Water Resilient Mosaic

[Envisioning a co-evolutionary transformation of territories-in-between in the BTH metropolitan region]

Yuzhou Jin P5 Presentation 06/24/24

Content

Introduction

Haihe flood 2023 | Problematization | Research Question

Analysis

From drought to flood | Paradigm shift

Intervention

Framework | Measure as pattern | Scenario making | Dynamic adaptive pathway | Design exploration

Conclution and reflection

Introduction

Haihe flood 2023 | Problematization | Research Question

Introduction

Unrepaired junction near Zhuozhou, eight months after the flood.

Introduction Haihe flood 2023

North Juma River bank, heavily damaged road, Zhuozhou

Over 13 billion euros property loss 5.2 million people suffered from floods

Villagers rebuilding homes, Suqiao down, Bazhou

Flood

Drought & Heat

Subsidence

Air Pollution

Polarized Development

Aging Population

The ongoing construction in Xiong'an New Area exemplifies the rapid urban expansion in the Beijing-Tianjin-Hebei (BTH) metropolitan region, driven by China's strategic initiatives to decentralize Beijing, promote regional integration, and develop new economic hubs.

Landscape fragmentation | ecosystem degradation

Cropland change 1985-2022 (Data: OSM, Jie Yang et al. (2023). 10.5281/zenodo.8176941)

	Persistent		
	Increaseme	ent	
	Decreasem	ent	
	Waterbody		
	Waterway		
	Administrat	ive bour	ndary
			\frown
0	10	200 km	Ċ

The South–North Water Transfer Project, a major engineering endeavor diverting water from the Yangtze River Basin to alleviate northern water shortages and support urban growth, significantly alters the hydrological system and causes ecological disruptions and reduced water availability in source regions.

Hydrological fragmentation | water hazard exposure

The altered and fragment hydrological system of the BTH region (Data: ASTER Global Digital Elevation Model, GHS built-up surface, OSM)

