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Abstract: A new method for fast, high resolution interrogation of an array of photonic sensors is
proposed. The technique is based on the integrated Fourier transform (FT) interrogator previously
introduced by the authors. Compared to other interferometric interrogators, the FT-interrogator
is very compact and has an unprecedented tolerance to variations in the nominal values of the
sensors’ resonance wavelength. In this paper, the output voltages of the interrogator are written
as a polynomial function of complex variables whose modulus is unitary and whose argument
encodes the resonance wavelength modulation of the photonic sensors. Two different methods
are proposed to solve the system of polynomial equations. In both cases, the Gröbner basis of the
polynomial ideal is computed using lexicographical monomial ordering, resulting in a system of
polynomials whose complex variable contributions can be decoupled. Using an NVidia graphics
processing card, the processing time for 1 026 000 systems of algebraic equations takes around 9
ms, which is more than two orders of magnitude faster than the interrogation method previously
introduced by the authors. Such a performance allows for real time interrogation of high-speed
sensors. Multiple solutions satisfy the algebraic system of equations, but, in general, only one of
the solutions gives the actual resonance wavelength modulation of the sensors. Other solutions
have been used for optimization, leading to a reduction in the cross-talk among the sensors. The
dynamic strain resolution is 1.66 nε/

√
Hz.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photonic sensors have recently attracted much attention in both industry and academia. They can
offer high accuracy, low weight and the possibility of building a large sensor network. Photonic
sensors can be employed in a wide range of situations and can be used in harsh environments
where electronic sensors are not suitable. Examples of applications are gas sensing [1,2],
biosensing [3–5], monitoring pressure and temperatures in oil industry [6] and finally, in structure
health monitoring [7]. In the health care field, possible applications are ultrasound intravascular
imaging [8,9] and photoacoustic imaging [10]. Attention is given in this paper to sensors whose
spectrum is finite and can be multiplexed using wide division multiplexing techniques (WDM).
Ring resonator sensors and fiber Bragg gratings (FBG)s are examples of this type of photonic
sensor.

Interrogators can have a deep impact on sensor performance; they can limit their dynamic
range, measurement resolution, and speed. Interrogators based on interferometry are usually
implemented using two main stages [11,12]: a demultiplexer (such as an arrayed waveguide
grating (AWG) or an echelle), which separates the spectra of the photonic sensors and then an
array of interferometers, which retrieve the information encoded in the resonance wavelength
of each photonic sensor. This approach gives a limited tolerance to variations in the resonance
wavelength of the sensors. If one of the FBG sensors in the sensor network needs to be replaced,

#426544 https://doi.org/10.1364/OE.426544
Journal © 2021 Received 31 Mar 2021; revised 2 Jul 2021; accepted 4 Jul 2021; published 27 Jul 2021

https://doi.org/10.1364/OA_License_v1#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.426544&amp;domain=pdf&amp;date_stamp=2021-07-27


Research Article Vol. 29, No. 16 / 2 August 2021 / Optics Express 25633

another FBG with the same resonance wavelength must be used [11]. The reason is that the
resonance wavelength of the photonic sensors should coincide with a wavelength close to the
center of the spectrum of one of the spectrometer’s output channels. A flexible interrogator is
particularly important for demodulating integrated photonic sensors, since the fabrication stage
may introduce large variations in the nominal values of their resonance wavelengths.

The interrogator previously presented by our group [13] is based on a Fourier transform (FT)
spectrometer and implements the steps of demultiplexing and demodulation simultaneously. The
resonance wavelength modulation of the sensors was obtained by numerically solving (at each
instant of time) a system of non-linear equations. The minimum retrieved resonance wavelength
modulation was 400 fm. Despite the high interrogation resolution, the processing time per
non-linear system is around 10 ms [13], limiting the maximum speed of the photonic sensors.
Using an advanced CPU, the processing time can be improved up to a certain extent, but it is still
limited for sensors that operate in the range of tens of kHz.

In this work, the non-linear system of equations has been rewritten as a system of polynomial
equations. This algebraic system is solved by computing the Gröbner basis of the polynomial
ideal. Under a lexicographical monomial ordering, it is possible to decouple the response of
the photonic sensors. The algebraic system admits multiple solutions and it is demonstrated in
the appendix that, in general, there is only one solution from which the resonance wavelength
modulation of the sensors can be obtained. One of the non-physical solutions, however, has
been used to adjust the coefficients of the algebraic equations, reducing the cross-talk among
the sensors. As will be discussed in Section 3, the algebraic formulation enables one to solve
the polynomial system of equations using parallel computation. Using an NVidia graphical
processing unit (GPU), the overall processing time for 1 026 000 algebraic systems of equations
is about 9 ms. The novel formulation allows two orders of magnitude faster than our previous
paper’s approach, which allows real-time interrogation of high-speed sensors. The Fourier
transform interrogator is a candidate for interrogating arrays of ultrasound ring resonator sensors
[8,9,14,15].

2. Fourier transform interrogator

Different integrated FT spectrometer designs have been presented in the literature [16–21].
While conventional Fourier transform spectrometers use a Michelson interferometer with a
moving mirror, in 2007 Florjanczyk et al. [16] proposed a spectrometer featuring a set of
integrated Mach-Zehnder interferometers (MZI) with different arm lengths. As a result, the
interferogram becomes discrete and the retrieved spectrum periodic. The spectral reconstruction
takes the Littrow wavelength (defined as the wavelength at which the interferences are completely
constructive for all MZIs) as a reference. Given the fact that the spectrum is real and symmetric
with respect to the frequency f = 0, the sine terms of the complex Fourier series vanish.
Moreover, the Fourier coefficients (which are calculated from the outputs of each Mach-Zehnder
interferometer) become real.

FT spectrometers can be designed to achieve a resolution as hundreds of MHz [22]. The free
spectral range (FSR) of the MZI with the larger optical path difference (OPD) defines the spectral
resolution limit of the system, while the periodicity of the spectrum is defined by the FSR of
the MZI with the smaller OPD. An important issue of the direct spectral reconstruction method
presented by [16] are the phase errors: if the interference is not completely constructive at the
Littrow wavelength, distortions are introduced into the reconstructed spectrum. Herrero-Bermello
et al. [23] identify two main sources of phase errors: (a) errors caused by imperfections in the
fabrication process, and (b) errors introduced by thermal instabilities during measurement.

The fabrication process introduces variations in the waveguide parameters such as local
variations of its width, leading the constructive interference maximum to deviate from the Littrow
wavelength. Takada et al. [24] solved this issue by using micro-heaters and actively controlling
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the wavelengths at which the constructive interference maximum occurs. Alternatively, Refs.
[17–20] handle the phase errors by including them in the transmission function of each MZI
and subsequently solving a linear system of equations. Uda [21] and Okmamoto et. al [25]
simplified the calculation of the spectrum input by employing a 3×3 and a 4×4 MMIs (multimode
interferometer) at the MZI outputs. In this case, both real and imaginary parts of the Fourier
coefficients are evaluated, and the phase errors are compensated by multiplying the voltages of
the interferogram by a phase factor (see Eq. (5)). In contrast, phase errors introduced by thermal
instabilities can be mitigated by performing the measurements in a well-controlled environment.
One of the methods presented in [19] consists of computing several calibration matrices as a
function of temperature. The input spectrum is obtained by multiplying the spectrogram by
the inverse (or pseudo-inverse) of a matrix whose elements, previously obtained by calibration,
depend on the temperature of the device. Alternatively, [23] applies a novel technique based on
machine learning. Thermal instabilities also impact the interrogation of photonic sensors. Such
instabilities have been compensated for in our previous article using one of the photonic sensors
as a reference [13].

The design of the FT interrogator differs from the FT spectrometer in that (a) it contains a
reduced number of interferometers and (b) the MZIs contain 3×3 MMI couplers at their outputs,
which is unusual for a FT spectrometer. As detailed later in Section 3, according to the algebraic
formulation, the number of MZIs employed in the interrogation is equal to the number of the
sensors. This drastically reduces the number of MZIs which need be integrated on the chip. Fig. 1
shows the design of our chip, fabricated by Smart Photonics in Eindhoven using InP technology.
Its size is 4.5 mm × 4.0 mm, and it has nine integrated MZIs. The arm-length difference of
MZI1, shown in the upper-right corner of Fig. 1, is ∆L1 =710 µm and its free spectral range is
F1 = 921pm. The arm-length differences of the other MZIs are progressively larger and given by
m∆L1, where m is an integer which identifies the MZI in Fig. 1 and ranges from 1 to 9. The MZI
free spectral ranges are given by Fm = F1/m. Input 1 is the main entrance, from which all MZIs
can be accessed. The other inputs guide the light signal to a smaller group of MZIs, allowing
some optical power to be saved if fewer sensors are being interrogated. The MZI outputs are
connected to integrated photodetectors (PDs). The PD electrical outputs are conveyed (through a
wire-bond connection) to a printed circuit board (PCB), which has the chip on top. This PCB
is attached to another PCB which contains an array of trans-impedance amplifiers (TIA) (one
per photodetector) and also to an additional electronic circuit designed to calculate the complex
Fourier coefficients.

Instead of retrieving the spectrum and thereby computing the resonance wavelength modulation
of the sensors, in this work, a system of algebraic equations is derived. The argument of the
complex variables of the solution encodes the resonance wavelength modulation of the photonic
sensors. By solving the algebraic system, it has been possible to experimentally obtain resonance
wavelength modulation amplitudes 140 times smaller than the FT spectrometer’s resolution.
In standard integrated FT spectroscopy applications, the spectrum is obtained using a finite
number of harmonic terms of the Fourier series because a finite number of interferometers are
on the chip. This limits the resolution of the retrieved spectrum. An exception to this has been
described by Podmode [18], in which the spectrum is known to be sparse and was obtained using
l1-normalization. In contrast, the algebraic system of equations derived in this work gives an
accurate physical description of the modulation of the sensors. The interrogation resolution is
limited by the noise and the inaccuracies of the coefficients retrieved in the calibration procedure.
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Fig. 1. Schematic of the FT-Interrogator. The device contains nine MZIs, all with different
OPDs. Input 1 is the main entrance, from which all MZIs can be accessed; Input 2 guides
the light signal to MZIs 8 and 9; Input 3, to MZIs 6 and 9; Input 4, to MZIs 6 and 7; and
Input 6, to MZIs 1 - 5. The other inputs are not used.

