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Abstract

Magnetometers are widely equipped in smartphones. They measure the direction and
the magnitude of the magnetic field of the environment. Since the measurements are
not transition data, there is no drift when estimating position and orientation using a
magnetometer. Furthermore, magnetic field localization using magnetometers requires
no extra devices set in the environment, and this indicates the cost of localization
using a magnetometer can be lower than other localization methods that need multiple
devices set in the localizing area. Therefore, magnetic field localization is an interesting
method for indoor localization. However, there exists a research gap in the algorithms
that have been applied to magnetic field localization. In the current research, the
Extended Kalman filter (EKF) and the Particle filter (PF) are applied to magnetic
field localization. The EKF is more efficient than the PF, but has low accuracy when
the distribution is multimodal. On the other hand, the PF is more computationally
costly compared to the EKF but is more robust to the multimodality. As a result, a
survey of the possible solutions to the current research gap was carried out. From this
survey, Gaussian sum filter (GSF) was found to be a promising candidate as the solution
to the research gap. To test the performance and assumptions of the GSF, the GSF
was applied to a fully simulated magnetic field localization system and a localization
system with the measurements obtained from a real-world magnetometer. The results
from these simulations show that the GSF is more suitable for multimodality than the
EKF. Besides, the computational cost of the GSF is found to be lower than the PF
while the GSF has an equivalent or even better accuracy than the PF.
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Preface

The idea of this project was established after the discussion with my daily supervisor
Frida Viset about the multimodality concern in magnetic field localization based on
her previous research. Taking this concern as a start of the research, a literature review
was carried out for a survey of possible solutions.
During the discussion with Frida and my supervisor dr. Manon Kok while building up
this survey, the idea and direction for the thesis project became clearer and eventually
resulted in the investigation of algorithms that can outperform the accuracy of the EKF
and the efficiency of the PF, which are algorithms that were employed in magnetic field
localization.
After the literature survey, the GSF was concluded to be a potential solution to the
research gap and was thus implemented into magnetic field localization for study.
The study started with extending the simulations published in [38] as my research
assignment. Besides comparing the results of the GSF to the previous works, several
trials were also conducted for the discussion of the properties of the GSF.
Following the work done in my research assignment, the simulations were later expanded
with real-world magnetometer measurements implemented to strengthen the discussion
made of the GSF, which were collected by Frida Viset, Gustaf Hendeby, and Ola
Johansson at Linkoping University.
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Chapter 1

Introduction

1-1 Background

Localization is a widely studied field in both outdoor and indoor environments. For
outdoor localization, Global navigation satellite system (GNSS) is one of the broadly
applied techniques [11]. Global positioning system (GPS), one of the two core con-
stellations of GNSS, is a USA-operated well-known positioning system that utilizes
satellites for positioning the target on the Earth. GNSS is widely applied for military
and commercial use. This system is applied to, for example, navigation, terrain aware-
ness warning systems, and timing [11]. For indoor localization, there are also various
applications for multiple purposes. For example, the location of the customers in a
building could be utilized to analyze where the customers are and allow themselves to
receive more suited advertisements and notifications according to their current standing
area [41]. Another example is the localization of the patients and workers in a hospital.
With the location information of the patients, it will allow the staff to reach them more
easily. Besides, emergency notifications can be more accurately sent to workers that
are in the range close to the event to avoid spamming all the workers in the building
with a large amount of irrelevant notifications [41]. Furthermore, there is an increase
in the use of automated machines with the implementation of smart manufacturing [4].
Therefore, the localization of machines in indoor manufacturing environments, such as
unmanned robots for transporting materials, is important for the management of the
manufacturing process. As a result, indoor localization is a research field with large
potential and a promising future.
Although the positioning system using GPS is well developed, it is not applicable to
indoor environments due to the existence of building walls that will block the radio
signal that the GPS relies on [5].
As a result, multiple indoor localization systems have been developed by researchers
over time as alternatives. For example, inertial measurement unit (IMU) [31], WiFi
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2 Introduction

[40, 3], and ZigBee [19] are some of the techniques applied to substitute the role of
GPS in indoor localization. Some localization systems require additional devices set in
the indoor environment, such as localization systems employing WiFi or ZigBee. The
additional equipment represents extra cost in such localization systems. Therefore, the
idea of utilizing only the sensors that are already equipped on smartphones raised the
interest of researchers [25, 31, 23].
The sensors that are often seen equipped in smartphones are accelerometers, gyro-
scopes, cameras, and magnetometers [22]. By integrating the measurements from the
accelerometers and gyroscopes, the position and orientation could be estimated. How-
ever, the accuracy could be low due to the drift caused by the integration of the existing
noise in the measurement signals and inevitable process noise while estimating [7, 16].
Fortunately, a magnetometer, which is also equipped in most smartphones, measures
the direction and magnitude of the magnetic field and can be used for position and
orientation estimation.
Since modern buildings contain metallic materials that are either building materials,
such as the steel framing system and the beams and columns, or equipped as furniture,
the anomalies of the magnetic field in a building could be utilized for localization[8].
Because the measurements of a magnetometer are not deviation values, such as accel-
eration and the deviation of orientation, the position and orientation estimation using
magnetometer measurements will not encounter drift. As a result, it can be applied
to calibrate the unwanted drift from the integration of the noises while calculating
the position and orientation from the measurements of accelerometers and gyroscopes.
Localizing using magnetometers is proved to be feasible in one-dimensional [10], two-
dimensional [30, 27], and three-dimensional indoor localization [37]. Localization using
magnetic field measurement is similar to terrain navigation, a magnetic map has to be
built beforehand by using, for instance, a reduced-rank Gaussian process [28]. With the
established map, the position and orientation can be estimated by comparing the mea-
surements from the magnetometer and the estimated position and orientation through
iterations over time.

1-2 Motivation

Currently, two algorithms have been applied to magnetic field localization for position
and orientation estimation, the Extended Kalman filter (EKF) [38] and the Particle
filter (PF) [30]. The research gap addressed in this thesis exists in the disadvantages
of these algorithms, multimodal distributions and computational cost.

1-2-1 Multimodal distribution

A multimodal distribution is a distribution that has to be described with multiple means
and corresponding variances or covariances. An example of a multimodal distribution
of 1-dimensional data is shown in Figure 1-1. As there exist three separate peaks,
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1-2 Motivation 3

it indicates that the distribution of this data should be described with at least three
means.

Figure 1-1: An 1-dimensional example of multimodal distribution

The measurement model of magnetic field localization could lead to multimodal distri-
butions. The derivation of the close form of the magnetic field localization measure-
ment model, given in Appendix A, shows that the resulting model is a function of the
multiplication of sinusoidal functions of positions. When the function is periodic, the
distribution of the input given the output of this function could be multimodal. This
happens especially when the distribution of the input value has a large covariance. The
reason for this phenomenon is shown with a simple numerical example applying the
weight update of the PF using prior sampling.
Suppose there is a system with no dynamic model and a measurement model

y = f(x) = sin(x), (1-1)

where y is the output of the function and x is the input of the function with covariance
σ2

x. Assume the received output is y = 0, the distribution p(y = 0|x) will be multimodal
with at least two peaks as shown by the blue bars in 1-2a. This is because the periodic
function has non-unique outputs. When the distribution of x is with small covariance
σx as shown by the orange bars in Figure 1-2a, the resulting update of the weights will
be kept as unimodal as shown by the yellow bars in Figure 1-2a as long as the covariance
of x is small. Therefore, the newly sampled particles depending on this situation will
still be in a Gaussian distribution.
However, when the covariance of the x is larger, with a value of 1 as shown in Figure
1-2b, the resulting distribution will not be that ideal. As shown in Figure 1-2b, the
large covariance reaches to larger region and makes the weight update result in a non-
Gaussian distribution, as shown by the yellow bars in Figure 1-2b. Moreover, if only
looking at a part of the non-Gaussian distribution shown in Figure 1-2b, it can be
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4 Introduction

seen as a distribution similar to a Gaussian distribution. Therefore, the non-Gaussian
distribution that exists in magnetic field localization can be assumed to be multimodal.

(a) p(x) = N (1.25π, 0.1) (b) p(x) = N (1.25π, 1)

Figure 1-2: The change of the probability through the function f(x) = sin(x) with different
covariance

1-2-2 The EKF and the PF for magnetic field localization

The EKF has been employed for magnetic field localization by Viset et al. [38] and
was proved to be accurate when the initial uncertainty is low. However, it is worth
noticing that, as often discussed [20, 14, 21, 34], the EKF is not an ideal algorithm for
systems that have multimodal distributions as it is heavily based on the assumption
that all distributions are unimodal Gaussian distributions. Therefore, when the initial
uncertainty is large enough to trigger the multimodal distributions, the EKF might fail
in position and orientation estimation.
On the other hand, Solin et al. localized pedestrians with the PF and magnetic terrain
as a PF is often used for terrain navigation[30]. The results revealed that the algorithm
was capable of providing localization results within the acceptable range of error in
distance. As the PF utilizes particles to describe the distributions, it is not limited to
certain types of distributions. However, the amount of particles in this estimator could
lead to high computational complexity.
Figure 1-3 is an example of simulated magnetic field localization where the PF is
capable of illustrating the distribution when it is multimodal but the EKF does not
have the estimation correctly describing such distribution. The results are from the
modified code that is based on previous research in magnetic field localization [38].
As shown in Figure 1-3, the distribution described by the particles of the PF shows
the multimodality when the initial error reaches 1. This shows the larger the initial
error is set in the simulation, the more possible the system shows multimodality. As
the EKF has larger root mean squared error (RMSE) when the initial error grows,
it is indicated that when the multimodality is more likely to happen the EKF might
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1-2 Motivation 5

have lower accuracy. Such a result reflects the concern that the EKF might fail in
estimating correctly when multimodal distributions exist. While the PF is suitable

Figure 1-3: The relationship between the initial error and the multimodality of the magnetic field
observed from a simulation result (the heat map is set with transparency for easier observation
of the estimations)

for the multimodality of the estimation using magnetic field localization, it is also
considered a high computational cost algorithm compared with the EKF (as shown
in Figure 1-4). This can be problematic when running such an algorithm on low-cost
devices, such as smartphones.

1-2-3 Research gap

To the best of the author’s knowledge, there is no research applying an algorithm that
is more suitable for multimodality but more efficient than the PF to magnetic field lo-
calization. As a result, in magnetic field localization, there exists a research gap in that
there is no algorithm that is suitable for multimodality but also less computationally
costly yet applied for position and orientation estimation.
Several algorithms were applied in other research for dealing with multimodality, such
as the Gaussian sum filter (GSF)[1], the Uniformly random design based Gaussian sum
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6 Introduction

Figure 1-4: Comparison of time duration at each experiment of the PF and the EKF in one run
in the simulation of magnetic field localization

filter (UGSF)[42], and the Unscented particle filter (UPF)[35]. These algorithms are all
based on the GSF. In the GSF, the Gaussian components of the GSF are updated using
the time and measurement updates adopted from the EKF parallelly. Since the GSF
does not assume the distribution of the state to be an unimodal Gaussian distribution
and the number of the Gaussian components MGSF needed in this algorithm is much
lower than the number of the particles of the PF, the GSF is a potential solution for
the research gap mentioned previously. As a result, the GSF is chosen as the algorithm
to be studied acting as the potential solution to the current research gap in this thesis
project.

1-3 Organization

In this thesis report, several preliminary knowledge from previous research will be
first introduced in Chapter 2. The notation for the position and orientation used in
magnetic field localization will be presented in Section 2-1. The models of magnetic
field localization will be explained in Section 2-2, and the algorithms that have been
applied to magnetic field localization will be shown in Section 2-3.
An introduction to the GSF, the considered potential solution to the research gap, will
be given in Chapter 3. In Section 3-1, the general form of the GSF will be introduced.
Later, a modified GSF for magnetic field localization will be shown with analytical
expression.
After the necessary preliminary knowledge and the introduction of the GSF are given,
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1-3 Organization 7

the settings and the simulation results of a completely simulated magnetic field local-
ization system with the GSF as the position and orientation estimator will be discussed
in Chapter 4. In this chapter, there were 3 simulations run with some settings varied.
At the beginning of this chapter, the settings kept constant in these 3 simulations will
be first shown in Section 4-1. Later on, the unique settings of each simulation will then
be explained separately with the discussion of the simulation results in Section 4-2. At
the end of this chapter, a conclusion for these simulations will be given in Section 4-3.
Following the introduction and the discussion of the purely simulated magnetic field
localization system with the GSF applied as an estimator, the simulations with the
GSF applied to the magnetic field localization system with real-world magnetometer
measurements will be introduced and discussed in Chapter 5. Different from Chapter
4, this chapter will start with an introduction of the parameters selected for building
the magnetic field map using the reduced-rank Gaussian process (GP). After this
section, the following sections are similar to Chapter 4, with the settings kept constant
through the simulations introduced in Section 5-2 and the simulation results discussed
in Section 5-3. At the end of this chapter is the conclusion for the simulations where
the measurements were from real-world magnetometers.
Finally, a conclusion and a discussion of the possible future work of this thesis project
will be given in Chapter 6.

Figure 1-5: The structure of the chapters in this thesis report
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Chapter 2

Preliminary knowledge of magnetic
field localization

A magnetic field localization is an indoor localization system with the measurements of
magnetometers, accelerometers, and gyroscopes as the input for the estimation of the
position and orientation. Before carrying out the estimation online, a magnetic field
map has to be estimated first, which is the offline mapping procedure marked with blue
outlines in Figure 2-1. The resulting estimated magnetic field map from this offline
mapping is a key element for the measurement model of the position and orientation
estimation.
The online position and orientation estimation will be carried out with the results of
the offline mapping and the online measurements. This online procedure is marked
with green outlines in Figure 2-1.

Figure 2-1: A flow chart of the magnetic field localization process using the reduced-rank
Gaussian process (GP)

In this chapter, the notation of the position and the orientation will be introduced
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10 Preliminary knowledge of magnetic field localization

in Section 2-1. Furthermore, the dynamic and measurement models that have been
implemented in magnetic field localization for position and orientation estimation will
be explained in Section 2-2. In this section, the learning of the map using a full-rank and
reduced-rank GP will be mentioned when presenting the measurement model. At the
end of this chapter, the algorithms, the Extended Kalman filter (EKF) and the Particle
filter (PF), that have been applied in previous studies of magnetic field localization as
position and orientation estimators will be introduced in Section 2-3.

2-1 Position and orientation

2-1-1 World frame and body frame

To introduce the notations for positions and orientations, it is worth noticing the dif-
ference between the world frame and a body frame. The body frame, represented as
“b”, rotates with the target object’s orientation and the origin of the body frame moves
with the object. The world frame, represented as “w”, will not change over time and is
the coordinate that we would like to navigate in [38]. An example of the relationship
between the world frame and the body frame is illustrated in Figure 2-2, where the
body frame moves from time t1 to t2 while the world frame stays at the same location.

Figure 2-2: An illustration of the world frame “w” and the body frame “b” at time t1 and t2

2-1-2 Position

To localize the target object using magnetometers, the estimation of position and ori-
entation is an important process of the algorithm. In this report, the position and
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2-1 Position and orientation 11

orientation are considered to be estimated in a three-dimensional space. To represent
the three-dimensional position, the notation

pw
t =

[
pw

x,t pw
y,t pw

z,t

]T
∈ R3, (2-1)

has been employed, where pw
t represents the position p at time t in the world frame

“w” and the elements in pw
t represent the scalar values that indicate the target object’s

position at each axis of the three-dimensional coordinates, X, Y , and Z.

2-1-3 Orientation

As introduced in Section 2-1-1, the body frame has been defined as the coordinate
that has its origin following the target object and the axes following the target ob-
ject’s rotation corresponding to its position. The orientation here has been defined
as the difference in angles between the body frame and the fixed world frame. Since
here only the rotation is considered, the length of the position vector in R3 will not
change after rotated with the orientation. Such a group of rotations has been defined
as the special orthogonal group SO(3). There exist multiple methods for the represen-
tation of orientation, such as rotation matrices, rotation vectors, Euler angles, and unit
quaternions[16]. Here, unit quaternions have been chosen as the representation for the
linearization point of the orientation since this research is based on previous research
[38] and [18], which also used unit quaternions for some of the orientation represen-
tation. Furthermore, rotation matrices will be used in the mathematical derivation in
the following chapters when discussing the models and algorithms. Below is a more
detailed definition of rotation matrices and unit quaternions.

• Rotation matrices
A rotation matrix, R, is a 3 × 3 matrix that can represent the orientation of a
point in a three-dimensional space [16]. Moreover, it has to be orthogonal, that
is RRT = I3, det R = 1, and R ∈ R3×3.
In this report, the rotation matrix representing the difference between the world
and a body frame will be denoted as Rwb

t . The upper notation “wb” means the
matrix can rotate a position in a body frame “b” to the world frame “w”, and the
lower notation t shows the time step since the body frame is time variant. For
instance, if pb

t is a position vector in a body frame at time t, then its equivalent
position vector in the world frame at time t will be

pw
t = Rwb

t pb
t . (2-2)

• Unit quaternions
Likewise, unit quaternions could also represent the orientation. A unit quaternion
is noted as

q =
[
q0 q1 q2 q3

]T
=
[
q0
qv

]
, (2-3)
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12 Preliminary knowledge of magnetic field localization

where q ∈ R4 and ||q||2 = 1 [16].
Unlike rotation matrices, the position coordinate transformation using unit quater-
nions is not simply a linear algebra multiplication. Instead, quaternion multipli-
cation is employed for the transformation, which is noted as ⊙. Given two vectors,
p =

[
p0 pv

]T
∈ R4 and q =

[
q0 qv

]T
∈ R4, the quaternion multiplication is as

p ⊙ q =
[

p0q0 − pv · qv

p0qv + q0pv + pv × qv

]
= pLq = qRp, (2-4)

where

pL ≜

[
p0 −pT

v

pv p0I3 + [pv×]

]
, qR ≜

[
q0 −qT

v

qv q0I3 − [pqv×]

]
, [qv×] ≜

 0 −qv,3 qv,2
qv,3 0 −qv,1

−qv,2 qv,1 0

 .

(2-5)

Similar to rotation matrices, the unit quaternion for the rotation from a body
frame to the world frame is denoted as qwb.

Linearization

The linearization of unit quaternions has been employed in the EKF and the
Gaussian sum filter (GSF) adjusted for magnetic field localization, the two al-
gorithms that will be introduced later. Since unit quaternions are SO(3), also
termed as matrix Lie Group, an exponential map from Lie algebra can be ap-
plied to an orientation deviation in R3 to represent the difference between two
orientations in a quaternion form. In other words,

qwb
t = expq(ηw

t

2 ) ⊙ q̃wb
t , (2-6)

where q̃wb
t is the linearization point, ηw

t is the vector in R3 representing the orien-
tation deviation in angle-axis representation, qwb

t is a unit quaternion representing

the true orientation, and expq(η) =
(

cos ||η||2
η

||η||2 sin ||η||2

)
[16].

