DIFFERENCES IN STEERING BEHAVIOUR BETWEEN EXPERTS, EXPERIENCED AND NOVICE DRIVERS: A DRIVING SIMULATOR STUDY

NAMAN SINGH NEGI Precision and Microsystems Engineering Department

SUPERVISORS:

DR. IR. RIENDER HAPPEE IR. PETER VAN LEEUWEN

Bio-Mechatronics and Bio-Robotics Engineering Department

Mechanical, Maritime and Materials Engineering Delft University of Technology, Netherlands

PRESENTATION OUTLINE

- 1.INTRODUCTION TO THE TOPIC2.PAST RESEARCH3.OBJECTIVES4.FXPERIMENTS
 - a) RACING EXPERIMENT
 - b) DOUBLE LANE CHANGE EXPERIMENT
 - c) HIGH SPEED CORNERING EXPERIMENT
- **5.RESULTS AND DISCUSSION**
- 6.GENERAL DISCUSSION
 - a) COMBINED SUMMARY OF THE 3 EXPERIMENTS
 - b) PROS AND CONS OF THE EXPERIMENTS
- 7. FUTURE RESEARCH

Growth Of The Automotive Industry 1886 Benz patent "vehicle powered by a gas engine"

1908 Launch of Model-T

1913-1914 Conveyor belt-based assembly line

1927 A total of 15 million Model T's sold

The Rising Issue of Safety

Road crashes

nearly 1.3 million people die each year
average 3,287 deaths a day

➢9th leading cause of death➢2.2% of all deaths globally

cost USD \$518 billion globallyequivalent to1-2% annual GDP

5

SAFETY LEGISLATION AND MEASURES

6

ADVANCED DRIVER ASSIST SYSTEM (ADAS)

- Support the driver in completing a task
- Complete or Partial Automation of the task
- > Electronic Stability Control (ESC) System
- Issues
 - Setting the threshold
 - Different driver needs
 - > Nuisance ("Cry wolf effect")

PAST RESEARCH

>NOVICE DRIVER

familiar with the task of drivinglimited driving experience

>EXPERIENCED DRIVER

certain level of expertisedriving experience

>EXPERT DRIVERS

high level of driving proficiency
 race car drivers, instructors in driving school

PAST RESEARCH

Difference between drivers
 Performance
 Control Strategy and behavior
 Higher steering activity
 Steering wheel angle
 average steering jerk
 frequency of steering inputs
 Consistency and repeatability

OBJECTIVES

9

≻Focus

➢novice, experienced and expert drivers

➤steering behavior

Extreme driving (cornering and lane change)

Objective driver metrics

>performance

>behavior

10

3 driving simulator based experiments

Expert race drivers versus normal driversHigh speed driving task in a racing environment

Experienced versus novice drivers
 Double lane change
 High speed cornering

11

RACING EXPERIMENT

12

DOUBLE LANE CHANGE MANEUVER

13

HIGH SPEED CORNERING

RACING EXPERIMENT

Curve 1: Long right hand curve, which turns through nearly 200 degrees

Curve 2: Combination of two fast curves

Curve 3: 180 degrees hairpin curve

14

15

PERFORMANCE

≻experts

≻better performance

➤lower lap-times (5 - 7 %)

 \geq higher lateral acceleration (10 – 15 %)

STEERING BEHAVIOR

>Experts

higher steering activity

Steering jerk 1.5-2 times higher in curve 1 and 2

16

PATH STRATEGY

DOUBLE LANE CHANGE (DLC)

- ➤3 main steering inputs
- ≻Maneuver A-C

17

- ≻Maneuver C-D
- ≻Maneuver D-F

11.

≻Novices

18

offset from center position while entering the first lanedelay in control inputs

19

PERFORMANCE

20

REPEATABILITY EXPERIENCED vs NOVICES 0.45 -EXPERIENCED NOVICES 0.4 -0.35 -RMSD MEAN PATH (m) 0.3 -0.25 0.2 9 0.15 0.1 -0.05 ∟ 70 75 , 80 , 95 , 100 Т I. 85 90 105 SPEED (kmph) **Root Mean Square**

Deviation From Mean Path

CONTROL STRATEGY

Novices

21

>hig/eerinsitieering x intivities for the sense of the se

Novices

➢insufficient initial input

➤ imprecise timing

>lag behind in terms of input versus vehicle positioning

≻try to compensate for this lag

higher steering activity in the later stages

≻steering jerk (30%)

23

HIGH SPEED CORNERING TASK

PERFORMANCE

24

Experienced drivers
 better performance
 lower lap-times (14%)
 maintain a higher lateral acceleration (14 %)
 similar to results from the racing experiment

STEERING BEHAVIOR

Experienced drivers
 higher steering activity
 steering jerk (12%)
 steering reversal rate(20%)
 similar to the results found in the racing experiment

PATH STRATEGY

>No particular strategy

Novices
higher deviation from their mean path
0.68 meters (experts = 0.52 m)
p<0.05</p>

26

GENERAL DISCUSSION

COMBINED SUMMARY OF THE 3 EXPERIMENTS

PERFORMANCE

➢Racing Experiment

≻experts

≻better performance

≻lap-times (5-7%) and lateral acceleration (10-14%)

High Speed Cornering

≻experienced

≻better performance

➤lap-times (14%) and lateral acceleration (14%)

Double Lane Change

≻experienced

≻better performance

➤average number of cones hit

>mean deviation from mid-path

GENERAL DISCUSSION

COMBINED SUMMARY OF THE 3 EXPERIMENTS

28

STEERING BEHAVIOR

➢Racing

≻experts

higher steering activity

≻steering jerk (1.5-2 times)

High Speed Cornering

≻experienced

higher steering activity

Steering jerk (12%) and steering reversal rate (20%)

Double Lane Change :

≻experienced

>appropriate control inputs (steering angle)

➤accurate timing of steering input

GENERAL DISCUSSION

COMBINED SUMMARY OF THE 3 EXPERIMENTS

OTHER RESULTS

Steering metrics
 steering jerk
 steering rate
 steering reversal rate
 timing (position) of steering input
 Significant difference in
 path strategy
 consistency in following the strategy
 Overlap in performance

PROS & CONS OF THE PERFORMED EXPERIMENTS

Racing Experiment

>significant steering behavior differences

➢ high speed curve

➤steering jerk 1.5-2 times higher for experts

>High speed cornering

>significant steering behavior differences

≻12% difference in steering jerk

≻DLC test

no Degradation of performance with speed
 skill versus loss of control cannot be correlated
 significant steering behavior differences
 30% difference in steering jerk

FUTURE RESEARCH

31

- Adaptable ESC system
 optimal performance
 extreme conditions
- Driver performance monitoring
 real time
 uncontrolled driving
- >Assess skill in real life driving situations using all control inputs
- Include driver variability into driver models for computer simulation

THANK YOU FOR YOUR ATTENTION

QUERIES??