	Engineered waterbody (canal, reservior, salt pond, etc.)
	Built-up surface
	Waterbody
	Transportation network
	Waterway
~~~~~	Contour line 200/600m
0	10 200 km

![](_page_8_Picture_1.jpeg)

A typical village (left) compared to Xiong'an (right) highlights the stark development imbalance in the BTH metropolitan region. This imbalance can lead to social segregation by exacerbating economic disparities, limiting access to urban amenities for rural residents, and concentrating wealth and opportunities in urban areas.

### Morphological fragmentation | social segregation

Disconnected and fragment morphology (Data: ASTER Global Digital Elevation Model, GHS built-up surface, OSM)

- Well-connected area
- Poorly-connected area
- *Built-up surface*
- Waterbody
- —— Transportation network

![](_page_8_Figure_11.jpeg)

![](_page_9_Picture_1.jpeg)

# **Problem Statement**

![](_page_9_Picture_3.jpeg)

Fragmentation -> Incapable of effectively addressing water-related socio-environmental challenges -> Biophysical and social vulnerabilities

# Introduction Reseach question

How can a paradigm shift towards water resilience in the development of territories-in-between help alleviate the spatial and temporal disequilibrium of water resources in the Beijing-Tianjin-Hebei (BTH) region, while simultaneously sustaining environmental justice for its inhabitants?

![](_page_11_Picture_0.jpeg)

![](_page_11_Picture_1.jpeg)

# Analysis

From drought to flood | Unequal distribution | Paradigm shift

# Analysis

![](_page_12_Picture_1.jpeg)

Tree underwater. Yesterday's land became today's river.

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

# Water cycle in the Haihe basin

# Natural water resource of the BTH region, 2022

(Data: China Water Resources Bulletins, unit: 10^8 m3)

BTH region precipitation - 1101.6

Average annual precipitation - 539 mm - below the national average 80% of this precipitation is lost to evapotranspiration or flows into the Bohai Bay

### Bohai Bay

### Evaporation

![](_page_13_Picture_11.jpeg)

![](_page_14_Figure_1.jpeg)

# Water supply of the BTH region, 2022

(Data: China Water Resources Bulletins, unit: 10^8 m3)

Total water supply - 256.0

Over half of the water is sourced from groundwater extraction Rely on cross-basin water diversion from other basins

vater resources used - 153.7
Groundwater water - unconfined 78.8   confined 8.3

![](_page_15_Figure_1.jpeg)

### **Temporal distribution of water resource**

(Data: China Water Resources Bulletins, unit: 10^8 m3)

Flood season (Jun. to Sept.) precipitation - 905.9 504.5 1285.3 m3/pc m3/pc lanjin Beijir Hebei

The temporal distribution of water resources is also extremely imbalanced 80%of the annual precipitation occurs during the flood season, leading to an increase in flood events

![](_page_15_Figure_7.jpeg)

### Historical flood and drought events in the Haihe basin

### FLOOD

![](_page_16_Figure_5.jpeg)

### DROUGHT

Exacerbated by climate change Validated by event records since 2000

<u>her</u>	<u>Parts of the</u> <u>southern</u> <u>branches of</u> the Haibe	<u>The "23·7"</u> flood of the Haihe River	
<u>ful</u> <u>ful</u> <u>l since</u> <u>art of</u> <u>od</u>	River basin experience historical flooding	<u>is classified</u> <u>as an</u> <u>extraordinary</u> <u>basin-wide</u> <u>flood</u>	

Data:Annual Report of Beijing Meteorological Bureau

### **Flood-drought duality**

![](_page_16_Figure_12.jpeg)

![](_page_17_Picture_1.jpeg)

a proxy), and population density to provide an initial understanding of flood risk in the BTH region.

Data: GIEMS-D15, DMSP Nighttime Lights, GPWv4

### **Flood risk**

### **Drought risk**

Synthesis of inundation potential, development inequality (utilizing night-time light data as Synthesis of annual precipitation, evapotranspiration, population density, and average water consumption per landcover type to provide an initial understanding of water scarcity in the BTH region.