2-2 Models of magnetic field localization

The models utilized for the simulations of magnetic field localization are based on the
ones introduced in [38]. In this section, the state will be first introduced. Then the
dynamic model and the measurement model that have been applied in [38] will be
explained.
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2-2-1 State

The state of this system is composed of the 3-dimensional position pw
t and the orienta-

tion qwb
t represented with a unit quaternion introduced in Section 2-1. The mathemat-

ical expression of the state is written as

xt =
[

pw
t

qwb
t

]
=



pw
x,t

pw
y,t

pw
z,t

qwb
0,t

qwb
1,t

qwb
2,t

qwb
3,t


∈ R7, (2-7)

where pw
t ∈ R3 is the 3-dimensional position in the world frame, and qwb

t is the unit
quaternion representing the orientation between the body frame “b” and the world
frame “w”[18, 38].

2-2-2 Dynamic model

The development of the system over time can be mathematically described by dynamic
models. When given the current states and the process noise, the future states can
be calculated using the dynamic model. Here the dynamic models for position and
orientation estimation that have been applied in [38] will be introduced sequentially in
the following content.

Position

The dynamics of the position estimation have been simply modeled as the accumulation
of the position change and the realization of a zero-mean Gaussian noise at each time
step. In other words, the dynamic model for position can be written as

pw
t+1 = pw

t + ∆pw
t + ew

p,t, ew
p,t ∼ N (0, Rp) (2-8)

where ∆pw
t is the difference of the position between time t and t + 1 and ew

p,t is the
zero-mean measurement noise with covariance matrix Rp [18, 38]. Notice that the
noise has been assumed to be a vector of variables with the same size of pw

t which are
uncorrelated, so the covariance Rp is commonly seen to be replaced with σ2

pI3.

Orientation

Referring to [6], a unit quaternion can be updated by the exponential map

qwb
t+1 = qwb

t ⊙ expq(∆qb
t ), (2-9)
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14 Preliminary knowledge of magnetic field localization

where ∆qb
t is the deviation of the unit quaternion of time step t and t+1. Now consider-

ing the measurement noise, ew
q,t ∼ N (0, Rq), that acts on the orientation measurement,

the dynamic model for the orientation update can be written as

qwb
t+1 = qwb

t ⊙ expq(∆qb
t ) ⊙ expq(ep,t) ∼= qwb

t ⊙ expq(∆qb
t + ep,t) (2-10)

[38], where the approximation expq(∆qb
t ) ⊙ expq(ep,t) ∼= expq(∆qb

t + ep,t) holds because
when two vectors, η and e, have Euclidean norm values as 1, the approximation

expq(η) ⊙ expq(e) (2-11a)

∼=
[
1
η

]
⊙
[
1
e

]
=
[
1
η

]L [1
e

]
=


1 − η1e1 − η2e2 − η3e3
η1 + e1 − η3e2 + η2e3
η2 + η3e1 + e2 − η1e3
η3 + η2e1 + η1e2 + e3

 ∼=


1

η1 + e1
η2 + e2
η3 + e3

 (2-11b)

∼= exp(η + e) (2-11c)

holds since the value of ηiej is small compared to other elements in the matrix for all
{i, j} ∈ {1, 2, 3}.

2-2-3 Measurement model

In magnetic field localization, the measurement model has been built with the position
and the orientation as the inputs and the measurement of the magnetometer as the
output. The model can be learned using a GP. In this localization method, the model
is based on the knowledge of Maxwell’s equations. In this section, a brief explanation
of how a model can be learned via GP regression will be given. First, the model with
the magnetic field map learned using a full-rank GP [39] will be introduced. Second,
the model with the full-rank GP replaced by a reduced-rank GP will be described.

Gaussian process (GP) regression

Gaussian process (GP) is a distribution with the mean and the covariance as functions
of the inputs, which are the train data xt and test data x⋆

t [26]. Suppose the function
f(xt) is the target to learn and there exists a zero-mean Gaussian noise et that makes
the output of this function yt noisy. The relationship of the output yt and the function
f(xt) can thus be written as a model

yt = f(xt) + et, et ∼ N (0, σ2
yI), (2-12)

where

f(xt) ∼ GP(µ(xt), κ(xt, x⋆
t )) (2-13)

, where xt is the training input and x⋆
t is the testing input. In magnetic field localization,

the mean function µ(xt) is assumed to be

µ(xt) = 0, (2-14)
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2-2 Models of magnetic field localization 15

and this will be applied in this thesis project.
In a GP regression, the distribution of the function f is learned given the input of test
data, the output and the input of the train data. That is, the distribution

p(f⋆|X, X⋆, Y ) = N (µ⋆, Σ⋆) (2-15)

will be learned, where the output of the train data Y =
[
y1 y2 ... yN

]T
, the in-

put of the train data X =
[
x1 x2 ... xN

]T
, the input of the test data X⋆ =[

x⋆
1 x⋆

2 ... x⋆
N

]T
, and the estimated output of the test data given the input of the

test data f⋆ =
[
f(x⋆

1) f(x⋆
2) ... f(x⋆

N⋆)
]T

.

This conditional distribution can be calculated by applying Eq. (C-6e). The joint
distribution can be achieved by Eq. (C-5b) and results in[

Y

f⋆
]

∼ N
(

0,

[
κ(X, X) + σ2

yI κ(X, X⋆)
κ(X⋆, X) κ(X⋆, X⋆)

])
, (2-16)

where

κ(X, X⋆) =


κ(x1, x⋆

1) . . . κ(x1, x⋆
N⋆)

... . . .
κ(xN , x⋆

1) . . . κ(xN , x⋆
N⋆)

 . (2-17)

The means and the covariances of the conditional distribution can then be calculated
using Eq. (C-6e), which can be written as

µ⋆ = κ(X, X⋆)T(κ(X, X) + σ2
yI)−1Y, (2-18a)

and

Σ⋆ = κ(X⋆, X⋆) − κ(X, X⋆)T(κ(X, X) + σ2
yI)−1κ(X, X⋆). (2-18b)

• Measurement model learned with the magnetic field map learned using
Full-rank GP regression[38]
By employing Maxwell’s equations and classical electromagnetism, the magnetic
field can be modeled with the gradient of a latent scalar potential field φ(pw

t ) ∈ R
since the measured signal from a magnetometer is the derivation of this potential
[18]. Because the measurements from a magnetometer are under body frame “b”,
a rotation matrix Rbw

t to rotate the gradient of the potential from the world frame
“w” to a body frame “b” is added. By introducing a Gaussian measurement noise
eb

m,t ∼ N (0, σ2
mI3), the mathematical expression for the model can be written as

yb
t = Rbw

t ∇pφ(pw
t ) + eb

m,t. (2-19)

For notation simplification, the position pw
t will be denoted as p in the following

discussion of this model.
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16 Preliminary knowledge of magnetic field localization

The potential φ(p) has been assumed to be a realization of a Gaussian process
prior

φ(p) ∼ GP(0, κlin(p, p′) + κSE(p, p′)) (2-20)

, where p is the train position and p′ is the test position. The linear kernel κlin(p, p′)
has been applied to remove the Earth’s magnetic field to make the mean equal to
0 and is defined as

κlin(p, p′) = σ2
linpTp′, (2-21)

where σlin is the magnitude hyperparameter. The squared exponential kernel
κSE(p, p′) is defined as

κSE(p, p′) = σ2
SE exp

(
− ||p−p′||22

2l2SE

)
, (2-22)

where σSE is the magnitude hyperparameter and lSE is the characteristic length-
scale hyperparameter.
As a result, the Gaussian process prior of the gradient of the potential φ(p) can
be written as

∇pφ(p) ∼ GP(0, σ2
linI3 + ∇p∇p′κSE(p, p′)). (2-23)

Comparing the measurement model shown in Eq. (2-19) and the model we want to
learn in a GP regression that is shown in Eq. (2-12), the conditional distribution
derived from Eq. (2-23) is the target of the GP regression. Therefore, it can be
used for the evaluation of the learned map. The use of this conditional distribution
is introduced in detail in Appendix B when evaluating the maps built using the
full-rank GP and the reduce-rank GP.

• Measurement model learned with the magnetic field map learned using
reduced-rank GP regression [38]
Due to the concern of the computational cost for implementing the above model
with computational complexity O(n3), the reduced-rank Gaussian process has
been introduced as an alternative for modeling the measurements [18]. With this
method, the measurement model can be rewritten as

yb
t = Rbw

t ∇pΦ(pw
t )m + eb

m,t, (2-24)

where the potential φ(p) is approximated with the set of basis functions Φ(p)
multiplying the weight vector m [38]. The set of basis functions Φ(p) is formed
by basis functions ϕi, ∀i ∈ {1, 2, ..., Nm}, which can be written as

Φ(p) = [pT ϕ1(p) ϕ2(p) ... ϕNm(p)]. (2-25)

The basis functions are the solutions to the eigendecomposition of the Laplace
operator under Dirichlet boundary conditions−∇2

pϕi(p) = λ2
i ϕi(p), p ∈ Ω,

ϕi(p) = 0, p ∈ δΩ
(2-26)
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2-2 Models of magnetic field localization 17

[18], and the close form of the solution can be written as

ϕi(p) =
3∏

d=1

√
2√

Lu,d − Ll,d
sin

(
πnj,d(pd−Ll,d)

Lu,d−Ll,d

)
, (2-27a)

and

λi =
3∑

d=1

(
πnj,d

L,d−Ll,d

)2
(2-27b)

[38]. The gradient of the set of basis functions is analytically derived in Appendix
A.
Since the gradient of the set of basis functions is deterministic with the position
given as the input, the distribution of ∇pΦ(pw

t )m depends only on the distribution
of the weight vector m. The distribution of the vector m is

m ∼ N (m̂, Λ), (2-28)

where m̂ is the estimated mean and Λ is the estimated covariance. The distribution
of m is calculated by a recursive update of its mean m̂t and the covariance matrix
Λt [18]. The initial values for this recursive update are set as

m ∼ N (m̂0, Λ0), (2-29a)

where m̂0 = 0 and

Λ0 = diag
[
σ2

linI3 SSE(
√

λ1) ... SSE(
√

λNm)
]

. (2-29b)

The diagonal elements of the covariance of the magnetic field map Λ0 are calcu-
lated from the spectral density function

SSE(ω) = σ2
SE(2πl2

SE)3/2 exp
(
−ω2l2SE

2

)
, (2-30)

where σSE is the magnitude hyperparameter and lSE is the length scale. The
update of the distribution of the vector m for t ∈ {1, 2, 3, ..., Ntrain} can be written
as

St = CtΛt−1C
T
t + σ2

mI3, (2-31a)
Kt = Λt−1C

T
t S−1

t , (2-31b)
m̂t = m̂t−1 + Kt(Rwb

train,ty
b
train,t − Ctm̂t−1), (2-31c)

Λt = Λt−1 − KtStK
T
t , (2-31d)

where

Ct = ∇pΦ(pw
train,t). (2-31e)
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18 Preliminary knowledge of magnetic field localization

The equivalent Gaussian process prior of Eq. (2-23) can be calculated by applying
the joint distribution introduced in Eq. (C-5b) and be written as

∇pΦ(pw
t )m ∼ GP(∇pΦ(pw

t )m̂, ∇pΦ(pw
t )Λ(∇pΦ(pw

t ))T). (2-32)

This distribution will be used to compare with the conditional distribution of the
full-rank GP for the evaluation of the magnetic field approximation in Appendix
B.

2-3 Algorithms

In this section, the two algorithms that have been applied to magnetic field localization,
the EKF and the PF, will be introduced.

2-3-1 Extended Kalam Filter (EKF)

Viset et al. implemented the EKF to magnetic field localization [38] for position and
orientation estimation. In this section, the EKF in the form adapted to magnetic field
localization that has been applied in [38] will be introduced.
The EKF applied to magnetic field localization contains two main updates, the time and
the measurement updates. Besides, there’s an additional step to correct the linearized
point at the end due to the fact that the update depends on the linearization with
respect to an error state based on the state in Eq. (2-7).

• Time update
The time update for position and orientation is based on the dynamic models
described in Section 2-2-2 and can be written as

p̂w
t|t−1 = p̂w

t−1|t−1 + ∆pw
t , (2-33a)

q̂wb
t|t−1 = q̂wb

t−1|t−1 ⊙ expq(∆qb
t ). (2-33b)

The covariance matrix is updated by approximating the dynamic model with
respect to the error state

ζ̂t|t−1 =
[
δ̂t|t−1
η̂w

t|t−1

]
=
[
pw

t − p̂w
t|t−1

η̂w
t|t−1

]
, (2-33c)

where the relationship between η̂t|t−1 and qwb
t is qwb

t = expq(η̂w
t|t−1) ⊙ q̂wb

t|t−1 [38].
The propagation of the error state can be approximated with

ζ̂t|t−1 ∼=
[

δ̂w
t−1|t−1 + ew

p,t

η̂w
t−1|t−1 + R̃wb

t|t−1e
b
q,t

]
= ζ̂t−1|t−1 + edyn,t, edyn,t ∼ N (0(Nm+9)×1, Qζ),

(2-33d)
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where ζ̂t−1|t−1 denotes the error between the state and the posterior estimation
and

Qζ =
[

Rp 03×3
03×3 Rq

]
. (2-33e)

By defining the covariance of ζ̂t−1|t−1 as Pt−1|t−1 and with the known noise covari-
ance Qζ , the update for the covariance matrix of ζ̂t|t−1 can be written as the sum
of these two covariances, which is given as

Pt|t−1 = Pt−1|t−1 + Qζ (2-33f)

[38].

• Measurement update
The measurement update utilizes the linearized measurement model derived based
on the error state 2-33c, which can be written as

yb
t = R̂bw

t ∇Φ(pw
t|t−1)m + Htζt + eb

m,t, eb
m,t ∼ N (0, σ2

mI3). (2-34)

The reader could refer to [38] for a detailed mathematical representation of the
linearized measurement model.
Referring to the measurement model shown at 2-34 and the measurement update
of the EKF for general nonlinear systems that is presented at Eq. (D-11), the
measurement update for magnetic field system can be written as

ζ̂t|t = Kt(R̂wb
t|t−1y

b
t − ∇Φ(p̂w

t|t−1)m̂), (2-35a)
Pt|t = Pt|t−1 − KtStK

T
t , (2-35b)

where St = HtPt|t−1H
T
t + σ2

mI3 and Kt = Pt|t−1H
T
t S−1

t .

• Linearized point correction
Besides the time and measurement updates, at the last step of this magnetic field
EKF algorithm, a correction for the linearized point is performed as

p̂w
t|t = p̂w

t|t−1 + δ̂w
t|t, (2-36a)

q̂wb
t|t = expq(η̂w

t|t) ⊙ q̂wb
t|t−1, (2-36b)

where δ̂w
t|t and η̂w

t|t are from ζ̂t|t calculated in the measurement update.

The detailed analytical expression of this EKF algorithm is given in Algorithm 4.

Note that the code for the EKF used in the later simulations is based on the code from
[38].

Master of Science Thesis Sing-Chi Hsu



20 Preliminary knowledge of magnetic field localization

2-3-2 Particle filter (PF)

As mentioned in Chapter 1, the PF has been applied to the magnetic field localization
system by [30]. In this section, the PF that has been adapted to magnetic field local-
ization will be introduced. Note that the following PF implemented for magnetic field
localization is based on the code from [38], which is based on Algorithm 1 in [30].
In the PF applied in [38], the proposal distribution

π(xi
t|xi

t−1, yt) = p(xi
t|xi

t−1) (2-37)

has been chosen [30], which is named as prior sampling and will result in the most
common version of PF [9]. With this proposal distribution, the weight update can be
simplified from Eq. (E-3) to

wi
t|t ∝ wi

t−1|t−1p(yt|xi
t). (2-38)

Note that the reader is suggested to keep in mind that the symbol for the positions of
the particles pi

t could be easily confused with the probabilities, such as p(yt|xi
t).

• Time update
The dynamic update running in each time step will run for all MP F particles. The
time update for the position and orientation particles are based on the dynamic
models introduced in Section 2-2-2, which can be written as

pw,i
t = pw,i

t−1 + ∆pt−1 + ew
p,t, ew

p,t ∼ N (0, σ2
pI3), (2-39a)

qwb,i
t = qwb,i

t−1 ⊙ expq(∆qb
t−1 + ewb

q,t), ewb
q,t ∼ N (0, σ2

qI3), (2-39b)

where the upper notation i represents the ith particle. Note that the weights
are not updated at this step because it is combined with the update that will be
shown in the discussion of the measurement update.

• Measurement update
The measurement update in the PF for the magnetic field localization system runs
for MP F iteration, one for each particle, at each time step. With the simplified
weight update shown in Eq. (2-38), the update of the weights can be written as

wi
t|t = wi

t−1|t−1p(Rwb,i
t yb

t ; f, σ2
mI3), (2-40a)

where f = ∇Φ(pw,i
t )m̂ and Rwb,i

t is a rotaion matrix converted from the orientation
qwb,i

t .

• Resampling
After the dynamic and measurement updates, the weights are first normalized.
Later, the particles are resampled based on the weights. The probability the
particles are selected during the resampling process depends on their weights.
That is, the larger the weight is, the more possible that the particle is kept, or
even duplicated, for the next time step iteration. After the resampling process,
the weights are again reset to wi

t|t = 1/M .
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• Estimation
The mean of the position and orientation estimation is decided by extracting the
particle with the largest weight in the PF applied to the magnetic field localization
system [38]. Meanwhile, the covariance of the position is updated by calculating
the covariance of the particles with

Pt = 1
M

M∑
i=1

(pw,i
t − p̄w

t )(pw,i
t − p̄w

t )T. (2-41)

Since the PF does not assume the distributions to be unimodal Gaussian distributions
as the EKF does, it can estimate systems with multimodal distributions. Furthermore,
since it does not rely on linearization in the updates, it can estimate highly nonlinear
systems without considering the accuracy that the linearization can achieve. However,
there exist extra MP F iterations in each time step, and since the value of MP F is often
more than 100, it could be quite inefficient when applying a PF to online estimation
compared with the EKF.
The analytical expression of this PF is shown in Algorithm 6. Note that the code for
the PF used in the later simulations is based on [38].
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Chapter 3

Gaussian sum filter and its modified
form for magnetic field localization

As mentioned in the motivation of this thesis project in Section 1-2, there is no al-
gorithm that is more suitable to multimodal distributions than the Extended Kalman
filter (EKF) and more efficient compared with the Particle filter (PF) applied to mag-
netic field localization yet to the best of the author’s knowledge. The Gaussian sum
filter (GSF) is found to be a promising solution to this research gap in magnetic field
localization and will be introduced in this chapter.
In this chapter, the key component of the GSF, Gaussian mixture, and the general
analytical expression of the GSF will be presented. Following the introduction of the
GSF, the GSF that is modified for magnetic field localization will be shown in Section
3-2.

