
Practical Verification of the Reader Monad
Alex Haršáni

Supervisors: Jesper Cockx, Lucas Escot
EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1

Abstract

agda2hs is a tool that allows developers to write verified programs using Agda
and then translate these programs to Haskell while maintaining the verified proper-
ties. Previous research has shown that agda2hs can be used to produce a verified
implementation of a wide range of programs. However, monads that model effectful
computations were largely unexplored in the context of agda2hs. In this paper, we
investigate the Reader monad, which gives us a way to model the global state. As
monads are in practice commonly combined with other monads, we also investigate the
transformer ReaderT. This paper provides the implementation of Reader and ReaderT
in Agda, verifies its properties based on laws of type classes functor, applicative, and
monad, as well as monad transformer laws for ReaderT, and assesses whether agda2hs
produces their correct and useful translation.

1 Introduction
Agda [1] is a dependently typed programming language. Thanks to its type system, it can
also be used as a proof assistant so that it can formally verify the properties of the programs.
Formal verification gives us much higher confidence that the program is correct. However,
Agda is not widely used in practice due to its high complexity and lack of useful libraries
and tools found in other languages.

To make use of its proving capabilities in the more popular functional language Haskell
[2], members of the Agda community are developing an open-source tool called agda2hs [3].
It makes it possible to write formally verified programs in Agda and then translate them
to Haskell. In order to do this, agda2hs identifies the common subset between Agda and
Haskell. All programs belonging to this subset can be translated accurately and correctly
with all the properties preserved [4].

Currently, agda2hs is expressive enough to translate a wide range of programs [4]. How-
ever, monads that model effectful computation have been largely unexplored, even though
they are commonly used by Haskell developers.

One of the monads that enable us to model effectful computation is the Reader [5] monad.
It allows us to use a global environment of read-only values. This is a very useful capability
that would otherwise be impossible because of Haskell’s purity. It gives us some significant
advantages. For example, this is useful if we have a large number of parameters that are not
needed directly in the function but are only there to be passed to another function. With
Reader, we can simplify the function definition by not using these unnecessary arguments
but rather taking them from the global state.

To combine the advantages of Reader with other monads, we use its transformer, Read-
erT. In general, monad transformers enable us to conveniently combine monads to improve
both usability and readability. Additionally, since monad transformers are monads as well,
we can combine them further with other monads.

Being an instance of functor, applicative, and monad, Reader and ReaderT have to
adhere to the laws of their respective type classes. Additionally, ReaderT needs to adhere
to the laws of monad transformers. These laws guarantee the correct behavior of their
implementations; that is why it is essential to be able to verify them.

This research aims to re-implement the Reader and its transformer in Agda, verify pre-
viously mentioned laws, and investigate whether agda2hs can produce a verified implemen-
tation in Haskell that is both useful and correct. More specifically, this research answers the
following question:

2

• Can we implement Reader and ReaderT in Agda using the language subset defined by
agda2hs? (Section 3)

• What are the properties that need to be satisfied by Reader and ReaderT and how do
we prove these properties? (Section 4)

• Does agda2hs provide correct and useful translation of Reader and ReaderT to
Haskell? (Section 5.1)

This paper is structured in the following way. Section 2 describes all the concepts that
are necessary to understand for later sections. Next, section 3 gives more detail about the
implementation process. In section 4, we explore the properties and show how they are
proved. Section 5 discusses the results and limitations of the translation process to Haskell
on a concrete demo example and the limitations encountered. Section 6 talks about aspects
of responsible research and how they relate to this paper. Furthermore, section 7 shows
related work. Finally, section 8 concludes the paper.

2 Preliminaries
Before we investigate whether agda2hs can produce a verified implementation of Reader
and ReaderT, we first need to look at some concepts to understand the following sections.
Firstly, as Reader and its transformer are instances of type classes functor, applicative,
and monad, we will give a brief description of these type classes and show some simple
examples of how they can be used. Then, we will inspect the Reader monad itself with its
corresponding functions. Finally, we will discuss the concept of the monad transformer and
why it is useful.

2.1 Functor, Applicative and Monad
Type classes give us a way to use polymorphism in Haskell [6]. They declare functions that
need to be implemented by its instances to define its behavior in the context of the type
class. For example, instances of type class Eq need to define when they are equal to each
other. In this subsection, we will take a look at type classes of functor, applicative, and
monad that are subjects of this research.

