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Current developments in Artificial Intelligence (AI) led to a resurgence of Explainable 
AI (XAI). New methods are being researched to obtain information from AI systems in 
order to generate explanations for their output. However, there is an overall lack of 
valid and reliable evaluations of the effects on users’ experience of, and behavior in 
response to explanations. New XAI methods are often based on an intuitive notion what an 
effective explanation should be. Rule- and example-based contrastive explanations are two 
exemplary explanation styles. In this study we evaluate the effects of these two explanation 
styles on system understanding, persuasive power and task performance in the context 
of decision support in diabetes self-management. Furthermore, we provide three sets of 
recommendations based on our experience designing this evaluation to help improve 
future evaluations. Our results show that rule-based explanations have a small positive 
effect on system understanding, whereas both rule- and example-based explanations 
seem to persuade users in following the advice even when incorrect. Neither explanation 
improves task performance compared to no explanation. This can be explained by the fact 
that both explanation styles only provide details relevant for a single decision, not the 
underlying rational or causality. These results show the importance of user evaluations in 
assessing the current assumptions and intuitions on effective explanations.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Humans expect others to comprehensibly explain decisions that have an impact on them [1]. The same holds for humans 
interacting with decision support systems (DSS). To help them understand and trust a system’s reasoning, such systems 
need to explain their advice to human users [1,2]. Currently, several approaches are proposed in the field of Explainable 
Artificial Intelligence (XAI) that allow DSS to generate explanations [3]. Aside from the numerous computational evaluations 
of implemented methods, literature reviews show that there is an overall lack of high quality user evaluations that add a 
user-centered focus to the field of XAI [4,5]. As explanations fulfill a user need, explanations generated by a DSS need to be 
evaluated among these users. This can provide valuable insights into user requirements and effects. In addition, evaluations 
can be used to benchmark XAI methods to measure the research field’s progress.
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The contribution of this article is twofold. First, we propose a set of recommendations on designing user evaluations 
in the field of XAI. Second, we performed an extensive user evaluation on the effects of rule-based and example-based
contrastive explanations. The recommendations regard 1) how to construct a theory of the effects that explanations are 
expected to have, 2) how to select a use case and participants to evaluate that theory, and 3) which types of measurements 
to use for the theorized effects. These recommendations are intended as a reference for XAI researchers unfamiliar to user 
evaluations. These recommendations are based on our experience designing a user evaluation and retread knowledge that 
is more common in fields such as cognitive psychology and Human-Computer Interaction.

The present user study focused on two styles of contrastive explanations and their evaluation. Contrastive explanations 
in the context of a DSS are those that answer questions as “Why this advice instead of that advice?” [6]. These explanations 
help users to understand and pinpoint information that caused the system to give one advice over the other. In two separate 
experiments, we evaluated two contrastive explanation styles. An explanation style defines the way information is structured 
and is often defined by the algorithmic approach to generate explanations. Note that this is different from explanation form, 
which defines how it is presented (e.g. textually or visually). The two evaluated styles were rule-based and example-based
explanations, with no explanation as a control. These two styles of explanations are often referred to as means to convey a 
system’s internal workings to a user. However, these statements are not yet formalized into a theory nor compared in detail. 
Hence, our second contribution is the evaluation of the effects that rule-based and example-based explanations have on 
system understanding (Experiment I), persuasive power and task performance (Experiment II). We define system understanding 
as the user’s ability to know how the system behaves in a novel situation and why. The persuasive power of an explanation 
is defined as its capacity to convince the user to follow the given advice independent of whether it is correct or not. Task 
performance is defined as the decision accuracy of the combination of the system, explanation and user. Together, these 
concepts relate to the broader concept of trust, an important topic in XAI research. System understanding is believed to help 
users achieve an appropriate level of trust in a DSS, and both system understanding and appropriate trust are assumed to 
improve task performance [7]. Explanations might also persuade the user to various extents, resulting in either appropriate, 
over- or under-trust, which could affect task performance [8]. Instead of measuring trust directly, we opted for measuring 
the intermediate variables of understanding and persuasion to better understand how these concepts affect the task.

The way of structuring explanatory information differs between the two explanation styles examined in this study. Rule-
based explanations are “if... then...” statements, whereas example-based explanations provide historical situations similar to 
the current situation. In our experiments, both explanation styles were contrastive, comparing a given advice to an alter-
native advice that was not given. The rule-based contrastive explanations explicitly conveyed the DSS’s decision boundary 
between the given advice and the alternative advice. The example-based contrastive explanations provided two examples, one 
on either side of this decision boundary, both as similar as possible to the current situation. The first example illustrated 
a situation where the given advice proved to be correct, and the second example showed a different situation where an 
alternative advice was correct.

Rule-based explanations explicitly state the DSS’s decision boundary between the given and the contrasting advice. Given 
this fact, we hypothesized that these explanations improve a participant’s understanding of system behavior, causing an 
improved task performance compared to example-based explanations. Specifically, we expected participants to be able to 
identify the most important feature used by the DSS in a given situation, replicate this feature’s relevant decision thresholds 
and use this knowledge to predict the DSS’s behavior in novel situations. When the user is confronted with how correct its 
decisions were, this knowledge would result in a better estimate of when a DSS’s advice is correct or not. However, rule-
based explanations are very factual and provide little information to convince the participant of the correctness of a given 
advice. As such, we expected rule-based explanations to have little persuasive power. For the example-based explanations 
we hypothesized opposite effects. As examples of correct past behavior would incite confidence in a given advice, we 
hypothesized them to hold more persuasive power. However, the amount of understanding a participant would gain would 
be limited, as it would rely on participants inferring the separating decision boundary between the examples rather than 
having it presented to them. Whether persuasive power is desirable in an explanation depends on the use case as well as 
the performance of the DSS. A low performance DSS combined with a highly persuasive explanation for example, would 
likely result in a low task performance.

The use case of the user evaluation was based on a diabetes mellitus type 1 (DMT1) self-management context, where 
patients are assisted by a personalized DSS to decide on the correct dosage of insulin. Insulin is a hormone that DMT1 
patients have to administer to prevent the negative effects of the disturbed blood glucose regulation associated with this 
condition. The dose is highly personal and context dependent, and an incorrect dose can cause the patient short- or long-
term harm. The purpose of the DSS’s advice is to minimize these adverse effects. This use case was selected for two 
reasons. Firstly, AI is increasingly more often used in DMT1 self-management [9–11]. Therefore, the results are relevant for 
research on DSS aided DMT1 self-management. Secondly, this use case was both understandable and motivating for healthy 
participants without any experience with DMT1. Because DMT1 patients would have potentially confounding experience 
with insulin administration or certain biases, we recruited healthy participants that imagined themselves in the situation 
of a DMT1 patient. Empathizing with a patient motivated them to make correct decisions, even if this meant to ignore the 
DSS’s advice in favor of their own choice, or vice versa. This required an understanding of when the DSS’s advice would be 
correct and incorrect and how it would behave in novel situations.

The paper is structured as follows. First we discuss the background and shortcomings of current XAI user evaluations. 
Furthermore, we provide examples on how rule-based and example-based explanations are currently used in XAI. The sub-
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sequent section describes three sets of recommendations for user evaluations in XAI, based on our experience designing 
the evaluation as well as on relevant literature. Next, we illustrate our own recommendations by explaining the use case 
in more detail and offering the theory behind our hypotheses. This is followed by a detailed description of our methods, 
analysis and results. We conclude with a discussion on the validity and reliability of the results and a brief discussion of 
future work.

2. Background

The following two sections discuss the current state of user evaluations in XAI and rule-based and example-based con-
trastive explanations. The former section illustrates the shortcomings of current user evaluations, formed by either a lack of 
validity and reliability or the entire omission of an evaluation. The latter discusses the two explanation styles used in our 
evaluation in more detail, and illustrates their prevalence in the field of XAI.

2.1. User evaluations in XAI

A major goal of Explainable Artificial Intelligence (XAI) is to have AI-systems construct explanations for their own output. 
Common purposes of these explanations are to increase system understanding [12], improve behavior predictability [13]
and calibrate system trust [14,15,8]. Other purposes include support in system debugging [16,12], verification [13] and 
justification [17]. Currently, the exact purpose of explanation methods is often not defined or formalized, even though these 
different purposes may result in profoundly different requirements for explanations [18]. This makes it difficult for the field 
of XAI to progress and to evaluate developed methods.

The difficulties in XAI user evaluations are reflected in recent surveys from Anjomshoae et al. [5], Adadi et al. [19], and 
Doshi-Velez and Kim [4] that summarize current efforts of user evaluations in the field. The systematic literature review 
by [5] shows that 97% of the 62 reviewed articles underline that explanations serve a user need but 41% did not evaluate 
their explanations with such users. In addition, of those papers that performed a user evaluation, relatively few provided 
a good discussion of the context (27%), results (19%) and limitations (14%) of their experiment. The second survey from 
[19] evaluated 381 papers and found that only 5% had an explicit focus on the evaluation of the XAI methods. These two 
surveys show that, although user evaluations are being conducted, many of them provide limited conclusions for other XAI 
researchers to build on.

A third survey by [4] discusses an explicit issue with user evaluations in XAI. The authors argue to systematically start 
evaluating different explanations styles and forms in various domains, a rigor that is currently lacking in XAI user evalua-
tions. To do so in a valid way, several recommendations are given. First, the application level of the study context should be 
made clear; either a real, simplified or generic application. Second, any (expected) task-specific explanation requirements 
should be mentioned. Examples include the average human level of expertise targeted, and whether the explanation should 
address the entire system or a single output. Finally, the explanations and their effects should be clearly stated together 
with a discussion of the study’s limitations. Together, these three surveys illustrate the shortcomings of current XAI user 
evaluations.

