development for prototyping and testing new designs

before committing to chips [10]. A neuromorphic implementation of the mammalian

olfactory bulb was implemented with a Virtex II pro FPGA [41]. The model was tested on

a two-odor classification task, whereby the synaptic weights were determined during a

training stage. It was used to classify learnt patterns representing distinct odor stimuli.

The neurons were modeled as integrate-and-fire (IF) units, without the leaky part. The

synapses use a 16-bit representation, while the soma uses a 32-bit representation.

When a spike occurs within a clock cycle, the total current is incremented by a fixed

value. Although providing one of the few FPGA-based modelling of olfactory pathways,

several simplifications were made (such as fixed time constants and a resting potential

of 0 V [41, 125]), which restricts flexibility and versatility. Moreover, since the weights

were pre-trained values, a critical, computational primitive in bio-inspired models as to

(unsupervised) and dynamic synaptic weight modifications is missing.



3
Design and Implementation

This chapter presents the proposed design and provides insights into translating the

concepts into its software and hardware implementation. The first section outlines the

proposed model of the Drosophila larva to explain the computational framework and

modeling methodologies. The remaining part of this chapter consists of two sections: (i)

software and (ii) hardware design.

3.1. Proposed model
The conceptual framework for the larval olfactory pathway in Drosophila, as proposed by

Jürgensen et al. in [29], serves as the foundation for the model presented herein. The

architecture of this model was presented in Section 2.3, depicted in Figure 2.8. Jürgensen

et al.’s work highlighted the role of dopaminergic neurons in facilitating olfactory learning

through the reinforcement motif, driven by prediction error coding. In order to facilitate

this learning work, a conductance-based LIF (COBALIF) neuron is developed that can

capture the key spatio-temporal processes - such as sparsity, plasticity (including SFA),

and neuromodulation - on hardware. The original model was developed in the Brian 2

simulator [118], which runs on a CPU/GPU. To this end, a neuromorphic-oriented method-

ology was adopted, leveraging Intel’s Lava (Python-based) framework and creating an

FPGA design. Consequently, the initial model underwent reconstruction to facilitate

translation from software to neuromorphic hardware. This section, first, introduces the

mathematical model, delineating the computational processes governing neuron behavior

of the COBALIF neuron, membrane potential updates, inhibition, and spike frequency

adaptation.

3.1.1. Computational model
The computational model of the proposed system is described by the first-order ODE

Equation 2.6. This neuron type utilizes conductance-based synapses to account for

the ionic streams but lacks a component to model SFA, as explained in Section 2.1.

The reconstruction of SFA in this model is enabled through an additional adaptation

current [29] that is expressed in the same conductance-based (gIa) fashion as the other

components (i.e. excitatory, inhibitory, and leakage current). In the olfactory pathway

model of the Drosophila larva, SFA has not been identified for all neuron types, hence the

inclusion of SFA to a neuron’s equation only applies to the ORNs, KCs, DANs, MBONs,

and MBINs [29]. The ODE of Equation 2.6 is extended with a fourth component:

28
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Cm
dV

dt
= gL(EL − V (t)) + ge(Ee − V (t))− gi(Ei − V (t))− gIa(EIa − V (t)) (3.1)

where EIa is the adaptation resting potential.

3.1.2. COBALIF neuron
To approximate the behavior of an ODE, we apply a numerical integration method, i.e.

forward Euler. The application of the Euler method in computational models is widely

used. Previous hardware implementations primarily focus on approximating temporal

varying components through parametrization and tuning techniques of temporally varying

components [42, 125, 41]. However, for the proposed model, the Forward Euler method

is applied to maintain the integrity of these time-varying components within the computa-

tional model. Forward Euler can be applied to numerically solve this ODE, because the

initial condition is given. This is related to the fact that the membrane potential is equal

to its resting potential Vr at t = 0.

Prior to applying forward Euler, Equation 3.1 is rewritten by exposing the V (t):

Cm

gL + ge(t)− gi(t)− gIa(t)

dV (t)

dt
= −V (t) +

gLEL + ge(t)Ee − gi(t)Ei − gIa(t)EIa

gL + ge(t)− gi(t)− gIa(t)
(3.2)

After substituting the forward finite difference of the ODE in Equation 3.2, we arrive at

the following equation:

Cm

gL + ge(t)− gi[t])− gIa[t]

V [t+∆t]− V [t]

∆t
≈ −V [t] +

Iss[t]︷ ︸︸ ︷
gLEL + ge[t]Ee − gi[t]Ei − gIa[t]EIa

gL + ge[t]− gi[t]− gIa[t]
(3.3)

Equation 3.3 represents the approximated solution to the ODE. The goal of solving this

equation is to compute the membrane potential that is governed by time-varying input

currents (excitatory, inhibitory, adaptation, and leakage). The time step ∆t must be

sufficiently small, such that we can assume that these input currents can considered

to be constant during this time interval. Therefore, the numerator on the right-hand

side of Equation 3.3 - representing the total neuron current - is assumed to be constant

during this time interval, which we refer to as the steady-state current Iss. Equation 3.3 is

rewritten to only have the difference on the left-hand side:

V [t+∆t]− V [t] = −V [t] · ∆t[
Cm

gL+ge[t]−gi[t]−gIa[t]

] +
Iss[t] ·∆t

Cm

(3.4)

Equation 3.4 is rewritten to yield the solution of the membrane potential (V [t+∆t]):

V [t+∆t] = V [t]− V [t] · ∆t

τ [t]
+

Iss[t] ·∆t

Cm

(3.5)

where τ(t) is the (time-varying) time constant that is expressed in brackets in Equation 3.4.

Equation 3.5 can be rewritten for better readability to arrive at the final solution of the
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ODE. The (final) time-stepped solution V [t+∆t] is for each simulation time t:

V [t+∆t] = V [t](1− ∆t

τ [t]︸︷︷︸
dv[t]

) +
Iss[t] ·∆t

Cm

(3.6)

Equation 3.6 is dependent on two time-varying variables, namely the neuron-

dependent time constant τ [t] and the steady-state current Iss[t] within a time interval.

Both variables are dependent on the time-varying excitatory, inhibitory, and adaptive

conductance values: ge(t), gi(t) and gIa(t), respectively. As explained in Section 2.2, the

conductances are exponentially decaying, governed by their respective time constants

τe(t), τi(t) and τIa(t). Hence, each conductance is expressed by a linear ODE with a

solution in the form of g(t) = g0e
a, whereby a is a time-varying parameter. The real

expression of the linear ODEs of conductances is, where subscripts indicate the nature

of the conductance :
dgi,e,Ia(t)

dt
= −gi,e,Ia(t)

τi,e,Ia(t)
(3.7)

Forward Euler is again applied to this equation to arrive at the solution:

gi,e,Ia[t+∆t] = gi,e,Ia[t]e
− ∆t

τi,e,Ia[t] (3.8)

Since this equation is a linear equation with exponential decay, whereby the timestep

(∆t) is 0.1 ms (as denoted in [29]), and the time constants are in the order of a few to

hundreds of milliseconds, it can be approximated by:

gi,e,Ia[t+∆t] = gi,e,Ia[t] · (1−
∆t

τe,i,Ia[t]
) (3.9)

The synaptic conductances are computed after each spike according to Equation 3.9.