Functor

Functor [7] is a type class that requires its instances to define a function called fmap. The
function fmap f x applies function f to a wrapped value inside of functor x. As an example,
we can take a look at a well-known functor List. When evaluating fmap (even) [1, 2, 3],
fmap will apply function even to every element of the list, resulting in [False, True, False].
The functor is defined as:

class Functor f where

fmap :: (a -> b) -> f a -> f b

3

Applicative

Applicative [8] is a type class that is a subclass of functor and requires its instances to
define two functions, called pure and sequential operator(<*>). Function pure wraps the
value according to our applicative instance, while <*> applies wrapped function to a given
wrapped value. As an example, let us again take a look at List. Evaluating pure x results
in a list with a single element [x]. Perhaps more interestingly, evaluating pure (+) <*> [1,

2] <*> [3, 4] results in [4, 5, 5, 6]. In this case, + is wrapped in the list and applied to
the first list to form partially applied functions and then applied to the second list to get
final values. The applicative is defined as:

class Functor f => Applicative f where

pure :: a -> f a

<*> :: f (a -> b) -> f a -> f b

Monad

Monad [9] is a type class that is a subclass of Applicative and requires its instances to define
two functions, called return and bind operator(>>=). Function return works in the same
way as pure, that is wrapping value with the given monad instance. On the other hand,
function >>= unwraps the value from the monad and applies the value to the function that
returns the new value wrapped in the monad. Wadler shows many useful applications of
monads, such as error handling, exceptions, state, or output [10]. The monad is defined as:

class Applicative m => Monad m where

return :: a -> m a

>>= :: m a -> (a -> f b) -> f b

To demonstrate the usefulness of monads, we can look at the following example. Let us
take a look at a program that checks whether exam and project grades are both passing
and outputs the final combined grade. Without monads, we can write something like the
following example

checkGrade :: Double -> Maybe Double

checkGrade grade = if grade >= 5.8 then Just (grade) else Nothing

evaluateGrade :: Double -> Double -> Maybe Double

evaluateGrade exam project = case checkGrade exam of

Nothing -> Nothing

Just exam_grade -> case checkGrade project of

Nothing -> Nothing

Just project_grade ->

Just (0.2 * project_grade + 0.8 * exam_grade)

With monads, on the other hand, we can make the function evaluateGrade much more
understandable and readable. In the next example we use do notation which is just syntactic
sugar for previously mentioned monad functions [9].

4

evaluateGrade :: Double -> Double -> Maybe Double

evaluateGrade exam project = do

exam_grade <- checkGrade exam

project_grade <- checkGrade project

return (0.2 * project_grade + 0.8 * exam_grade)

2.2 Reader Monad
The Reader is a monad that makes it possible to use global, read-only variable [5]. More
precisely, Reader r a represents a computation on a global variable of type r with the result
of the computation of the type a. It is defined as the following:

newtype Reader r a = Reader (r -> a)

In order to make use of this monad, we define following functions:

-- Retrieves the global variable.

ask :: Reader r r

-- Applies the function r -> a to the global variable and retrieves it.

asks :: (r -> a) -> Reader r a

-- Runs the new Reader computation with modified the global variable.

-- It will not modify the existing global variable.

local :: (r -> r) -> Reader r a -> Reader r a

-- Runs the Reader computation and retrieves its result.

runReader :: Reader r a -> r -> a

As the previous definition may seem too abstract, we can take a look at the following
example. We define a function squareArea of type Reader that obviously calculates the area
of the square. However, instead of directly passing the parameter to this function, we use
function ask to retrieve it from the global environment.

squareArea :: Reader Int Int

squareArea = do

x <- ask

return (x * x)

2.3 Monad Transformer
Monad transformers give us a way to combine monads together [11]. They define a function
called lift, that enables us to use operations of the inner monad from the context of the
transformed monad. This paper looks specifically into the ReaderT transformer that can
combine the Reader with other monads. Generally, monad transformers are defined as:

class MonadTrans t where

lift :: (Monad m) => m a -> t m a

5

To give an example of the use of ReaderT, as well as demonstrate its usefulness, we can
take a look at the following example. This time we calculate the area of the circle. We use
ReaderT combined with IO monad, with pi as a global variable and r as an input from the
user.

circleArea :: ReaderT Double IO ()

circleArea = do

r <- lift $ getLine

pi <- ask

lift $ putStrLn (show (pi * (read r) * (read r)))

3 Implementation
The first step in our investigation of Reader and ReaderT is implementing them in Agda.
In this section, we will have a detailed look into how this was done, what problems were
encountered, and how they were solved. The complete implementation can be found in the
public repository on GitHub1.

