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Abstract

As several countries are once again turning their attention to the Moon, projects requiring several mis-
sions to establish long-term human presence on the Moon are being planned. In order to enable those
missions in the safest way possible, this raises the need of a cislunar space situational awareness. For
this purpose, the capabilities of tracking and determining the orbit of space debris have to be expanded
beyond their current implementation, into the cislunar space. This context adds complexity compared
to orbits located closer to Earth because of several factors, among which the highly non-linear dynam-
ics, the format of the observations, and the need to modify the dynamical models to take more forces
into account.

This research aims to build on the work described in [Witte 2024] by improving the performance of the
orbit determination process. The present work has kept the focus on the Chang’e 2 and 3 lunar mission
upper stages, both presenting ~10 years of optical observations including close lunar approaches. A
new bootstrapping method is implemented to extend the period over which an estimation is possible
to the full extent of the observation window, while reducing the number of external guesses needed to
obtain those results. An indicator for the true error resulting from the orbit estimation process is then
analysed to determine the behaviour of the error, and the most likely causes. The observations and
residuals are then analysed and different processes are applied to investigate their effects on the quality
of the orbit estimation. Those processes are adjusting the observation weights, including the ground
station biases in the estimation, and filtering outlying observations. Finally, the 3-constant model is
implemented in place of the cannonball model for the radiation pressure. The residuals are analysed
both in-sample and out-of-sample for the different radiation pressure models, and the indicator of the
true error is recomputed using this new configuration.

This leads to several interesting findings. A time offset is identified as the main cause for the error in
the estimation, and the causes of this time offset can come either from the observations or from the
dynamical model. The refined processing of the observations and the residuals confirms the fact that
the largest uncertainty due to the observations is along the trajectory. However, the methods tried to
remediate this prove to be inconclusive, indicating that the dominant effect for the error is more likely
not the observation quality or processing. The implementation of a new solar radiation pressure model
confirms this, by showing that the 3-constant model is able to outperform the cannonball model by all
the metrics considered.
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Introduction

1.1. Background and motivation

The phenomenon known as Kessler syndrome first described in [Kessler et al. 2010], depicts the sce-
nario in which so many spacecrafts, debris and other objects are orbiting the Earth at the same time
that a single collision would trigger a chain reaction that, although not instantaneous as the popular
understanding of this term may deem it, could considerably increase the risk to space missions. Even
with the current population, the risk is non negligible and the International Space Station (ISS) had
to perform 32 collision avoidance manoeuvres between 1999 and 2022 [Cannelli et al. 2023]. This
situation is getting worse as the access to space is getting cheaper [Dural et al. 2021], and as more
and more actors want to launch (super) constellations of satellites, as for instance the SpaceX Starlink
constellation [McDowell 2020b].

In the past years, the situation of space debris in the "classical” Earth orbits, from LEO to GEO, has
thus attracted more and more attention. In the geostationary orbit, the main issue is the fact that there
is only one orbit that is rigorously geostationary. This causes the space on this specific orbit to be
limited, meaning that every satellite that reaches the end of its mission should free its spot on the orbit.
Moreover, the presence of debris on this orbit, or any orbit that intersects with it, would lead to dire
consequences, and thus every precaution is taken to avoid having a collision between two of the GEO
satellites. Such a collision would indeed lead to the creation of an immense amount of debris, as has
already been seen in the case of the Iridium-Cosmos collision in LEO [Braun et al. 2017].

In the Low-Earth orbital region, there is not one single specific orbit that plays such a crucial role as
the GEO orbit. Even though the sharing of a singular orbit is not an issue, some regions are subject
to more interest, such as the Sun-Synchronous Orbits (SSO), and could lead to a similar situation
in the future. In addition, access to LEO has been made easier over the recent years, namely with
the emergence of the "new space” sector in Europe, following the example of SpaceX in the United
States [Denis et al. 2020]. This renewed interest in the aerospace sector has led to the deployment
(or planned deployment) of many satellite constellations, or even mega-constellations in the case of
Starlink [McDowell 2020b]. In this context, the low orbits are beginning to become very crowded, with
the need for avoidance manoeuvres increasing each year [Cannelli et al. 2023]. A major cause of this
problem is the fact that many satellites, despite reaching their end-of-life, have not been conceived
with a decommissioning plan in mind. After the end of their mission they thus become dead weights
orbiting the Earth, without any manoeuvring capability, leaving the task of preventing the collision to the
active satellites they might encounter. The prevention of the collisions in this region has now become
routine operation [Hobbs et al. 2019], [Bonnal et al. 2020], with a well-established process of collision
detection, warning, and if need be avoidance. This process relies heavily on tracking all of the objects
whose size is larger than 10 cm, and estimating their future trajectory to find the risk of a collision with
other objects. This way of operating, despite being mostly successful in preventing major collisions
over the past years, is not deemed to be sustainable as the number of objects and debris orbiting the
Earth grows. For this reason, the international consensus has shifted towards preventing the creation
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of inactive space objects (or debris) altogether. This is for instance the case in France, which has
adopted the Law on Space Operations (LOS) [Achilleas 2010]. This text namely states that every
satellite launched from the French territory shall have an end-of-life disposal plan to have the satellite
either de-orbit, or move to a graveyard orbit in the 25 years following its end of operations. Unfortunately,
this is coming late as there are already many debris orbiting the Earth.

All of this attention, studies and processes are comprised in the scope of Space Situational Awareness
(SSA). This field has then logically been growing with the years [Gasparini and Miranda 2010]. Deemed
the main concern for the short-term future by the ESA [ESA 2019], the efforts of SSA have been mostly
focused on the Near Earth Objects (NEO), and more precisely on objects in "crowded” or "useful” orbits,
such as the GEO or some low-earth orbits, while letting some other orbits with less spotlight.