From several studies that do focus on evaluating user effects, we note that the majority focuses on subjective measure-
ment. Surveys and interviews are used to measure user satisfaction [20,21], the goodness of an explanation [22], acceptance 
of the system’s advice [23,24] and trust in the system [25–28]. Such subjective measurements can provide a valuable in-
sight in the user’s perspective on the explanation. However, these results do not necessarily relate to the behavioral effects 
an explanation could cause. Therefore, these subjective measurements require further investigation to see if they correlate 
with a behavioral effect [7]. Without such an investigation, these subjective results only provide information on the user’s 
beliefs and opinions, but not on actual gained understanding, trust or task performance. Some studies, however, do perform 
objective measurements. The work from [29] for example, measured both subjective ease-of-use of an explanation and a 
participant’s capacity to correctly make inferences based on the explanations. This allowed the authors to differentiate be-
tween behavioral and self-perceived effects of an explanation, underlining the value of performing objective measurements.

The above described critical view on XAI user evaluations is related to the concepts of construct validity and reliability. 
These two concepts provide clear standards to scientifically sound user evaluations [30–32]. The construct validity of an 
evaluation is its accuracy in measuring the intended constructs (e.g. understanding or trust). Examples of how validity may 
be harmed is a poor design, ill defined constructs or arbitrarily selected measurements. Reliability, on the other hand, refers 
to the evaluation’s internal consistency and reproducibility, and may be harmed by a lack of documentation, an unsuitable 
use case or noisy measurements. In the social sciences, a common condition for results to be generalized to other cases 
and to infer causal relations is that a user evaluation is both valid and reliable [30]. This can be (partially) obtained by 
developing different types of measurements for common constructs. For example, self-reported subjective measurements 
such as ratings and surveys can be supplemented by behavioral measurements to gather data on the performance in a 
specific task.

2.2. Rule-based and example-based explanations

Human explanations tend to be contrastive: they compare a certain phenomenon (fact) with a hypothetical one (foil) 
[33,34]. In the case of a decision support systems (DSS), a natural question to ask is “Why this advice?”. This question 
3
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Fig. 1. An overview of three sets of practical recommendations to improve user evaluations for XAI.

implies a contrast, as the person asking this question often has an explicit contrasting foil in mind. In other words, the 
implicit question is “Why this advice and not that advice?”. The specific contrast allows the explanation to be limited to the 
differences between fact and foil. Humans use contrastive explanations to explain events in a concise and specific manner 
[2]. This advantage also applies to systems: contrastive explanations narrow down the available information to a concrete 
difference between two outputs.

Contrastive explanations can vary depending on the way the advice is contrasted with a different advice, for example 
using rules or examples. Within the context of a DSS advising an insulin dose for DMT1 self-management, a contrastive 
rule-based explanation could be: “Currently the temperature is below 10 degrees and a lower insulin dose is advised. If the 
temperature was above 30 degrees, a normal insulin dose would have been advised.” This explanation contains two rules 
that explicitly state the differentiating decision boundaries between the fact and foil. Several XAI methods aim to generate 
this type of “if... then...” rules, such as [35–38].

An example-based explanation refers to historical situations in which the advice was found to be true or false: “The 
temperature is currently 8 degrees, and a lower insulin dose is advised. Yesterday was similar: it was 7 degrees and the 
same advice proved to be correct. Two months ago, when it was 31 degrees, a normal dose was advised instead, which 
proved to be correct for that situation”. Such example- or instance-based explanations are often used between humans, as 
they illustrate past behavior and allow for generalization to new situations [39–42]. Several XAI methods try to identify 
examples to generate such explanations, for example those from [43–47].

Research on system explanations using rules and examples is not new. Most of the existing research focused on exploring 
how users preferred a system would reason, by rules or through examples. For example, users prefer an example-based 
spam-filter over a rule-based [48], while they prefer spam-filter explanations to be rule-based [49]. Another evaluation 
showed that the number of rule factors in an explanation had an effect on task performance by either promoting system 
over-reliance (too many factors) or self-reliance (too few factors) [50]. Work by Lim et al. [51] shows that rule-based 
explanations cause users to understand system behavior, especially if those rules explain why the system behaves in a 
certain way as opposed to why it does not behave in a different (expected) way. Studies such as these tend to evaluate 
either rules or examples, depending on the research field (e.g. recommender system explanations tend to be example-based) 
but few compare rules with examples.

3. Recommendations for XAI user evaluations

As discussed in Section 2.1, user evaluations play an invaluable role in XAI but are often omitted or of insufficient quality. 
Our main contribution is a thorough evaluation of rule-based and example-based contrastive explanations. In addition, we 
believe that the experience and lessons learned in designing this evaluation can be valuable for other researchers. Especially 
researchers in the field of XAI that are less familiar with user evaluations can benefit from guidance in the design of user 
studies incorporating knowledge from different disciplines. To that end, we propose three sets of recommendations with 
practical methods to help improve user evaluations. An overview is provided in Fig. 1.
4
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3.1. R1: Constructs and relations

As stated in Section 2.1, the field of XAI often deals with ambiguously defined concepts such as ‘understanding’. We 
believe that this hinders the creation and replication of XAI user evaluations and their results. Through clear definitions and 
motivation, the contribution of the evaluation becomes more apparent. This also aids other researchers to extend on the 
results. We provide three practical recommendations to clarify the evaluated constructs and their relations.

Our first recommendation is to clearly define the intended purposes of an explanation in the form of a construct. A 
construct is either the intended purpose, an intermediate requirement for the purpose or a potential confound to your 
purpose. Constructs form the basis of the scientific theory underlying XAI methods and user evaluations. By defining a 
construct, it becomes easier to develop measurements. Second, we recommend to clearly define the relations expected 
between the constructs. A concrete and visual way to do so is through a Causal Diagram which presents the expected causal 
relations between constructs [52]. These relations form your hypotheses and make sure they are formulated in terms of 
your constructs. Clearly stating hypotheses allows other researchers to critically reflect on the underlying theory assumed, 
proved or falsified with the evaluation. It offers insight in how constructs are assumed to be related and how the results 
support or contradict these relations.

Our final recommendation regarding constructs is to adopt existing theories, such as from philosophy, (cognitive) psychol-
ogy and from human-computer interaction (see [2,6] for an overview). The former provides construct definitions whereas 
the latter two provide theories of human-human and human-computer explanations. These three recommendations to de-
fine constructs and their relations and grounding them in other research disciplines can contribute to more valid and reliable 
user evaluations. In addition, this practice allows results to be meaningful even if hypotheses are rejected, as they falsify a 
scientific theory that may have been accepted as true.

3.2. R2: Use case and experimental context

The second set of recommendations regards the experimental context, including the use case. The use case determines 
the task, the participants that can and should be used, the mode of the interaction, the communication that takes place and 
the information available to the user [53]. As [4] already stated, the selected use case has a large effect on the conclusions 
that can be drawn and the extent to which they can be generalized. Also, the use case does not necessarily need to be of 
high fidelity, as a low fidelity allows for more experimental control and a potentially more valid and reliable evaluation [54]. 
We recommend to take these aspects into account when determining the use case and to reflect on the choices made when 
interpreting the results the user evaluation. This improves both the validity and reliability of the evaluation. A concrete way 
to structure the choice for a use case is to follow the taxonomy provided by [4] (see Section 2.1) or a similar one.

The second recommendation concerns the sample of participants selected, as this choice determines the initial knowl-
edge, experience, beliefs, opinions and biases the users have. Whether participants are university students, domain experts 
or recruited online through platforms such as Mechanical Turk, the characteristics of the group will have an effect on the 
results. The choice of population should be governed by purpose of the evaluation. For example, our evaluation was per-
formed with healthy participants rather than diabetes patients, as the latter tend to vary in their diabetes knowledge and 
suffer from misconceptions [55]. These factors can interfere in an exploratory study such as ours, in which the findings 
are not domain specific. Hence, we recommend to invest in both understanding the use case domain and reflecting on the 
intended purpose of the evaluation. These considerations should be consolidated in inclusion criteria to ensure that the 
results are meaningful with respect to the study’s aim.

Our final recommendation related to the context considers the experimental setting and surroundings, as these may 
affect the quality and generalizability of the results. An online setting may provide a large quantity of readily available 
participants, but the results are often of ambiguous quality (see [56] for a review). If circumstances allow, we recommend 
to use a controlled setting (e.g. a room with no distractions, or a use case specific environment). This allows for valuable 
interaction with participants while reducing potential confounds that threaten the evaluation’s reliability and validity.