Then, the steady-state current Iss[t] is calculated for each neuron in a population:

Iss[t] = gLEL + ge[t]Ee − gi[t]Ei − gIa[t]EIa (3.10)

Furthermore, the change in membrane potential for each neuron is expressed as

dv[t], which appeared in Equation 3.6:

dv[t] =
∆t

τ [t]
= [gL + ge[t]− gi[t]− gIa[t]]

∆t

Cm

(3.11)

whereby the last component is a constant, containing the chosen simulation time step

(∆t = 0.1ms) and the neuron-specific membrane capacitance Cm.

The equations for Iss[t] (Equation 3.10) and dv[t] (Equation 3.11) provide the transient

dynamics of biological principles. As explained in Section 2.3, each neuron type may

have different parameters, which are related to the construction of the ODE. Table 3.1

outlines the equations for all neurons, which will be addressed in the implementation.

The overview thus excludes the equations for the MBONs, MBINs, and DANs. Each

equation follows the same computational steps as explained above.
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Table 3.1: The equations of the ORN, PN, LN, KC, and APL neuron in the sub-threshold regime,

expressing the membrane potential over time for a neuron n in the population.

Neuron Type Sub-threshold ODE

ORN CORN
m

d

dt
V ORN
n (t) = gORN

L (EORN
L − V ORN

n (t)) + gInputORN
e (Ee − vORN

n )− gORN
Ia (EIa − V ORN

n (t))

PN CPN
m

d

dt
V PN
n (t) = gPN

L (EPN
L − V PN

n (t)) + gORNPN
e (Ee − V PN

n )− gLNPN
i (Ei − V PN

n (t))

LN CLN
m

d

dt
V LN
n (t) = gLNL (ELN

L − V LN
n (t)) + gORNLN

e (Ee − V LN
n (t))

KC CKC
m

d

dt
V KC
n (t) = gKC

L (EKC
L − V KC

n (t)) + gPNKC
e (Ee − V KC

n )− gAPLKC
i (Ei − V KC

n (t))− gKC
Ia (EIa − V KC

n (t))

APL CAPL
m

d

dt
V APL
n (t) = gAPL

L (EAPL
L − V APL

n (t)) + gKCAPL
e (Ee − V APL

n (t))

3.2. Software design
The software model is developed utilizing Intel’s Lava framework. This section is focused

on the software design of the COBALIF neuron in the Lava framework. Firstly, it dis-

cusses how synapses are modeled. Then, we will explain how the COBALIF neuron is

implemented in Lava using a custom algorithm.

3.2.1. Synapse models
In Lava [124] and in Brian 2 [34], the synaptic connections between neurons are in-

stantiated through a connectivity matrix CM×N ∈ Z, where N,M denote the number of

pre-synaptic and post-synaptic neurons, respectively. Each element in the connectivity

matrix is binary, taking values of either 0 or 1 to indicate the presence or absence of a

synapse. Figure 3.1 shows the connectivity matrix of the PNs and KCs. The number

of pre-synaptic neurons (N ) is equivalent to the number of PNs, i.e., 21. These form a

connection through the connectivity matrix with 72 KCs, which are post-synaptic neurons

(M ). Each line in the figure expresses a flagged entry with the value 1 in the connectivity

matrix. In ANNs, the value of the neuron (yM ) follows from an element-wise matrix

multiplication with a weight matrix (WM×N ∈ R) and the pre-synaptic spike matrix (i.e.,

input vector xN ∈ {0, 1} ) at a specific time. This is then passed through an activation

function. In contrast, modeling conductance-based spiking neurons in Brian 2 and Lava,

are governed by an extensive mathematical model. Hence, in this case, the state of the

neuron’s value follows from

yM = f(xTN ×WN×M × CM×N) (3.12)

where f refers to the chosen mathematical function, which in our case is related to the

solution of V [t + ∆t] in Equation 3.6. In Lava, this connectivity matrix is instantiated

through a construct ProcessModel, which is explained in detail in Appendix A.
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Figure 3.1: Synapse connectivity graph between PNs and KCs governed by the connectivity

matrix CM×N . The projection neurons (N = 21) are the pre-synaptic neurons that are randomly

connected to 2 to 7 KCs (M = 72).

3.2.2. COBALIF neuron in Lava
Leveraging the approximations of the COBALIF neuron from Section 2.2, an algorithm

is developed (Algorithm 1), encompassing four distinct steps: (1) Spike checker, (2)

Computation of V [t + ∆t], (3) Computation of the conductances, and (4) Comparator.

This algorithm describes the steps, being executed within one timestep, when the neuron

is not in its refractory period τr. The software model updates a register of the simulation

times of each neuron in a matrix T . The neuron in the population is indicated by n.
If the neuron spiked in a previous timestep, the refractory period (τr) is added to the

current simulation time. This is saved in a register of the time during which the neuron is

in refractory T refrac. The neuron in the sub-threshold regime adheres to the following

functional steps:

1. Spike checker: If the neuron (n) is not in the refractory period (i.e. T ≤ T refac), it

will be passed through this step. Within each timestep, the code examines whether

excitatory and/or inhibitory pre-synaptic spikes have been received and adjusts the

respective synaptic strengths accordingly.

2. Computation of V [t+∆t]: This stage involves the computation of the membrane

potential for the subsequent timestep, according to Equation 3.6. This computation

necessitates the determination of steady-state current Iss[t] (Equation 3.10) and

potential difference dv[t] (Equation 3.11) at the current simulation time t.

3. Computation of the conductances: Conductance values are updated according

to the neuron’s dynamics according to Equation 3.9.
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4. Comparator: In this phase, the algorithm evaluates whether the neuron’s mem-

brane potential at [t + dt] surpasses the threshold. If this condition is met, a spike

is generated and transmitted through the output port. Otherwise, the spike value

remains zero. Additionally, depending on whether the neuron undergoes SFA,

a constant value γ is added to the adaptation conductance, thereby augmenting

the adaptation current. If the neuron spiked during the timestep, the respective

membrane potential will return to its resting potential Vr. Furthermore, the output

spike of the respective neuron (Sout) will be given a (timestamped) spike.

This algorithm is instantiated using the structure of Lava’s ProcessModel. As described
in Table 3.1, the sub-threshold dynamics of neurons within a layer adhere to identical

equations, with the constituent components specifying the nature of the conductance.

Furthermore, the unique parameters of the neurons can be found in Appendix B.

Algorithm 1: COBALIF in sub-threshold dynamics

Input: Se,Si

Internal Variables :T,Trefracge,gi,gIa, γ,Vr, t
Result: Sout

Step 1: Spike checker

while T ≤ Trefrac do

for n ∈ T do

if
〈
Se(n),Si(n)

〉
= 1 then

ge(n)← ge(n) + we

gi(n)← gi(n)− wi

else

if
〈
Se(n),Si(n)

〉
= 0 then

ge(n)← ge(n)
gi(n)← gi(n)

end

end

end

gIa(n)← gIa(n)

end

Step 2: Compute vn∈T according to Eq. 3.6

Step 3: Compute
〈
gn∈T
i ,gn∈T

e ,gn∈T
Ia

〉
according to Eq. 3.9

Step 4: Check if vn∈T ≥ vth
if vn∈T > vth then

gIa(n)← gIa(n)− γ

Sout(n)← 1
V(n)← Vr

T(n)← T(n) + τ

else

Sout(n)← 0
end
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3.3. Hardware design
The hardware implementation of the COBALIF neuron model is deployed on a Zynq 7000

SoC, using Verilog as the hardware description language. This hardware implementation

leverages the groundwork laid by the software implementation of the olfactory pathway

model, developed and simulated in Lava. The software model in Lava allows us to

demonstrate the feasibility and the working operation of the COBALIF neuron at a neuron

and network level. The FPGA-based hardware implementation provides a platform for

replicating the dynamics inherent in the olfactory pathway model. To this end, the design

concentrates on the realization of a single COBALIF neuron. This section is divided into

two parts: (i) the digital datapath of the COBALIF neuron, and (ii) its digital control.