However, the topic of space debris mitigation is now expanding beyond GEO. Indeed, lunar spaceflight,
and establishing a more long-term human presence on the Moon is a major topic in the agendas of
many major space agencies. The most famous program is NASA's Artemis program, aiming to install
a human base on the Moon [Creech et al. 2022]. But other agencies also have their own missions
planned, such as the Indian Chandrayaan missions [Goswami 2010], or the Chinese Chang’e missions
[C. Li et al. 2015]. Moreover, cislunar space is also of interest in a military context [Byers and Boley
2022]. As part of those programs, multiple flights have already happened and many more are planned.
These flights will go beyond the areas covered by the collision prevention process already in place.
Since there are still no mitigation solution planned for safely disposing of the expendable parts of the
rockets, this means that the increase in the number of flights will lead to an increase in the amount of
inert objects, such as rocket upper stages. Those objects will pose a collision threat to the future lunar
missions, and avoidance manoeuvres are significantly more expensive when being performed on the
way to the Moon than when staying in orbit around the Earth [Barakat and Kezirian 2024]. Despite the
need for an increase in cislunar SSA underlined in [Baker-McEvilly et al. 2024], not many studies have
been performed on cislunar space objects.

There are multiple reasons for this, and the first is that these objects represent only a very small fraction
of the space debris [Frueh et al. 2021]. Since their trajectories are highly elliptical the probability of them
posing a risk to orbiting objects is extremely small. But another reason that makes their study and
surveillance less common is the difficulties that are posed by such objects. Indeed, their trajectories
are highly influenced by the Moon’s gravitational attraction, which can lead to the trajectory considerably
changing its Keplerian elements from one orbit to the next, thus rendering the term "periodic” obsolete:
the differences between one orbit and the following are too big to be considered a repetition of the
same trajectory with a small variation. The Moon presence also renders the system highly non-linear,
making it harder to predict what consequences a small variation of the initial conditions can have. In
other words, the cislunar region is chaotic, and predictions in a chaotic environment prove to be a
challenge [Frueh et al. 2021].

The collision assessment methods used for objects that are below GEO are, moreover, not adequate for
the objects in the cislunar space as the force models are not taking all the relevant forces into account,
and the observations used are different in the two situations. For those reasons, there is a need to
investigate the process of orbit determination and propagation of debris in cislunar space, and to do it
as accurately as possible to limit the number of false alarms.

Such a study has been started by [Witte 2024], which determined a generic framework, comprising the
dynamical models and estimation settings best suited for orbit determination in cislunar space. There
are however some issues that remain open. First, the use cases are quite limited, with only a few
periods of the available data being covered. Then, the uncertainty investigation is still at a preliminary
stage, using a linear propagation in a highly non-linear environment, and with an empirical process for
determining the initial covariance matrix. The dynamical model can also be refined, as no alternative
options to the cannonball model were considered for the solar radiation pressure. Finally, little insight
has been gained on the main source(s) of error in the result of the estimation. The present work aims
to improve and refine the framework developed, by identifying the source and type of the estimation
errors, implementing a more accurate force model and extending the scope of the study to use more
or all of the available data.
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1.2. Report structure

This report is structured as follows. The background information related to the current work is presented
in chapter 2. The implementation of the analyses that were conducted is described in chapter 3, and
the results of those analyses are presented in chapter 4. Finally, the conclusions and recommendations
that followed from the results are given in chapter 5. In addition to those chapters, some appendices
are provided to elaborate on the methods and intermediate results obtained throughout this thesis.
In Appendix A, additional analyses and results of the arc overlap study are provided. Then more
explanation on the residuals treatment is discussed in Appendix B, and finally Appendix C details the
use of the 3-constant model.



Background

2.1. Cislunar SSA

Although it has been seen that the need for cislunar SSA is growing, and has been acknowledged
as such by several sources, the majority of the articles that investigated the topic are not providing
actual concrete solutions to this issue, but rather giving standards and requirements [Barakat and
Kezirian 2024], restricting their analysis to simpler cases such as periodic cislunar orbits [Wilmer et
al. 2022], or studying the processes that produce debris without investigating the future of those debris
[Guardabasso et al. 2023]. Since the trajectories to reach the Moon can not be designed to avoid all
the cases that are not comprised in the existing literature, there is a knowledge gap when it comes to
estimating and propagating the trajectory of non-special objects in the cislunar region, and this with
a high accuracy that allows the classical collision detection and prevention processes to be applied
to future cislunar missions. [Witte 2024] has started to study this gap, and the present study aims at
further improving the general framework that was developed.

It is also important to note that one of the major difference with traditional LEO objects is the difficulty
and the type of the measurements. Indeed, for an object in LEO it is theoretically possible, with enough
ground stations (and funds to operate them) to have a full coverage of the orbit of a spacecraft, using for
instance radar measurements that are not impacted by the day-night cycle. However, such measure-
ments require to be close to the target and become less relevant as the object is further away from Earth,
already being almost completely unused in GEO [Guo et al. 2010]. Because of that the only source
of measurements possible for cislunar debris is optical measurements. Such a means of obtaining
information is less convenient because it is heavily dependent on the weather conditions, the day-night
cycle and the presence of a bright object (e.g. the Moon) in the background. As such, even with as
many ground stations and observation quality as possible, the observations by themselves would still
not provide an unambiguous position, and therefore trajectory, of the space object. The only way to
obtain them is to make use of the dynamics of the system, finding the trajectory that matches best with
the observations. This requires the development and verification of an accurate physical modelling of
the environment in order to be able to precisely match the measurements and to subsequently predict
the movement as close to the reality as possible.

2.2. Dynamical modelling

In this section, the fundamental equations describing the dynamics of the system are first introduced.
Then, the mathematical expressions for the different forces taken into account in this study are pre-
sented, and finally the equations for the rotational dynamics are shown, along with a discussion about
their relevance to this work.

2.2.1. Overview
As previously stated, the need for prediction of the movement of the objects in the cislunar space
creates the need for an adequate physical modelling of the environment. Indeed, the movement of a
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space object (or of any physical object in the classical mechanics description), is entirely decided by
the set of forces that are acting upon it. The choice that has to be made for an adequate modelling
of the trajectory is therefore which forces to include in the model, and which formulation to use (when
multiple formulations exist).