3-1 General form of the GSF

3-1-1 Gaussian mixture

There are some methods for describing a multimodal distribution. One is to describe
it with particles, which is the method the PF introduced in Section 2-3-2 used. This is
also shown in Figure 1-1 as an example. In addition, a Gaussian mixture can also be
applied to approximate such distribution.
A Gaussian mixture describes a distribution as a sum of unimodal Gaussian components
with corresponding weights and can be written as

p(x) =
MGSF∑

i=1
wiN (x̂i, P i), (3-1)
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24 Gaussian sum filter and its modified form for magnetic field localization

where N (x̂i, P i) represents the distribution of the ith Gaussian component, wi is the
weight of the ith Gaussian component, and MGSF is the number of the Gaussian com-
ponents.
The multimodal distribution shown in Figure 1-1 can be approximated with a Gaussian
mixture. The analytical expression of this Gaussian mixture can be written as

p(x) =
3∑

i=1
wiN (x̂i, P i)

= w1N (x̂1, P 1) + w2N (x̂2, P 2) + w3N (x̂3, P 3)
= 0.2N (2, 0.2) + 0.3N (3, 0.3) + 0.5N (5, 0.5) (3-2)

and a visualization of this approximation can be seen in Figure 3-1 where the three
weighted unimodal Gaussian components are marked with dashed lines.

Figure 3-1: An 1-dimensional example of a Gaussian mixture approximating a multimodal dis-
tribution

3-1-2 Gaussian sum filter (GSF)

Gaussian sum filter (GSF) is a filter with distributions of the state approximated with
Gaussian mixture (GM)s to preserve the multimodality. Therefore, it is considered as
a potential solution to the research gap in this thesis project.
In a GSF, the posterior distribution p(xt|y1:t) is approximated with a GM, which can
be written as

p(xt|y1:t) =
MGSF∑

i=1
wi

tN (x̂i
t|t, P i

t|t), (3-3)

where MGSF is the number of the Gaussian components, wi
t is the weight of the ith

Gaussian component at time t, x̂i
t|t is the mean of the ith Gaussian component, and
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3-1 General form of the GSF 25

P i
t|t is the covariance matrix of the ith Gaussian components [1]. Furthermore, the

distribution p(xt|y1:t−1) is also approximated with a GM and can be written as

p(xt|y1:t−1) =
MGSF∑

i=1
wi

tN (x̂i
t|t−1, P i

t|t−1). (3-4)

Similar to an EKF and a PF, a GSF has a time update and measurement update at
each time iteration.

• Time update
In a time update of a GSF, the means and covariance matrices of each Gaussian
component of the distribution p(xt|y1:t−1) are updated with the same method as
the time update in a EKF. In other words, the means x̂i

t|t−1 and covariance matri-
ces P i

t|t−1 of the GM-approximated distribution p(xt|y1:t−1) = ∑MGSF
i=1 wi

tN (x̂i
t|t−1, P i

t|t−1)
are updated with

x̂i
t|t−1 = f(x̂i

t−1|t−1), (3-5a)
P i

t|t−1 = F i
t−1P

i
t−1|t−1(F i

t−1)T + Q, (3-5b)

where F i
t−1 is the Jacobian of the time model at the point xt = x̂i

t−1|t−1, which
can be written mathematically as as F i

t−1 = df(xt)
dxt

∣∣∣
xt=x̂i

t−1|t−1
[1].

• Measurement update
In the measurement update of a GSF, the means and the covariance matrices of
each Gaussian component of the posterior distribution approximation p(xt|y1:t) =∑MGSF

i=1 wi
tN (x̂i

t|t, P i
t|t) are updated using the same method as in an EKF. The

analytical expression of the update of the posterior distribution can be written as

x̂i
t|t = x̂i

t|t−1 + Ki
t(yt − h(x̂i

t|t−1)), (3-6a)
P i

t|t = P i
t|t−1 − Ki

tS
i
t(Ki

t)T, (3-6b)

where H i
t = dh(xt)

dxt

∣∣∣
xt=x̂i

t|t−1
is a Jacobian of the measurement model, Si

t = H i
tP

i
t|t−1(H i

t)T+

R, and Ki
t = P i

t|t−1(H i
t)T(Si

t)−1 [1].

• Weight update After the time and measurement updates that are similar to
the EKF, there is an additional weight update for refreshing the weights wi

t. The
weights are updated with a similar approach as the one in a PF with the prior
distribution as the proposal distribution [1].

The analytical expression of a GSF is also shown in Algorithm 1.
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26 Gaussian sum filter and its modified form for magnetic field localization

Algorithm 1: Gaussian sum filter (GSF)
Input: Measurements {yt}N

t=1.
Output: Estimated states {x̂t|t}N

t=1.
Initialization: Weights wi

1 = 1
MGSF

for all i ∈ {1, .., MGSF }, means of Gaussian
components {x̂i

1|1}MGSF
i=1 , and covariance matrices of Gaussian

components {P i
1|1}MGSF

i=1 .
1 for t = 2, ..., N do
2 for i = 1 : MGSF do
3 Time update

x̂i
t|t−1 = f(x̂i

t−1|t−1), (3-7a)

P i
t|t−1 = F i

t−1P i
t−1|t−1(F i

t−1)T + Q, (3-7b)

F i
t−1 = df(xt)

dxt

∣∣∣∣
xt=x̂i

t−1|t−1

. (3-7c)

(3-7d)

4 Measurement update

x̂i
t|t = x̂i

t|t−1 + Ki
t(yt − h(x̂i

t|t−1)), (3-8a)

P i
t|t = P i

t|t−1 − Ki
tS

i
t(Ki

t)T, (3-8b)

H i
t = dh(xt)

dxt

∣∣∣∣
xt=x̂i

t|t−1

, (3-8c)

Si
t = H i

tP
i
t|t−1(H i

t)T + R, (3-8d)

Ki
t = P i

t|t−1(H i
t)T(Si

t)−1. (3-8e)

Weight update

wi
t = wi

t−1N (yt; h(x̂i
t|t), Si

t). (3-9a)

5 end
6 Weight normalization

wi
t = wi

t∑MGSF
j=1 wj

t

, ∀i = 1, ..., MGSF , (3-10)

7 Estimation

x̂t|t =
MGSF∑

i=1
wi

tx̂
i
t|t (3-11)

.
8 end
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3-2 The GSF for magnetic field localization 27

3-2 The GSF for magnetic field localization

Since the GSF is based on a EKF core, the GSF applied to the magnetic field localization
will also be based on the EKF introduced in Section 2-3-1. As a result, besides the time
and measurement updates introduced previously, there is also an additional correction
of the linearization point made after the time and measurement updates. Furthermore,
the weight of each Gaussian component is updated after this correction.
The EKF core run for MGSF times in each time iteration is (the notation i ∈ {1, 2, ..., MGSF }
on the up-right corner of the symbols represents the index of the Gaussian component):

• Time update
As the GSF utilizes the EKF as its core, the time update for each Gaussian
component will be the same as seen in Eq. (2-33). Therefore, the time update for
a Gaussian component can be written as

p̂w,i
t|t−1 = p̂w,i

t−1|t−1 + ∆pw
t , (3-12a)

q̂wb,i
t|t−1 = q̂wb,i

t−1|t−1 ⊙ expq(∆qb
t ), (3-12b)

P i
t|t−1 = P i

t−1|t−1 + Qζ . (3-12c)

• Measurement update
Similar to the time update, the measurement update of a Gaussian component of
the GSF is also the same as the measurement update shown in Eq. (2-35). Thus,
the analytical expression of the measurement update of a Gaussian component is

ζ̂ i
t|t = Kt(R̂wb,i

t|t−1y
b
t − ∇Φ(p̂w,i

t|t−1)m̂), (3-13a)
P i

t|t = P i
t|t−1 − Ki

tS
i
t(Ki

t)T, (3-13b)

where Si
t = H i

tP
i
t|t−1(H i

t)T + σ2
mI3, and Ki

t = P i
t|t−1(H i

t)T(Si
t)−1.

• Linearized point correction
As mentioned previously, the GSF for magnetic field localization also has a correc-
tion of the linearized point as what the EKF has after the time and measurement
updates. This correction for a Gaussian component is then

p̂w,i
t|t = p̂w,i

t|t−1 + δ̂w,i
t|t , (3-14a)

q̂wb,i
t|t = expq(η̂wb,i

t|t ) ⊙ q̂wb,i
t|t−1, (3-14b)

where δ̂w,i
t|t and η̂wb,i

t|t are from ζ̂ i
t|t calculated in the measurement update.

• Weight update
Besides the time and measurement updates and the linearized point correction
the EKF has, the GSF also has a weight update. As the weight update is using
the same method as the PF, the update is based on Eq. (2-38) and can be written
as

wi
t = wi

t−1N (R̂wb,i
t|t yb

t ; ∇Φ(p̂w,i
t|t )m̂, Si

t), (3-15)

where R̂wb,i
t|t is a rotation matrix converted from q̂wb,i

t|t .
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28 Gaussian sum filter and its modified form for magnetic field localization

After the updates of all Gaussian components are done for one timestep, the updated
weights are then normalized. Furthermore, the position and orientation estimates are
also calculated by summing up the weighted estimations from the Gaussian components.
The algorithm of the GSF applied to magnetic field localization is also written down
in analytical form in Algorithm 2.
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Algorithm 2: GSF for magnetic field localization
Input: Odometry measurements {∆pw

t , ∆qb
t }N

t=1, magnetic field measurements {yb
t }N

t=1,
and a magnetic field weight vector m.

Output: Estimated positions {p̂w
t|t}

N
t=1, and estiamted orientations {q̂wb

t|t }N
t=1.

Initialization: Weights {wi
1 = 1

MGSF
}MGSF

i=1 , position means {p̂w,i
1|1}MGSF

i=1 , orientation means
{q̂wb,i

1|1 }MGSF
i=1 , and covariance matrices {P i

1|1}MGSF
i=1 of Gaussian components.

1 for t = 2, ..., N do
2 for i = 1 : MGSF do
3 Time update

p̂w,i
t|t−1 = p̂w,i

t−1|t−1 + ∆pw
t , (3-16a)

q̂wb,i
t|t−1 = q̂wb,i

t−1|t−1 ⊙ expq(∆qb
t ), (3-16b)

P i
t|t−1 = P i

t−1|t−1 + Qζ . (3-16c)

4 Measurement update

ζ̂i
t|t = Kt(R̂wb,i

t|t−1yb
t − ∇Φ(p̂w,i

t|t−1)m), (3-17a)

P i
t|t = P i

t|t−1 − Ki
tS

i
t(Ki

t)T, (3-17b)

Si
t = H i

tP
i
t|t−1(H i

t)T + σ2
mI3, (3-17c)

Ki
t = P i

t|t−1(H i
t)T(Si

t)−1. (3-17d)

5 Linearized point correction

p̂w,i
t|t = p̂w,i

t|t−1 + δ̂w,i
t|t , (3-18a)

q̂wb,i
t|t = expq(η̂wb,i

t|t ) ⊙ q̂wb,i
t|t−1. (3-18b)

6 Weight update

wi
t = wi

t−1N (R̂wb,i
t|t yb

t ; ∇Φ(p̂w,i
t|t ), Si

t). (3-19)

7 end
8 Weight normalization

wi
t = wi

t∑MGSF
j=1 wj

t

, ∀i ∈ {1, .., MGSF }, (3-20)

9 Estimation

p̂t|t =
MGSF∑

i=1
wi

tp̂
i
t|t, (3-21a)

q̂t|t =
MGSF∑

i=1
wi

tq̂
i
t|t. (3-21b)

10 end
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Chapter 4

Simulation results of fully-simulated
magnetic field localization with the

Gaussian sum filter (GSF) applied as
an estimator

To study if the GSF is an algorithm suitable for multimodal distribution and is more
efficient compared with the Particle filter (PF) in magnetic field localization, the GSF
was applied to the localization system with simulated magnetometer measurements and
the results were compared to the ones of the Extended Kalman filter (EKF) and the
PF. Since the uncertainty is taken into account, the simulations in this chapter were
run as a Monte Carlo simulation with 100 experiments.
In this chapter, the settings kept constant through all simulations, including the simu-
lated trajectory and the algorithms, will be first introduced. Then, the settings changed
in different simulations and the simulation results will be discussed in Section 4-2. At
the end, a brief conclusion based on the results of the simulations will be given.

4-1 Settings kept constant through all simulations

4-1-1 Trajectory

The trajectory of the simulation is shown in Figure 4-1. The magnetometer was simu-
lated to move in this trajectory and the magnetic field in this range was known.
The initial position of the simulated trajectory was at pw

1 = [−0.95 − 1 0]T. The
trajectory is a counterclockwise square with each side 2 meters long. For each sim-
ulation, the target moved in this square counterclockwise 4 times and ended up at
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32 Simulation results of fully-simulated magnetic field localization with the GSF applied as an estimator

Figure 4-1: The 2-dimensional plot of the ground truth trajectory of the simulations of magnetic
field localization (red arrow representing the direction of the trajectory)

pw
N = [−1 − 1 0]T, where N is the end time of the trajectory and was set as 640 in

this chapter. In the whole trajectory, the position on Z axis pw
z,t was kept to 0.

The orientation qwb
t was fixed to [1 0 0 0]T for the entire trajectory.

4-1-2 Models

The models applied in this chapter is from Eq. (2-8), (2-9), and (2-24). The magnetic
field map, inputs, and noise settings implemented in the models will be introduced
below.

Magnetic field map

The magnetic field map in this simulation is a fully simulated map with 50 basis func-
tions. Therefore, the recursive process of estimating the weight vector m shown in
Eq. (2-31) was not performed in the simulations in this chapter. As a result, the dis-
tribution of the weight vector m was the same as the initial guess given in Eq. (2-29).
The magnetometer measurements were then simulated with the simulated positions
and orientations introduced in Section 4-1-1 as the inputs of the measurement model
shown in Eq. (2-24). An example of how the norm of the simulated magnetometer
measurements of the whole localizing area is shown in Figure 4-1.

Sing-Chi Hsu Master of Science Thesis



4-1 Settings kept constant through all simulations 33

Inputs and noises

The inputs were the transition data obtained from the known ground truth positions
and orientations with additional noises. The calculation can be written as

∆pw
t = pw

t+1 − pw
t + ew

dp,t, (4-1a)
∆qb

t = fqa(qwb
t+1 ⊙ qc

t ) + eb
dq,t, (4-1b)

where ew
dp,t ∼ N (0, Rdp), ew

dq,t ∼ N (0, Rdq), fqa is a function that converts unit quater-
nions to axis-angle representation, and qc

t is the quaternion conjusgation of qt. As
a baseline for judging the estimation accuracy, the transition positions were used for
odometry and the results were compared to the other algorithms in the simulation.
The covariance of the simulated transition position Rdp was set to 10−4I3 and the
covariance of the simulated transition orientation Rdq was set to 10−5I3.

4-1-3 Algorithms

In these simulations of the magnetic field localization, there are three algorithms applied
for the estimation of the position and the orientation. The first two are the EKF and
the PF, which are the ones that have been applied to the magnetic field localization
in previous studies [38, 30, 18]. The last algorithm is the newly introduced GSF. In
this section, the settings of these algorithms for magnetic field localization that were
set constant through the simulations will be introduced.
Note that the code for the EKF and the PF are from [38].

• Extended Kalman filter (EKF)
In the simulations in this chapter, the initial mean and covariance of the EKF
were set according to the assigned initial error ϵ0. The initial error was designed to
represent the squared distance between the ground truth and the initial estimated
position in X or Y axis. Therefore, the relationship between the initial error ϵ0
and the initial estimated position can be written as

p̂w
x,1|1 = pw

x,1 + √
ϵ0, (4-2a)

p̂w
y,1|1 = pw

y,1 + √
ϵ0, (4-2b)

p̂w
z,1|1 = pw

z,1, (4-2c)

where pw
1 = [pw

x,1, pw
y,1, pw

z,1]T is the initial ground truth of the 3-dimensional posi-
tion. The initial covariance matrix of the EKF was also correlated with the initial
error ϵ0 as

P1|1 =



1.5ϵ0 0 0 0 0 0
0 1.5ϵ0 0 0 0 0
0 0 0.001 0 0 0
0 0 0 0.001 0 0
0 0 0 0 0.001 0
0 0 0 0 0 0.001


, (4-3)
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where the value “1.5” multiplied before the initial error was set to ensure the
ground truth is within the 68 % confidence interval. The value of the initial
error would vary through different simulations, so it will be introduced when
describing the settings changed in different simulations in Section 4-2. Note that
the initialization of the estimated orientation q̂wb

1 was fixed to [1, 0, 0, 0]T in all
simulations.
The process noise Rp and Rq of the dynamic models in Eq. (2-33e) were set to the
same value as the measurement covariances of the transition data Rdp and Rdq in
this system.

• Particle filter
The PF applied here to the simulations of magnetic field localization is the same
as the one introduced in [30] and the code is based on the one used in [38].
The number of the particles MP F was set to 100, 200, and 500 in all simulations.
The purpose of setting three different values of MP F is to show the different
performance of the PF under different numbers of the particles MP F . This is
mainly used to imply the difficulty of the choice of MP F when efficiency and
accuracy are both concerned in localization.
The initial particles were sampled from the same initial distribution of the EKF.
Therefore, the initial particles will vary through simulations with the initial dis-
tribution of the EKF.

• Gaussian sum filter
The initial weights wi

1 of the Gaussian components were set equally.
The Gaussian components were initially assigned in a diamond range to approxi-
mate the ellipsoid that was formed by the mean and the covariance of the EKF.
To approximate the ellipsoid, the size of the diamond shape was based on the
covariance values of the EKF. Therefore, the means of the Gaussian components
were placed in the range [

p̂w,i
x,1|1

p̂w,i
y,1|1

]
= R

[
δp̂w,i

x,1|1
δp̂w,i

y,1|1

]
+
[
p̂w

x,1|1
p̂w

y,1|1

]
, (4-4a)

where

δp̂w,i
x,1|1 ∈ [−

√
P1|1,(x,x),

√
P1|1,(x,x)], (4-4b)

δp̂w,i
y,1|1 ∈ [−

√
P1|1,(y,y),

√
P1|1,(y,y)], (4-4c)

R =
[
cos(0.25π) − sin(0.25π)
sin(0.25π) cos(0.25π)

]
. (4-4d)

The resulting GSF is shown in Figure 4-2 This design is to avoid the means of
the GSF set too close to the ground truth that could lead to doubts about the
performance of the GSF. The detailed process of how this layout is developed is
explained in Appendix F.
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4-1 Settings kept constant through all simulations 35

Figure 4-2: An example of how the GSF is designed to approximate the EKF

The ranges on the Z axis and the orientation were set to a single value because
the measurements of the Z axis and the orientation were assumed to be precise.
Furthermore, this setting also refers to the setting of the EKF for the simulation
of magnetic field localization. The value for the initial esimation of the position
in Z axis was thus set to p̂w,i

z,1|1 = p̂w
z,1|1 = pw

z,1 = 0. The orientation was also set to
be equaled with the ground truth q̂w,i

1|1 = q̂w
1|1 = [1, 0, 0, 0]T.