3.3. R3: Measurements

Numerous measurements exist for computational experiments on suggested XAI methods (for example; fidelity [57], 
sensitivity [58] and consistency [59]). However, there is a lack of validated measurements for user evaluations [7]. Hence, 
our third group of recommendations regards the type of measurement to use for the operationalization of the constructs. 
We identify two main measurement types useful for XAI user evaluations: self-reported measures and behavioral measures. 
Self-reported measures are subjective and are often used in XAI user evaluations. They provide insights in users’ conscious 
thoughts, opinions and perceptions. We recommend the use of self-reported measures for subjective constructs (e.g. per-
ceived understanding), but also recommend a critical perspective on whether the measures indeed address the intended 
constructs. Behavioral measures have a more observational nature and are used to measure actual behavioral effects. We 
recommend their usage for objectively measuring constructs such as understanding and task performance. Importantly how-
ever, such measures often only measure one aspect of behavior. Ideally, a combination of both measurement types should be 
used to assess effects on both the user’s perception and behavior. In this way, a complete perspective on a construct can be 
5
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obtained. In practice, some constructs lend themselves more for self-reported measurements, for example a user’s percep-
tion on trust or understanding. Other constructs are more suitable for behavioral measurements, such as task performance, 
simulatability, predictability, and persuasive power.

Furthermore, we recommend to measure explanation effects implicitly, rather than explicitly. When participants are 
not aware of the evaluation’s purpose, their responses may be more genuine. Also, when measuring understanding or 
similar constructs, the participant’s explicit focus on the explanations may cause skewed results not present in a real world 
application. This leads to our third recommendation to measure potential biases. Biases can regard the participant’s overall 
perspective on AI, the use case, decision-making or similar. However, biases can also be introduced by the researchers 
themselves. For example, one XAI method can be presented more attractively or reliably than another. It can be difficult 
to prevent such biases. One way to mitigate these biases is to design how the explanation are presented, the explanation 
form, in an iterative manner with expert reviews and pilots. In addition, one can measure these biases nonetheless if 
possible and reasonable. For example, a usability questionnaire can be used to measure potential differences between the 
way explanations are presented in the different conditions. For our study we designed the explanations iteratively and 
verified that the chosen form for each explanation type did not differ significantly in the perception of the participants.

4. The use case: diabetes self-management

In this study, we focused on personalized healthcare, an area in which machine learning is promising and explanations 
are essential for realistic applications [60]. Our use case is that of assisting patients with diabetes mellitus type 1 (DMT1) 
with personalized insulin advice. DMT1 is a chronic autoimmune disorder in which glucose homeostasis is disturbed and 
intake of the hormone insulin is required to balance glucose levels. Since blood glucose levels are influenced by both 
environmental and personal factors, it is often difficult to find the adequate dose of insulin that stabilizes blood glucose 
levels [61]. Therefore, personalized advice systems can be a promising tool in DMT1 management to improve quality of life 
and mitigate long-term health risks.

In our context, a DMT1 patient finds it difficult to find the optimal insulin dose for a meal in a given situation. On the 
patient’s request, a fictitious intelligent DSS provides assistance with the insulin intake before a meal. Based on different 
internal and external factors (e.g. hours of sleep, temperature, past activity, etc.), the system may advise to take a normal 
insulin dose, or a higher or lower dose than usual. For example, the system could advise a lower insulin dose based on 
the current temperature. The factors that were used in the evaluation are realistic, and were based on Bosch [62] and an 
interview with a DMT1 patient.

In this use case, both the advice and the explanations are simplified. This study therefore falls under the human grounded 
evaluation category of Doshi-Velez and Kim [4]: a simplified task of a real-world application. The advice is binary (higher or 
lower), whereas in reality one would expect either a specific dose or a range of suggested doses. This simplification allowed 
us to evaluate with novice users (see Section 6.3), as we could limit our explanation to the effects of a too low or too high 
dosage without going into detail about effects of specific doses. Furthermore, this prevented the unnecessary complication 
of having multiple potential foils for our contrastive explanations. Although the selection of the foil, either by system or 
user, is an interesting topic regarding contrastive explanations, it was deemed out of scope for this evaluation. The second 
simplification was that the explanations were not generated using a specific XAI method, but designed by the researchers 
instead. Several design iterations were conducted based on feedback from XAI researchers and interaction designers to 
remove potential design choices in the explanation form that could cause one explanation to be favored over another. Since 
the explanations were not generated by a specific XAI method, we were able to explore the effects of more prototypical rule-
and example-based explanations inspired by multiple XAI methods that generate similar explanations (see Section 2.2).

There are several limitations caused by these two simplifications. First, we imply that the system can automatically select 
the appropriate foil for contrastive explanations. Second, we assume that the XAI method is able to identify only the most 
relevant factors to explain a decision. Although this assumes a potentially complex requirement for the XAI method, it is a 
reasonable assumption as humans prefer a selective explanation over a complete one [2].

5. Constructs, expected relations and measurements

The user evaluation focused on three constructs: system understanding, persuasive power, and task performance. Al-
though an important goal of offering explanations is to allow users to arrive at the appropriate level of trust in the system 
[63,7], the construct of trust is difficult to define and measure [18]. As such, our focus was on constructs influencing trust 
that were more suitable to translate into measurable constructs; the intermediate construct of system understanding and 
the final construct of task performance of the entire user-system combination. The persuasive power of an explanation was 
also measured, as an explanation might cause over-trust in a user; believing that the system is correct while it is not, 
without having a proper system understanding. As such, the persuasive power of an explanation confounds to the effect of 
understanding on task performance.

Both contrastive rule- and example-based explanations were compared to each other with no explanation as a control. Our 
hypotheses are visualized in a Causal Diagram depicted in Fig. 2 [52]. From rule-based explanations we expected participants 
to gain a better understanding of when and how the system arrives at a specific advice. Contrastive rule-based explanations 
6
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Fig. 2. Our theory, depicted as a Causal Diagram. It describes the expected effects of contrastive rule- and example-based explanations on the constructs of 
system understanding, persuasive power and task performance. The solid and green arrows depict expected positive effects and the dashed and red arrow 
depicts a negative effect. The arrow thickness depicts the size of the expected effect. The opaque grey boxes are the measurements that were performed 
for that construct, divided into behavioral and self-reported measurements.

explicate the system’s decision boundary between fact and foil and we expected the participants to recall and apply this in-
formation. Second, we expected that contrastive example-based explanations persuade participants to follow the advice more 
often. We believe that examples raise confidence in the correctness of an advice as they illustrate past good performance 
of the system. Third, we hypothesized that both system understanding and persuasive power have an effect on task perfor-
mance. Whereas this effect was expected to be positive for system understanding, persuasive power was expected to affect 
task performance negatively in case a system’s advice is not always correct. This follows the argumentation that persuasive 
explanations can cause harm as they may convince users to over-trust a system [64]. Note that we conducted two separate 
experiments to measure the effects of an explanation type on understanding and persuasion. This allowed us to measure the 
effect of each construct separately on task performance, but not their combined effect (e.g. whether sufficient understanding 
can counteract the persuasiveness of an explanation).

The construct of understanding was measured with two behavioral measurements and one self-reported measurement. 
The first behavioral measurement assessed the participant’s capacity to correctly identify the decisive factor of the situations 
in the system’s advice. This measured to what extent the participant recalled what factor the system believed to be im-
portant for a specific advice and situation. Second, we measured the participant’s ability to accurately predict the advice in 
novel situations. This tested whether the participant obtained a mental model of the system that was sufficiently accurate 
enough to predict its behavior in novel situations. The self-reported measurement tested the participant’s perceived system 
understanding. This provided insight in whether participants over- or underestimated their understanding of the system 
compared to what their behavior told us.

Persuasive power of the system’s advice was measured with one behavioral measurement, namely the number of times 
participants copied the advice, independent of its correctness. If participants that received an explanation followed the advice 
more often than participants without an explanation, we addressed this to the persuasiveness of the explanation.

Task performance was measured as the number of correct decisions, a behavioral measurement, and perception of predicting 
advice correctness, a self-reported measurement. We assumed a system that did not have a 100% accurate performance, 
meaning that it also made incorrect decisions. Therefore, the number of correct decisions made by the participant while 
aided by the system could be used to measure task performance. The self-reported measure allowed us to measure how 
well participants believed they could predict the correctness of the system advice.

Finally, two self-reported measurements were added to check for potential confounds. The first was a brief usability 
questionnaire addressing issues such as readability and the organization of information. This could reveal whether one ex-
planation style was designed and visualized better than the other, which would be a confounding variable. The second, 
perceived system accuracy, measured how accurate the participant thought the system was. This could help identify a poten-
tial over- or underestimation of the usefulness of the system, that could have affected to what extent participants attended 
to the system’s advice and explanation.

The combination of self-reported and behavioral measurements enabled us to draw relations between our observations 
and a participant’s own perception. Finally, by measuring a single construct with different measurements (known as trian-
gulation [65]) we could identify and potentially overcome biases and other weaknesses in our measurements.
7
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Fig. 3. The contrastive rule-based (above) and example-based (below) explanation styles. Participants could view the situation, advice and explanation 
indefinitely.

6. Methods

In this section we describe the operationalization of our user evaluation in two separate experiments in the context 
of DSS advice in DMT1 self-management (see Section 4). Experiment I focused on the construct of system understanding. 
Experiment II focused on the constructs of persuasive power and task performance. The explanation style (contrastive rule-
based, contrastive example-based or no explanation) was the independent variable in both experiments and was tested 
between-subjects. See Fig. 3 for an example of each explanation style.

The experimental procedure was similar in both experiments:

1. Introduction. Participants were informed about the study, use-case and task, as well as presented with a brief narrative 
about a DMT1 patient for immersive purposes.

2. Demographics questionnaire. Age and education level were inquired to identify whether the population sample was 
sufficiently broad.

3. Pre-questionnaire. Participants were questioned on DMT1 knowledge to assess if DMT1 was sufficiently introduced and 
to check our assumption that participants had no additional domain knowledge.
8
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Fig. 4. A schematic overview of the learning (left) and testing (right) block in Experiment I.