First of all, the mathematical expression describing the motion of an object in an inertial frame at time
t is [Wakker 2015]:

dp
F;(t) = — 2.1
Here, F; is the i-th force acting on the object, and p is the momentum of the object, defined as the
product of the mass m and the velocity v:

p(t) = m(t)v(t) (2.2)

If the mass of the object considered is constant (e.g. a space debris, or a satellite without a propulsion
system), the mass can be taken out of the derivative and Equation 2.1 becomes:

v 2
TR mSY (1) = m e () (2.3)

From this equation the movement of the object can be integrated knowing only its initial state (position
and velocity) and the expressions of the forces acting upon it. Moreover, this equation allows to write
the acceleration of the object studied as:

) = a0 == Y R =Y 0 24)

%

Based on this way of writing the equation of motion, the forces applied to the object are referred to as
"accelerations”, and they are formally defined as

(t) = — (2.5)

As stated above, Equation 2.1 is only valid for reference frames with an inertial origin and orientation
and classical (Newtonian) mechanics. This means that if the frame used is not inertial, some additional
forces must be added in Equation 2.3 to take the movement of the frame into account [Montenbruck and
Gill 2013]. A different way to account for the movement of the frame (but mathematically equivalent) is
to modify the expression of the accelerations to include the effect of some accelerations on the origin
of the (non-inertial) frame. For instance, considering three bodies:

» Body A is the body undergoing the acceleration

» Body B is the body exerting the acceleration

» Body C is the body to which the origin of the reference frame is tied

In this case, the expression of the acceleration of A with respect to C, denoted i 4 ¢ is given by:

Fpa  Fpjo

ma mc

o/ =FTa—Tc= (2.6)
Where i 4 (resp. i'c) is the inertial acceleration of body A (resp. C), Fp/4 (resp. Fp,4) is the force
exerted by body B on body A (resp. C) and m 4 (resp. m¢) is the mass of body A (resp. C). In the
following, the acceleration expressions will be given in the inertial frame, and the correction for the
non-inertial frame are handled by the propagation software Tudat (presented in section 3.1).

In this study, the preferred reference frame will be a frame whose orientation is considered inertial as
it is defined by the position of distant stars whose movement is negligible over the time scales of this
study [Wakker 2015]. The origin of the reference frame, however, is going to be the centre of mass of
the Earth, which can not be considered inertial as it is moving through the solar system in a trajectory
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that is not a straight line, and this motion is happening on the same time scale as the phenomenon
studied. Therefore, when computing the accelerations of the various forces on the space objects it will
be important to keep in mind that some of the forces also apply on the origin of the reference frame.

The main forces that are of interest in the cislunar space are the gravitational forces, especially the
ones exerted by the Earth, Moon and Sun [Baker-McEvilly et al. 2024]. The most basic expression of
the gravitational force exerted by a body B is the point-mass gravity. in this model, the acceleration
B pm can be written as [Wakker 2015]:

. B
B pm = —/;—31' (2.7)
Where up is the gravitational parameter of body B, r is the vector going from body B to the object
undergoing the acceleration, and r is the norm of r. This expression makes the assumption that all
the mass of the body is concentrated in one point (its centre of mass), and thus neglects the mass
distribution. It is used for forces (also called perturbations) that have a small magnitude compared to
the other forces in play, and for cases where the exerting body is far enough from the object that the
specific distribution of its mass is not significant.

In case the massive body is both close and exerts a strong force (e.g. the Earth), then the point-mass
assumption can become insufficiently accurate and the need arises to take into account the mass dis-
tribution of the body. To this end, the gravitational force is computed as the gradient of the gravitational
potential created by the massive body, thus leading to the expression [Montenbruck and Gill 2013]:

. — v R . .
¥ =V <“f >N T—fP,,,m(sm(gb)) (Crm cos(mA) + Sy sm(mA))) (2.8)

n=0m=0

Here, i 4, is the gravitational acceleration exerted by body B, R is the radius of body B, P,,, is the
Legendre polynomial of degree n and order m, C,,,,, and Snm are the spherical harmonics coefficients
of degree n and order m, ¢ is the geocentric latitude and A the geocentric longitude. The first noticeable
thing is that this equation contains an infinite number of terms, making it highly impractical for real uses.
However, since the coefficients P,,,, C,.,, and S,,,,, are decreasing with n and due to the fact that this
expression is only valid for » > Rp, the terms of the sum become smaller as n increases, thus allowing
for a simplification by truncating the sum to a certain n (the degree) and a certain m (the order).

The second thing to notice, that applies to both this formulation and the point-mass approximation
given in Equation 2.7 is that those accelerations do not depend on the mass of the object undergoing
the acceleration, meaning that those forces will have a similar influence on the origin of the frame
and on the object. The second term in Equation 2.6 can therefore not be neglected for gravitational
accelerations.

The last gravitational correction that can be taken into account is the time variation of the gravitational
field of the main attracting body, i.e. the oceanic and solid tides of the Earth. Under those effects,
the spherical harmonics coefficients used in Equation 2.8 are no longer constant but their values are
changing in time. Their expression can be found in [Montenbruck and Gill 2013], but they are not
expected to be relevant in this study.

Although gravitational forces are the main contributors to the movement of the space object, some other
forces are to be considered. This is namely the case for the radiation pressure and the atmospheric drag.
First, the atmospheric drag is expected to be almost always negligible, as the orbits considered in this
study are highly elliptical and do not typically come close enough to the Earth to enter the atmosphere
(2000 km) [Celletti et al. 2017]. Therefore, it is found that the atmospheric drag can be neglected in
this study.

As for the Solar Radiation Pressure (SRP), since its role is much more relevant it requires a more
in-depth study, that is developed in subsection 2.2.2.

2.2.2. Solar radiation pressure
The radiation pressure is the force applied to any object that receives light, as the photons impacting
the object carry some momentum that is then transferred to the object. Although each individual photon
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has a very small momentum, the effect can add up to significant amounts over time [Casanova et al.
2018]. In the case of a space object, the major cause of this effect is the Sun, and the force that comes
from it is called the Solar Radiation Pressure (SRP). Other bodies can also exert a radiation pressure on
the object, such as the Moon or the Earth. However, those effects have a significantly lower amplitude
than the SRP as discussed in [Stiller 2023] and [Montenbruck and Gill 2013], and are not considered
in this study.

Given the importance of the SRP for the trajectories studied in this work, a specific study has been
conducted to investigate the best mean to model it. Indeed, whereas gravitational accelerations have
an exact expression whose coefficients only depend on the exerting body, the SRP requires knowledge
of many parameters that are specific to the object being under investigation. Moreover, a fully accurate
expression would have to include a perfect simulation of the surface of the space object in order to
compute the angle of incidence of each photon, along with a perfectly accurate reflection law. This
is already very computationally expensive even in the ideal case where the object is perfectly charac-
terised, and gets even more complex in most use cases where the object is an unknown space debris
whose parameters can at best be estimated [Jah and Madler 2007]. For those reasons, there is a need
for a simplified approach to this force.