The initial covariance matrixes were set to the same diagonal matrices for all
Gaussian components. The first diagonal value, which is the variance in the X
axis, was calculated as

P i
1|1,(x,x) = (

√
P1|1,(x,x)

MGSF,x
)2, (4-5a)

where P1|1,(x,x) is the first diagonal value of the initial covariance matrix of the
EKF P1|1 and MGSF,x is the number of the Gaussian components of the GSF on
the X axis. This formula is set to make the range of the means of the Gaussian
components approximating the 68% confidence covariance ellipsoid of the EKF
with the covariances of the Gaussian components covering the range but not
overlapping too much. The second diagonal value for the Y axis variance is
calculated using

P i
1|1,(y,y) = (

√
P1|1,(y,y)

MGSF,y
)2, (4-5b)

where P1|1,(y,y) is the second diagonal value of the initial covariance matrix of the
EKF P1|1 and MGSF,y is the number of the Gaussian components of the GSF on the
Y axis. Other values on the diagonal are set to 0.001 because the corresponding
measurements are assumed to be quite accurate.
The number of the Gaussian components MGSF was set as a squared value of an
integer. This is because the Gaussian components were designed to approximate
the covariance ellipsoid of the EKF with a 2-dimensional diamond in the X − Y
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plane. Therefore, the relationship for the number of the Gaussian components
MGSF with the number of the Gaussian component of each state element will be

MGSF = MGSF,x · MGSF,y · MGSF,z · MGSF,q1 · MGSF,q2 · MGSF,q3 · MGSF,q4

=
√

MGSF ·
√

MGSF · 1 · 1 · 1 · 1 · 1, (4-6)

where MGSF,z is the number of the Gaussian components on the Z axis and
the MGSF,q1, MGSF,q2, MGSF,q3 and , MGSF,q4 are the number of the Gaussian
components of each element of the unit quaternion for the representation of the
orientation.
The actual value of the number of the Gaussian components MGSF would be
different for different simulations, so it will be introduced later.

The simulation settings for the three algorithms are also listed in Table 4-1. Note that
the values might be varied depending on the settings of each simulation.

4-2 Simulation results

To study the performance of the GSF applied to magnetic field localization, several
simulations were run. In each simulation, three algorithms, the EKF, the PF, and
the GSF, were employed for the estimation of the position and the orientation. The
simulation results were evaluated using the root mean squared error (RMSE) of the
whole trajectory.
The simulations that will be discussed in the following subsections are

• Varied initial error ϵ0:
The simulation with varied initial uncertainty is also shown in the previous study
of magnetic field localization [38]. As the initial uncertainty grows to the distance
that includes the non-unique section of the magnetic field map, the multimodality
will exist, which is also explained in Section 1-2. Therefore, when the initial error
is large enough, the EKF is expected to be inaccurate. In this simulation, the
uncertainty was introduced by an initial error ϵ0 value that changed the value of
the initial distribution of the EKF. This varied value in the simulation affected
all algorithms as they all depended on the same initial distribution.

• Varied numbers of Gaussian components of the Gaussian sum filter
MGSF :
There is a lack of a rule of thumb for the setting of the number of the Gaussian
components of the GSF MGSF . Therefore, in this simulation, different values for
the number of the Gaussian components of the GSF MGSF were tried in iterations
of the simulation to see what value is the most suitable value for the simulation of
the magnetic field localization. Furthermore, the time durations of the algorithms
were recorded in this simulation to check if the GSF is more efficient than the PF
while having equivalent or better accuracy. Note that the settings for the EKF
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Algori-
thm Variables Values

EKF

Initial
estimated position

p̂w
1|1

p̂w
x,1|1 = pw

x,1 + √
ϵ0,

p̂w
y,1|1 = pw

y,1 + √
ϵ0,

p̂w
z,1|1 = pw

z,1,

j ∈ {1, ..., 10}

Initial
estimated covariance

P1|1


P1|1,(x,x) 0 0 0 0 0

0 P1|1,(y,y) 0 0 0 0
0 0 0.001 0 0 0
0 0 0 0.001 0 0
0 0 0 0 0.001 0
0 0 0 0 0 0.001

 ,

where
P1|1,(x,x) = 1.5ϵ0,
P1|1,(y,y) = 1.5ϵ0,

j ∈ {1, ..., 10}

PF

Initial
estimated position

p̂w
1

p̂w
x,1 = p̂w

x,1|1,

p̂w
y,1 = p̂w

y,1|1,

p̂w
z,1 = p̂w

z,1|1
Initial

estimated covariance
P1

P1 = P1|1

GSF

Number of
Gaussian components

MGSF

√
MGSF ·

√
MGSF · 1

Range of
the initial mean

p̂w,i
1|1

[
p̂w,i

x,1|1
p̂w,i

y,1|1

]
= R

[
δp̂w,i

x,1|1
δp̂w,i

y,1|1

]
+
[
p̂w

x,1|1
p̂w

y,1|1

]
,

p̂w,i
z,1|1 = p̂w

z,1|1,

δp̂w,i
x,1|1 ∈ [−

√
P1|1,(x,x),

√
P1|1,(x,x)],

δp̂w,i
y,1|1 ∈ [−

√
P1|1,(y,y),

√
P1|1,(y,y)],

R =
[
cos(0.25π) − sin(0.25π)
sin(0.25π) cos(0.25π)

]

Initial covariance of each
Gaussian component

P i
1|1



P i
1|1,(x,x) 0 0 0 0 0

0 P i
1|1,(y,y) 0 0 0 0

0 0 0.001 0 0 0
0 0 0 0.001 0 0
0 0 0 0 0.001 0
0 0 0 0 0 0.001

 ,

where
P i

1|1,(x,x) = (
√

P1|1,(x,x)

MGSF,x
)2,

P i
1|1,(y,y) = (

√
P1|1,(y,y)

MGSF,y
)2

Table 4-1: Initialization of the algorithms for the simulations of the magnetic field localization
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38 Simulation results of fully-simulated magnetic field localization with the GSF applied as an estimator

and the PF in this simulation were fixed through iterations as the main interest
is in the GSF.

• Varied initial covariance matrices of the Gaussian sum filter P i
1|1:

As there is also no rule of thumb for the covariance values of the initial covariances
of the GSF, a simulation with varied initial covariance values of the Gaussian
components of the GSF was run as an experiment.

4-2-1 Varied initial error ϵ0

As mentioned in Section 1-2, due to the non-uniqueness of the function in the measure-
ment model of magnetic field localization, multimodal distributions might exist when
the initial error ϵ0 is large enough. Hence, the simulation in this section was designed
to trigger the multimodality of magnetic field localization by varying the initial error
ϵ0.
In this simulation, the initial error ϵ0 was designed to vary from 0.05 to 0.25, with 10
values equally sampled from this interval. The initialization of all three algorithms was
influenced by this initial error. Therefore, in the results of this simulation, the perfor-
mances of each algorithm when facing different initial uncertainties can be observed.
Following are the introduction of the initialization settings for the algorithms and the
discussion of the simulation results:

• Initialization of the algorithms:
To equally sample 10 initial error values from the interval [0.05, 0.25], the following
equation was designed for the value of each iteration j

ϵ0 = 0.05 + j−1
9 · 0.2, ∀j ∈ {1, ..., 10}. (4-7)

– EKF:
The initial error was introduced to the initial estimated position p̂w

1|1 using
Eq. (4-2) and the initial covariance using Eq. (4-3).

– PF:
The distribution that the initial particles were sampled from was the same
distribution as the initial distribution of the EKF.

– GSF:
The number of the Gaussian components of the GSF was set to be fixed to
16 and was set in the way as in Section 4-1-3.
The range of the initial means of the Gaussian components of the GSF was
set in the same way as Eq. (4-4) with the initial estimated position p̂w,i

1|1 and
the initial estimated covariance P i

1|1 introduced in Eq. (4-5).

The initialization of the EKF and the GSF is plotted in Figure 4-3. As the
initial error increases, the 68% confidence ellipsoid of the initial estimated EKF
distribution grows larger and indicates larger initial uncertainty. Since the initial
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means and covariances of the GSF depend on the initial distribution of the EKF,
the means of the GSF p̂w,i

1 are more separated and the size of the initial covariances
of the GSF P i

1|1 is larger.

(a) Initial error ϵ0 = 0.05 (b) Initial error ϵ0 = 0.25

Figure 4-3: The visualization of the algorithm initializations for the magnetic field localization
with varied initial error ϵ0

• Simulation results:
The simulation in this section was run as a Monte Carlo simulation with 100
iterations for each j value shown in Eq. (4-7). The simulation results are shown
in Figure 4-4.
The EKF shows the worst capability of dealing with large initial errors as ex-
pected. As discussed previously in Section 1-2, a large initial error might lead to
multimodal distributions, which is against the assumption the EKF is based on.
The PFs also show a growing trend of error. However, this error grows slower
when the number of particles MP F is larger.
The GSF also shows a growing trend in the RMSE as shown in the enlarged
Figure 4-4b. However, compared with the other algorithms, the GSF is relatively
more robust to the initial error. This is obvious when compared with the other
algorithms using the unscaled figure in Figure 4-4a.
As the initial error grows, the distribution of the state will become multimodal.
This is also seen from the estimations of the algorithms when the time step t is 2
in Figure 4-5. When the initial error is small in Figure 4-5a, the particles of the
PF are quite close together and are near the estimation of the EKF. However,
when the initial error is large, as shown in Figure 4-5c, the particles of the PF are
scattered in the space and gathered into groups. As the particles can represent
the distribution of the state, this phenomenon indicates that the distribution is
now a multimodal distribution. This is a clear example that when the initial error
is large, there exist multimodal distributions, which is a problematic condition for
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(a) All data included

(b) Enlarged plot

Figure 4-4: The RMSE of the estimated trajectories of the algorithms under different values of
initial errors ϵ0 for the magnetic field localization

the EKF. As a result, when the GSF is having good performance with a large
initial error value, it implies that the GSF is more suitable for multimodality than
the EKF.

From this simulation, it is also found that the multimodality starts happening
when the initial error reaches 0.1 (as shown in Figure 4-4 and 4-5b). As the main
goal of this thesis project is to find an algorithm that is suitable for multimodal-
ity, the simulations were preferred to be set under the condition that there are
multimodal distributions. As a result, the initial error in the other simulations
was set to 0.1.
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(a) Initial error ϵ0 = 0.05 (b) Initial error ϵ0 = 0.094

(c) Initial error ϵ0 = 0.25

Figure 4-5: The estimations of the algorithms at t = 2 with varied initial error ϵ0

4-2-2 Varied numbers of Gaussian components of the GSF MGSF

The number of the Gaussian components of the GSF MGSF might influence the es-
timation results of the GSF. It was expected that with more Gaussian components,
the GSF would be more accurate, but would also be more computationally costly as
shown in the illustration in Figure 4-6. However, there’s no clear rule for the best value
of MGSF that can make the GSF accurate enough but also not too time-consuming.
Hence, a simulation with varied values of MGSF was run and the results will be shown
in this section.
Moreover, by comparing the time duration of each algorithm recorded through the
simulation, the GSF can be checked if it is more efficient than the PF while having
comparable accuracy. This check is to make sure that the GSF is a solution to the
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42 Simulation results of fully-simulated magnetic field localization with the GSF applied as an estimator

current research gap in magnetic field localization that there is a lack of an algorithm
that is more efficient compared with the PF and more accurate than the EKF when
multimodality exists.

Figure 4-6: The possible trade-off when increasing the number of Gaussian components of the
GSF

The bullet points below are the introduction of the algorithm initialization and the
simulation results:

• Initialization of the algorithms: The initial error ϵ0 in this simulation was set
to 0.1 and was not varied.

– GSF:
The number of the Gaussian components of the GSF MGSF was varied
through the simulation. As introduced in Section 4-1-3, MGSF was designed
to have the initial means of the Gaussian components to form a diamond
shape in the 2-dimensional X − Y plane to approximate the initial covari-
ance ellipsoid of the EKF, so MGSF was a value of squared integer. Following
this design, MGSF was set to be

MGSF = MGSF,x · MGSF,y · MGSF,z = j · j · 1 = j2, (4-8)

where j is an integer from the integer set {2, ..., 8}. This setting is visualized
in Figure 4-7. When MGSF = 2 · 2 = 4, the initial Gaussian components of
the GSF were set relatively loosely placed in the space as shown in Figure
4-7a. When MGSF is increased to 8 ·8 = 64, the Gaussian components, shown
in Figure 4-7b, were set densely in the diamond range since the range size
remained the same but MGSF was increased.
The range of the initial means of the GSF was set using Eq. (4-4).
The initial covariance matrices of all Gaussian components were set as cal-
culated following Eq. (4-5).

– EKF and PF:
Since the main purpose of the simulation in this section is to discuss the effect
of the number of Gaussian components of the GSF on the performance of the
GSF, the initialization setting for the EKF and the PF remained the same
as the initial error was kept the same value throughout the simulation. The
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(a) MGSF = 4 (b) MGSF = 64

Figure 4-7: The visualization of the algorithm initializations for the magnetic field localization
with varied numbers of Gaussian components of the GSF MGSF

initial estimated distribution of the EKF was fixed through the simulation
and set with Eq. (4-2) and (4-3). The initial particles of the PF were sampled
from the initial distribution of the EKF.

• Simulation results:
The simulation here was also run as a Monte Carlo simulation with 100 iterations
for each value of the number of the Gaussian components of the GSF MGSF . The
RMSE of the simulation results is shown in Figure 4-8, and the mean of the time
durations of each value of MGSF are presented in Figure 4-9.
Since the EKF and the PF initialization settings were not changed through itera-
tions, in Figure 4-8 and 4-9, the results of these algorithms are plotted with their
means and the 95% confidence interval of all iterations.
The results of the EKF are as expected with large error since the initial error
in this simulation was set in purpose to trigger the multimodality of the system.
Moreover, the PF also has unsurprising results. The RMSE of the PF is lower as
the number of the particles is larger.
The RMSE of the GSF does not vary a lot with the number of the Gaussian com-
ponents. However, as seen in Figure 4-3a, the GSF is not approximating the EKF
correctly as the covariances are not covering lots of the covariance ellipsoid of the
EKF. Therefore, the number of the Gaussian components in the other simulations
was not set to 4 despite it having the least computational cost. Moreover, when
there are 9 Gaussian components, a mean of a Gaussian component might be too
close to the ground truth since the initial estimation was designed to be placed
in a diagonal direction from the ground truth. When the number of the Gaussian
components is odd, several Gaussian components will be placed on the same diag-
onal line and thus will increase the chance the ground truth is overlapping with a
Gaussian component when initializing. This setting might lead to some doubt of
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the true reason for the good performance of the GSF. Thus, 9 was also not chosen
as the number of the Gaussian component of the settings of the other simulations.
As a result, the number of the Gaussian component of the other simulations was
set to 16.
Besides checking the RMSE of the GSF, its time duration through the simulation
was also recorded and compared with the PF. By comparing the time duration,
the GSF can be checked if it is more efficient compared with the PF. As shown in
Figure 4-9, the time duration of GSF is almost always lower than the PF when the
number of the particles MP F is 100, which is the PF that is often more inaccurate
than GSF. As a result, the value 16 set for MGSF in other simulations is proved
to be more efficient than the PF while having equivalent or better accuracy.

(a) All data included (b) Enlarged plot

Figure 4-8: The RMSE of the estimated trajectories of the algorithms under different numbers
of Gaussian components of the GSF for the magnetic field localization

4-2-3 Varied initial covariance matrices of the GSF P i
1|1

To check what is the appropriate value to set for the initial covariances of the Gaussian
components of the GSF, a simulation with varied initial covariance values was run and
its settings and simulation results will be covered in this section.

• Initialization of the algorithms:
In this simulation, the initialization of the algorithms was set with an initial error
ϵ0 equal to 0.1.

– GSF:
The number of the Gaussian components MGSF was set to the same value as
did in Section 4-2-1.
The initial means of the GSF were set using the same equation as Eq. (4-4)
and depended on the initial distribution of the EKF.
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Figure 4-9: The time duration of each algorithm at each value of the number of Gaussian
components MGSF

The initial covariances of the Gaussian components of the GSF were set as

P i
1|1,(x,x) 0 0 0 0 0

0 P i
1|1,(y,y) 0 0 0 0

0 0 0.001 0 0 0
0 0 0 0.001 0 0
0 0 0 0 0.001 0
0 0 0 0 0 0.001


, (4-9a)

where

P i
1|1,(x,x) = (

√
P1|1,(x,x)

MGSF,x
)2 · (0.1 + j−1

9 · (
√

P1|1,(x,x)

MGSF,x
)−2), (4-9b)

P i
1|1,(y,y) = (

√
P1|1,(y,y)

MGSF,y
)2 · (0.1 + j−1

9 · (
√

P1|1,(y,y)

MGSF,y
)−2)), (4-9c)

The value j was designed to be an integer of the set {1, .., 10}, so the X and
Y covariance values of the GSF were set as 0.1 times the value in Eq. (4-5)
to around 1 in this simulation.
The visualization of the initial Gaussian components of the GSF is shown
in Figure 4-10. In Figure 4-10a, the covariances were set to small values.
Through the simulation, the initial covariances grew to about 1 and are shown
in Figure 4-10b.

– EKF and PF:
Similar to the simulation in Section 5-3-2, the initialization of the EKF and
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the PF was kept constant throughout the simulation. The initial estimated
position p̂w

1|1 and covariance of the EKF were set using Eq. (4-2) and (4-3).
The initial particles of the PF were sampled from the initial distribution of
the EKF.

(a) First two diagonal elements of the ini-
tial estimated covariance matrices of GSF =
0.0009

(b) First two diagonal elements of the ini-
tial estimated covariance matrices of GSF =
1.0009

Figure 4-10: The visualization of the algorithm initializations for the magnetic field localization
with varied initial covariance matrices of the GSF (Initial error = 0.1)

• Simulation results:
In this simulation, a Monte Carlo simulation was run with 100 iterations for
different values of the initial covariances of the GSF. The simulation results are
shown in Figure 4-11. Since only the initialization of the GSF is the one that
varied through iteration, the results of the other algorithms are plotted with their
means and 95% confidence interval through these 1000 iterations.
The error of the EKF is unsurprisingly higher than the PFs. The PFs also show
an expected result that the larger the number of the particles MP F is, the lower
the RMSE of the trajectory is.
The RMSE of the GSF is stable even when the first two diagonal values of the
initial covariances reach 1. An analysis of the possible reason was carried out and
the possible reason for this phenomenon is the small measurement noise that limits
the covariance values when performing measurement updates. A more detailed
discussion of this analysis of the components of the GSF is shown in Appendix
G-1.
One might argue the stable performance of the GSF is due to the initial setting
that makes the initial covariances of the GSF mostly overlapped when the initial
covariances were large, as shown in Figure 4-10b. However, this was proven not to
be the reason for such stable error by a test with a larger initial error. The test was
designed with an initial error equal to 0.2. The initial EKF distributions and the
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(a) All data included (b) Enlarged plot

Figure 4-11: The RMSE of the estimated trajectories of the algorithms under different values of
initial GSF covariance matrices for the magnetic field localization (Initial error = 0.1)

initial Gaussian components are plotted in Figure 4-12. As shown in Figure 4-12b,
the covariances of the GSF are now less overlapping with each other. Nevertheless,
the simulation results shown in Figure 4-13, the RMSE of the GSF is still robust
to the initial covariance values.