Data: WorldClim, Global-AET, GPWv4, Jie Yang et al. (2023). 10.5281/zenodo.8176941

![](_page_18_Figure_1.jpeg)

### Spatial distribution of water consumption, 2022

![](_page_18_Figure_5.jpeg)

Beijing consumes twice as much water per capita for residential use as Hebei does

![](_page_19_Picture_1.jpeg)

Designated Flood Detention Areas will be flooded during heavy rain events to protect large cities, with all the local resident temporarily relocated to elsewhere for refuge Directly contributes to the unequal distribution of flood risk

### Flood Detention Areas at macro scale

### Flood Detention Areas at meso scale

![](_page_20_Figure_1.jpeg)

Unequal distribution of water resources and risks correlates with the imbalanced development priorities across the entire metropolitan region

# Urbanization process of 13 cities in the region

(Data: CLCD Land Cover, Jie Yang et al., 2023)

![](_page_20_Figure_5.jpeg)

![](_page_21_Figure_1.jpeg)

### Major law & policy evolution which shaped the urbanization of the BTH region

(Data: Gyourko et al., 2022)

### ... and shaped by the land finance model and its policies.

### National

Rural collective commercial construction land can be introduced to the market without state expropriation, with a focus on safeguarding permanent basic farmland.

### **National and Provincial**

### 2021 - Fourteenth five-year plan

promote urbanization, bolster the social safety net, address the aging population through healthcare and retirement system expansions, and prioritize high-tech innovation, building on

### Provincial

### 2019 - Beijing-Tangshan Intercity Railway

and Tangshan City in Hebei Province signed a strategic cooperation framework agreement, aiming to enhance collaboration through the Beijing-Tangshan Intercity

Profit-driven development paradigm

![](_page_22_Figure_2.jpeg)

# Water resource (Neglected) Rural development **L** — — — **)** Limited Cheap products Cheap labor Cheap Land (Prioritized) Urban/ Peri-urban Development Diverted

Profit-driven development paradigm

![](_page_23_Figure_4.jpeg)

### Profit-driven development paradigm

![](_page_24_Figure_2.jpeg)

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

![](_page_26_Figure_2.jpeg)

### Risk-driven development paradigm

![](_page_27_Figure_2.jpeg)

Reorgnized (Proactive) Water-sensitive revitalization

### Risk-driven development paradigm

![](_page_28_Figure_3.jpeg)

(Proactive) Water-sensitive revitalization

### Risk-driven development paradigm

![](_page_29_Figure_3.jpeg)

### **Risk-driven development paradigm**

![](_page_30_Figure_3.jpeg)

![](_page_31_Picture_0.jpeg)

# Intervention

Framework | Measure as pattern | Scenario making | Dynamic adaptive pathway | Design exploration

![](_page_31_Picture_3.jpeg)

# Intervention

![](_page_32_Picture_1.jpeg)

An abandoned house in Baiyangdian: a symbol of extensive urbanization.

### Intervention Framework

![](_page_33_Picture_1.jpeg)

## Intervention Framework

![](_page_34_Picture_1.jpeg)

Local adaptation (Synthetic scenarios)

### Multi-scale validation and assessment

![](_page_34_Figure_4.jpeg)

Tributary reorganization (Ecosystem service)

Territory transformation (Stakeholder status)

![](_page_35_Figure_1.jpeg)

restoration

### Pattern languages | action & measure

# Integrated water resources management

# A5 Hybrid infrastructure system

I2 Channel as distributor

I4 Decentralized water storage

I7 Dikes as floodproof road network

I8 Reuse of sediment

A6 Non-conventional water resources

I1 Seawater desalination

I5 Greywater Recycling

I6 Agro-industrial wastewater reuse

I9 Rainwater harvesting

# Water-sensitive revitalization

### A7 Water sensitive land consolidation

![](_page_35_Figure_16.jpeg)