The two most commonly used methods are the cannonball method, and a panelled radiation method.
In the cannonball model, the space object is represented by a perfect sphere, with a fixed radius and
a known reflectivity parameter. Due to the spherical symmetry of the sphere and the fact that the solar
flux is constant over the dimensions of the spacecraft, the need for the computation of each individual
photon disappears and the force will always result in a component aligned with the Sun-object direction,
pointing away from the star. This description is very easy to compute, requiring only the direction of
the Sun and the two parameters (sphere radius and reflectivity coefficient) of the space object. The
resulting expression for the acceleration s p is [McMahon and Scheeres 2015]:

P A
fso (2.9)

r'sprp = CTWE
With C,. being the dimensionless radiation pressure coefficient comprised between 1 and 2, P the solar
radiation constant, equal to 1 x 107 kg-m/s?, r the distance between the two objects, A the projected
area of the sphere, m the mass of the object, and tg , the unit vector going from the Sun to the object.

Here, the order of magnitude of the acceleration is decreasing as the inverse of the radius of the object,
due to the % term. This means that for larger objects such as the Earth, the acceleration due to the
SRP is considerably lower than for the spacecraft and thus this acceleration is not considered to have
an influence on the motion of the origin of the reference frame. The % term in Equation 2.6 is thus
ignored for this acceleration.

The cannonball expression is a rough estimate of the force and is not able to predict accurately the
long-term dynamics of the space object. The specific inaccuracies encountered in the cislunar space
are presented in [Witte 2024]. Namely, the fact that the objects are tumbling and not perfectly facing the
Sun may cause some effects in a direction slightly different from the Sun-object line. The cannonball
expression is not able to model those effects and thus it can lead to errors and absurd values such as
acC, > 2.

A panelled radiation method on the other hand takes as an input a model of the space object which
consists of different panels that can each have their own reflectivity coefficient. The force is then
computed by computing the force on each panel and then summing them together, as described in
[Stiller 2023]. Such a method allows to have a more accurate description of the force, leading to better
results in the propagation. However, in order to know the orientation of the force the orientation of
each panel must be known. This in turn raises the need for a detailed model of the object, which is not
always available; and the need for the orientation of the spacecraft. This orientation is also typically
very difficult to obtain, as is explained in subsection 2.2.3.

In order to provide an accurate estimation of the force without requiring more information than is pos-
sible to acquire, an intermediate solution is investigated. The chosen method is the Three-Constant
Model (TCM) that is depicted in [McMahon and Scheeres 2015]. In order to express the new acceler-
ation, three base vectors 1, v, w are first defined as follows:
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Rg

= e (2.10)
W = cos(¢)Z; — sin(¢) (Z[ X ﬁ) (2.11)
v=wx1 (2.12)

Where R is the Earth position vector relative to the Sun and Rg its magnitude, ¢ the obliquity of the
spin axis of the Earth (taken as 23.4° in this study), and Z; is the unit vector in the direction of the
Earth’s heliocentric orbit angular momentum vector.

The expression for the acceleration is then:

. P . N N
r'spp = W (A1U+A2V+A3W) (213)

With P, m and r representing the same quantities as in the cannonball model. A, A; and A3 are the
three coefficients that replace C,. They are expressed in m? and it can be noticed that the TCM can
be used to "simulate” the cannonball model by taking A; = —C,.A and A, = A3 = 0. Note the negative
sign, due to the fact i is pointing towards the Sun, as opposed to s,

In this model, the force applied on the object is allowed to have three components, expressed in a
rotating frame tied to the Earth’s heliocentric orbit. As such, it requires two additional parameters to
estimate, but the orientation of the object is not needed. This seems to indicate a promising possibility of
balancing the number of parameters that have to be known or estimated, and the level of accuracy that
is possible to achieve in the results. Such a model could improve the accuracy of the orbit determination
process because it is able to capture some effects that are not exclusively in the direction from the Sun
to the space object. Those effects, although non-negligible as [Witte 2024] discussed, are expected to
be less important than the in-line acceleration, and thus it is expected that the values for A; and A3 will
be lower than the value for A;.

2.2.3. Rotational motion

In addition to the motion of the centre of gravity that is described by Equation 2.1, the attitude of the
space object is also described by a similar equations, with forces being replaced by torques M; and
momentum by angular momentum L [Montenbruck and Gill 2013]:

dL
M,(t) = —(¢ 2.14
; (t) ==, (®) (2.14)
Using this equation and simulating the evolution of the rotational state of the object could lead to a
better model, especially for forces that depend on the orientation of the object, e.g. the SRP (for some
expressions of this force).

The numerical simulation of rotational dynamics, however, requires much more effort and time to reach
results of a comparable accuracy. The first reason of this is the format of the observations. Indeed,
for objects that are far away from the Earth, e.g. the ones in cislunar space, the most common mea-
surements are simply a pair of angles: the right ascension (RA) and declination (DEC), as shown in
Figure 2.1. They are, additionally, obtained from optical detection [Frueh et al. 2021]. In such mea-
surements, the object appears as a dot (or a spot) on the detector, and the level of precision does
not allow for specific identification of the orientation of the object. The best information that can be ob-
tained is gained through the variation of the brightness of the object, and it only relates to the tumbling
rate rather than the absolute orientation. Unfortunately, even such a brightness curve cannot allow to
properly measure the tumbling rate, because depending on the shape of the object, different tumbling
rates could yield the same brightness curve [Balster et al. 2023].

The second reason that explains the difficulty to run a full 6-Degrees of Freedom (6DoF) simulation is
the need for a complete characterisation of the space object under study. Indeed, its angular momentum
needs to be known around the three axes, but also its specific shape is required in order to know how
the forces are spread and to compute the value of the various torques. Such information is hard to



2.3. Orbit determination 9

+z (North)

S
+x (Equinox Y') o

Figure 2.1: Right ascension (a)) and declination (§) [Montenbruck and Gill 2013]

come by because of the confidentiality of the companies or agencies that develop space equipment,
but can also be completely impossible to obtain, for instance in the case of space debris resulting from
a collision. In such a situation, the fragments can be too far from Earth to be properly imaged and
characterised. Finally, even if the object is perfectly known, in some circumstances it can prove too
difficult to completely model, as is the case for the upper stage of rockets with remaining fuel: in order
to be accurate, a simulation could need to simulate the sloshing, which requires an extended fluid
dynamics model and would considerably increase the runtime.