(a) First two diagonal elements of the ini-
tial estimated covariance matrices of GSF =
0.0019

(b) First two diagonal elements of the ini-
tial estimated covariance matrices of GSF =
1.0019

Figure 4-12: The visualization of the algorithm initializations for the magnetic field localization
with varied initial covariance matrices of the GSF (Initial error = 0.2)
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(a) All data included (b) Enlarged plot

Figure 4-13: The RMSE of the estimated trajectories of the algorithms under different values of
initial GSF covariance matrices for the magnetic field localization (Initial error = 0.2)

4-3 Conclusion

The simulations here were designed for the study of the possibility of the GSF to apply
to magnetic field localization as the solution to the research gap. Therefore, the GSF
was applied to the magnetic field simulation discussed in [38]. The simulation results
of the GSF are compared with the results of the EKF and the PF that were built in
[38].
With the simulation results, the GSF is proved to be more robust than the other
algorithms when there exists a large initial uncertainty. As a large initial error will lead
to multimodal distributions, this indicates the GSF is more applicable than the EKF
when there exists multimodality.
Besides, two GSF properties were checked using the simulation of magnetic field local-
ization. The number of the Gaussian components of the GSF MGSF applied in this
chapter was checked to be an appropriate choice by the test of varying MGSF . During
this test, the GSF is also shown quite efficient compared to the PF while keeping com-
parable accuracy. Moreover, the initial covariances of the GSF were varied to check
what value is appropriate when initializing. The RMSE of the GSF did not vary much
with the initial covariances, so the setting of the initial covariances was decided to be
kept the same as the other simulations had.
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Chapter 5

Simulation results of magnetic field
localization with real-world

magnetometer measurements and the
Gaussian sum filter (GSF) applied as

an estimator

In the previous chapter, the GSF was applied to a magnetic field localization system
where all measurements and noises were simulated. From the simulated results, the GSF
is proved to be suitable for multimodal distributions and is more efficient compared with
the Particle filter (PF). To further strengthen the claim that the GSF is a solution to
the research gap, the GSF implementation was also studied with a localization system
with real-world magnetometer measurements.
The real-world magnetometer measurements were collected by Frida Viset, Gustaf Hen-
deby, and Ola Johansson at the motion capture lab at Linkoping University via a mag-
netometer, Xsens MTi-300. They were calibrated by making the measurements of all
orientations fitting a unit sphere, similar to what is done in [17]. The measurements for
calibration were collected in the same space where the measurements for localization
were collected. Note that no direct physical meaning is connected to the calibrated
values. The norms of the calibrated measurements for magnetic field localization are
shown in Figure 5-1. The position and orientation corresponding to the magnetometer
measurements were collected via motion capture cameras at Linkoping University with
accuracy in millimeters.
In this chapter, the selection of the parameters for building the magnetic field map
using the reduced-rank Gaussian process (GP) will be first introduced in Section 5-1.
In Chapter 4, there are three Monte Carlo simulations for the study of the performance
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Figure 5-1: The norm of the measurements from the real-world magnetometer

of the GSF. These Monte Carlo simulations were also run in this chapter. Therefore,
similar to Chapter 4, there will be an introduction to the settings that were kept
constant through all simulations. Besides, the settings changed in different simulations
and the discussion of the corresponding simulation results will be presented. At the end
of this chapter, a brief conclusion based on this system with real-world measurements
implemented will be given in Section 5-4. Since this chapter has a similar structure to
Chapter 4, a structure plot is shown in Figure 5-2 to list the similar sections.

5-1 Choices of the parameters for building the magnetic field map

The map for the system in this chapter was built using a reduced-rank GP following
the recursive progress shown in Eq. (2-31). There are several parameters that can be
tuned when building the magnetic field map using Gaussian processes:

• Range:
The range in Y direction of the area to localize was tested with two different
values, 0.5 meters and 1.5 meters.

• Length scale lSE
The length scale lSE that is applied in Eq. (2-22) and (2-30).

• σSE
The hyperparameter σSE that is applied in Eq. (2-22) and (2-30).
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Figure 5-2: The structure of Chapter 4 and Chapter 5 (Similar sections are without dashed
outline)

• Data size
The size of the data used for the training of the magnetic field maps using the
reduce-rank GP.

• Measurement noise σm

The guessed measuremnt noise σm used in Eq. (B-9c) and (2-31).

To decide what preferred values of the parameters for learning the map using the
reduced-rank GP are, the map built using the reduced-rank GP was compared with
the one built with the full-rank GP. The process of these comparisons and how the
parameters were selected is shown in Appendix B. The final results of the selected
parameter values are shown in Table 5-1.

Range (m) lSE σSE Data size σm

1.5 0.3 0.1 ≈ 5000 0.1

Table 5-1: Final decision of the parameters for establishing the magnetic field map using the
reduce-rank GP

5-2 Settings kept constant through all simulations

In this section, the settings that were kept constant through the three simulations
that will be discussed in the next section will be introduced. These settings are the
trajectory, models, and algorithms.
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5-2-1 Trajectory

The trajectory that will be the localization target is a part of the trajectory subtracted
from the real-world measurement data set presented in Figure 5-1. The X −Y position
of this trajectory is plotted in Figure 5-3. To reduce the computational effort for

Figure 5-3: The true trajectory to estimate (arrow represents the direction of the trajectory)

simulation, the size of the data set for localizing is downsampled to 500 time steps.
Note this data set is different from the one used for training the magnetic field map,
and the sizes of the data sets were decided separately.

5-2-2 Models

The models applied in this system are the same as the ones introduced in Eq. (2-8),
(2-9), and (2-24). In the following content, the magnetic field map, inputs, bias, and
the noises in these models will be introduced.

Magnetic field map

The magnetic field map was built following Eq. (2-29) to (2-31) [18] as the measurements
were from a real-world magnetometer with the parameters decided in Section 5-1, not
the simply simulated data as set in the simulations in Chapter 4.

Inputs, bias, and noises

The input, transition position ∆pw
t and the transition ∆qb

t , were calculated from the
known true position and orientation to mimic the uncertain transition data measure-
ments. The process of how the extraction was done is similar to Eq. (4-1).
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The measurement covariance of the transition position is set as

Rdp =

10−6 0 0
0 10−6 0
0 0 10−8

 . (5-1)

The first two diagonal values were set to a larger value than the third one as the
measurement in Z direction was assumed to be less uncertain. The measurement noise
of the gyroscope was set as

Rdq = 10−6 · I3×3. (5-2)

Besides, to demonstrate the advantages of using the algorithms and the magnetome-
ter measurements for estimation calibration, a bias was introduced to the transition
position subtracted from the already-known true position.
The bias is designed to create a drift that will make the endpoint 0.3 meters far away
from the ground truth in both X and Y axes.
The resulting trajectory estimated with dead reckoning including this bias and the
measurement noises without any initial error is shown in Figure 5-4 with the drift
shown.

Figure 5-4: The estimated trajectory through dead reckoning

5-2-3 Algorithms

Similar to the simulations introduced in Chapter 4, the simulations with real-world
measurements were also run with the Extended Kalman filter (EKF), the PF, and the
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GSF. Here, the settings of these algorithms that were not varied through different
simulations are introduced.

• Extended Kalman filter (EKF)
The settings of the EKF are similar to what is introduced in Section 4-1-3. The
initial mean of the position p̂w

1|1 was set using Eq. (4-2). The initial mean of the
orientation was set to the same value as the initial ground truth of the orientation
because the orientation was assumed to have less uncertainty than the position.
The initial covariance for Eq. (2-33f) was set as

P1|1 =



1.5ϵ0 0 0 0 0 0
0 1.5ϵ0 0 0 0 0
0 0 10−8 0 0 0
0 0 0 10−8 0 0
0 0 0 0 10−8 0
0 0 0 0 0 10−8


, (5-3)

where ϵ0 is the initial error and the value “1.5” multiplied by the initial error was
designed in order to make the ground truth within the 68% confidence interval.
Compared with the setting in Eq. (4-3), the values for components that were not
related to X and Y positions were set to smaller values, 10−8.

• Particle filter (PF)
The number of the particles was set to values equal to 100, 200, and 500 to observe
if the accuracy of the PF would increase with the number of the particles.
The initial distribution that the sampling of the particles depended on was set to
the same initial distribution of the EKF.

• Gaussian sum filter (GSF)
The GSF in this chapter was also set similarly as in Section 4-1-3. The diamond
region depended on the initial means and covariances of the EKF, so the values
would also vary through simulations as the initial error was designed differently
in the simulations. The only difference existed in the last four diagonal values of
initial covariances of the Gaussian components. Here, the values were set to 10−8.

Note that the code for the EKF and the PF are based on [38].
The algorithm settings of the three algorithms are similar to what is introduced in
Chapter 4. Therefore, the reader can refer to Table 4-1 for clearer settings of the
algorithms. Note that the initial covariances are slightly different in value as shown in
Eq. (5-3) and the values of other settings might be varied due to the different purposes
of the simulations.

5-3 Simulation settings and results

Similar to the simulations discussed in Chapter 4, there were 3 simulations each with
different variables changed through the simulation to observe the performance of the 3
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algorithms introduced in 5-2-3. The variables that varied in the three simulations are

• Initial error of the estimated position ϵ0

• Number of Gaussian components of the GSF MGSF

• Initial covariance matrices of the GSF P i
1|1

and the purpose of varying these variables was also introduced in Section 4-2.
Different from the simulation results shown in Chapter 4, the results in this chapter
will be discussed with different percentages of the whole trajectory. In Chapter 4, the
results of the simulations were presented with the root mean squared error (RMSE)
of the entire trajectory. However, in this chapter, the results will sometimes be shown
with part of the trajectory. This is because the estimators might act inaccurately at the
beginning of the localization and these initial inaccuracies could be misleading when
looking at the RMSE of the whole trajectory. To avoid this condition, the RMSE will
be discussed when looking at the whole trajectory, the last 80% of the trajectory, and
the last 67% of the trajectory. An illustration demonstrating what these percentages
mean is shown in Figure 5-5.
The following subsections are the introduction of the customized settings of the algo-
rithms for each simulation and the corresponding simulation results.

5-3-1 Varied initial error ϵ0

As discussed previously in Section 1-2, when the initial uncertainty is large, it is more
possible for the multimodal distribution to happen. As a result, the initial error ϵ0 in
this simulation was set with different values to observe the robustness of the GSF to
multimodality compared with the other algorithms.
The initial error in this simulation is designed to be varied from 0.0025 to 0.2. This
can also be written as

ϵ0 = 0.0025 + j−1
9 · 0.1975, (5-4)

where j ∈ {1, ..., 10}. A visualization of how the initialization of the EKF and the GSF
changed with different initial errors is shown in Figure 5-6, where the initial uncertainty
grows as the initial error is set to larger values.

• Initialization of the algorithms
The initialization of the algorithms was similar to the one applied in Section 4-2-1.

– EKF
As the initial error varied through the simulation, the initial mean and co-
variance of the EKF also varied through simulation. The initial distribution
was calculated by implementing the initial error value in Eq. (5-4) to the
mean and the covariance in Eq. (4-2) and (5-3).
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(a) Whole trajectory (b) Last 80% of the trajectory

(c) Last 67% of the trajectory

Figure 5-5: The illustration showing how the trajectories are analyzed partially

– PF
The initial particles of the PF were sampled from the initial distribution of
the EKF.

– GSF
The number of the Gaussian components was set to 4, 16, and 64 with the
Gaussian components approximating the covariance ellipsoid of the EKF with
a diamond shape.
The initial means and the covariances were set in the way introduced in 5-2-3.

• Simulation results
The simulation was run as a Monte Carlo simulation with 100 experiments for
each initial error value. The results of the three algorithms are shown with the
RMSE of different parts of the trajectories.
From the difference between the plots shown in Figure 5-7, the GSFs with 16
and 64 Gaussian components has a decreasing trend as the trajectory taken into
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(a) ϵ0 = 0.0025 (b) ϵ0 = 0.09

(c) ϵ0 = 0.2

Figure 5-6: The initialization of the EKF and the GSF with varied values of initial error ϵ0

account contains fewer starting parts. When only the last 80% of the trajectory is
analyzed, the GSFs with a large enough number of Gaussian components (larger
or equal to 16) outperforms the other algorithms with low and stable error.
As the initial error grows, the range of uncertainty reaches the area where the dis-
tribution becomes multimodal. This can also be observed from the distribution
that the algorithms estimated at time step t = 2 in Figure 5-8. As the initial error
is large enough to trigger the multimodality, the EKF shows a large error while
the GSF is still keeping low RMSE. Therefore, the GSF shows the capability
of estimating the position accurately even when there exists the multimodal dis-
tribution with simulations including the real-world magnetometer measurements.

5-3-2 Varied numbers of Gaussian components of the GSF MGSF

In this simulation, the number of the Gaussian components of the GSF was varied.
Besides observing the relationship between the accuracy and the number of the Gaus-
sian components, the time durations of the GSF and the PF had for each value of the
number of the Gaussian components will be compared to check if the GSF is more
efficient than the PF while the accuracy is still kept at a similar or even better level.
The number of the Gaussian components of the GSF was set from 4 to 64. The
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(a) Whole trajectory (b) Last 80% of the trajectory

(c) Last 67% of the trajectory

Figure 5-7: The RMSE of the estimated trajectories from different algorithms under varied values
of initial error ϵ0

illustrations of the GSF initialization with different values of the number of the Gaussian
components are shown in Figure 5-9.

As observed in Section 5-3-1, there existed multimodal distributions when the initial
error was larger than 0.07. As a result, to discuss the accuracy of the algorithms when
multimodality appears, the initial error ϵ0 in this simulation was set to 0.07.

• Initialization of the algorithms
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(a) ϵ0 = 0.0025 (b) ϵ0 = 0.07

(c) ϵ0 = 0.2

Figure 5-8: The distribution estimated by the algorithms when t = 2 under varied values of
initial error ϵ0

– GSF
The number of the Gaussian components of the GSF was set to 7 values:
4, 9, 16, 25, 36, 49, and 64. As the Gaussian components were designed to
approximate the initial covariance ellipsoid of the EKF with a 2-dimensional
diamond on the X − Y plane, the number of the Gaussian components on
each side of the diamond was then 2, 3, 4, 5, 6, 7, and 8.
The initial means of the Gaussian components were scattered equally in the
range defined using Eq. (4-4), and the initial covariances were assigned fol-
lowing Eq. (4-5) based on the initial distribution of the EKF.

– EKF and PF
As the initial error ϵ0 for this simulation was set to 0.07, the initialization
of the EKF and the PF were kept the same throughout the simulation. The
initial position and covariance of the EKF were set as shown in Eq. (4-2)
and Eq. (5-3). The initial particles of the PF were sampled from the initial
distribution of the EKF.

• Simulation results
The simulation was again run as a Monte Carlo simulation with 100 experiments
for each value of the number of Gaussian components of the GSF. Since this
simulation was designed to observe the change in the performance of the GSF, the
results of the EKF and the PF are shown with the mean and the 95% confidence
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(a) MGSF = 4 (b) MGSF = 25

(c) MGSF = 64

Figure 5-9: The initialization of the EKF and the GSF with different values for the number of
the Gaussian components of the GSF MGSF

interval.
As mentioned previously, the time duration recorded in this simulation could be
used as a check to see if the GSF is more efficient than the PF while having better
accuracy compared with the EKF when there is multimodality. As seen in Figure
5-10, the GSF is more efficient compared with the PF when the number of the
Gaussian components of the GSF is lower than 50.
Furthermore, from the RMSE of the trajectories shown in Figure 5-11, the GSF
shows a low error compared to the other algorithms. This implies that with the
number of Gaussian components lower than 50, the GSF is indeed more efficient
than the PF and also more accurate than the EKF when there is multimodality.
Moreover, as seen from Figure 5-11, the PF with 500 particles is still having higher
error compared with the GSF. Therefore, even with the GSF with 64 Gaussian
components, it will be more efficient compared with the PF if the number of the
particles is added to the amount to have equally accurate results to the GSF.

5-3-3 Varied initial covariance matrices of the GSF P i
1|1

This simulation is designed to discuss the suitable values for the initial covariances of
the Gaussian components of the GSF. The settings were similar to the one introduced
in Section 4-2-3.
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Figure 5-10: Time duration of the algorithms under different values of the number of Gaussian
components of the GSF MGSF

• Initialization of the algorithms
The initial error ϵ0 set in this simulation is equal to the one mentioned in Section
5-3-2, with ϵ0 = 0.07.

– GSF
The number of the Gaussian components of the GSF was set in the same way
as introduced in 5-3-1.
The initial means were designed to approximate the initial 68% confidence
covariance ellipsoid of the EKF in a diamond shape in the range defined using
Eq. (4-4).
The initial covariance values corresponding to the position in X and Y axes
of the Gaussian components were designed to vary from 0.1 times the normal
settings (settings based on Eq. (4-5)) to about value 1. Therefore, the values
of the initial covariance related to the position in X and Y axes can be written
as

P i
1|1,(x,x) = (

√
P1|1,(x,x)

MGSF,x
)2 · (0.1 + j−1

9 · (
√

P1|1,(x,x)

MGSF,x
)−2), (5-5)

P i
1|1,(y,y) = (

√
P1|1,(y,y)

MGSF,y
)2 · (0.1 + j−1

9 · (
√

P1|1,(y,y)

MGSF,y
)−2)), (5-6)

where j ∈ {1, ..., 10}. The values of the other diagonal elements were set the
same as mentioned in 5-2-3. An illustration of how the GSF looks like with
the smallest and largest initial covariance values is shown in Figure 5-12.
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(a) Whole trajectory (b) Last 80% of the trajectory

(c) Last 67% of the trajectory

Figure 5-11: The RMSE of the estimated trajectories of different algorithms under varied values
of the number of the Gaussian components of the GSF MGSF

– EKF and PF
The settings for the initialization of the EKF and the PF were identical to
the ones in Section 5-3-2.

• Simulation results
The simulation in this section was run as a Monte Carlo simulation with 100
experiments. Because the settings of the EKF and the PF were kept the same
through the simulation, the results of these two algorithms will be shown with the
mean and the 95% confidence interval.
The simulation results here are also presented with the RMSE of different parts of
the trajectories. Furthermore, in this simulation, the results will also be discussed
with the last 50% of the trajectory. The visualization of the last 50% of the
trajectory compared with the entire trajectory is shown in Figure 5-13.
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(a) First two diagonal elements of the ini-
tial estimated covariance matrices of GSF =
0.0002

(b) First two diagonal elements of the ini-
tial estimated covariance matrices of GSF =
1.0002

Figure 5-12: The visualization of the algorithm initializations for the magnetic field localization
with the smallest and largest initial covariances the GSF (Initial error = 0.07)

Figure 5-13: The illustration showing the last 50% of the trajectory compared with the whole
trajectory

As shown in Figure 5-14, the error of the GSFs is high if the whole trajectory is
taken into account when calculating the RMSE. However, if the region is narrowed
down to the part of the trajectory that is a certain distance away from the starting
point, the results are then as stable as what is also seen in the purely simulated
case in Section 4-2-3. An analysis of this stable performance of the GSF was
also carried out and the possible reason for this phenomenon was found to be the
small value set for the measurement noise. For a more detailed discussion of the
analysis, the reader can see Appendix G-2.