Table 1
An overview of the nine factors that played a role in the experiment. For each factor, its influence on the correct 
insulin dose is shown, as well as the system threshold for that influence. The thresholds differed between the two 
experiments and the set of rules of the first experiment were defined as the ground truth. Three factors served 
as fillers and had no influence.

Factor Insulin dose Exp. I Rules Exp. II Rules

Planned alcohol intake Lower dose >1 unit >1 unit
Planned physical exercise Lower dose >17 minutes >20 minutes
Physical health Lower dose Diarrhoea & Nausea Diarrhoea & Nausea
Hours slept Higher dose <6 hours <6 hours
Environmental temperature Higher dose >26 ◦C >31 ◦C
Anticipated tension level Higher dose >3 (a little tense) >4 (quite tense)
Water intake so far - - -
Planned caffeine intake - - -
Mood - - -

4. Learning block. Multiple stimuli were presented, accompanied with either the example- or rule-based explanations, or 
no explanations (control group).

5. Testing block. Several trials followed to conduct the behavioral measurements (advice prediction and decisive factor iden-
tification in Experiment I, the number of times advice copied and number of correct decisions in Experiment II).

6. Post-questionnaire. A questionnaire was completed to obtain self-reported measurements (perceived system understanding
in Experiment I and perceived prediction of advice correctness in Experiment II).

7. Usability questionnaire. Participants filled out a usability questionnaire to identify potential interface related confounds.
8. Control questionnaire. The experimental procedure concluded with several questions to assess whether the purpose of 

the study was suspected and to measure perceived system accuracy to identify over- or under-trust in the system.

6.1. Experiment I: System understanding

The purpose of Experiment I was to measure the effects of rule-based and example-based explanations on system under-
standing compared to each other and to the control group with no explanations. See Fig. 4 for an overview of both the 
learning and testing blocks. The learning block consisted of 18 randomly ordered trials, each trial describing a single sit-
uation with three factors and values from Table 1. The situation description was followed by the system’s advice, in turn 
followed by an explanation (in the experimental groups). Finally, the participant was asked to make a decision on admin-
istering a higher or lower insulin dose than usual. This block served only to familiarize the participant with the system’s 
advice and its explanation and to learn when and why a certain advice was given. Participants were not instructed to focus 
on the explanations in the learning block, nor were they informed of the purpose of the two blocks.

In the testing block, two behavioral measures were used to test the construct of understanding: advice prediction and 
decisive factor identification. The testing block consisted of 30 randomized trials, each with a novel situation description. 
Each description was followed by the question what advice the participant thought the system would give. This formed the 
9
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Fig. 5. A schematic overview of the learning (left) and testing (right) block in Experiment II.

measurement of advice prediction. The measurement decisive factor identification was formed by the subsequent question to 
select a single factor from a situation description that they believed was decisive for the predicted system advice.

A third, self-reported measurement was conducted in the post-questionnaire, which contained an eight-item question-
naire based on a 7-point Likert scale. These items formed the measurement of perceived system understanding. The questions 
were asked without mentioning the term explanation and simply addressed ‘system output’. The amount of eight items was 
deemed necessary, to obtain a measurement less dependent on the formulation of one item.

6.2. Experiment II: Persuasive power and task performance

The purpose of Experiment II was to measure the effects of rule-based and example-based explanations on persuasive 
power and task performance, and to compare these to each other and to the control group with no explanation. Fig. 5
provides an overview of the learning and testing blocks of this experiment. The learning block was similar to that of the 
first experiment: a situation was shown, containing three factors from Table 1. In the experimental groups, the situation was 
followed by an advice and explanation. Next, the participant was asked to make a decision on the insulin dose. After this 
point, the learning block differed from the learning block in the first experiment: the participant’s decision was followed 
with feedback on its correctness. In 12 of the 18 randomly ordered trials of this learning block (66%), the system’s advice 
was correct. In the six other trials, the advice was incorrect. Through this feedback, participants learned that the system’s 
advice could be incorrect and in which situations. Instead of following the ground truth rule set (from Experiment I), this 
system followed a second, partially correct set of rules, as shown in Table 1.

The testing block contained 30 trials, also presented in random order, in which a presented situation was followed by 
the system’s advice and explanation. Next, participants had to choose which insulin dose was correct based on the system’s 
advice, explanation and gained knowledge of when the system is incorrect. Persuasive power was operationalized as the 
number of times a participant followed the advice, independent of whether it was correct or not. Task performance was 
represented by the number of times a correct decision was made. The former reflected how persuasive the advice and 
explanation was, even when participants experienced system errors. The latter reflected how well participants were able to 
understand when the system makes errors and compensate accordingly in their decision.

Also in this experiment, a self-reported measurement with eight 7-point Likert scale questions was performed. It mea-
sured the participant’s subjective sense of their ability to estimate when the system was correct.

6.3. Participants

In Experiment I, 45 participants took part, of which 21 female and 24 male, aged between 18 and 64 years old 
(M = 44.2 ± 16.8). Their education levels varied from lower vocational to university education. In Experiment II 45 dif-
ferent participants took part, of which 31 female and 14 male, aged between 18 and 61 years old (M = 36.5 ± 14.5). Their 
10
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education levels varied from secondary vocational to university education. Participants were recruited from a participant 
database at TNO Soesterberg (NL) as well as via advertisements in Utrecht University (NL) buildings and on social media. 
Participants received a compensation of 20,- euro and their travel costs were reimbursed. Both samples aimed to represent 
the entire Dutch population and as such the entire range of potential DMT1 patients, hence the wide age and educational 
ranges.

The inclusion criteria were as follows: not diabetic, no close relatives or friends with diabetes, and no extensive knowl-
edge of diabetes through work or education. General criteria were Dutch native speaking, good or corrected eyesight, and 
basic experience using computers. These inclusion criteria were verified in the pre-questionnaire. A total of 16 participants 
reported a close relative or friend with diabetes and one participant had experience with diabetes through work, despite 
clear inclusion instructions beforehand. After careful inspection of their answers, none were excluded because their answers 
on diabetes questions in the pre-questionnaire were not more accurate or elaborate than others. From this we concluded 
that their knowledge of diabetes was unlikely to influence the results.

7. Data analysis

Statistical tests were conducted using SPSS Statistics 22. An alpha level of 0.05 was used for all statistical tests.
The data from the behavioral measures in Experiment I were analyzed using a one-way Multivariate Analysis of Variance 

(MANOVA) with explanation style (rule-based, example-based or no explanation) as the independent between-subjects variable 
and advice prediction and decisive factor identification as dependent variables. The reason for a one-way MANOVA was the 
multivariate operationalization of a single construct, understanding [66]. Cronbach’s Alpha was used to assess the internal 
consistency of the self-reported measurement for perceived system understanding from the post-questionnaire. Subsequently, 
a one-way Analysis of Variance (ANOVA) was conducted with the mean rating on this questionnaire as dependent variable 
and the explanation style as independent variable. Finally, the relation between the two behavioral and the self-reported 
measurements was examined with Pearson’s product-moment correlations.

For Experiment II two one-way ANOVA’s were performed. The first ANOVA had the explanation style (rule-based, example-
based or no explanation) as independent variable and the number of times the advice was copied as dependent variable. 
The second ANOVA also had explanation style as independent variable, but the number of correct decisions as dependent 
variable. The internal consistency of the self-reported measurement of perceived prediction of advice correctness from the 
post-questionnaire was assessed with Cronbach’s Alpha and analyzed with a one-way ANOVA. Explanation style was the 
independent and the mean rating on the questionnaire the dependent variable. The presence of correlations between the 
behavioral and the self-reported measurements was assessed with Pearson’s product-moment correlations. Detected outliers 
were excluded from the analysis.

8. Results

8.1. Experiment I: System understanding

The purpose of Experiment I was to measure gained system understanding when a system provides a rule- or example-
based explanation, compared to no explanation. This was measured with two behavioral measures and one self-reported 
measure.

Fig. 6 shows the results on the two behavioral measures: correct advice prediction in novel situations and correct iden-
tification of the system’s decisive factor. A one-way MANOVA with Wilks’ lambda indicated a significant main effect of 
explanation style on both measurements (F (4, 82) = 6.675, p < 0.001, � = .450, η2

p = .246). Further analysis revealed a 
significant effect for explanation style on factor identification (F (2, 42) = 14.816, p < 0.001, η2

p = .414), but not for advice 
prediction (F (2, 42) = 14.816, p = .264, η2

p = .414). One assumption of a one-way MANOVA was violated, as the linear 
relationships between the two dependent variables and each explanation style was weak. This was indicated by Pearson’s 
product-moment correlations for the rule-based (r = .487, p = .066), example-based (r = −.179, p = .522) and no explana-
tion (r = .134, p = .636) groups. Some caution is needed in interpreting these results, as this lack of significant correlations 
shows a potential lack of statistical power. Further post-hoc analysis showed a significant difference in factor identification 
in favor of rule-based explanations compared to example-based explanations and no explanations (p < 0.001). No significant 
difference between example-based explanations and no explanation was found (p = .796).