3.1 Implementing Reader
The Reader is implemented in Agda as a record type, as shown in Figure 1. It has its
constructor MkReader and a field representing its computation. The implementation also
includes the Reader functions previously mentioned in the section 2.2. Finally, it defines
instances for type classes functor, applicative, monad, and their verified counterparts(verified
type classes will be described in section 4.2).

record Reader (r a : Set) : Set where

constructor MkReader

field

readerComputation : (r → a)

Figure 1: The definition of the Reader record type.

3.2 Implementing ReaderT
In order to implement the ReaderT, as well any other monad transformer, it was first
necessary to implement a type class called MonadTrans [11]. This type class defines the
lift function that wraps the given monad type in a transformer. In addition to this, we
have added two erased properties based on monad transformer laws. These force every
monad transformer instance to implement proofs for the respective laws. Since they are
marked with erasure, they do not translate to Haskell. Implementation can be seen on
Figure 2.

1https://github.com/AlexHarsani/monad-verification/releases/tag/paper

6

record MonadTrans (t : (Set → Set) → Set → Set) {{ @0 iT : ∀ {m}

-> {{Monad m}} -> Monad (t m)}} : Set₁ where

field

lift : {{Monad m}} -> {@0 a : Set} → m a → t m a

@0 first-law : {@0 a : Set} {{iM : Monad m}} → (x : a)

→ lift (return {{iM}} x) ≡ return {{iT}} x

@0 second-law : {a b : Set} → {{ iM : Monad m }}

→ (x : m a) → (f : a → (m a))

→ _>>=_ {{iT}} (lift x) ((lift ∘ f)) ≡ lift (x >>= f)

Figure 2: The definition of the type class MonadTrans.

Next, we define the ReaderT record type. Similarly to Reader, this record type defines con-
structor MkReaderT, as well as the field representing its computation. Additionally, we define
functor, applicative, and monad instances, their verified versions, as well as the MonadTrans
instance. The definition of Reader can be seen in Figure 3.

record ReaderT (r : Set) (m : Set -> Set) (a : Set) : Set where

constructor MkReaderT

field

readerTComputation : (r → m a)

Figure 3: The definition of the ReaderT record type.

4 Verification
The next step in our research is verifying the Reader and ReaderT. In this section, we will
explore the properties we need to prove, explain why it is important to prove them, discuss
the techniques to do this and finally show two examples of the proofs.

4.1 Properties
Type class laws are properties that should hold for all instances of the respective type class
to ensure their behavior is correct. While these laws are stated in the documentation of
Haskell [9, 11], they cannot be enforced by the language itself. In Agda, on the other hand,
we can enforce these laws thanks to Agda’s type system. Reader and ReaderT have to adhere
to laws of functor, applicative, and monad, being their respective instances. Additionally,
monad transformers define their own set of laws, which should hold for ReaderT. Therefore,
to make our implementation verified, we need to prove the following properties:

Functor Laws

1. Identity: fmap id == id

2. Composition: fmap (f . g) == fmap f . fmap g

Applicative Laws

1. Identity: (pure id) <*> x = x

7

2. Homomorphism: (pure f) <*> (pure x) == pure (f x)

3. Interchange: x <*> (pure y) == pure (_$ y) <*> x

4. Composition: (pure (.) <*> f <*> g) <*> x == x <*> (y <*> z)

Monad Laws

1. Left Identity: (return x) >>= f == (f x)

2. Right Identity: (x >>= return) == x

3. Associative: (x >>= f) >>= g == x >>= (\y -> ((f y) >>= g))

Monad Transformer Laws

1. lift . return == return

2. lift (x >>= f) == (lift x) >>= (lift . f)

4.2 Verified Type Classes
While type classes functor, applicative, and monad have already been implemented in
agda2hs before the start of this research project, their implementations did not verify
whether they adhere to the laws of their respective type class. For this reason, we have
implemented verified subclasses with functions representing the necessary proofs.