3.3.1. Digital datapath
This subsection specifically covers the digital path for the COBALIF neuron. It starts with

the design choices regarding timing and the precision format, representing the numerical

values in the digital design. Afterward, the proposed digital design for the COBALIF

neuron is described, whereby the various design modules are presented.

Timing

The clock speed is 100 MHz and utilizes a synchronous clock. This design combines the

features of timestepped and event-driven dynamics [10]. To reduce the data movement,

we designed controllers to gate data movement between registers and solver modules

during refractory states. However, whenever an event (i.e., a spike) occurs, the systems

follow an updating scheme moderated by counters and controllers, which is unique to the

neuron. This requires each neuron to have two counters (their main counter and down

counter), which accommodate event-driven updates.

Precision format

In neuromorphic hardware implementations, the choice between single floating-point

precision and fixed-point precision entails a trade-off between computational accuracy

and resource efficiency. Single floating-point precision offers higher accuracy by allowing

for the representation of a wider range of values and finer granularity in numerical

computations [126]. This precision is particularly beneficial in applications requiring

precise modeling of neural dynamics and synaptic weights. However, the use of single

floating-point precision necessitates greater hardware resources, including increased

memory and computational units, resulting in higher power consumption and area

footprint [127].

On the other hand, fixed-point precision offers a more resource-efficient alternative by

representing numbers with a fixed number of integer and fractional bits [126]. While fixed-

point precision consumes fewer hardware resources compared to single floating-point

precision, it may result in reduced numerical accuracy and dynamic range, potentially

leading to quantization errors and loss of precision in neural computations [127]. Con-

sequently, the choice of the precision format is decided upon preserving the accuracy

of the computational values and thus having a larger dynamic range, which ranges

in magnitudes from nano to milli. Therefore, this design utilizes a single-precision

floating-point format.



3.3. Hardware design 35

The Xilinx Floating Point Operator (v7.1) [128] is a versatile hardware module de-

signed to perform floating-point arithmetic operations efficiently within FPGA-based

systems. The Xilinx Floating Point Operator integrates with the AXI-4 (Advanced eXten-

sible Interface 4) protocol [129], which is a widely adopted standard for interconnecting

and communication between intellectual property (IP) cores within FPGA-based systems

[129]. Figure 3.2 shows the core schematic symbol including its input operands, output,

and control signals. This operator has two input ports for the data of operands A and

B, which are processed in the core to generate the data for the output. The arithmetic

operation needs to be selected before utilizing it in a design module. The control and the

respective protocols are discussed in Section 3.3.2.

S_AXIS_A

s_axis_a_tdata[31:0]

s_axis_a_tready

s_axis_a_tvalid

S_AXIS_B
s_axis_b_tdata[31:0]

s_axis_b_tready

s_axis_b_tvalid

aclk

M_AXIS_RESULT

m_axis_result_tdata[31:0]

m_axis_result_tready

m_axis_result_tvalid

clk

Xilinx Floating-Point Operator (7.1)

32

32

32

<control signal>

<control signal>

<control signal>

<control signal>
<control signal>

<control signal>

s_axis_a_tdata

s_axis_b_tdata

m_axis_result_tdata

Figure 3.2: Xilinx Floating-Point operator (V7.1) core schematic symbol [128]. The

Floating-Point operator is divided into two input clusters (S_AXIS_A and S_AXIS_B) and one

output cluster (M_AXIS_RESULT), and follows the AXI4-Stream porting protocol. The direc-

tions of the arrows indicate whether the ports are input or output ports. Each cluster

contains 32-bit operand input (using single-precision floating-point format), which are de-

noted by s_axis_a_tdata and s_axis_b_tdata for operand A and B, respectively. The out-

put operand is given by m_axis_result_tdata (32 bits). All control signals are denoted

by <control signal> and are enabled with an active high. There are input control sig-

nals (s_axis_a_tvalid, s_axis_b_tvalid, m_axis_result_tready) and output control signals

(s_axis_b_tready, s_axis_a_tready, m_axis_result_tvalid). All signals are synchronous to

the aclk input, which is the system clock (clk) in our design.

Digital neuron unit design

The digital design of the COBALIF neuron adheres to Algorithm 1 in the software model.

The digital architecture of a single digital neuron unit (DNU), as depicted in Figure 3.3,

consists of multiple modules:

• Refractory timer: This module monitors the spiking activity of the neuron at each

time step and emits a signal (REFRACTORY) indicating the neuron’s refractory state.

This signal is essential to prevent arithmetic modules from performing computations

during the refractory period, accounting for a reduction in computations. Internally,

a countdown mechanism is employed to track the passage of the refractory period

τr, which is set to a duration of 2 milliseconds (see Appendix B [29]). The counter

is activated if a spike (SPIKE) is generated and if MAIN_COUNT is equivalent to
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zero, ensuring that the downcounter counts down in the following timestep. Upon

completion of the refractory period, the refractory signal is de-asserted, allowing

the computing modules to resume operation.

• Conductance update and storage: The module is managed by two control signals,

SPIKE and EVALUATE. The updates on the excitatory, inhibitory, and adaptation

conductance (ge, gi,andgIa) are triggered when EVALUATE is active high, as specified

in Step 3 of Algorithm 1. If the neuron spiked in the same timestep and has

SFA, the SPIKE signal triggers the augmentation of gIa with a constant SFA value.

Subsequently, the module stores these updated values for utilization in the next

timestep.

• Membrane update and storage: Within this module, the COBALIF algorithm (Step

2 in Algorithm 1) is executed, provided that the neuron is not in a refractory state.

This happens in a sequential whereby firstly EVALUATE triggers the computations of

Iss[t] and dv[t]. Subsequently, after de-asserting this signal, COMPUTE triggers the

computation of V [t+∆t].

• Voltage comparator: V [t+∆t] undergoes comparison with the threshold voltage

(Vth) within the same timestep, triggered by the ASSESS signal. In the event of a

neuron spike, an active SPIKE signal is generated, which is relayed to other modules

to initiate the refractory period.

• MUX 1 and MUX 2: MUX 1 operates under the control of the MODE 0, 1 signal,

determining the selection between the available synapse weight values for sub-

sequent summation to the MUX. MUX 2 facilitates the selection of the voltage for

the next timestep, which is controlled by the SPIKE signal. Only in case the SPIKE
signal is asserted, MUX 2 will select the resting potential Vr. Otherwise, the next

value for the membrane potential is the one computed in the same timestep.
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Figure 3.3: Architecture of a single digital neuron unit (DGU). This DGU consists of three

main modules, which are the Membrane Update and Storage, Conductance Update and Storage,

and the Refractory Timer. Controllers - not depicted in the figure - generate the control signals.

