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Abstract

This thesis is about pricing interest rate options in a negative interest rate environment and
about pricing foreign exchange barrier options. Conventional interest rate option pricing mod-
els are unable to price interest rate options in the current negative interest rate environment.
Displaced versions and free boundary versions of the conventional models are proposed as a
solution. Also normal models are proposed as a solution. Moreover, it is important to use risk
metrics consistent with the model.
Foreign exchange barrier options are priced with local volatility, stochastic volatility and stochas-
tic local volatility models. The valuation of a proprietary trading model is compared with in-
dustry standards such as the local volatility model and the constant parameter SABR model.
Furthermore, it is compared with an extension of the SABR model with time dependent param-
eters. This time dependent SABR model can be calibrated to volatilities of multiple expiries, in
contrast to the constant parameter SABR model. Finally, a local volatility component is added
to guarantee a perfect calibration.

Keywords: negative interest rates, interest rate option pricing, Black’s model, local volatility
model, SABR model, CEV process, free boundary SABR, Bachelier’s model, displaced models,
time dependent SABR, effective parameters, stochastic local volatility, foreign exchange barrier
option.
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1 Introduction

Economic Background

Negative interest rates is a very present-day topic in the current economy. The European
Central Bank (ECB) and the central banks of Switzerland, Denmark, Sweden, and Japan have
set negative interest rates on reserves1, see also figure 1a. Switzerland is the first government
in history to sell 10-year debt at a negative interest rate 2. A quarter of worldwide central
bank reserves have a negative yield in February 2015 according to the Commonwealth Bank of
Australia. In February 2016 the total size of government bonds with negative yields raises to a
record high of almost six trillion US Dollar3, see figure 1b. In June 2014, the ECB was the first
in decreasing their rate below zero 4. The ECB aims to influence inflation by setting interest
rates 5.

(a) (b)

Figure 1: Figure (a) shows central bank’s interest rates from 2007 until mid 2015. Figure
(b) show the market value of outstanding government bonds with negative yield worldwide in
February 2016, in trillion US Dollars. Source of both figures: Financial Times

Deposit (depo) rates are set low (or negative) by central banks to stimulate economic growth
rates. There are several ways in which low interest rates improve economic growth. The mone-
tary stimulus measure aims to enlarge credit to the real economy, increases asset prices, forces
investors towards riskier instead of safe assets and lowers the exchange rate. Furthermore, the
policy helps to lift inflation to the central bank’s target, which is around 2% in the case of the
ECB.

Now follows a short explanation of each of these arguments.

The main objective of a low interest rate policy is to deter saving and to encourage borrowing
due to the lower costs of financing. This is the credit argument. Sub-zero depo rates are pre-
sented by policy makers as a tax imposed by the central bank on commercial banks to encourage
them to increase lending to companies and consumers. A commercial bank can choose to pass
on the tax to their costumer by reducing their lending rates and by charging negative rates for
deposits. This punishes depositors but increases bank lending. So the policy measure is also a
tax for consumers with deposits in this case. When commercial banks choose to not pass the

1ft.com/intl/cms/s/2/dba246d8-faf4-11e4-84f3-00144feab7de.html#axzz3ibRsjUjR
2ft.com/intl/cms/s/0/35ddc68e-dde7-11e4-8d14-00144feab7de.html
3next.ft.com/content/90ca12c0-d0b0-11e5-831d-09f7778e7377
4bloombergview.com/quicktake/negative-interest-rates
5ecb.europa.eu/home/html/faqinterestrates.en.html
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tax to their costumers this does not result in an incentive for these banks to lend more to the
real economy. Swiss wealth manager Julius Baer is one of the few examples that passes the cost
of negative interest rates to its (institutional) clients 6.

Lower interest rates result in reduced discount factors on cash flows from assets. By defini-
tion, this increases the net present value of an asset. Furthermore, the monetary policy may
raise the expectations of improved economic conditions and therewith higher future cash flows
from assets.

Investors are encouraged to move from safe assets like government bonds to riskier assets. When
an investor wants to maintain his target yield while the government bond yield is decreasing
this implies a shift in balance of the portfolio to riskier assets. The increased risk taking has
led to a convergence of sovereign spreads in the euro zone. Governments in the euro zone with
a low credit quality can borrow cheaper due to this effect. This may lead to greater economic
stability in the euro zone.

The exchange rate is depreciated indirectly since investors will change currency to invest in
government bonds of countries that have a higher yield. A depreciated exchange rate boosts
net export by making products and services cheaper for foreign companies and consumers. This
causes growth, employment and an increased inflation due to higher import prices.

Economic consequences of this monetary policy are not in the scope of this thesis, more in-
formation can be found in (BIS, 2015)7.

Until recently it was assumed that interest could not go below the ’zero bound’, since depositors
could withdraw cash when rates go negative. However, cash needs to be stored and insured,
which costs money. Furthermore, a bank account is more convenient in use. So apparently there
is willingness to pay for having a bank account, which is equivalent to being charged negative
interest rates. The question is how low the interest rates can go before cash becomes more
attractive. Interchange fees, which credit card companies charge to costumers, can be seen as
a proxy of how low rates can go8. Interchange fees are on average 2 to 3 per cent, so negative
rates in this area should be feasible as well. If people would act completely rational, the rates
cannot become more negative than the cost of carrying cash. Arbitrage is possible when the
negative rate causes the coupon payments to be worth more than the cost of carrying the cash
equivalent of the notional of the loan. The strategy is to borrow money at the negative rate,
convert the money to cash, store it till maturity and then pay the face value (also called par
value) in cash or convert it back first.

The major risks for financial institutions in a situation of negative rates are IT, operational
and model risk. Their IT systems might not be able to deal with data containing negative rates.
The assumption of positive rates can be hardwired in spreadsheets. Outcomes of entering neg-
ative rates in these spreadsheets are unknown. The provided data from Reuters or Bloomberg
might be incorrect itself when those systems are not able to deal with negative rates. It can be
compared with the millennium bug in the year 2000 when IT systems could not deal with dates
past the twentieth century. Operational risk results from an incorrect implementation of solu-
tions to negative rates. If traders plug ordinary implied volatilities in an adjusted model called
the displaced model, this leads to incorrect prices. Furthermore, risk management may face
issues when risk calculations such as Value at Risk (VaR) or the risk metrics of financial deriva-
tives depend on a displaced volatility. This research will focus on model risk as a consequence
of the negative rates.

6bloomberg.com/news/articles/2015-02-26/julius-baer-charges-institutional-clients-for-snb-negative-rate
7Hannoun, Ultra-low or negative interest rates: what they mean for financial stability and growth, BIS,

http://www.bis.org/speeches/sp150424.pdf
8ft.com/intl/cms/s/2/dba246d8-faf4-11e4-84f3-00144feab7de.html#axzz3ibRsjUjR
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Problem statement

Many mathematical models in finance (implicitly) assume that interest rates are positive, in-
cluding the conventional models used in interest rate derivatives pricing. Models with this
assumption fail to price (and hedge) financial products in the current economic situation of low
or even negative interest rates. They break down or produce incorrect prices. According to
Black’s model [7] for instance, the price of a zero strike floor should equal zero, while current
market values of these products are positive 9. Note that interest rates do not have to be nega-
tive to cause the mathematical models to fail. It is sufficient that the market assigns a positive
probability to the event of a negative interest rate in the future.

Interest rate derivatives in particular are sensitive to the changed interest rate environment
because interest rates are their underlying asset. So they are especially exposed to interest rate
risk. Examples of interest rate derivatives are interest caps/floors and swaptions. These prod-
ucts, together with swaps, are the most traded (simple, and in general) interest rate derivatives
at ABN Amro. Swaps prices can be extracted from market quotes. It is more interesting to
investigate interest rate derivatives with optionality, since their conventional valuation models
assume that interest rates are positive, which leads to problems in the current economic situa-
tion. In the valuation of swaps this assumption is not made and their valuation in the current
economic situation is not a problem.

One of the main (unstated) reasons for a central bank to decrease its interest rate is to de-
preciate its currency. A depreciated currency stimulates the export and therewith the domestic
economy. Every policy rate change causes capital inflows and outflows. The current active inter-
est rate policy of central banks throughout the world, leads to increased volatility in the foreign
exchange market10. This in turn increases the demand in the financial industry for accurate
pricing models for (complex) foreign exchange options.

This master thesis project compares model risk for pricing (and hedging) interest rate options in
a negative interest rate environment in sections 2 and 3, and model risk for pricing (and hedging)
foreign exchange barrier options in 4 and 5. Barrier options are a special type of options that
will be explained later.

A valuation model is said to perform well if

- valuation is arbitrage-free: the model matches market quotes and interpolation is smooth.
- it produces risk metrics that are stable and in line with market dynamics.

Structure of the thesis

Section 1.1 introduces interest rates in general, together with interest rate derivatives. Interest
rate derivatives are financial products whose value depend on the level of the underlying interest
rate. Section 1.2 introduces the mathematical framework and notation. Chapters 2 and 3 provide
an overview of models used in the pricing and hedging of simple interest rate options. The 2nd

chapter provides an overview of conventional models used for interest rate derivatives pricing in
an economy with positive rates. ABN Amro uses the same or similar models to price caps/floors
[33]. The same models can be used for the pricing and hedging of simple foreign exchange options.
The first model discussed is the Black’s model, also known as diffusion or lognormal model.
Secondly, the local volatility model, an extension of the Black’s model, is discussed. Thirdly, the
SABR model is explained in detail together with its popular approximation of implied volatility
by Hagan’s formula. Furthermore, the Constant Elasticity of Variance (CEV) model is analysed
as an introduction to the SABR model. Chapter 3 contains modified versions of these models

9risk.net/risk-magazine/feature/2218691/negative-rates-dealers-struggle-to-price-0-floors
10Saxena. Capital flows, exchange rate regime and monetary policy. BIS. bis.org/publ/bppdf/bispap35c.pdf
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that are used to price and hedge interest rate options in a negative rate environment. The
models discussed are Bachelier’s model, the normal SABR model, and displaced versions and
free boundary versions of models from chapter 2. Chapter 4 introduces a generalization of the
SABR model with time dependent parameters, and it introduces the foreign exchange market.
This model can be used to price and hedge more complex options, so called path dependent
options, such as a barrier option. The time dependent SABR model is introduced in a foreign
exchange context. In chapter 5 the time dependent SABR model, the constant parameter SABR
model, the local volatility model and ABN Amro’s proprietary trading model are calibrated to
foreign exchange data in order to price foreign exchange barrier options. An analysis of the
particular foreign exchange markets and a comparison of the valuations produced by these
models is contained in the same section. Section 6 contains the conclusion of the results of this
research project.

1.1 Interest rates and interest rate derivatives

The Bank for International Settlements (BIS) collects data about the amounts of outstanding
of over-the-counter (OTC) derivatives. In June 2014 interest rate contracts represented 77%
gross market value in these OTC derivatives markets. In the same period the largest portion
of these OTC single-currency interest rate derivatives - around 88% in gross market value -
were swaps [19]. The market for swaps is around ten times larger than the market for options
on interest rates, which is around ten times larger than the market for forward rate contracts.
These numbers show that interest rate derivatives play an important role in the world economy.

Interest is the amount of money the borrower (debtor) promises to pay the lender (creditor)
for the use of its money. An interest rate is the rate at which the interest is paid. For example;
if the principal is 150 euro and the interest for borrowing the money one year is 7,50 euro, the
yearly interest rate is 7,50/150=5%.

Interest can be periodically compounded or continuously compounded. Assume that there are
m periods (a year) of payments with (yearly) rate r, this implies that putting the amount A in
the bank account results in an amount of A(1+ r

m)mT after T years. Continuously compounding
means compounding over an infinitesimal small period. This corresponds to taking the limit
m→∞ in the last expression, yielding AerT after T years.

The interest rate depends on the credit risk; the risk of a default by the borrower of the funds
[24]. When such a default occurs, the interest and principal are not paid to the lender as is
agreed in the contract. The higher the credit risk, the higher the interest rate that the lender
asks for.

Important interest rates for the European financial markets are the LIBOR and EURIBOR.

LIBOR

LIBOR stands for London Interbank Offer Rate and it is the rate of interest that a selection
of major banks charge each other for short-term loans. It is an indication of the average rate
at which contributor banks can borrow money in the London interbank market for a particu-
lar period and currency. Examples of banks contributing to LIBOR are HSBC, UBS, Société
Générale, Rabobank, Bank of Tokyo-Mitsubishi and JP Morgan Chase. LIBOR is administered
by the InterContinentalExchange (ICE) Benchmark Administration (IBA) and comes in seven
different maturities; overnight, one week and one, two, three, six and twelve months 11. LIBOR
rates are fixed daily for five different currencies: the Euro (EUR), US Dollar (USD), Pound
Sterling (GBP), Japanese Yen (JPY) and Swiss Franc (CHF). This means that there is a total
of thirtyfive different LIBOR rates fixed by ICE each business day.

11theice.com/iba/libor
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EURIBOR

The European Money Markets Institute (EMMI) publishes the EURIBOR, which is similar to
LIBOR. It stands for Euro Interbank Offered Rate and it is the rate at which Euro interbank
term deposits are being offered by one highly creditworthy bank to another within the European
Monetary Union 12. EURIBOR is different from the EURO LIBOR and is more commonly used.

The EUR LIBOR rates that ICE13 published on 13 April 2015 can be found in table 1.

Zero rates

An n-year zero coupon interest rate is defined as the rate earned on an investment that starts
now and where all the interest and principal is realized at the end of n years. This means that
zero coupon instruments do not have intermediate payments. From a borrower’s perspective for
example, the 10-year zero rate with continuous compounding, market quote 5% per annum and
principal 100 has a cashflow of −100 at time 0 and a cashflow of 100 · e0.05·10 = +164.87 after
ten years and zero cashflows in between.
Zero rates are important in the construction of the index and discount curve, which will we
discuss next and which are important in the valuation of interest rate derivatives and foreign
exchange derivatives.

Index and discount curves

Forward interest rates are rates for periods of time in the future implied by current zero rates
[24]. The following example illustrates this idea. Suppose that the per annum rate for one year
is 4.0% and per annum rate for two years is 5.0%, both with continuous compounding. The
forward rate for the second year is the rate that is implied by the zero rates for the period in
time between the end of the first year and the end of the second year. Suppose that the notional
is 100, since 100 · e2·0.05 = 100 · e0.04 · ef , this means that f = 6% is the forward rate from the
first to the second year. It is the rate for year two that, when starting with the 4.0% rate of
year one, produces the overall rate of 5.0% for two years.

The graph of forward rates is called the index curve. It can be constucted for small matu-
rities from deposit rates [13]. For longer maturities it can be obtained from (LIBOR) swap
rates. The discount curve is built from quoted overnight indexed swap (OIS) rates, these rates
will be explained later. The index curve as well as the discount curve are assumed to be given.

Forward Rate Agreement

A forward contract is an agreement to buy or sell a certain underlying at a certain time in the
future at a certain price [24]. Forward contracts are usually traded in the OTC market. In
contrast to an exchange market, contracts in an OTC market are not standardized and trades
between two parties can be executed without others knowing. In general, an exchange market
is more transparant and more liquid. A forward rate agreement (FRA) is a forward contract
on an interest rate. In a typical FRA, two parties exchange a fixed rate for a floating rate
with each other at a certain time in the future. The agreement is settled at the termination
date, usually in cash. Only the difference of the payments needs to be transferred. Imagine a
two-year FRA with a principal of 100.000 USD on the one-year LIBOR and a one-year fixed
rate of 3.0%. The LIBOR turns out to be 3.5% after two years. The result is a payment of
(3.5% − 3.0%) · 100.000 = 500 USD from the floating rate payer to the fixed rate payer in two
years from now.

12emmi-benchmarks.eu/euribor-org/about-euribor.html
13theice.com/iba/historical-data
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Swaps and swap rates

Interest rate swaps (IRS) allow financial managers to effectivily hedge their interest rate expo-
sure. An IRS can be used to transform a floating-rate loan into a fixed-rate loan, or the other
way around. It is a financial product in which two parties exchange interest rate cash flows
during a fixed period of time. One of the cash flows has a fixed rate and the other has a floating
rate indexed to a reference rate such as the LIBOR or the EURIBOR. The cash flow with the
fixed rate is called the fixed leg and the cash flow based on the floating rate is called the floating
leg. Identification of the payer and the receiver of the swap is based on the fixed leg. The one
that pays the fixed rate and receives the floating rate is called the payer swap. The receiver
swap pays the floating rate and receives the fixed rate. An IRS is usually structured so that one
side transfers the difference between the two payments to the other side.

The tenor is the period of payment of a cash flow (or the inverse of its payment frequency). For
a swap, the tenor of the floating leg does not have to match the tenor on the fixed leg. The
standard IRS in the US for instance, is a swap with quarterly LIBOR payments and semiannual
fixed payments [24].

The notional principal of both legs is equal. Note that in most swaps the principal is used
only for the calculation of interest payments; the principal itself is not exchanged. That is why
it is called the notional principal, or simply notional. Exchanging the principal at the end of
the life of the contract would add no financial value to either the swap payer or the swap re-
ceiver, since the value of the principal is equal for both sides at that time. This is different for
cross-currency swaps, swaps with a different currency for each leg. Despite having equal valued
notionals at the beginning of the contract, such swaps can have different principal values at the
end of the contract due to changes in the exchange rate. The reason for this is that the notional
of each leg is expressed in its own currency.

A swap can be characterised as a portfolio of forward rate agreements, since an FRA is equiv-
alent to a single-period interest rate swap. Another characterisation of a swap is a portfolio of
two bonds, one bond paying fixed rates and one bond paying floating rates.

Swap rates

Swaps are usually not arranged as agreements between two (nonfinancial) companies directly,
since it is unlikely that they need to hedge their interest exposure at exactly the same time and
for exactly the same notional principal. This means that nonfinancial companies make use of
financial intermediaries, so called market makers. A market maker in swaps quotes two rates:
its bid rate and its offer rate. The bid rate is the fixed rate that it is prepared to pay in exchange
for receiving LIBOR and its offer rate is the fixed rate that is prepared to receive in return for
paying LIBOR. There is usually a small difference between these rates, called spread, which is
the main source of profit for the market maker. The swap rate is defined to be the average of
the bid rate and the offer rate.

LIBOR swap rates can be obtained from ICE, just like LIBOR. The ICE Swap Rate is the
most important benchmark for swap rates and spreads for interest rate swaps globally 14. The
rate is published for tenors ranging from one year to thirty years and for the currencies EUR,
GBP and USD. As an example, the EUR swap rates that ICE15 published on 13 April 2015 can
be found in table 2.

Direct observation of LIBOR rates is possible only upto twelve months. Traders use LIBOR
swap rates to extend a LIBOR zero curve.

14theice.com/iba/ice-swap-rate
15theice.com/iba/historical-data
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Table 1: EUR ICE LIBOR 13-APR-2015

Tenor LIBOR Rate

Overnight -0.16643
1 Week -0.10500
1 Month -0.03643
2 Months -0.00786
3 Months 0.00714
6 Months 0.06571
1 Year 0.18857

Table 2: EUR ICE swap rates 1100 13-APR-
2015

Tenor Swap Rate

1 Year 0.001
2 Years 0.072
3 Years 0.104
4 Years 0.157
5 Years 0.217
6 Years 0.284
7 Years 0.355
8 Years 0.422
9 Years 0.482
10 Years 0.535
12 Years 0.625
15 Years 0.720
20 Years 0.799
25 Years 0.825
30 Years 0.844

OIS rates

The risk-free rate is the theoretical rate of return of an investment with zero risk. The rate
plays an important role in the mathematical theory of asset pricing. In the past interest rate
derivatives traders used LIBOR rates as proxies for the risk-free rate when valuing derivatives.
They used a single curve constructed from the LIBOR rates for both calculating future rates
as well as discounting. Since the credit crunch it is market practice to discount with overnight
index swap (OIS) rates, LIBOR turned out to be a poor proxy for the risk free rate under
stressed market conditions. An OIS is an interest rate swap in which a fixed rate of interest is
exchanged for a floating rate of interest that is the geometric mean of a specific daily overnight
rate[25]. The overnight rates for the EUR, USD and GBP market are the Euro Overnight In-
dex Average (EONIA)16, the effective Federal Funds Rate17 and the Sterling Overnight Index
Average (SONIA)18 respectively. The OIS market quotes are the fixed rates for an OIS[13].

A yield spread is defined to be the difference between the quotes of two different interest rates.
The three month LIBOR-OIS spread for instance, is the difference between the three month
LIBOR and the three month OIS rate. This spread used to be very small, so it made sense to
price derivatives in a single curve framework where discounting and calculation of future rates
were based on a single reference rate. The divergence of the LIBOR and OIS rates during the
credit crunch caused the market to adopt a multicurve framework where different rates are used
for discounting and calculation of future values. The OIS rate is presently the best proxy for
the risk-free rate for the valuation of collaterized interest rate derivatives according to Hull and
White [25]. Standard agreements stipulate daily collateral calls. Given these daily collateral
calls, the choice for an overnight swap rate as the risk-free rate is natural.

Day count convention

Interest is earned over some reference period, and the day count convention is the way of mea-
suring the length of this period. The day count fraction αi represents the ratio of length of time
interval [Ti−1, Ti] over the length of a ’year’. This is a simplification, since there are different
ways to calculate the number of days, one could only count business days for instance.

16emmi-benchmarks.eu/euribor-eonia-org/about-eonia.html
17newyorkfed.org/markets/omo/dmm/fedfundsdata.cfm
18wmba.org.uk/pages/index.cfm?page id=31
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Calls, puts, caps and floors

The buyer of a European-type call (put) option has the right, but not the obligation, to buy
(sell) the underlying asset at a certain time, the expiry date T , for a certain amount, the strike
K. The seller is obligated to sell the underlying asset to the buyer, if the buyer exercises its
option at the expiry date. The payoffs of a call and a put option at the expiry date are:

P call = max(F (T )−K, 0) =: (F (T )−K)+, and (1a)

P put = max(K − F (T ), 0), (1b)

respectively, where F (T ) is the level of the underlying asset a maturity. Asset F (T ) could
represent the foreign exchange forward rate between the Euro and the US Dollar at time T for
instance. Mathematical models are used to determine the value of such a put or call option. The
classic models used in industry for the pricing of interest rate and foreign exchange options, are
introduced in section 2, after introducing the mathematical framework in 1.2. European-type
call and put options are a more complex in the interest rate market. An interest rate cap is an
insurance for a holder of a loan with a floating rate against the floating rate rising above a pre-
defined level, the cap-rate K (like a strike). A cap (floor) consists of a series of N subsequent
caplets (floorlets). A caplet (floorlet) is a call (put) option on an interest rate for a specific
period. It is market practice to price caplets with Black’s model - also known as diffusion model
[27, 7], which will be introduced in the section 2.1. The payoff function of a caplet (floorlet) in
period [Ti−1, Ti] is

P capleti = Ni · αi ·max(R(Ti−1)−K, 0), (1c)

P floorleti = Ni · αi ·max(K −R(Ti−1), 0), (1d)

where Ni is the notional and αi is the day count fraction (or coverage). The rate R is set at
Ti−1; the beginning of the period i and the payment is usually made at Ti; the end of the period
i. This means that we should discount from Ti. The payoff of a cap (floor) is simply the sum of
the payoffs of its caplets (floorlets):

P cap =

N∑
i=1

P capleti , (1e)

P floor =

N∑
i=1

P floorleti . (1f)

Barrier options

Barrier options are path-dependent options, that means that the payoff of a barrier option de-
pends on historical price levels of the underlying asset [35]. Certain properties of the contract
are triggered when the price of the underlying asset becomes too high or too low. Next to a call
or a put feature, barrier options have two aspects: the current forward price can be below or
above the barrier level and the option can be a so called in or out barrier option. An in option
starts worthless and gains value when the barrier is reached. An out option on the contrary,
starts with a value and becomes worthless if the barrier level is reached, it is knocked out in
other words. In summary, there are four types of barrier options:

1. Up-and-out: the current forward price is below the barrier level and has to move up to
reach the barrier level for the option to be knocked out.