# A8 Water-resilient communities

W3 Water resilience knowledge hub

W4 Increasing public risk awareness

W5 Establishment of early warning systems

W6 Monitoring and evaluation

Risk

(UNDRR Global Assessment Report, 2015)

![](_page_36_Figure_5.jpeg)

## Pattern languages | attributes

Hypothesis Theoretical back-up Practical implication

Costs

# - Side effects

Stakeholders Synergies & Conflicts Sell-by date

![](_page_37_Figure_1.jpeg)

# Pattern fields | Synergies, conflicts and sell-by date (deadline for implementation)

![](_page_37_Figure_3.jpeg)

Patterns Synergies Conflicts Sell-by-date

### Index map | spatial anchoring

![](_page_38_Picture_2.jpeg)

$\diamond$	Important FDA
	General FDA
0	Reserved FDA
	Zone of FDA
	Built-up area   high development level
	Built-up area   medium development leve
	Built-up area   low development level
	Farmland
	Forest & shrubland
	Grassland
	Major waterway
	Saltwater pond
	Reservoir
	Freshwater pond
	Highway
	Railway
$\equiv$	Flood risk   high
$\equiv$	Flood risk   medium
	Flood risk   low
	Drought risk   high
	Drought risk   medium
	Drought risk   low
U	ID JU KM

![](_page_38_Picture_5.jpeg)

![](_page_38_Picture_6.jpeg)

![](_page_38_Picture_7.jpeg)

![](_page_38_Picture_8.jpeg)

![](_page_38_Picture_9.jpeg)

Forest & shrubland

![](_page_38_Picture_11.jpeg)

Major waterway

![](_page_38_Picture_13.jpeg)

![](_page_38_Picture_15.jpeg)

Built-up area | low development level

![](_page_38_Picture_17.jpeg)

Grassland

![](_page_38_Picture_19.jpeg)

![](_page_38_Picture_20.jpeg)

### Index map | spatial anchoring

![](_page_39_Picture_2.jpeg)

$\diamond$	Important FDA
	General FDA
0	Reserved FDA
	Zone of FDA
	Built-up area   high development level
	Built-up area   medium development leve
	Built-up area   low development level
	Farmland
	Forest & shrubland
	Grassland
	Major waterway
	Saltwater pond
	Reservoir
	Freshwater pond
	Highway
	Railway
$\equiv$	Flood risk   high
$\equiv$	Flood risk   medium
$\equiv$	Flood risk   low
	Drought risk   high
	Drought risk   medium
	Drought risk   low
U	15 30 km 👻

![](_page_39_Figure_5.jpeg)

![](_page_39_Figure_6.jpeg)

### Land typology

Built-up area | high development level Built-up area | medium development level Built-up area | low development level Farmland Forest & shrubland Grassland Major waterway Saltwater pond Reservoir Freshwater pond Elood risk | medium Flood risk | low Drought risk | high Drought risk | medium Drought risk | low

![](_page_40_Picture_3.jpeg)

### Schematic sections for patterns | upstream

### CURRENT LAND TYPOLOGY

### Land typology

Built-up area | high development level Built-up area | medium development level Built-up area | low development level Farmland Forest & shrubland Grassland Major waterway Saltwater pond Reservoir Freshwater pond Elood risk | medium Flood risk | low Drought risk | high Drought risk | medium Drought risk | low

![](_page_41_Figure_3.jpeg)

### Land typology

Built-up area | high development level Built-up area | medium development level Built-up area | low development level Farmland Forest & shrubland Grassland Major waterway Saltwater pond Reservoir Freshwater pond Elood risk | medium Flood risk | low Drought risk | high Drought risk | medium Drought risk | low

![](_page_42_Figure_3.jpeg)

### Schematic sections for patterns | downstream

Moderate climate change (SSP1-2.6) Dynamic adaptive policy pathways | scenarios

Socio-economic growth

**Progression** (Socio-economic **growth** under moderate climate change SSP1-2.6)

Regression (Socio-economic decline under moderate climate change SSP1-2.6)

Socio-economic decline

# Intensification

(Socio-economic **growth** under extreme climate change SSP5-8.5)

# Exacerbation

(Socio-economic **decline** under extreme climate change SSP5-8.5)

![](_page_43_Picture_14.jpeg)