Indeed, the runtime of individual propagations is an additional concern even if enough information was
known to run the adequate simulations. This is important because in order to perform a trajectory esti-
mation, the software requires a large numbers of those propagations to be ran, and therefore reducing
the computing time of an individual simulation can lead to significant improvements of the software’s
efficiency. However, running a simulation with 6 degrees of freedom is considerably longer than one
with only 3 degrees of freedom, and can lead to practical problems when applied to real life situations.

Due to these three reasons, the rotational dynamics are neglected in this study, and the object is
considered to be represented by its centre of mass.

2.3. Orbit determination

In this section, the data used in this study is first presented. Then, the orbit determination itself is intro-
duced, both the general method and the multi-arc method. Finally, the numerical integration process
that allows to apply those methods is described.

2.3.1. Data

The objects considered in this study are the upper stages of the Chang’e 2 and Chang’e 3 rockets
(identified respectively by the codes 2010-050B and 2013-070B). Those rockets were launched in the
context of the Chinese Lunar Exploration Program [Xu and Ouyang 2014], and their upper stages have
orbited the Earth in cislunar space for an extended period of time. Those objects are the same that
were used in the analysis conducted in [Witte 2024], where their mass and maximum surface area had
been estimated to be respectively 5000kg and 37.14m?2.

It has been found using the Cross-section of complex bodies (CROC) tool from the ESA Debris Risk
And Mitigation Analysis (DRAMA) software that the maximal cross-section was 37.906m? instead. In
addition to this, the two models used for the SRP are based on the assumption that the objects are
tumbling [McMahon and Scheeres 2015], and thus the average cross-section is deemed more relevant.
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Its value is found to be 32.57m?. Finally, no sources were found for the dry mass of 5000kg given in
[Witte 2024], but [McDowell 2020a] gives an estimated value of 2800kg. Those values only impact the
estimation process through the 7—‘,‘1 ratio in the expression of the cannonball model, and the % fraction in
the TCM. Therefore, in order to allow for a better comparison to the results of [Witte 2024], the values
of 37.14m? and 5000kg are used. The impact of using potentially wrong estimates is discussed in
section 4.4

The observation data for those objects was collected by the Minor Planet Center (MPC) and can be
found through the Project Pluto databases. Observations for the upper stage from the Chang’e 2 mis-
sion span from the launch year 2010 until 2021 when the object left the Earth orbit. As for the Chang’e
3 upper stage, the data is available from its launch in 2013 until today, but the post-processing of the
raw data has been done specifically for [Witte 2024] until the 31/12/2023, and thus the observations
taken later than this date have not been included in the present study. The data points are coming from
52 different observatories, with 36 of them providing data for the Chang’e 2 upper stage, and 34 for the
Chang’e 3 upper stage. There are 1560 (resp. 881) observations in the time interval considered for the
Chang’e 2 (resp. Chang’e 3) upper stage.

Moreover, the Find_Orb software [Gray 2022] has been used for external inputs (initial guesses) in the
orbit determination process. This software performs Initial Orbit Determination (IOD), and provides a
rough estimate for the trajectory.

The acquisition method for the observations used in this study is optical imaging through the use of
Charge-Coupled Devices (CCD) cameras [Klinkrad 2006]. The observations are performed in the in-
ertially staring mode, which means that the stars in the background are fixed and the object appears
as a streak of light on this background. The observations are then stored in the MPC format, which
comprises the right ascension and the declination in the topocentric J2000 reference frame. In addition
to this data, the observation includes the time of the observation, along with other information such as
the ground station code (needed to know the location of the ground station).

An important aspect of the observations that needs to be taken into account is the errors that affect
them, and their various sources. Those errors can typically be sorted in three different categories as
discussed below [Kjeldsen and Frandsen 1992]

* Random errors: Those are the same errors that are present in every kind of physical measure-
ment. They are by default assumed to follow a Gaussian distribution.

» Observation biases: Due to using a specific instrument in specific conditions, a bias is always
introduced in the observation data. The causes for this bias can be various, and include resolution
effects, inaccurate or outdated star catalog etc.

» Timing errors: As the time of the observation is also registered, any error on the time will impact
the data. The effects of a timing error are different from an observation bias because they vary
with the characteristics of the object observed. Indeed, an error of 1s will represent a larger
difference in angular position if the object is closer to periapsis (where its angular velocity is the
largest) than if it is at apoapsis.

In the context of CCD right ascension/declination observations, one particular source of timing error is
important to mention: the streak effect. An example of an optical observation can be found in Figure 2.2.

On this image, a stack of 15 optical observations in a row can be seen. For each of those observations,
a pair (a, ) was acquired, along with the time of the observation. Each of the observations thus
corresponds to a spot on the picture, and the spots are not restricted to a single point (or pixel) on
the detector. One single observation thus consists of a small streak on the detector, and in order to
return a singular value for the right ascension and declination the middle of this streak is taken as the
observation. This can, however, lead to an issue when the object is tumbling. This is the case of
the Chang’e 3 upper stage, and that is why its luminosity is varying along the observation time. The
problem that can arise is that along this rotation there is an angle in which the light reflected is not
intense enough to be distinguished from the background. When the transition from not visible to visible
happens in the middle of the exposure time, this leads to an error in the observation time.

For example, in the simple situation where the exposure time is one second and the observation is
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Figure 2.2: Stack of 15 images taken with the 0.51-m telescope of MPC Q65 Warrumbungle, Australia, on 11 September 2015.
Note the the slow brightness variation with periodic specular peaks in brightness. Image courtesy M. Langbroek

performed from ¢, = 0.0s to t; = 1.0s. If the object is visible throughout the entirety of the exposure
time, then the spot will represent its path from ¢, to ¢, and taking the middle point of the streak (or spot)
will yield the position at t; = “t% = 0.5s. In this situation, attributing the observation to the time ¢, is
therefore correct, and there is no error introduced.