2. Down-and-out: the current forward price is above the barrier level and has to move down
to reach the barrier level for the option to be knocked out.

3. Up-and-in: the current forward price is below the barrier level and has to move up to reach
the barrier level for the option to be knocked in.
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4. Down-and-in: the current forward price is above the barrier level and has to move down
to reach the barrier level for the option to be knocked in.

Up-and-out and down-and-out barrier options in the foreign exchange market are priced in the
experiments chapter 5. Foreign exchange barrier options are explained in more detail in section
4.1.

1.2 Mathematical framework and preliminaries

This subsection will state definitions and theorems from stochastic calculus and financial math-
ematics. Furthermore, notation will be introduced. Both will be used throughout this thesis.
More details can be found in Andersen and Piterbarg [1].

The normal distribution, also called Gaussian distribution, is used many times through-
out this thesis. The standard normal cumulative distribution function is denoted by Φ(·) and
its derivative, the standard normal probability density function Φ′(x) = ex

2/2/
√

2π is denoted
by φ(·).

Wiener process. A stochastic process {Wt}t≥0 on a probability space (Ω,F ,P), where P
is the real-world probability measure, is a Wiener proces, also known as a Brownian motion,
when it satisfies:

1. W0 = 0,

2. Mapping t→Wt is continuous everywhere almost surely,

3. Independent increments, where the increments Wt − Ws for 0 ≤ s ≤ t are normally
distributed with mean 0 and variance t− s.

Filtration. The filtration considered in this thesis is always generated by the relevant Brownian
motion {Wt}t≥0 in its context: Ft = σ {W (s) | 0 ≤ s ≤ t}.

Stochastic differential equation (SDE). An SDE with drift µ and volatility σ is defined as

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (2)

where µ, σ : [0, T ]× R→ R.

Itō process. The solution of SDE (2) is the Itō process given by

Xt = X0 +

∫ t

0
µ(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs. (3)

Itō’s lemma. Let f(t, x) denote a continuous function f : [0, T ] × R → R, with continuous
partial derivatives ∂f/∂t ≡ ft, ∂f/∂x ≡ fx, ∂2f/∂x2 ≡ fxx. Let Xt be given by the Itō process
(3) and define Yt ≡ f(t,Xt). Then Yt is an Itō process with stochastic differential equation
(SDE)

dYt =

(
ft(t,Xt) + fx(t,Xt)µ(t,Xt) +

1

2
fxx(t,Xt)σ

2(t,Xt)

)
dt+ fx(t,Xt)σ(t,Xt)dWt. (4)

Itō’s lemma can be motivated heuristically from a Taylor expansion:

f(t+ dt,Xt+dt) = f(t,Xt) + ftdt+ fxdXt +
1

2
fxx(dXt)

2 + . . . , (5)

where (dXt)
2 = σ2(t, ω)dt in the limit.

10



Fokker-Planck partial differential equation (PDE). The transition probability density
function p(t, x) = p(t0, x0, t, x) associated to SDE (2) for Xt for t0 ≤ t ≤ T , satisfies the Fokker-
Plank PDE:

∂

∂t
p(t, x) = − ∂

∂x
[µ(t, x)p(t, x)] +

1

2

∂2

∂2x

[
σ2(t, x)p(t, x)

]
, p(t0, X0) = δ(X0), (6)

where δ is the Dirac delta function and Wt a Wiener process.

Martingale. A stochastic process {Xt | 0 ≤ t ≤ T} is a martingale with respect to filtration F ,
if X is a F-adapted process such that Xt is integrable for all t ∈ [0, T ] such that

E [Xt | Fs] = Xs almost surely, for 0 ≤ s ≤ t ≤ T. (7)

Money market account B(·). The continuously compounded money market account B(t)
satisfies

B(t) ≡ exp

(∫ t

0
r(u)du

)
. (8)

Risk-neutral measure Q. The risk neutral measure Q has the money market account as a
numeraire. Under Q and in the absence of arbitrage a contingent claim V (t) is valued as

V (t) = B(t)EQ [V (T )/B(T ) | Ft] . (9)

In the context of foreign exchange options in section 4.1 this measure is called the spot measure S.

Zero coupon bond price P (·, ·). In the absence of arbitrage, the time 0 ≤ t ≤ T price
P (t, T ) of a T-maturity zero coupon bond is given by

P (t, T ) ≡ EQ [B(t)/B(T ) | Ft] = EQ

[
exp

(
−
∫ T

t
r(u)du

)
| Ft

]
. (10)

The zero coupon bond P (t, T ) is used as a discount factor for certain products.

T -forward measure FT . [30] The T -forward measure FT uses the T -maturity zero-coupon
bond (10) as the numeraire asset. Under FT a contingent claim V (T ) is valued as

V (t) = P (t, T )EFT [V (T ) | Ft] . (11)

Arbitrage. When pricing financial derivatives, it is crucial to use a method that does not
introduce arbitrage. Arbitrage is defined to be a costless trading strategy which at some future
time provides a positive profit with a positive probability, but has no possibility of a loss.

Risk neutral probability density function and arbitrage testing. According to Breeden
and Litzenberger [8] the risk neutral probability density function can be approximated by the
second order derivative of the call value with respect to the strike:

P(0, Tj)fFTj (Ki) =
∂2C(K,Tj)

∂K2

∣∣∣∣
K=Ki

. (12)

In order to be arbitrage-free, the probability density function should be nonnegative and inte-
grate to one.
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2 Positive rate modelling

This chapter introduces conventional models used in the pricing and hedging of interest rate
options and foreign exchange options. The modeled forward rate could be an interest rate
forward as well as an exchange rate forward. In section 2.1 Black’s model is introduced, a
variation of the famous Black-Scholes model. Black’s model is extended with local volatility in
section 2.2, to be able to calibrate to market data and to price path dependent options. The
CEV model is introduced in 2.3, as an introduction to the SABR model in 2.4. At the end of
the chapter, the models are summarized in section 2.5.

2.1 Black’s model

In 1976 Fischer Black introduced a model [7] that is a special case of the original Black-Scholes
model:

dFt = σFtdWt, (13)

where σ is the constant volatility and Wt a Brownian motion. The difference is that it uses the
forward rate Ft instead of the spot rate St. This makes Black’s model useful for pricing interest
caps / floors, swaptions, and foreign exchange options. The relationship between the spot rate
St in Black Scholes’ model and the forward rate Ft in Black’s model is St = P (0, T )Ft, where
P (0, T ) is the discount factor at time to maturity T . The solution of SDE (13) is

Ft = F0 exp(σWt − σ2t/2), (14)

so Ft is lognormally distributed with Ft = exp(Yt) where Yt ≡ Y0 + σWt − σ2t/2 and therewith
Yt ∼ N (Y0 − σ2t/2, σ2t). See figure 2 for a plot of the probability distribution. The details of
the derivation of Black’s model are contained in appendix A.

The prices of a European call and put option on a forward rate with strike K and time to
maturity T are given by

B(K,F0, σ, T ) ≡ V c(0) = P (0, T )[F0Φ(d1)−KΦ(d2)], and (15a)

V p(0) = P (0, T )[KΦ(−d2)− F0Φ(−d1)], (15b)

respectively, where

d1 =
log(F0/K) + (σ2/2)T

σ
√
T

and d2 = d1 − σ
√
T . (15c)

This model assumes the forward rate F (t) process to be log-normal. The put-call parity

V c(t)− V p(t) = P (t, T )(Ft −K), (16)

is an important relation between the price of a call and a put option, that holds for any pricing
model. It is often used in the derivation of the risk metrics of a pricing model.

Risk metrics for Black’s model

For each option pricing model, certain risk metrics can be calculated. The sensitivity of a call
option price with respect to the underlying rate is called the call delta ∆c. The underlying rate
can be a spot rate or a forward rate, this depends on the market conventions of the specific
product. The delta of a put option ∆p can be computed from the delta of a call ∆c by the
put-call parity (16). Other important risk metrics are vega Λ and gamma Γ: the sensitivity
of the option price to its volatility and the second order sensitivity of the option price to its
underlying forward rate respectively. The derivation of vega, gamma and the call delta can be
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Figure 2: Probability density of Black’s model for current forward rates F0 ∈ {0.015, 0.04, 0.07},
volatility σB = 0.3 and time t = 3.

found in appendix B. The results are as follows:

∆c ≡
∂V c

∂F0
= P (0, T )Φ(d1), (17a)

∆p ≡
∂V p

∂F0
= P (0, T ) [Φ(d1)− 1] , (17b)

Λ ≡ ∂V c,p

∂σ
= P (0, T )F0

√
Tφ(d1), (17c)

Γ ≡ ∂2V c,p

∂F 2
0

= P (0, T )φ(d1)
1

σ
√
TF0

. (17d)

The metrics will be referred to as ∆B
c ,∆

B
p and ΛB, where the B stands for Black’s model, since

the same metrics will be derived for other models later.

Black’s model and zero strike puts

Note that log(F0/K)→∞ as K ↓ 0. As a result d1 →∞, Φ(−d1)→ 0 and thereby Vp → 0 as
K ↓ 0, since the factor KΦ(−d2) vanishes. This implies that the Black model assumes that the
underlying has a zero probability of becoming negative. In contrast, markets in 2015 and 2016
show us that certain puts of strike zero are traded for nonzero prices. So the market assigns a
positive probability to negative rates in the future. Note that this is independent of the sign of
the current rate. Also note that this means that the value of a zero strike call option is equal to
the value of its underlying, by the put-call parity (16).

The zero strike puts cannot be priced (correctly) with Black’s model in this negative inter-
est rate environment. Furthermore, this leads to difficulties in pricing puts with small (but
positive) strikes because of the continuity of V p in K. This is shown with an example next.
First, an important concept is introduced that will be used many times throughout this thesis.

The implied (Black) volatility is the volatility that when substituted in Black’s model (15)
results in the market value of the option. So, the implied volatility is the σ that solves the
nonlinear equation

f(σ) = P (0, T )[KΦ(−d2)− FΦ(−d1)]− V p
market = 0. (18)

When Black’s model is calibrated to market data of call and put options of the same expiry
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and different strikes, it appears that the implied volatility varies per strike. In other words, the
assumption of constant volatility does not hold in practice. The implied volatility as a function
of the strike is called the implied volatility smile or the implied volatility skew. The volatility
smile is different for each expiry as well; the implied volatility as a function of both strike and
expiry is called the implied volatility surface. After introducing these concepts, we proceed to
the example of puts with a small strike.

If Vp is not ′small′ for small K, a large implied Black volatility is necessary to ′compensate′

for this. Letting the strike go to zero while fixing a positive value of the put V p results in
blowing up of the volatility, as can be seen in figure 3. In other words, the implied volatility of
a put option with a small strike and a (large enough) positive value does not exist.

Figure 3: As the strike of the European put option (floorlet) with positive market value
approaches zero, the Black implied volatility ′blows up′. Parameters used are F0 = 0.04,
V p = 0.011166, T = 4/12 and P (0, T ) = 0.9704.

In order to see that the implied volatility has an asymptote at K = V p/P (0, T ), we rewrite
equation (15b) to

V p

P (0, T )
= KΦ(−d2)− F0Φ(−d1). (19)

Let F0, V p, T and P (0, T ) be fixed and let K ↓ V p/P (0, T ). Then it must hold that Φ(−d1) ↓ 0
and Φ(−d2) ↑ 1 in order to keep the left and right hand side of equation (19) in balance. This
holds if and only if σ →∞.

The implied volatility of a put option with a strike smaller than V p/P (0, T ) cannot be ob-
tained, since formula (19) and K < V p/P (0, T ) imply that

V p

P (0, T )
<
V p

P
(0, T )Φ(−d2)− F0︸︷︷︸

≥0

Φ(−d1)︸ ︷︷ ︸
0≤...≤1

, (20)

and thereby that Φ(−d2) > 1. This is not correct by the definition of a cumulative distribution
function. It means that puts with strikes smaller than V p/P (0, T ) cannot be quoted by their
Black implied volatilities. The same analysis can be applied to an option’s risk metrics.

Traders and risk managers determine the value of an illiquid option by using information of
implied volatilities of liquid options. The previous example illustrates that the price of small
strike options is very much dependent on the volatility used. So, Black’s model has large model
uncertainty for small strikes.
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2.2 Local volatility model

In section 2.1 it was described that the implied volatility is not constant in practice. The implied
volatility needed to match market quotes usually varies with both the strike K and the expiry
T . The usage of a different volatility for each expiry-strike pair actually implies that a different
model is used for each combination. This leads to problems with the pricing of exotic options
such as barrier options, whose payoff depend on the level of the forward rate at different points
in time. To price a barrier option, the implied volatility of both the barrier level B and the
strike K should be input of the model at the same time. This is not possible with Black’s model,
since those volatilities are different.

Dupire, Derman and Kani [17, 16] found a solution for this problem by introducing local volatil-
ity. They extended Black’s model by replacing the constant volatility σ by the so called local
volatility function σLV (t, Ft) that is dependent on time t and the underlying forward rate Ft.
The stochastic differential equation that describes the dynamics of the forward rate under the
local volatility model in the T -forward measure FT is given by

dFt = σLV (t, Ft)FtdWt. (21)

Dupire’s [17] local volatility formula, for a forward rate, is given by

σLV (T,K) =

√√√√ 2∂C(T,K)
∂T

K2 ∂
2C(T,K)
∂K2

. (22)

where C(T,K) is the value of a call option with strike K and expiry T . The derivation of
Dupire’s formula for a spot rate is described in appendix G0.1. In the spot measure S, the local
volatility is a function of the time and the underlying spot rate. A more practical expression
of Dupire’s formula in terms of implied volatilies instead of call prices, is described in appendix
G0.2. The local volatility model is applied to market data of foreign exchange options in chapter
5.

A major problem with the local volatility model is that it predicts the wrong dynamics of the
volatility smile. When the price of the underlying increases, one expects that the smile shifts to
higher levels as well. In contrast, the local volatility model predicts that the smile will shift to
lower prices after an increase of the underlying. The opposite counterintuitive movement can
be seen for a decrease of the underlying. Due to this contradiction, delta and vega risk metrics
under the local volatility model may perform worse than the risk metrics of Black’s model [20].
To show this problem, ignore the time parameter and consider the special case where

dFt = σLV (Ft)FtdWt. (23)

In [22, 20] it is shown with perturbation methods that the implied Black volatility of a European
call or put option can be expressed in terms of the local volatility by the following approximation:

σB(K,F0) = σLV ([F0 +K]/2)

[
1 +

1

24

σ′′LV ([F0 +K]/2)

σLV ([F0 +K]/2)
(F0 −K)2 + ...

]
. (24)

Usually |K−F0| � 1 holds, since K and F represent rates, like for example 0.04 and 0.12. This
implies that the first term of the right-hand-side dominates the behaviour of the approximation.
The second term is a small correction to the first term and the total contribution of the other
terms is very small. So for calibration purposes the following approximation is useful:

σB(K,F0) = σLV ([F0 +K]/2) . (25)

Suppose that the current forward price is F0 and that the volatility smile observed in the market
is σMB (K,F0). According to the above approximation it must hold that

σMB (2F − F0, F0) = σLV

(
F0 + (2F − F0)

2

)
= σLV (F ). (26)
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When the initial forward price F0 shifts to a forward price F , the relation between the initial
market smile σMB and the new market smile σM,new is

σM,new
B (K,F )

(25)
= σLV

(
F +K

2

)
(26)
= σMB

(
2

[
F +K

2

]
− F0, F0

)
= σMB (K + F − F0, F0) ,

(27)
or equivalently,

σM,new
B (K,F0 + ∆F ) = σMB (K + ∆F, F0) , (28)

where ∆F := F − F0. Suppose σM is a convex function, as is usually the case in prac-
tice. This means that the volatility smile shifts to the left when F > F0 and to the right
when F < F0. Exactly the opposite of what is expected from intuition and from market
practice. This is best illustrated with an example. Suppose σMB (K,F0) = (F0 − K)2, then

σM,new
B (K,F ) = σMB (K + ∆F, F0) = (F0 − (K + ∆F ))2 = ((F0 −∆F )−K)2. For ∆F > 0 the

smile was shifted to the left instead of the right.

This property of the local volatility model leads to incorrect delta hedges. In the local volatility
model, European call options are priced with Black’s formula (15):

V c
LV = B(K,F, σB(K,F ), T ), (29)

where its Black implied volatility σB(K,F ) is expressed in terms of the local volatility function
σLV by formula (24). The delta of the local volatility model is given by

∆LV
c ≡

∂V c
LV

∂F
=
∂B

∂F
+

∂B

∂σB

∂σB
∂F

= ∆B
c + ΛB

∂σB
∂F

. (30)

Its first term is equal to the delta ∆B
c of lack’s model. The second term is proportional to

∂σB/∂F , the change of the implied volatility with respect to the underlying forward rate. Pre-
vious analysis showed that exactly these dynamics are predicted wrongly by the local volatility
model. In conclusion, the local volatility model is suited for pricing purposes, but not for proper
risk management.

2.3 Constant Elasticity of Variance model

The Constant Elasticity of Variance (CEV) model is an important part of the SABR model.
The SABR model is an industry standard in the interest rate derivatives market and it will be
introduced in section 2.4. An analysis of the CEV model provides insight in the SABR model.
In the CEV model, the forward rate Ft follows the SDE

dFt = σF βt dWt, (31)

where σ > 0 is the constant volatility, β is the CEV-exponent or the power parameter and
{Wt}t≥0 is a Wiener process. In the interest rate market, the CEV-exponent is usually in the
range 0 ≤ β ≤ 1. If β = 0, the CEV model reduces to Bachelier’s model, that will be introduced
in section 3.1. When β = 1, Black’s model from section 2.1 is obtained. This section provides an
analysis of the CEV model (31) for 0 < β < 1. More specifically, in this section the transition
probability density function P (Ft = f | F0) of the CEV model (31) is analyzed. It will provide
insight in the transition probability density function of the SABR model.

The CEV process can be transformed to a time-changed squared Bessel process, for which
the transition density is known [27]. The transition density of the CEV process can be derived
from the inverse transformation. The derivation is listed in appendix D and the result is stated
next.
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The transition probability density of the CEV process (31) is of the following form for 0 < β < 1:

1. For 0 < β < 1
2 with an absorbing boundary at Ft = 0 and for 1

2 ≤ β < 1 without (the
need of) applying a boundary condition:

pA(t, f, F0) := P (Ft = f | F0) (32a)

=
1

ν(t)

(
f

F0

)− 1
2

exp

(
−f

2(1−β) + F
2(1−β)
0

2(1− β)2ν(t)

)
I| δ−2

2 |

(
(F0f)1−β

ν(t)(1− β)2

)
f1−2β

1− β
.

2. For 0 < β < 1
2 with a reflecting boundary at Ft = 0:

pR(t, f, F0) := P (Ft = f | F0) (33a)

=
1

ν(t)

(
f

F0

)− 1
2

exp

(
−f

2(1−β) + F
2(1−β)
0

2(1− β)2ν(t)

)
I δ−2

2

(
(F0f)1−β

ν(t)(1− β)2

)
f1−2β

1− β
,

where

Ia(x) ≡
∞∑
j=0

(x/2)2j+a

j!Γ(a+ j + 1)
, and Γ(x) ≡

∫ ∞
0

ux−1e−udu, (34)

are the modified Bessel function of the first kind and the gamma function respectively.

The CEV process with an absorbing boundary condition is a martingale, while the CEV process
with a reflecting boundary is not [23]. Furthermore, the probability that Ft attains the zero
boundary, under the CEV process (31) with 0 < β < 1 and an absorbing boundary condition,
is [27]:

P (Ft = 0 | F0) = 1− γ

(
1

2(1− β)
,

F
2(1−β)
0

2(1− β)2ν(t)

)/
Γ

(
1

2(1− β)

)
, (35)

where γ(x, y) =
∫ y

0 u
x−1e−udu is the lower incomplete gamma function.

Paths {Ft}t≥0 that hit zero, stay in zero (forever) with the absorbing boundary condition,
but reflect to positive values with the reflecting boundary condition. Figure 4 shows a plot of
the transition probability density functions of the CEV process with an absorbing and with a
reflecting boundary condition at zero. The parameters used are CEV-exponent β = 0.10, current
forward rate F0 = 0.04, volatility σ = 0.04 and time t = 3. The SABR model uses an absorbing
boundary condition, since this allows the underlying process to be a martingale. Therefore, the
plot of the CEV process with an absorbing condition gives insight in the transition probability
density of the SABR model.

Figure 4: CEV process transition probability density function for absorbing and reflecting
boundary conditions, with CEV-exponent β = 0.10, current forward rate F0 = 0.04, volatil-
ity σ = 0.04 and time t = 3.
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2.4 Stochastic Alpha Beta Rho model

The dynamics of the market smile predicted by local volatility models is opposite of observed
market behaviour [20]. To elimate this problem, the SABR model was derived by Hagan [20].

Model description

The SABR model [20] is a two factor model with the dynamics given by a system of two stochastic
differential equations. The state variables Ft and αt can be thought of as the forward price of
an asset and a volatility parameter respectively. The forward asset can be a forward interest
rate or a forward foreign exchange rate. The dynamics of the forward in the SABR model are
given by

dFt = αtF
β
t dW

(1)
t , F0 = F > 0, (36a)

dαt = ναtdW
(2)
t , α0 = α > 0, (36b)

dW
(1)
t dW

(2)
t = ρdt, (36c)

where 0 ≤ β ≤ 1, ν ≥ 0 and W
(1)
t and W

(2)
t are two ρ-correlated Brownian motions. The

parameter ν is the volatility of αt, so it is the volatility-of-volatility (volvol) of the forward rate.

Hagan’s formula

One of the reasons of the popularity of the SABR model is the availability of an explicit expres-
sion for the implied Black volatility, called Hagan’s formula [20]:

σH(T,K) ≈ a(K)b(T,K)

(
c(K)

g(c(K))

)
, (37a)

where a(K) = α

[
(FK)(1−β)/2

(
1 +

(1− β)2

24
log2 F

K
+

(1− β)4

1920
log4 F

K

)]−1

, (37b)

b(T,K) =

[
1 +

(
(1− β)2

24

α2

(FK)1−β +
ρβνα

4(FK)(1−β)/2
+

2− 3ρ2

24
ν2

)
T

]
, (37c)

c(K) =
ν

α
(FK)(1−β)/2 log

F

K
(37d)

and g(x) = log

(√
1− 2ρx+ x2 + x− ρ

1− ρ

)
. (37e)

For at-the-money options, i.e. K = F , Hagan’s formula reduces to

σATMH ≡ σH(T,K = F ) ≈ α

F 1−β

[
1 +

(
(1− β)2

24

α2

(F )2−2β
+

ρβνα

4(F )1−β +
2− 3ρ2

24
ν2

)
T

]
. (38)

Hagan’s formula was derived under the condition that ε = ν2T � 1, where T is the expiry.
So Hagan’s formula is not suitable for calibration to products with a large expiry, in a market
where volatility changes rapidly. Furthermore, Hagan et al. made a small error when deriving
(37), which was fixed by Obloj [26]. From here on, the corrected formula of Obloj is referred to
as Hagan’s formula.
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Problems with Hagan’s formula

Even though Hagan’s formula is easy to implement, it is not suitable for usage in every situation.
As one can see in figure 5 the probability density function of the forward rate implied by Hagan’s
approximation is negative in a part of its domain. This means that Hagan’s formula introduces
arbitrage [9]. This probability density function is obtained by applying result (12) to call prices
corresponding to the implied volatilities generated by Hagan’s formula.