Using these type classes not only forces the developer to implement the proofs but also
makes it easier to implement them as they can see the type of proof they need to write. As
an example for future proofs, each of the verified type classes already implements proofs for
two commonly used instances Maybe and Either.

The verified type classes are implemented in Agda as record types, with the proof func-
tions as fields. Since the verified type class only makes sense in the context of Agda, there
is no need for them to be translated to Haskell. Figure 4 shows the VerifiedFunctor as an
example.

record VerifiedFunctor (f : Set → Set) {{@0 iF : Functor f}} : Set₁ where

field

@0 f-id-law : {a : Set} (x : f a) → fmap id x ≡ x

@0 f-composition-law : {A B C : Set} (g : B → C) → (h : A → B)

→ (x : f A) → fmap (g ∘ h) x ≡ (fmap g ∘ fmap h) x

Figure 4: The definition of the type class VerifiedFunctor, that formalizes functor laws.

4.3 Proofs
Proofs are done using a technique called equational reasoning. This technique works in a
similar way to solving math equations. We start with the given expression, apply functions
and simplify until we get the necessary answer. Hutton [12] shows how to use this technique
to reason about Haskell functions in Chapter 16 of the book Programming in Haskell. How-
ever, unlike in Haskell, we can actually write these proofs within the Agda language. To do

8

this, we use the following functions. These help us to reduce the expressions until we get
the needed result.

=⟨⟩_ : {A : Set} → (x : A) → {y z : A} → x ≡ y → y ≡ z → x ≡ z

x =⟨ p ⟩ q = trans p q

=⟨⟩ : {A : Set} → (x : A) → {y : A} → x ≡ y → x ≡ y

x =⟨⟩ q = x =⟨ refl ⟩ q

Let us first take a look at the first law of monad transformers. This law states that lifting
a monad results in a transformed monad. The proof for this law can be seen in Figure 5.

iMonadTrans .first-law y =

begin

lift (return y)

=⟨⟩ -- applying lift

MkReaderT (λ _ -> (return y))

=⟨⟩ -- applying return

MkReaderT (λ _ -> (pure y))

=⟨⟩ -- unapplying outer pure

pure {{iApplicativeT}} y

=⟨⟩ -- unapplying return

return {{iMonadT}} y

end

Figure 5: Proof for the first law of monad transformers.

As the next proof, we demonstrate that the id law holds for the ReaderT functor. This law
states that mapping functor with id function does not change it. However, in order for this
law to hold for ReaderT, it needs to hold for the inner monad as well. To prove this, we
need to postulate the axiom called functional extensionality. This axiom states that if two
functions are equal for every possible input value, they must be equal. We define this as the
following [13]:

postulate

functional_extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x)

→ f ≡ g

Using this axiom, we can construct the proof as seen in Figure 6. The rest of the proofs can
be found in the public repository.

9

iVerifiedFunctor .f-id-law (MkReaderT f) =

begin

fmap id (MkReaderT f)

=⟨⟩ -- applying fmap

(MkReaderT $ ((fmap id) ∘ f))

=⟨⟩ -- applying ∘

MkReaderT (λ x → ((fmap id (f x))))

=⟨ cong (MkReaderT $_) (functional_extensionality (λ x → f-id-law (f x))) ⟩

(MkReaderT (λ x → f x))

end

Figure 6: Proof for the id law of the functor that uses functional extensionality.

5 Results and Discussion
Finally, after implementing and verifying Reader and ReaderT, we inspect the results of our
research. In this section, we assess the usage of translated Reader and ReaderT and discuss
verification results and their limitations.

5.1 Implementation Results
Both Reader and ReaderT were successfully implemented in Agda using the subset defined
by agda2hs. In Figure 7, we have written a simple example in Haskell that imports and
uses the agda2hs generated verified ReaderT. In this demo, ReaderT is combined with the
IO monad. When the user runs the demo, they are prompted to type a password for the
vault. If the password is correct, they get the diamonds. Otherwise, the contents of the
vault will disappear, and they will get nothing. The complete runnable demo, along with
the translated Haskell code, can be found in the public repository.

However, while the Haskell translation works as expected, there are slight differences
caused by limitations of agda2hs and time constraints of this research:

• Newtype: In the original Haskell library, ReaderT is defined as newtype ReaderT r m

a. In agda2hs we cannot produce definitions that are newtype. Instead, we use record
types on Agda’s side that are then translated to data ReaderT r m a.

