

Comparing the impacts of geometry level of detail in computational wind engineering with on-site urban measurements

Pinelopi-Eirini Kountouri

Supervisor 1: Clara García-Sánchez Supervisor 2: Ivan Pađen Co-reader: Nadine Hobeika

External advisor : Nijso Beishuizen, Bosch

Why 'modeling wind in urban environments' ?

3 Motivation

Scope of research

- Create automatically a 3D model of Stanford University at LoD1.2
- Use the open source City4CFD
- Use LoD1.2 model and manually reconstructed model at LoD2.1 as input in CFD simulations
- Compare results with on-site measurements
- Determine which model is more appropriate
- **Execution time** and **results** closer to measurements
- ✓ Applicable to other similar scenarios

Main research question:

What is the impact of different geometry LoDs for the wind around an urban environment?

Sub-questions:

- What are the **needed steps** to automatically reconstruct a 3D city model?
- How large can be the **differences** introduced by geometry discrepancies?
- Is it possible a higher LoD geometry better predict real-world measurements?

Level of Detail

LoDO : Depiction of footprints, and potentially roof edge polygons

LoD1 : Horizontal flat roof surfaces

- **LoD2** : More detailed multi-pitched roof shape
- LoD3 : Highly detailed building model with windows and doors

LoD4 : Complete model with indoor elements

Source: An improved LOD specification for 3D building models https://www.sciencedirect.com/science/article/pii/S0198971516300436

Research Questions

6

Level of Detail

LoDO : Depiction of footprints, and potentially roof edge polygons

LoD1 : Horizontal flat roof surfaces

LoD2 : More detailed multi-pitched roof shape

LoD3 : Highly detailed building model with windows and doors

LoD4 : Complete model with indoor elements

✓ "TUDelft LoDs" more beneficial for wind analysis

OGC standard: CityGML 2.0

Source: An improved LOD specification for 3D building models https://www.sciencedirect.com/science/article/pii/S0198971516300436

9

Datasets - Footprints (1/5)

Microsoft Maps:

- 11,542,912 footprints for California (EPSG: 4326)
- Crop ROI
- Footprints are missing

Open Street Map:

- Plugin QuickOSM
- Extract 206 footprints
- Export to EPSG 6419

Datasets - Footprints (2/5)

17 Case Study

Datasets - Vegetation (3/5)

Open Street Map:

- Plugin QuickOSM
- Extract Vegetation
- Manual digitization
- Export to EPSG 6419

Case Study

18

Datasets - Point Clouds (4/5)

U.S Geological Survey:

- Nine point cloud tiles published in 2021
- Thinning
- Merge into 1 point cloud
- Extract buildings and terrain

Datasets - Point clouds (5/5)

Classified point cloud:

- Class 2: Ground
- Class 6: Buildings

Point Cloud ID	Initial size	Subsample (3m)	Subsample (4m)	Subsample (5m)
A20_07259800	14,213,805	960,593	568,101	372,101
A20_07259825	13,750,364	902,819	533,533	350,182
A20_07259850	15,043,391	1,192,588	712,670	468,317
A20_07509800	13,644,984	953,914	564,937	370,333
A20_07509825	13,245,837	922,218	546,703	359,418
A20_07509850	13,281,408	935,342	551,961	363,194
A20_07759800	14,458,018	1,012,626	593,315	389,121
A20_07759825	14,299,969	1,010,662	597,720	393,796
A20_07759850	14,570,931	1,084,323	645,617	427,786
Merged Point Cloud	-	8,975,085	5,314,557	3,494,248

City4CFD Output - LoD1.2 model

LoD1.2 Model:

- Vegetation and buildings are seamlessly integrated into the terrain
- 142 buildings
- Execution time: 0.95 min.
- 100% success

Comparison between models: Level of detail (1/3)

LoD1.2: Horizontal flat roof surface

LoD2.1: More detailed multi-pitched roof shape

Comparison between models: Level of detail (2/3)

LoD1.2 captures details up to 2.5D

LoD2.1 full 3D geometry (open passages, columns)

Comparison between models: Different time period of input data (3/3)

LoD1.2: Buildings that not exist in LoD2.1

LoD2.1: Two buildings are missing in Lod1.2

CFD simulation set up: Define initial wind direction and wind speed

- Analysis of wind speed and TKE over a period of three days (10-12 October)
- Identify an hour with stable wind speed and TKE
- Assume steady flow
- Less fluctuations during night

Most **steady hour** : October 12th between 3-4 a.m.