Figure 5: Forward rate probability density function implied by Hagan’s approximation. Param-
eters used are ρ = 0.5, ν = 0.5, β = 0.6, α = 0.06, F0 = 0.04025 and T = 8.

Exact solution of the zero correlation SABR model

The SABR model gives rise to an exact solution when correlation ρ = 0 only. There is no exact
solution available for the general correlation case. According to Antonov et al. [2], the time
zero value V c(0) of a call option with strike K, current forward F , discount factor P (0, t), and
expiry t, under the SABR model with zero correlation, is given by

V c(0)/P (0, t)− (F −K)+

=
2

π

√
KF

{∫ s+

s−

sin(ηφ(s))

sinh s
G(tν2, s)ds+ sin(ηπ)

∫ ∞
s+

e−ηψ(s)

sinh s
G(tν2, s)ds

}
, (39a)

where

G(t, s) = 2
√

2
et/8

t
√

2πt

∫ ∞
s

ue
u2

2t

√
coshu− cosh sdu, (39b)

φ(s) = 2 arctan

√
sinh2 s− sinh2 s−

sinh2 s+ − sinh2 s
, ψ(s) = 2 arctanh

√
sinh2 s− sinh2 s+

sinh2 s− sinh2 s−
, (39c)

s− = arcsinh

(
ν|q − q0|

α

)
, s+ = arcsinh

(
ν(q + q0)

α

)
, (39d)

q =
K1−β

1− β
, q0 =

F 1−β

1− β
, and η =

∣∣∣∣ 1

2(β − 1)

∣∣∣∣ . (39e)
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The inner integral G can be efficiently approximated by a (numerically) simple function:

G(t, s) ≈
√

sinh s

s
e−

s2

2t
− t

8

(
R(t, s) + R̃(t, s)

)
, where (39f)

R(t, s) = 1 +
3tg(s)

8s2
−

5t2
(
−8s2 + 3g2(s) + 24g(s)

)
128s4

+
35t2

(
−40s2 + 3g3(s) + 24g2(s) + 120g(s)

)
1024s6

, (39g)

g(s) = s coth s− 1 and R̃(t, s) = et/8 − 3072 + 384t+ 24t2 + t3

3072
. (39h)

This last function R̃(t, s) is a correction to guarantee that G(t, 0) = 1.

Since Hagan’s formula (37) was derived under the condition that ε = ν2T � 1, the formula
is biased for certain parameter combinations. The zero correlation solution (39) is useful to
check whether Hagan’s formula is an accurate approximation of the volatility smile produced by
the SABR model. Furthermore, Antonov’s (39) formula is also useful to check the correctness
of a Monte Carlo implementation of the SABR model.

Influence parameters on the shape of the curve

A detailed analysis of the effects of the SABR parameters on the shape of the implied volatility
curve is given in section 4.3. A brief summary is listed here, to gain intuition of Hagan’s formula
and the SABR model. A change in the initial volatility parameter α has the effect of shifting
the curve up or down, as can be seen in figure 14b. Figures 14a and 14c show the sensitivity of
the curve to the ν and ρ parameters respectively. Volatility of volatility parameter ν controls
the curvature of the volatility smile. Correlation parameter ρ mainly effects the skew. Since
the parameters all have a different effect on the curve, the fitted parameters tend to be stable [20].

The sensitivity of the curve to β is shown in figure 15. As β is usually fixed before estimating the
other parameters, this behaviour is less relevant for a stability analysis of the calibration pro-
cess. Nevertheless, the figure gives insight in the influence of β on the curve when all parameters
would be estimated.

Calibration of SABR parameters to market data

An option pricing model is said to be calibrated to market data when the prices generated by
the model coincide with the prices observable in the market. Or equivalently, a pricing model
is calibrated when the model implied volatilities match the market implied volatilities. Models
are calibrated to market quotes of simple options, such as European-type options, because they
contain information about the market. The calibrated model can be used to price similar op-
tions, but with a different strike or expiry that is not quoted in the market. In most cases, there
are no market quotes of complex options available. Also, these complex options can be priced
with a model that is calibrated to (the appropiate) simple options.

In market practice, the parameter β is usually fixed before calibration, since the other pa-
rameters can replace the effect of β on the shape of the volatility smile [20]. The risk metrics
of the SABR model are sensitive to β though, so for risk management purposes β is important [6].

After β is fixed, the remaining parameters ν, ρ and α need to be estimated. This calibra-
tion problem can be seen as a global minimization problem over a loss function between market
implied volatilities of options with the same expiry, and implied volatilities of Hagan’s formula
(37). A common choice for the loss function is the sum of squared errors (SSE):

(ν̂, ρ̂, α̂) = arg min
ν,ρ,α

∑
i

[σMi − σH(Fi,Ki; ν, ρ, α)]2, (40)
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where σH is the Hagan approximation (37) with a fixed expiry T that is equal for all the quotes
used. The market volatilities are denoted by σMi and their current forward rates are denoted by
Fi. The above parameterization will be referred to as the first parameterization of SABR.

The number of parameters in the above optimalisation can be reduced from three to two by
using the following approximation for formula (38):

log σATMH ≈ logα− (1− β) lnF, (41)

in combination with at-the-money volatilities observed in the market [34]. The α-parameter can
be expressed as α = α(ν, ρ), since equation (38) can be rewritten as a polynomial of α:[

(1− β)2T

24F 2−2β

]
α3 +

[
ρβνT

4F 1−β

]
α2 +

[
1 +

2− 3ρ2

24
ν2T

]
α− F 1−βσATMH = 0. (42)

from which the root can be found numerically. In case there are several real roots, it is optimal
to choose the smallest root according to West [34]. This parameterization will be referred to
later as the second parameterization.

Risk metrics of the SABR model

As mentioned before, a European call option on a forward rate can be priced under the SABR
model by using Hagan’s approximation (37) of the implied Black volatility together with Black’s
model (15):

V c
SABR = B(K,F, σ, T ) with σ = σH(K,F ;α, β, ρ, ν). (43)

The first parameterization expresses Black implied volatility σ as a function of (α, β, ρ, ν). In con-
trast, the second paramerization expresses σ as a function of (σATMH , β, ρ, ν), since α is obtained
by solving formula (42) to obtain α(σATMH , F ). According to the chain rule of differentation
their respective delta values are given by

∆SABR1
c ≡

∂V C
SABR

∂F
=
∂B

∂F
+
∂B

∂σ

∂σH
∂F

= ∆B
c + ΛB

∂σH
∂F

, and (44a)

∆SABR2
c ≡

∂V C
SABR

∂F
=
∂B

∂F
+
∂B

∂σ

[
∂σH
∂F

+
∂σH
∂α

∂α

∂F

]
= ∆B

c + ΛB
[
∂σH
∂F

+
∂σH
∂α

∂α

∂F

]
. (44b)

In both parameterizations the delta under the SABR model is equal to the delta ∆B of Black’s
model (17a) plus a correction term that is proportional to the vega ΛB of Black’s model (17c).
The vega under the SABR model does not depend on which of the two parameterizations is
used:

ΛSABR ≡
∂V c

SABR

∂α
=
∂B

∂σ

∂σH
∂α

= ΛB
∂σH
∂α

. (45)

These risk metrics tend to be dependent on the choice of β. Bartlett [6] improved the stability
of the risk metrics by using information on the dynamics of SABR (36) in the derivation of the
risk metrics. In the previous derivation of the delta the value of the second factor αt was fixed
while shifting the first factor Ft:

F → F + ∆F, (46a)

α→ α. (46b)

The derivation of vega was done in exactly the opposite way:

F → F, (47a)

α→ α+ ∆α. (47b)
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But the two factors in the dynamics of SABR (36) are correlated by correlation ρ, so when one
factor changes the other factor is also likely to change. When deriving the delta it may be better
to introduce a shift for α that depends on the shift in F :

F → F + ∆F, (48a)

α→ α+ ∆̃α. (48b)

Since the dynamics are not deterministic but stochastic the shift ∆̃α will represent the average
change or shift resulting from a shift in F . To obtain the value of ∆̃α first express the dynamics

in two independent Brownian Motions dW
(1)
t and dZt by using Cholesky decomposition [31]:

dFt = αtF
β
t dW

(1)
t , (49a)

dαt = ναt

(
ρdW

(1)
t +

√
1− ρ2dZt

)
, (49b)

E
[
dW

(1)
t dZt

]
= 0, (49c)

where dW
(2)
t =

(
ρdW

(1)
t +

√
1− ρ2dZt

)
. These expressions for the factors imply that

dαt =
νρ

F βt
dFt + ναt

√
1− ρ2dZt. (50)

Differential dαt represents the infinitesimal version of ∆̃α. Averaging the ∆̃α’s corresponds to
taking expectations in the above equation. The dZt term disappears as increments of a Brownian
motion have expectation zero. This results in

∆̃α =
νρ

F β
∆F or

dαt
dFt

=
νρ

F βt
on average. (51)

As a result the delta of SABR is

∆SABR
c =

∂B

∂F
+
∂B

∂σ

[
∂σH
∂F

+
∂σH
∂α

∂α

∂F

]
= ∆B

c + ΛB
[
∂σH
∂F

+
∂σH
∂α

νρ

F β

]
. (52)

The last term is in fact equal to νρ/F β times the old vega of SABR in equation (45). In a
vega-hedged portfolio this term is by definition zero. So if (old) vega and delta risks are both
hedged, the new delta risk is also hedged for this portfolio [6].

The calculation of the improved vega is based on the same idea as is used in the derivation
of the improved delta. A shift in α results in a shift in F through correlation:

F → F + ∆̃F, (53a)

α→ α+ ∆α. (53b)

The SABR dynamics can be expressed in two independent Brownian motions Yt and W
(2)
t by

Cholesky decomposition [31]:

dFt = αtF
β
t

(
ρdW

(2)
t +

√
1− ρ2dYt

)
, (54a)

dαt = ναtdW
(2)
t , (54b)

E
[
dYtdW

(2)
t

]
= 0. (54c)

Combining the above two factors results in

dFt =
F βt ρ

ν
dαt + αtF

β
t

√
1− ρ2dYt. (55)
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So on average

∆̃F
ρF β

ν
= ∆α or

dFt
dαt

=
ρF βt
ν
. (56)

The improved SABR vega reads

ΛSABR =
∂B

∂σ

∂σH
∂α

+
∂B

∂F

∂F

∂α
= ΛB

∂σH
∂α

+ ∆B
c ·

ρF β

ν
= ΛSABRold + ∆B

c ·
ρF β

ν
, (57)

where ΛSABRold is the vega in formula (45). SABR is a single self-consistent model for all strikes:
calculated risks at one strike are consistent with risks calculated at other strikes. As a result,
the risks of all the options on the same underlying can be added together, only the remaining
risk needs to be hedged[20].

If β is chosen to be fixed before calibration it is preferred that the calibrated model is rela-
tivily insensitive to changes in β. Figure 6c shows the sensitivity of the call delta to β under a
SABR model with the first parameterisation. The (improved) second parameterisation is even
less sensitive to changes in β as can be seen in figure 6d. The difference in the two delta’s can be
expressed in terms of the sensitivity of the implied volatility to the current forward dσB/dF . This
quantity for the first parameterisation and the improved second parameterisation are plotted in
figures 6a and 6b, respectively. The latter is less sentitive to β.

(a)
∂σH
∂F

of first parameterisation (b)
∂σH
∂F

of improved second parameterisation

(c) ∆SABR1
c as in (44a) (d) ∆SABR2

c as in (44b)

Figure 6: Sensitivity of risk measures under the SABR model. For each fixed β Hagan’s formula
was calibrated to a certain set of market quotes. The β parameter was varied in both figures.
Furthermore, in both figures the other parameters are fixed: time to maturity T = 1, discount
factor P (0, T ) = 1, and current forward F = 1.75.
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2.5 Summary

In the past, industry believed that interest rates were always positive. Both the assumption of
lognormal dynamics for the forward rate and the assumption of a boundary condition at zero
express this belief. The models discussed in this section were industrial practice until low and
negative interest rates appeared in the market. The assumption of positive rates is embedded
in their structure; all the models assign a zero probability to the rate going negative. Foreign
exchange rates are positive by definition and the models introduced in this section are still ap-
propriate for modeling foreign exchange rates.

Black’s model has a constant volatility, while this is not observed in the market. When Black’s
model is extended with the local volatility model, it can be calibrated to market prices of sev-
eral expiries. The dynamics of the market implied volatility smile with respect to a change in
the underlying rate is different from the implied volatility smile predicted by the local volatil-
ity model. The SABR model solves this problem. Hagan’s approximation formula of Black’s
volatility under the SABR model can be used to calibrate an implied volatility smile to market
data with dynamics in line with market behaviour.

All the models share the drawback that they cannot be used in an economy with small or
negative interest rates (in their current form). Methods to circumvent this problem are explored
in chapter 3.
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3 Negative rate modelling

The models explained in chapter 2 cannot cope with negative interest rates. The corresponding
probability density functions are zero for rates less or equal to zero. Two solutions come to
mind: shifting the boundary condition by a positive constant s, such that rates larger than −s
are allowed, or removing the boundary condition. In section 3.2 and 3.3 these two methods are
applied to the models from chapter 2. But first, the normal model is introduced in section 3.1.
This model allows for negative rates in a natural way. In current market practice either the
implied shifted lognormal volatility is quoted together with the shift parameter or the implied
normal volatility is quoted. At the end of the chapter, the models are compared in the summary
in section 3.4.

3.1 Bachelier’s model and the normal SABR model

The normal model, introduced in 1900 by Bachelier [4], is the most simple model that comes to
mind as a way of modelling negative interest rates. In the normal model, the forward rate Ft
follows the SDE

dFt = σNdWt, (58)

where σN represents the normal volatility. The solution of this model can be easily found by
Itō integration:

Ft = F0 + σNWt, (59)

which means that Ft ∼ N (F0, σ
2
N t). This model allows for negative interest rates in a natural

way since its distribution is normal, see figure 7a for an example.

(a) (b)

Figure 7: Figure (a) shows the transition density of the normal model for different forwards.
Figure (b) shows a plot of the value of a put under the normal model for different strikes.

Pricing calls and puts under the normal model

When the underlying forward rate follows the normal model, the European call and put values
are given by:

V c(0) = P (0, T )
[
(F0 −K)Φ(d) + σ

√
Tφ(d)

]
and (60a)

V p(0) = P (0, T )
[
(K − F0)Φ(−d) + σ

√
Tφ(d)

]
, where d =

F0 −K
σ
√
T

. (60b)

The derivation of these equations can be found in appendix C. The normal model allows valuation
of options with negative strikes and negative current forward rates, in contrast to the lognormal
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model. Figure 7b shows the value of a European put for a negative and a positive underlying
forward rate. In the lognormal model a put with strike zero has zero value by definition. The
value of a put with any strike under the normal model is strictly positive, since any (positive or
negative) forward rate has a nonzero probability of being attained.

Risk metrics under the normal model

We can also compute the option’s delta, vega, and gamma, as follows

∆c ≡
∂V c

∂F
= P (0, T )Φ(d),∆p =

∂V p

∂F
= −P (0, T )Φ(−d), (61a)

Λ ≡ ∂V c

∂σ
= P (0, T )

√
Tφ(d), (61b)

Γc ≡ ∂2V c

∂F 2
= P (0, T )

φ(d)

σ
√
T

and Γp ≡ ∂2V p

∂F 2
= P (0, T )

φ(d)

σ
√
T
. (61c)

The derivation of these risk metrics can be found in appendix C. The risk metrics are strictly
positive for every combination of strike and forward.

Normal SABR (β = 0) volatility smile extension for Bachelier’s model

Hagan’s formula is used to calibrate an implied Black volatility smile. A similar formula is
available for Bachelier’s model to calibrate an implied Bachelier volatility smile:

σN (K) = α
ζ

x(ζ)

(
1 +

2− 3ρ2

24
ν2T

)
, (62a)

where ζ =
ν

α
(F0 −K) , and (62b)

x(ζ) = log

(√
1− 2ρζ + ζ2 − ρ+ ζ

1− ρ

)
. (62c)

This formula is derived in [20]. The domain of the implied Bachelier volatility function (62) is
the entire real line, since Bachelier’s option pricing formula (60a) allows strikes (and forwards)
from the entire real line. The SABR model (36) with β = 0 is the only version of the SABR
model that can model negative forward rates. This version of the SABR model is called the
normal SABR model:

dFt = αtdW
(1)
t , F0 = F, (63a)

dαt = ναtdW
(2)
t , α0 = α, (63b)

E
[
dW

(1)
t dW

(2)
t

]
= ρdt, (63c)

The normal SABR model (63) is calibrated to an implied Bachelier volatility smile with formula
(62).

Risk metrics under the normal SABR model

The method of Bartlett [6] used previously to determine the delta and vega under the SABR
dynamics with β > 0 can be applied to the normal SABR model:

∆c ≡
∂V c

∂F
=
∂N

∂F
+

∂N

∂σN

(
∂σN
∂F

+
∂σN
∂α

∂α

∂F

)
=
∂N

∂F
+

∂N

∂σN

(
∂σN
∂F

+
∂σN
∂α

νρ

)
, (64a)

Λ ≡ ∂V c

∂σ
=

∂N

∂σN

∂σN
∂α

+
∂N

∂F

ρ

ν
, (64b)

where N = N(K,F, σN , T ) is the value of a call under Bachelier’s model (60a) and σN =
σN (K,F, T ;α, ρ, ν) is the implied normal volatility (62). The option’s put delta ∆p can be
calculated with the put-call parity (16).
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Calibration of normal SABR

Calibration of the normal SABR model is similar to calibrating the SABR model for β > 0;

(ν̂, ρ̂, α̂) = arg min
ν,ρ,α

∑
i

[σMi − σN (Fi,Ki; ν, ρ, α)]2, (65)

where σMi are market implied volatilities for a certain maturity T .

3.2 Displaced models

Another class of models is the class of shifted or displaced models. In these models, forward
rate Ft is replaced with shifted forward rate Ft + s, where s is a constant. In this section the
displaced versions of Black’s model (15), the CEV model (31), and the SABR model (36) are
discussed.

Displaced diffusion

Forward rate Ft is said to be a displaced diffusion process if it is the solution of SDE [11]:

dFt = d(Ft + s) = σ (Ft + s) dWt, (66)

where s is a constant displacement parameter. Note that F̃t ≡ (Ft + s) follows a lognormal
process, or Black process (13). This fact, together with the fact that the payoff of a European
call option max(FT −K, 0) can be rewritten as:

max(FT −K, 0) = max((FT + s)− (K + s), 0) ≡ max(F̃T − K̃, 0), (67)

leads to the conclusion that European calls and puts can be valued under the displaced diffusion
model by plugging in F̃0 ≡ (F0 + s) and K̃ = (K + s) in Black’s model (15). Risk metrics can
be obtained by plugging in these shifted parameters as well. The same principle can be applied
to obtain the solution of SDE (71):

F̃t = F̃0 exp
(
σWt − σ2t/2

)
, so Ft = −s+ (F0 + s) exp

(
σWt − σ2t/2

)
. (68)

This solution shows that rates (and strikes) larger than −s can be modelled with the displaced
diffusion model, see figure 8 for some examples. Furthermore, the first moment is conserved:

E [Ft | F0] = E
[
F̃t − s | F0

]
= F̃0 − s = (F0 + s)− s = F0. (69)

Displaced diffusion as an approximation of the CEV process

It is interesting to note that there exists a close relation between the CEV (31) and displaced
diffusion (71) processes. The displaced diffusion model may be considered as a first-order ap-
proximation to the CEV dynamics [27]. Define g(x) = xβ, then a first-order Taylor expansion
of g(x) around x = F0 is given by,

g(x) = g(F0) +
dg

dx
(F0) · (x− F0) +O(x2), (70a)

so equivalently, when evaluated at x = Ft,

F βt ≈ F
β
0 + βF β−1

0 (Ft − F0) = c1 [c2 + Ft] , where c1 ≡ βF β−1
0 and c2 ≡

(
1

β
− 1

)
F0. (70b)

So, CEV process (31) can be approximated by a displaced diffusion, as follows

dFt ≈ σc1 [c2 + Ft] dWt, (70c)

with volatility c1σ and shift c2. Since the SABR model is a CEV process with stochastic
volatility, displaced diffusion can be seen as an approximation for SABR as well.
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(a) shift s = 0.02 (b) shift s = 0.03

Figure 8: Figure (a) and (b) show the transition probability densities of the displaced diffusion
model for several rates F0 and two different shift parameters s.

Displaced SABR model

Where the classic SABR model only allows rates to be nonnegative, a shifted model with shift
s > 0 allows rates larger than −s to be modelled. So if the (constant) shift is s = 0.02 the
displaced model can model rates larger than −2.0%. The displaced SABR model is defined as

dFt = αt (Ft + s)β dW
(1)
t , F0 = F, (71a)

dαt = ναtdW
(2)
t , α0 = α, (71b)

E
[
dW

(1)
t dW

(2)
t

]
= ρdt, (71c)

where Ft is a forward rate. A similar analysis as for displaced diffusion shows that F̃t = (Ft + s)
follows the SABR SDE (36).

Drawback shift parameter

A drawback of the displaced SABR model and the displaced diffusion model is that the shift-
parameter needs to be selected a priori, since it is not known how low the interest rates can go.
This may lead to a situation when the value of this shift needs to be changed and subsequently
the present value and risk of the entire portfolio need to be recomputed[3]. Free Boundary
SABR seems a more natural solution to permit negative interest rates.

3.3 Free boundary models

Just as an analysis of the CEV model provides more insight in the SABR model, an analysis of
the free boundary CEV model provides more insight in the free boundary SABR model, which
will be introduced next. In the free boundary CEV (FB-CEV) model, the forward rate Ft follows
the SDE

dFt = σ |Ft|β dWt, (72)

where σ is the volatility, β is the CEV-exponent and {Wt}t≥0 is a Wiener process. As later
analysis will show, 0 ≤ β < 1/2 should hold in order to obtain the constructed solution.