3. Theoretical analysis of the FT interrogator

3.1. Derivation of the system of polynomial equations

Photonic sensors can be multiplexed in large sensor networks. In this paper, the focus is on the
interrogation of sensors which are multiplexed in the wavelength domain (WDM). The spectrum
of the sensors is assumed to be finite and shaped as a peak (as with ring resonators or fiber
Bragg gratings) and their resonances, i.e., the wavelength at which the spectrum is maximum,
are sufficiently separated so that their combined spectra do not overlap. The combined spectrum
S(δ1(t), . . . , δM(t), λ, t) as a function of time is given by:

S(δ1(t), . . . , δM(t), λ, t) =
K∑︂

n=1
sk(λ − λ0k − δk(t)), (1)

where K is the number of photonic sensors, sk(λ) is the spectrum of the k-th sensor, λ0k is the
resonance wavelength of the k-th sensor, in the absence of an external signal to be sensed and
δk(t) is the resonance modulation of the k-th sensor, encoded by the signal to be sensed. Ring
resonators may present multiple resonances along the C-band, and the interrogator expects single
resonance. To isolate a single resonance, an optical filter, such as an FBG, can be used [9]. The
goal of the interrogator is to determine the function δk(t) as a function of time.

Here we derive the coupled polynomial system of equations for the FT Interrogator. A similar
derivation has been presented in our former article [13], here it is partially repeated for the reader’s
convenience. The PCBs, which are connected to the TIAs, combine the voltages according to:

Vm,x(t) = 2Vm,3(t) − Vm,1(t) − Vm,2(t)

Vm,y(t) =
√

3
(︁
Vm,1(t) − Vm,2(t)

)︁
,

(2)

where m is the MZI index, Vm,x(t) and Vm,y(t) are voltages phase shifted by 90 degrees. Thus,
2 voltages (instead of 3) are sampled per MZI. In our former article, it was shown that the
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expression for the voltages Vm,x and Vm,y is given by:

Vm,x(t) = G
∫ ∞

−∞

S(δ1(t), . . . , δM(t), λ, t) cos
(︃
2π

m
F1
λ + ψe,m

)︃
dλ

Vm,y(t) = G
∫ ∞

−∞

S(δ1(t), . . . , δM(t), λ, t) sin
(︃
2π

m
F1
λ + ψe,m

)︃
dλ,

(3)

where ψe,m is an angle which accounts for the phase errors and F1 = 921 pm the free spectral
range of MZI 1. G is a parameter which depends on the photodetector responsivities, on the TIA
gains and on the attenuation of the optical signal within the chip. For further details about this
derivation, please refer to our previous paper [13]. In absence of phase errors, Vm,y(t) vanishes
due to the symmetry of the spectrum S(δ1(t), . . . , δM(t), λ, t) = S(δ1(t), . . . , δM(t),−λ, t). The
m-th complex voltage is defined according to:

V̂m(t) = Vm,x(t) + iVm,y(t) = Ge−iψm

∫ ∞

−∞

S(δ1(t), . . . , δM(t), λ, t) exp
(︃
i2π

m
F1
λ

)︃
dλ. (4)

As shown in our previous paper, the input spectrum can be reconstructed according to the
following expression:

Srec(δ1(t), . . . , δM(t), λ, t) =
M∑︂

m=−M

V̂m(t)eiψm

G
exp

(︃
−i2π

m
F1
λ

)︃
, (5)

where Srec(δ1(t), . . . , δM(t), λ, t) is the reconstructed spectrum. Srec(δ1(t), . . . , δM(t), λ, t) differs
from S(δ1(t), . . . , δM(t), λ, t) in that Srec(δ1(t), . . . , δM(t), λ, t) = Srec(δ1(t), . . . , δM(t), λ + F1, t) is
periodic and that it features a limited resolution, as the number of interferometers is finite. Phase
errors that may have been introduced by the fabrication process are compensated by the factor
exp(iψm,e) in Eq. (5).

The spectrometer resolution is given by F1/(2M). To resolve sensor modulation amplitudes
much smaller than the spectrometer’s resolution, we derive a system of polynomials equations.
Substituting Eq. (1) into Eq. (4) and changing the integration variable λ → λ′ + λ0k + δk(t), we
obtain:

V̂m(t) =
K∑︂

k=0
amk exp

[︃
i2π

m
F1
δk(t)

]︃
, (6)

where
amk = G exp

[︃
i
(︃
−ψe,m + 2π

m
F1
λ0k

)︃]︃ ∫ ∞

−∞

sk(λ
′) exp

(︃
i2π

m
F1
λ′
)︃

dλ′. (7)

Equation (6) represents a system of M non-linear equations (each MZI has one corresponding
equation) and K variables. The coefficients amk are determined via a calibration (see Section 4.2).
Eq. (6) was solved numerically via Newton’s method in our former article. The only restriction
imposed is for the argument of the complex exponentials in Eq. (6) to be all different from each
other, otherwise the Jacobian of Eq. (6) is singular.

In order to solve Eq. (6) analytically, one the sensors is chosen as a reference and both sides of
Eq. (6) are divided by its coefficient am,ref :

V̂m(t)
am,ref

=

K∑︂
k=1

am,k

am,ref
exp

[︃
i2π

m
F1
δk(t)

]︃
=

K∑︂
k=1

∫ ∞

−∞
sk(λ

′) exp
(︂
i2π m

F1
λ′
)︂

dλ′∫ ∞

−∞
sref (λ′) exp

(︂
i2π m

F1
λ′
)︂

dλ′
exp

[︃
i2π

m
F1

(︁
λ0k − λ0ref + δk(t)

)︁ ]︃
.

(8)
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We assume that the lineshapes of the photonic sensors sk(λ) are proportional or, in the best
case, equal. The coefficients bk (for k = 1 · · ·K), defined as:

bk =

∫ ∞

−∞
sk(λ

′) exp
(︂
i2π m

F1
λ′
)︂

dλ′∫ ∞

−∞
sref (λ′) exp

(︂
i2π m

F1
λ′
)︂

dλ′
=

|︁|︁|︁|︁ amk

am,ref

|︁|︁|︁|︁ ≅ 1 (9)

are real and given by the ratio of the moduli of the coefficients amk and amref . The unity on the
right-hand side of Eq. (9) occurs if only the spectrum lineshapes sk(λ) (for k = 1, . . . , K) are
equal. Let

zk(t) = exp
[︃
i
2π
F1

(︁
λ0k − λ0ref + δk(t)

)︁ ]︃
. (10)

By substituting the definitions of zk (Eq. (10)) and bk (Eq. (9)) into Eq. (8), we obtain a system
of algebraic equations:

pm(z1, . . . , zM) =

K∑︂
k=1

bmzk(t)m −
V̂m(t)
aref ,m

= 0, (11)

where p1,. . . , pM are polynomials in the variables z1(t),. . . , zM(t). The methods for solving
Eq. (11) are discussed in details in Section 3.2. According to Eq. (10), the resonance wavelength
modulation of the k-th photonic sensor is proportional to the argument of zk, where in theory
|zk | = 1. After computing the solution, the resonance wavelength modulation of the sensors is
retrieved from the following expression:

δk(t) = F1
unwrap(arg(zk(t))) − arg(zk(0))

2π
, (12)

where it is assumed that at t = 0 no external excitation is applied, thus δk(0) = 0.

3.2. Algorithm to retrieve the resonance wavelength modulation

This paper aims to solve Eq. (11) using analytical and semi-analytical methods. In order to
retrieve the modulation for K photonic sensors, at least K complex voltages are needed. In this
paper, K = M, i. e., the number of sensors is equal to the number of interferometers and complex
voltages. The main reason is that the voltages V̂m (for m>K) are attenuated more compared to the
voltages for m ≤ K, and the additional information provided for these equations has a reduced
signal-to-noise ratio. The larger the value of m is, the larger the MZI OPD size is, resulting in a
stronger attenuation due to the photonic sensors’ finite coherence length.

Solutions of Eq. (11) are obtained using the computation of Gröbner basis. For a basic
introduction of the Gröbner basis, we refer the reader to [26–29]. Let I = <p1, . . . , pM> be an
ideal over a polynomial ring, where the polynomials p1, . . . , pM are defined by Eq. (11). The set
G = {g1, . . . , gJ} ⊂ I is a Gröbner basis of I as long as:

<LT(g1), . . . , LT(gJ)>=<LT(I)>, (13)

where LT is the leading term using some monomial ordering. As later discussed, the Eqs. (11)
intersect in a finite number of points. In this case, and using a lexicographical monomial ordering,
there exists at least one subset Gsub = {gsub,1, . . . , gsub,M} of G in which the polynomials satisfy
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a triangular form. Thus
gsub,1(z1, z2, . . . , zM) = 0

gsub,2(z2, . . . , zM) = 0
· · ·

gsub,M(zM) = 0,

(14)

where we dropped the time dependency of zm = zm(t) and Vm = Vm(t) (for m = 1, . . . , M) for
simplifying the notation. Eqs. (14) can be analytically solved if the degrees of the polynomials
are equal or smaller than four. Otherwise, the polynomial roots of Eqs. (14) are numerically
obtained.

Proposition. Let (δ1(t),. . . , δM(t)) be the resonance wavelength modulation of M sensors,
encoded in the argument of the complex variables z1(t), z2(t), . . . , zM(t) defined by Eq. (10). The
spectrum of the sensors is finite and their lineshapes are all equal, except each having a slightly
different peak height, so that Eq. (11) can be written as:

M∑︂
k=1

bkzk(t)m = V̂m(t)/am,ref , (15)

where b1 ≅ · · · ≅ bm ≅ 1. For any value of t, it is assumed that arg z1(t) ≠ arg z2(t) ≠ · · · ≠
arg zM(t) and that the arguments of complex variables are sufficiently distant from each other
so that Matrix QH , defined in Eq. (56), is definite positive and the jacobian of Eq. (15) is
well-conditioned. For this proposition, we assume a noiseless interrogator. The combined
spectrum of the sensors interfere in M interferometers according to the FT interrogator description
presented in Section 2. Eq. (15) satisfy the following properties:

1. The polynomials in Eq. (15) intersect in M! points;

2. If Zsol = (z1, . . . , zM) is a solution of Eq. (15) and the coefficients b1, . . . , bM are all
equal, the other solutions are given by all possible permutations of the coordinates of Zsol.
Moreover, |zm | = 1, for m = 1, . . . , M;

3. If the coefficients b1 ≠ b2 ≠ · · · ≠ bM are all different, there is only one solution whose
complex variables satisfy |z1 | = · · · = |zM | = 1. For all the other solutions, there is at least
one complex variable whose modulus is different from one.

Lemma. If a subgroup of J<M of coefficients of the monomials zm
1 , zm

2 , . . . , zm
J (for m = 1 · · ·M)

in Eq. (12) are all equal (b1 = · · · = bJ), there will be J! solutions in which the moduli of all
complex variables is one.