The signals adhere to a color-coding convention to enhance clarity.
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TheMembrane Update and Storage and theConductance Update and Storage consist

of multiple arithmetic operators, which are integral to the computation of the membrane

potential in the sub-threshold regime, like additions, subtractions, and multiplications. All

arithmetic operations are covered by the Floating-Point Operator (v7.1) IP. The quantity

of operations undertaken in Figure 3.4 provides an in-depth overview of these modules,

detailing the interfacing of computations facilitated by the Floating-Point Operator. The

Membrane Update and Storage encompasses computations for Iss[t], dv[t], and v[t +
dt]. Notably, the ISS Module omits the excitatory component, as the multiplication

between the excitatory potential (Ee = 0 [80] ) and the excitatory conductance yields

zero (see Equation 3.10). This exclusion of the excitatory component within the ISS

Module mitigates resource utilization while preserving computational efficiency. The

Conductance Update and Storage consists of two sub-modules for (i) updating the

excitatory and inhibitory conductances, and (ii) the SFA module for synaptic weight

adaptation. Depending on the neuron type, these sub-modules may not need to be

instantiated.
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Figure 3.4: Arithmetic operations in the DGU. The left-hand side of the diagram illustrates three

modules within the Membrane Update and Storage module: the ISS Module, DV Module, and V

Module, responsible for computing Iss[t], dv[t], and V [t+ dt], respectively. The DV Module and V

Module are governed by the EVALUATE signal. The V Module is controlled by the COMPUTE signal.

On the right-hand side, the Conductance Update and Storage module is depicted, responsible for

computing excitatory (ge[t+dt]), inhibitory (gi[t+dt]), and adaptation (gIa[t+dt]) conductances for
the subsequent timestep [t+dt]. This module necessitates an additional control signal (EVALUATE).
Furthermore, the SPIKE signal controls the augmentation with SFA in the SFA module.
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3.3.2. Digital control
There are two controllers, namely (i) Main Control and (ii) Refractory control. The digital

control mechanism plays a crucial role in managing the floating-point operator, thereby

optimizing data movements and minimizing switching activity. Notably, the inherent

characteristics of neurons dictate that no spiking activity occurs during the refractory

period, deactivating the arithmetic operations. Consequently, in this digital design, the

respective modules and components are disabled during the refractory period, thereby

minimizing switching activity. This strategy is facilitated by the controllers, which primarily

activate the modules exclusively during the sub-threshold regime, effectively functioning

as a computation gating technique. Figure 3.3 introduced the digital architecture of the

neuron and the control signals were briefly mentioned. Before explaining the design of

the controllers, we first introduce the AXI4 protocol, which is necessary to mediate the

data transactions of the Xilinx arithmetic operators.

AXI4 Protocol

The AXI4 protocol orchestrates data transactions through its control signals (tready
and tvalid). For input operands, tvalid signals initiate data transfer from the top-

down, while the tready signals indicate the readiness of the data channel for operations.

Conversely, in the output channel, these signals possess inverse definitions. In this

design, the floating-point operator operates in Blocking mode, ensuring data packets

are processed in pairs, akin to a queueing mechanism. Corresponding data pairs are

utilized in a single operation only when all input channels have validated data available

(tvalid for input channels and tready for the output channel). Thus, despite active high

signals for tvalid in the input channels, the operation is executed and presented at the

output channel only upon validation of the output channel as well. The overall delay

encompasses the intrinsic latency of the IP (i.e., 9 clock cycles) and the handshake signal

m_axis_result_tready. The diagram depicted in Figure 3.5 illustrates the protocol and

the queueing effect, ensuring the correct pairing of data samples on each input channel for

every operation. This mechanism is particularly beneficial in computations for membrane

potential, ensuring accurate sequencing of computations.
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Figure 3.5: AXI4 protocol in blocking mode Starting from the left-hand side, tready signals

from both input channels A and B are high, indicating readiness. However, the output channel

remains unprepared indicated by a grey zone. Data samples are concurrently supplied through

the input ports: A0, A1, and A2 for Operand A, and B0, B1, B2, and B3 for Operand B. This

particular configuration is set in single-precision floating-point format and executes the addition

of Operand A and Operand B. The operation and the corresponding result become available

only when all control signals are active high. This synchronization occurs in the third clock cycle

(blue-colored clock cycle), wherein the summation of A0 and B0 is presented following a brief

delay. Subsequently, as m_axis_result_tready transitions to a low state in the following clock

period, the output channel retains the outcome until all control signals revert to a high state. This

synchronization event takes place on the sixth clock cycle. Following a similar delay, the result

for the summation of A1 and B1 is made available.

Controllers

The above-mentioned control signals are generated by controllers and counters. Prior

to explaining the controllers, the design of the counters are described. Due to inherent

latency of the floating-point operator, there is a fixed latency, which is accounted for by

utilizing counters. There are two types of counters in the design:

• Main counter: This counter is automatically engaged when the global reset signal is

low and generates the MAIN_COUNT signal. Its counting operation only commences

when the neuron is not in its refractory period. The main counter functions for

10,000 clock cycles (adhering to the chosen timestep of 0.1 ms), guaranteeing that

all arithmetic operations are carried out and values are updated.

• Down counter: This counter is initiated when the neuron enters its refractory period.

It proceeds to count down from the specified refractory period, which is determined

by a local parameter. Once the countdown is complete, the counter is automatically

deactivated.

These counters run on a clock frequency of 100 MHz, which are governed by two

controllers (i) Main Controller and (ii) Refractory controller. The controllers generate a
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set of control signals. Their specific functions are outlined below:

• MODE 1,0: At the start of each timestep, provided the neuron is not in its refractory

period, the Main Control module generates an active high for the MODE 1,0 signal.

This signal serves as a selector for the MUX, to consequently select between

synaptic weights.

• REFRACTORY: The Refractory Controller issues this signal, which is exclusively set

to an active high when the refractory period is active. This refractory control

mechanism primarily regulates arithmetic operations, activating the FP blocks

exclusively during the sub-threshold regime.

• EVALUATE: This control signal is asserted when the main counter reaches 13 clock

cycles. The EVALUATE signal remains asserted during the computations of the

conductances, the Iss and dt.

• SPIKE: Although the spike signal indicates whether the neuron has spiked, it also

serves as a control signal. Upon detection of a spike, a down counter is triggered

in the next timestep, commencing a countdown that denotes the duration of the

neuron’s refractory period. It is noteworthy that in this scenario, the REFRACTORY
signal is high, indicating active reset.

• VALID: At each timestep, the synaptic weight performs addition of we,i and ge,i,
which is triggered by a high VALID signal from the Main Controller. Depending on

the current mode (MODE 0 for no spike and MODE 1 for a pre-synaptic spike), the

correct value for operand we,i is selected.

• COMPUTE: This signal triggers the computation of the membrane potential V [t+ dt].
The Main Controller moderates the signaling, whereby it only signals an active high

after EVALUATE is deasserted.

• ASSESS: This signal triggers the assessment of the updated membrane potential

V [t+ dt] with its resting potential Vr. This lasts while the counter is active, while all

other modules are deactivated.

Figure 3.6 shows the state machine diagram of the Refractory Controller. It facilitates

the control of regimes, i.e. placing the neuron in the refractory state or its sub-threshold

regime via a single control signal. Furthermore, it activates the downcounter when it is in

a refractory state.