The transition probability density function of the FB-CEV model gives insight in the transi-
tion probability density function of the FB-SABR model. The first probability density function
is constructed from the absorbing and reflecting solutions of the CEV model as follows. Let
q(t, f, F0) := P (Ft = f | F0) and p(t, f, F0) := P (Ft = f | F0) be the transition probability
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density functions of the free boundary CEV process (72) and the ordinary CEV process (31)
respectively. The Fokker-Planck equation for the transition density of the free boundary CEV
model (72) for 0 ≤ t ≤ T and F ∈ R is

∂

∂t
q(t, f, F0) =

1

2

∂2

∂2f

[
|f |2βq(t, f, F0)

]
, with q(t, F0, F0) = δ(F0). (73)

The Fokker-Planck equation for the (ordinary) CEV process (31) for 0 < T and F ≥ 0 is

∂

∂t
p(t, f, F0) =

1

2

∂2

∂2f

[
f2βp(t, f, F0)

]
, with p(0, F0, F0) = δ(F0), (74)

which has an absorbing solution (32) called pA(t, f, F0), and a reflecting solution (33) called
pR(t, f, F0). Fokker-Planck equation (74) with f ≥ 0 is equivalent to Fokker-Planck equation
(73). So when looking for a solution of the free boundary model, it is natural to consider a
linear(-like) combination of pA(t, |f |, |F0|) and pR(t, |f |, |F0|).

Antonov et al. [3] propose the solution:

q(t, f, F0) =
1

2
[pR(t, |f |, |F0|) + sign(f · F0)pA(t, |f |, |F0|)] . (75)

which satisfies (73) by linearity of differentation and the fact that pA and pR satisfy (74) for
f ≥ 0. Above solution (75) only holds for 0 ≤ β < 1

2 , since reflecting solution pR(t, f, F0) is only
available for 0 ≤ β < 1

2 .

This solution can be seen as the average of an absorbing part; sign(f · F0)pA(t, |f |, |F0|), and a
reflecting part: pR(t, |f |, |F0|). These parts together with the solution are plotted in figure 9a to
give some intuition about the structure of the solution. Figure 9b compares the solution of the
FB-CEV model with the absorbing and reflecting solutions of the ordinary CEV model. The
FB-CEV model has a spike in its probability density around zero, caused by the reflecting part
of the solution. Figure 9c shows the effect of β on the shape of the spike.

As expected, the densities of the FB-CEV model for β = 0 and the normal model are equal, see
figure 9d.

To check if solution (75) of (73) is a proper transition probability density function it needs to
be checked if it integrates to one and whether the first moment equals the current forward rate,
or not. Furthermore, nonnegativity of q is guaranteed due to the fact that every path that hits
zero is reflected by pR but absorbed by pA and therewith pA(t, f, F0) ≤ pR(t, f, F0). It appears
that the combination of the sign function and the weights 1

2 in (75) are essential for obtaining
a solution that guarantees those first two properties:

E [Ft|F0] , (76a)

=

∫ 0

−∞
f · 1

2
(pR(t,−f, |F0|)− pA(t,−f, |F0|))df +

∫ ∞
0

f · 1

2
(pR(t, f, |F0|) + pA(t, f, |F0|))df,

(76b)

=

∫ 0

−∞

f

2
pR(t,−f, |F0|)df −

∫ 0

−∞

f

2
pA(t,−f, |F0|)df +

∫ ∞
0

f

2
pR(t, f, |F0|)df +

1

2
F0, (76c)

= −
∫ ∞

0

f

2
pR(t, f, |F0|)df +

1

2
F0 +

∫ ∞
0

f

2
pR(t, f, |F0|)df +

1

2
F0 = F0. (76d)
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(a) (b)

(c) (d)

Figure 9: Figure (a) shows a plot of the transition density of the FB-CEV model together
with its absorbing and reflecting parts. Figure (b) compares the transition probability density
function of the FB-CEV model with the transition probability density functions of the CEV
model with an absorbing or reflecting boundary. The CEV model parameters used in the plots
are CEV-exponent β = 0.1, current forward F0 = 0.04, volatility σ = 0.04 and time t = 3. In
figure (c) the same parameters were used, except for β, which was varied. Figure (d) shows a
comparison between the density of the normal model and the densities of the FB-CEV model
for β = 0.05 and 0.

∫ ∞
−∞

q(t, f, |F0|)df, (76e)

=

∫ 0

−∞

1

2
(pR(t,−f, |F0|)− pA(t,−f, |F0|))df +

∫ ∞
0

1

2
(pR(t, f, |F0|) + pA(t, f, |F0|))df, (76f)

=

∫ ∞
0

1

2
(pR(t, f, |F0|)− pA(t, f, |F0|))df +

∫ ∞
0

1

2
(pR(t, f, |F0|) + pA(t, f, |F0|))df, (76g)

=

∫ ∞
0

pR(t, f, |F0|)df = 1. (76h)

The sign function cancels out the absorbing factors in the calculation of the integrated probability
and it cancels out the reflecting factors in the calculation of the first moment. The weights 1

2
are necessary to scale the first moment to F0 and the make sure the probability density function
integrates to 1. The free boundary CEV model combines the best of two worlds: it inherits the
conservation of first moment from the absorbing CEV model (32) and it inherits the integration-
to-one property from the reflecting CEV model (33). Other functions from the solution space
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{
cA sign(f · F0)ipA(t, |f |, |F0|) + cR sign(f · F0)jpR(t, |f |, |F0|) | cA, cR ∈ R, i, j ∈ {1, 2}

}
(77)

do not have these properties simultaneously. In summary, the FB-CEV model has a solution
(75) based on the absorbing and reflecting solutions of the ordinary CEV model. Moreover, the
solution has a spike around zero. The free boundary SABR model is analyzed next.

Free Boundary SABR

The free boundary SABR (FB-SABR) model is an extension of the classic SABR model (36)
that allows forward rate values from the full real line, Ft ∈ R, by putting absolute signs around
Ft [3]. This is not the only modification; the classic model uses an absorbing boundary at Ft = 0
while the FB-SABR model, as is clear from its name, does not have a boundary condition. This
changes the nature of the solutions from the model. The dynamics of the FB-SABR model are
given by

dFt = αt |Ft|β dW (1)
t , F0 = F, (78a)

dαt = ναtdW
(2)
t , α0 = α, (78b)

E
[
dW

(1)
t dW

(2)
t

]
= ρdt, 0 ≤ β < 1

2
. (78c)

The condition 0 ≤ β < 1

2
is necessary for stable solutions, as explained in the previous section.

Analytical solutions for the FB-SABR model are available for the cases that ν = 0 or that
ρ = 0 only. In the first case the model is reduced to the FB-CEV model. In the second case the
zero correlation solution can be found in [3]. Figure 10a and 10b show that the Euler Monte
Carlo scheme performs well for FB-CEV. When ν 6= 0, there is no analytical solution of the FB-
SABR model available in general, but Monte Carlo simulations may give insight. The probibility
densities are derived by calculating the second order derivatives of the simulated call prices with
respect to the strike, according to result (12). Figures 10c and 10d show that FB-SABR is
asymmetric in Ft, in contrast to the FB-CEV model in figures 10a and 10b. This asymmetry is
caused by the lognormal stochastic volatility process.

Calibrate the FB-SABR model

The original article of Hagan et al. [20] that introduced the SABR model included the derivation
of the implied Black and implied Bachelier volatilies for a general coefficient C(F ) of system

dFt = αtC(Ft)dW
(1)
t , F0 = F, (79a)

dαt = ναtdW
(2)
t , α0 = α, (79b)

E
[
dW

(1)
t dW

(2)
t

]
= ρdt. (79c)

Hagan’s formula is derived by taking C(F ) = F β. Since FB-SABR can model rates from the
whole real line, it is natural to use implied Bachelier volatilities. The implied Bachelier volatility
smile for C(F ) = |F |β is given by:

σN (K) =
α(F0 −K)(1− β)

F0

/
|F0|β −K

/
|K|β

· ζ
x
·
[
1 + T

(
−β(2− β)α2

24|Fav|2−2β
+
ρναβ sign(Fav)

4|Fav|1−β

)]
, (80a)

where,

ζ =
ν(f −K)

α|Fav|β
, x = log

(√
1− 2ρζ + ζ2 − ρ+ ζ

1− ρ

)
, (80b)
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(a) FB-CEV with F0 = 1.0 (b) FB-CEV with F0 = −1.0

(c) FB-SABR with F0 = 1.0, ρ = −0.3 and ν = 0.3 (d) FB-SABR with F0 = −1.0, ρ = −0.3 and ν = 0.3

Figure 10: Estimated transition probability densities of the FB-CEV and FB-SABR models for
parameters β = 0.25, α = 0.6 and T = 3. The simulation scheme used 5 · 106 paths and 50 time
steps per year.

and Fav is chosen as the generalized geometric mean

Fav = sign(F0K)
√
|F0K|. (80c)

Figure 11 shows the probability density function implied from approximation 80 versus the ap-
proximation of the exact probability density function of FB-SABR by monte carlo simulations.
The method from Hagan et al. seems accurate for the parameters in figure (a), except for a small
area around zero. Figure (b) shows that the method is far from accurate for other parameters:
its implied probability density is negative for a large area around zero, while this is the most
relevant area in a low rate environment. The conclusion is that the method of Hagan et al. is
an inappropiate approximation to FB-SABR and an inappropriate model of the volatility smile
(in a low rate environment).

In conclusion, the FB-SABR is able to model negative rates, but the uncontrollable spike around
zero makes it unreliable and unrealistic. The intuition that makes the original SABR model so
popular, disappears in this extension. Furthermore, Hagan’s formula for the FB-SABR model
is inappropiate to calibrate the FB-SABR model, since its approximation is inaccurate in the
low interest rate area.
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(a) FB-SABR with T = 1 (b) FB-SABR with T = 3

Figure 11: Comparison of the density implied by normal volatility 80 and the approximated
density from monte carlo simulations.

3.4 Summary

Black’s model and the SABR model both have the assumption of positive rates embedded in
their structure. These models can be extended to model rates larger than −s by shifting them
with some shift parameter s > 0. Another way to extend SABR is to remove the boundary
condition at zero, resulting in the free boundary SABR model. This extended model can model
rates from the whole real line. Bachelier’s model solves the problem of negative rates by using
a normal distribution to model the underlying instead of a lognormal distribution as in Black’s
model. The main (dis)advantages of the models are listed in table 3.

Model class, domain Pro + Con -

Normal models Model interpretation Positive probability on large negative rates
−∞ < Ft <∞ Analytical solution

No extra parameter

Displaced models Model interpretation Additional shift parameter s chosen a priori
−s < Ft <∞ Analytical solution

Free boundary models No extra parameter Model interpretation
−∞ < Ft <∞ No analytical solution available (in general)

Approximation inaccurate

Table 3: Benefits and drawbacks of models in a negative rates environment. Shift parameter s
is a positive constant.
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4 Pricing path dependent FX options

The initial research goal was to price barrier caps with the time dependent SABR model [15] in
a negative interest rate environment. However, during the research it appeared that there is no
obvious transformation of the time dependent FX-SABR model to the interest rate market. An
important assumption of the time dependent FX-SABR model is deterministic discount curves
(due to deterministic interest rates), while a realistic model for pricing interest rate derivatives
requires stochastic interest rates. Methods from [10] or [21] are preferred to price path depen-
dent interest rate options under a variation of the SABR model. The research goal was adjusted
to the pricing and hedging of foreign exchange barrier options. Time dependent SABR has been
proven to work well in this application area and ABN Amro was eager to gain knowledge about
how this method performs compared to their own proprietary trading model. In the experiments
in chapter 5 the market valuations of both methods will be compared.

The rest of this section explains why a stochastic volatility model, or SABR with time dependent
parameters more specifically, is needed for the pricing of path dependent options. Section 4.1
introduces mathematical definitions and knowledge about the foreign exchange market such that
the time dependent SABR model can be introduced in section 4.2. Certain mappings that are
the core of the calibration procedure of this model are explained in section 4.3. The calibration
procedure itself is described in section 4.4. Section 4.5 shows how the calibration performance
is improved. Finally, section 4.6 shows how the time dependent SABR model is adjusted for a
negative underlying asset.

Pricing path dependent options with local volatily or stochastic volatility models

The pricing and hedging of path dependent financial products requires an accurate calibration
to prices of European-type options with different expiries that contain information about market
behaviour through time. Accurate calibration to European-type options is not sufficient though,
an appropriate model should also reflect market behaviour of implied volatility smile dynamics.
The current value of a path dependent product depends on transition probabilities from one
future state to another. Even though the local volatility model [17] can be calibrated perfectly
to European-type option market data, it produces a flattening of the forward implied volatility
smile. Products that are sensitive to the forward implied volatility smile, like path dependent
options or forward starting options, could be priced incorrectly due to this property of the
local volatility model. In contrast, stochastic volatility models predict that the forward implied
volatility smile has a similar shape to the current observed implied volatility smile [5]. This
usually leads to more accurate results in the pricing of such products. The dynamics of the
implied volatility curve with respect to changes in the underlying, are very important for hedging.
One of the main reasons for Hagan et al. [20] to introduce the SABR model is that the local
volatility model produces inaccurate volatility smile moves after a change in the underlying. This
in turn leads to unstable hedges. The SABR model in contrast, possesses implied volatility curve
dynamics corresponding to market behaviour observed in the foreign exchange (FX) market [5].

The SABR model with constant parameters versus time dependent parameters

The SABR model introduced before has constant parameters. When Hagan’s formula is used
to calibrate to market data of several expiries, this usually leads to a different set of (constant)
parameters for each expiry. This implies that the assumption of constant parameters needs to
be relaxed in order to calibrate the model to data of multiple expiries accurately. The purpose
of calibrating the SABR model to multiple expiries of European-type options could be to price
and hedge an exotic derivative for which no market quote is available. The lack of flexibility of
the SABR model with constant parameters is best illustrated with an example.

Suppose that the calibration of the constant SABR model to a market with two expiries, half a
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year and one year, resulted in the effective parameters of table 4. Constant parameters and the
constant SABR model will be called effective parameters and the effective SABR model from
now on, the reason for this will be explained in section 4.3.

Expiry (Years) γ ρ ω

0.5 1.0000 -0.09000 0.1000

1.0 0.9653 -0.08556 0.1101

Table 4: Market effective parameters

Figure 12a shows that when the effective SABR model is simulated with parameters (γ, ρ, ω) =
(1.00,−0.09, 0.10) model implied volatilities match the market implied volatilities at the first ex-
piry. In contrast, the model implied volatilities of the second expiry, shown in figure 12b, do not.
The opposite is true when the model is simulated with (γ, ρ, ω) = (0.9653,−0.08556, 0.1101).
The model implied volatilities of the first expiry do not match the market implied volatilities,
but the model implied volatilies at the second expiry do, as can be seen in figures 12c and 12d
respectively.

This example shows that the SABR model with constant parameters is not suited to calibrate to
market data of multiple expiries. The model can be extended with time dependent parameters.
For example, with piecewise constant parameters for example. A naive choice for the example
above would be choosing time dependent parameters (81)

γ(t) :=

{
1.0000 0 ≤ t ≤ 0.5

0.9653 0.5 < t ≤ 1
, ρ(t) :=

{
−0.09000 0 ≤ t ≤ 0.5

−0.08556 0.5 < t ≤ 1
and ω(t) :=

{
0.1000 0 ≤ t ≤ 0.5

0.1101 0.5 < t ≤ 1
.

(81)
This choice leads to an accurate calibration for the first expiry, as can be seen in figure 13a.
In contrast, figure 13b shows that model and market implied volatilities do not match at the
second expiry. Intuitively, piecewise constant parameters that are ’smartly averaged’ from the
market effective parameters might lead to a good fit. The method of finding those parameters
is the core of the paper of Van der Stoep et al. [15]. It appears that when the time dependent
parameters are chosen as in formula (82) the time dependent model fits well.

γ(t) :=

{
1.0 0 ≤ t ≤ 0.5

0.9 0.5 < t ≤ 1
, ρ(t) :=

{
−0.09 0 ≤ t ≤ 0.5

−0.08 0.5 < t ≤ 1
and ω(t) :=

{
0.10 0 ≤ t ≤ 0.5

0.12 0.5 < t ≤ 1
, (82)

This can be seen by comparing the market volatilities with those from the time dependent model
in figure 12.

Clearly, a time dependent model is necessary for accurate calibration to different expiries at
the same time. Before introducing the time dependent SABR model in section 4.2, the mathe-
matical framework as well as details about the foreign exchange (FX) market are explained in
section 4.1. These definitions need to be introduced before the time dependent SABR model
and its calibration to the FX market can be explained.

4.1 FX products and mathematical framework

Let rd(t) and rf (t) be the deterministic domestic and foreign interest rates respectively. Fur-
thermore, let Bd and Bf be the domestic and foreign bank accounts, determining the time-value
of money, with dynamics

dBd(t) = rd(t)Bd(t)dt and dBf (t) = rf (t)Bf (t)dt. (83)
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(a) (b)

(c) (d)

Figure 12: A comparison of the implied volatilities of simulated effective and time dependent
SABR models with market implied volatilities. The effective parameters used in figures (a)
and (b) are (γ, ρ, ω) = (1.00,−0.09, 0.10) and the effective parameters used in (c) and (d) are
(γ, ρ, ω) = (0.9653,−0.08556, 0.1101). The time dependent parameters used in (a)-(d) are given
in formula (82). The market implied volatilities are listed in table 4.

The domestic and foreign discount factors, or zero coupon bonds, are defined as

Pd(t, T ) := ES
[
Bd(t)

Bd(T )
| Ft

]
= e−

∫ T
t rd(s)ds and Pf (t, T ) := ES

[
Bf (t)

Bf (T )
| Ft

]
= e−

∫ T
t rf (s)ds,

(84)
where S is the risk neutral (domestic) spot measure. The spot FX rate, expressed in units of
domestic currency (DOM) per unit of foreign currency (FOR), is the current exchange rate at
present time t and denoted by S(t). The currency exchange rate is usually quoted as FOR-DOM.
For example EUR-USD = 1.26 means that one EUR is worth 1.26 USD, the foreign currency is
the EUR and the domestic currency is USD. By the interest rate parity, the relation between
the spot FX S(t) and forward FX F (i)(t) at time Ti is

F (i)(t) = S(t)
Pf (t, Ti)

Pd(t, Ti)
. (85)

The value V (t) of an FX call option with expiry Ti prevailing at time t ≤ Ti with strike K is

EFi
[
Pd(t, Ti)

Pd(Ti, Ti)
(F (i)(Ti)−K)+ | Ft

]
= V (t) = ES

[
Bd(t)

Bd(Ti)
(S(Ti)−K)+ | Ft

]
, (86)
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(a) (b)

Figure 13: A comparison of the market implied volatilities belonging to market effective param-
eters listed in table 4 with implied volatilities obtained by simulating time dependent SABR
with parameters in formula (81).

where Fi is the risk neutral forward measure at time Ti. The Radon-Nikodym derivative [31]
between both measures is equal to one:

dFi

dS
=
Pd(Ti, Ti)Bd(t)

Bd(Ti)Pd(t, Ti)
= 1, (87)

due to deterministic rates rd(t) and rf (t). This implies dWFi(t) = dWS(t) and this knowledge
is useful in the derivation of the time dependent SABR model in section 4.2. The goal of
introducing these (mathematical) definitions is to price barrier options with the time dependent
SABR model. Four different types of barrier FX options are priced in the experiments chapter
5: up-and-out (OU) calls (C) and puts (P), and down-and-out (DO) calls and puts. Suppose
the strike is K, the expiry is T and the barrier is B, then the time t value V (t) of these barrier
options is:

V C
UO(t) = ES

[
Bd(t)

Bd(Ti)
(S(T )−K)+1

(
max
t∈[0,T ]

S(t) < B

)
| Ft

]
, (88a)

V P
UO(t) = ES

[
Bd(t)

Bd(Ti)
(K − S(T ))+1

(
max
t∈[0,T ]

S(t) < B

)
| Ft

]
, (88b)

V C
DO(t) = ES

[
Bd(t)

Bd(Ti)
(S(T )−K)+1

(
min
t∈[0,T ]

S(t) > B

)
| Ft

]
, and (88c)

V P
DO(t) = ES

[
Bd(t)

Bd(Ti)
(K − S(T ))+1

(
min
t∈[0,T ]

S(t) > B

)
| Ft

]
, (88d)

respectively. These barrier options are valued by calibrating to market data later, the results
are listed in the experiments chapter 5. Before the time dependent SABR model is introduced
in section 4.2, FX market conventions and the construction of the implied volatility smile are
explained. This knowledge is necessary for the calibration of the model to market data.

FX market quote conventions and the implied volatility smile construction

A transaction in the Foreign Exchange (FX) market is respresented by an amount in foreign
currency Nf and an amount in domestic currency Nd and a payment date T . Notionals Nf and
Nd have different signs, where the sign depends on which side of the transaction the participant
takes. The option on the FX transaction is represented by the underlying FX transaction, a
strike K, expiry date T , and a call or put feature. The holder of an FX option has the right
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(but not the obligation) to exchange a specific amount of money in foreign currency at an agreed
exchange rate K at maturity time T . It is market practice to value the FX call and put options
with Black’s model, also called Garman-Kohlhagen in this context:

V C(0) = Pf (0, Ti)S0Φ(d1)− Pd(0, Ti)KΦ(d2), (89a)

= Pd(0, Ti)
(
F

(i)
0 Φ(d1)−KΦ(d2)

)
, (89b)

d1 :=

log

(
F

(i)
0
K

)
σ
√
Ti

+
1

2
σ
√
Ti, and d2 := d1 − σ

√
Ti. (89c)

Note that the value of the option is in domestic currency. The option position, however, may
also be held in foreign currency. The option value formula applies to one unit of foreign notional,
with the option value in units of domestic currency.
Deltas in the FX market can be calculated in several ways. It can be calculated with respect
to the spot FX rate St or with respect to a forward FX rate F (i)(t). Furthermore, the standard
’unadjusted’ delta is a quantity in percent of foreign currency. The actual hedge quantity must
be changed if the premium is paid in foreign currency. This would be equivalent to paying stock
options with stock shares. This type of delta is called the premium-adjusted delta. The markets
considered in the experiments of this thesis are the EUR-USD and the GBP-USD markets with
expiries up till one year (1Y). In these markets, the standard/unadjusted spot delta is used by
default [29]. Therefore, the following analysis is limited to the standard spot delta:

∆C
S = Pf (0, Ti)Φ(d1) and ∆P

S = −Pf (0, Ti)Φ(−d1). (90)

In the FX market the market prices or implied volatilies of call and put options are not quoted
directly. The quotes of a particular expiry usually consist of an ’at-the-money’ (ATM) implied
volatility, and for one or more deltas a so called risk reversal (RR) and a straddle (STR). A
different definition of ATM implied volatility is used than in previous sections. Before, the
ATM volatility was the implied volatility where the strike K equals current underlying forward
F0. In this situation, the ATM volatility is the volatility of a zero delta straddle, also called a
risk neutral straddle. A straddle is a put and a call option with the same strike at a certain
expiration. In this particular straddle the put and call have the same strike and the same delta
(but the opposite sign). To make sure the call and put deltas are equal in absolute value

Pf (0, Ti)Φ

 log
F

(i)
0

K
(i)
δ0

+ 1
2σδ0Ti

σδ0
√
Ti

 = Pf (0, Ti)Φ

− log
F

(i)
0

K
(i)
δ0

+ 1
2σδ0Ti

σδ0
√
Ti

 , (91)

the common strike Kδ0 has to be

K
(i)
δ0 = F

(i)
0 e

1
2
σδ0Ti . (92)

This means the zero delta strike does not equal the current forward, unless the volatility is zero.
The (25-delta) risk reversal volatility

RR25 := σC,δ25 − σP,δ25, (93)

measures the skewness of the smile and the (25-delta) strangle volatility

STR25 :=
1

2
(σC,δ25 + σP,δ25)− σδ0, (94)

measures curvature of the smile. The risk reversal and the strangle of different deltas, are
calculated in the same way. Given the ATM volatility, the risk reversal(s) and the strangle(s),
the market implied volatilities (at 25-delta) can be calculated with formulas

σC,δ25 = σδ0 + STR25 +RR25, (95a)

σP,δ25 = σδ0 + STR25 −RR25. (95b)
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Volatility σC,δ25 is the implied volatility of a so called 25-delta call option. This is a call option
with a strike chosen such that its delta is 0.25. A 25-delta put option is a put option with a
strike chosen such that the delta is −0.25. The strikes corresponding to these 25-delta (and
10-delta) put and call volatilities are not known explicitly. They are solved by using definition
(91) of the spot delta:

K
(i)
C,δ25 = F

(i)
0 exp

(
−σC,δ25

√
TiΦ

−1(0.25) +
1

2
(σC,δ25)2Ti

)
, (96a)

K
(i)
P,δ25 = F

(i)
0 exp

(
σP,δ25

√
TiΦ

−1(−(−0.25)) +
1

2
(σP,δ25)2Ti

)
. (96b)

In the GBP-USD and EUR-USD markets, quotes of 25-delta as well as 10-delta are available.
For each expiry, a five point volatility smile can be constructed with the techniques introduced
here. Hagan’s formula can be calibrated to these points to obtain a smooth volatility smile.