Fig. 7 shows the results on the self-reported measure of system understanding. The consistency between the different 
items in the measure was very high, as reflected by Cronbach’s alpha (α = .904). The mean rating over all eight items was 
used as the participant’s subjective rating of system understanding. A one-way ANOVA showed a significant main effect 
of explanation style on this rating (F (2, 41) = 7.222, p = .002, pη2

p = .261). Two assumptions of a one-way ANOVA were 
violated. First, the rule-based explanations group had one outlier, of which the exclusion did not affect the analysis in 
any way. The results after removal of this outlier are reported. Second, Levene’s test was not significant (p = .017) signaling
inequality between group variances. However, ANOVA is robust against the variance homogeneity violation with equal group 
sizes [67,68]. Further post-hoc tests revealed that only rule-based explanations caused a significantly higher self-reported 
understanding compared to no explanations (p = .001). No significant difference was found for example-based explanations 
with no explanations (p = .283) and with rule-based explanations (p = .072).
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Fig. 6. Bar plot of the mean percentages of correct prediction of the system’s advice and correct identification of the decisive factor for that advice. Values 
are relative to the total of 30 randomized trials in Experiment I. The error bars represent a 95% confidence interval. Note; ***p < 0.001.

Fig. 7. Bar plot of the mean self-reported system understanding. All values are on a 7-point Likert scale and error bars represent a 95% confidence interval. 
Note; ** p < 0.01.

Finally, Fig. 8 shows a scatter plot between both behavioral measures and the self-reported measure. Pearson’s product-
moment analysis revealed no significant correlations between self-reported understanding and advice prediction (r = −.007, 
p = .965), not within the rule-based explanation group (r = −.462, p = .129), the example-based explanation group 
(r = −.098, p = .729), nor the no explanation group (r = .001, p = .996). Similar results were found for the correlation 
between self-reported understanding and factor identification (r = .192, p = .211) and for the separate groups of rule-
based explanations (r = −.124, p = .673), example-based explanations (r = .057, p = .840) and no explanations (r = −.394, 
p = .146).

8.2. Experiment II: Persuasive power and task performance

The purpose of Experiment II was to measure a participant’s ability to use a decision support system appropriately when 
it provides a rule- or example-based explanation, compared with no explanation. This was measured with one behavioral 
and one self-reported measurement. In addition, we measured the persuasiveness of the system for each explanation style, 
compared to no explanations. This was assessed with one behavioral measure.
12
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Fig. 8. Scatter plots displaying the relation between advice prediction (left) and decisive factor identification (right) with self-reported understanding. 
Outliers are circled.

Fig. 9. Bar plot displaying task performance (the mean percentage of correct decisions) and persuasive power (the mean percentage of decisions following 
the system’s advice independent of correctness). Error bars represent a 95% confidence interval. Note; *p < 0.05, ***p < 0.001.

Fig. 9 shows the results of the behavioral measure for task performance, as reflected by the user’s decision accuracy. A 
one-way ANOVA showed no significant differences (F (2, 41) = 1.716, p = .192, η2

p = .077). Two violations of ANOVA were 
discovered. There was one outlier in the example-based explanations, with 93.3% accuracy (1 error). Removal of the outlier 
did not affect the analysis. Levene’s test showed there was no homogeneity of variances (p = .007), however ANOVA is 
believed to be robust against this under equal group sizes [67,68].

Fig. 9 shows the results of the behavioral measure for persuasiveness, i.e. the number times system advice was followed. 
Note that in Experiment II the system’s accuracy was 66.7%. Thus, following the advice in a higher percentage of cases 
denotes an adverse amount of persuasion. A one-way ANOVA showed that explanation style had a significant effect on 
following the system’s advice (F (2, 41) = 11.593, p < .001, η2

p = .361). Further analysis revealed that participants with 
no explanation followed the system’s advice significantly less than those with rule-based (p = .049) and example-based 
explanations (p < .001). However, there was no significant difference between the two explanation styles (p = .068). One 
outlier violated the assumptions of an ANOVA. One participant in the rule-based explanation group followed the system’s 
advice only 33.3% of the time. Its exclusion affected the outcomes of the ANOVA and the results after exclusion are reported.

Fig. 10 displays the self-reported capacity to predict correctness, operationalized by a rating how well participants 
thought they were able to predict when system advice was correct or not. The consistency of the eight 7-point Likert 
scale questions was high according to Cronbach’s Alpha (α = .820). Therefore, we took the mean rating of all questions as 
an estimate of participants’ performance estimation. A one-way ANOVA was performed, revealing no significant differences 
(F (2, 41) = 2.848, p = .069, η2

p = .122). One outlier from the rule-based explanation group was found, its removal did not 
affect the analysis.

A correlation analysis was performed between the self-reported prediction of advice correctness and the behavioral 
measurement of making the correct decision, two measurements of task performance. The accompanying scatter plot is 
shown in Fig. 11. A Pearson’s product-moment correlation revealed no significant correlation between the self-reported and 
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Fig. 10. Bar plot of the mean self-reported system performance estimation. All values are on a 7-point Likert scale and error bars represent a 95% confidence 
interval.

Fig. 11. Scatter plot displaying the relation between the number of correct decisions made and the self-reported capacity to predict advice correctness. 
Outliers are circled.

behavioral measure (r = .146, p = .350). Also, there were no significant correlations in the rule-based (r = .411, p = .144) 
and example-based explanation (r = −.347, p = .225) groups, nor in the no explanation group (r = .102, p = .718). Both 
outliers from each measurement were removed in this analysis and did not affect the significance.

8.3. Usability and biases

A usability questionnaire was used to evaluate whether there were differences in usability between the two explanation 
styles, as this could influence the results. The questionnaire contained five questions on a 100-point scale about readability, 
organization of information, language, images and color. The consistency between the five questions was relatively high, 
as revealed by a Cronbach’s Alpha test (α = .722). Fig. 12 shows the mean ratings for each question, broken down by 
explanation style (rule-based, example-based, no explanation). No statistical analysis was performed, as this questionnaire 
only functioned as a check for potential usability confounds in the experiment.

In addition to the ratings, participants were asked about the positive and negative usability aspects of the system in 
two open questions. Common positive descriptions included “clear”, “well-arranged”, “clear and simple icons” and “under-
standable language”. Although not many participants had negative remarks, most addressed insufficient visual contrast due 
to the colors used. Unique to the example-based explanations participant group were remarks about a lack of concise and 
well-arranged information.

In the control questionnaire we asked participants to give an estimate of the overall system’s accuracy. This was to 
validate any potential overly positive or negative trust bias towards the system. In Experiment I the system was 100% accu-
rate, but this was unknown to the participants since there was no feedback on correctness included. Nonetheless, estimates 
14
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Fig. 12. The mean ratings on the usability questions, displayed by explanation style. The error bars represent a 95% confidence interval.

ranged from 30% to 90% (μ = 75.2%, σ = 12.8%). This meant that all participants believed the system to make errors based 
on no information. In Experiment II the system’s accuracy was 66.7%. Participants experienced this due to the feedback on 
made decisions in the learning block. Estimates ranged between 50% and 95% (μ = 74.8%, σ = 8.8%), indicating that on 
average, system accuracy was overestimated.

After the experiment, brief discussions with participants revealed additional perspectives. Several participants from the 
no explanation group wished the system could give an explanation for its advice. One participant expressed a need for 
knowing the system’s rules governing the system’s advice. In the two explanation groups, participants experienced the 
explanations as useful. Rules were valued for there explicitness, whereas examples were viewed as inciting trust. However, 
in the two explanation groups several participants found it unclear what the highlight of a factor (see Fig. 3) meant. Several 
participants also mentioned that, although useful, the explanations lacked a causal rationale.

9. Discussion

Below we discuss the results from both experiments in detail and relate them to our theory presented in Section 5.

9.1. Experiment I: System understanding

Experiment I measured the participant’s capacity to understand how and when the system provided a specific advice. 
This construct was operationalized in three measurements: decisive factor identification, advice prediction and perceived system 
understanding. We hypothesized that participants receiving contrastive rule-based explanations would score best on all three 
measurements. Contrastive example-based explanations were only expected to improve understanding slightly more than no-
explanations (see Fig. 2).

The results from our evaluation support these hypotheses in part. First, rule-based explanations indeed seem to allow par-
ticipants to more accurately identify the factor from a situation that was decisive in the system’s advice. However, rule-based
nor example-based explanation allowed participants to learn to predict system behavior. The rule-based explanations however, 
did cause to participants to think that they better understood the system compared to example-based and no explanations. 
The example-based explanations only showed a small and insignificant increase in perceived system understanding. It is im-
portant to note that there was no correlation between the self-reported measurement of understanding and the behavioral 
measurements of understanding. This shows that participants had a perception of understanding that differed from the 
understanding as measured with factor identification and advice prediction.

Close inspection of the results showed two potential causes for the lack of support for our hypotheses. The first reason 
might be because the described DMT1 situations and accompanying system advice was too intuitive. This is supported by the 
fact that participants with no explanation were already quite adapt in identifying decisive factors (nearly 70% compared to 33%
chance). The second reason we inferred from open discussions with participants after the experiment. Most participants who 
received either explanation style mentioned difficulty in applying and generalizing the knowledge from the explanations to 
novel situations. Several participants even expressed the desire to know the rationale of why a certain rule or behavior 
occurred. This is in line with the theory that explanations should convey specific causal relations obtained from an overall 
causal model describing the behavior of the system, instead of just factual correlations between system input and output.
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If we generalize these results to the field of XAI, we have shown that contrastive rule-based explanations as “if... then...” 
statements are not sufficient to predict system behavior. However, such explanations are capable of educating a user to 
identify which factors would play a decisive role in system advice given a specific situation. Also, such explanations seem 
to provide the user with the perception that (s)he is better capable of understanding the system. The contrastive example-
based explanations however showed no improvement on observed or self-reported understanding. This experiment illustrated 
the need for explanations that provide more causal information, instead of solely information depicting system input and 
output correlations. Furthermore, we illustrated that self-reported and behavioral measurements of understanding may not 
correlate, underlining the need for (a combination of) measures that accurately and reliably measure the intended construct.