IDLE WAIT
FOR SPIKE

SPIKE = 1 &
 COUNTER_ACTIVE = 0

REFRACTORY
STATE

COUNT_COUNTDOWN = 0

Figure 3.6: State diagram of Refractory Controller. These control signals support ensuring that

the Refractory Control (de)activates the refractory state for the neuron. Upon receiving a SPIKE,
the downcounter only initiates when the MAIN_COUNT is deasserted. Only, then, the countdown

mechanism is activated. During the countdown, the REFRACTORY is high until it is done. When it is

finished, it will automatically return to its Idle state. The reset signal is omitted for clarity.
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Figure 3.7 shows the state machine diagram for the Main Controller. This counter

initiates its operation when the neuron is not in its refractory period.
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COMPUTE
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Figure 3.7: State diagram of Main Controller. When the neuron is not in its refractory state

(i.e., REFRACTORY signal is low), the main counter is activated. The Main Controller controls all the

control signals of the DGU. For the sake of clarity, the FSM on the right-hand side illustrates the

state during which VALID signal is asserted. It is part of the Main Controller.
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Results

This chapter presents the outcomes of the proposed software and hardware designs.

Preceding the presentation of these outcomes, a comprehensive overview of the testing

and verification methodology is provided. The subsequent section presents the results

from the software simulations, wherein the dynamics of neuronal behavior are scrutinized

at the neuron and network levels. Furthermore, this section analyzes the distinct compu-

tational primitives, clarifying their potential contributions to artificial processing within a

small-scale SNN framework. Lastly, the findings from the hardware design are discussed,

focusing on the overall setup and comparison of hardware and software results at a

neuron level. Moreover, a conclusion is drawn on the resource utilization metrics of the

proposed COBALIF neuron on a Zynq 7000 SoC FPGA platform, presenting results from

a first hardware prototype.

4.1. Test and validation methodology
The testing and validation methodology comprises two distinct levels of evaluation, i.e. a

single neuron and a neural network. The former is dedicated to evaluating the dynamics

of individual neurons and comparing them with empirical data, aiming to assess their

fidelity to real neural activity within the olfactory pathway model of the Drosophila larva.

In contrast, the latter involves the comprehensive evaluation of the entire connectome.

Both levels of methodology serve as essential baselines for conducting software and

hardware tests, to validate the proposed model’s efficacy and accuracy across different

scales of neural activity representation. Figure 4.1 illustrates the simulation setups.

4.1.1. Neuron validation
The testing and analysis at the single neuron level entail the examination of two key

parameters: (1) spontaneous spike rate, and (2) updating potential. The first parameter

is instrumental in assessing the neuron’s spiking activity during baseline conditions,

which has been done in other works [32, 25, 29]. To validate the correspondence of

the proposed SNN model to its biological counterparts, the spiking activity of individual

neurons during baseline conditions must fall within predefined intervals. While the SNN

model (Figure 2.8) encompasses various neuron types - including ORNs, PNs, LN, APL,

KCs, MBINs, MBONs, and DANs - only the ORNs and PNs are considered for testing

purposes at the neuron level. This selection is based on the fact that only for these

neuron types their spiking activity have been reported as explained in Section 2.3.2.

43
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Figure 4.1: Software simulation setups. This figure illustrates the software setups for neuron

and system-level validation.

The assessment of baseline activity follows the simulation protocol outlined in Jür-

gensen et al. [29]. Each input provided to the ORN ensemble is generated using

stochastic point processes. Consequently, each ORN is linked to an ”invisible” receptor

input via a one-to-one synapse and is modeled using a gamma process. The Gamma

distribution, characterized by the rate and shape factor, features a baseline rate set to 65

Hz. This differs from the baseline value used in Jürgensen et al. [29]. The reason for the

adjustment was made was to ensure that the baseline activity of the ORNs would satisfy

the range, and to account for updated Python packages. Notably, unlike the Poisson

process where the rate of event occurrence remains constant over time, the intensity

function in a Gamma process may vary over time, enabling the modeling of phenomena

with varying event rates more accurately. The gamma process is generated utilizing

the StationaryGammaProcess module within the Elephant Python toolkit designed for

electrophysiological software simulations [130]. The shape parameter of the gamma

distribution determines the number of events being modeled, empirically set to 3.0 to

approximate real-world data [45]. Additionally, the ORN response rates are approximately

5 Hz, corresponding to the average firing rate (0.2 to 7.9 Hz) of a single neuron within

the ORN layer [131]. This definition is employed within the framework to compute the

spiking rate, thereby necessitating an evaluation duration of 1000 ms. Point processes

are utilized to represent a series of data points, often referred to as events, occurring

over a defined time period. StationaryGammaProcess module generates these point

processes, which represent the spiking inputs to the ORNs.

4.1.2. Network validation
The tests at the network level are focused on ensuring that the overall activity of the

SNN adheres to the computation primitives identified in Section 2.3, i.e. spatial and

temporal sparseness (or inhibition) and spike-frequency adaptation. The methodology

closely follows the one proposed by Jürgensen et al. in [29]. Their procedure focuses

primarily on the network level, whereby two natural odors (Amylacetate and 3-octanol)

and three artificial odors are used in an associative learning experiment. The framework

for the proposed solution of the thesis focuses only on the Amylacetate and compares

the network response with the one from Jürgensen et al. in [29]. Amylacetate has been

used in various odorant emulations and simulations as it is one of the fundamental odors



4.2. Software validation 45

to Drosophila larva [132]. The odor is generated with the StationaryGammaProcess and

each of the 21 ORNs receives a unique spiking pattern that simulates the spiking activity

of the sensory inputs.

The initialization and parameters of the neurons can be found in Appendix B.

4.2. Software validation
This section focuses on the software results following the two-stage process as explained

in the previous section. Firstly, the neuron validation is presented, whereby the spiking

activity of the ORN and PN are shown. Secondly, the software model is validated on the

network level.

4.2.1. Neuron validation
For the single neuron validation, an input spike train is generated between zero and 1000

ms (10,000 timesteps), as explained above. We will have a look at the temporal evolution

of the membrane potential as well as the excitatory and adaptation conductances. Firstly,

in Figure 4.2, the baseline activity of the ORN and PN are shown for Brian 2 and Lava

simulation runs. This figure shows that the Lava results correspond with those of Brian

2, concluding that the algorithm to update the membrane potential (see Algorithm 1) is

successfully implemented in the Lava framework. Furthermore, we can tell from this

figure when the ORN eventually spikes. This is the case when the membrane potential

rapidly decreases to its resting potential (Vr = −60mV ). Therefore, the ORN generated 5

spikes within the simulation time of 1000 ms, which satisfies the baseline firing frequency.

Moreover, from the plots of the conductances of the ORN and PN, we can conclude that

the two simulation models match and are within the expected range, i.e., 0.2 to 7.9 Hz

[45].
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Figure 4.2: Response of the ORN and PN in baseline activity. The ORNs and PNs are

subjected to a baseline activity, whereby spikes are generated with the StationaryGammaProcess

function. The input is related to the first ORN type (i.e, ORN 0) and thus we only consider this

ORN and its cognate PN within the respective glomerulus. The spiking activity is 5 Hz.
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4.2.2. Network validation
For network-level validation, we are presenting an odor input (i.e., Amylacetate) to the

model, which is modeled by the StationaryGammaProcess. In this case, the model

now also comprises LNs for lateral inhibition, KCs for sparse encoding, and the APL for

inhibiting the spiking activity of the KCs. The odor is presented between 1500 and 3500

ms in a 7s simulation. According to the simulation procedure in Figure 4.1, we validated

the network model in Brian 2 and Lava. Figure 4.3 shows that during odor presentation,

the activity and network response increases. This happens in the ORN layer, which is

subjected to SFA. The Lava model closely follows the Brian 2 model, which is specifically

presented in the adaptation conductance curve. At the odor onset, the ORNs rapidly

increase their activity, which can be derived from the potential membrane plots for both

neuron types. Consequently, the PNs exhibit a strong activation during odor onset

concerning its baseline activity with only 5 spikes/s. During odor presentation, we also

see a strong increase in inhibitory conductance of the PN, which accounts for the lateral

inhibition.