Now that FX products are introduced and the volatility smile at each expiry is constructed,
the time dependent FX-SABR model that can be used to price exotic FX products is intro-
duced in the next section.

4.2 Time dependent FX-SABR model

The classic SABR model can be extended with time dependent parameters to be able to calibrate
to market data of several expiries. The following time dependent FX-SABR model in particular,
is capable of calibration to FX options of different expiries:

dS(t) = S(t)(rd(t)− rf (t))dt+

(
Pd(t, TN )

Pf (t, TN )

)1−β
ω(t)σ(t)[S(t)]βdWS(t), (97a)

dσ(t) = γ(t)σ(t)dWσ(t), σ(0) = 1, (97b)

dWS(t)dWσ(t) = ρ(t)dt. (97c)

The model is introduced in Van der Stoep, Grzelak and Oosterlee [15].

Derivation

By the interest rate parity (85) the differential of F (i)(t) is

dF (i)(t) =
Pf (t, Ti)

Pd(t, Ti)
dS(t) + (rf (t)− rd(t))S(t)

Pf (t, Ti)

Pd(t, Ti)
dt, or (98a)

dS(t) =
Pd(t, Ti)

Pf (t, Ti)
dF (i)(t) + (rd(t)− rf (t))S(t)dt. (98b)

In order to use Hagan’s formula for calibration to market data, the forward rate should be of
the form

dF (i)(t) = ω(t)σ(t)C(·)[F (i)(t)]βdWFi(t), (98c)

where C(·) is some deterministic function. Function C should be chosen such that there is no
dependency on a particular expiry date in the dynamics of the spot. Trivial candidate

C1 := 1, (98d)

leaves a dependency on expiry date Ti in the spot dynamics. Candidate function

C2(t, i) :=

(
Pf (t, Ti)

Pd(t, Ti)

)1−β
, (98e)
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would eliminate this dependency on Ti in the spot dynamics, but it introduces a dependency
on time t in the dynamics of the forward, which is undesirable since this makes using Hagan’s
formula for calibration impossible. Also candidate

C3(t) :=

(
Pf (Ti, TN )

Pd(Ti, TN )

)1−β
, (98f)

would eliminate the dependency on i of the spot dynamics. Furthermore, this candidate does
not introduce an extra time dependency in the forward dynamics, enabling it to be calibrated
with Hagan’s formula. In this case the forward dynamics are

dF (i)(t) = ω(t)σ(t)

(
Pd(Ti, TN )

Pf (Ti, TN )

)1−β
[F (i)(t)]βdWFi(t). (98g)

Normalizing F (i)(t)/f
(i)
0 , where f

(i)
0 := F (i)(0) and s0 := S(0), leads to the model

dF (i)(t) = ω1(t)σ(t)[F (i)(t)]βdWFi(t), F
(i)(0) = 1, (99a)

dσ(t) = γ(t)σ(t)dWσ(t), σ(0) = 1, (99b)

dWFi(t)dWσ(t) = ρ(t)dt, (99c)

where

ω1(t) = ω(t)

(
Pd(Ti, TN )

f
(i)
0 Pf (Ti, TN )

)1−β

= ω(t)

(
Pd(0, TN )

s0Pf (0, TN )

)1−β
. (99d)

This model is in SABR form when ω, ρ and γ are chosen to be constant. Plugging (98g) in
(98b) leads to the following spot dynamics of the time dependent SABR model:

dS(t) = S(t)(rd(t)− rf (t))dt+
Pd(t, Ti)

Pf (t, Ti)
ω(t)σ(t)

(
Pd(Ti, TN )

Pf (Ti, TN )

)1−β (
S(t)

Pf (t, Ti)

Pd(t, Ti)

)β
dWS(t),

(100a)

= S(t)(rd(t)− rf (t))dt+

(
Pd(t, TN )

Pf (t, TN )

)1−β
ω(t)σ(t) (S(t))β dWS(t). (100b)

The drift term of the resulting spot dynamics (97) is expressed in time dependent domestic and
foreign interest rates rd(t) and rf (t). These rates can be bootstrapped from the domestic and
foreign discount curves Pd and Pf , which are observable in the market.

Bootstrapping the rate function

The underlying model governing discount factors Pd as well as Pf in the time dependent SABR
model is

P (s, t) = e−
∫ t
s r(u)du, (101)

for some function r(·).
Suppose discount factors from t0 till t1, t2, . . . , tN are known: P (t0, t1), P (t0, t2), . . . , P (t0, tN ).
Furthermore, assume that r is a piecewise constant function:

r(t) :=


r1 t0 ≤ t ≤ t1
r2 t1 < t ≤ t2
...

...

rN tN−1 < t ≤ tN

. (102)
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The piecewise constant function r can then be extracted from the discount factors with the
following formula:

rj = − 1

tj − tj−1
log

(
P (t0, tj)

P (t0, tj−1)

)
, for j = 1, . . . , N, (103)

since P (tj−1, tj) = P (t0, tj)/P (t0, tj−1).

The above procedure is used to construct a time dependent discount factor from discount fac-
tors observed in the market. Together with the constructed implied volatility smiles in section
4.1 and the introduced time dependent SABR model (97) there is almost enough information
available to calibrate this model. Before the calibration procedure is explained in section 4.4,
the mappings that are the core of this procedure are explained in section 4.3.

4.3 Mappings of time dependent to effective parameters

The calibration of the time dependent FX-SABR model is based on the different effects that the
parameters have on the implied volatility smile. The calibration makes use of so called effective
parameters, which are ’smart averages’ of the time dependent parameters. This technique was
introduced by Piterbarg [28]. The effective FX-SABR model under the Ti-forward measure Fi,
i = 1, . . . , N , is defined as

dF̃ (i)(t) = ω̃1σ̃(t)[F̃ (i)(t)]βdWFi(t), F̃
(i)(0) = 1, (104a)

dσ̃(t) = γ̃σ̃(t)dWσ(t), σ̃(0) = 1, (104b)

dWFi(t)dWσ(t) = ρ̃dt, (104c)

where

ω̃1 = ω̃

(
Pd(Ti, TN )

f̃
(i)
0 Pf (Ti, TN )

)1−β

. (104d)

It is possible to calculate effective parameters such that the implied volatilities produced by
the effective (104) and time dependent (99) models are (approximately) equal at time Ti. In
the next paragraphs it is described how these effective parameters can be calculated. First, the
effect of each parameter on the volatility smile is described.

The standard parameter setting in figure 14 is F
(i)
0 = 1.5, β = 0.5, γ̃ = 0.4, ω̃1 = 0.14,

ρ̃ = 0 and Ti = 1. In each subfigure a parameter is varied, as can be seen in the corresponding
legend.

The volatility-of-volatility (volvol) parameter γ̃ in (104) influences curvature of the smile mainly.
To a lesser extent, γ̃ influences the level of the volatility smile as well, as can be seen in figure
14a. It also has an almost negligible effect on the skew.

Term structure parameter ω̃ mainly influences the level of the smile, as can be seen in figure
14b. Its effects on the curvature and skew are negligible. According to Hagan’s formula (38), the

ATM volatility is approximately equal to ω̃/(F
(i)
0 )1−β. Since F

(i)
0 = 1 due to the normalisation

in (99) and (104), the ATM volatility is approximately equal to the term structure parame-
ter. This was actually one of the main reasons for using normalisation in the time dependent
and effective models: to separate the different effects of different parameters as much as possible.

The correlation parameter ρ̃ has two effects, like the volvol parameter γ̃. It mainly influences
the skew, as can be seen in figure 14c. It does not influence the level, but it does influence the
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(a) Volatility of volatility γ (b) Initial volatility ω (c) Correlation ρ

Figure 14: Figure (a), (b) and (c) illustrate the effect of the volatility-of-volatility γ̃, initial
volatility ω̃ and correlation ρ̃ parameters on the implied volatility smile respectively. The stan-

dard parameter setting is F
(i)
0 = 1.5, β = 0.5, γ̃ = 0.4, ω̃1 = 0.14, ρ̃ = 0 and Ti = 1. In each of

the figures one parameter is varied.

curvature. Hagan et al. [20] decompose the skew in beta-skew −1
2(1− β − ρ̃ γ̃

ω̃1
) and vanna-skew

1
2 ρ̃

γ̃
ω̃1

log(K). The first is responsible for the skew caused by parameter β and the latter for
the skew caused by correlation ρ̃. The calibration procedure of the skew, that is introduced
later, is based on the calibration of vanna skew. The reason for this is that there are three
degrees of freedom: level, skew and curvature, while there are four parameters. This means that
after fixing one parameter there is still enough flexibility to model a wide variety of smiles. It
is industry practice to fix β, since its effects on the smile can be easily replaced by the other
parameters. The influence of β for a current forward smaller than one and larger than one can
be seen in figures 15a and 15c respectively. The normalisation in (99) and (104) reduced the
impact of the choice of β as can be seen in figure15b.

The effective model (104) is indirectly used for the calibration of the time dependent model (97)
via the calibration of time dependent parameters ρ(t), γ(t), and ω(t). The calculation methods
of these time dependent parameters are described in the next paragraphs.

Volvol mapping

The mapping from a time dependent volvol parameter γ(t) to its corresponding effective volvol
parameter γ̃ is defined as∫ Ti

0
ω2

1(t)

(∫ t

0
ω2

1(s)e6
∫ s
0 γ

2(u)du+
∫ t
s γ

2(u)duds

)
dt (105a)

=
1

5

(∫ Ti
0 ω2

1(t)e
∫ t
0 γ

2(u)dudt

eγ̃2Ti − 1

)2(
1

6
e6γ̃2Ti − eγ̃2Ti +

5

6

)
. (105b)

The mapping provides an implicit relationship between the time dependent and effective volvol.
It can be numerically solved for the effective parameter. Note that the mapping does not depend
on the effective level ω̃1, in contrast to the time dependent level ω1(t). It cancelled out during
the derivation. The details of the derivation can be found in the proof of lemma 4.1 in Van
der Stoep et al. [15, page 9-10]. Piecewise constant parameters yield analytic expressions for
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(a) Current forward F0 = 0.5 (b) Current forward F0 = 1.0 (c) Current forward F0 = 1.5

Figure 15: Figure (a), (b), and (c) illustrate the effect of the power parameter β on the shape of
the volatility smile with a forward smaller then 1, equal to 1 and larger to 1 respectively. The
standard parameter setting is γ̃ = 0.4, ω̃1 = 0.14, ρ̃ = 0 and Ti = 1. In each of the figures β is
varied. The current forward equals 0.5 in (a) and 1.5 in (b).

the integrals in (105). The analytic expressions and their derivations can be found in appendix E.

The main influence of the volvol parameter on the volatility smile is on its curvature. Cur-
vature can be measured in so called realised volatility. The idea behind the derivation is that
the effective volvol parameter is determined such that the realised volatilities of the effective
and time dependent models are equal in distribution:∫ Ti

0
ω1(t)σ(t)dW Ti(t)

d
=

∫ Ti

0
ω̃1(t)σ̃(t)dW Ti(t). (106)

The result in formula (105) is achieved by matching moments of the realised volatilies in (106).
Since the first moment of the left and right hand sides are both zero, this provides little infor-
mation and the second moment is matched instead.

Correlation mapping

Correlation ρ and power parameter β affect the skew similarly, so skew can be calibrated with ρ
when β is fixed. Vanna skew in the SABR model is the part of the skew caused by ρ, the other
part of the skew is mainly caused by β. In the context of the (effective) SABR model, vanna
skew is defined by Hagan et al. [20] as

V (ρ̃) :=
1

2
ρ̃
ν̃

ω̃
(f

(i)
0 )1−β log

(
K

f
(i)
0

)
. (107)

The effective correlation corresponding to expiry Ti is determined by matching the vanna skew
of the effective SABR model with the average vanna skew of the time dependent SABR model
over [0, Ti]:

ρ̃ = arg min
x

(
x

2

γ̃

ω̃
(f

(i)
0 )1−β log

(
K

f
(i)
0

)
− 1

Ti

∫ Ti

0

ρ(t)

2

γ(t)

ω(t)
(f

(i)
0 )1−β log

(
K

f
(i)
0

)
dt

)
. (108a)
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The solution of above equation is

ρ̃ =
ω̃

γ̃Ti

∫ Ti

0

ρ(t)γ(t)

ω(t)
dt. (108b)

For piecewise constant parameters this reduces to

ρ̃ =
ω̃

γ̃Ti

i∑
j=1

ρjγj
ωj

(Tj − Tj−1). (108c)

This formula will be referred to as the correlation mapping.

Term structure mapping

Term structure parameter ω mainly affects the level of the implied volatility smile. For this
reason, effective parameter ω̃ is derived by matching volatility smile levels of the effective and
time dependent models. Furthermore, the level of the smile is completely determined by the
value of the at-the-money (ATM) implied volatility. Therefore, the ATM price values of the
time dependent (99) and effective models are matched

E
[
(F (j)(Tj)− 1)+ | F0

]
= E

[
(F̃ (j)(Tj)− 1)+ | F0

]
, (109)

in order to calculate ω̃. The expected ATM payoff of time dependent model (99) can be approx-
imated by

E
[
(F (j)(Tj)− 1)+ | F0

]
=

1√
2π

(
ω1(0)

√
∆tφ̂YM (−1

2
i)

)
, (110)

where φ̂YM is an approximation of the characteristic function of YM := log
(∑M

k=1
ω1(tk)σ2(tk)

ω1(0)

)
with ∆t = Tj/M and tk = k∆t, for k = 1, . . . ,M . The expected ATM payoff of the corresponding
effective model is approximated in the same way with the approximated characteristic function of

ỸM := log
(∑M

k=1 σ̃
2(tk)

)
. These payoffs should be equal by definition, leading to an expression

for effective term structure ω̃ in terms of time dependent term structure ω(t):

ω̃ = ω̃1

(
f

(i−1)
0 Pf (Ti, TN )

Pd(Ti, TN )

)1−β

, with ω̃1 =
ω1(0)φ̂YM (−1

2 i)

φ̂ỸM (−1
2 i)

. (111)

Formula (111) is defined as the term structure mapping. The details of the derivation of (111),
as well as an analysis of the approximation errors, can be found in Van der Stoep et al. [15,
page 11-17]. The recovery procedure in appendix F can be used to calculate the characteristic
function approximations.

4.4 Calibration procedure

The mappings from time dependent parameters to effective parameters introduced in the pre-
vious section are used to calibrate the time dependent SABR model (97). The calibration
procedure is described in this section. First, Hagan’s formula is used to calibrate a smooth
volatility smile to the implied volatility market data of each expiry. The SABR parameters that
produce such a smile are called the market effective parameters (of that particular expiry). In
general, each expiry has different market effective parameters. In order to calibrate the time
dependent SABR model the mappings

γ̃mod = Γ(γ(t), ω(t)), ω̃mod = Ω(γ(t), ω(t); γ̃mod) and ρ̃mod = R(γ(t), ω(t), ρ(t); γ̃mod, ω̃mod),
(112)
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are used. Mappings Γ, Ω and R represent formula (105), (111) and (108c) respectively. These
functions map time dependent parameters γ(t), ρ(t) and ω(t) to their model effective equiva-
lents γ̃mod, ρ̃mod and ω̃mod. They are denoted with superscript ’mod’ to distinguish these model
effective parameters from the market effective parameters.

Every mapping depends on several time dependent parameters, not just ’its own’ time de-
pendent parameter. The Γ mapping for instance, has γ(t) as well as ω(t) as input variables. It
is possible to use all three mappings at the same time in one optimization procedure. However,
this is too computationally expensive due to the high dimensionality of the problem. Especially
the evaluation of the Ω mapping is computationally expensive, due to the recovery procedure of
the characteristic functions. Furthermore, generating a ’good’ initial guess is computationally
expensive since each three dimensional candidate function needs to be checked for accuracy.
Another possibility is to alternate the different mappings in different stages and to perform an
optimization procedure in each stage. Since γ(t) and ρ(t) both have curvature and skew effects
these are calibrated in the same stage. An error function compares model implied volatilities
with market implied volatilities, instead of model and market effective parameters, since we deal
with two of those in this stage. Furthermore, the error function is extended with penalties for
some parameter combinations: it is necessary that γmod ≥ 0 and ρmod ∈ [−1, 1] for example.
The Ω mapping is used to calibrate the level of the time dependent SABR model. The error
function in an ω stage should guarantee that ω̃mod ≥ 0.

There is a chicken-or-the-egg problem in this method: the γ-ρ stage needs ω(t) as an input
and the ω stage needs γ(t) as an input. A solution to this problem is to use the market effective
parameter as a proxy for the time dependent parameter in the first stage. If the first stage is a
γ-ρ stage the following approximations are used:

γ̃mod = Γ(γ(t), ω(t)) ≈ Γ(γ(t), ω̃mar), (113a)

ρ̃mod = R(γ(t), ω(t), ρ(t); γ̃mod, ω̃mod) ≈ R(γ(t), ω̃mar, ρ(t); γ̃mod). (113b)

In the experiments the Levenberg-Marquardt algorithm (LMA) is used as the error minimization
algorithm. It is used in both the calibration of market volatilities to Hagan’s formula as well
as in the calibration stages described above. The LMA solves nonlinear least squares problems.
It finds a local minimum, not necessarily a global minimum. For this reason the first stage
starts with a (random) global search for a ’good’ initial guess. Subsequently this initial guess
is used in a local search with LMA. Since no boundary conditions can be defined in the LMA,
the boundary conditions should be included in the error function in the form of penalties. If
the best candidate of the initial guess does not result in a satisfactory solution, the second best
candidate of the global search process is taken as the initial guess and the local search process is
repeated, and so forth. In summary, the calibration procedure consists of the following stages:

1. Calibrate smooth volatility smiles to market data with Hagan’s formula and obtain market
effective parameters for each expiry.

2. Calibrate curvature and skew simultaneously in the γ-ρ stage with (113). Market effective
term structure ω̃mar is used as a proxy for ω(t).

3. Calibrate level with term structure mapping Ω (111) in the ω stage.

4. Calibrate curvature and skew again, to compensate for the first γ-ρ stage where a proxy
was used as input.

When the calibration accuracy is not satisfactory after these iterations, more ω and γ-ρ iterations
should be performed. This was not necessary in experiments. In summary, this section provides
an algorithm to calibrate the time dependent SABR model by using the level, skew and curvature
properties of a volatility smile. The following section describes a method that guarantees that
the calibration is perfect.
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4.5 Improving calibration accuracy by adding a local volatility component

The calibration of the time dependent SABR model (97) may not be perfect for all expiries.
Remaining calibration errors are eliminated by adding a local volatility component [15]. The
local volatility component should provide a perfect fit in theory. In practice, there may still be a
small error left after adding the local volatility component, due to rounding errors, randomness of
the Monte Carlo simulation and interpolation choices in the construction of the implied volatility
surface. The S(t) dynamics with local volatility component σSLV are described by

dS(t) = S(t)(rd(t)− rf (t))dt+ σSLV (t, S(t))ω(t)σ(t)

(
Pd(t, TN )

Pf (t, TN )

)1−β
[S(t)]βdWS(t). (114)

Define ψ as

ψ(S(t), σ(t)) := ω(t)σ(t)

(
Pd(t, TN )

Pf (t, TN )

)1−β
[S(t)]β−1, (115a)

and above spot dynamics are rewritten as

dS(t) = (rd(t)− rf (t))S(t)dt+ σSLV (t, S(t))ψ(S(t), σ(t))S(t)dWS(t), (115b)

dσ(t) = γ(t)σ(t)dWσ(t), σ(0) = 1, (115c)

dWS(t)dWσ(t) = ρ(t)dt. (115d)

System (115) has an explicit expression for the local volatility component according to [14]. The
paper shows that the following relation holds between local volatility component σSLV and local
volatility model σLV , or Dupire’s formula [17]:

σ2
SLV (t,K) =

σ2
LV (t,K)

E [ψ2(S(t), σ(t)) | S(t) = K]
, (116a)

=
σ2
LV (t,K)

ω2(t) (Pd(t, TN )/Pf (t, TN ))2−2βK2β−2E [σ2(t) | S(t) = K]
, (116b)

see appendix G for more details. In the experiments later, conditional expectation
E
[
σ2(t) | S(t) = K

]
is estimated with a technique introduced in [14]. For practical purposes, it

is more useful to express the Dupire local volatility in terms of implied volatility Σ(T,K):

σ2
LV (K,T ) =

Σ2 + 2ΣT
(
∂Σ
∂T + (rd(T )− rf (T ))K ∂Σ

∂K

)(
1− Ky

Σ
∂Σ
∂K

)2
+KΣT

(
∂Σ
∂K −

1
4KΣT

(
∂Σ
∂K

)2
+K ∂2Σ

∂K2

) . (117)

The derivation of this expression is listed in appendix G0.2. Dupire’s formula itself is derived
in appendix G0.1. Dupire’s local volatility is non-parametric, which is beneficial since it does
not have model assumptions and therewith does not impose restrictions on the modelled spot
process.

4.6 Normal version of the time dependent SABR model

In some markets or in some market circumstances, it might be more appropiate to work with
normal instead of lognormal volatilities. FX rates are positive by definition and the market con-
vention of quoting options in Black volatilities is therewith not likely to change. In the case of
low or negative rates the traders in the interest rate market might prefer to switch from implied
Black volatilities to implied Bachelier volatilities. In this case, path dependent interest options
are priced by using a slightly different version of the time dependent SABR model. The following
derivation is independent of the market to which the time dependent SABR model is applied,
so the extension of the model to normal volatilities might be useful in future applications of the
time dependent SABR model to markets different from FX.
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When market quotes are expressed as Bachelier volatilities, the most natural version of time
dependent SABR is the one with β = 0. Furthermore, Hagan’s formula (37) is replaced with
formula (62) in the first calibration step of obtaining the market effective parameters. The
derivations of the mappings for γ and ρ are not influenced by switching to normal volatilies, so
calibration steps based on these mappings are not affected. The derivation of the ω mapping
[15, page 11-12] made use of a projection on lognormal dynamics. For β = 0 a more natural
choice seems to project on normal dynamics. The following derivation shows that projection on
normal dynamics makes the need for the Taylor approximation in [15, page 13] disappear. As a
result, the obtained ω mapping has a zero (Taylor) truncation error.