9.2. Experiment II: Persuasive power and task performance

In Experiment II we investigated the extent to which an explanation increases the persuasiveness of an advice, as well as 
the explanation’s effect on task performance. The persuasive power of an explanation was operationalized with the number 
of times the advice was copied. Task performance was represented by the number of correct decisions and the self-reported pre-
diction of advice correctness. We hypothesized that especially contrastive example-based explanations would increase persuasive 
power, while these in turn would lower actual task performance. In contrast, the understanding participants gained from 
rule-based explanations was expected to cause an increase in task performance (see Fig. 2).

Both contrastive rule-based and example-based explanations showed more persuasive power than when no explanation
was given. The example-based explanations also showed slightly more persuasive power than the rule-based explanations, but 
this difference was not significant. These results partly support our theory about persuasive power, as they illustrate that 
explanations persuade users to follow a system’s advice more often. These results however, do not support that example-
based explanations are much more persuasive than rule-based explanations.

With respect to task performance, we saw that explanations caused small but insignificant improvements on both behav-
ioral and self-reported data. In fact, the example-based explanations showed the highest (but still insignificant) improvement. 
Due to a lack of statistical evidence not much can be inferred from this, and further evaluation is required.

Similar to Experiment I we found a lack of correlation between reports of participants’ perception of predicting advice 
correctness, and the number of correct decisions. In other words, these measures do not seem to measure the same construct. 
An explanation could be that participants were unable to estimate their own capacity of predicting the correctness of advice.

We have shown that providing an explanation with an advice results in users following that advice more often, even 
when incorrect. In addition, there was a suggestion that explanations also improve task performance, especially contrastive 
example-based explanations. However, these effects were marginal and not significant. These results underline the need in 
the field of XAI to take a different stance on which explanations should be generated. Two common styles of explanations 
answering a contrasting question did not appear to increase task performance, an effect often attributed to such explanations 
within the field.

10. Limitations

This study has several limitations that warrant caution in generalizing the results to other use cases or to the field of XAI 
in general. The first set of limitations is related to the selected use case of aided DMT1 self-management. This use case falls 
into the category ‘simplified’ from Doshi-Velez and Kim [4] as it approximates a realistic use case. However, two major as-
pects differ from the real-life situation. First, we recruited healthy participants who had to empathize with a DMT1 patient, 
instead of actual DMT1 patients. Nevertheless, participants were sampled from the entire Dutch population, resulting in a 
wide variety of ages and education levels. These choices allowed us to measure the effects of the explanation types without 
focusing on a specific demographic or having to compensate for varying domain knowledge in DMT1 participants. Second, 
the system itself was fictitious and followed a pre-determined set of rules rather than comprising the full complexity of 
a realistic system. These two simplifications prevent us to generalize the results and to apply our conclusions to construct 
an actual system for aiding DMT1 patients in self-management. However, this was not the purpose of this study. Instead, 
we aimed to evaluate whether the supposed effects of two often cited explanations styles were warranted. We believe the 
selected use case allowed us to do so, as it gave both context as well as motivation for the users to understand explanations. 
Also, laymen were chosen opposed to DMT1 patients to mitigate any difference in diabetes knowledge and misconceptions, 
which can vary greatly between patients (e.g. see [55]). Of course, future research specifically targeted at the development 
of a DSS for DMT1 self-management should include DMT1 patients as participants.

The second set of limitations is related to suspected confounds in the experiment. A brief usability questionnaire showed 
that participants held an overall positive bias towards the system, whether an explanation was provided or not. In addition 
this questionnaire showed that participants’ perception of the organization of the information was not always positive. 
Hence, a potential limitation lies in the way the explanations were presented. Also, surprisingly, in Experiment I participants 
attributed a low performance to the system, while they had no information to do so. In Experiment II however, participants 
tended to slightly overestimate the system’s actual performance. This occurred independent of the explanation style. This 
shows that the participants could have had a natural tendency to distrust the system’s advice. This may have affected the 
self-reported results.
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Finally, a few limitations arose from the design of both experiments. The results for the example-based explanations 
could have been different with a longer learning block, as it takes time to infer decision boundaries from examples. Also, 
both testing blocks were relatively long, which could have caused participants to continue learning about the system while 
we were measuring their understanding. We did not perform any analyses on this, as it would add another level of com-
plexity to the design. Hence, we cannot say for certain that the learning block was of sufficient length to allow participants 
to learn enough from the explanations. However, if this was the case, we believe that prolonging the learning block would 
have resulted in even stronger effects. Lastly, due to the choice of different participant groups for both experiments, we 
could only draw limited conclusions on the relation between the understanding on the one hand and task performance 
and persuasiveness on the other hand. However, we selected this approach instead of combining the constructs in a single 
experiment with a within-subject design, to avoid learning effects not sufficiently compensated through randomizing the 
understanding and task performance/persuasion blocks.

11. Conclusion

A lack of user evaluations characterizes the field of Explainable Artificial Intelligence (XAI). A contribution of this pa-
per was to provide a set of recommendations for future user evaluations. Practical recommendations were given for XAI 
researchers unfamiliar with user evaluations. These addressed the evaluation’s constructs and their relations, the selection 
of a use case and the experimental context, and suitable measurements to operationalize the constructs in the evaluation. 
These recommendations originated from our experience designing an extensive user evaluation. Our second contribution was 
to evaluate the effects of contrastive rule-based and contrastive example-based explanations on the participant’s understanding 
of system behavior, persuasive power of the system’s advice when combined with an explanation, and task performance. 
The evaluation took place in a decision-support context where users were aided in choosing the appropriate dose of insulin 
to mitigate the effects of diabetes mellitus type 1.

Results showed that contrastive rule-based explanations allowed participants to correctly identify the situational factor that 
played a decisive role in a system’s advice. Neither example-based or rule-based explanations enabled participants to correctly 
predict the system’s advice in novel situations, nor did they improve task performance. However, both explanation styles 
did cause participants to follow the system’s advice more often, even when this advice was incorrect. This shows that both 
rules and examples that answer a contrastive question are not sufficient on their own to improve users’ understanding or 
task performance. We believe that the main reason for this is that these explanations lack a clarification of the underlying 
rationale of system behavior.

Future work will focus on the evaluation of a combined explanation style provided in interactive form, to assess whether 
this interactive form helps users to learn a system’s underlying rationale. As an extension, potential methods will be 
researched that can generate causal reasoning traces, rather than decision boundaries, to expose the behavior rationale 
directly. In addition, future research may focus on similar studies with actual diabetes patients to study explanation effects 
in potentially homogeneous groups (e.g. effects of age, domain knowledge, etc.). Finally, during the design and analysis of 
this user evaluation we discovered a need for validated and reliable measurements. We will continue to use different types 
of measurements to measure constructs in a valid and reliable way in future user evaluations.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

We acknowledge the project ERP Explainable Artificial Intelligence (060.38608) and ERP FATE (060.43385) from TNO for 
funding this research. In addition, we thank the Technical University of Delft and the University of Amsterdam for support 
and feedback on this research.

References

[1] M.M. De Graaf, B.F. Malle, How people explain action (and autonomous intelligent systems should too), in: 2017 AAAI Fall Symposium Series, 2017.
[2] T. Miller, Explanation in artificial intelligence: insights from the social sciences, Artif. Intell. 267C (2019) 1–38.
[3] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A survey of methods for explaining black box models, ACM Comput. Surv. 

51 (5) (2019) 93.
[4] F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable machine learning, arXiv preprint arXiv:1702 .08608.
[5] S. Anjomshoae, A. Najjar, D. Calvaresi, K. Främling, Explainable agents and robots: results from a systematic literature review, in: Proceedings of 

the 18th International Conference on Autonomous Agents and MultiAgent Systems, International Foundation for Autonomous Agents and Multiagent 
Systems, 2019, pp. 1078–1088.

[6] T. Miller, Contrastive explanation: a structural-model approach, arXiv preprint arXiv:1811.03163.
[7] R.R. Hoffman, S.T. Mueller, G. Klein, J. Litman, Metrics for explainable AI: challenges and prospects, arXiv preprint arXiv:1812 .04608.
[8] E.J. de Visser, M.M. Peeters, M.F. Jung, S. Kohn, T.H. Shaw, R. Pak, M.A. Neerincx, Towards a theory of longitudinal trust calibration in human–robot 

teams, Int. J. Soc. Robot. 12 (2) (2020) 459–478.
17

http://refhub.elsevier.com/S0004-3702(20)30153-3/bib54E69B39680A5A2ACC2BDACC2016CCEEs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib4C9AC97CAF6DA619CED96727FC511200s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib76C04EE78DFE740CAC7DD3D7B0408494s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib76C04EE78DFE740CAC7DD3D7B0408494s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibDC3AAC8CF6281D97283E3B426596E7F4s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib50896A56DF25F7D37DC6BD82CC3A6F4Cs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib50896A56DF25F7D37DC6BD82CC3A6F4Cs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib50896A56DF25F7D37DC6BD82CC3A6F4Cs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib4A11545D40FA7346CAE94610A52CD128s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib5E4B8BB95659D5784D339A45B7193B47s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibF0D20C371A1046F9180B511B6015606Ds1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibF0D20C371A1046F9180B511B6015606Ds1


J.S. van der Waa, E.G.I. Nieuwburg, A.H.M. Cremers et al. Artificial Intelligence 291 (2021) 103404
[9] I. Contreras, J. Vehi, Artificial intelligence for diabetes management and decision support: literature review, J. Med. Internet Res. 20 (5) (2018) e10775.
[10] I. Kavakiotis, O. Tsave, A. Salifoglou, N. Maglaveras, I. Vlahavas, I. Chouvarda, Machine learning and data mining methods in diabetes research, Comput. 