If the object is tumbling and was not visible during the first half of the exposure time the situation is
very different. Indeed, the streak will represent its path from ¢, to ¢;, and taking the middle point will
thus give the position at t; = % = 0.75s. This time, attributing the observation to the time ¢; is not
correct and results in an error of 0.25s. This error is much harder to correct than the light-time effect,
mainly because detecting when it happens is not easy, and its effects, while mostly time-related, are
not necessarily restricted to the along-track direction. Moreover, the magnitude of this effect is random
and cannot be determined simply from those observations.

2.3.2. General orbit determination

The process of orbit determination is aimed at two main objectives: the first is to be able to know the
position of the object under investigation during the period of observation; and the second is to be able
to predict its motion in the future, for instance in order to predict potential collisions. In cases where it
is relevant, in addition to the position, estimating the parameters influencing the dynamics of the object
is also part of the first goal.

Although it is clear why a dynamical simulation is necessary in the second case, the position deter-
mination also requires such a simulation. Indeed, for objects in cislunar space, there was no way to
obtain the position of the object through the available measurements. This argument is no longer true
for objects between LEO and GEO, mainly because with the addition of a GPS receiver the position of
a satellite can be obtained very rapidly and accurately. However, the Global Navigation Satellite Sys-
tem (GNSS) networks do not reach far enough in the cislunar space and although concepts have been
elaborated for a cislunar GNSS constellation, none is currently under investigation, let alone already
flying. In addition to this limitation, GNSS positioning can only be used by active satellite, whereas the
current study also aims at determining the orbit of space debris that are by definition passive objects
and cannot communicate with GNSS satellites.

Therefore, since the only measurements available do not give a position, but constraints about the
position, the most common way of estimating the position is to make use of the other information that
is known. This complementary information takes the form of the dynamics of the system. Indeed, even
though a series of observations points could correspond to an infinite number of successive positions,
there usually is at most one of those that complies with the equations of motion described in section 2.2.
Using this information thus allows to eliminate everything that is dynamically impossible and find the
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trajectory of the space object.

In addition to the above, it should be mentioned that every measurement is affected by errors and
uncertainties, which often lead to the result that no trajectory is a perfect fit for every observation, and
therefore a metric has to be computed to evaluate how well a given trajectory explains the observations,
and the “real” trajectory is the one that gives the best result for this metric.

There are different possibilities to evaluate the fit, but the most common one when all the data is already
available (i.e. the orbit is determined a posteriori and not on the fly) is to use the Least-Squares method.
In this method a trajectory is defined by a set of parameters xq typically containing the initial state, but
it can also include some other values, such as the reflectivity or the drag coefficients. The trajectory is
computed using a dynamical model and then its "score” is evaluated by simulating the measurements
that were performed. The differences between the actual measurements and the simulated ones are
called the residuals, and the computed metric is the sum of the squares of the residuals. The objective
is to minimise this metric, as lower residuals mean that the trajectory gives observations closer to the
actual ones. This is the base principle of the Least-Squares method, which can then be adapted to
take into account the different accuracies of the measurements, by introducing a weighting matrix W,
thus giving the Weighted Least-Squares (WLS) method. In this method, the error to minimise J(xq) is
given by [Montenbruck and Gill 2013]:

J(x0) = (z — h(x0))" W(z — h(xo)) (2.15)

Where z are the observations, h(xq) are the observations simulated when using x, as a set of pa-
rameter. It is then possible to linearise this expression, and find the correction Ax,'s9 that leads to a
minimum for J:

Axo®™ = (H'WH) 'HT WAz (2.16)
Where H = 22

 9xo

Using this equation, itis thus possible through an iterative process to find successive sets of parameters
that give lower residuals, until an ending criterion is reached. Such a criterion is usually chosen to be
that the results improve less than a chosen threshold between two iterations, but it could also be that
the "score” of a set of parameters is lower than a certain value.

It is important to note that due to the linearisation step, an initial guess that is too far from the truth will
lead to a potentially non-converging process, thus failing to give a resulting trajectory. The initial guess
should therefore be as accurate as possible. This initial guess does not however bear any weight in
the orbit determination process as described above. Therefore, in addition to using weights to favour
observations that are more accurate, it is possible to add an a priori covariance matrix that penalises
large deviations from the initial guess. This is useful when the initial guess can be trusted to be a good
indicator and should not be discarded altogether.

Another phenomenon, over-fitting the data, can also be prevented using this a priori covariance ma-
trix. Indeed, if the software has a lot of parameters to adjust, it is sometimes possible to find a set of
parameters that fit the data very well, but when matched with observations outside the training dataset
lead to highly inaccurate results. A very simplified example of over-fitting can be seen in Figure 2.3.
Here, the data consists of 5 data points taken as y = x, with some random noise added. When using
the linear fit, the proper behaviour is estimated and the predictions made by the model outside of the
training set would be correct. When using 5 coefficients for the fitting polynomial expression the fit is
much better on the training set, as it passes exactly through the points. Outside the range of the data
however, the 4th order fit diverges very quickly and would give worse predictions than the linear model.
In this example, over-fitting is caused by using too many parameters compared to the real behaviour
of the data.

In the context of orbit determination, over-fitting can happen even when using only parameters that
are relevant to the real behaviour of the data. The issue is then caused by a lack of data, and thus
the estimator finds a solution that allows for a better in-sample fit, by changing the values of the pa-
rameters to absurd values. The a priori covariance matrix, by forcing the parameters to remain in the
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Figure 2.3: Over-fitting example

neighbourhood of the initial guess, mitigates this issue. When using an a priori covariance matrix P§",
the expression for Ax's9 becomes:

AX()ISq _ ((ngr)fl + HTWH)fl((PSPF)flAXOBPr 4 HTWAZ) (217)

2.3.3. Multi-arc orbit determination

Generic

When performing an orbit determination over long periods of time, the imperfections of the dynamical
model make it harder to converge to a trajectory that fits the observation data. Moreover, the matrices
involved in the process become larger, which in turn leads to increased computational loads [Godard
et al. 2017]. Therefore, estimating all of the observations as a whole can become inefficient. An
alternative solution is to estimate the trajectory of the space object by arcs.