Effective term structure for β = 0

The effective term structure mapping is derived by matching the at-the-money payoffs of the
time dependent and the effective model:

E
[(
F Ti(Ti)− F Ti0

)+
]

= E
[(
F̃ Ti(Ti)− F̃ Ti0

)+
]

, where F Ti0 = 1 = F̃ Ti0 . (118)

In the derivation of the effective term structure for β = 0 it makes more sense to assume normal
instead of lognormal dynamics [15, page 11-12] for the forward. Let’s start with projecting the
forward dynamics of the time-dependent model (99) on normal dynamics:

dF Ti(t) = ω1(t)σ(t)dWFi(t), (119a)

with solution F Ti(Ti) =

∫ Ti

0
ω1(t)σ(t)dWFi(t) + F Ti0 . (119b)

The projection of the effective model is similar. Note that no projection takes place actually,
since the SABR model (99) with β = 0 has the same forward dynamics as (119). In order
to match the payoffs of the time dependent and effective model, several identities have to be
derived first. Observe that for I(Ti) :=

∫ Ti
0 ω1(t)σ(t)dWFi(t) and J(Ti) :=

∫ Ti
0 ω2

1(t)σ2(t)dt it
holds that

E [I(Ti)] = 0 and (120a)

E
[
I2(Ti)

]
= E

[∫ Ti

0
ω2

1(t)σ2(t)dt

]
= E [J(Ti)] , (120b)

by martingality of Ito integrals and the Ito isometry respectively. Furthermore, it holds that

E

√J(Ti)

Ti
WFi(Ti) | ω1(t)σ(t), 0 ≤ t ≤ Ti

 , (120c)

= E

√J(Ti)

Ti
| ω1(t)σ(t), 0 ≤ t ≤ Ti

E [WFi(Ti) | ω1(t)σ(t), 0 ≤ t ≤ Ti] , and (120d)

E
[
J(Ti)

Ti
(WFi(Ti))

2 | ω1(t)σ(t), 0 ≤ t ≤ Ti
]
, (120e)

= E [J(Ti) | ω1(t)σ(t), 0 ≤ t ≤ Ti]E

[
(WFi(Ti))

2

Ti
| ω1(t)σ(t), 0 ≤ t ≤ Ti

]
, (120f)

since J(Ti) and WFi(Ti) are independent given {ω1(t)σ(t), 0 ≤ t ≤ Ti}. Applying the Tower
property yields

E

√J(Ti)

Ti
WFi(Ti)

 = E

√J(Ti)

Ti

E [WFi(Ti)] = 0, and (120g)

E
[
J(Ti)

Ti
(WFi(Ti))

2

]
= E [J(Ti)]E

[
(WFi(Ti))

2

Ti

]
= E [J(Ti)] . (120h)
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In conclusion, the following equation

I(Ti)
d
=

√
J(Ti)

Ti
WFi(Ti), (120i)

holds in distribution, since both left and right hand sides are normally distributed with the same
mean and variance. As a consequence

F Ti(Ti) =

√
J(Ti)

Ti
WFi(Ti) + F Ti0 , with F Ti0 = 1. (121)

Applying Bachelier’s option pricing formula (60a) to the above equation results in

E
[(
F Ti(Ti)− 1

)+ | ω1(t)σ(t), 0 ≤ t ≤ Ti
]
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√
J(Ti)
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·
√
Ti ·

1√
2π
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√
J(Ti)

2π
and (122a)

E
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F Ti(Ti)− 1

)+]
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1√
2π

E
[√

J(Ti)
]
, (122b)

by the Tower property. So in the normal case there is no need for a Taylor series approximation.
For the forward dynamics of the effective model

dF̃ Ti(t) = ω̃1σ̃(t)dWFi(t), (123)

similar reasoning leads to

E
[(
F̃ Ti(Ti)− F̃ Ti0

)+
]

=
1√
2π

E
[√

J̃(Ti)

]
, with J̃(Ti) := ω̃2

1

∫ Ti

0
σ̃2(t)dt. (124)

Matching the at-the-money-payoffs of the time dependent and effective models results in

1√
2π

E

√∫ Ti

0
ω2

1(t)σ2(t)dt

 =
ω̃1√
2π

E

√∫ Ti

0
σ̃2(t)dt

 . (125)

The integral of the left hand side of (125) is approximated by∫ Ti

0
ω2

1(t)σ2(t)dt = ∆t

M∑
j=1

ω2
1(tj)σ

2(tj), where ∆t = Ti/M. (126a)

The left hand side of (125) reduces to the analytically solvable expression
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where φYM is the characteristic function of

YM := log

 M∑
j=1

ω2
1(tj)σ

2(tj)

ω2
1(0)

 . (126d)

Matching the ATM-payoffs of the time-dependent and effective models results in expression

ω̃1 =
ω1(0)φYM

(
−1

2 i
)

φỸM

(
−1

2 i
) , (126e)
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where

ỸM := log

 M∑
j=1

σ̃2(tj)

 , (126f)

is used in the calculation of the approximation of the right hand side of (125).

In conclusion, term structure mapping (126e) derived by projection on normal forward dy-
namics is equal to term structure mapping (111) derived by projection on lognormal forward
dynamics together with a Taylor approximation. Both techniques result in the same mapping,
but (126e) does not suffer from truncation errors caused by a Taylor approximation. Further-
more, when implied Bachelier volatilities are used with (126e) the term structure is calibrated
more accurately than with (111) and implied Black volatilities. Moreover, this derivation shows
that the same mapping can be used when traders want to use Bachelier volatilities to allow a
negative underlying asset.
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5 Experiments

In this section foreign exchange barrier options are priced with the time dependent SABR model,
with and without local volatility component, as well as with the constant parameter SABR model
and the local volatility model. These outcomes are compared with the valuation of ABN Amro’s
proprietary trading model.

EUR-USD and GBP-USD foreign exchange market data

In order to price foreign exchange barrier options a pricing model needs to be calibrated to
European-type foreign exchange call and put options. In these experiments two datasets are
used: a EUR-USD and a GBP-USD dataset, both from 27/07/2015. Both markets are very liquid
and all three currencies are among the most traded in the world [29]. The data is obtained from
the data vendor of ABN Amro. The datasets contain information of options with expiries of
roughly 1 day, 1 week, 2 weeks, 1 month, 2 months, 3 months, half a year and one year from
’now’: 27/07/2015. As described before, the prices or implied volatilities of these options are
not quoted directly. The implied volatilities of each expiry are extracted from the at-the-money
volatility together with the risk-reversals and strangles of 10 and 25 delta. The market quotes
of the EUR-USD market and the GBP-USD market are listed in table 5. The risk reversals and
strangles are both calculated with a spot delta, since this is the default delta definition in the
EUR-USD and GBP-USD markets [29]. Furthermore, the delta is not adjusted to the premium.
The EUR-USD and GBP-USD spot rates at 27/07/2015 are 1.0988 and 1.55175 respectively.

EUR-USD market quotes GBP-USD market quotes

Date σδ0 RR25 RR10 STR25 STR10 σδ0 RR25 RR10 STR25 STR10

28/07/15 7.8650 7.89 0.14 -3.33 0.82 4.8800 0.00 -0.20 -4.88 1.29
03/08/15 11.5975 0.15 0.24 0.19 0.63 7.7700 -0.10 -0.17 0.17 0.54
10/08/15 11.2275 -0.06 -0.10 0.18 0.57 8.1775 -0.16 -0.28 0.16 0.50
26/08/15 10.3575 -0.28 -0.45 0.19 0.54 7.4950 -0.28 -0.50 0.17 0.52
25/09/15 10.7025 -0.51 -0.86 0.21 0.65 7.6550 -0.44 -0.80 0.20 0.61
27/10/15 10.5025 -0.65 -1.09 0.24 0.73 7.6175 -0.61 -1.10 0.23 0.71
27/01/16 10.4350 -1.07 -1.84 0.27 0.88 7.7975 -0.85 -1.52 0.26 0.83
27/07/16 10.3825 -1.35 -2.32 0.31 1.03 8.0425 -1.11 -2.03 0.30 0.98

Table 5: EUR-USD and GBP-USD market quotes retrieved at 27/07/2015 by ABN Amro. The
EUR-USD spot FX rate at 27/07/2015 is 1.0988 and the GBP-USD spot rate is 1.55175.

The domestic currency in both currency pairs is the USD. For each expiry, the risk-reversal
quote provides information about the implied volatility skew of the currency pair. The 25-delta
risk reversal of the EUR-USD currency pair with an expiry one day in the future is large in
magnitude and positive. This means that there is much more demand for a call position than
for a put position on this currency pair. Since the FX rate is expressed in units of domestic
currency per unit of foreign currency, this means that the demand for domestic currency USD
is much larger than foreign currency EUR in this short time horizon. The 25-delta risk reversal
of the EUR-USD currency pair for larger expiries shows that the expected demand for both
currencies is roughly equal in one week and the demand for EUR, relative to USD, increases in
time thereafter. The 10-delta risk reversals show similar behaviour, but less strong for a short
time horizon. The risk reversals of the GBP-USD currency pair shows that the demand for GBP,
relative to USD, is equal ’currently’, but is expected to increase over time. Such preferences
are likely to change over time according to [29]; the skew of a currency pair varies much over time.

The strangle quotes provide information about the curvature, or convexity, of the implied volatil-
ity smile. For both currencies, the curvature is large in a short time horizon of one day. For
larger expiries the curvature decreases quickly and stabilizes. The level of the implied volatility
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smile, measured by at-the-money volatility σδ0, increases after the first expiry, and stays quite
constant thereafter.

Maturity USD EUR GBP

28/07/15 O/N 0.30 -0.12 0.30
29/07/15 T/N 0.30 -0.12 0.30
30/07/15 S/N 0.30 -0.13 0.30
05/08/15 1W 0.30 -0.14 0.30
12/08/15 2W 0.30 -0.15 0.30
19/08/15 3W 0.30 -0.16 0.30
31/08/15 1M 0.30 -0.16 0.30
29/09/15 2M 0.30 -0.19 0.30
29/10/15 3M 0.30 -0.22 0.30
30/11/15 4M 0.33 -0.22 0.33
29/12/15 5M 0.35 -0.21 0.35
29/01/16 6M 0.37 -0.24 0.37
29/02/16 7M 0.40 -0.24 0.40
29/03/16 8M 0.43 -0.24 0.43
29/04/16 9M 0.45 -0.25 0.45
31/05/16 10M 0.48 -0.25 0.48
29/06/16 11M 0.51 -0.25 0.51
29/07/16 1Y 0.54 -0.26 0.54

Table 6: USD, EUR and GBP discount rate data, denoted in percentages (%), of maturities
until one year (1Y). The data is retrieved at 27/07/2016 by ABN Amro.

A discount curve is constructed for each currency, in order to price foreign exchange options.
Discount rates observed in the market are listed in table 6. The EUR and GBP discount rates
are quoted in continuous compounding format and the USD discount rates are quoted in simple
compounding format. This means that discount factors P are calculated in the first case with
P (0, T ) = e−rT/100 and in the latter case with P (0, T ) = 1/(1 + r/100)T . Expiry T is expressed
in years and discount rate r is expressed as a percentage. The rates in table 6 are expressed
in percentages as well. These obtained discount factors are ’bootstrapped’ to construct a time
dependent discount function for each currency, as explained in section 4.2.

At this point the EUR-USD and GBP-USD market data is analyzed and (time dependent)
discount curves are constructed. Before starting to price barrier options, the market quotes are
transformed to implied volatility smiles for each expiry as explained in section 4.1.

EUR-USD and GBP-USD implied volatility surfaces

First, Hagan’s formula is calibrated to the five implied volatilities of each expiry to obtain the
market effective parameters for that particular expiry. The market effective parameters of the
EUR-USD and GBP-USD markets are listed in tables 7a and 7b respectively. The parameters
provide information about these markets and are useful to analyze.

Level representing term structure parameter ω̃ is stable in time for both currencies, just like the
at-the-money volatility σδ0. Skew representing parameter ρ̃ starts slightly positive and turns
negative for larger expiries in the EUR-USD market. In the GBP-USD market this parameter
starts slightly negative and the negative skew effect increases for larger expiries. This is consis-
tent with the observations of the risk reversals in table 5. For both currencies, the curvature
representing volatility-of-volatility parameter γ̃ is large initially, and decays (quickly) over time.
In contrast, the strangles in table 5 are very stable. This difference is explained by the fact that
ρ̃ and γ̃ have similar effects on the implied volatility smile. When ρ̃ increases relatively fast in
magnitude compared to the strangles, this is compensated by a reduced γ̃.
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Table 7: Tables (a) and (b) show market effective parameters obtained from calibrating the
effective SABR model to the market quotes of the EUR-USD and the GBP-USD markets in 5
respectively.

(a) EUR-USD market effective parameters

Date γ̃ ω̃ ρ̃

03/08/15 3.1228 0.1198 0.0546
10/08/15 2.1266 0.1162 0.0078
26/08/15 1.4533 0.1074 -0.0488
25/09/15 1.1097 0.1107 -0.0937
27/10/15 0.9518 0.1086 -0.1171
27/01/16 0.7357 0.1078 -0.1934
27/07/16 0.5592 0.1075 -0.2206

(b) GBP-USD market effective parameters

Date γ̃ ω̃ ρ̃

03/08/15 3.4919 0.0951 -0.0246
10/08/15 2.3194 0.1003 -0.0415
26/08/15 1.6771 0.0919 -0.0847
25/09/15 1.2630 0.0937 -0.1257
27/10/15 1.0970 0.0930 -0.1649
27/01/16 0.8247 0.0950 -0.2069
27/07/16 0.6206 0.0978 -0.2449

The market effective parameters in table 7 are used to construct implied volatility smiles for
each expiry listed in the same table, but the input of (Van der Kamp’s [12] adjustment of)
Dupire’s local volatility formula is a set of implied volatility smiles for a continuum of expiries.
The smiles of table 7 are interpolated between the expiries to obtain an implied volatility sur-
face. Interpolation of volatility smiles is more art than science. In these experiments the market
effective parameters are linearly interpolated between every two expiries. A smile inbetween
those two expiries is calculated by inserting those interpolated parameters in Hagan’s formula.
The resulting volatility surfaces are shown in figure 16 for illustration purposes.

(a) EUR-USD implied volatility surface (b) GBP-USD implied volatility surface

Figure 16: Figure (a) and (b) show the implied volatility surfaces of the EUR-USD and GBP-
USD market data respectively. Expiry T is expressed in years.

EUR-USD and GBP-USD barrier option data and experiment outcomes

At this point all information is available to start with the calibration and simulation of the models
to price barrier options. The valuations of four different models are compared with the valuation
of ABN Amro’s proprietary trading model. It is compared with the local volatility model, the
constant parameter SABR model and the time dependent SABR model with and without local
volatility component. The simulation uses 5 · 105 simulation paths and 4 · 365 = 1460 steps per
year. The number of steps is large because the barrier level of some products is close to the
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current spot FX rate. In the EUR-USD market valuations of several call and put up-and-out
(UO) barrier options are compared. There are also valuations of down-and-out (DO) barriers
in the GBP-USD market. The EUR-USD and GBP-USD barrier option valuations are listed
in table 8 and 9 respectively. The time dependent SABR model is calibrated to two expiries.
When the expiry of the barrier is 27/01/16 (6M) the model is calibrated to expiries 27/10/15
(3M) and 27/01/16 (6M). If the barrier’s expiry is 27/07/16 (1Y), the time dependent model is
calibrated to market data of 27/01/16 (6M) and 27/07/16 (1Y). It is possible to calibrate the
time dependent model to more than two expiries, fewer expiries speed up the calibration process
though. Here is chosen for two expiries, since this was sufficient for the AUD-USD market data
in [15] and the EUR-USD and GBP-USD are expected to be similar. Firstly, the AUD-USD,
GBP-USD and EUR-USD currency pairs all have the USD as the domestic rate. Moreover, all
the currency pairs are among the most traded currency pairs in the world [29].

Model Barrier Option Value (USD)

Expiry Strike Barrier C/P Prop LV C TD TD+LV

27/01/16 1.15 1.20 UO Call 1,504.94 1,578.90 1,772.45 1,713.99 1,912.00
27/01/16 1.05 1.15 UO Put 12,644.97 13,053.32 12,224.06 11,871.61 11,696.56
27/01/16 1.05 1.15 UO Call 10,877.67 10,347.13 11,870.63 13,192.51 12,717.81
27/07/16 1.10 1.25 UO Call 19,465.73 18,794.05 20,219.19 20,341.85 20,745.76
27/07/16 1.09 1.20 UO Put 36,052.25 36,807.21 35,662.96 35,012.86 34,915.28
27/07/16 1.09 1.20 UO Call 9,915.04 8,934.60 10,333.52 11,271.97 10,892.82

Table 8: EUR-USD barrier option valuations of the proprietary trading model of ABN Amro
(Prop), the local volatility (LV) model, the constant parameter SABR (C) model and the time
dependent SABR model with (TD+LV) and without (TD) a local volatility component. The
models were calibrated to market data from table 5. The notional of every barrier option is
1 million EUR and the currency of every valuation is USD. All barriers are up-and-out (OU)
barriers.

Model Barrier Option Value (USD)

Expiry Strike Barrier C/P Prop LV C TD TD+LV

27/01/16 1.55 1.45 DO Call 33,259.16 32,211.66 31,592.77 31,025.54 31,265.27
27/01/16 1.60 1.50 DO Put 9,165.60 8,871.49 10,500.28 12,223.26 11,293.41
27/01/16 1.60 1.50 DO Call 12,694.63 12,770.43 11,657.36 11,324.16 11,132.90
27/07/16 1.55 1.55 UO Call 6,435.68 5,567.38 6,568.87 7,155.15 7,028.77
27/07/16 1.50 1.50 UO Put 22,384.52 25,868.98 23,801.51 22,997.73 22,865.21
27/07/16 1.50 1.50 UO Call 4,165.06 3,636.34 4,730.38 5,859.41 5,445.44

Table 9: GBP-USD barrier option valuations of the proprietary trading model of ABN Amro
(Prop), the local volatility (LV) model, the constant parameter SABR (C) model and the time
dependent SABR model with (TD+LV) and without (TD) a local volatility component. The
models were calibrated to market data from table 5. The notional of every barrier option is 1
million GBP and the currency of every valuation is USD. The barriers are either up-and-out
(OU) or down-and-out (DO) barriers.

The local volatility model and the time dependent SABR model with local volatility component
are both perfectly calibrated to the volatility surface by construction. In contrast, table 8 and
9 show that these models value path dependent options differently. The reason is that the
transition probabily density function of one future state to another, is different for these models.
These probability density functions are not observable in the market and therewith cannot be
calibrated, they must be assumed.
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6 Conclusion

Black’s model assumes a constant volatility parameter. The volatility that should be inserted
in Black’s formula to obtain the market price is called the implied volatility. It can be observed
in the market that the implied volatility is a function of both the strike and the expiry; the
implied volatility surface. Black’s model can be extended with a local volatility function to be
able to calibrate to an implied volatility surface. The dynamics of the implied volatility smile
with respect to a change in the underlying are not in line with observed market dynamics under
the local volatility model. This leads to incorrect risk metrics. The SABR model is a two factor
model with dynamics in line with observed market dynamics. Hagan’s formula is an approxima-
tion of the implied volatility of the SABR model. It can be used to calibrate a volatility smile
to a set of market data of a certain expiry. The formula breaks down for rates close to zero, so
it is not reliable in a low interest rate environment. Finally, conventional methods in interest
rate option pricing assume a zero probability on negative rates.

Three different solution methods were discussed to cope with negative interest rates: normal
models, displaced models and free boundary models. The forward rate has a normal distribu-
tion under Bachelier’s model and it therewith allows negative forward rates. A great benefit of
Bachelier’s model is that it does not introduce an additional (shift) parameter. Furthermore,
analytic expressions are available for the call and put price valuations and for its risk metrics.
The normal SABR model can be used to price path dependent options in a negative rate context.
It is calibrated with a special version of Hagan’s formula for implied Bachelier volatilities with
β = 0. The only disadvantage of the normal models is that they assume a positive probability on
large negative rates. In contrast, displaced models limit the largest negative rate at −s, where
s > 0 is the (constant) displacement parameter. It could be argued that there is a limit to how
low rates can go, since storing (and transporting) cash becomes cheaper than the interest at a
certain point. For financial institutions this is different however, because they are obliged by
regulation to have a certain part of their assets stored at the central bank. The disadvantage
of a displaced model is that the displacement parameter has to be chosen a priori. This choice
is more of an art than a science. When the rate decreases sufficiently, a larger displacement pa-
rameter needs to be introduced and all implied volatilities, valuations and risk metrics have to
be adjusted. Finally, the free boundary models were proposed as a solution. These models can
model rates from the entire real line and do not introduce an additional parameter. Neverthe-
less, the models have an uncontrollable spike around zero in their probability distribution, while
this is the most crucial area in a low or negative rate environment. Furthermore, there is no
accurate analytic (calibration) formula available for the free boundary SABR model. Moreover,
the free boundary models do not have an obvious model interpretation and are therewith not
intuitive for traders.

When Hagan’s formula is calibrated to market data of different expiries this results in a dif-
ferent set of SABR parameters for each expiry. This implies that the constant parameter SABR
model does not have enough flexibility to calibrate to multiple expiries simultaneously. The
pricing and hedging of path dependent financial products requires an accurate calibration to
prices of European-type options with different expiries that contain information about market
behaviour through time. Extending the SABR model with time dependent parameters solves
this problem. The initial research goal was to price path dependent interest rate options with
the time dependent SABR model in a negative interest rate environment. However, it appeared
that there is no obvious transformation of the time dependent FX-SABR model to the interest
rate market. An important assumption of the time dependent FX-SABR model is deterministic
discount curves (due to deterministic interest rates), while a realistic model for pricing interest
rate derivatives requires stochastic interest rates. The research goal was adjusted to the pric-
ing and hedging of foreign exchange barrier options. Time dependent SABR has been proven
to work well in this application area and ABN Amro was eager to gain knowledge about how
this method performs compared to their own proprietary trading model. The model can be
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extended with a local volatility component to improve the calibration accuracy. Furthmore, it
can be adjusted such that it can model negative underlyings by calibrating to implied Bachelier
volatilities. In the experiments section, different foreign exchange barrier options were valued
by the local volatility model, the constant parameter SABR model, the time dependent SABR
model with and without local volatility component and with ABN Amro’s proprietary trad-
ing model. Using the valuations of ABN Amro’s proprietary trading model and the (perfectly
calibrated) local volatility model as a benchmark, the various SABR models produce realistic
valuations. Without market quotes of foreign exchange barrier options, there can be no conclu-
sion drawn about what model produces the most accurate valuations.

6.1 Further research

The following issues or possibilities are recommended for future research:

1. The displacement parameter s influences the level of displaced volatility as well as risk
metrics such as delta and vega. An operational transition from a nondisplaced model to
its displaced version should be implemented consistently throughout the complete system
of a financial institution. The impact of plugging a nondisplaced volatility in a displaced
model on the risk metrics and prices may be large. This impact should by analyzed.

2. The displacement parameter s influences the value of a path-dependent option, since it in-
fluences the underlying transition probability density function. There is a zero probability
on an underlying smaller than −s for instance. When a displaced model is used for pricing
such a path-dependent option, the impact of the displacement on the valuation should be
examined.