Mathematical details of the proposition are presented in the appendix. Item (1) guarantee
the existence of the and the amount of intersection points. Items (2) and (3) provide a physical
interpretation of the solutions. If the lineshapes sk(λ) (for k = 1 · · ·M) of the photonic sensors
are equal, b1 = · · · = bM = 1 and the polynomials on the left-hand side of Eq. (15) become
symmetric (see the Appendix for details). Given a solution Zsol = (z1, . . . , zM), other solutions
are given by permutations of Zsol coordinates. In this case all solutions are equally valid as
|z1 | = · · · = |zM | = 1. If the spectra sk(λ) for k = 1 · · ·M) are different, there is only one solution
in which the modulus of all the complex variables is equal to the unity. Since the other solutions
violate the assumption made in Eq. (10), the other solutions are spurious. The lemma can
be derived using the same arguments presented in the appendix. Given these properties, the
following algorithm has been proposed in order to demodulate the sensor signals:

1. Determine the coefficients amk (for m = 1 · · ·M and k = 1 · · ·M and ) from the calibration
procedure, described in section 4.2.
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2. Compute the Gröbner basis of the polynomial ideal using the lexicographic monomial
ordering. The complex voltages V̂m(t) (for m = 1, . . . , M) are kept as parameters so that
the computation of the Gröbner basis needs only to be done once. The computation of the
basis uses the SymPY Python module and the F5b [30] algorithm. Similar results can be
obtained using Mapple [31].

3. For each instant of time, substitute the values of V̂m(t) (for m = 1, . . . , M) into the
polynomials obtained from the Gröbner basis analysis and solve the system of equations.

4. Compute the absolute values of variables z1, . . . , zM . Solutions whose absolute value of
the complex variables are different than one are discarded. Let:

∆(t) =
1
M

M∑︂
m=1

| |zm(t)| − 1|. (16)

Function∆(t) indicates on average how much the modulus of the complex variables deviates
from the unity. The valid solution is the one which minimizes ∆(t).

5. Compute the argument of the complex variables. The arguments of the complex variables
may swap with time: if at a certain instant of time the signal of one of the photonic
sensors is encoded in the argument of the m-th complex variable zm(t), at a different time
instant, this signal may be encoded into a different complex variable. This phenomenon is
explained in detail in Section 5. The identification of the sensor is possible by observing
the DC component of the complex variable argument. From the calibration procedure
described in Section 4.2, we obtain the arguments of all complex variables at t = 0 and
which photonic sensor the argument corresponds to. Let δm,min and δm,max be the minimum
and maximum modulation amplitudes for the m-th sensor. The complex variable zj(t) can
be associated with the m-th sensor if:

arg(zj(0)) −
|δm,min |F1

2π
<unwrap(arg(zj(t)))< arg(zj(0)) +

δm,max

2π
, (17)

where δm,min ≤ 0 and δm,max>0.

6. Finally, the sensor modulation is obtained according to Eq. (12).

This first method has been implemented in Python only. It features the disadvantage that the
subset Gsub of the Gröbner basis, shown in Eq. (14), may not be unique. For a given basis Gröbner
basis, polynomials might be arranged in different subsets, all of them obeying the triangular form
described by Eq. (14). Thus, Lazard [32] proposed an algorithm which calculates a finite array
of triangular systems of polynomials from the Gröbner basis G, obtained using lex monomial
ordering. However,for the case of three sensors studied in the Experimental Section, this is
not needed. For b1 ≠ b2 ≠ b3, the Gröbner basis obtained using both Python and Maple has
only three equations: the univariate equation in z3 has the degree of six, while the other two
polynomials are linear for z1 and z2, respectively. Another issue of the current method is that
the computation cost of obtaining the Gröbner basis for non-symmetrical polynomial equations
can be extremely high for a larger number of sensors. Other algorithms for algebraic solving the
system of equations could also be employed [33]. However, the computation cost stills quite high
for a large number of sensors.

We propose a second method for solving the polynomial system described by Eq. (11): in
step 2 of the algorithm described above, we first approximate b1 = · · · = bM = 1, making the
system of equations symmetric. This meaningfully reduces the computational cost of obtaining
the Gröbner basis. Next, the symmetric system solution is taken as a starting point in Newton’s
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method. In order to ensure a fast convergence, the coefficients b1, . . . , bM are expected to be
close to unity. As explained in Section 3.1, this is obtained if the sensors’ spectra lineshapes
are all similar. As an alternative to the computation of the Gröbner basis, the symmetric system
of polynomial equations can be solved using the approach described by [34], also presented in
other Abstract algebra books. Let (Z1, . . . , ZM) be one of the solutions of Eq. (15) for the case
b1 = · · · = bM = 1. We construct an univariate polynomial in variable Z, given by:

M∏︂
m=1

(Z − Zm) =

M∑︂
m=0

(−1)mem(V̂1, . . . , V̂M)ZM−m = 0, (18)

where e0, . . . , eM are elementary symmetric polynomials in M variables, which can always be
written as a function of the complex voltages V̂1, . . . , V̂M if b1 = · · · = bM = 1. The relation
between the e0,. . . , eM and V̂1,. . . , V̂M is given by [35]:

mem =

m∑︂
j=1

(−1)j−1v̂jem−j. (19)

where v̂j = V̂j/aj,ref and e0 = 1. Solving Eq. (19) for e1,. . . , eM gives em = em(V̂1, . . . , V̂M)

(where m = 1, . . . , M). Therefore, solutions of the symmetric system of the system is given by
Zsol = (Z1, . . . , ZM), where Z1, . . . , ZM are the roots of Eq. (18). Other solutions are given by
permutation of Zsol coordinates: (Z1, Z2, . . . , ZM), (Z2, Z1, . . . , ZM), (ZM , Z2, . . . , Z1) , . . . If two
or more resonance wavelengths coincide, the polynomial in Eq. (18) has multiple roots. In this
case, although not explored in the experimental Section, the Newton method’s corrections are no
longer possible to be obtained as the Jacobian of the left-hand side of Eq. (15) becomes singular.
As a result, the accuracy of δ1(t), . . . , δM(t) to obtained from Eq. (18) decreases. However,
Eq. (18) can be solved, indicating the interrogator’s high flexibility concerning λ01, . . . , λ0M and
δ1(t), . . . , δM(t) values.

The main difference between the second approach and the method proposed in our previous
article [13] is the initial guess of Newton’s method: in our last paper, the starting point is given
by the solution obtained in the previous time step, while in this novel method, the starting point
is given by the solution of the symmetric algebraic system. The second approach has been
implemented in CUDA. Solving the non-linear equations using a GPU is only possible due to
novel algebraic formulation: in the previous article, since the initial guess depends on Newton’s
method solution of a past time instance, the equations had to be solved sequentially. On the other
hand, in the novel algebraic formulation, the complex voltages are stored in M buffers of with
N elements each, as shown in Fig. 2. Each buffers’ row represents a different algebraic system
of equations to be solved, as also shown in the figure. All N equations are solved in parallel as
earlier described: first, the solution of N symmetric equations is obtained (for t = 0 · · · tN−1) by
computing the roots of Eq. (18); next, the solution is corrected using Newton’s method, also
evaluated in the GPU.
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Fig. 2. Buffers copied to CUDA device memory. Each buffers’ row represents a different
algebraic system of equations, according to Eq. (11), displayed on right side of the figure.

4. Experimental procedure

4.1. Experimental setup

The experimental setup is shown in Fig. 3. The FT-interrogator has been characterized using
three FBG strain sensors. Fig. 3(a) shows that the ends of the fibers, which contain the fabricated
FBGs, are mechanically attached to a manual positioner and a stepper motor. The manual
positioners are used to apply an initial stress to the FBGs so that the resonance wavelengths of
the sensors can be controlled at t = 0. In our experiment λ0,1 = 1550.52 nm, λ0,2 = 1551.7 nm
and λ0,3 = 1551.08 nm. Their full width half maximum (FWHM) are 100, 125 and 112 pm,
respectively. As the stepper motor (Standa, 8Mt_167-100) travels along the x-axis, it stresses the
fiber, causing the resonance wavelength of the FBGs to be modulated according to the position of
the stepper motor. Two stepper motors have been used. FBG 3 is chosen as the reference sensor
and is attached to stepper motor (1), and the other two FBG sensors are attached to stepper motor
(2). While stepper motor (2) travels back and forth along the x-axis over a fixed distance ∆x
= - 20 µm, stepper motor (1) moves along different distances on the x-axis (∆x), as shown in
Fig. 3(b). Thus, different stresses can be applied to the reference sensor. The ∆x values are later
used to retrieve the curve strain versus resonance wavelength modulation. The stepper motors
are defined as always first travelling towards negative x-axis values and afterwards returning in
the positive direction to the original position. As a result, the fiber elongation is always negative
with respect to its length at t = 0, when the stepper motor is in its original position. Thus, the
strain in the FBGs is always negative, preventing the FBGs from being damaged if the stepper
motor is accidentally configured to move to a high value of ∆x.

The amplified spontaneous emission (ASE) light source (50 mW, Optolink, OLS15CGB-20-
FA), shown in 3 (a), emits a broadband spectrum, which can be assumed to be flat in the region
of operation of the photonic sensors and to be polarization insensitive. The circulator couples the
signal from the ASE source to the FBG sensor array. Next, each FBG ( 50% reflectivity) reflects
a gaussian shaped-peak (whose resonance wavelength is modulated according to the external
excitation) to the circulator. The circulator then guides the optical signal to the BOA (Thorlabs,
S9FC1004P, 7 dB noise figure), which amplifies it and provides a gain of 20.5 dB, compensating
the coupling losses from the fibers to the chip, which are about 20 dB. It should be noted that the
BOA gain is applied only to one of the polarization states of the input light signal. This is an
important issue because the integrated photo-detectors on the chip feature a high polarization
dependency, being nearly insensitive to quasi-TM modes. Hence, the polarization rotator (shown
in Fig. 3(a)) is used to maximize the power coupled to the quasi-TE modes in the chip waveguides.
Subsequently, by using a lensed fiber (Oz Optics, TSMJ-3A-1550−9), the light signal is brought
to chip input 6 and guided to MZIs 1 - 5 (see Fig. 1). The output voltages of the electronic board
are recorded by analog to digital convertors (ADC) at a sampling frequency f = 10 kHz. The
algorithm described in Section 3.2 has been implemented in Python and in C++, using NVidia
Tesla K40 and GeForce GTX 1050 Ti graphics processing unit.
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Fig. 3. (a) Schematic of the experimental setup. The circulator is represented as a blue
circle and the booster optical amplifier (BOA) as a red triangle. Three FBGs have been used
to characterize the interrogator. The stepper motors and their moving plate are represented
in orange. (b) Position of stepper motors 1 and 2 as a function of time. Travelling speed
is about 0.6 mm/s. The travelling distances (∆x) for stepper motor 1 ranges from 200 µm
to 0.5 µm ( see in Fig. 6 (e) and (f)). Stepper motor 2 travels at a fixed distance of 20 µm.
Lengths of the fibers containing FBGs 1,2 and 3 are 1.38 m, 1.56 m and 1.65 m.