5-4 Conclusion

In this chapter, the GSF was applied to the magnetic field localization system with real-
world magnetometer measurements. Since the measurement data was from real-world
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(a) Whole trajectory (b) Last 80% of the trajectory

(c) Last 67% of the trajectory (d) Last 50% of the trajectory

Figure 5-14: The RMSE of the estimated trajectories of different algorithms under varied values
of the initial covariances of the GSF P i

1|1

magnetometers, more uncertainties were introduced.
Three simulations that were done in Chapter 4 were again run with this real-world
measurement system. The GSF is again proved to be more suitable for multimodal
distribution than the EKF by the simulation results with varied initial errors. The
GSF is also shown to be more efficient than the PF in the simulation varying the
number of the Gaussian components. In the simulation varying the initial covariances
of the GSF, the GSF is again found not sensitive to large initial covariance values.
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Conclusion

Magnetometers are widely equipped in smartphones today, and this makes them eas-
ily accessible sensors. Furthermore, the measurement of the magnetic field is not a
transition measurement like what accelerometers and gyroscopes have, so there is no
drift when estimating position and orientation using magnetometers. Moreover, mag-
netometers require no additional signal senders or receivers in the indoor environment
for localization. With these advantages, the study of magnetometers as sensors for
indoor localization is valuable.
However, in the current studies in localization using magnetometers, there exists a
research gap in the algorithms applied to magnetic field localization for position and
orientation estimation. The Extended Kalman filter (EKF) has been applied as an
estimator in a previous study [38]. It is efficient since it relies on linear algebra for
the approximation of the state in each time step. Nevertheless, as it is based on the
assumption that the distributions are unimodal Gaussian distributions, it is not an ideal
algorithm when initial uncertainty is large. The reason for this disadvantage is that
the measurement model for magnetic field localization is a combination of sinusoidal
functions and these periodic functions could introduce multimodality to the system.
When the initial uncertainty is large, the linearization in the EKF might be invalid
and multimodality can lead to a completely wrong estimation as the starting position
is already at the area where the distribution of the state cannot be simply assumed as
an unimodal Gaussian distribution.
Besides the EKF, a Particle filter (PF) has also been applied to magnetic field local-
ization in previous research [30]. Since the PF does not rely on the assumption that
the distributions are unimodal Gaussian distributions, it is possible to perform better
in accuracy compared to the EKF when the initial uncertainty is large. Nonetheless,
the payoff of this benefit is the computational cost.
As a result, in the studies of magnetic field localization so far, there is a research gap
for the algorithms applied for position and orientation estimation. The gap is made by
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the lack of an algorithm that is more efficient than the PF, but also more robust to
multimodality compared to the EKF.

The Gaussian sum filter (GSF) is found to be a possible solution to this research gap.
It can approximate multimodal distributions with Gaussian mixtures, so it is expected
to be more suitable for multimodality than the EKF. Furthermore, the amount of
Gaussian components of a GSF is often much less than the particles of a PF, so the
GSF could be an algorithm that is more efficient than the PF. To find out if the GSF
is a solution to the research gap, several simulations were run with the GSF as the
estimator of the position and orientation.

The GSF was applied to two sets of simulations. The measurements of the first set
of simulations were all simulated. Therefore, the magnetic field map was built based
directly on the given distribution of the weight vector m. On the other hand, the
magnetometer measurements of the second set of simulations were from a real-world
magnetometer. Hence, the magnetic field map in this set was built following the re-
cursive process shown in Eq. (2-31). With the first set of simulations, the results were
checked under less uncertain conditions. After the check using the pure simulations of
the first set, the GSF was implemented in the second set of simulations, where more un-
certainty was introduced because of the real-world magnetometer measurements. There
were three simulations in each set and the settings were mostly the same for the sets.

In the first simulation, the initial error was varied to trigger the multimodality of the
magnetic field localization system. By increasing the initial error, it is more likely the
distribution is multimodal. This is also a simulation run in the previous study [38].
From the simulation results analyzed using the root mean squared error (RMSE)s of
both sets, the GSF is found to be more suitable for multimodal distributions compared
with the EKF with lower estimation error when the initial error is large.

The second simulation was set with various numbers of the Gaussian components of
the GSF. From the RMSEs of both sets, there is no obvious threshold found as the
appropriate number of Gaussian components for the GSF to achieve enough accuracy.
Furthermore, it is found that the GSF is more efficient compared with the PF when
the GSF is equally or more accurate than the PF.

In the last simulation, the initial covariances of the GSF were varied to check what is
the appropriate value to set as the initial covariance values of the Gaussian components
of the GSF. The results of both sets show that the accuracy of the GSF does not change
significantly with the initial covariance values. As a result, the initial covariance values
of the GSF set in the other simulations were kept as they were originally set.

From the results of the simulations of magnetic field localization, the possibility of the
GSF as the solution to the research gap in magnetic field localization is proven to be
quite positive. The GSF is shown to be more efficient compared to the PF while more
suitable to the multimodal distributions than the EKF.
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Possible future works

As found in the analysis of the simulation results varying the initial covariances of the
GSF shown in Appendix G, the covariances might grow too large if the localization
duration is long enough. Thus, the design of a strategy to decompose Gaussian com-
ponents with too large covariances might be necessary. Therefore, this decomposing
strategy is a possible future work as the extension of this thesis project. Furthermore,
since decomposing Gaussian components implies an increase in computational time as
the number of Gaussian components increases, a strategy to merge repetitive or useless
Gaussian components will also be needed.
In addition, the measurements of the transition position and orientation were only
simulated in this thesis project. Thus, a potential future work is to implement real-world
measurements from accelerometers and gyroscopes to further study the performance of
the GSF under more uncertain and realistic situations.
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Appendix A

Measurement model

In this chapter, the close form of the measurement model after applying the reduced-
rank Gaussian process will be presented analytically based on the explanation shown
in [38].
As shown in Section 2-2-3, the measurement model with the reduced-rank Gaussian
process (GP) is

yb
t = Rbw

t ∇pΦ(pw
t )m + eb

m,t, (A-1)

where the basis function matrix Φ(pw
t ) and the basis functions ϕi(pw

t ) are given in 2-26
and 2-27a. For simpler notation, the following derivation will simplify the notation of
position pw

t as

pw
t = p =

[
px py pz

]T
=
[
p1 p2 p3

]T
. (A-2)

The matrix ∇pΦ(p) can be separated into two parts as

∇pΦ(p) =
[
(∇pΦ(p))1:3 (∇pΦ(p))4:Nm+3

]
∈ R3×(3+Nm). (A-3)

For the first part,

(∇pΦ(p))1:3 = I3. (A-4)

For the second part,

(∇pΦ(p))4:Nm+3 =
[
∇pϕ4(p) ... ∇pϕNm+3(p)

]
, (A-5)

where

∇pϕi(p) =


∂ϕi(p)

∂p1
∂ϕi(p)

∂p2
∂ϕi(p)

∂p3

 =


πni,1

Lu,1−Ll,1
c1s2s3

πni,2
Lu,2−Ll,2

s1c2s3
πni,3

Lu,3−Ll,3
s1s2c3

 , for i ∈ {4, ..., Nm + 3}, (A-6)
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sd =
√

2√
Lu,d − Ll,d

sin
(

πni,d

Lu,d−Ll,d
(pd − Ll,d)

)
, (A-7a)

cd =
√

2√
Lu,d − Ll,d

cos
(

πni,d

Lu,d−Ll,d
(pd − Ll,d)

)
. (A-7b)

As a result, the measurement model will end up as a function of the multiplication of
sinusoidal functions of pw

t .
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Appendix B

Magnetic field map selection process

In this appendix, the process of the decision of the parameters for building the magnetic
field map using reduced-rank Gaussian process (GP) will be introduced.
To build the maps and evaluate the results, the data was divided into the training data
set and the test data set. Following is the introduction of the notation for these data
sets.

• Training data set
The magnetometer measurements of the training data set are expressed in the
following form

Y b
train =

[
yb

train,1 yb
train,2 yb

train,3 ... yb
train,Ntrain

]
∈ R3×Ntrain , (B-1a)

where yb
train,i =

[
yb,x

train,i yb,y
train,i yb,z

train,i

]T
∈ R3.

The positions of the training data set are also noted with train as listed below:

P w
train =

[
pw

train,1 pw
train,2 pw

train,3 ... pw
train,Ntrain

]
∈ R3×Ntrain , (B-2a)

where pw
train,i =

[
pw,x

train,i pw,y
train,i pw,z

train,i

]T
∈ R3.

The orientations are also noted with train to be differed from the test data in the
following notation:

Qwb
train =

[
qwb

train,1 qwb
train,2 qwb

train,3 ... qwb
train,Ntrain

]
∈ R4×Ntrain , (B-3a)

where qwb
train,i =

[
qwb,I

train,i qwb,II
train,i qwb,III

train,i qwb,I
train,i

]T
∈ R4.

• Test data set
The test data is noted with test in a similar way shown when introducing the
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training data set. The magnetometer measurements of the test data are written
as

Y b
test =

[
yb

test,1 yb
test,2 yb

test,3 ... yb
test,Ntest

]
∈ R3×Ntest , (B-4a)

where yb
test,i =

[
yb,x

test,i yb,y
test,i yb,z

test,i

]T
∈ R3.

The positions of the test data are written as

P w
test =

[
pw

test,1 pw
test,2 pw

test,3 ... pw
test,Ntest

]
∈ R3×Ntest , (B-5a)

where pw
test,i =

[
pw,x

test,i pw,y
test,i pw,z

test,i

]T
∈ R3.

The orientations of the test data are written as

Qwb
test =

[
qwb

test,1 qwb
test,2 qwb

test,3 ... qwb
test,Ntest

]T
∈ R4×Ntest , (B-6a)

where

qwb
test,i =

[
qwb

test,1,i qwb
test,2,i qwb

test,3,i qwb
test,4,i

]T
∈ R4. (B-6b)

In this appendix, the conditional distribution of the trained magnetic field map using
a full-rank GP and a reduced-rank GP will be introduced. Moreover, the methods for
the result evaluation will be shown in Section B-2. Furthermore, the results from these
two methods will be compared to evaluate the parameters chosen when performing the
reduced-rank GP for localization.

B-1 Conditional distribution for evaluation

In this section, the calculation of the conditional distribution that was used when
evaluating the maps trained from the full-rank and reduced-rank GP will be introduced.

B-1-1 Full-rank GP

The measurement model with the map learned through the full-rank GP is shown
in Eq. (2-19). The measurement of the orientation qwb

t was assumed to be accurate.
Therefore, it was not included as the test data when training the model. Instead,
it was used for rotating the magnetometer measurement yb

t for easier calculation of
the gradient of the conditional Gaussian process prior. The measurement model in
Eq. (2-19) rotated using the orientation can be written as

Rwb
t yb

t = Rwb
t Rbw

t ∇pφ(pw
t ) + Rwb

t eb
m,t

= ∇pφ(pw
t ) + ew

m,t, ew
m,t ∼ N (0, Rwb

t (σ2
mI3)(Rwb

t )T), (B-7a)

where Rwb
t is the rotation matrix translated from the unit quaternion form of the

orientation qwb
t .
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B-1 Conditional distribution for evaluation 73

To evaluate the magnetic field map built using the full-rank Gaussian process, the
distribution of the gradient of the scalar potential ∇pφ(pw

t ) given the training data set
and the test position was calculated. That is, the conditional distribution

p(∇pφ(Ptest)|Rwb
trainY b

train, P w
train, P w

test) = N (µtest, Σtest) (B-8)

was calculated. The means of the distribution can be obtained by calculating

µtest = κT
FR,⋆κ

−1
FR,yRwb

trainY b
train ∈ R3×Ntest , (B-9a)

and the corresponding covariance matrices are

Σtest = κFR,⋆⋆ − κT
FR,⋆κ

−1
FR,yκFR,⋆ ∈ R3Ntest×3Ntest , (B-9b)

where

κFR(P w
test, P w

train) = σ2
linI3 + ∇ptrain

∇ptestκSE(P w
test, P w

train) (B-9c)

is from Eq. (2-23), κFR,⋆ = κFR(P w
train, P w

test), κFR,⋆⋆ = κFR(P w
test, P w

test), and κFR,y =
κFR(P w

train, P w
train) + σ2

mINtrain
, and Rwb

train are the rotation matrices translated from
Qwb

train [39].

B-1-2 Reduced-rank Gaussian process

Similar to the full-rank GP, the measurement model shown in Eq. (2-24) is rotated to
the world frame as the measurement of the orientation is assumed to be accurate and for
easier calculation of the conditional Gaussian process prior. The rotated measurement
model can then be written as

Rwb
t yb

t = Rwb
t Rbw

t ∇pΦ(pw
t )m + Rwb

t eb
m,t

= ∇pΦ(pw
t )m + ew

m,t, ew
m,t ∼ N (0, Rwb

t (σ2
mI3)(Rwb

t )T). (B-10a)

From Eq. (B-10a), the measurement model can be simply seen as a linear equation

Rwb
t yb

t = ∇pΦ(pw
t )︸ ︷︷ ︸

deterministic
matrix

m + ew
m,t, (B-11)

where the vector m is stochastic and ∇pΦ(pw
t ) is a deterministic matrix if given pw

t . As a
result, the distribution of the approximated gradient of the scalar potential ∇pΦ(P w

test)m
can be obtained from the distribution of m.
The distribution of m is calculated from a recursive update of its mean m̂t and the
covariance matrix Λt following Eq. (2-29) to (2-31) [18]. At the end of the recursive
update, the distribution of m is then

p(m|Rwb
trainY b

train, P w
train) = N (m̂Ntrain

, ΛNtrain
). (B-12)
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74 Magnetic field map selection process

Considering the gradient of the basis function matrix ∇pΦ(P w
test) is deterministic, by ap-

plying the property of joint distribution in Eq. (C-5b) [32], the conditional distribution
of the gradient of the approximated potential scalar can be written as

p(∇pΦ(P w
test)m|Rwb

trainY b
train, P w

train, P w
test)

=N (µtest, Σtest)
=N (∇pΦ(P w

test)m̂Ntrain
, (∇pΦ(P w

test))ΛNtrain
(∇pΦ(P w

test))T). (B-13a)

B-2 Evaluation methods

To check if the chosen parameters are appropriate, the magnetic field map built using
the reduced-rank GP will be compared with the map built with the full-rank GP and
the true measurement.
The data selected from the real-world measurements for the estimation of the magnetic
field maps was formed with three parts of the measurements. The first two parts
were the measurements gathered when walking vertically in the indoor environment.
These two parts are shown in Figure B-1a and B-1b. These two measurements were
gathered under a similar trajectory, but not completely the same. The last part of the
measurements is a zigzag trajectory that goes from top to bottom of the plot shown in
Figure B-1c.
The true magnetometer measurements were rotated to the world frame “w” before
comparing with the results of the learned measurements using the reduced-rank and
full-rank GP. The rotated true measurement is denoted as

yw
test,i = Rwb

test,iy
b
test,i, (B-14)

where Rwb
test,i is the rotation matrix calculated from the orientation qwb

test,i shown in
Eq. (B-6b). This is done because the learned maps following the process discussed in
Appendix B-1 are in the world frame “w”.
The training and test data sets applied in these evaluation methods were divided from
the rotated true magnetometer measurements in a chessboard method. As shown in
Figure B-2, the data points with the positions in the grey areas were selected as the
training data, and the data points in the white areas were then selected as the testing
data. The width of the grey blocks was set as 0.5lSE.
The methods for evaluating the built magnetic field maps are:

• Standardized mean squared error (SMSE)

The maps from the reduced-rank and full-rank GPs were evaluated using the
SMSE defined in [29].
The learned measurements were evaluated in two forms of the SMSE. The first
form is the norm of the rotated measurements. The SMSE of the norm of the
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(a) First part (b) Second part

(c) Third part

Figure B-1: The parts of the data from the data gathered through real-world measurement

measurements was calculated as

SMSEnorm = 1
Ntest

Ntest∑
i=1

(||yw
test,i||2−||µtest,i||2)2

Var
[
||yw

train,1||2 ||yw
train,2||2 ||yw

train,3||2 ... ||yw
train,Ntrain

||2
] ,

(B-15)

where Var[...] is the variance of the norm of all measurements from the training
data set, and µtest,i are the estimates subtracted from µtest from the reduced-rank
or full-rank Gaussian process.

The second form is the vector form of the rotated measurements. The analytical
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Figure B-2: An illustration showing how the data set is divided into a training data set and a
test data set

expression of the SMSE of the measurements in the vector form can be written as

SMSE =



1
Ntest

∑Ntest
i=1

(yw,x
test,i−µx

test,i)
2

Var
[
yw,x

train,1 yw,x
train,2 yw,x

train,3 ... yw,x
train,Ntrain

]
1

Ntest

∑Ntest
i=1

(Rwb
test,iy

w,y
test,i|−µy

test,i)
2

Var
[
yw,y

train,1 yw,y
train,2 yw,y

train,3 ... yw,y
train,Ntrain

]
1

Ntest

∑Ntest
i=1

(Rwb
test,iy

w,z
test,i−µz

test,i)
2

Var
[
yw,z

train,1 yw,z
train,2 yw,z

train,3 ... yw,z
train,Ntrain

]


, (B-16)

where the measurements of each axis are standardized individually.

• Negative log predictive density (NLPD)
The other method applied in this section for the evaluation of the learned maps
is NLPD [12], and the formula for calculating the NLPD value is

NLPD = 1
Ntest

Ntest∑
i=1

− log(p(yw
test,i; µtest,i, Σtest,i)), (B-17)

where Σtest,i is a 3 × 3 matrix subtracted from the covariance matrices Σtest on
the diagonal direction.

B-3 Evaluation results

To find a preferred set of parameters for building the magnetic field maps using the
reduced-rank GP, estimated magnetic field maps trained using the reduced-rank GP
and the full-rank GP with different parameter values were compared. The parameters
that were changed through this evaluation process are:
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• Range:
The range in Y direction of the area to localize was tested with two different
values, 0.5 meters and 1.5 meters.

• Length scale lSE
The length scale lSE that is applied in Eq. (2-22) and (2-30).

• σSE
The hyperparameter σSE that is applied in Eq. (2-22) and (2-30).

• Data size
The size of the data used for the training of the magnetic field maps using the
reduce-rank GP.

• Measurement noise σm

The guessed measuremnt noise σm used in Eq. (B-9c) and (2-31).

The detailed purpose of testing these parameters and the results of changing their
values will be shown in the following discussion.