Figure 4.4 shows the spike raster plots of the ORNs, PNs, and LNs. Additionally,

on the right-hand side, plots are shown of the global spike count. Both models demon-

strate the effect of spike frequency adaptation - applied to the ORNs only - which results

in a decay of global spike counts. At odor onset, we find the highest count of spikes,

which gradually decreases. The difference between global spike counts is particularly

large in the PN layer, i.e. around 60 spikes. This is because Lava processes the incoming

excitatory and inhibitory signals in different timesteps, rather than simultaneously which

is the case in Brian 2. This could be resolved by creating a specific ProcessModel that

can account for these changes. ORNs and LNs only receive one type of neurotransmitter

input (i.e., excitatory). In these cases, we do not find a large discrepancy.
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Figure 4.3: Amylacetate network responses for PNs and ORNs. The odor is encoded in

orange in the figure. The figure includes the average time-varying responses of the PNs and

ORNs, consisting of the membrane potential, excitatory conductances, the inhibitory conductance

of the PNs, and the adaptation conductance of the ORN.
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Figure 4.4: Network response of ORNs, PNs and LNs to Amylacetate for Brian 2 and Lava.

The figure shows on the left-hand side the spike raster plots of the ORNs, PNs, and LNs. On the

right-hand side, the global spike count of these neuron populations is shown to show their activity

during odor presentation.
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To fully cover the network model without the learning part, we also simulated the KCs

Figure 4.5 shows the spiking raster of the KCs for both simulation models. The KCs in

both simulations are heavily inhibited by the APL to ensure reduced spiking activity. The

spike raster plot effectively encodes the sparse spatio-temporal code for the Amylacetate

odor. The spiking activity is sparser in the Brian 2 simulation, which is essentially due to

the same cause as explained previously. However, the overall level of sparseness for

both models is in agreement with empirical data [29].
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Figure 4.5: Response of Kenyon cells during odor presentation. The odor is presented in

orange.
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4.3. Hardware validation
The development and validation of the hardware design concentrate on the design of

the ORN. The digital design of the COBALIF neuron is introduced Chapter 3, wherein

all conductances are incorporated. However, for the ORNs, only the excitatory and

adaptation conductance modules are required, with the inhibitory conductance block

being omitted. This section begins by presenting the validation of the controllers and

counters, assessing the timing and control signals. Subsequently, we explain the neu-

ronal dynamics, encompassing the updating of the temporal components as outlined in

Algorithm 1. Lastly, an overview of the utilization of the resources are presented and

analyzed.

4.3.1. Control simulations
The two controllers (i.e., Main Controller and Refractory Controller) are validated through

examining their post-synthesis simulation results with the expected states and values

from their respective FSMs.

Main controller

The Main Controller is the top-level controller that checks if a digital neuron - at the start

of the timestep - is in refractory state or in sub-threshold regime. This is signaled by a

neuron-specific refractory signal (REFRACTORY). In case the neuron is in sub-threshold

regime, the main control activates the main counter for the respective neuron at the start

of the timestep. Contrarily, in refractory state, the counter should not be activated. In

Figure 4.6, two post-synthesis simulation waveforms present these two different cases.

Figure 4.6 demonstrates that in sub-threshold regime, the counter is activated by triggering

the COUNTER_ACTIVE signal. It also immediately checks if a pre-synaptic spike (PRE_SPIKE)
occurs during the first count. This drives the signaling of the MODE_0 and MODE_1 signals,

indicating if a spike is detected or not, respectively. The state machine for the main

control asserts the EVALUATE signal, initiating computations for the current simulation time

according to Algorithm 1 in the Membrane Update and Storage module .

In the second case, for a new timestep, a spike does occur during the evaluate state,

which triggers an active high for the REFRACTORY signal. The main counter is then in

refractory state, where the counter is quiescent. These simulations show that the FSM

specifications - as described in Subsection 3.3.2 - are met.
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IN REFRACTORY STATE
counter_active = 0

IN SUB-THRESHOLD REGIME
counter_active = 1

Figure 4.6: Post-synthesis simulations for Main Control. The figures represent the neuron in

(i) sub-threshold regime and (ii) in refractory period. In the first case, the main counter is activated,

because REFRACTORY is low, i.e., the neuron is not in refractory state. The Main Control generates

an active high counter_active signal. Contrarily, in the second case, the counter_active is

low as the neuron is its refractory period.
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Refractory controller

The Refractory Controller is in charge of two crucial mechanisms (i) activating the count

down module, and (ii) moderating the comparator. Figure 4.7 shows the validation of the

count-down activation triggered by the refractory state controller. The refractory counter

employs a countdown mechanism that is equivalent to 64 clock cycles. It is controlled by

the refractory state machine, for which Figure 4.7 shows that it is activated when a spike

occurs when the main counter is at count 29. This value is taken to be 64 for illustrative

purposes, but it can be adjusted according to the chosen refractory time. Since these

simulations are only focused on single-neuron design. This suffices to demonstrate the

operatibility of the countdown mechanism.

Figure 4.7: Post-synthesis simulations of the activation of the countdown module. This

figure presents the activation of the count down, when a spike has been generated.

In Figure 4.7 for the main_count signal other numbers such as 28 and 30 were given,

which are the two small signal changes before the yellow line on the main_count line. As

expected and according to the FSM - it does not trigger the refractory controller. Only

when the main counter is 29, the count down from 64 to zero starts.

Figure 4.8: Post-synthesis simulations for refractory state control (Close-up). This is a

close-up showing that the FSM of the refractory control is satisfied, whereby the state in which it

is counting down cannot be obstructed.

In Figure 4.8 even when the main count goes back to zero - according to how the

main counter would go back after reaching count 29 - the countdown mechanism still

remains active and continuous to count down, starting from 64 to 63 onwards. Note

that also at some point in time, the spike goes to zero, but still, the countdown remains

counting.

The Refractory Controller also activates the comparator after all neuronal compu-

tations have been executed. After computing the V [t+∆t], that value will be given as

an input to the comparator. This value is compared with the resting potential of the

respective neuron. When this membrane potential is equivalent to the resting potential,

the comparator will generate an active high for the REFRACTORY signal, putting the neuron

in its refractory state. Figure 4.9 demonstrates this operation.
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Figure 4.9: Post-synthesis simulation upon exceeding the membrane potential. The blue

arrow indicates the membrane potential and the green arrow indicates the point at which the

neuron potential is equivalent to the threshold voltage. Consequently, the REFRACTORY signal is

triggered, putting the neuron in a refractory state.
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4.3.2. Neuronal dynamics
The above-mentioned controllers moderate the execution of the arithmetic operations

and their timings. Based on the digital architecture design of the neuron, the validation of

the neuronal dynamics was carried out in three phases: (i) updating the pre-synaptic

weight, (ii) updating the ISS and DV, and (iii) computing the membrane potential for

the next timestep according to the Forward Euler technique. Each phase is controlled

by control signals from the Main Controller. In the first phase, the associated control

signals are VALID. The second and third phases are controlled by EVALUATE and COMPUTE,
respectively. In order to maintain a readable resolution of the waveforms, the full-scale

timestep of 0.1 ms is not shown in the following figures.