3. There were no barrier option market quotes available to test the quality of the barrier
option valuations in the experiments in chapter 5. When this market data would be
available, it would be possible to determine what model performs best. Without this data
the model valuations can be compared with each other only. However, the EUR-USD and
GBP-USD markets are comparable to the AUD-USD market used in [15]. The USD, EUR,
GBP and AUD are all among the most traded currencies in the world according to [29].
These markets are highly liquid and they are all currencies of Western countries. In the
AUD-USD market of [15] the time dependent SABR model with local volatility component
had the smallest error in most cases. Therefore, the time dependent SABR model with
local volatility component is also likely to give accurate valuations of barrier options in
the EUR-USD and GBP-USD markets. Nevertheless, this should be examined with actual
EUR-USD and GBP-USD barrier option market quotes.

4. The time dependent SABR model could possibly be applied in different markets than the
foreign exchange market, it would be interesting to research these possibilities.
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3(17):21–86, 1900.

[5] Baker, Beneder, and Zilber. FX Barriers with Smile Dynamics. Available at SSRN 964627,
December 2004.

[6] Bartlett. Hedging under SABR Model. Willmott Magazine, pages 2–4, July 2006.

[7] Black. The pricing of commodity contracts. Journal of Financial Economics, 3:167–179,
1976.

[8] Breeden and Litzenberger. Prices of State-Contingent Claims Implicit in Option Prices.
The Journal of Business, 51(4):621–651, October 1978.

[9] Carr and Madan. A note on sufficient conditions for no arbitrage. Finance Research Letters,
2(3):125–130, June 2005.

[10] Chen, Grzelak, and Oosterlee. Calibration and Monte Carlo Pricing of the SABR-Hull-
White Model for Long-Maturity Equity Derivatives. The Journal of Computational Finance
(79–113) Volume, 15, December 2011.

[11] Bermudez de Castro and Lukic. Validation of interest rate caplets and floorlets contruction
in the displaced diffusion model. January 2015. ABN AMRO Internal Report (VAL14-04).

[12] Van der Kamp. Local Volatility Modelling. July 2009. MSc thesis University of Twente.

[13] Van der Stelt. Interest Rate Curve Building and Vanilla Products without Optionality.
November 2013. ABN AMRO Internal Report (RVL13-03).

[14] Van der Stoep, Grzelak, and Oosterlee. The Heston Stochastic-Local Volatility Model:
Efficient Monte Carlo Simulation. International Journal of Theoretical and Applied Finance,
17(7):1450045, 2014.

[15] Van der Stoep, Grzelak, and Oosterlee. The Time-Dependent FX-SABR Model: Efficient
Calibration based on Effective Parameters. International Journal of Theoretical and Applied
Finance, 18(6):1550042, 2015.

[16] Derman and Kani. The Volatility Smile and Its Implied Tree. January 1994. Goldman
Sachs.

[17] Dupire. Pricing with a Smile. Risk, 7(1):18–20, January 1994.

[18] Feller. Two Singular Diffusion Problems. Annals of Mathematics, 54(1):173–182, July 1951.

56



[19] Bank for International Settlements. Amounts outstanding of over-the-counter (otc) deriva-
tives. http://www.bis.org/statistics/dt1920a.pdf, March 2015. BIS Quarterly Review.

[20] Hagan, Kumar, Lesniewski, and Woodward. Managing Smile Risk. Willmott Magazine,
July 2002.

[21] Hagan and Lesniewski. LIBOR market model with SABR style stochastic volatility. JP
Morgan Chase and Ellington Management Group, 32, May 2008.

[22] Hagan and Woodward. Equivalent Black Volatilities. Applied Mathematical Finance,
(6):147–157, 1999. Numerix and Bank of Tokyo-Mitsubishi.
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Appendix A

Solution to Black’s model

Define transformation Yt = log(Ft) on lognormal SDE (13), then according to Ito’s formula

dYt =
1

Ft
dFt +

1

2
· − 1

F 2
t

(dFt)
2 =

1

Ft
(σFtdWt)−

1

2

1

F 2
t

σ2F 2
t dt = σdWt −

1

2
σ2dt, (A.1a)

Yt = Y0 + σWt − σ2t/2. (A.1b)

This implied that Yt ∼ N (Y0 − σ2t/2, σ2t) and that Ft is lognormally distributed:

Ft = exp(Yt) = F0 exp
(
σWt − σ2t/2

)
. (A.1c)

Note that if some stochastic variable Y ∼ N (µ, ξ2) and X = exp(Y ), then truncated mean
E [Y | Y > K] = exp(µ+ ξ2)Φ(ξ −K0)/Φ(−K0), where K0 = (logK − µ)/ξ [32]. Furthermore,
E [X] = exp(µ+ ξ2/2). Forward Ft is a martingale under Black’s model, since

E [Ft | F0] = exp((log(F0)− σ2t/2) + (σ2t)/2) = F0. (A.1d)

Assuming a deterministic zero coupon bond P (0, t), the value V c(0) of a European-type call
option at time 0 under Black’s model is given by

V c(0)

P (0, t)
= E [max(Ft −K, 0) | F0] = E [Ft −K | Ft > K]P (Ft > K) + 0 · P (Ft < K), (A.1e)

=

[
1− Φ

(
log(K)− (Y0 − σ2t/2)

σ
√
t

)]
·
[
exp

((
Y0 −

σ2t

2

)
+
σ2t

2

)
, (A.1f)

· Φ

(
σ
√
t− log(K)− (Y0 − σ2t/2)

σ
√
t

)/
Φ

(
− log(K)− (Y0 − σ2t/2)

σ
√
t

)
−K

]
, (A.1g)

= exp (Y0) Φ

(
σ
√
t

2
− log(K)− Y0

σ
√
t

)
−KΦ

(
−σ
√
t

2
− log(K)− Y0

σ
√
t

)
, (A.1h)

= F0Φ (d1)−KΦ (d2) , where d1 ≡
σ
√
t

2
+

log(F0/K)

σ
√
t

and d2 ≡ d1 − σ
√
t. (A.1i)

By the put-call parity (16), the value V p(0) of a European-type put option at time 0 under
Black’s model is

V p(0) = V c(0)− P (0, t)(F0 −K) = P (0, t) [F0 (Φ (d1)− 1)−K (Φ (d2)− 1)] , (A.1j)

= P (0, t) [KΦ (−d2)− F0Φ (−d1)] . (A.1k)
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Appendix B

Risk metrics of Black’s model

The delta ∆c, vega Λ, and gamma Γ of a European call option under Black’s model are derived
as follows:

∆c ≡
∂V c

∂F
=

∂

∂F
(P (0, T )[FΦ(d1)−KΦ(d2)]) , (B.1a)

= P (0, T )

[
Φ(d1) + FΦ′(d1)

∂d1

∂F
−KΦ′(d2)

∂d2

∂F

]
, (B.1b)

(B.1e)
= P (0, T )

[
Φ(d1) +

∂d1

∂F
(Fφ(d1)−Kφ(d2))

]
(B.1g),(B.1i)

= P (0, T )Φ(d1),

Λ ≡ ∂V c,p

∂σ
=

∂

∂σ
(P (0, T )[FΦ(d1)−KΦ(d2)]) = P (0, T )

[
Fφ(d1)

∂d1

∂σ
−Kφ(d2)

∂d2

∂σ

]
, (B.1c)

(B.1e)
= P (0, T )

[
Fφ(d1)

(
∂d2

∂σ
+
√
T

)
−Kφ(d2)

∂d2

∂σ

]
(B.1g),(B.1i)

= P (0, T )F
√
Tφ(d1),

Γ ≡ ∂2V c,p

∂F 2
=
∂∆c,p

∂F
= P (0, T )

∂Φ(d1)

∂F
= P (0, T )φ(d1)

∂d1

∂F
= P (0, T )φ(d1)

1

σ
√
TF

, (B.1d)

where the following identities were used:

d2 = d1 − σB
√
T ⇒ ∂d1

∂F
=
∂d2

,
∂F ,

∂d1

∂σ
=
∂d2

∂σ
+
√
T , (B.1e)

0 = Fφ(d1)−Kφ(d2)⇔ F

K
=
φ(d2)

φ(d1)
= exp

(
−1

2
(d2

2 − d2
1)

)
, (B.1f)

⇔ −2 log(F/K) = d2
2 − d2

1, (B.1g)

d2
2 − d2

1 = (d1 − σ
√
T )2 − d2

1 = σ2T − 2d1σ
√
T , (B.1h)

= σ2T − 2
(
log(F/K) + σ2T/2

)
= −2 ln(F/K). (B.1i)
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Appendix C

Risk metrics under Bachelier’s model

Note that if X ∼ N (µ, ξ2), then E [X | X > K] = µ + ξφ(u)/(1 − Φ(u)), where u = (K − µ)/ξ
[32]. Define zero coupon bond P (0, T ), expiry T , strike K, T -forward rate F T (t) at time t,
current forward F := F T (0), constant volatility σ, and d ≡ F−K

σ
√
t

, then the following expressions

for the current value of the call V c and put V p options hold:

V c(0)/P (0, T ) = E
[
max(F T (T )−K, 0) | F0

]
, (C.1a)

= E
[
F T (T )−K | F T (T ) > K

]
P (F T (T ) > K) + 0 · P (F T (T ) < K), (C.1b)

=
[
1− P (F T (T ) ≤ K)

] (
E
[
F T (T ) | F T (T ) > K

]
−K

)
, (C.1c)

=

[
1− Φ

(
K − F
σ
√
t

)] (
E
[
F T (T ) | F T (T ) > K

]
−K

)
, (C.1d)

= [1− Φ(−d)]

(
F + σ

√
t

φ(−d)

1− Φ(−d)
−K

)
= (F −K) Φ (d) + σ

√
tφ(d).

V p(0) = V c(0)− P (0, T )(F −K) = P (0, T )
[
(F −K) (Φ (d)− 1) + σ

√
tφ(d)

]
, (C.1e)

= P (0, T )
[
(K − F ) Φ (−d) + σ

√
tφ(d)

]
. (C.1f)

An option’s call delta ∆c, put delta ∆p, vega Λ, and gamma Γ under Bachelier’s model are
derived as follows

∆c ≡
∂V c

∂F
= P (0, T )

∂

∂F

[
(F −K)Φ(d) + σ

√
tφ(d)

]
, (C.1g)

= P (0, T )
[
(F −K)φ(d)d′ + Φ(d) + σ

√
tφ′(d)d′

]
, (C.1h)

= P (0, T )

[
(F −K)φ(d)

1

σ
√
t

+ Φ(d) + σ
√
tφ(d) · −d · 1

σ
√
t

]
, (C.1i)

= P (0, T ) [dφ(d) + Φ(d)− dφ(d)] = P (0, T ) [Φ(d)] , (C.1j)

∆p =
∂V p

∂F
=

∂

∂F
[V c −Dt(F −K)] =

∂V c

∂F
− P (0, T ) = −P (0, T )Φ(−d), (C.1k)

Λ ≡ ∂V c

∂σ
= P (0, T )

∂

∂σ

[
(F −K)Φ(d) + σ

√
tφ(d)

]
, (C.1l)

= P (0, T )

[
(F −K)φ(d)

∂d

∂σ
+
√
tφ(d) + σ

√
tφ′(d)

∂d

∂σ

]
, (C.1m)

= P (0, T )

[
(F −K)φ(d) · − 1

σ
d+
√
tφ(d) + σ

√
t · −dφ(d) · − 1

σ
d

]
, (C.1n)

= P (0, T )
[
−
√
tφ(d)d2 +

√
tφ(d) +

√
tφ(d)d2

]
= P (0, T )

√
tφ(d), (C.1o)

Γ ≡ ∂2V c

∂F 2
=
∂∆c

∂F
= P (0, T )

∂

∂F
Φ(d) = P (0, T )

φ(d)

σ
√
t
. (C.1p)

(C.1q)
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Appendix D

Transition probability density of the
CEV process

The CEV process (31) can be transformed to a time-changed squared Bessel process, for which
the transition density is known [27]. The transition density of the CEV process can be derived
from the inverse transformation. To start with the derivation, first apply the transformation
Xt = F 1−β

t /(1− β) to (31), for β 6= 1

dXt = F−βt dFt +
1

2
· −βF−1−β

t (dFt)
2, (D.1a)

= F−βt σF βt dWt −
β

2
F−1−β
t σ2F 2β

t dt, (D.1b)

= σdWt −
β

2
F β−1
t σ2dt, (D.1c)

= σdWt −
β

2(1− β)Xt
σ2dt. (D.1d)

Applying transformation Yt = X2
t , results in

dYt = 2XtdXt +
1

2
· 2(dXt)

2, (D.1e)

= 2
√
|Yt|

(
σdWt −

β

2(1− β)
√
|Yt|

σ2dt

)
+ σ2dt, (D.1f)

by (D.1),

= 2
√
|Yt|σdWt +

1− 2β

1− β
σ2dt, (D.1g)

= 2
√
|Yt|σdWt + δσ2dt. (D.1h)

where δ ≡ (1 − 2β)/(1 − β). We define the time-change ν(t) = σ2t. Then, Yt = Zν(t), where
{Zt}t≥0 is a δ-dimensional squared Bessel process:

dZt = 2
√
|Zt|dWt + δdt. (D.1i)
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Solutions to the squared Bessel process and its transition probability density

For a (standard) squared Bessel process {Zt}t≥0, governed by SDE (D.1i), the following state-
ments hold for solutions to this SDE [27]:

1. For δ < 2, Zt = 0 is an attainable boundary for the squared Bessel process.

2. For δ ≤ 0, the SDE has a unique strong solution and the boundary condition at zero is
absorbing.

3. For 0 < δ < 2, the SDE does not have a unique solution, unless a boundary condition is
specified at Zt = 0.

4. For δ ≥ 2, the SDE has a unique solution and zero is not attainable.

For the cases δ ≤ 0 and 0 < δ < 2 the transition probability density fδ(t, Z0, Zt) of the squared
Bessel process (D.1i) is known [27]:

1. For δ ≤ 0 and for 0 < δ < 2 with an absorbing boundary at Zt = 0:

fδ(t, Z0, Zt) =
1

2t

(
Zt
Z0

) δ−2
4

exp

(
−Z0 + Zt

2t

)
I| δ−2

2 |

(√
Z0Zt
t

)
. (D.2)

2. For 0 < δ < 2 and a reflecting boundary at Zt = 0:

fδ(t, Z0, Zt) =
1

2t

(
Zt
Z0

) δ−2
4

exp

(
−Z0 + Zt

2t

)
I δ−2

2

(√
Z0Zt
t

)
, (D.3)

where

Ia(x) ≡
∞∑
j=0

(x/2)2j+a

j!Γ(a+ j + 1)
, (D.4)

is the modified Bessel function of the first kind and where

Γ(x) ≡
∫ ∞

0
ux−1e−udu, (D.5)

is the gamma function. A detailed derivation of the solution to the Fokker-Planck equation
related to a class of diffusion processes that contains (D.1i) can be found in Feller [18].
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Transition probability density of the CEV process

The transition probability density of the CEV process is determined by a mapping from the
transition density of the squared Bessel process. Note that Ft in (31) and Zt in (D.1i) are
related via the equation

Ft =
[
(1− β)

√
|Zν(t)|

] 1
1−β

, or equivalently via Zν(t) =
F

2(1−β)
t

(1− β)2
. (D.6a)

Define the map T as

T : y 7→ [(1− β)
√
y]

1
1−β , for y ≥ 0. (D.6b)

Since T is strictly increasing for 0 < β < 1, and thereby one-to-one, its inverse T−1

T−1 : f 7→ f2(1−β)

(1− β)2
, for f ≥ 0, (D.6c)

exists and is strictly increasing as well. The mapping allows equation (D.6a) to be rewritten
as Ft = T

(
Zν(t)

)
and Yt = Zν(t) = T−1 (Ft). With this change of variables, it follows that the

transition density p(Ft | F0) of the CEV process is given by

p(Ft | F0) = fδ(ν(t), Z0, Zν(t)) ·
[

dT−1(f)

df

]f=Ft

= fδ(ν(t), T−1 (F0) , T−1 (Ft)) ·
[

dT−1(f)

df

]f=Ft

.

(D.6d)

In more detail, the transition probability density of the CEV process (31) is of the following
form for 0 < β < 1:

1. For 0 < β < 1
2 with an absorbing boundary at Ft = 0 and for 1

2 ≤ β < 1 without (the
need of) applying a boundary condition:

pA(t, f, F0) := P (Ft = f | F0) (D.7a)

=
1

ν(t)

(
f

F0

)− 1
2

exp

(
−f

2(1−β) + F
2(1−β)
0

2(1− β)2ν(t)

)
I| δ−2

2 |

(
(F0f)1−β

ν(t)(1− β)2

)
f1−2β

1− β
.

(D.7b)

2. For 0 < β < 1
2 with a reflecting boundary at Ft = 0:

pR(t, f, F0) := P (Ft = f | F0) (D.8a)

=
1

ν(t)

(
f

F0

)− 1
2

exp

(
−f

2(1−β) + F
2(1−β)
0

2(1− β)2ν(t)

)
I δ−2

2

(
(F0f)1−β

ν(t)(1− β)2

)
f1−2β

1− β
.

(D.8b)
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Appendix E

Integrals in the volvol mapping for
piecewise constant parameters

Effective volatility-of-volatility (volvol) parameter γ̃ can be obtained from time-dependent volvol
parameter γ(t) with mapping (105) introduced in section 4.3. When γ(t) is piecewise-constant,
there are analytical expressions available for the integrals used in the calculations of the effective
parameter γ̃. These expressions are derived in this section.

For expiries 0 =: T0 < T1 < T2 < . . . < TN−1 < TN and i ∈ {1, 2, .., N} define piecewise
constant volvol γ and term structure ω parameters as

γ(t) :=


γ1 when T0 ≤ t ≤ T1

γ2 when T1 < t ≤ T2

...
...

γN when TN−1 < t ≤ TN

and ω(t) :=


ω1 when T0 ≤ t ≤ T1

ω2 when T1 < t ≤ T2

...
...

ωN when TN−1 < t ≤ TN

. (E.1a)

Define left Li and right Ri integrals till expiry Ti for i ∈ {1, 2, .., N} as

Li :=

∫ Ti

0
ω2(t)

[∫ t

0
ω2(s) exp

(
6

∫ s

0
γ2(u)du+

∫ t

s
γ2(u)du

)
ds

]
dt, and (E.1b)

Ri :=

∫ Ti

0
ω2(t) exp

(∫ t

0
γ2(u)du

)
dt. (E.1c)

Both can be analytically solved due to the assumption of piecewise constant parameters. Let’s
start with right integral Ri. When Tj−1 ≤ t ≤ Tj , the integrand can be expressed as

ω2(t) exp

(∫ t

0
γ2(u)du

)
= ω2

j exp

(
j−1∑
u=1

γ2
u(Tu − Tu−1) + γ2

j (t− Tj−1)

)
. (E.1d)

So right integral Ri becomes

Ri =

∫ Ti

0
ω2(t) exp

(∫ t

0
γ2(u)du

)
dt, (E.1e)

=

i∑
j=1

∫ Tj

Tj−1

ω2
j exp

(
j−1∑
u=1

γ2
u(Tu − Tu−1) + γ2

j (t− Tj−1)

)
dt, (E.1f)

=
i∑

j=1

ω2
j exp

(
j−1∑
u=1

γ2
u(Tu − Tu−1)− γ2

j Tj−1

)∫ Tj

Tj−1

eγ
2
j tdt, (E.1g)

=
i∑

j=1

ω2
j

γ2
j

exp

(
j−1∑
u=1

γ2
u(Tu − Tu−1)− γ2

j Tj−1

)(
eγ

2
j Tj − eγ

2
j Tj−1

)
. (E.1h)
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For Tp−1 ≤ s ≤ Tp ≤ Tj and Tj−1 ≤ t ≤ Tj the inner integrand of Li becomes

ω2(s) exp

(
6

∫ s

0

γ2(u)du+

∫ t

s

γ2(u)du

)
(E.1i)

=ω2
p exp

(
6

(
p−1∑
u=1

γ2
u(Tu − Tu−1) + γ2

p(s− Tp−1)

)
+ γ2

p(Tp − s) +

j−1∑
u=p+1

γ2
u(Tu − Tu−1) + γ2

j (t− Tj−1)

)
, (E.1j)

=ω2
pe

5γ2ps exp

(
6

(
p−1∑
u=1

γ2
u(Tu − Tu−1) − γ2

pTp−1

)
+ γ2

pTp +

j−1∑
u=p+1

γ2
u(Tu − Tu−1) + γ2

j (t− Tj−1)

)
. (E.1k)

So the inner integral till Tj of Li becomes

j∑
p=1

∫ Tp

Tp−1

ω2
pe

5γ2ps exp

(
6

(
p−1∑
u=1

γ2
u(Tu − Tu−1) − γ2

pTp−1

)
+ γ2

pTp +

j−1∑
u=p+1

γ2
u(Tu − Tu−1) + γ2

j (t− Tj−1)

)
ds

=

j∑
p=1

ω2
p

∫ Tp

Tp−1

e5γ
2
psds (E.1l)

· exp

(
6

(
p−1∑
u=1

γ2
u(Tu − Tu−1) − γ2

pTp−1

)
+ γ2

pTp +

j−1∑
u=p+1

γ2
u(Tu − Tu−1) + γ2

j (t− Tj−1)

)
, (E.1m)

=

j∑
p=1

ω2
p

5γ2
p

(
e5γ

2
pTp − e5γ

2
pTp−1

)
(E.1n)

· exp

(
6

(
p−1∑
u=1

γ2
u(Tu − Tu−1) − γ2

pTp−1

)
+ γ2

pTp +

j−1∑
u=p+1

γ2
u(Tu − Tu−1) + γ2

j (t− Tj−1)

)
, (E.1o)

=

j∑
p=1

ω2
p

5γ2
p

eγ
2
j t
(
e5γ

2
pTp − e5γ

2
pTp−1

)
(E.1p)

· exp

(
6

(
p−1∑
u=1

γ2
u(Tu − Tu−1) − γ2

pTp−1

)
+ γ2

pTp +

j−1∑
u=p+1

γ2
u(Tu − Tu−1) − γ2

jTj−1

)
. (E.1q)

And finally Li is

Li =

i∑
j=1

ω2
j

γ2
j

(
eγ

2
j Tj − eγ

2
j Tj−1

)
(E.1r)

·
j−1∑
p=1

ω2
p

5γ2
p

e6(
∑p−1
u=1 γ

2
u(Tu−Tu−1)−γ2pTp−1)+γ2pTp+

∑j−1
u=p+1 γ

2
u(Tu−Tu−1)−γ2j Tj−1

(
e5γ2pTp − e5γ2pTp−1

)
(E.1s)

+

i∑
j=1

ω4
j

35γ2
j

(
e7γ2j Tj − e7γ2j Tj−1

)
e6(

∑j−1
u=1 γ

2
u(Tu−Tu−1)−γ2j Tj−1)−γ2j Tj−1 (E.1t)

−
i∑

j=1

ω4
j

10γ2
j

(
e2γ2j Tj − e2γ2j Tj−1

)
e5γ2j Tj−1e6(

∑j−1
u=1 γ

2
u(Tu−Tu−1)−γ2j Tj−1)−γ2j Tj−1 . (E.1u)
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Appendix F