### Socio-environmental parameters

	Intensification	Exacerbation	Progression	Regression
(by 2060)	(Socio-economic growth under extreme climate change SSP5-8.5)	(Socio-economic decline under extreme climate change SSP5-8.5)	(Socio-economic growth under moderate climate change SSP1-2.6)	(Socio-economic decl under moderate clima change SSP1-2.6)
Mean temperature (deg C)	+2.3	+2.3	+1.5	+1.5
Days with TX above 35ºC	+9.2	+9.2	+6.0	+6.0
Frost days	-25.7	-25.7	-12.5	-12.5
Total precipitation during flood season (6-9)	+7.1%	+7.1%	+6.6%	+6.6%
Total precipitation during non-flood season	+7.3%	+7.3%	+7.8%	+7.8%
Maximum 1-day precipitation during flood season	+21.1%	+21.1%	+17.8%	+17.8%
Population of BTH region (million people)	-9	-26	-9	-26
GDP	+225%	+94%	+225%	+94%
GDP growth rate	+2% per year	+0% per year	+2% per year	+0% per year
Builtup area	7%	5%	7%	5%
Nature and recreation	40%	38%	40%	38%
Agriculture	53%	57%	53%	57%

(Calvin et al., 2023) (Calvin et al., 2023) (Calvin et al., 2023) (Calvin et al., 2023) (Calvin et al., 2023)

(Calvin et al., 2023) (Zhang et al., 2023) (Jiang et al., 2018) (Jiang et al., 2018) (Fan, 2022) (Fan, 2022) (Fan, 2022)

Ref.

![](_page_44_Figure_5.jpeg)

### **Risk compositions**

![](_page_44_Figure_7.jpeg)

Moderate climate

change (SSP1-2.6)

### Progression

### Regression

Socio-economic decline

Socio-economic growth

Intensification

Exacerbation

### Extreme climate

change (SSP5-8.5)

![](_page_46_Figure_1.jpeg)

### Preferred pathway

### Socio-economic growth

	Extreme climate
--	-----------------

## change (SSP5-8.5)

Socio-economic decline

Moderate climate

change (SSP1-2.6)

## **Design exploration**

![](_page_47_Figure_4.jpeg)

Socio-economic decline

# 

### Extreme climate

change (SSP5-8.5)

![](_page_48_Figure_1.jpeg)

![](_page_48_Figure_3.jpeg)

Possibility of various scenarios emerging from a single branch and evolving into different future outcomes based on socio-economic conditions in the short term and the pace of climate change in the long term.

### Synthetic scenarios | steering in a temporal sequence

![](_page_48_Figure_6.jpeg)

![](_page_48_Figure_9.jpeg)

![](_page_49_Picture_1.jpeg)

### Local adaptation | current

![](_page_49_Picture_4.jpeg)

![](_page_49_Picture_5.jpeg)

# Erosion along waterway

![](_page_49_Picture_7.jpeg)

### Villages under risk

Suqiao

![](_page_49_Picture_9.jpeg)

![](_page_49_Picture_10.jpeg)

![](_page_49_Picture_12.jpeg)

![](_page_49_Picture_14.jpeg)

![](_page_50_Picture_2.jpeg)

### Local adaptation | By 2030

![](_page_50_Picture_5.jpeg)

### Leading to

![](_page_50_Figure_7.jpeg)

![](_page_50_Figure_8.jpeg)

1200 m

![](_page_51_Figure_2.jpeg)

### Local adaptation | Socio-economic growth | By 2045

# Leading to Intensification — Extreme Exacerbation Progression **— Moderate** Regression

	Agri-managed aquifer recharge
+ + + + +	Meadows and pastures
	Monitoring and evaluation
	Water resilience knowledge hub
Q	Monitoring and evaluation
V	Early warning system
V	Water recycling
•••••	Farmland consolidation
	Buffer strips
	Reuse of sediment
X00 •	Long-term masure preparation
X00 •	Optional measure
X00 •	Prioritized & suggested measure
	Built-up area
	Dike
	Tree buffer
	Road
	Waterway

1200 m

![](_page_52_Picture_2.jpeg)

### Local adaptation | Socio-economic growth + Extreme climate change | By 2060

## Leading to

### Intensification

Exacerbation

Progression

Regression

	Wetland restoration
	Detention basins
	Farmland consolidation
	Agri-managed aquifer recharge
+ + + + +	Meadows and pastures
	Decentralized water storage
	Climate-proofing structure
	Monitoring and evaluation
	Water resilience knowledge hub
Q	Monitoring and evaluation
V	Early warning system
$\sim$	Water recycling
$\rightarrow$	Dam removal
	Buffer strips
_	Reuse of sediment
X00 •	Long-term masure preparation
X00 ●	Optional measure