CFD simulation set up: Initial Conditions

Weather station

Day	Time	Wind Direction (degrees)	Wind Speed (m/s)
2017-10-12	03:00:00	220.3	3.03978542691104
2017-10-12	04:00:00	214.8	3.08448815377738
	Mean	217.55	3.06

U inltet	U*	k [m2s-2]	e [m2s-3]	
3.06	0.297679940741515	0.29538	0.00316934	

26

Computational model set up: Computational domain (1/2)

✓ Best practices guidelines by Blocken [2015]

- Set Inlet, lateral and top boundaries
- Set outflow boundary
- Hoover Tower: 75m
- Domain size:
 - 2 x 3 km2 in the horizontal direction
 - 530m in the vertical direction

Computational model set up: Computational mesh (2/2)

	Background Mesh (cells)	Mesh (million cells)	Resolution x and y direction (m)	Resolution z direcction (m)	Time
Coarse	512.000	12	14	14	15min
Nominal	772.000	23	12	9	40min
Fine	1.400.000	34	10	9	1 hour

28

Mesh convergence (1/4)

Excecution time					
Itterations	fine				
5002	5h	8h	13h		
8002	10h	14h	23h		

Mesh convergence (2/4)

Mesh convergence (3/4)

Mesh convergence (4/4)

Measurements

	Station 1	Station 2	Station 3	Station 4	Station 5	Station 6
Umean 1hour [m/s]	0.49	0.71	1.91	0.80	1.20	1.82
Umean 45min [m/s]	0.50	0.72	2.01	0.80	1.25	1.94

Comparison between models and measurements:

1-Hour Average Measurements

34 **Results**

Comparison between models and measurements:

45min Average Measurements

35 **Results**

Contour plots of wind velocity

S3 UMagnitude 0.0 1.0 2.0 3.0 4.0 5.0 Min: 0.0 Max: 4.1

Station 2: LoD2.1

Station 3 : LoD2.1

Station 5 : LoD2.1

Station 2: LoD1.2

Station 3 : LoD1.2

Station 5: : LoD1.2

Contour plots of TKE

Station 2: LoD2.1

Station 3 : LoD2.1

Station 5 : LoD2.1

Research Questions

Main research question:

What is the impact of different geometry LoDs for the wind around an urban environment?

Sub-questions:

- What are the **needed steps** to automatically reconstruct a 3D city model?
- How large can be the **differences** introduced by geometry discrepancies?
- Is it possible a higher LoD geometry better predict real-world measurements?

Addressing research questions

Sub-questions:

- What are the needed steps to automatically reconstruct a 3D city model?
- How large can be the differences introduced by geometry discrepancies?
- Is it possible a higher LoD geometry better predict real-world measurements?

1.Geometry preparation:

- Data collection

 Footprints
 Vegetation
 - -Point cloud
- Data pre-processing
 - -Cleaning of data -Crop to ROI -Extract Buildings & Terrain
- City4CFD

-automated reconstruction

2.Impact of LoDs

- LoD2.1 better performance

 -20% error
- LoD1.2 less accurate -40% error
 - Over 60% error
- 30% difference

3. More accurate predictions

- Higher LoD geometry -better predictions
- Less detailed LoD1.2 model
 higher error
- Increased simulation time with Lod2.1 approximately 2 hours
- Geometry preparation time
 one day LoD1.2
 - appr. 1-2 months LoD2.1

Addressing research questions

Sub-questions:

- What are the needed steps to automatically reconstruct a 3D city model?
- How large can be the differences introduced by geometry discrepancies?
- Is it possible a higher LoD geometry better predict real-world measurements?

1.Geometry preparation:

- Data collection

 Footprints
 - -Vegetation
 - -Point cloud
- Data pre-processing
 - -Cleaning of data -Crop to ROI -Extract Buildings & Terrain
- City4CFD

40

-automated reconstruction

2.Impact of LoDs

- LoD2.1 better performance

 -20% error
- LoD1.2 less accurate -40% error
 - Over 60% error
- 30% difference

3. More accurate predictions

- Higher LoD geometry

 better predictions
- Less detailed LoD1.2 model
 higher error
- Increased simulation time with Lod2.1 approximately 2 hours
- Geometry preparation time

 one day LoD1.2
 - appr. 1-2 months LoD2.1

Addressing research questions

Sub-questions:

- What are the needed steps to automatically reconstruct a 3D city model?
- How large can be the differences introduced by geometry discrepancies?
- Is it possible a higher LoD geometry better predict real-world measurements?

1.Geometry preparation:

- Data collection

 Footprints
 - -Vegetation
 - -Point cloud
- Data pre-processing
 - -Cleaning of data -Crop to ROI -Extract Buildings & Terrain
- City4CFD

-automated reconstruction

2.Impact of LoDs

- LoD2.1 better performance
 -20% error
- LoD1.2 less accurate -40% error
 - Over 60% error
- 30% difference

3. More accurate predictions

- Higher LoD geometry -better predictictions
- Less detailed LoD1.2 model
 higher error
- Increased simulation time with LoD2.1 approximately 2 hours
- Geometry preparation time
 one day LoD1.2
 - appr. 1-2 months LoD2.1

What is the impact of different geometry LoDs for the wind around an urban environment?

LoD2.1 Model Vs LoD1.2 Model

Enhance accuracy with the use of more complex geometry

LoD2.1 model, which includes more complex and detailed features showed better performance in simulating wind velocities

✓ Validate the results in other time periods

Future work

Create a more **realistic** model

THANK YOU FOR YOUR ATTENTION