4.2. Calibration

The goal of the calibration procedure is to determine the coefficients bk (for k = 1, . . . , M) in
Eq. (11), as well as the complex values of am,ref (for m = 1, . . . , M). The procedure presented
here is similar to the one in our previous paper. The coefficients amk (for m = 1, . . . , M) are
obtained by exciting the k-th sensor individually. During the calibration time interval tkcal, when
k-th sensor is excited, Eq. (6) can be written as:

V̂m(tk,cal) = ak exp(imδk(tk,cal)) +
∑︂
j,j≠k

amj⏞ˉ̄⏟⏟ˉ̄⏞
other sensors

, (20)

where the other sensors receive no excitation and they contribute only as a constant in Eq. (20).
Regardless of the excitation applied, Eq. (20) describes a circle arc in the complex plane. Hence,
we fit a circle to the Lissajous curve

(︂
ℜ{V̂m(tcal)},ℑ{V̂m(tcal)}

)︂
. The radius and angle of this arc

at the beginning of the k-th photonic sensor calibration (t = tkstart) give the modulus and argument
of amk:

Rmk = |amk |,
Φmk(tkstart) = arg(amk),

(21)

where Φk(tkstart) is the angle of the circle arc at t = tkstart. Both positive and negative stress is
applied to the FBG strain sensors shown in Fig. 3(a) so that the excitation applied to the k-th
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sensor is zero at the end of its calibration (t = tkend), which gives:

δ(tkstart) = δ(t
k
end) = 0. (22)

Hence, the resonance wavelengths λ0k (for k = 1, . . . , K) are unchanged by the calibration
procedure. From Eq. (10), it can be shown that the argument of zk (for k = 1 · · ·K) is given by

arg
(︂
zk(tkstart)

)︂
= arg

(︂
zk(tkend)

)︂
= arg(zk(0)) = Φ1,k − Φ1,ref . (23)

According to the convention adopted here, the calibration procedure occurs for t<0, while
the experimental simultaneous excitation of the sensors starts at t = 0. No excitation is applied
during the period tkend<t<0, and thus, the argument of zk(t) is constant during this period. Since
the arguments of the complex variables at t = 0 are known and given by Eq. (23), they are used
to identify the sensors, as explained in Section 3.2. Imperfections in the 3×3 couplers distort
the arc of the circle in Eq. (20) into an arc of an ellipse. The variation of the parameters in the
electronic circuit responsible for computing Eq. (2) also contributes to the increasing of the
ellipse eccentricity and furthermore introduces voltage offsets. Hence, instead of a circle, we fit
an arc of an ellipse to Vm,x(tk,cal) and Vm,y(tcal). A linear transformation is applied to map the
ellipse arcs to the circle arcs. For further details, please refer to [13].

5. Experimental results

5.1. Solutions of the algebraic system of equations

The algebraic system of equations is explicitly written for three sensors:

p1(z1, z2, z3) = b1z1 + b2z2 + z3 − V̂1/a1,3 = 0
p2(z1, z2, z3) = b1z2

1 + b2z2
2 + z2

3 − V̂2/a2,3 = 0
p3(z1, z2, z3) = b1z3

1 + b2z3
2 + z3

3 − V̂3/a3,3 = 0,

(24)

where the third sensor is chosen as a reference so that b3 = 1. We dropped the time dependency
of zm = zm(t) and Vm = Vm(t)(for m = 1, . . . , M) for simplifying the notation.

Fig. 4(a) shows the measured voltages V1,x(t) and V1,y(t). In order to reduce the noise, a 45
Hz low pass filter has been applied to all measured voltage signals. During the calibration
procedure, the sensors were excited separately, resulting in three ellipse arcs in the Lissajous
curves

(︁
Vm,x(t), Vm,y(t)

)︁
. As explained in Section 4.2, the ellipse arcs are obtained instead of

circle arcs mainly due to imperfections when using the 3×3 couplers. The linear transformation
described in our previous paper (see section 3.2 of [13]), maps the ellipse arcs to circle arcs and
removes the voltage offsets. The corrected values of V1,x(t) and V1,y(t) are plotted as a Lissajous
curve, seen in Fig. 4(b). The figure also shows circles fitted to the data points

(︂
V1,x(tcal

k ), V1,y(tcal
k )

)︂
,

where tcal
k is the calibration interval of the k-th sensor. In some areas of Fig. 4(b) the data points

deviate from the arc, following a path closer to the center. This phenomenon has already been
reported in our previous paper, and it occurs when the resonance wavelength between two FBG
sensors overlap, creating an undesirable Fabry-Perot effect. Thus, some optical energy is stored
in the Fabry-Perot cavity and the radius of the circle to be shortened. During the circle fittings,
the points that highly deviate from the circle arc have been neglected. From the radii of the arcs
and their angles phases at t = tstart

k , the parameters of Eqs. (24) are retrieved and are shown in
Table 1.

The system of Eqs. (24) have been solved using two different approaches, as described in
Section 3. Method 1 consists of computing the Gröbner basis of the ideal I = <p1, p2, p3>, where
the polynomials p1, p2 and p3 are defined in Eqs. (24). The computation cost of retrieving the
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Fig. 4. (a) Output voltages V1,x(t) and V1,y(t) recorded by the ADCs. The calibration is
for t<0. (b) Lissajous plot for

(︂
ℜ{V̂1(t)},ℑ{V̂1(t)

)︂
. The circles fitted to the individual

excitation of sensors 1,2 and 3 are shown in blue, orange and green, respectively. (c) Root
loci of polynomials g3(Z) and gsym.

3 (Z) at t = 0. The solution of the algebraic system of
Eq. (24) from which the resonance wavelength modulation is obtained is also shown in
the figure (blue triangle) as is the unit circle. The figure shows the effect of the symmetry
breaking: each of the roots of gsym.

3 (Z) (red crosses) are split into two roots of g3(Z) (green
circles). Only one of the roots of g3(Z) lies on the unit circle. (d) Function U(t) evaluated
for the solutions of the symmetric system (in green), the original system of equations (in
red) and the optimized system (in blue), obtained in Section 5.2. (e) Real and (f) imaginary
parts of the paths W1(t), W2(t) and W3(t) as a function of ℜ{U} and ℑ{U}. Branches of the
cubic root function are represented by the sheets shown in blue, red and green.
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Table 1. Parameters extracted
during the calibration

Parameter Value Unit

b1 0.94 1

b2 1.04 1

a3,1 -110.8 + 235.1 i mV

a3,2 -247.7 + 174.8 i mV

a3,3 261.7 - 107.4 i mV

Gröbner basis in terms of time and memory is high and the number of monomials of the basis is
extremely large. For that reason, the polynomials of the basis are not presented in this paper but
can be obtained using the groebner command in the SymPY Python module. The computation
of the Gröbner basis can be unfeasible for higher order non-symmetrical algebraic systems and
the number of solutions follows a factorial growth: for 6 sensors, the algebraic system gives 720
solutions, of which 719 are spurious if the coefficients bk (in this case for k = 1 · · · 6) are all
different. Method 1 has been implemented in Python only.

The second method (hereby referred as Method 2) for solving Eqs. (24) has two steps: (1)
compute the solutions of the symmetric system of equations, obtained under the approximation
b1 = b2 = b3 = 1; (2) improve the solution using Newton’s method. The symmetric system of
equations can either be solved by using the Gröbner basis calculation or by calculating the roots of
Eq. (18), as described in Section 3.2. The elements of the Gröbner basis Gsym = {gsym

1 , gsym
2 , gsym

3 }

are:
gsym

1 (z1, z2, z3) = −V̂1 + z1 + z2 + z3 = 0,

gsym
2 (z2, z3) = V̂2

1 − 2v1z2 − 2V̂1z3 − V̂2 + 2z2
2 + 2z2z3 + 2z2

3 = 0,

gsym
3 (z3) = −V̂3

1 + 3V̂1V̂2 − 6V̂1z2
3 − 2V̂3 + 6z3

3 + z3

(︂
3V̂2

1 − 3V̂2

)︂
= 0.

(25)

The computational cost for obtaining the Gsymis much reduced for the symmetric case. Roots
of gsym

3 (z3) have been obtained analytically and convergence is achieved with only three Newton’s
method iterations. This method has been implemented in C++/CUDA, taking approx. 8.6 ms
(using a Tesla K40 GPU) and 12.6 ms (using a Ge Force GTX 1050 Ti ) to solve approx. 1000
000 systems of equations. The transfer time from CPU to GPU memory is included in the
numbers presented in Table 2. Compared to the formulation we presented in [13], implemented
in a CPU, the processing time improves in more than two orders of magnitude, allowing for
real-time interrogation of high-speed sensors in tens of MHz range. The previous approach is
limited for sensors that operate at maximum in tens of kHz range (eventually 100 kHz for three
sensors only). In particular, the current interrogator is a candidate for interrogating arrays of
ultrasound ring resonator sensors [8,9,14,15].

Table 2. Time comparison of different systems. Time data
transfer for CPU and GPU is included in the times below

System Compiler Time

i7, Ubuntu 19, GPU (Tesla) nvcc 8.6 ± 1 ms

i7, Ubuntu 19, CPU g++ 6 s

i7, Ubuntu 19, GPU (GeForce) nvcc 12.6 ± 0.5 ms

i5, Windows 10, CPU MinGw, g++ 8.3s

For more than four sensors, it is no longer possible to solve polynomial equations analytically.
Performance of Method 2 depends on how fast the GPU can compute roots of polynomials. An
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estimative of the total computational time has been made for a symmetric system with eight
sensors: using Tesla K40 GPU, it was possible to solve one million symmetric algebraic systems
in 86 ms, of which 26 ms concern the data transfer between CPU and GPU. As a result, real-time
interrogation is feasible for sensors’ that operate up to a few MHz range. For simplicity, Newton’s
method has been used to find the roots of the eight-order univariate polynomial (five iterations
used). Using the approach described by [36], all roots of an n degree polynomial can be found
using O

(︁
n2(log n)(log qn)

)︁
arithmetic operations, where parameter q is a constant related to

the desired accuracy of the solution. Alternatively, roots of polynomials can be obtained by
computing eigenvalues of the companion matrix using QR algorithm, whose time complexity is
O(n3) ( see Chap. 5 of [37]). Despite the higher complexity, QR algorithm does not need any
initial guess.