X00 •	Prioritized & suggested measure
	Built-up area
	Dike
	Tree buffer
	Road
	Waterway

600

# Intervention Dynamic adaptive pathways

![](_page_53_Figure_1.jpeg)

### Dynamic adaptive pathways | Intensification scenario

![](_page_53_Picture_3.jpeg)

5	2060					
tal justice	Costs (0,+,++,+++)		Side effe	Side effects(,,0,+,++,+++)		
Equal water source distribution	Initiate	Maintain	Water control capacity	Job opportunity	Environmental impact	
3	2	1	2	1	3	
5	3	3	2	5	6	
8	7	5	-1	4	8	
16	17	17	3	12	17	
11	15	10	5	8	6	
17	22	13	5	10	8	
Equal water source distribution	Initiate	Maintain	Water control capacity	Job opportunity	Environmental impact	
22	24	16	6	13	17	

	Wetland restoration
	Agri-managed aquifer recharge
	Dikes as flood-proof road network
	Seawater desalination
0.	Village relocation Economy diversification
5 20	60

![](_page_54_Picture_2.jpeg)

![](_page_54_Picture_3.jpeg)

### Local adaptation | Socio-economic growth + Moderate climate change | By 2060+

### Leading to

Intensification

Exacerbation

Progression

Regression

Forest riparian buffers Wetland restoration Detention basins Farmland consolidation Agri-managed aquifer recharge Meadows and pastures Decentralized water storage Monitoring and evaluation Water resilience knowledge hub Monitoring and evaluation \!/ Early warning system Water recycling  $\rightarrow$  Dam removal Buffer strips *Reuse of sediment* **(X00** • Long-term masure preparation **X00** Optional measure **X00** *Prioritized & suggested measure* Built-up area ----- Dike Tree buffer —— Road ----- Waterway

1200 m

600

55

# Intervention Dynamic adaptive pathways

![](_page_55_Figure_1.jpeg)

### Dynamic adaptive pathways | Progression scenario

![](_page_55_Picture_3.jpeg)

5	2060								
al justice	Costs (0,	+,++,+++)	Side effects(,,0,+,++,+++)						
Equal water ource distribution	Initiate	Maintain	Water control capacity	Job opportunity	Environmental impact				
3	1	2	1	3	4				
5	4	4	2	6	6				
10	10	3	-2	4	14				
17	17	17	2	12	19				
10	10	5	-2	3	10				
16	18	10	1	8	16				
Equal water ource distribution	Initiate	Maintain	Water control capacity	Job opportunity	Environmental impact				
23	21	10	-3	10	28				

	Wetland restoration
	Agri-managed aquifer recharge
	Dikes as flood-proof road network
	Seawater desalination
	Village relocation
	Economy diversification
5 20	60

![](_page_56_Figure_2.jpeg)

### Local adaptation | Socio-economic decline | By 2045

# Leading to Intensification — Extreme Exacerbation Progression Regression **— Moderate**

Economy diversification Meadows and pastures 10 m m Village relocation 1.1 Climate-proofing structure Monitoring and evaluation Water resilience knowledge hub Monitoring and evaluation \!/ Early warning system Water recycling Farmland consolidation Buffer strips Reuse of sediment **(X00** • Long-term masure preparation X00 Optional measure **X00** *Prioritized & suggested measure* Built-up area Dike Tree buffer Road _____ ----- Waterway

![](_page_57_Picture_2.jpeg)

![](_page_57_Picture_3.jpeg)

### Local adaptation | Socio-economic decline + Extreme climate change | By 2060

### Leading to

### Intensification

### Exacerbation

Progression

### Regression

Forest riparian buffers Wetland restoration Detention basins Economy diversification Agri-managed aquifer recharge Meadows and pastures 10 M A Village relocation the second second Decentralized water storage Climate-proofing structure Monitoring and evaluation Water resilience knowledge hub Monitoring and evaluation Early warning system \!/ Water recycling  $\rightarrow$  Dam removal Buffer strips *Reuse of sediment* **X00** *Long-term masure preparation* X00 Optional measure **X00** *Prioritized & suggested measure* Built-up area Dike Tree buffer ----- Road ----- Waterway

1200 m

600

58

# Intervention Dynamic adaptive pathways

![](_page_58_Figure_1.jpeg)