Struct. Biotechnol. J. 15 (2017) 104–116.
[11] M. Neerincx, W. Vught, O. Blanson Henkemans, E. Oleari, J. Broekens, R. Peters, F. Kaptein, Y. Demiris, B. Kiefer, D. Fumagalli, et al., Socio-cognitive 

engineering of a robotic partner for child’s diabetes self-management, Front. Robot. AI 6 (2019) 118.
[12] B. Hayes, J.A. Shah, Improving robot controller transparency through autonomous policy explanation, in: 2017 12th ACM/IEEE International Conference 

on Human-Robot Interaction, HRI, IEEE, 2017, pp. 303–312.
[13] T. Chakraborti, A. Kulkarni, S. Sreedharan, D.E. Smith, S. Kambhampati, Explicability? Legibility? Predictability? Transparency? Privacy? Security? The 

emerging landscape of interpretable agent behavior, in: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 29, 
2019, pp. 86–96.

[14] J.E. Mercado, M.A. Rupp, J.Y. Chen, M.J. Barnes, D. Barber, K. Procci, Intelligent agent transparency in human–agent teaming for multi-uxv management, 
Hum. Factors 58 (3) (2016) 401–415.

[15] K. Stubbs, P.J. Hinds, D. Wettergreen, Autonomy and common ground in human-robot interaction: a field study, IEEE Intell. Syst. 22 (2) (2007) 42–50.
[16] T. Kulesza, M. Burnett, W.-K. Wong, S. Stumpf, Principles of explanatory debugging to personalize interactive machine learning, in: Proceedings of the 

20th International Conference on Intelligent User Interfaces, ACM, 2015, pp. 126–137.
[17] O. Biran, C. Cotton, Explanation and justification in machine learning: a survey, in: IJCAI-17 Workshop on Explainable AI (XAI), vol. 8, 2017, p. 1.
[18] Z.C. Lipton, The mythos of model interpretability, arXiv preprint arXiv:1606 .03490.
[19] A. Adadi, M. Berrada, Peeking inside the black-box: a survey on explainable artificial intelligence (XAI), IEEE Access 6 (2018) 52138–52160.
[20] M. Bilgic, R.J. Mooney, Explaining recommendations: satisfaction vs. promotion, in: Beyond Personalization Workshop, IUI, vol. 5, 2005, p. 153.
[21] U. Ehsan, B. Harrison, L. Chan, M.O. Riedl, Rationalization: a neural machine translation approach to generating natural language explanations, in: 

Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, ACM, 2018, pp. 81–87.
[22] L.A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, T. Darrell, Generating visual explanations, in: European Conference on Computer Vision, 

Springer, 2016, pp. 3–19.
[23] J.L. Herlocker, J.A. Konstan, J. Riedl, Explaining collaborative filtering recommendations, in: Proceedings of the 2000 ACM Conference on Computer 

Supported Cooperative Work, ACM, 2000, pp. 241–250.
[24] L.R. Ye, P.E. Johnson, The impact of explanation facilities on user acceptance of expert systems advice, MIS Q. (1995) 157–172.
[25] J. Zhou, Z. Li, H. Hu, K. Yu, F. Chen, Z. Li, Y. Wang, Effects of influence on user trust in predictive decision making, in: Extended Abstracts of the 2019 

CHI Conference on Human Factors in Computing Systems, 2019, pp. 1–6.
[26] S. Berkovsky, R. Taib, D. Conway, How to recommend?: User trust factors in movie recommender systems, in: Proceedings of the 22nd International 

Conference on Intelligent User Interfaces, ACM, 2017, pp. 287–300.
[27] D. Holliday, S. Wilson, S. Stumpf, User trust in intelligent systems: a journey over time, in: Proceedings of the 21st International Conference on 

Intelligent User Interfaces, ACM, 2016, pp. 164–168.
[28] F. Nothdurft, T. Heinroth, W. Minker, The impact of explanation dialogues on human-computer trust, in: International Conference on Human-Computer 

Interaction, Springer, 2013, pp. 59–67.
[29] I. Lage, E. Chen, J. He, M. Narayanan, B. Kim, S. Gershman, F. Doshi-Velez, An evaluation of the human-interpretability of explanation, arXiv preprint 

arXiv:1902 .00006.
[30] M. Joppe, 2000. The Research Process. Retrieved February 25, 1998.
[31] E.A. Drost, et al., Validity and reliability in social science research, Educ. Res. Perspect. 38 (1) (2011) 105.
[32] J. Kirk, M.L. Miller, M.L. Miller, Reliability and Validity in Qualitative Research, vol. 1, Sage, 1986.
[33] P. Lipton, Contrastive explanation, R. Inst. Philos. Suppl. 27 (1990) 247–266.
[34] B.Y. Lim, A.K. Dey, Assessing demand for intelligibility in context-aware applications, in: Proceedings of the 11th International Conference on Ubiquitous 

Computing, ACM, 2009, pp. 195–204.
[35] L.K. Branting, Building explanations from rules and structured cases, Int. J. Man-Mach. Stud. 34 (6) (1991) 797–837.
[36] J. van der Waa, M. Robeer, J. van Diggelen, M. Brinkhuis, M. Neerincx, Contrastive explanations with local foil trees, arXiv preprint arXiv:1806 .07470.
[37] F. Wang, C. Rudin, Falling rule lists, in: Artificial Intelligence and Statistics, 2015, pp. 1013–1022.
[38] N. Barakat, J. Diederich, Eclectic rule-extraction from support vector machines, Int. J. Comput. Intell. 2 (1) (2005) 59–62.
[39] A. Newell, H.A. Simon, et al., Human Problem Solving, vol. 104, Prentice-Hall, Englewood Cliffs, NJ, 1972.
[40] M.T. Chi, M. Bassok, M.W. Lewis, P. Reimann, R. Glaser, Self-explanations: how students study and use examples in learning to solve problems, Cogn. 

Sci. 13 (2) (1989) 145–182.
[41] A. Renkl, Worked-out examples: instructional explanations support learning by self-explanations, Learn. Instr. 12 (5) (2002) 529–556.
[42] I. Peled, O. Zaslavsky, Counter-examples that (only) prove and counter-examples that (also) explain, Focus Learn. Probl. Math. 19 (3) (1997) 49–61.
[43] A. Adhikari, D.M. Tax, R. Satta, M. Faeth, Leafage: example-based and feature importance-based explanations for black-box ml models, in: 2019 IEEE 

International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, 2019, pp. 1–7.
[44] J. Bien, R. Tibshirani, et al., Prototype selection for interpretable classification, Ann. Appl. Stat. 5 (4) (2011) 2403–2424.
[45] B. Kim, C. Rudin, J.A. Shah, The bayesian case model: a generative approach for case-based reasoning and prototype classification, in: Advances in 

Neural Information Processing Systems, 2014, pp. 1952–1960.
[46] B. Kim, R. Khanna, O.O. Koyejo, Examples are not enough, learn to criticize! Criticism for interpretability, in: Advances in Neural Information Processing 

Systems, 2016, pp. 2280–2288.
[47] R.K. Atkinson, Optimizing learning from examples using animated pedagogical agents, J. Educ. Psychol. 94 (2) (2002) 416.
[48] M.J. Pazzani, Representation of electronic mail filtering profiles: a user study, in: Proceedings of the 5th International Conference on Intelligent User 

Interfaces, 2000, pp. 202–206.
[49] S. Stumpf, V. Rajaram, L. Li, W.-K. Wong, M. Burnett, T. Dietterich, E. Sullivan, J. Herlocker, Interacting meaningfully with machine learning systems: 

three experiments, Int. J. Hum.-Comput. Stud. 67 (8) (2009) 639–662.
[50] A. Bussone, S. Stumpf, D. O’Sullivan, The role of explanations on trust and reliance in clinical decision support systems, in: 2015 International Confer-

ence on Healthcare Informatics, IEEE, 2015, pp. 160–169.
[51] B.Y. Lim, A.K. Dey, D. Avrahami, Why and why not explanations improve the intelligibility of context-aware intelligent systems, in: Proceedings of the 

SIGCHI Conference on Human Factors in Computing Systems, 2009, pp. 2119–2128.
[52] J. Pearl, et al., Causal inference in statistics: an overview, Stat. Surv. 3 (2009) 96–146.
[53] V.O. Mittal, C.L. Paris, Generating explanations in context: the system perspective, Expert Syst. Appl. 8 (4) (1995) 491–503.
[54] N.J. Cooke, S.M. Shope, L. Schiflett, E. Salas, M. Coovert, Designing a synthetic task environment, in: Scaled Worlds: Development, Validation, and 