A third method, described in [38], has also been implemented. In this case, a larger number
of equations and complex voltages are needed: for M sensors, 2M − 1 equations. For three
sensors, five equations are needed. This method generalizes the algebraic approach for solving
the symmetric system of equations described in Section 3.2 for non-symmetrical polynomials and
returns a unique solution. The spurious solutions, which satisfy the three equations in Eq. (24),
do not satisfy the other two equations. However, due to the finite coherence length of the photonic
sensors, the complex voltages of V̂4(t) and V̂5(t) feature a reduced signal-to-noise ratio and the
resonance wavelength obtained is extremely noisy. For this reason, the experimental results
are not shown. In terms of complexity, the method requires solving an M×M linear system
+ computing the roots of an M order polynomial. For the estimative of processing time with
eight sensors, the linear system of equations has been solved using LU decomposition using
the methods of cublas library [39]. The processing time obtained is about 90 ms. In total, we
estimate about 200 ms for solving 1 000 000 non-symmetric algebraic systems with eight sensors.
The complexity of the LU decomposition is O(M3) per linear system. As a comparison, the cost
of applying Nint Newton’s corrections to the solutions of the symmetric system, as described
by Method 2, is O(NintM2), using the approach of Ref. [40] ( Ref. [40] describe how to solve a
Vandemonde system; Jacobian of Eq. (11) is a Vandermonde matrix multiplied by a diagonal
matrix). For the third order case and parameters b1, b2 and b3 given in Table 1, Nint = 3.

Fig. 4(c) compares the root locus (at t=0) of the univariate polynomials of the Gröbner bases
gsym

3 (z3) and g3(z3), obtained from both the symmetric and the original system of equations
(experimental data, three sensors). gsym

3 (z3) has a degree of three, as can be observed in Eq. (25),
while g3(z3) has a degree of six. This symmetry breaking causes each of the roots of gsym

3 (z3) to
split into two roots, as shown in Fig. 4(c). The univariate polynomial gsym

3 can be written as a
function of a generic variable Z:

gsym
3 (Z) = 6Z3 − 6V̂1Z2 +

(︂
3V̂2

1 − 3V̂2

)︂
Z − V̂3

1 + 3V̂1V̂2 − 2V̂3 =

c1Z3 + c1Z2 + c3Z + c4 = 0,
(26)

where c1, c2, c3 and c4 are coefficients of the cubic. By solving Eq. (19) in terms of the elementary
symmetric polynomials in three variables and substituting into Eq. (18), the obtained equation
is identical to Eq. (26). Therefore, as explained in Section 3.2, the solutions of the symmetric
system are given by all possible permutations of the coordinates of Zsol = (Z1, . . . , ZM), where
Z1, Z2 and Z3 are the roots of gsym

3 (Z). In contrast, the six solutions that satisfy Eqs. (24) are
obtained by substituting the roots of g3(z3) into the other order polynomials of the bases g1(z1, z3)
and g2(z2, z3), which are linear with respect to z2 and z3, respectively. As a result, six solutions
are obtained.

According to the proposition in Section 3.2, in general, there is only one solution in which the
moduli of complex variables are all equal to one. This is the case since matrix QH , defined in
Eq. (56) in the appendix, is definite positive for any instance of time. The noise causes the moduli
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of complex variables to be slightly different from one. Thus, Method 1 chooses the solution
which minimizes function ∆(t), defined by Eq. (16), i.e. it chooses the solution whose moduli
of complex variables are closer to the unity. The solution obtained from Method 1 at t = 0 is
also shown in Fig. 4(c). The complex variables lie closer to the unit circle, compared to the
complex variables of the symmetric solution, which are given by the roots of gsym.

3 (Z(t)). This
occurs because no approximation has been made for coefficients b1 and b2, allowing the complex
variable moduli to be closer to the theoretical value. Fig. 4(c) shows the value of function ∆(t)
for the solutions of the original and the symmetric system. ∆(t) is about one order of magnitude
lower for the solution of the original system compared to the other spurious solutions obtained by
Method 1 (not shown). After three Newton’s method iterations, the solution of the symmetric
system converges to the solution obtained from Method 1 so that the maximum difference of the
resonance wavelength of the sensors obtained from the two methods is about 10−11 pm.

Figs. 5 (a), (b) and (c) show the resonance wavelength modulation obtained from Method
2. This method is taken as the reference due to its simplicity and because roots of third order
polynomials can be analytically evaluated. The colors in Figs. 5 (a), (b) and (c) indicate the root
of the cubic equation from which the resonance wavelength has been computed and then later
corrected using Newton’s method. For t>40, there is a one-to-one correspondence between the
j-th root of gsym

3 (Z) and the signal of the j-th sensor. However, for t<40, the complex variables
swap, as described in Section 3.2. This swap occurs when the argument of function U(t), which
satisfies Eq. (27), reaches 180◦. Function U(t) is obtained after applying a series of variable
transformations in Eq. (26), reducing the degree of the polynomial to two. For details, we refer
to chapter 1 of [34] (the notation used in [34] is: x instead of Z and z2 instead of U(t)). U(t)
obeys the second order equation:

U(t)2 + Q(t)U(t) −
P(t)3

27
= 0, (27)

where P(t) and Q(t) are the depressed cubic coefficients, also defined in [34]. Eq. (27) has two
solutions: U+(t) and U−(t), given by:

U±(t) =
−Q(t)

2
±

√︃
P(t)3

27
+

Q(t)2

4
. (28)

The roots of Eq. (26) have been obtained using U−(t), according to:

Zj(t) = Wj(t) −
P(t)

3Wj(t)
−

c2
3c1

, (29)

where Wj(t) = ξjU−(t)1/3 and ξj = exp(i(j − 1)2π/3) (for j = 1, 2, 3) are cubic roots of unity.
Although both values of U+(t) and U−(t) are valid and could be used into Eq. (29), the choice
of U+(t) or U−(t) impacts on the swapping of the complex variables: the argument of U+(t)
never reaches 180o and, hence, no swapping occurs. Aiming to understand the swapping of the
complex variables, the roots of Eq. (26) have been obtained using U−(t). The principal value of
U(t)1/3 is defined according to [41,42]:

U1/3(t) = |U(t)|1/3 exp
[︃
i
arg(U(t))

3

]︃
, (30)

where arg(U(t)) ranges from [−π, π). Let dΦU>0 be a small variation in the argument of function
U(t). Suppose that at t = t0− the argument of U(t0− ) is given by −(180o−dΦU) and the modulation
applied to the sensors adds −2dΦU to arg(U(t)) at t = t0+ . Thus, the term arg(U(t))/3 in Eq. (30)
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induces a discontinuity according to:

arg(U(t0− ))
3

=
−(π − dΦU)

3
→

arg(U(t0+ ))
3

=
+π − dΦU

3
, (31)

due to the fact that arg(U(t)) is always limited by the range [−π, π). As a result, the paths Wj(t)
(for j = 1, 2, 3) swap according to:

W1(t0− ) → W3(t0+ ), Z1(t0− ) → Z3(t0+ )
W2(t0− ) → W1(t0+ ), Z2(t0− ) → Z1(t0+ )
W3(t0− ) → W2(t0+ ), Z3(t0− ) → Z2(t0+ ).

(32)

Fig. 5. (a) Resonance wavelength modulation of sensor 3. The inset shows that the
modulation of FBG 3 slowly drifts along the time. This occurs since the sensors also respond
to local fluctuations of the temperature. (b) Resonance wavelength modulation of sensor 2.
(c) Resonance wavelength modulation of sensor 1. Colors indicate the complex variable
from which the resonance wavelength has been obtained, where Z1(t), Z2(t) and Z3(t) are
defined in Eq. (29). The crosses indicate the time instants at which the solutions obtained
from Method 1 swap. (d), (e) Zoomed resonance wavelengths δ1(t) and δ2(t) for t<10.

This situation can be observed in the Riemann surfaces shown in Figs. 4(e) and 4(f). The
figures show the real and imaginary part of the paths W1(t), W2(t) and W3(t) obtained from the
measured complex voltages for 0.3 < t < 0.5 s, which corresponds to the first swap of complex
variables of Fig. 5(a). The figure also depicts three sheets (in blue, red and green) corresponding
to the three branches of the complex cubic root, on which the paths W1(t), W2(t) and W3(t)
travel along. The three branches of the complex cubic roots are discontinuous at the semi-plane
arg(U) = 180◦, causing W1(t), W2(t) and W3(t), calculated from Eq. (29) and Eq. (30), to be
discontinuous. However, by joining the three discontinuous branches, Figs. 4(e) and 4(f) show
that the three cubic roots of U(t) are continuous everywhere. This assures the continuity of the
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retrieved values of the resonance wavelength modulation of the sensors, encoded in the complex
variables’ arguments.

For the symmetric system of equations, solutions are given as permutations of the variables
(Z1(t), Z2(t), Z3(t)). Hence, the swapping of the complex variables indeed represents a swapping
of the solutions. Solutions also swap in the original system of equations, in which only one of
the solutions is valid. The cross markers in Fig. 5(a) indicate the points at which the solutions
obtained from Method 1 swap. Those points are identified by function ∆(t), which senses when a
different solution has the modulus of its complex variables closer to unity. The swapping of the
solutions in Fig. 5(a) occurs close to the points where functions W1(t), W2(t), and W3(t) swap.
Such difference occurs due to the small difference of coefficients b1, b2 and b3 of the original and
the symmetric system of equations.

Figs. 6(a) and (b) show zoomed-in graphs of the resonance wavelength modulation of sensor
3, obtained by solving the symmetric, and the original system of equations, respectively. The
distortion of function δ3(t) observed in both figures is caused by cross-talk: although not visible
in Figs. 6(a) and (b), the disturbances of the function δ3(t) follow the modulation of δ1(t) and
δ2(t). Comparing the resonance obtained by solving the symmetric and the original system of
equations, shown in Figs. 6, the cross-talk is much less present in the solution of the original
system. This indicates that the accuracy of coefficients b1 and b2 impact the cross-talk, although
some cross-talk is still visible in Fig. 6(b). In the next section, spurious solutions obtained using
Method 1 are used to reduce the cross-talk.

5.2. Optimization of the solutions

Despite the higher cross-talk, the resonance wavelength modulations calculated from the spurious
solutions are of similar value to the values shown in Figs. 5(a), (b) and (c). The similarity can
be explained by the fact that the algebraic system is quasi-symmetric. If b1 ≅ · · · ≅ bM ≅ 1,
it follows from the Proposition of Section 3.2 that the locus in the complex plane of spurious
solutions lies close to the actual solution. Fig. 4(c) experimentally demonstrates this phenomenon,
as discussed in the previous section. The closer the coefficients b1, . . . , bm are to a value of one,
the closer the non-physical solutions are to the actual solution, and the less cross-talk they feature.
One of the spurious solutions, however, showed an unusual behaviour. For t<40s, when larger
stresses are applied to FBG 3, its cross-talk is comparable to the actual solution. For t>40s, on
the other hand, the cross-talk diminishes significantly, becoming smaller compared to the actual
solution. A possible explanation for this is inaccuracies of the parameters b1, b2 and am,ref (for
m = 1, 2, 3) retrieved in the calibration procedure. Eqs. (21) gives the relationship between the
radius of the circle arc fitted and the modulus of the variables amk. Hence, inaccuracies in the
fitting lead to inaccuracies of variables amk and bk. As a result, the modulus of complex variables
must change to keep the equality in Eqs. (24). Moreover, with the presence of some noise level,
circle centres obtained from the fitting can also be inaccurate, resulting in |zm | ≠ 1 for m = 1, 2, 3.