### **Dynamic adaptive pathways | Exacerbation scenario**

![](_page_58_Picture_3.jpeg)

al justice	Costs (0	,+,++,+++)	Side effects(,,0,+,++,+++)					
Equal water ource distribution	Initiate	Maintain	Water control capacity	Job opportunity	Environme impact			
3	2	2	2	2	1			
5	4	4	2	6	6			
9	8	9	3	6	9			
15	15	17	4	12	14			
8	9	6	2	6	6			
15	21	14	0	11	13			
Equal water ource distribution	Initiate	Maintain	Water control capacity	Job opportunity	Environme impact			
20	19	17	7	14	16			

![](_page_59_Picture_2.jpeg)

### Local adaptation | Socio-economic decline + Moderate climate change | By 2060+

### Leading to

Intensification

Exacerbation

Progression

Regression

	Forest riparian buffers
	Wetland restoration
	Detention basins
	Economy diversification
+ + + + +	Meadows and pastures
- 113 -	Village relocation
	Decentralized water storage
	Climate-proofing structure
	Monitoring and evaluation
	Water resilience knowledge hub
Q	Monitoring and evaluation
V	Early warning system
$\sim$	Water recycling
$\rightarrow$	Dam removal
	Buffer strips
	Reuse of sediment
X00 •	Long-term masure preparation
X00 •	Optional measure
X00 •	Prioritized & suggested measure
	Built-up area
	Dike
	Tree buffer
	Road
	Waterway

1200 m

600

# Intervention Dynamic adaptive pathways

![](_page_60_Figure_1.jpeg)

### Dynamic adaptive pathways | Regression scenario

2045		2050				2055			20	060			
				water	Targ	et effects (0,-	+,++,+++) environ	mental iustice	Costs (0	,+,++,+++)	Side effe	ects(,,-,0,+	+,++,+++)
_	#	Measure	Flood mitigation	Drought mitigation	Flood adaptation	Drought adaptation	Equal flood risk distribution	Equal water resource distribution	Initiate	Maintain	Water control capacity	Job opportunity	Environmental impact
	Prio	now-2030 ritized pathway	1	2	3	2	3	3	2	2	2	2	1
	Pre	ferred pathway	3	2	4	3	5	5	4	4	2	6	6
	Prio	zu30-z045 ritized pathway	2	2	9	9	7	7	4	7	2	4	3
	Pre	ferred pathway	4	6	15	18	11	14	13	16	5	11	11
	Prio	ritized pathway	3	4	8	7	7	5	8	6	2	5	5
	Pre	ferred pathway	10	8	15	9	18	12	18	12	-1	11	13
		By 2060	Flood	Drought	Flood adaptation	adaptation	distribution	Equal water resource distribution	Initiate	Maintain	vvater control capacity	Job opportunity	impact
	Prio	ritized pathway	6 17	8 16	20 34	18 30	17 34	15 31	14 35	15 32	6 6	11 28	9 30
-	Fie	lerred patriway	17	10	- 34	30	34	51		32	0	20	30
wledge hub													
rly warning s	yster	ns											
	Ri	verbank soft	ening										
	St	reambed re-	naturaliza	ation									
	··	forestation i	n headwa	ter areas									
		forestation	freeoryo	ir eatchr	onte								
	·   ^				IEIIIS								
	- <b> </b> Pi	ecision irriga	ation										
		imate-proofi	ng structi	ure									
		0			Dam rer	noval							
		Ă			Meadow	is and pas	stures						
		Υ			Forest r	parian but	ffers						
Q					Detentio	on hasins							
Q					Decentre								
Ó					Decentr	alized wat	erstorage						
			0		Agro-in	dustrial wa	astewater reus	se					
							C	)			Wetland re	estoration	
							Ĭ				Agri-mana	aged aquif	er recharge
											Dikes as f	lood-proof	road netwo
										0	Seawater	desalinatio	on
										0	Village rel	ocation	
							¢	)			Economy	diversifica	tion
				0									
21	145			26	50		2	055		20	)60		
	0 10			20									
205	$\cap$		201	55		206	Ω						
200	U		ZU			200							

![](_page_60_Picture_5.jpeg)

### Current

![](_page_61_Picture_2.jpeg)

## Tributary reorganization | Exacerbation scenario (most plausible) | 2060

![](_page_61_Picture_4.jpeg)

![](_page_61_Picture_5.jpeg)

The main rivers widening Villages resettled to safer locations More space for water retention and infiltration

Decentralized water retention and buffering More equitable distribution of water resources and risks

Relocated built-up area Built-up area Farmland Forest & shrubland Grassland Pasture & Ag-MAR farmland Freshwater Highway Railway

![](_page_61_Picture_11.jpeg)