• MonadTrans Constraint: Newer versions of Haskell use a following quantified con-
straint in definition of MonadTrans class:
class (forall m. Monad m => Monad (t m)) => MonadTrans t where

While we have implemented this constraint in Adga, as can be seen in Figure 2, it was
not translated to Haskell.

• Reader as ReaderT : In the original library, Reader is implemented by using ReaderT
with Identity monad:
type Reader r = ReaderT r Identity

Using an Identity monad with ReaderT means that it will essentially become a simple
Reader. During this research, Reader was implemented earlier than ReaderT, so we
present it as a standalone version as was seen in Section 3.1.

10

import Control.MonadReader.ReaderT

import Control.MonadReader.MonadTrans

data Vault = Vault

{ password :: String

, content :: String

}

hide_vault_content :: Vault -> Vault

hide_vault_content (Vault p c) = (Vault p "nothing")

openVault :: ReaderT Vault IO ()

openVault = do

given_password <- lift $ getLine

actual_password <- asksT (password)

if (given_password /= actual_password)

then do

vault_content <- localT (hide_vault_content) (asksT (content))

lift $ putStrLn ("You get: " ++ vault_content)

else do

vault_content <- asksT (content)

lift $ putStrLn ("You get: " ++ vault_content)

main :: IO ()

main = runReaderT openVault (Vault "secretPassword" "diamonds")

Figure 7: Demo written in Haskell, that uses the generated verified ReaderT and Monad-
Trans.

• MonadReader class: The original library also includes a class called MonadReader,
which contains functions associated with Reader monad. In our implementation, these
functions are included under the definitions of Reader and ReaderT.

5.2 Verification Results
All the properties shown in Section 4.1 were successfully verified for Reader and ReaderT.
Proofs for type class laws for Reader were rather trivial. While they could have been
implemented using Agda’s function refl, we provide step-by-step proofs that are much
more understandable and can be useful as a template for implementing future, possibly
more complicated proofs. On the other hand, proofs for ReaderT required more work. As
ReaderT is only verified if its inner transformed monad is also verified, we had to postulate
functional extensionality, as was described in Section 4.3. Complete implementation of
proofs can be found in the public repository.

6 Responsible Research
Research integrity is essential for the trustworthiness of the science community. That is
why its values were the absolute priority during this research. This section will explore how

11

we follow these values in different aspects. All of the code produced during this research,
including the code presented in the figures, is available in the public repository on GitHub.
This repository also includes README file that describes the setup process so that it can be
run in the same conditions as during this research. The code is structured in an organized
way with the necessary documentation for easy understanding for everyone with knowledge
of Agda and Haskell. This is done in order to make the research more transparent and
reproducible. As an additional means to ensure integrity, all the implemented proofs include
step-by-step comments that indicate what actions were taken to get to the next step. Finally,
no further ethical issues were identified.

7 Related Work
7.1 hs-to-coq
hs-to-coq [14] is a tool for verification of Haskell programs similar to agda2hs. It translates
Haskell code into Coq, where it is then verified. In section 2.1 of ”Total Haskell is Reasonable
Coq,” the authors demonstrated the use of hs-to-coq in the verification of monad laws. To
verify the translated library, users of hs-to-coq have access to a type class MonadLaws that
formally defines the monad laws [15]. This is very similar to the approach we take in this
paper. In agda2hs, we formally define monad laws in a record type called VerifiedMonad,
as was described in Section 4.2.

7.2 Liquid Haskell
Unlike agda2hs and hs-to-coq, verification with Liquid Haskell is done directly in the
Haskell language. This is done by using refinement types. These are base Haskell types,
annotated with properties that should hold for them. In Liquid Haskell, verification of type
class laws of monad uses the concept of refinement reflection. With this approach, we use
the reflect keyword to strengthen the type of function we want to verify, then use it to
define the property, which we can then be applied in the proof [16].

8 Conclusions and Future Work
In this paper, we showed that we could produce verified implementation of monads Reader
and ReaderT using agda2hs. We implemented previously mentioned monads, along with
the type class MonadTrans that defines lift operation used by monad transformers. For
the purpose of verifying the laws of type classes functor, applicative, and monad, we have
implemented records with erased fields that declare the proofs for respective laws. We
then created Reader and ReaderT instances of these records, in which the proofs were
implemented. Similarly, the MonadTrans type class also includes erased fields for the proofs
of the laws of monad transformers. Finally, we have demonstrated the correctness of verified
Haskell code generated by agda2hs by using it in a demo.