Application, 2004, pp. 263–278.
[55] V.U. Odili, P.D. Isiboge, A. Eregie, Patients’ knowledge of diabetes mellitus in a Nigerian city, Trop. J. Pharm. Res. 10 (5) (2011) 637–642.
[56] G. Paolacci, J. Chandler, P.G. Ipeirotis, Running experiments on Amazon mechanical turk, Judgm. Decis. Mak. 5 (5) (2010) 411–419.
[57] A. Papenmeier, G. Englebienne, C. Seifert, How model accuracy and explanation fidelity influence user trust, arXiv preprint arXiv:1907.12652.
18

http://refhub.elsevier.com/S0004-3702(20)30153-3/bib3400BE3A7C7ACD11802CFEA859C6F05Fs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib4F557B816173846BD9EEA73A5247452Fs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib4F557B816173846BD9EEA73A5247452Fs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibC67A23FEE63917055A82F4E273C88C46s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibC67A23FEE63917055A82F4E273C88C46s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib685873C997D9320A72E913DFDBE8E3B4s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib685873C997D9320A72E913DFDBE8E3B4s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibBD39F033BE921FFBE8F374F107EE7D23s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibBD39F033BE921FFBE8F374F107EE7D23s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibBD39F033BE921FFBE8F374F107EE7D23s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib1A3C2DCE5E7BBABBE8AD0F67BEB9A5B6s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib1A3C2DCE5E7BBABBE8AD0F67BEB9A5B6s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib7AF489704A23485E322EDD05D2906783s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibB33AAFA41C4C50A06B45597484517321s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibB33AAFA41C4C50A06B45597484517321s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib198E8ADB88FD733A7C70B1C1766805DCs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibAF91A208F6C398472029C1905E3903CDs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib9D08F6AF138B3E35E39D07DDD7F61591s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibEC7D6A9B55DF746A82F23B737E1B7A4Cs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib19014705778F55DBA7F41BA3A6B15AB2s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib19014705778F55DBA7F41BA3A6B15AB2s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib1F49262AAD32D7676D1396896210C6B2s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib1F49262AAD32D7676D1396896210C6B2s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib56598783D1FC416D8A30162C59F5F091s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib56598783D1FC416D8A30162C59F5F091s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib4E24C3E25948D89AAF2DC7E8374F5BE7s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibCE00BD9BC2E6F567D73E76DC17E71FC4s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibCE00BD9BC2E6F567D73E76DC17E71FC4s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib02159596F766CE55932501C46CCA44EAs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib02159596F766CE55932501C46CCA44EAs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibC6B9435B79C46BDD430D8A56BF1C0DC6s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibC6B9435B79C46BDD430D8A56BF1C0DC6s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib53815879BD8DC671450EE3C195DB697As1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib53815879BD8DC671450EE3C195DB697As1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib1C5FB926BF753EDB9CE2B25A0ECB9585s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib1C5FB926BF753EDB9CE2B25A0ECB9585s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib4A477434D09ACFF65EEBFD6B3F156106s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib360618727C9446D3549BA4F2E043B494s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib6546B34D5ACDBDCC1FF1A988E8F77DACs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibE14E63A7DDBDB1654A4A61E11A2B5E5Es1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibAA590A06984DBAB561D0A517D332B864s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibAA590A06984DBAB561D0A517D332B864s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib560B2638C3E8637841001193C2EAFD73s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibD8039E317E8750B5F083D28C2A336B2Ds1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib77F8663CB57CB678BFEB18D7826623B0s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib16A1B8D8FCE335B616EF5CCB3486B6FAs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibE29255EA5D3731A308B1CBB4B0A09265s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib7035EA28A59CB903F0E9FD39434417CDs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib7035EA28A59CB903F0E9FD39434417CDs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib8F57058C1D9101550468362BE229236As1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibE42DA94107E84F83B6ACD6A451D2E741s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibDAB607FA5C72CF34F0E290EBE05B04D3s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibDAB607FA5C72CF34F0E290EBE05B04D3s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib6AB262506900ADF10618BA4A8A822418s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib982CD53440A10B0A1647C762B6262A32s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib982CD53440A10B0A1647C762B6262A32s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibC72F3B5F2CB98167046EAF504993C589s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibC72F3B5F2CB98167046EAF504993C589s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib300CA21623528CD22E04CC7F95AAE120s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibF5E384F83A4E5DBA6E3CDE462B5FCAA7s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibF5E384F83A4E5DBA6E3CDE462B5FCAA7s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibBE67A513A71081D9E7836730711D96CEs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibBE67A513A71081D9E7836730711D96CEs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibA8BF797C463B3E1E4DA062A31A895222s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibA8BF797C463B3E1E4DA062A31A895222s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibB743D3DB46AE4672AE239AEE88A88A72s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibB743D3DB46AE4672AE239AEE88A88A72s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib9623D8488DCF91506C377BA0FFD70312s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib162EACAB18A7285FCDBB4626A756B8F7s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibAED8C35897EF4577CB4577D84D621DEFs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibAED8C35897EF4577CB4577D84D621DEFs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib507D13C0A1BF019F965A4F929E154403s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibF51113A37502F080AE56C410D2EB09E4s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib75C4BDF9951AAAA9A838BF25B765763Ds1


J.S. van der Waa, E.G.I. Nieuwburg, A.H.M. Cremers et al. Artificial Intelligence 291 (2021) 103404
[58] D. Slack, S. Hilgard, E. Jia, S. Singh, H. Lakkaraju, How can we fool LIME and SHAP? Adversarial attacks on post hoc explanation methods, arXiv preprint 
arXiv:1911.02508.

[59] Y. Zhang, K. Song, Y. Sun, S. Tan, M. Udell, “Why should you trust my explanation?” understanding uncertainty in lime explanations, arXiv preprint 
arXiv:1904 .12991.

[60] V. Buch, G. Varughese, M. Maruthappu, Artificial intelligence in diabetes care, Diabet. Med. 35 (4) (2018) 495–497.
[61] M. Reddy, S. Rilstone, P. Cooper, N.S. Oliver, Type 1 diabetes in adults: supporting self management, BMJ, Br. Med. J. 352 (2016), I998.
[62] I. Bosch, Het Groot Diabetesboek, Mension B.V., 2013.
[63] A. Holzinger, G. Langs, H. Denk, K. Zatloukal, H. Müller, Causability and explainability of artificial intelligence in medicine, Wiley Interdiscip. Rev. Data 

Min. Knowl. Discov. 9 (4) (2019) e1312.
[64] C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nat. Mach. Intell. 1 (5) 

(2019) 206–215.
[65] R.C. Bogdan, S.K. Biklen, Qualitative Research in (Validation) and Qualitative (Inquiry) Studies, Allyn & Bacon, 2006.
[66] C.J. Huberty, J.D. Morris, Multivariate analysis versus multiple univariate analyses, Psychol. Bull. 105 (1989) 302–308.
[67] G. Keppel, Design and Analysis: A Researcher’s Handbook, Prentice-Hall, Inc., 1991.
[68] E. Yigit, F. Gokpinar, A simulation study on tests for one-way ANOVA under the unequal variance assumption, Commun. Fac. Sci. Univ. Ank. Sér. A 1 

(2010) 15–34.
19

http://refhub.elsevier.com/S0004-3702(20)30153-3/bib09652EBF42888BBB0BF9F8405216AF93s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib09652EBF42888BBB0BF9F8405216AF93s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib74839419FA05AF2C29AC330C79E341A2s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib74839419FA05AF2C29AC330C79E341A2s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib02BC4B43614F1238249D91F9CB0CD90Bs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibA9B9B3936DF0AF7824425B13B49FDE63s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibA7C8EA675F9F14A72797A73BE79E5AEBs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibCF16148A5F520C7C0F94AF3B454AC58Es1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibCF16148A5F520C7C0F94AF3B454AC58Es1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibEC9F092401F8A4B8FB64F5A3D242972Fs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibEC9F092401F8A4B8FB64F5A3D242972Fs1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibDC3C517F159B0E9611771BE1294CA45Es1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bibC39C2C8F5002C770561FADFC3D5E2882s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib74CD5E06A54DCCC742EBD1CA839A4FD6s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib14F6A42D0E6281D63C112C2DA4467B78s1
http://refhub.elsevier.com/S0004-3702(20)30153-3/bib14F6A42D0E6281D63C112C2DA4467B78s1

	Evaluating XAI: A comparison of rule-based and example-based explanations
	1 Introduction
	2 Background
	2.1 User evaluations in XAI
	2.2 Rule-based and example-based explanations

	3 Recommendations for XAI user evaluations
	3.1 R1: Constructs and relations
	3.2 R2: Use case and experimental context
	3.3 R3: Measurements

	4 The use case: diabetes self-management
	5 Constructs, expected relations and measurements
	6 Methods
	6.1 Experiment I: System understanding
	6.2 Experiment II: Persuasive power and task performance
	6.3 Participants

	7 Data analysis
	8 Results
	8.1 Experiment I: System understanding
	8.2 Experiment II: Persuasive power and task performance
	8.3 Usability and biases

	9 Discussion
	9.1 Experiment I: System understanding
	9.2 Experiment II: Persuasive power and task performance

	10 Limitations
	11 Conclusion
	Declaration of competing interest
	Acknowledgements
	References