In order to improve the current solution, the following optimization procedure has been
implemented:

Minimize Fopt(∆b1,∆b2, Gv1, Gv2, Gv3,∆v̂1,∆v̂2,∆v̂3,∆a3) =

2∑︂
i=0

wti

∫
topt,i

∑︂
m

|︁|︁|︁|︁− (︃
gvm

V̂m(t)
am,3

+ ∆Vm

)︃
+ (b1 + ∆b1) exp [im argz1(t)]+

(b2 + ∆b2) exp [im argz2(t)] + exp [im argz3(t)]
|︁|︁|︁|︁,

(33)

where wt1 = 1 and wt2 = 25 are the weights of the intervals considered in the optimization
procedure: 0<topt,1<6s and 62s<topt,2<72s. The complex exponentials in Eq. (33) impose
the condition |z1 | = · · · = |zM | = 1, according to Eq. (10). Parameters ∆b1,∆b2, gv1, gv1, gv3,
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Fig. 6. (a)-(d) Zoomed resonance wavelengths obtained for sensor 3. The thermal
background, shown in the inset of Fig. 5(a), has been subtracted for a better visualization.
(a) Compares the optimized and symmetric solution; (b) compares the spurious and original
solution; (c) compares the original and the optimized solution and (d) compares the optimized
solution and one of the spurious solutions of the optimized system of equations. (e) Amplitude
of the resonance wavelength modulation as a function of the strain. (f) Zoom of the amplitude
of the resonance wavelength modulation as a function of the strain. Stepper motor travelling
distances can be read from the upper x-axis of Figs. (e) and (f).

compensate for inaccuracies in the radius of the circle arcs, while parameters ∆v̂1, ∆v̂2 and ∆v̂3
compensate for voltage offsets introduced by inaccuracies in the centers of the circle arcs. During
the optimization, the values of the complex variables z1(t), z1(t) and z3(t) depend on the reference
chosen. The first optimization interval uses the current solution from Method 1 as a reference
in order to avoid an increase in the cross talk for large stresses applied to FBG 3. The second
interval, in contrast, as reference, uses the spurious solution found in Method 1 whose resonance
modulation for sensor 3 is shown in Figs. 6(b). The results of the optimization are shown in
Table 3.

Table 3. Parameters obtained from the optimization

∆b1 ∆b2 Gv1 Gv2

3.327 10−3 -11.14 10−3 0.983 1.004

Gv3 ∆v1 (µV) ∆v2 (µV) ∆v3 (µV)

0.974 (-2.848 + 8.991 i) (15.61 -22.52 i) (72.49 + 28.10 i)
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After the optimization, the parameters of the equations have been adjusted using the corrections
shown in Table 3. The algebraic system of Eqs. (24) has been solved using Methods 1 and 2
and the resonance wavelength modulations δopt.

1 (t) and δopt.
2 (t) and δopt.

3 (t) have been computed
according to the procedure described in Section 3.2. A meaningful overall reduction of the
cross-talk can be observed, especially for small stresses applied to FBG3, as seen in Figs. 6(a)
and (c). The figures show a maximum cross-talk of approx. 100 fm observed for δopt

3 (t) , which
is around three times smaller than for δ3(t). For the other time instants, the values of δopt.1

m (t) and
δm(t) (for m = 1, 2, 3) are very similar. Some differences can be observed in sensors 1 and 2 for
t<10s, as shown in Figs. 5(d) and (e). The maximum cross-talk increases from 1.5 pm, observed
in resonance wavelengths obtained from the original system of equations, to about 2.0 pm for the
optimized resonance wavelength modulations. Cross-talk also affects the moduli of complex
variables. Fig. 4(d) compares the function ∆(t), calculated for the solutions of the optimized and
of the original system of equations. For t<20 s, the complex variable moduli of the optimized
solution feature a larger deviation from unity compared to the solution of the original system
of equations. For t>60 s, however, function ∆(t) is around four times smaller for the optimized
solution.

Although the optimization significantly reduces cross-talk, some cross-talk remains present.
Fig. 6(d) compares the resonance wavelength modulation obtained from one of the spurious
solutions from the optimised system of equations and function δopt

3 (t). The spurious solution
shown in Fig. 6(d) is very similar to the one used as a reference in the optimization procedure:
for small stresses of FBG3, the cross-talk is slightly smaller than for the one observed in δopt

3 (t).
In Eq. (9), it has been assumed that the lineshapes sk(λ) are identical except by a constant which
specifies the peak height of the spectrum. However, this is not the case: the FWHM of s1(λ),
s2(λ) and s3(λ) are 100 pm, 125 pm, and 110 pm, respectively, making this assumption inaccurate.
This results in some cross-talk for either large or small stresses applied to the fibers. By increasing
the ratio of the optimization weights wt2/wt1 , it is possible to achieve a similar cross-talk level,
compared to the spurious solution, at the cost of a cross-talk enhancement for t<10 s.

Figs. 6(e) and (f) show the modulation amplitude of FBG 3 as a function of the strain in the
fiber. The modulation amplitude is defined as:

∆λ
(3)
j =

|︁|︁|︁|︁δdip
3,j − δmax

3,j

|︁|︁|︁|︁ , (34)

where δdip
3,j is the average of the function δ3(t) when the stepper motor rests at the position

x = ∆xj; δmax
3,j is the average of the function δ3(t) when the stepper motor is at the position x = 0,

immediately after the stepper motor has returned from x = ∆xj. The stress applied by the stepper
motor is always negative, keeping the function δ3(t) at a minimum while it rests at x = ∆xj. In
contrast, a local maximum is observed in function δ3(t) when the stepper motor returns to x = 0
and stresses the fiber. Since the stepper motor travels 3 times to x = ∆xj, as indicated in Fig. 3(b),
the three dips in function δ3(t)(for x = ∆xj) are considered in the j-th value of δdip

1,j . Similarly, the
data-points of three consecutive maxima of function δ3(t) are considered in the calculation of
δmax

1,j . The strain of the fiber is given by:

εj =
∆xj

ℓ3
, (35)

where ℓ3 = 1.65 m is the fiber length. The strain in the fiber is assumed to be uniform so that the
strain in the FBGs is given by Eq. (35). The angular coefficients of the curves shown in Fig. 6(e)
are 1.245 ± 0.001 pm/µϵ , 1.266 ± 0.002 pm/µϵ and 1.242 ±0.002 pm/µϵ for the symmetric,
original and optimized system of equations respectively. These values match the nominal slope
provided by the manufacturer (1.2 pm//µϵ) and are consistent with the values presented in our
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previous article. The minimum scattering of the data points around the straight line shown in
Figs. 6(e) and (f) occur for the optimized solution, which features the smallest cross-talk. The
minimum resonance amplitude experimentally resolved was 365 fm. The signal to noise ratio is
given by:

SNR = 20 log10
R
σ

, (36)

where σ is the noise standard deviation of V̂1(t) and R = 283 mV is the radius of sensor 3 traced
in the Lissajous curve

(︂
ℜV̂1(t),ℑV̂1(t)

)︂
shown in Fig. 4 (b). The SNR is 58 dB.

Limitations of FT interrogator can be enumerated as:

• Cross-talk caused by errors during calibration. This effect has been mitigated by the
optimization procedure.

• Cross-talk due to the assumption the FWHM of the sensors is identical. This is a minor
cause of the noise, which can also be compensated using Newton’s method. However, in
the context of interrogating high-speed sensors, integrated photonics allows the design of
sensors with very similar quality factors, so that this effect can be neglected.

• Noise. The primary source of noise is electronic.

The noise RMS value of the demodulated signal is given by:

σRMSE =

⌜⃓⃓⎷∑︁Npts.
i

(︂
δ

opt.
3 − δ

opt.
3

)︂2

Npts.
, (37)

Npts. is the number of data points and δopt.
3 is the average value of δopt.

3 for the stepper motor is at
rest. Thus, σRMSE is the standard deviation of the noise and its value is 65 fm.

5.3. Comparison with other interrogators

Results presented in Sections 5.1 and 5.2 have been obtained after applying a low pass filter
to the complex voltages V̂1(t), V̂2(t) and V̂3(t). Indeed, effects such as the signals’ cross-talk
and the optimization performed in Section 5.2 are only visible for a reduced noise. Hence, the
bandwidth has been limited. To properly compare the FT interrogator with others available in the
literature, the algebraic systems of equations have been solved without applying any filter to the
input complex voltages. In this section, we use the notation δ3(t) = δopt.

3 (t), as the analysis has
been done using the optimized parameters (see Table 3). Fig. 7(a) shows δ3(t) as a function of
time: the SNR reduces to about 42 dB, while the bandwidth increases to about 1 kHz (Nyquist
frequency is 5 kHz, but electronic PCBs provide a nearly flat response up to 1 kHz). For a
moderate values of SNR = 40 dB, FT-interrogator is limited by the noise. The σRMSE increases
to 218 fm, giving a 3 σRMSE = 654 fm. The minimum resonance wavelength resolved is about
700 fm, as shown in the inset of Fig. 7(a).

Fig. 6 shows the power spectral density (PSD) of δ3(t). The multiple peaks, shown in the
range f<100 Hz, originate from the fact that the applied stress to FBG3 consists of an array of
trapezoidal signals (see Fig. 3(b)) with different amplitudes, causing multiple harmonics to be
present in the PSD of δ3(t). The PSD also shows high peaks at multiples of the frequency fel. =50
Hz, corresponding to the harmonics of the electric signal (50 Hz in Europe). They represent a
major contribution to the noise: filtering these frequencies reduces σRMSE to 140 fm (112 nε, in
units of strain) and 3 σRMSE to 420 fm (338 nε, in units of strain). PSD reaches its noise floor at
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Fig. 7. (a) Demodulated δ3(t) for no applied low pass filter. (b) Power spectral density of
δ3(t).

approximately 300 Hz, and its value is N2
0 = 4.23fm2/Hz and N0 = 2.05fm/

√
Hz, where N0 is the

noise amplitude spectral density. The dynamic strain resolution is given by:

S0 = N0

(︃
d∆λ
dε

)︃−1
, (38)

where d∆λ/dε = 1.242 pm/µε is the slope of the curve wavelength shift per strain shown in
Fig. 6(e). The dynamic strain is given by S0 = 1.66 nε/

√
Hz.