Figure 4.10 shows how the pre-synaptic weight module updates the current excitatory

conductance upon receiving a spike, concerning Case (i). This is triggered by the VALID.
Only when a pre-synaptic occurs, the excitatory conductance will be updated. The figure

demonstrates the correct functionality of the VALID.

Figure 4.11 shows the post-synthesis simulation results, targeting the membrane

potential for an ORN. This figure serves as a validation of Case (ii) and Case (iii). The

ORN has two conductance elements, namely excitatory and adaptation. This figure

demonstrates how the membrane potential is updated during its sub-threshold regime.

Given that the neuron has not spiked yet, its adaptation weight will remain zero throughout

the simulation. The simulation is divided into five periods (T1, T2, T3, T4, T5). The neuron

receives an excitatory, pre-synaptic spike in the odd-numbered periods. According to

the FSM, it will first update the excitatory weight by adding the synaptic constant upon

spike. This is triggered by the VALID signal. Then, the main control will give an active

high for EVALUATE signal, initiating the computations of the components ISS and DV in

the Voltage Update and Storage Module. Then, the signal COMPUTE is activated, which

allows for the computation of the membrane potential in the next timestep, i.e. V [t+∆t].
The blue arrows in the figure indicate that the updated membrane potential is computed

for and available in the next timestep.

Regarding the validation of the computed values, we present a table of the expected

values for each parameter in the algorithm and the generated values using the digital

neuron design. In the table Table 4.1, we can verify that the overall arithmetic operators

perform according to the state machines and perform the correct operations in the correct

order. This ensures the correct operability of the neuron in the sub-threshold regime.

Table 4.1: Comparison of software and hardware (in purple) computations results in sub-threshold

regime for ORN 0. A spike is indicated with a green colour.

Timestep ge[t] [nS] Iss[t] [ A] dv[t][-] V[t] [mV] V[t+dt] [mV]

T1 3.0000 3.0000 0.00800 0.007999 −0.060000 −0.0599999 −0.059820 −0.059820
T2 2.9400 2.9400 0.007940 0.007939 −0.0598200 −0.0598200 −0.059645 −0.059645
T3 5.8812 5.8812 0.0108112 0.01081199 −0.05964500 −0.05964503 −0.059296 −0.059296
T4 5.7635 5.7635 0.0107600 0.0107635 −0.05929599 −0.05929602 −0.058957 −0.058957
T5 8.64830 8.648305

3× 10−10 3× 10−10

0.0136483 0.0136483 −0.0589577 −0.0589577 −0.058453 −0.058453
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1
2

Figure 4.10: Case i: Updating the excitatory conductance of a post-synaptic neuron due to a

pre-synaptic spike. This simulation demonstrates the working principle of updating the excitatory

conductance (or excitatory synaptic weight) for two cases: (1) no spike, and (2) a pre-synaptic

spike occurred. The pink arrow shows that in Case (1) the excitatory conductance performs a

summation with 0, but in Case (2) it selects the weight to update the excitatory conductance

strength. The blue arrow - pointing at updated_presyn_weight - shows that this update weight

passes through the multiplication before it updates the updated_presyn_weight. This value is

instantly available in the next timestep. Hence, the yellow arrow shows that this selected weight

(3 nS) is added to the current excitatory conductance of the respective post-synaptic neuron. The

blue arrow crossing the figure indicates that the final updated value is visible at the start of the

next time step.
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Figure 4.11: Case ii and iii: Computing ISS and DV, and V [t+∆t] using the Voltage Update

and Storage Module.
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As the timestep for updating membrane voltage is 0.1 ms (∆t), Figure 4.12 serves as

demonstration of how the membrane potential updates every timestep, using the exact

same mechanism as explained above. This figure confirms that the neuronal state is

computed on a time-step basis, which is similar to the software design.

MAIN CONTROL

T1 T2 T3

Figure 4.12: Updating V [t+∆t] in timesteps of 0.1 ms using the Voltage Update and Storage

Module.

4.3.3. Resource utilization
For a single ORN, the post-implementation resource utilization is summarized in Table 4.2.

This table indicates the allocations of the look-up tables (LUTs) and flip-flops (FFs).

Additionally, there are the IO (related to the input and output ports of the FPGA) and the

BUFG (global clock buffer). Table 4.2 shows that for a single neuron (utilizing single-

precision floating-point operators) the resource utilization is low, i.e. 0.13% for LUTs and

0.13% for FFs. Consequently, it is possible to scale the design to about 750 COBALIF

neurons. As for the IO and BUFG, these are more global, architecture-independent

parameters. The former accounts for the four input signals (including the system clock,

system reset, an artificial spike input, and an additional initialization signal) given during

simulations, which are automatically interpreted as real input ports during synthesis and

implementations. To account for this, the on-board BRAM can be used to store input

signals and specifically input spikes such as the odor-specific spike trains. The latter was

instantiated by the Vivado synthesis and implementation tools, and may not scale with

the number of neurons as it accounts for a global, reusable signal.

Table 4.2: Post-implementation resource utilization of a single digital COBALIF neuron

Resource Utilization Available

LUT 67 (0.13%) 53200

FF 143 (0.13%) 106400

IO 4 (3.20 %) 125

BUFG 1 (3.13%) 32



5
Conclusion and Future Work

Numerous studies have been dedicated to small spiking neural networks designs em-

ploying efficient neural processing with a minimal power consumption. The olfactory

pathway model of the Drosophila is a well-studied example of a low-footprint system,

capable of performing chemo-sensory processing including learning, and anticipating

their behaviour accordingly on the fly. Consequently, many studies have conducted

research to explore its neural architecture and processing. This thesis proposes a phe-

nomenological conductance-based leaky integrate-and-fire (COBALIF) neuron, which

is used in a digital solver design on a Zynq 7000 SoC. It is followed by synthesis and

implementation, accounting for approximately 67 LUTs and 143 FFs for a single neuron,

showing that scaling to∼750 neurons is possible with the selected FPGA. We summarize

below the key takeaways of this work addressing the main research question:

1. The proposed computational model of the COBALIF neuron provides a feasible

solution for emulating and preserving the spatio-temporal dependencies of the

neural behaviour in the olfactory pathway model of the Drosophila larva.

2. A digital circuitry comprised of arithmetic operators that solve partial differential

equations using single-precision floating-point arithmetic can yield results that align

with those obtained through software, while maintaining accuracy across a dynamic

numerical range.

3. Utilizing digital controllers as data gating mechanisms on the selected FPGA can

serve to mitigate high data traffic and transitions in time-multiplexed designs, without

sacrificing the granularity level.

The proposed model for the COBALIF neuron has demonstrated successful com-

putational processes, updating the neuron’s state at intervals of 0.1 ms. This model

lays a foundation for scaling up to small-scale SNN networks. The model was firstly

benchmarked on Intel’s Lava framework using Python to validate the design at spik-

ing neuron- and network-level. To this end, the three stages of the olfactory pathway

model of the Drosophila larva were modeled. Through verification with experimental

data, including baseline activity and odor presentation with Amylacetate, we employed

an algorithm utilizing Forward Euler approximation without tuned temporal parameters.