However, there are still possible improvements and questions for future research. The
most notable improvement would be implementing MonadReader class that would give an
interface with all Reader functions, making the Reader more easily combinable with other
monad transformers. Another question that arose during this research is whether it is possi-
ble to produce Haskell code with quantified constraints, such as the one in the MonadTrans
type class.

12

References
[1] Agda Development Team, Agda 2.6.2.1 documentation, 2021.

[2] “Haskell language.” https://www.haskell.org.

[3] “agda2hs.” https://github.com/agda/agda2hs.

[4] S. Anand, D. Sabharwal, J. Chapman, O. Melkonian, U. Norell, L. Escot, and J. Cockx,
“Reasonable agda is correct haskell: Writing verified haskell using agda2hs.”.

[5] “Control.monad.reader.” https://hackage.haskell.org/package/mtl-2.3/docs/

Control-Monad-Reader.html. Accessed: 2022-06-19.

[6] P. Wadler and S. Blott, “How to make ad-hoc polymorphism less ad hoc,” in Proceed-
ings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 60–76, 1989.

[7] “Data.functor.” https://hackage.haskell.org/package/base-4.16.1.0/docs/

Data-Functor.html#t:Functor. Accessed: 2022-06-19.

[8] “Control.applicative.” https://hackage.haskell.org/package/base-4.16.1.0/docs/

Control-Applicative.html#t:Applicative. Accessed: 2022-06-19.

[9] “Control.monad.” https://hackage.haskell.org/package/base-4.16.1.0/docs/

Control-Monad.html. Accessed: 2022-06-19.

[10] P. Wadler, “Monads for functional programming,” in International School on Advanced
Functional Programming, pp. 24–52, Springer, 1995.

[11] “Control.monad.trans.class.” https://hackage.haskell.org/package/transformers-0.

6.0.4/docs/Control-Monad-Trans-Class.html. Accessed: 2022-06-19.

[12] G. Hutton, Programming in Haskell. Cambridge University Press, 2016.

[13] “Axiom.extensionality.propositional.” https://agda.github.io/agda-stdlib/Axiom.

Extensionality.Propositional.html. Accessed: 2022-06-19.

[14] “hs-to-coq.” https://github.com/plclub/hs-to-coq.

[15] A. Spector-Zabusky, J. Breitner, C. Rizkallah, and S. Weirich, “Total haskell is rea-
sonable coq,” in Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs, pp. 14–27, 2018.

[16] N. Vazou, Liquid Haskell: Haskell as a theorem prover. University of California, San
Diego, 2016.

13

https://www.haskell.org
https://github.com/agda/agda2hs
https://hackage.haskell.org/package/mtl-2.3/docs/Control-Monad-Reader.html
https://hackage.haskell.org/package/mtl-2.3/docs/Control-Monad-Reader.html
https://hackage.haskell.org/package/base-4.16.1.0/docs/Data-Functor.html#t:Functor
https://hackage.haskell.org/package/base-4.16.1.0/docs/Data-Functor.html#t:Functor
https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-Applicative.html#t:Applicative
https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-Applicative.html#t:Applicative
https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-Monad.html
https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-Monad.html
https://hackage.haskell.org/package/transformers-0.6.0.4/docs/Control-Monad-Trans-Class.html
https://hackage.haskell.org/package/transformers-0.6.0.4/docs/Control-Monad-Trans-Class.html
https://agda.github.io/agda-stdlib/Axiom.Extensionality.Propositional.html
https://agda.github.io/agda-stdlib/Axiom.Extensionality.Propositional.html
https://github.com/plclub/hs-to-coq

	Introduction
	Preliminaries
	Functor, Applicative and Monad
	Reader Monad
	Monad Transformer

	Implementation
	Implementing Reader
	Implementing ReaderT

	Verification
	Properties
	Verified Type Classes
	Proofs

	Results and Discussion
	Implementation Results
	Verification Results

	Responsible Research
	Related Work
	hs-to-coq
	Liquid Haskell

	Conclusions and Future Work