Range

Increasing the number of basis functions will increase the level of the approximation
of the reduced-rank GP to the full-rank GP [29], but the larger the number of basis
functions is, the more computational cost is generated. Therefore, the number of the
basis functions was limited to 200 in this chapter as the localization is aimed to be
performed online and will be impractical if it takes too much computational effort.
Since the number of basis functions is fixed, another method to increase the level of
approximation of the reduced-rank GP to the full-rank GP is to decrease the localization
range. In theory, the smaller the region is, the less basis function is needed to remain at
the same level of approximation as there is less complexity. Therefore, in this section,
the estimated maps of different sizes of range in Y direction will be compared to see
what is an appropriate range for localization. The two ranges selected to localize were
0.5 meters and 1.5 meters in Y direction. As there is a margin value set for the
trajectory and the magnetic field map, the actual range selected to build the maps is
2.5 meters and 3.5 meters as shown in Figure B-3.
The SMSEs and the NLPD results are shown in Table B-1. When the range for local-
ization is set to 0.5 meters, the reduced-rank GP is closer to the full-rank GP when
looking at the SMSE values for both the norm and vector forms. However, the norm
form SMSE of the full-rank GP is much higher when the range is small. The possible
reason for this situation is that the range is not large enough for the GP to have enough
varied information to learn the map. One might notice that the NLPD value of the
reduced-rank GP is abnormal. This is now a solved issue of the reduced-rank GP and
a solution will be applied in a later discussion.
Besides looking at the values of the SMSE, these range settings were also applied to the
simulation of magnetic field localization. The simulation was run with 100 experiments
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(a) Range= 0.5m (b) Range= 1.5m

Figure B-3: The measurement data used for map training

Range
(m)

lSE σSE
Data
size σm

SMSE
(norm)

SMSE
(vector) NLPD

Reduced-
rank

Full-
rank

Reduced-
rank

Full-
rank

Reduced-
rank

Full-
rank

0.5 0.3 0.1 7680 0.1 0.4723 0.4052

0.5874
0.5815
0.5225

 0.4094
0.7044
0.1831

 ∞ 14.8567

1.5 0.3 0.1 10376 0.1 0.3694 0.1371

0.6780
0.6398
0.4055

  0.4080
0.37612
0.1322

 ∞ 13.9902

Table B-1: Magnetic field map evaluation results with varied ranges

for each value of the initial error and the measurement data were from the real-world
magnetometer measurements with the map built using the reduced-rank GP. The
detailed settings for this simulation is introduced in Section 5-3-1. From the root mean
squared error (RMSE) results shown in Figure B-4, the Extended Kalman filter (EKF)
is more accurate in the case when the range is smaller. The Gaussian sum filter (GSF)
showed a similar level of accuracy when the number of the Gaussian components is 16
or 64 for both ranges. This can be caused by the level of the complexity of the map
built through the reduced-rank GP. The maps built in the simulation can be seen in
Figure B-5. It is obvious that as there are more regions included when localizing, the
map is more varied, and thus the chance of multimodality will be higher. Therefore,
the EKF will be less applicable to the case when the range is larger.

From the results of the norm form SMSE, it can be concluded that a larger range is
better. Even though with a larger range setting the reduced-rank GP is less close to
the results of the full-rank GP, the value of the SMSE of the reduced-rank GP in the
norm form is smaller than the larger range case. Furthermore, the GSF is proposed
as a solution when there is a multimodal distribution. Therefore, the settings for the
localization range are preferred to have a larger value since a smaller range setting
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(a) Range= 0.5m (b) Range= 1.5m

Figure B-4: The RMSE of the trajectory with different ranges for localization

(a) Range= 0.5m (b) Range= 1.5m

Figure B-5: The heat map of the trained magnetic field map with varied range for localization

cannot demonstrate the case that the EKF is not estimating well when the distribution
is multimodal. As a result, 1.5 meters is the localization range decided after this
evaluation, and this setting will be applied in later evaluations.

B-3-1 Length scale lSE

The length scale of the kernel for the GPs is also tested with different values and
analyzed with the SMSE and NLPD.
The results are shown in Table B-2. The SMSE value in the norm form of the full-
rank GP is similar when the length scale lSE is set to 0.3 and 0.15, but the results of
the reduce-rank GP is showing a larger value when the lengthscale lSE is set to 1.5.
Although the full-rank GP has better NLPD results with smaller length scale values,
the setting of 0.3 for the length scale is preferred. This is because the GP that will be
applied to localization is the reduced-rank GP and will be more focused. Furthermore,
there is no outstanding performance of the full-rank GP when looking at the SMSE in
both norm and vector form. Thus, 0.3 is the value selected for later evaluation.
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Range
(m)

lSE σSE
Data
size σm

SMSE
(norm)

SMSE
(vector) NLPD

Reduced-
rank

Full-
rank

Reduced-
rank

Full-
rank

Reduced-
rank

Full-
rank

1.5 0.3 0.1 10376 0.1 0.3694 0.1371

0.6780
0.6398
0.4055

  0.4080
0.37612
0.1322

 ∞ 13.9902

1.5 0.15 0.1 10336 0.1 0.4466 0.1379

0.6440
0.7128
0.2970

 0.5621
0.2793
0.0395

 ∞ -0.6821

Table B-2: Magnetic field map evaluation results with varied length scale lSE

Figure B-6: A heat map showing the norm value of the true magnetometer measurement in
different positions

B-3-2 σSE

The hyperparameter of the squared exponential kernel σSE was also tried with different
values to see how the performance of the learned maps would change.

The values tested were 0.1 and 1. The value “1” was chosen from observing the variance
of the norm of the true magnetometer measurement. As shown in Figure B-6, the
median of the measurements is around 1 and the difference between the maximum
value and the medium is 1, so the value “1” was set for σSE. The value “0.1” was
selected through random trial.

From the results shown in Table B-3, it is obvious that the map learned through the
reduced-rank GP cannot converge and thus has extremely large values for the SMSEs
and the error in the NLPD. As a result, “0.1” was chosen as the value to be applied in
the later evaluation.
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Range
(m)

lSE σSE
Data
size σm

SMSE
(norm)

SMSE
(vector) NLPD

Reduced-
rank

Full-
rank

Reduced-
rank

Full-
rank

Reduced-
rank

Full-
rank

1.5 0.3 0.1 10376 0.1 0.3694 0.1371

0.6780
0.6398
0.4055

  0.4080
0.37612
0.1322

 ∞ 13.9902

1.5 0.3 1 10376 0.1 2.4 × 1088 0.6285

1.19 × 1088

1.12 × 1088

1.55 × 1087

 0.7216
0.9595
0.0785

 (error) 5.6167

Table B-3: Magnetic field map evaluation results with varied measurement noise σSE

B-3-3 Down sampling the data

As seen in previous evaluations, the NLPD values of the reduced-rank GP are infinity.
This shows that the covariances of the reduced-rank GP are not appropriate. The
values of the covariances were also found to be extremely small, and this will lead to
infinity values when the actual difference between the estimated measurement and the
true measurement is much larger than the level that the covariance matrix describes.
Although the actual reason for this phenomenon is still unknown, it is discovered that
a smaller size of the training data set and a larger value of the guessed measurement
noise σm might fix the problem that the estimated covariances of the reduced-rank GP
is too small.
In this test, different numbers of the data size of the training data set implementing to
the reduced-rank GP were tested and the results are analyzed with the values of the
SMSE and the NLPD. The results are shown in Table B-4.
The value of the NLPD of the reduced-rank GP is not fixed by reducing the data size
set for training the map. Furthermore, there is no obvious improvement or worsening
in the SMSE results of the reduced-rank GP. Therefore, the data size applied in the
later simulation will be set around 5000 for a lower computational cost.

B-3-4 Measurement noise σm

As mentioned previously, the irregular NLPD value of the reduced-rank GP might be
fixed by increasing the measurement noise σm. In this evaluation, two different values
of σm were tested, 0.1 and 1.
The results of the SMSE and the NLPD are given in Table B-5. The NLPD value of
the reduced-rank GP is now finite when σm was set to 1. Nonetheless, the norm form
SMSE values are larger than the results of σm = 0.1.
As a result, the large σm value will not be adopted as the value for further simulations
despite its better result in the NLPD.
One might argue that the difference is not large. Therefore, a set of simulations with
the measurement noise set as 1 was also run and is shown in Appendix H. The results

Master of Science Thesis Sing-Chi Hsu



82 Magnetic field map selection process

Range
(m)

lSE σSE
Data
size

σm

SMSE
(norm)

SMSE
(vector) NLPD

Reduced-
rank

Full-
rank

Reduced-
rank

Full-
rank

Reduced-
rank

Full-
rank

1.5 0.3 0.1 10376 0.1 0.3694 0.1371

0.6780
0.6398
0.4055

  0.4080
0.37612
0.1322

 ∞ 13.9902

1.5 0.3 0.1 5188 0.1 0.3697 0.1371

0.6779
0.6408
0.4075

  0.4080
0.37612
0.1322

 ∞ 13.9902

1.5 0.3 0.1 3459 0.1 0.3709 0.1371

0.6761
0.6401
0.4053

  0.4080
0.37612
0.1322

 ∞ 13.9902

1.5 0.3 0.1 2076 0.1 0.3681 0.1371

0.6752
0.6419
0.4042

  0.4080
0.37612
0.1322

 ∞ 13.9902

1.5 0.3 0.1 1153 0.1 0.3725 0.1371

0.6680
0.6450
0.4065

  0.4080
0.37612
0.1322

 ∞ 13.9902

1.5 0.3 0.1 519 0.1 0.3736 0.1371

0.6608
0.6615
0.4133

  0.4080
0.37612
0.1322

 ∞ 13.9902

1.5 0.3 0.1 260 0.1 0.3891 0.1371

0.6710
0.6887
0.4192

  0.4080
0.37612
0.1322

 ∞ 13.9902

Table B-4: Magnetic field map evaluation results with varied data sizes for map estimation

Range
(m)

lSE σSE
Data
size σm

SMSE
(norm)

SMSE
(vector) NLPD

Reduced-
rank

Full-
rank

Reduced-
rank

Full-
rank

Reduced-
rank

Full-
rank

1.5 0.3 0.1 5188 0.1 0.3697 0.1371

0.6779
0.6408
0.4075

  0.4080
0.37612
0.1322

 ∞ 13.9902

1.5 0.3 0.1 5188 1 0.4025 0.2705

0.6713
0.6595
0.4709

 0.4717
0.4059
0.2707

 10.7803 -0.2378

Table B-5: Magnetic field map evaluation results with varied measurement noise σm
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Range (m) lSE σSE Data size σm

1.5 0.3 0.1 ≈ 5000 0.1

Table B-6: Final decision of the parameters for establishing the magnetic field map using the
reduce-rank GP

eventually lead to the same conclusion as the setting with the measurement noise σm

set as 0.1. Therefore, it will not be included as the main discussion in this report.

B-3-5 Final decison of the parameters

From the discussion of the range for localization, it is concluded that 1.5 meters is
more suitable for the purpose of this thesis to discuss the performance of the algorithms
while the distribution is multimodal. Furthermore, the values of length scale lSE and
hyperparameter σSE are set to 0.3 and 0.1 since these settings can lead to better values
of SMSE in the norm form. As there’s no obvious improvement in downsampling the
data set used for training the map using the reduce-rank GP, the data size for training
was set to half of the original dataset for a smaller computational cost than using all
measurement data. For the value of the guessed measurement noise σm, as it leads to
a worse SMSE norm value, it is decided not to set it to a large value just to make the
NLPD results reasonable. Therefore, the final parameter settings after these evaluations
are decided as shown in Table B-6.
This decision is also checked by plotting the norm of the estimated measurements and
the true test data measurements in Figure B-7.

Master of Science Thesis Sing-Chi Hsu



84 Magnetic field map selection process

(a) True measurements (b) Estimation from the full-rank GP

(c) Estimation from the reduced-rank GP

Figure B-7: The norm of the magnetometer measurements corresponding to their positions
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Appendix C

Unimodal Gaussian distribution

When considering a variable with uncertainty that has a mean and the probability den-
sity function (pdf) has a hill-like shape with the peak close to the mean, an unimodal
Gaussian distribution is commonly utilized to represent its distribution. To represent
a variable in R with uncertainty using a Gaussian distribution, the mathematical ex-
pression of the variable can be written as

x ∼ N (µx, σ2
x), (C-1)

where x ∈ R is the variable with uncertainty, µx ∈ R is the mean of the variable,
σ2

x ∈ R is the variance of the variable x, and σx is the standard deviation of the
variable. Furthermore, the pdf of x can be written as

p(x) = 1
σx

√
2π

e− 1
2 ( x−µx

σx
)2 (C-2)

when the variable is assumed to have a Gaussian distribution [36].
Similarly, to represent the distribution of a variable in Rn using a Gaussian distribution,
it can be written as

x ∼ N (µx, Px), (C-3)

where x ∈ Rn is the variable with uncertainty, µx ∈ Rn is the mean of the variable, and
Px ∈ Rn×n is the covariance of the variable x. The probability density function is then

p(x) = 1√
(2π)n det(Px)

exp(−1
2(x − µx)TP −1

x (x − µx)) = 1√
(2π)n det(Px)

exp(−1
2 ||(x − µx)||2

P −1
x

),
(C-4)

where det(Px) is the determinant of the matrix Px[36].
Several theorems based on the assumption of Gaussian distribution are employed in
the discussion of algorithms in Section 2-3 for position and orientation estimation.
Therefore, these theorems are listed here, mostly based on the textbook [32].
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C-1 Joint distribution of Gaussian variables

When given distribution x ∼ N (µx, Px) and the measurement model

y = Cx + v, v ∼ N (0, R), (C-5a)

the joint distribution of x and y is(
x

y

)
∼ N

((
µx

Cµx

)
,

(
Px PxCT

CPx CPxCT + R

))
(C-5b)

[32].

C-2 Marginal and conditional distributions of Gaussian variables

When the joint distribution of x and y

p(x, y) = N
((

x

y

)
;
(

µx

µy

)
,

(
Px Pxy

pyx Py

))
(C-6a)

is known, the marginal distributions of x and y are

x ∼ N (µx, Px), (C-6b)
y ∼ N (µy, Py), (C-6c)

and the conditional distributions are

x|y ∼ N (µx + PxyP −1
y (y − µy), Px − PxyP −1

y Pyx), (C-6d)
y|x ∼ N (µy + PyxP −1

x (x − µx), Py − PyxP −1
x Pxy) (C-6e)

[32]. This theorem is utilized when discussing the Kalman filter in Section D-1.
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Appendix D

Extended Kalman filter

D-1 Kalman filter (KF)

The Kalman filter (KF) was first introduced by R. E. Kalman in 1960 [13]. It estimates
the state of a system by optimizing the minimum variance of the error between the re-
constructed measurement values with the estimated states and the real measurement
values as an observer in a system. Here, the derivation of this algorithm will be pre-
sented based on Bayesian theorems as shown in [32]. In this section, the linear model

xt+1 = Axt + ex,t, ex,t ∼ N (0, Q), (D-1a)
yt = Cxt + ey,t, ey,t ∼ N (0, R), (D-1b)

will be used to discuss the linear algorithm Kalman filter (KF), where xt represents
the state at time t, A and C are the linear state-space matrices, yt is the measurement
signal at time t, and ex,t and ey,t are the zero-mean process noise and the measurement
noise with the covariance denoted as

E

[[
ex,t

ey,t

] [
eT

x,t eT
y,t

]]
=
[
R ST

S Q

]
∆(k − j) ≥ 0, (D-2)

where R > 0 and ∆ is the unit impulse. The covariance matrix S will be considered as
a zero matrix in the following discussion since the process noise ex,t and measurement
noise ey,t are considered to be uncorrelated.
As mentioned previously, the Kalman filter (KF) estimates the state by getting min-
imum error covariance. The algorithm is performed every time step with the current
estimation results depending on the previous measurements and state estimations. In
each time step, two main updates, the time and the measurement updates, will be
carried out to result in the estimation of the state.
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• Time update
For the time update, the state development under the model in Eq. (D-1) over
time is analyzed with the states and the measurements from the previous time
steps given. That is, with the density of xt−1 given measurements from time 1 to
time t − 1, which is denoted as y1:t−1, written as

p(xt−1|y1:t−1) = N (xt−1; x̂t−1|t−1, Pt−1|t−1), (D-3a)

and the density of xt given ut,xt−1, and y1:t−1, written as,

p(xt|xt−1, y1:t−1) = N (xt; Axt−1, Q), (D-3b)

the density can be written as

p(xt|y1:t−1) = N (xt; x̂t|t−1, Pt|t−1)
= N (xt; Ax̂t−1|t−1, APt−1|t−1A

T + Q) (D-4)

when given only the measurement y1:t−1. The reader can refer to the joint and
marginal distributions introduced in Section C-1 for the derivation of the distri-
bution in Eq. (D-4).
With the results derived above, the estimation of the state and the covariance
matrix at time t + 1 can be written as

x̂t+1|t = Ax̂t|t, (D-5a)
Pt+1|t = APt|tA

T + Q (D-5b)

when given the estimated state at the previous time step t.

• Measurement update
After updating the estimation of the state by applying the known dynamic model
matrices and the distribution of the previous states and noises, the estimation
could be further calibrated by the error between the reconstructed measurements
from the estimated states and the real measurements. With the relation as shown
in Eq. (D-1b), the distribution of the measurement yt is

p(yt|xt, y1:t−1) = N (yt; Cxt, R) (D-6)

when given xt and y1:t−1. Furthermore, the estimation of the state and its covari-
ance matrix can be derived by applying the distribution D-4 and D-6 to conditional
distribution mentioned in Section C-2. As a result, the estimation of the state
and covariance matrix can be updated as

x̂t|t = x̂t|t−1 + Kt(yt − Cx̂t|t−1), (D-7a)
Pt|t = Pt|t−1 − KtStK

T
t , (D-7b)

where St ≜ CPt|t−1C
T + R and Kt ≜ Pt|t−1C

T(CPt|t−1C
T + R)−1.
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D-2 Extended Kalman filter 89

D-2 Extended Kalman filter

Due to the fact that most systems in practice are not linear, researchers adapted the
KF for linear systems and designed the Extended Kalman filter (EKF) for nonlinear
systems. To make the nonlinear system in the form

xt = f(xt−1) + ex,t, ex,t ∼ N (0, Q), (D-8a)
yt = h(xt) + ey,t, ey,t ∼ N (0, R) (D-8b)

applicable to the linear algebra operation that is shown in Section D-1, linearization us-
ing first-order Taylor approximation is utilized and results in the approximated system

xt+1 ∼= f(x̂t|t) + df(xt, ut)
dxt

∣∣∣∣∣
xt=x̂t|t

(xt − x̂t|t), (D-9a)

yt
∼= h(x̂t|t−1) + dh(xt)

dxt

∣∣∣∣∣
xt=x̂t|t−1

(xt − x̂t|t−1) (D-9b)

[1]. For notation convenience, the Jacobian matrices of the nonlinear functions f(·)
and h(·) at the linearization point will be denoted as

Ft = df(xt)
dxt

∣∣∣∣∣
xt=x̂t|t

, (D-10a)

Ht = dh(xt)
dxt

∣∣∣∣∣
xt=x̂t|t−1

. (D-10b)

Similar to the KF introduced in Section D-1, the algorithm contains two updates that
will be performed at each time step.

• Measurement update
The measurement update is similar to what is shown in Section D-1, with the
measurement signal reconstructed with the function h(·), which is given as

x̂t|t = x̂t|t−1 + Kt(yt − h(x̂t|t−1)), (D-11a)
and covariance matrix updated with Jacobian matrix Ht, which can be written as

Pt|t = Pt|t−1 − KtStK
T
t , (D-11b)

where St ≜ HtPt|t−1H
T
t + R and Kt ≜ Pt|t−1H

T
t S−1

t .

• Time update
The time update for EKF is similar for KF, with the states updated with the
dynamic function f(·)

x̂t+1|t = f(x̂t|t), (D-12a)
and the covariance updated with the Jacobian matrix Ft as

Pt+1|t = FtPt|tF
T
t + Q. (D-12b)
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D-3 Analytical expression of the general form of the EKF

The EKF mentioned in Section D-2 is shown in Algorithm 3.