Comparison of spiking activities between Lava and its prior-version in Brian 2 highlighted

similarities. To evaluate the feasibility of maintaining the same level of accuracy of the

spatio-temporal concepts of the COBALIF neuron, a digital counterpart of the neuron

model was developed. This digital neuron unit integrates digital solvers for differential
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equations and controllers to minimize data movement during refractory states. We vali-

dated the digital COBALIF neuron design through post-synthesis simulations in Vivado

at a clock frequency of 100 MHz. The computations were compared with software re-

sults, confirming maintained accuracy compared to software results. The event-driven

updating of the neuron ensures fine granularity. Further validation of the FPGA-based

digital design is necessary to assess its potential deployment on FPGA during the post-

implementation phase. This continued validation from a hardware perspective would

contribute significantly to our understanding of its practical application and scalability.

To further elaborate on the scope and significance of these takeaways, our research

explores potential avenues and areas for future work:

• Full-scale modelling on the FPGA: In future work, given that we can scale to ap-

proximately 750 COBALIF neurons, we can implement the entire olfactory pathway

model. Binary odor inputs can be stored in the BRAM of the FPGA. The validations

of the hardware design can then be validated on the FPGA board, whereby the

FPGA acts as a stand-alone device that is able to update the state of the neuron in

the population for any given input.

• Neuromodulation mediating online learning: The learning part of the olfactory

pathway model has been discarded in this thesis. In future work, the learning

through neuromodulatory neurons can be simulated. Due to the modularity of this

design, the type of neurons can be expanded to accommodate for dopaminer-

gic neurons and employing their learning rules on the FPGA board. To address

bio-plausible operations at the neuron level within a footprint suitable for edge com-

puting applications, the digital neuron design could be also used for solely dynamic

learning solutions. While this thesis primarily focused on prototyping olfactory-

inspired neurons, future efforts could delve into exploring learning principles, such

as prediction error coding inspired by neuromodulation in the mushroom body.

• COBALIF neuron on neuromorphic hardware: As the COBALIF neuron has been

both validated in hardware and software (i.e., Lava framework), its computational

model can be programmed in microcode to benchmark it on neuromorphic hardware,

i.e., Loihi 2. This would be a potential avenue to implement the model in a fully

neuromorphic platform, which would circumvent the usage of any time-multiplexed

processes, offering a fully event-based implementation.

In summary, this thesis offers an initial, compelling prototype in olfactory pathway

modeling. The proposed neuron model utilizing digital circuitry may serve as a building

block for expansion and the outline of future work provides a framework to continue the

exploration of this design on small network level.
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A
Lava Framework

Lava provides a convenient platform for the development and testing of neuromorphic

algorithms on conventional von-Neumann hardware, such as CPUs [124]. It facilitates

a prototyping platform before deployment onto specialized neuromorphic processors

like the Intel Loihi 1 and Loihi 2 processors. Moreover, Lava can accommodate custom

implementations of neuromorphic behavior and to support diverse hardware backends,

which can be accessed through their Python libraries.

The architecture of the Lava framework is structured to separate the interface from

the behavior of the neuron process, enhancing its compatibility with hardware, which

is done by creating a Process and its ProcessModel. The Process Python file defines

the specifications of the interface, encompassing input and output characteristics. The

ProcessModel Python file encapsulates the behavioral aspects of the model, including

neuron equations and synaptic dynamics. This framework facilitates the utilization of a

uniform interface across various hardware backends, enabling the integration of multiple

neurons with distinct specifications but a shared interface, as defined in the Process.
Consequently, to characterize the neuron (the soma) and its computational operations, a

ProcessModel named modelCOBALIF.py and a Process named ProcessCOBALIF.py

were developed, which can be accessed upon request. The design of these models

follows the Lava framework.

A Process contains three building components, which characterize the connectivity of a

ProcessModel. It contains two definitions of ports (InPort, OutPort) that interface with

other modules, and a set of interface-specific attributes (Var):

• Input ports (InPort): input ports connect the current Process with other Processes.
• Output ports (Outport): output ports link the outputs of the current Process with

other Processes.
• Variables (Var): each Process may have internal variables that can be instan-

tiated through the main.py code, and can only be accessed by the respective

ProcessModel.

Even synapses require a ProcessModel and Process. For this model, the Dense
ProcessModel and Process will be used, which essentially translate a connectivity

matrix into a Lava-proof module with defined ports. Figure A.1 shows illustrations of two

Process blocks, each containing two input ports, two variables, and one output port. The

connection between the Process blocks is generated by another Process for synaptic

connections, such as the Dense Process with a one-to-one connectivity matrix.
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Process
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out1

Process

in_A

in_B
var1 var2

out2 OutPort

InPort
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Figure A.1: Fundamental building blocks in the Lava architecture. The figure shows two

Process blocks, each containing two input ports, two variables, and one output port. The connec-

tion between the Process blocks is generated by another Process for synaptic connections, such

as the Dense Process with a one-to-one connectivity matrix.

Lava employs a standardized protocol for transmitting spikes across layers and

processes [124]. Consequently, for this thesis model, an additional script is built to verify

that the input data adheres to the specified format, ensuring that only a single spike

occurs within each timestep, mirroring the approach adopted in Brian2. This script can

be accessed upon request. Input data is supplied through the Source module, which

generates an array buffer containing input signals for each input neuron (ORN), indicating

spike occurrences for each timestep. Each neuron (Process) has two input ports for

inhibitory and excitatory spike input, and one output port that sends out the spikes to the

next Process (i.e. via a synapse). During each timestep, only one spike per neuron may

occur, which is an intrinsic property - found in the Brian2 simulator too.



B
Model parameters

This appendix serves as an overview of the parameters used in software and digital

simulations. Table B.1 includes the parameters of the following neurons: ORNs, PNs,

LNs, APL, and KCs. The synaptic parameters and weights are presented in Table B.2

and Table B.3, respectively. Table B.4 and Table B.5 shows the adaptation parameters

related to SFA, and the general simulation parameters, respectively. The values are

based on the model from Jürgensen et al. in [29].

Table B.1: Neuron parameters

ORN PN LN KC APL

CORN
m CPN

m CLN
m CKC

m CAPL
mMembrane Capacitance [pF]

100 30 50 30 200

V ORN
th V PN

th V LN
th V KC

th V APL
thThreshold potential [mV]

−35 −30 −30 −35 −30
V ORN
r V PN

r V LN
r V KC

r V APL
rResting potential [mV]

−60 −59 −59 −55 −60
gORN
L gPN

L gLNL gKC
L gAPL

LLeak conductance [nS]
5 2.5 2.5 5 5

EORN
L EPN

L ELN
L EKC

L EAPL
LLeak potential [mV]

−60 −59 −59 −55 −60

Table B.2: Synaptic parameters

Excitatory potential EE [mV] 0

Inhibitory potential EI [mV] −75
Excitatory time constant τe [ms] 5

Inhibitory time constant τi [ms] 10
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Table B.3: Synaptic weights

Input-ORN [nS] winputORN 3

ORN-PN [nS] wORNPN 10

ORN-LN [nS] wORNLN 4

LN-PN [nS] wLNPN 1

PN-KC [nS] wPNKC 1

KC-APL [nS] wKCAPL 20

APL-KC [nS] wAPLKC 50

Table B.4: Adaptation parameters

Adaptation time constant [ms] τIa 1000

Adaptation reversal potential [mV] EIa -90

Increase of SFA conductance ORN [nS] ORNSFA 0.1

Increase of SFA conductance KC [nS] KCSFA 0.02

Table B.5: Simulation parameters

Refractory time [ms] τr 2

Time step [ms] dt 0.1
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