![](_page_61_Picture_12.jpeg)

### Proposed

![](_page_62_Picture_2.jpeg)

### Ecosystem service assessment | Exacerbation scenario (most plausible) | 2060

![](_page_62_Picture_4.jpeg)

# 200 million m³ to 830 million m³

Higher water yield capacity as a whole.

![](_page_62_Picture_8.jpeg)

10

![](_page_62_Picture_11.jpeg)

Runoff retention capacity increases across all areas, ranging from

Potential damage reduction - builtup area (10 million m²/each) Runoff retention capacity increasement - 150 mm rainfall event (10 million m³/each) Water yield capacity change (+/- 10 million m³/year/each)

![](_page_62_Picture_15.jpeg)

 $\bigcirc$ 

![](_page_63_Picture_1.jpeg)

### **Tributary reorganization**

## **Territory transformation | Synthesis scenarios | 2060**

# -> water-relisient mosaic

![](_page_63_Figure_5.jpeg)

0

Urban area Water-resilient communities Water sensitive land consolidation Water source protection Floodplain restoration Waterway restoration Waterway ----- Administrative boundary

Restored tributaries and floodplains Water knowledge and risk-sharing network

200 km

![](_page_63_Picture_10.jpeg)

# Stakeholder status | Current

![](_page_64_Figure_2.jpeg)

Sectoral public agencies

### **Stakeholder status | Proposed**

-> transparency and constant communication

MoF	Minist
NDRC	Natior
MoNR	Minist
MoEE	Minist
MoW	Minist
V	Village
Vc	Village
MoAR	Minist
МоТ	Minist
MoHD	Minist
NGO	Non-g
RED	Real e
LG	Local
ID	Infrasi
RI	Resea
WME	Water
*	Enhan
-	Dimini
+	Introd
	No cha
$\longleftrightarrow$	Strong
<b>~····</b>	Task-s

try of Finance nal Development and Reform Commission try of Natural Resources try of Ecology and Environment try of Water Resources er ers' committee try of Agriculture and Rural Affairs try of Transport try of Housing and Urban-Rural Development governmental organisation estate developer government structure developer arch institute r management entrepreneur nced participation ished participation luced participation nange

g collaboration

-specific collaboration

Indirect collaboration

Conclusion and Reflection

![](_page_66_Picture_0.jpeg)

![](_page_66_Picture_1.jpeg)

![](_page_66_Picture_2.jpeg)

+ Socio-environmental factors behind the duality of long-standing droughts and escalating floods

+ Potential measures enabling the paradigm shift from profitdriven to risk management-driven development

### A vision for discussion

Unsustainable profit-driven paradigm Unethical water management approach in often neglected regions Possible alternatives - benefits and trade-offs to become a shared vision

> + Dynamic adaptive pathway guiding the implementation of measures across various future scenarios

![](_page_66_Figure_8.jpeg)

![](_page_66_Figure_10.jpeg)

+ Multiscale design exploration visualizing the spatial impacts of strategies

![](_page_66_Figure_12.jpeg)

+ Multi-aspect assessment validating the proposal through both quantitative and qualitative methods.

![](_page_67_Picture_0.jpeg)

![](_page_67_Picture_1.jpeg)

![](_page_67_Picture_2.jpeg)

+ Socio-environmental factors behind the duality of long-standing droughts and escalating floods

# A transferable methodological framework

Adaptability beyond local context - localized patterns Flexibility across temporal and spatial scales to tackle future uncertainty - especially water crisis

+ Potential measures enabling the paradigm shift from profitdriven to risk management-driven development

+ Dynamic adaptive pathway guiding the implementation of measures across various future scenarios

![](_page_67_Figure_9.jpeg)

![](_page_67_Figure_11.jpeg)

+ Multiscale design exploration visualizing the spatial impacts of strategies

![](_page_67_Figure_13.jpeg)

+ Multi-aspect assessment validating the proposal through both quantitative and qualitative methods.

![](_page_68_Picture_0.jpeg)