Algorithm 3: Extended Kalman filter (EKF)
Input: Measurements {yt}N

t=1.
Output: Estimated states {x̂t|t}N

t=1.
Initialization: Estimated state x̂1|1, and estimated covariance matrix P1|1.

1 for t = 2, ..., N do
2 Time update

x̂t|t−1 = f(x̂t−1|t−1, ut), (D-13a)
Pt|t−1 = Ft−1Pt−1|t−1F T

t−1 + Q. (D-13b)

3 Measurement update

x̂t|t = x̂t|t−1 + Kt(yt − h(x̂t|t−1)), (D-14a)
Pt|t = Pt|t−1 − KtStK

T
t , (D-14b)

St = HtPt|t−1HT
t + R, (D-14c)

Kt = Pt|t−1HT
t S−1

t . (D-14d)

4 end

D-4 Extended Kalman filter for magnetic field localization

The analytical expression of the EKF applied to magnetic field localization in Section
2-3-1 is presented in Algorithm 4.
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Algorithm 4: EKF for magnetic field localization
Input: Odometry measurements {∆pw

t , ∆qb
t }N

t=1, magnetic field measurements {yb
t }N

t=1,
and a magnetic field weight vector m.

Output: Estimated positions {p̂w
t|t}

N
t=1 and estiamted orientations {q̂wb

t|t }N
t=1.

Initialization: An estimated position p̂w
1|1, an estiamted orientation q̂wb

1|1, and an
estaimated covaraince matrix P1|1.

1 for t = 2, ..., N do
2 for i = 1 : MGSF do
3 Time update

p̂w
t|t−1 = p̂w

t−1|t−1 + ∆pw
t , (D-15a)

q̂wb
t|t−1 = q̂wb

t−1|t−1 ⊙ expq(∆qb
t ), (D-15b)

Pt|t−1 = Pt−1|t−1 + Qζ . (D-15c)

4 Measurement update

ζ̂t = Kt(R̂wb
t|t−1yb

t − ∇Φ(p̂w
t|t−1)m), (D-16a)

Pt|t = Pt|t−1 − KtStK
T
t , (D-16b)

St = HtPt|t−1HT
t + σ2

mI3, (D-16c)
Kt = Pt|t−1HT

t S−1
t . (D-16d)

5 Linearized point correction

p̂w
t|t = p̂w

t|t−1 + δ̂w
t , (D-17a)

q̂wb
t|t = expq(η̂w

t ) ⊙ q̂wb
t|t−1. (D-17b)

6 end
7 end
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Appendix E

Particle filter

Similar to the Extended Kalman filter (EKF), the Particle filter (PF) is also known as
a widely applied algorithm capable of estimating states of nonlinear systems [34, 2, 15].
Instead of linearizing the system and applying the linear algebra based on the as-
sumption that the distributions are Gaussian, which is what the EKF does, the PF
approximates the distribution of the state with particles whose corresponding weights
are updated through iteration [9]. A PF approximates the posterior distribution at time
t with a set of MP F samples

{
xi

t

}MP F

i=1
, which is called the particles when discussing a

PF. Before the start of the iteration of the algorithm, an initialization of the particles is
performed. That is, MP F x1 particles with a initial distribution px1 will be introduced
and the weights of these particles are equally assigned, which can be mathematically
denoted as xi

1 ∼ px1 and wi
1|0 = 1/MP F for all i ∈ {1, 2, ..., MP F }. For each time step,

there will be MP F measurement updates, one for each particle xi
t. Following the mea-

surement updates are the estimation, resampling, and MP F time updates [9].

• Measurement update
For i ∈ {1, 2, ..., MP F }, the weight will be updated by

wi
t|t =

wi
t|t−1p(yt|xi

t)∑N
j=1 wj

t|t−1p(yt|xj
t)

. (E-1)

• Estimation
After the weights are updated, the estimation of the mean can be determined by
the resulting particle clouds and the corresponding weights.

• Resampling
The particle cloud

{
xi

1:t

}MP F

i=1
is updated depending on the corresponding weights.

That is, the particles with lower weights will have a higher chance of being replaced
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by the particles with higher weights. After the update of the particle cloud,
the weights are then reset to wi

t|t = 1/MP F . Note that this step is optional
because resampling means dropping information, which might further introduce
more uncertainty [9].

• Time update
Similar to measurement update, the time update is also run MP F times with the
distribution of xi

t+1 updated as

xi
t+1 ∼ π(xt+1|xi

t, yt+1), (E-2a)

where π(xt+1|xi
t, yt+1) represents the proposal distribution (also called importance

distribution in [30]), and the weight is further updated depending on this distri-
bution as

wi
t+1|t = wi

t|t
p(xi

t|xi
t−1)

π(xi
t|xi

t−1, yt)
. (E-2b)

The choice of proposal distribution π(xt+1|xi
t, yt+1) depends on the property that

is preferred. A list of different proposal distributions and their characteristics can
be found in Section 9.5 in [9].

The updates of the weights in the time and measurement updates are sometimes com-
bined in the same loop. By taking Eq. (E-1) into Eq. (E-2b), the update of the weights
can be simplified to

wi
t|t ∝ wi

t−1|t−1
p(yt|xi

t)p(xi
t|xi

t−1)
π(xi

t|xi
t−1, yt)

. (E-3)

The analytical expression for the general form of the PF is given in Algorithm 5.
The PF adjusted for magnetic field localization is shown in Algorithm 6.
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Algorithm 5: Particle filter (PF) with the prior distribution as the proposal distribution
Input: Measurements {yt}N

t=1.
Output: Estimated states {x̂t}N

t=1.
Initialization: Weights wi

1 = 1
MP F

and a particle cloud x̂i
1 ∼ N (x̂1, P1) for all

i ∈ {1, ..., MP F }.
1 for t = 2, ..., N do
2 for i = 1 : MP F do
3 Time update

x̂i
t = f(x̂i

t−1) + ex,t (E-4a)

4 Measurement update

wi
t = wi

t−1p(yt; h(x̂i
t), R). (E-5a)

5 Resampling
Select a new set of particles from the current particle set to build a new particle
cloud. The chance of the particles being selected depends on their weights.
Particles could be selected repeatedly.

6 end
7 Estimation

The trajectory of the particle with the largest weight will be taken as the output.
8 end
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Algorithm 6: PF for magnetic field localization
Input: Odometry measurements {∆pw

t , ∆qb
t }N

t=1, magnetic field measurements {yb
t }N

t=1,
and a magnetic field weight vector m.

Output: Estimated positions {p̂w
t }N

t=1 and estiamted orientations {q̂wb
t }N

t=1.
Initialization: Weights wi

1 = 1
MP F

, a position particle cloud p̂w,i
1 ∼ N (p̂w

1 , P1), and an
orientation particle cloud q̂wb,i

1 = qwb
1 for i ∈ {1, .., MP F }.

1 for t = 2, ..., N do
2 for i = 1 : MP F do
3 Time update

p̂w,i
t = p̂w,i

t−1 + ∆pt−1 + ew
p,t, (E-6a)

q̂wb,i
t = q̂wb,i

t−1 ⊙ expq(∆qb
t−1 + ep,t). (E-6b)

4 Measurement update

wi
t = wi

t−1p(Rwb,i
t yb

t ; f, σ2
mI3), (E-7a)

f = ∇Φ(p̂w,i
t )m. (E-7b)

5 Resampling
Select a new set of particles from the current particle set to build a new particle
cloud. The chance of the particles being selected depends on their weights.
Particles could be selected repeatedly.

6 end
7 Estimation

The trajectory of the particle with the largest weight will be taken as the output.
8 end
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Appendix F

Gaussian sum filter

In this chapter, the process of how the diamond shape Gaussian sum filter (GSF) was
designed in this thesis will be introduced.
The GSF was designed to have the means and the 68% confidence ellipsoids approximate
the 68% confidence ellipsoid of the Extended Kalman filter (EKF). First, a square was
formed with the sides calculated from the covariance value of the EKF. That is, the
side of the square that was parallel to the X direction had a length of 2

√
P1|1,(x,x) and

the side parallel to the Y direction had a length of 2
√

P1|1,(y,y). The position of the
center of this square was designed to be the mean of the EKF as introduced in Section
4-1-3. Thus, the means of the Gaussian components would be

p̂w,i
x,1|1 ∈ [p̂w

x,1|1 −
√

P1|1,(x,x), p̂w
x,1|1 +

√
P1|1,(x,x)], (F-1a)

and

p̂w,i
y,1|1 ∈ [p̂w

y,1|1 −
√

P1|1,(y,y), p̂w
y,1|1 +

√
P1|1,(y,y)], (F-1b)

where p̂w
x,1|1 and p̂w

y,1|1 are the estimated position on X and Y axes of the EKF, and
P1|1,(x,x) and P1|1,(y,y) are the variances of the X and Y position of the EKF.
However, in the simulations of magnetic field localization, the initial estimated position
of the EKF was often introduced in a diagonal or opposite diagonal direction from the
ground truth, and this increases the chance of the ground truth to overlap with one of
the mean of the Gaussian components. To avoid such coincidence as the possible reason
for the good performance of the GSF, the area the Gaussian components were scattered
in is rotated π

4 counterclockwise and turned into a diamond shape. The resulting means
of the Gaussian components will then be[

p̂w,i
x,1|1

p̂w,i
y,1|1

]
= R

[
δp̂w,i

x,1|1
δp̂w,i

y,1|1

]
+
[
p̂w

x,1|1
p̂w

y,1|1

]
, (F-2a)
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where

δp̂w,i
x,1|1 ∈ [−

√
P1|1,(x,x),

√
P1|1,(x,x)], (F-2b)

δp̂w,i
y,1|1 ∈ [−

√
P1|1,(y,y),

√
P1|1,(y,y)], (F-2c)

R =
[
cos(0.25π) − sin(0.25π)
sin(0.25π) cos(0.25π)

]
. (F-2d)

An illustration of the difference before and after the rotation is shown in Figure F-1.
In Figure F-1a, the ground truth is close to the mean of a Gaussian component that
is placed on the down-left corner of the square. On the other hand, the ground truth
shown in Figure F-1b is further away from the means of the Gaussian components
with the design of the diamond shape. Therefore, it is obvious that the design with
a diamond shape will avoid the overlapping of the ground truth and the mean of a
Gaussian component as long as the number of the Gaussian component on each side is
kept even.

(a) GSF with Gaussian components scat-
tered in a square area

(b) GSF with Gaussian components scat-
tered in a diamond area

Figure F-1: An example of the GSF with different shapes designed for the initial arrangement of
the Gaussian components

Sing-Chi Hsu Master of Science Thesis



Appendix G

Analysis of the performance of the
Gaussian sum filter (GSF) in Section

4-2-3 and 5-3-3

G-1 Results from Section 4-2-3

In Section 4-2-3, it is shown that the accuracy of the GSF was not influenced by the
large initial covariance value. This is not an expected result as the Extended Kalman
filter (EKF) core of the GSF might not work properly when there are large covariance
values [1, 33, 24].

To find out the possible reason for this phenomenon, the weights, covariances, and the
root mean squared error (RMSE) of the trajectories of the Gaussian components of the
GSF that were initially placed in the position closest to the ground truth were analyzed.
The indices of the four Gaussian components that were placed close to the ground truth
when initializing the GSF are shown in Figure G-1. The weights, covariance matrices,
and the RMSE of the trajectories of the Gaussian components with index i ∈ {2, 3, 6, 7}
were analyzed, which are the four Gaussian components placed nearest to the ground
truth in the initialization.

The average weights of these four Gaussian components that developed through time
are plotted in Figure G-2. Since there were 100 experiments run for each value of
the parameter P i

1|1,(x,x), the weight value shown is the average of the 100 results. The
weights of each value of the parameter P i

1|1,(x,x) are plotted in separate lines. From
the figure, there is no Gaussian component that has consistently dominating weights
throughout the entire simulation. This indicates the good performance of the GSF is
not mainly due to the existence of the Gaussian components that were set close to the
ground truth when initializing the GSF.
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Figure G-1: The indices of the 4 Gaussian components which were initially closest to the ground
truth (marked with white numbers)

Besides the weights of the four closest Gaussian components, their RMSE of the tra-
jectories were also checked. The RMSE of the four Gaussian components are shown in
Figure G-3. As the RMSE does not vary with the different ranges of the trajectories, it
indicates that the inaccuracy is not due to the relatively unstable time when the local-
ization just started. As the four Gaussian components all have large RMSE compared
to the GSF, it is again confirmed that the four initially closest Gaussian components
did not dominate the estimation results of the GSF.
Moreover, the covariances of the four Gaussian components were analyzed by checking
their maximum eigenvalues through the simulation time. In Figure G-4, the maximum
eigenvalues of covariance matrices are plotted for the Gaussian components that were
initially placed close to the ground truth for each value of the initial covariances. The
eigenvalues of all Gaussian components dropped rapidly in the first few time steps, and
this can be a reasonable cause why the RMSE of the estimation of the GSF is not
significantly influenced by the values of the initial covariance matrices. The possible
reason for this sudden drop is the small measurement noise σm set for the GSF. When
the covariance of the measurement noise is small, the covariance of the states will be
set to small values in the measurement update.
However, it is worth noticing that the maximum eigenvalues of the Gaussian compo-
nents’ covariance matrices grow slightly throw time as shown in Figure G-5. This is a
sign that as the localization duration increases, the higher risk there are the covariances
of the Gaussian components grow too large for the GSF to estimate accurately. There-
fore, for a longer period of localization, a strategy to decompose Gaussian components
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(a) Second Gaussian component (b) Third Gaussian component

(c) Sixth Gaussian component (d) Seventh Gaussian component

Figure G-2: The weights change through time for different initial covariance values of the
Gaussian components of the GSF

with large covariance values will be needed.

G-2 Results from Section 5-3-3

Same as what was done in the purely simulated system in Appendix G-1, an analysis of
the Gaussian components by observing the weights, covariance values, and the RMSE
through the simulation was conducted. This analysis was carried out to see what is the
possible reason that the GSF is performing well even with large covariance values set
initially.
The GSF with 16 Gaussian components is selected for this analysis and the results of the
4 Gaussian components that were initially placed in the position closest to the ground
truth will be presented for discussion. The indices of these four Gaussian components
and their position in X − Y plane are shown in Figure G-6.
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(a) RMSE of the whole trajectory (b) RMSE of the last 80% of the trajectory

(c) RMSE of the last 67% of the trajectory

Figure G-3: The RMSE of the Gaussian components of the GSF that were initially closest to
the ground truth

In Figure G-7, the results of the weights developed through time show that the Gaussian
components that were set closest to the ground truth are not dominating the estimations
and leading to good results. Furthermore, from the RMSE of each Gaussian component
shown in Figure G-8, it is obvious that not only one Gaussian component is converging
to the final estimated results of the GSF. This indicates that it is reasonable that
the accuracy of the GSF is good even when the closest Gaussian components were not
weighting the most.
Although the results in this simulation show that there is no need to implement a
decomposing strategy to avoid large covariance values while localizing in this thesis
project, such a decomposing strategy might be necessary in practice. As shown in
Figure G-9, the maximum eigenvalues grow as time increases. This indicates that as
the localizing time is long enough, the covariance values may grow too large for the
GSF to estimate well.
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(a) Second Gaussian component (b) Third Gaussian component

(c) Sixth Gaussian component (d) Seventh Gaussian component

Figure G-4: The max eigenvalues of the covariance matrices change through time for different
initial covariance values of the Gaussian components of the GSF
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(a) Second Gaussian component (b) Third Gaussian component

(c) Sixth Gaussian component (d) Seventh Gaussian component

Figure G-5: The max eigenvalues of the covariance matrices change through time for different
initial covariance values of the Gaussian components of the GSF (enlarged two-dimensional plots
of the figures shown in Figure G-4)

Figure G-6: The indices of the 4 initially closest Gaussian components and the ground truth
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(a) Seventh Gaussian component (b) Eighth Gaussian component

(c) Eleventh Gaussian component (d) Twelvth Gaussian component

Figure G-7: The weights change through time for different initial covariance values of the
Gaussian components of the GSF
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(a) Whole trajectory (b) Last 80% of the trajectory

(c) Last 67% of the trajectory (d) Last 50% of the trajectory

Figure G-8: The RMSE of the estimated trajectories of Gaussian components and the GSF under
varied values of the initial covariances of the GSF P i

1|1
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(a) Seventh Gaussian component (b) Eighth Gaussian component

(c) Eleventh Gaussian component (d) Twelfth Gaussian component

Figure G-9: The max eigenvalues of the covariance matrices change through time for different
initial covariance values of the Gaussian components of the GSF
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Appendix H

Simulation results with measurement
noise σm set as 1

In Appendix B, it is mentioned that the results of the maps with different measurement
noise σm are not significantly distinct. To show that the conclusions of the simulations
applying different values of measurement noise σm are similar, the simulation results
with the measurement noise set as 1 will be shown in this appendix.
The parameters that were applied for the reduced-rank Gaussian process (GP) magnetic
field map are listed in Table H-1.

Range (m) lSE σSE Data size σm

1.5 0.3 0.1 ≈ 5000 1

Table H-1: Parameters for building the magnetic field map using reduced-rank GP

H-1 Simulation results

The simulations run under the map settings shown in Table H-1 were mostly set as
the same as introduced in Section 5-3, except for the initial error. The initial error for
simulations in Section H-1-2 and H-1-3 were set to 0.25 to show the multimodality of
the magnetic field localization system. Therefore, the introduction of the settings of
the simulations will not be repeated here.

H-1-1 Varied initial error ϵ0
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110 Simulation results with measurement noise σm set as 1

(a) Whole trajectory (b) Last 80% of the trajectory

(c) Last 67% of the trajectory

Figure H-1: The root mean squared error (RMSE) of the estimated trajectories of different
algorithms under varied values of initial error ϵ0

H-1-2 Varied number of Gaussian components of the Gaussian sum filter (GSF)
MGSF
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Figure H-2: Time duration of the algorithms under different values of the number of Gaussian
components of the GSF MGSF
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112 Simulation results with measurement noise σm set as 1

(a) Whole trajectory (b) Last 80% of the trajectory

(c) Last 67% of the trajectory

Figure H-3: The RMSE of the estimated trajectories of different algorithms under varied values
of the number of the Gaussian components of the GSF MGSF
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H-1 Simulation results 113

H-1-3 Varied initial covariance matrices of the GSF P i
1|1

(a) Whole trajectory (b) Last 80% of the trajectory

(c) Last 67% of the trajectory (d) Last 50% of the trajectory

Figure H-4: The RMSE of the estimated trajectories of different algorithms under varied values
of the initial covariances of the GSF P i

1|1
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Glossary

List of Acronyms

IMU Inertial measurement unit
KF Kalman filter
EKF Extended Kalman filter
PF Particle filter
GSF Gaussian sum filter
GM Gaussian mixture
UGSF Uniformly random design based Gaussian sum filter
GNSS Global navigation satellite system
GPS Global positioning system
RMSE root mean squared error
pdf probability density function
UPF Unscented particle filter
SMSE Standardized mean squared error
NLPD Negative log predictive density
GP Gaussian process
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