Recovery procedure of the
characteristic function

In order to calibrate time-dependent term structure parameter ω(t) the characteristic function
of stochastic variable YM needs to be determined. This characteristic function is obtained by an
iterative procedure [15, 36]. For completion, this procedure is explained here in the appendix,
after introducing some necessary definitions and deriving properties of those definitions. Define

Rj := log

(
ω2

1(tj)σ
2(tj)

ω2
1(tj−1)σ2(tj−1)

)
and (F.1a)

Yj := log

(
ω2

1(tM−j+1)σ2(tM−j+1)

ω2
1(tM−j)σ2(tM−j)

+
ω2

1(tM−j+2)σ2(tM−j+2)

ω2
1(tM−j)σ2(tM−j)

+ . . .+
ω2

1(tM )σ2(tM )

ω2
1(tM−j)σ2(tM−j)

)
,

= log (exp (Yj−1) + 1) +RM−j+1, (F.1b)

= Zj−1 +RM−j+1, where Zj := log (exp (Yj) + 1) . (F.1c)

Since Zj−1 and RM−j+1 are independent, the following relation for their characteristic functions
φ hold:

φYj (u) = φZj−1(u)φRM−j+1
(u). (F.1d)

By the definition of the characteristic function the following holds

φZj−1(u) := E
[
eiu log(exp(Yj−1)+1)

]
= E

[
(exp (Yj−1) + 1)iu

]
, (F.1e)

=

∫ ∞
−∞

(ey + 1)iufYj−1(y)dy. (F.1f)

The integration range is truncated to [a, b] to apply the Fourier cosine series expansion to
approximate the characteristic function

φ̂Zj−1(u) =

∫ b

a
(ey + 1)iufYj−1(y)dy. (F.1g)

It will be explained later what a good choice for interval [a, b] is. The Fourier cosine expansion
of fYj−1 is

fYj−1(y) =

∞∑′

k=0

Ak cos ((y − a)uk) , (F.1h)

where Ak :=
2

b− a

∫ b

a
fYj−1(y) cos ((y − a)uk) dy and uk :=

kπ

b− a
. (F.1i)
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The prime indicates that the first term in the sum is multiplied by a half. Calculating the infinite
sum in (F.1h) is not feasible in practice. Plugging in a truncated version of this sum leads to

φ̂Zj−1(u) =

∫ b

a
(ey + 1)iu

N−1∑′

k=0

Ak cos ((y − a)uk) dy, (F.1j)

=

N−1∑′

k=0

Ak

∫ b

a
(ey + 1)iu cos ((y − a)uk) dy, (F.1k)

=

N−1∑′

k=0

Ak

∫ b

a
(ey + 1)iu cos ((y − a)uk) dy, (F.1l)

=
2

b− a

N−1∑′

l=0

<
(
φ̂Yj−1(ul)e

−iaul
)
·
∫ b

a
(ey + 1)iu cos ((y − a)ul) dy, (F.1m)

where φ̂Yj−1 is the approximation of φYj−1 . The last equation results from the following obser-
vations

φYj−1(u) := E
[
eiuYj−1

]
=

∫ b

a
eiuyfYj−1(y)dy, so (F.1n)

e−iaukφYj−1(uk) = e−iauk
∫ b

a
eiyukfYj−1(y)dy =

∫ b

a
ei(y−a)ukfYj−1(y)dy, (F.1o)

=

∫ b

a
cos ((y − a)uk) fYj−1(y)dy + i

∫ b

a
sin ((y − a)uk) fYj−1(y)dy, (F.1p)

by Euler’s formula. So

<
(
e−iaukφYj−1(uk)

)
=

∫ b

a
cos ((y − a)uk) fYj−1(y)dy =

b− a
2
·Ak. (F.1q)

Formula (F.1m) is used in the calculation of characteristic function φ̂Zj−1 .

Integral
∫ b
a (ey + 1)iu cos ((y − a)ul) dy in this characteristic function can be approximated by

using the Clenshaw-Curtis quadrature method [36] which is suited for oscillating functions es-
pecially, or it can be calculated with simple trapezoidal integration.

Calculating characteristic function φ̂Zj−1 is clear now. Also φRj needs to be known before
iterative relation (F.1d) is used in an algorithm to determine the characteristic function of Yj .
The characteristic function of Rj is known analytically, since Rj is normally distributed:

Rj ∼ N
(
µj , σ

2
j

)
, µj := log

(
ω2

1(tj)

ω2
1(tj−1)

)
−
∫ tj

tj−1

γ2(s)ds and σ2
j = 4

∫ tj

tj−1

γ2(s)ds. (F.1r)

So, its characteristic function is

φRj (u) = eiuµj−u
2σ2
j /2. (F.1s)

Iterative relation (F.1d), formula (F.1m) and (F.1s) are combined to form an algorithm that
calculates characteristic function φ̂YM .
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Recovery procedure

The characteristic function φYM is obtained by executing the following recovery procedure:

1. Since Y1 = RM , characteristic function φY1(uk) can be calculated analytically.

2. For j ∈ {1, 2, . . . ,M − 2} determine φYj+1 in points uk, k ∈ {0, 1, . . . , N − 1}, by using

relation (F.1d): φYj+1(uk) = φRM−j (uk)φZj (uk). Iterate φ̂Yj+1(uk) := φRM−j (uk)φ̂Zj (uk).

3. The previous iteration led to φ̂YM−1
. Now obtain φ̂M (−1

2 i) by calculating

φ̂YM (−1
2 i) := φR1(−1

2 i)φ̂ZM−1
(−1

2 i).

Characteristic function φ̂YM is obtained by executing this algorithm. The expression of the term
structure mapping also contains the characteristic function φỸM of ỸM , where

ỸM := log

 M∑
j=1

σ̃2(tj)

 . (F.2a)

The recovery procedure is applied to certain definitions of Ỹj , R̃j and Z̃j to obtain φỸM . For

general j = 1, ...,M define Ỹj and R̃j as

Ỹj := log

(
σ̃2(tM−j+1)

σ̃2(tM−j)
+ . . .+

σ̃2(tM )

σ̃2(tM−j)

)
andR̃j := log

(
σ̃2(tj)

σ̃2(tj−1)

)
. (F.2b)

Then

Ỹj = R̃M−j+1 + log
(

1 + exp(Ỹj−1)
)

=: R̃M−j+1 + Z̃j−1 and (F.2c)

R̃j ∼ N
(
−γ̃2(tj − tj−1), 4γ̃2(tj − tj−1)

)
, so φR̃j (u) = exp

(
−γ̃2(tj − tj−1)(iu+ 2u2)

)
, (F.2d)

where R̃M−j+1 and Z̃j−1 are independent for all j, due to independent increments of the un-
derlying Brownian motion. So the application of the recovery procedure to Ỹj and Z̃j−1 results
in φỸM . At this point the method to calculate φYM and φỸM is clear, except for the choice of
truncated integration range [a, b]. This is explained in the rest of this appendix.

Integration range

In order to be able to apply the Fourier series expansion to approximate the characteristic func-
tion, the integration was truncated from the real line to range [a, b] in (F.1m). This truncation
introduces an error, that can be controlled by choosing the boundaries a, b wisely. In [36] the
integration range for each Yj is determined by its cumulants:[

ζ1 (Yj)− L
√
ζ2 (Yj) +

√
ζ4 (Yj), ζ1 (Yj) + L

√
ζ2 (Yj) +

√
ζ4 (Yj)

]
, (F.3a)

where ζn is the n-th cumulant. Determining the cumulant of Yj is a computationally expensive
operation, therefore the boundaries are expressed in terms of Rj instead of Yj by using the
following identities

ζ1

(
log

(
j
SM−j+1

SM−j

))
≤ ζ1 (exp (Yj)) ≤ ζ1

(
log

(
j
SM
SM−j

))
, (F.3b)

0 ≤ ζ2 (exp (Yj)) ≤ ζ2

(
log

(
j
SM
SM−j

))
, (F.3c)

0 ≤ ζ4 (exp (Yj)) ≤ ζ4

(
log

(
j
SM
SM−j

))
, (F.3d)
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where Si := σ̃2
1ω

2(ti), i = 1, . . . ,M . Define

aj := ζ1

(
log

(
j
SM−j+1

SM−j

))
− L

√√√√ζ2

(
log

(
j
SM
SM−j

))
+

√
ζ4

(
log

(
j
SM
SM−j

))
, (F.3e)

bj := ζ1

(
log

(
j
SM
SM−j

))
+ L

√√√√ζ2

(
log

(
j
SM
SM−j

))
+

√
ζ4

(
log

(
j
SM
SM−j

))
. (F.3f)

(F.3g)

Although ζ(logn(·)) 6= log(ζn(·)), when L→∞ the truncation error goes to zero. Note that

ζ1

(
log

(
j
SM−j+1

SM−j

))
= ζ1

(
log

(
SM−j+1

SM−j

)
+ log(j)

)
= ζ1 (R1) + log(j), (F.3h)

ζ1

(
log

(
j
SM
SM−j

))
= ζ1

(
log

(
SM
SM−j

))
+ log(j), (F.3i)

= ζ1

(
log

(
SM−j+1

SM−j

SM−j+2

SM−j+1
· · · SM

SM−1

))
+ log(j) = jζ1 (R1) + log(j). (F.3j)

Furthermore, for all n ≥ 2 we have

ζn

(
log

(
j
SM−j+1

SM−j

))
= ζn (R1) and ζn

(
log

(
j
SM
SM−j

))
= jζn (R1) . (F.3k)

Since

R1 = log

(
S1

S0

)
= log

(
σ2((t1)

σ2((t0)

)
= log

(
σ2(∆t)

)
, with dσ2(t) = σ2(t)

(
γ̃2dt+ 2γ̃dWt

)
,

so ζ1 (R1) = ζ1

((
γ̃2 − (2γ̃)2

2

)
∆t + 2γ̃W∆t

)
= ζ1

(
−γ̃2∆t + 2γ̃W∆t

)
= −γ̃2∆t, (F.3l)

and ζ2 (R1) = 4γ̃2∆t, ζn (R1) = 0, ∀n > 2. (F.3m)

This results in

aj = −γ̃2∆t + log(j)− L
√
j · 4γ̃2∆t, (F.3n)

bj = −jγ̃2∆t + log(j) + L
√
j · 4γ̃2∆t. (F.3o)

To make sure the integration has to be performed just once for all timesteps, one range is used
that includes all other ranges:

[a, b] := [min
j
aj ,max

j
bj ] ≈ [−γ̃2∆t−L

√
M · 4γ̃2∆t,−Mγ̃2∆t+log(M)+L

√
M · 4γ̃2∆t]. (F.3p)
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Appendix G

Local and stochastic local volatility

This appendix contains the derivation of an expression of the local volatility component σSLV (t,K)
in terms of Dupire local volatility σLV (t,K) and a conditional expectation. First, define (deter-
ministic) zero coupon bond

P (0, T ) := e−
∫ T
0 r(s)ds, (F.3aa)

and European-type call option

C(T,K) = E
[
P (0, T )(S(T )−K)+ | F0

]
= P (0, T )

∫ ∞
K

(s−K)φ(T, s)ds, (F.3ab)

where S(t) is the spot at time t. The differential of this call option is

dC(t,K) = dP (0, T )E
[
(S(t)−K)+ | F0

]
+ P (0, T )dE

[
(S(t)−K)+ | F0

]
, (F.3ac)

= −r(t)P (0, T )E
[
(S(t)−K)+ | F0

]
dt+ P (0, T )E

[
d(S(t)−K)+ | F0

]
,

(F.3ad)

by Fubini. Since (S(t) −K)+ is not differentiable in S(t) = K, Ito’s lemma cannot be applied
to this expression. The generalization of Ito’s lemma, the Tanaka-Meyer formula, can be used
to solve this expression. Applying Tanaka-Meyer yields:

d(S(t)−K)+ = 1S(t)>KdS(t) +
1

2
δ(S(t)−K) (dS(t))2 . (F.3ae)

Substitute the following dynamics for S(t):

dS(t) = r(t)S(t)dt+ σSLV (t, S(t))ψ(S(t), V (t))S(t)dW (t), (F.3af)

where σSLV (t, S(t)) is the local volatility component and ψ(S(t), V (t)) is a function of spot S(t)
and a stochastic volatility process V (t), which is correlated with S(t). This choice for differential
dS(t) leads to an expression for the differential of (S(t)−K)+:

d(S(t)−K)+ = 1S(t)>K · [r(t)S(t)dt+ σSLV (t, S(t))ψ(S(t), V (t))S(t)dW (t)] (F.3ag)

+
1

2
δ(S(t)−K)σ2

SLV (t, S(t))ψ2(S(t), V (t))S2(t)dt. (F.3ah)

Function δ is Dirac’s delta function. So

dC(t,K) = −r(t)P (0, T )E
[
(S(t)−K)+ | F0

]
dt

+ P (0, T )E
[
1S(t)>K · [r(t)S(t)dt+ σSLV (t, S(t))ψ(S(t), V (t))S(t)dW (t)] | F0

]
+

1

2
P (0, T )E

[
δ(S(t)−K)σ2

SLV (t, S(t))ψ2(S(t), V (t))S2(t)dt | F0

]
, (F.3ai)

= −r(t)P (0, T )E
[
(S(t)−K)+ | F0

]
dt+ r(t)P (0, T )E

[
1S(t)>KS(t) | F0

]
dt

+
1

2
P (0, T )E

[
δ(S(t)−K)σ2

SLV (t, S(t))ψ2(S(t), V (t))S2(t) | F0

]
dt, (F.3aj)
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where the last step is due to martingality of the Ito integral. When using (S(t) − K)+ =
1S(t)>K(S(t)−K), above reduces to

dC(t,K) = r(t)KP (0, T )E
[
1S(t)>K | F0

]
dt

+
1

2
P (0, T )E

[
δ(S(t)−K)σ2

SLV (t, S(t))ψ2(S(t), V (t))S2(t) | F0

]
dt. (F.3ak)

To simplify this equation further, note that

∂C(t,K)

∂K
= −P (0, T )E

[
1S(t)>K | F0

]
and

∂2C(t,K)

∂K2
= P (0, T )φ(K). (F.3al)

Also note that

E
[
δ(S(t)−K)σ2

SLV (t, S(t))ψ2(S(t), V (t))S2(t) | F0

]
(F.3am)

=

∫
R

∫
R
δ(s−K)σ2

SLV (t, s)ψ2(s, v)y2fV,y(v, s)dsdv, (F.3an)

=

∫
R
σ2
SLV (t,K)ψ2(K, v)K2fV,s(v,K)dv,= K2σ2

SLV (t,K)

∫
R
ψ2(K, v)fV,s(v,K)dv, (F.3ao)

= K2σ2
SLV (t,K)

∫
R
ψ2(K, v)fV |s=K(v,K)φ(K)dv, (F.3ap)

= K2σ2
SLV (t,K)φ(K)E

[
ψ2(S(t), V (t)) | y(t) = K

]
. (F.3aq)

In conclusion,

dC(t,K) = −r(t)K∂C(t,K)

∂K
dt+

1

2
K2σ2

SLV (t,K)
∂2C(t,K)

∂K2
E
[
ψ2(S(t), V (t)) | S(t) = K

]
dt.

Reordering terms leads to an expression for the local volatility component σSLV :

σ2
SLV (t,K) =

∂C(t,K)
∂t + r(t)K ∂C(t,K)

∂K

1
2K

2 ∂
2C(t,K)
∂K2 E [ψ2(S(t), V (t)) | S(t) = K]

, (F.3ar)

=
σLV (t,K)

E [ψ2(S(t), V (t)) | S(t) = K]
, (F.3as)

where σLV is the Dupire local volatility. Conditional expectation E
[
ψ2(S(t), V (t)) | S(t) = K

]
can be estimated with a technique introduced in [14].

0.1 Dupire’s formula

Consider the generalization of a geometric Brownian motion, where the volatility σLV is a
function of the spot S(t) as well as time t and where the drift r(t) is a time dependent function:

dSt = r(t)Stdt+ σLV (t, St)StdWt. (F.3ba)

Function σLV is known as the local volatility function in the literature. Dupire [17] derived an
expression for the local volatility in terms of (derivatives of) call prices. This derivation is shown
here. In order to do this, the (deterministic) zero coupon bond P and the European-type call
price are again defined as

P (0, T ) = e−
∫ T
0 r(s)ds, and (F.3bb)

C(T,K) = E
[
P (0, T )(S(T )−K)+ | F0

]
= P (0, T )

∫ ∞
K

(s−K)φ(T, s)ds. (F.3bc)
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Function φ(T, s) is the risk-neutral probability density function of the spot at expiry T . Its time
evolution is described by the Fokker-Planck equation

∂φ(t, s)

∂t
=

1

2

∂2

∂s2

[
s2σ2(t, s)φ(t, s)

]
− ∂

∂s
[sr(t)φ(t, s)] . (F.3bd)

This result can is in the derivative ∂C
∂T to obtain an expression for local volatility function σLV

in terms of derivatives of call prices:

∂C

∂T
= −r(T )C + P (0, T )

∫ ∞
K

(s−K)
∂φ(T, s)

∂T
ds, (F.3be)

= −r(T )C + P (0, T )

∫ ∞
K

(s−K)

(
1

2

∂2

∂s2

[
s2σ2

LV (T, s)φ(T, s)
]
− r(T )

∂

∂s
[sφ(T, s)]

)
ds,

(F.3bf)

= −r(T )C +
1

2
P (0, T )

([
(s−K)

∂

∂s

[
s2σ2

LV (T, s)φ(T, s)
]]s=∞
s=K

(F.3bg)

−
∫ ∞
K

∂

∂s

[
s2σ2

LV (T, s)φ(T, s)
]

ds

)
− P (0, T )r(T )

(
[(s−K)sφ(T, s)]s=∞s=K −

∫ ∞
K

sφ(T, s)ds

)
,

= −r(T )C − 1

2
P (0, T )

∫ ∞
K

∂

∂s

[
s2σ2

LV (T, s)φ(T, s)
]

ds+ P (0, T )r(T )

∫ ∞
K

sφ(T, s)ds, (F.3bh)

= −r(T )C − 1

2
P (0, T )

[
s2σ2

LV (T, s)φ(T, s)
]s=∞
s=K

+ P (0, T )r(T )

∫ ∞
K

sφ(T, s)ds, (F.3bi)

= −r(T )C +
1

2
P (0, T )K2σ2

LV (T,K)φ(T,K) + P (0, T )r(T )

∫ ∞
K

((s−K) +K)φ(T, s)ds,

(F.3bj)

= −r(T )C +
1

2
P (0, T )K2σ2

LV (T,K)φ(T,K) + r(T )

(
C + P (0, T )K

∫ ∞
K

φ(T, s)ds

)
, (F.3bk)

= −r(T )C +
1

2
K2σ2

LV (T,K)
∂2C

∂K2
+ r(T )

(
C −K ∂C

∂K

)
. (F.3bl)

Rewriting this result leads to an expression for the local volatility:

σ2
LV (T,K) =

∂C
∂T + r(T )K ∂C

∂K
1
2K

2 ∂2C
∂K2

. (F.3bm)

0.2 Dupire’s formula expressed in implied volatilities

Above Dupire equation suffers from numerical problems in practice because the divisor can be
unstable due to the finite difference approximation of the second order derivative. Van der Kamp
[12] derived a more practical expression of the local volatility in terms of implied volatilities.
The derivation is applied to the FX context here. First, define parameters

y := ln

(
K

F0,T

)
and w = Σ2T, where F0,T = S0e

∫ T
0 (rd(s)−rf (s))ds, (F.3ca)

is the current FX forward rate and S0 the current spot FX rate. Pd is the (deterministic)

domestic discount curve Pd(0, T ) = e−
∫ T
0 rd(s)ds. A European-type call price observed in the

market, is equal to the call price produced by Black’s model when the right implied volatility
Σ(T,K) is inserted.

C(K,T ) = Pd(0, T ) [F0,TΦ(d1)−KΦ(d2)] , where (F.3cb)

d1 = − y√
w

+

√
w

2
and d2 = − y√

w
−
√
w

2
. (F.3cc)

72



In order to express the Dupire equations in implied volatilaties, we need to calculate the deriva-
tives with respect to the parameters of Blacks model:

∂C

∂K
=
∂C

∂y

∂y

∂K
+
∂C

∂w

∂w

∂K
=

1

K

∂C

∂y
+
∂w

∂K

∂C

∂w
, (F.3cd)

∂2C

∂K2
= − 1

K2

∂C

∂y
+

1

K

∂

∂K

(
∂C

∂y

)
+
∂2w

∂K2

∂C

∂w
+
∂w

∂K

∂

∂K

(
∂C

∂w

)
, (F.3ce)

= − 1

K2

∂C

∂y
+

1

K

(
1

K

∂2C

∂y2
+
∂w

∂K

∂2C

∂w∂y

)
+
∂2w

∂K2

∂C

∂w
+
∂w

∂K

(
1

K

∂2C

∂y∂w
+
∂w

∂K

∂2C

∂w2

)
,

=
1

K2

(
∂2C

∂y2
− ∂C

∂y

)
+

2

K

∂w

∂K

∂2C

∂w∂y
+
∂2w

∂K2

∂C

∂w
+

(
∂w

∂K

)2 ∂2C

∂w2
. (F.3cf)

Plugging in these derivatives results in a Dupire equation expressed in call prices according to
Black’s model with parameters w and y:

σ2
LV (T,K) = 2

−rf (T )C − r(T )∂C∂y + ∂w
∂T

∂C
∂w + r(T )∂C∂y + r(T )K ∂w

∂K
∂C
∂w + rf (T )C(

∂2C
∂y2
− ∂C

∂y

)
+ 2K ∂w

∂K
∂2C
∂w∂y +K2 ∂2w

∂K2
∂C
∂w +K2

(
∂w
∂K

)2 ∂2C
∂w2

, (F.3cg)

where r(T ) := rd(T )− rf (T ). Above equation can be simplified by making use of the following
identities:

∂2C

∂w2
=

(
−1

8
− 1

2w
+

y2

2w2

)
∂C

∂w
,
∂2C

∂w∂y
=

(
1

2
− y

w

)
∂C

∂w
,
∂2C

∂y2
− ∂C

∂y
= 2

∂C

∂w
, (F.3ch)

resulting in the following expression of the local volatility function:

σ2
LV (T,K) =

∂w
∂T + (rd(T )− rf (T ))K ∂w

∂K

1 +K ∂w
∂K (1

2 −
y
w ) + 1

2K
2 ∂2w
∂K2 − 1

4K
2
(
∂w
∂K

)2 (1
4 + 1

w −
y2

w2

) . (F.3ci)

The partial derivatives of w can be expressed in terms of implied volatilities as

∂w

∂K
= 2ΣT

∂Σ

∂K
,
∂2w

∂K2
= 2T

(
∂Σ

∂K

)2

+ 2ΣT
∂2Σ

∂K2
,
∂w

∂T
= Σ2 + 2ΣT

∂Σ

∂T
. (F.3cj)

Plugging in above equations results in

σ2
LV (T,K) =

Σ2 + 2ΣT
(
∂Σ
∂T + (rd(T )− rf (T ))K ∂Σ

∂K

)(
1− Ky

Σ
∂Σ
∂K

)2
+KΣT

(
∂Σ
∂K −

1
4KΣT

(
∂Σ
∂K

)2
+K ∂2Σ

∂K2

) , (F.3ck)

where Σ = Σ(T,K). (F.3cl)
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