Table 4 compares the performance of FT spectrometer with other common interrogation
methods described in the literature. Different authors characterize the interrogator limit of
detection(LOD) using different parameters. These parameters, such as the minimum resonance
wavelength demodulated and the noise rms value, depend on the SNR and the bandwidth at
which measurements have been taken. Unfortunately, this information is not available for all the
references listed in Table 4. Thus, the table gives only an idea of the performance of the various
interrogation methods but is sufficient to demonstrate the high resolution of the FT-interrogator
compared to other interrogators.

Tosi et al. [43,44] use Karhunen Loeve Transform(KLT) algorithm to interrogate an array
of FBG sensors. The noise RMS of the FT spectrometer is 218 fm, to be compared with 30
fm, reported in [43] and 4.9 fm in [44]. Tosi et. al[43,44] applies the KLT algorithm using
commercial spectrometers, whose sampling frequencies are usually limited up to kHz range.
The design of broadband, high-resolution integrated and high-speed spectrometers, although
possible, is challenging. In terms of computational complexity, KLT requires the eigenvalue
evaluation of a large matrix: matrices should be larger than 30×30 (typically 50×50) for about
10 FBG sensors [44]. The algebraic approach for the FT interrogator, on the other hand, requires
evaluating roots of polynomial, which is equivalent to finding eigenvalues of M×M matrix, for M
sensors. Efficient eigenvalue algorithms are available to compute roots of polynomials given the
sparsity of the companion matrix [52]. For non-symmetric systems, corrections using Newton’s
method are also required. Alternatively, it is possible to implement the approach of [38], which
consists of solving an M×M linear system + computing the roots of an M order polynomial.
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Table 4. Limit of detection of the FT Interrogator compared to other common interrogation
methods. Focus is given to integrated interrogators, but some fiber interrogators are also

presented. MRW is the minimum resonance wavelength experimentally resolved.

Author/Reference Interrogation method Limit of Detection

This work Fourier Transform interrogator, algebraic
formulation

σRMSE = 218 fm, S0 = 1.66 nε/
√

Hz,
MRW= 700 fm

D. Tosi[43] Spectrometer, KLT σRMSE = 0.003 C σRMSE ∼30 fm

D. Tosi[44] Spectrometer, KLT σRMSE = 4.9 fm

Pustakhod et. el [45] Integrated Spectrometer MRW = 320 fm

Li et. al [46] Integrated Spectrometer MRW = 1 pm

Guo et. al [47] Integrated Spectrometer MRW < 1 pm

Orr et. al.[11] MZI + Spectrometer + Optical Switch S0 = 10 nε/
√

Hz

Perry et. al.[12] MZI + Spectrometer + Optical Switch S0 = 10 nε/
√

Hz

Merlin et. al. [48] MZI, active modulation + Integrated
spectrometer

S0 = 4.56 nε/
√

Hz

Merlin et. al. [49] MZI, active modulation + External
spectrometer

S0 = 72.3 nε/
√

Hz

He et. al [50] Tunneable laser εmin < 10 nε

I4g FAZ Optics 11 [51] Tunneable laser S0< 0.83 nε/
√

Hz@ 1kHz

Marin et. al. [48,49] interrogates FBG sensors using an integrated MZI and an AWG
spectrometer. The method offers high strain resolution (4.56 nε/

√
Hz) and could be applied to

fast sensors. The modulator employed in the design, however, is thermal-based, whose time
constant is 7 µs[48], limiting the sensors’ speed. A redesign of the chip using faster modulators
would extend the interrogation method for higher speeds sensors. Refs. [11,12] use a similar
approach (using a passive MZI instead). A spectrometer separates the spectrum from the sensors
and an optical switch selects one of the channels to be interrogated and guides it to an MZI.
The noise floor reported is S0 = 10 nε/

√
Hz. The demodulation approach of MZI+spectrometer

[11,12,48,49] requires the alignment of the wavelength of the center of the sensor’s spectrum
of one of the spectrometer channels. The FT interrogator’s key benefit is the flexibility, being
tolerant to variations in the resonance wavelength of the sensors.

The interrogators based on integrated spectrometers proposed by Pustakhod et. al [45] and
others [46,47] use a different demodulation strategy compared to the demodulation methods
described by D. Tosi in [53]. Although the spectral resolution of these integrated spectrometers
is much limited (a few nm), the minimum value of resonance wavelength obtained is about 320
fm in [45], in the same order of magnitude as the one presented in this work (700 fm, for no low
pass filter applied). The approach is suitable for demodulating high-speed sensors and provides a
high interrogation resolution. It consists of placing the sensor’s resonance wavelengths close
to the AWG channels’ border, where the lineshape of the AWG channels can be linearized. As
previously explained, this is an issue for integrated sensors, given the fact that the resonance
wavelengths cannot be predicted during the sensor design.

High interrogation resolution is achieved for interrogators based on tunnelable lasers. He
et. al [50] reports a minimum strain of 10 nε, to be compared with 868 nε (for no digital filter
applied) obtained for the FT interrogator. The dynamic strain resolution of I4g FAZ/Optics11
[51] interrogator is better than 0.83 nε/

√
Hz for a wavelength sweep of 1 kHz, being able to

resolve wavelength modulations of about 20 pm. The method is also tolerant for variation of
resonance wavelength of sensors, but different strategies are needed for sensors operating in tens
of kHz to MHz range.
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In summary, the FT features a high interrogation resolution, being tolerant to variation of
resonance wavelength modulations. Integrated photodetectors can reach speeds as high as
hundreds of MHz, and InP platform provides RF photodetectors at speeds up to tens of GHz.
The electronic PCBs, which limit the bandwidth to approx. 1 kHz, can be redesigned for
interrogating sensors that operate at much higher frequencies. A higher optical power is needed
to interrogate a larger number of sensors, since the optical power is shared among the MZIs. Kita
et. al [20] handles this issue using integrated optical switches so that no power splitting occurs.
Nevertheless, switches introduce some additional loss: [20] estimates a loss of about 1.7± 0.4 dB
per switch(thermal-based). However, the digital structure of the FT-spectrometer proposed by
[20] meaningfully reduces the number of switches and the optical loss by them introduced: only
six 1×2 switches have been employed for producing 64 different OPDs. The total loss described
in [20] is approximately 9 dB. In comparison, the estimated power reduction for six stages of
1x2 power splitters, as employed in a standard 64 MZI FT-spectrometer, is 18 dB (assuming
power splitters lossless) . The digital FT-spectrometer with six switches and fabricated with a
3x3 MMI in the output would enable the demodulation of tens of sensors (in principle, up to 32
sensors using Method 3 and 64 sensors using Method 2). As an alternative, [54] demonstrates a
high-speed 1×16 switch in Inp Platform. The FT interrogator, designed using this optical switch,
could interrogate up to 16 sensors using Method 2 and 8 sensors using Method 3. The reported
loss is below 7dB and the switch response time is about 11 ns.

6. Conclusion

In this paper, we have interrogated an array of photonic sensors by solving an algebraic system of
equations derived from an integrated Fourier transform interrogator. It has been shown that the
modulus of the complex variables of the system of equations is theoretically one, while their
argument is proportional to the resonance wavelength of the sensors. The experiments confirmed
the theoretical prediction: the modulus of the complex variables deviates no more than 2.5%
from unity; moreover, the plot amplitude modulation, derived from the argument of the complex
variables, as a function of the strain, results in a straight line. The slope, for the optimal case, is
1.242 pm/µm in agreement with the results presented in our previous article and the specification
provided by the FBG manufacturer.

The coupled equations have been solved using two semi-analytical approaches. The first one
consists of solving the system of equations by computing the Gröbner basis of the polynomial
ideal using lexicographical monomial order. The retrieved system of equations has been solved
using a semi-analytical method since the polynomials’ degree is higher than 4. For three sensors,
six retrieved solutions have been obtained per time step where 5 of these are non-physical. The
spurious solutions have been used to improve the actual solution, reducing both the cross-talk
among the sensors and also the minimum amplitude modulation to 365 fm (for a bandwidth of
45 Hz). The dynamic strain resolution, obtained for no digital filter applied, is 1.66 nε/

√
Hz.

If the spectra of all photonic sensors are equal, the derived algebraic system of equations is
symmetric. The second approach exploits this symmetry. Then, the algebraic system can be
reduced to a single univariate polynomial whose roots give the solution of the algebraic system.
The results of the calibration procedure are that the coefficients b1 and b2 of the equation terms
deviate around 4% from unity, breaking the symmetry of the algebraic system. For that reason,
the solution of the symmetric system is taken as an initial guess and updated using Newton’s
method. Convergence has been achieved with 3 iterations. By processing with a GPU, it was
possible to solve a system of 1 026 000 equations in 9 ms. The processing time per equation is 9
ns, allowing for real time interrogation of high-speed sensors.

The FT interrogator is a promising candidate for interrogating arrays of integrated arrays
of photonic ultrasound sensors. If the lineshapes of the sensor spectra are the same, but they
have varying peak values, the algebraic system of equations can be solved using the approach
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described in [38]. That requires a redesigning of the chip so that the attenuation caused by the
finite coherence length of the sensors can be neglected in larger MZIs.

Appendix : mathematical analysis of the proposition of Section 3.2

In this Section, the mathematical details of the Preposition in Section 3.2 are presented. Although
some steps required for a formal mathematical proof are not shown, we present valid reasoning
for the Preposition’s items.

Proposition. Let (δ1(t),. . . , δM(t)) be the resonance wavelength modulation of M sensors,
encoded in the argument of the complex variables z1(t), z2(t), . . . , zM(t) defined by Eq. (10). The
spectrum of the sensors is finite and their lineshapes are all equal, except each having a slightly
different peak height. The combined spectrum of the sensors interfere in M interferometers
according to the FT interrogator description presented in Section 2. Eq. (11), given by:∑︂

k
bkzm

k = V̂m/am,ref , (39)

satisfy the following properties:

1. The polynomials in Eq. (39) intersect in M! points;

2. If Zsol = (z1, . . . , zM) is a solution of Eq. (39) and the coefficients b1, . . . , bM are all
equal, the other solutions are given by all possible permutations of the coordinates of Zsol.
Moreover, |zm | = 1, for m = 1, . . . , M;

3. If the coefficients b1 ≠ b2 ≠ · · · ≠ bM are all different, there is only one solution whose
complex variables satisfy |z1 | = · · · = |zM | = 1. For all the other solutions, there is at least
one complex variable whose modulus is different from one.

Assumptions

• If the coefficients b1 ≠ b2 ≠ · · · ≠ bM are all different, their values are assumed to be
sufficiently close to one so that the solutions can be obtained by linear correction of
Eq. (39), where the starting point is the solution for the system where b1 = · · · = bM = 1

• For any value of t, the arguments of complex variables are sufficiently different from each
other so that matrix QH , defined by Eq. (56) is positive-definite and the jacobian of Eq. (39)
is well-conditioned.