In such a method, the observations dataset is divided into a number of arcs. The length of the arcs
needs to be long enough to include enough data, but not too long to run into the issues described
above [Godard et al. 2017]. Once such a division has been performed, the estimation algorithm is run
on each arc separately and the results are in the form of a set of parameters (initial state + potential
complementary parameters) for each arc, and the final state of one arc can be used as an initial guess
for the next arc. This method allows for a better fit to the data and a faster computation time. The
main downside to this is that the trajectory no longer follows the dynamical equations, as there is the
possibility that discontinuities are present in between the arcs. For this reason, the prediction of the
future behaviour can be made more difficult. The choice of which state to use as a reference is quite
straightforward: the one at the last epoch is the best option. The question of which value to select
for the other parameters is however more tricky. Indeed, if the cannonball model is used for SRP, the
reflectivity coefficient C,. is not usually known, and thus is one of the estimated parameters. As such,
it can have different estimated values across the successive arcs. However, the value of C, is not
supposed to change and there is no specific reason that the last value would be more accurate than
the previous ones.

One way to mitigate this issue is to implement some so-called "global” parameters [Parisi et al. 2012].
Such parameters are set to have the same value in all the arcs. With this type of parameters, there is
more control over which parameters are allowed to exhibit discontinuities between the arcs and which
ones should remain fixed.
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Constrained

In order to limit the size of the "jumps” in position between two successive arcs, it is possible to imple-
ment a constrained version of the multi-arc orbit determination method. Such an implementation has
been described in [Lari and Milani 2019], in the context of the JUICE mission. In such a method, an
additional term is added to the loss function so that it becomes:

n—1
J(x0) = (z — h(x0))TW(z — h(xq)) + % > dritt. it ai ! (2.18)

j=1

with u the penalty parameter, that allows to adjust how to balance between the observations and the
jumps, d’77+! the state difference between arcs j and j + 1, and C7/*! the weighting matrix for the
jumps.

With this new expression, after linearisation and derivation to find the minimum, it is possible to find:
1 neloo
Axo™ = (H"WH) 'H' WAz — —(H'WH) ™' Y B/’ c/itla/it (2.19)
v °
J=1

Where Bj;j+1 — M

Oxo

In order to compute the B7+! matrices, the process should be very similar to computing the state tran-
sition matrix that is already used to compute the H matrix. Indeed, the values can be easily initialised,
by observing that a variation of the initial state affects the discrepancy at the initial position if and only
if this variation is on one of the position or velocity parameters. The propagation then obeys some
differential equations that can be solved for each integration step.

However, due to the internal functioning of Tudat (presented later in section 3.1), it is possible that
such an addition would prove very difficult to implement, and could cost a lot of time. Therefore three
options are considered. The first one is to use Tudat to propagate the differential equations and use
the formula for the iteration step as written above; the second option is to compute B7-7*! using finite
differences and then use the formula for the iteration step; the third option is to consider the problem
as a constrained optimisation problem and use a standard algorithm for finding the minimum. The
second option is much easier to implement but requires additional propagation compared to the first
one, leading to an increase in the computer time required. The third option is less predictable, because
depending on the algorithm and the situation, it could lead to more evaluations than the iterative step
described by the formula. The second option is then the one deemed more suitable for a first approach.

2.3.4. Numerical integration

In order to perform the orbit determination, it has been explained in the above parts that a dynamical
propagation of the initial state has to be performed. This process is indeed needed to compute the
simulated observations and their discrepancies w.r.t. the actual data. Knowing the differential equations
that describe the motion, depicted in section 2.2, it is sufficient to find the solution to those equations
to obtain the trajectory of the object. However, the equations of motion only have an analytical solution
in the case of simple orbits, with no perturbation or small ones [Montenbruck and Gill 2013]. In almost
all real-life applications, the analytical solutions obtained through approximations of the perturbations
are not accurate enough, and thus the equations of motion are solved numerically.

A numerical integration of the equations of motion relies on two main components:

» the propagator, or the formulation of the equations of motion. Itis possible to express the state of
an object in different ways (Cartesian coordinates, Keplerian elements etc.), and those different
representations give rise to different formulations of the equations of motion. Although mathemat-
ically equivalent, in the context of numerical integration those different formulations can lead to
different behaviours. In this study, the Cartesian formulation of the equations of motion (Cowell
propagator) is used. The advantage of using such a propagator is the fact that it does not rely on
any assumption regarding the behaviour of the space objects, and is a robust integrator (meaning
that it does not have singularities that could lead to inaccurate results).
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+ the integrator, or the integration scheme. This describes the process to solve the equations of
motion, and has a direct impact on the quality of the results. Indeed, the choice of the integrator
can also involve the temporal resolution of the integration, which directly impacts the accuracy
of the integration. Many integrators exist, and a trade-off analysis has been conducted in [Witte
2024] in the same context as the present study. The integrator that was found most suited is a
member of the Runge-Kunta-Fehlberg (RKF) family, a variable step size RKF7(8) integrator with
a tolerance of 10719, as described in [Fehlberg 1968]. The key characteristics of this integrator
is the fact that its step size is adapted for each step, in order to match the rate of evolution of the
dynamics. This feature allows to reduce the step in the parts where the dynamics change rapidly
(e.g. in a lunar close approach), while letting it take larger values in situations where a small step
is not required, thus reducing the amount of unnecessary calculations and the time taken by an
estimation.

An important aspect of humerical integration is that it leads to some errors compared to an actual
trajectory that would follow the dynamical model implemented. Those errors are typically increasing
as the time of the simulation gets longer. For this reason, it is preferable to use the middle point of
the estimation window as the initial state [Hwang et al. 2019]. Indeed, assuming that the errors are
increasing with time, the total amount of error is smaller when propagating two half-windows than one
full window. This can be seen mathematically from the derivation:

/
/T Qe(t)dt < /T e(t)dt (2.20)
0 T/2
T/2 T
2/0 e(t)dtg/o e(t)dt (2.21)
/
/T 2 e(t)dt < /Te(t)dt (2.22)
—T/2 0

Here ¢(t) is a positive, even and increasing function that models in a very simplified way the error caused
by using numerical integration. T is the length of the propagation window, and thus f_TéZ e(t)dt is the

total error made when estimating from the middle of the interval, while fOT e(t)dt is the total error made
when estimating from the beginning of the interval.