• The interrogator is noiseless.

Mathematical analysis/justification

Item (1). It can be shown that the solution of Eq. (39) always exits and the number of solutions is
finite. Since polynomials in Eq. (39) intersect in a finite number of points, Bezout’s theorem for
M variables [26,27] states that the maximum number of solutions is given by the product of the
degrees of the polynomial equations. Hence, for Eqs. (39), the maximum number of solutions is
given by M!. If the coefficients b1, . . . , bM = 1 the polynomial in the left-hand side of Eqs. (39)
is said to be symmetric: any transformation given by

zk → zj

zj → zk
(40)

for (j ≠ k) does not change the left-hand side of Eqs. (39). Therefore if Zsol = (z1, . . . , zM)

is a solution, any permutations of Zsol coordinates also satisfies Eqs. (39). Since there exists
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M! permutations of (z1, . . . , zM), there are M! solutions. If the coefficients b1, . . . , bm are
slightly different from one, each solution of the symmetric system is corrected using a linear
approximation of Eq. (39) and the number of solutions remains the same.

Item (2). The algebraic system (Eqs. (11)) is equivalent to Eqs. (8), given by:

V̂m(t)
aref ,m

=

K∑︂
k=1

∫ ∞

−∞
sk(λ

′) exp
(︂
i2π m

F1
λ′
)︂

dλ′∫ ∞

−∞
sref (λ′) exp

(︂
i2π m

F1
λ′
)︂

dλ′
exp

[︃
i2π

m
F1

(︁
λ0k − λ0ref + δk(t)

)︁ ]︃
. (41)

The complex variables have been defined according to Eq. (10), are here repeated:

zk(t) = exp
[︃
i
2π
F1

(︁
λ0k − λ0ref + δk(t)

)︁ ]︃
, (42)

where k = 1, . . . , M. Replacing the definition of Eq. (42) into Eq. (41), we see that (z1, . . . , zM)

satisfies Eqs. (11) and |z1(t)| = · · · = |zM(t)| = 1. Hence, at least one of the solutions of
Eqs. (11) has all its variables with unitary modulus. From Item (1), it is known that there
are, in total, M! solutions, each given by the M! possible permutations of the coordinates of
Zsol = (z1(t), . . . , zM(t)), where z1(t), . . . , zM(t) are defined in Eq. (42).

Item (3). Let (z1, . . . , zM) and (w1, . . . , wM) be two of the solutions of Eq. (39). Eq. (39) can
be rewritten according to:

V̂m(t) =
M∑︂

k=1
bkzm

k =

M∑︂
k=1

bkwm
k . (43)

As explained in Item (3), one of the solutions of Eq. (39) has all the complex variables with
unitary modulus. Let |z1 | = · · · = |zM | = 1. We want to show that the modulus of at least one of
complex variables in the solution (w1, . . . , wM) is different from one. Although the permutations
of (z1, . . . , zM) no longer satisfy Eqs. (11), since b1 ≅ · · · ≅ bM ≅ 1, the solution (w1, . . . , wM) is
in the neighbourhood of one of the permutations of complex variables (z1, . . . , zM). Let R(k) be an
operator that rearrange the summation indexes according to the permutation of complex variables.
For instance, if solution (z1, z2, . . . , zM) is in the solution (w2, w1, . . . , wM) neighbourhood, then
(R(1), R(2), . . . , R(M)) = (2, 1, . . . , M). By manipulating Eq. (43), we obtain:

M∑︂
k=1

[︂
bR[k]zm

R[k] − bkwm
k

]︂
=

M∑︂
k=1

zm
R[k]

[︄
bR[k] − bk

wm
k

zm
R[k]

]︄
=

M∑︂
k=1

eimφR[k]
[︂
bR[k] − bk

(︂
|wk |

m eim(θk−φR[k])
)︂]︂
= 0.

(44)

In the last step, we wrote the complex variables as zk = exp(iϕk) and wk = |wk | exp(iθk) (for
k = 1, . . . , M), where (ϕ1, . . . , ϕM) and (θ1, . . . , θM) are the arguments of complex variables
(z1, . . . , zM) and (w1, . . . , wM), respectively. Let

∆Ak ≡ |wk | − |zR[k] | = |wk | − 1
∆θk ≡ θk − ϕR[k],

(45)

for k = 1, . . . , M. ∆Ak and ∆θk represents the corrections of the modulus and phase of complex
variable wk, respectively. Given that coefficients b1 ≅ · · · ≅ bM ≅ 1, |∆Ak |<<1 and ∆θk ≅ 0. As
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a result
exp (im∆θk) = 1 + im∆θk + O(∆θ2

k )

|wk |
m = (1 + ∆Ak)

m = 1 + m∆Ak + O(A2
k),

(46)

according to Taylor series expansion. By substituting Eqs. (46) into Eq. (44) and neglecting the
second order terms, we obtain:

M∑︂
k=1

eimφR[k]
[︁
(bR[k] − bk) − mbk (∆Ak + i∆θk)

]︁
= 0

1
√

M

M∑︂
k=1

eimφR[k] (bkm∆ζk) =
1

√
M

M∑︂
k=1

eimφR[k]
(︁
bR[k] − bk

)︁
,

(47)

where ∆ζk = ∆Ak + i∆θk. Both sides of Eq. (47) have been multiplied by the factor 1/
√

M so that
the columns of matrix V, defined later in Eq. (51), are normalized. Eq. (47) represents a linear
system of equations, which can be written using matrices, according to:

CVB∆ζ = V∆b (48)

where B and C are diagonal matrices:

C = diag(1, 2, . . . , M),
B = diag(b1, b2, . . . , bM);

(49)

∆b and ∆ζ are column vectors:

∆b = [bR[1] − b1, . . . , bR[M] − bM]T

∆ζ = [∆ζ1,∆ζ2, . . . ,∆ζM]T
(50)

and V is the modified Vandemonde matrix:

V =
1

√
M

⎛⎜⎜⎜⎜⎜⎜⎜⎝

zR(1) zR(2) · · · zR(M)

z2
R(1) z2

R(2) · · · z2
R(M)

· · ·

zM
R(1) zM

R(2) · · · zM
R(M)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (51)

where the factor 1√
M

normalizes the columns of matrix V. The determinants of matrices B and C
are real and non-zero, implying that B−1 and C−1 exist. Matrix V determinant can be shown to
be zero only, and if only, the modulus of one of the complex variables in the solution (z1, . . . , zM)

is zero or if two or more complex variables are equal [55]. Since the arguments ϕ1, . . . , ϕM are
by assumption different from each other and |z1 | = · · · = |zM | = 1 ≠ 0, the determinant of V is
non-zero. Hence, the linear system has always a solution for an arbitrary value of ∆b. Also, we
assumed that coefficients b1, . . . , bM are different from each other, implying that ∆b = 0 if only
no permutation of complex variables (z1, . . . , zM) is considered in Eq. (44). In this case, ∆ζ = 0
and solutions (w1, . . . , wM) = (z1, . . . , zM) are the same. The analysis below is done for the case
where ∆b ≠ 0. The linear system can be rewritten as:

B∆ζ = V−1C−1V∆b = Q∆b, (52)

where Q ≡ V−1C−1V. Matrices Q and C−1 are similar, and their eigenvalues are 1, 1/2, 1/3, . . . , 1/M.
The columns of the matrix V−1 give eigenvectors of matrix Q.
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The goal is to show that at least one of the elements of the vector ℜ{∆ζ } = ∆A is non-zero,
causing the modulus of one of the complex variables (w1, . . . , wM) to be different from one. By
multiplying both sides of Eq. (52) by ∆bT , we obtain:

∆bTB∆ζ = ∆bTQ∆b (53)

We start by analysing the case where the arguments of the complex variables (z1, . . . , zM)

are equally distributed along the unit circle, i. e, the complex variables are given by zk =

exp(i2πk/M + iϕ0) (for k = 0, .., M − 1 and ϕ0 ∈ [0, 2π)). For this case, it can be shown that
VH = V−1, so that Matrix Q becomes Hermitian. Eigenvalues of Q are given by 1, 1/2, . . . , 1/M,
i. e., they are real and positive. Therefore, Q is definite positive, making the right-hand side of
Eq. (53) real and positive for any non-zero vector ∆b. As a result, the real and imaginary parts of
the left side of Eq. (53) are given by:

ℑ{∆bTB∆ζ } = 0

ℜ{∆bTB∆ζ } = ∆bTBℜ{∆ζ } =
∑︂

k
∆bkbkℜ{∆ζk}>0. (54)

Hence, at least one of the vector ℜ{∆ζ } elements must be different from zero, so that the sum
in Eq. (54) is real and positive. As a result, the modulus of at least one of the complex variables
in the solutin (w1, . . . , wM) must be different from one.

The analysis made for the case where zk = exp(i2πk/M + iϕ0) (for k = 0, .., M − 1 and
ϕ0 ∈ [0, 2π)) can be extended. As long as ϕ1 ≠ · · · ≠ ϕM , the expression ℜ{∆bTB∆ζ } can be
shown to be a continuous function of the arguments ϕ1, . . . , ϕM . For an arbitrary distribution of
the arguments ϕ1, . . . , ϕM (where ϕ1 ≠ · · · ≠ ϕM) along the unit circle, the real part of Eq. (53)
is given by:

ℜ
{︁
∆bTB∆ζ

}︁
= ℜ

{︁
∆bTQ∆b

}︁
= ∆bTQH∆b, (55)

where QH is the Hermitian component of matrix Q, given by:

QH =
1
2

[︃
V−1C−1V +

(︂
V−1C−1V

)︂H
]︃

. (56)

QH = Q for zk = exp(i2πk/M + iϕ0). Eigenvalues of QH are real since the matrix is Hermitian.
A = ℜ{∆ζ } is guaranteed to be non-zero and positive if QH is positive definite.

Fig. 8. Minimum eigenvalue of matrix QH as a function of distance among the arguments
(∆ϕ), defined in the inset.
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Although analytical expressions for eigenvalues of matrix QH are difficult to be obtained for
a larger number of sensors, eigenvalues of QH can be evaluated numerically. Fig. 8 shows the
minimum eigenvalue of matrix QH as a function of the relative phase distance of the arguments
(∆ϕ), as indicated in the inset. As long as ∆ϕ is larger than ∆ϕlim =52.02o, QH is definite positive,
and ∆A is non-zero. For ∆ϕ smaller than ∆ϕlim, matrix QH is indefinite, and ∆bTQH∆b can be
either zero, positive or negative. However, even for ∆ϕ<52.02o no values of ∆b have been found
so that ∆A = 0. For ∆ϕ<∆ϕlim and in the unlikely situation when ∆A = 0, so that two or more
solutions cannot be distinguished, Method 2 described in the main text could be used to make
such distinction. A similar analysis can be performed for M>3 sensors.
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