2.4. Uncertainty

In this section, the principles of calculating the uncertainty associated to a trajectory are presented.
First, the covariance matrix is described, and then different ways to propagate it (linear and non-linear)
are explained.

2.4.1. Covariance analysis

In the orbit determination process, the result is not only a state vector, but also a covariance matrix that
provides information on the uncertainty associated with the resulting trajectory. In the WLS method,
the expression of the covariance Py is given by:

Po=(H"WH)! (2.23)

Moreover, in the case where an a priori covariance matrix ngr is used, the final covariance matrix can
be obtained from the expression [Montenbruck and Gill 2013]:

(Po)~' = (P! + (H"WH) (2.24)

Given these equations, it appears that in order to obtain a proper covariance matrix as a result of the
WLS process, it is crucial that the weights matrix W and the a priori covariance matrix, when used, are
properly chosen.

The weights matrix is used to convey the trust level in each observation. The values on the diagonal
are called the weights, and the higher the ith coefficient is the more the cost function is penalising
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having a large residual for observation i. Therefore, observations that are more trusted should be
associated to larger weights. As such, it would ideally be constructed by investigating each individual
observation and computing its noise based on the observing station, the illumination at that time, the
age of the hardware etc. However, such information are very rarely available, and performing such
an investigation for each observation could take a very long time. The solution that is commonly used
is to attribute a noise level to each observatory, and to consider that all the observations made from
this observatory will have the same noise level. This is an approximation, as discussed in [Luo and
Yang 2017], because the changes in observing equipment or star catalogue can cause variations in
the noise level. The process of estimating the noise level for various observatories, star catalogues etc.
is beyond the scope of the present study, and the noise levels for the observations will be taken from
existing papers that conducted such analyses [Veres et al. 2017].

It is, however, possible to modify the weights of the observations based on other parameters than just
the ground station they resulted from. A first correction that can be applied to the weights is to take into
account the fact that observations from the same station on the same night are correlated with each
other as shown in [Baer et al. 2011]. In order to mitigate the effects of this correlation, [Farnocchia et al.
2015] introduces the concept of a batch of observations. A batch is defined as "a sequence of obser-
vations from the same station with a time gap smaller than 8h between two consecutive observations”.
In a batch consisting of N observations the weight of each observation is then divided by a factor v/N:

(ox
Onew = \/% (2.25)

It should be noted that a case has been made by [Vere$ et al. 2017] for replacing the /N factor by
a constant weight up to 4 observations, and then use a de-weighting factor of \/N/4. The present
study has focused on testing the effect of the v/V, but future developments could compare the effects
of those two weighting methods.

In addition to that weighting scheme, another phenomenon can be taken into account, namely the fact
that at higher declinations a seemingly large absolute difference in right ascension translates into a
small true angular error in reality. As a consequence of this, the right ascension observations at high
declination provide less information than the ones near the celestial equator. In order to mitigate this
a different weight reduction is possible. For this one, the weights of the right ascensions observations
are multiplied by the cosine squared of the declination of the same observation [Dirkx 2025].

Tanew = cos? (0)0 a0l (2.26)

The estimated covariance matrix, obtained as a result of the WLS process, tends to be an underesti-
mation of the true covariance matrix. Indeed, the estimated matrix assumes that all the uncertainty on
the estimated state originates from the uncertainty in the observations, and that those uncertainties are
all Gaussian and uncorrelated. In reality the inaccuracies of the dynamical model and the systematic
noise still present in the observations can not be neglected, and the behaviour of the uncertainties is
not always the ideal Gaussian uncorrelated model. Therefore, a method is used in [Witte 2024] to com-
pute the average ratio k,,,, between the "true” errors (assimilated to the residuals) and the formal errors
(obtained from the estimated covariance matrix). This ratio is then used to obtain the "true” covariance
matrix:

Pyye = k?wg - Pestimated (227)

As for the a priori covariance matrix, its values are based more on a tuning decision and confidence on
the existing knowledge than on a physical phenomenon. Indeed, the initial guess for the state has no
physical meaning, it is merely an artifact used for the calculations, and the level of trust towards this
artifact does not depend on the physics of the problem. An interpretation of the a priori covariance matrix
is that the values on the diagonal are the order of magnitude of the amount by which the estimation
result can differ from the initial guess. This amount can then be tuned depending on the confidence
in the initial guess. As a good indication of the values for the case at hand, [Witte 2024] used 0.1
as a value for the a priori uncertainty on the radiation pressure coefficient, and 10~ to 106 rad for
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the observations. It is theoretically also possible for the a priori covariance matrix to have some non-
diagonal non-zero values (for example to indicate that the initial guess is deemed accurate except in
a direction pointing between two base vectors), but such cases require an in-depth knowledge of the
initial guess, how it was obtained and where it is less trustworthy. Such an advanced insight in the
initial guess is not included in the scope of this study, which aims to conduct these operations on a
large scale rather than diving into the specifics of each orbit determination process.

2.4.2. Linear propagation

As a result of the orbit determination process, values for the initial state and estimated parameters are
obtained, alongside with a covariance matrix that represents the uncertainty, under the assumption
that the distribution is Gaussian. The purpose of this study is not however to solely perform orbit
determination, but also to propagate the resulting trajectory in the future in order to anticipate potential
encounters. In such a context, it is therefore necessary to propagate the uncertainty on the state as
well, in order to know the confidence level of the propagation, and later to compute the risk of collision
with the other objects.

The first method for propagating the uncertainty is to assume that the initial Gaussian distribution will
remain Gaussian over time, and that its evolution happens in a regime where the dynamics are appropri-
ately described using linear equations. In this context, the state transition matrix ®(¢, ¢¢) is introduced.
It is defined as: oy ()

y (¢

P(t,ty) = 2.28

Where y(¢) is the estimated state (position and velocity) of the object considered, and ¢, is the initial
time. The evolution of the state transition matrix is governed by a differential equation [Montenbruck
and Gill 2013]:

d 0343 13.3
—®(t,t0) = | varw.t)  oa(rv.n) | - Blt to) (2.29)
dt or (D) v (D)

and its initial value is ®(to,t0) = 1sxs-

Then, the propagation of the covariance matrix P is done using the state transition matrix as described
in [Fayolle et al. 2022]:
P(t) = ®(t, t0)Po®(t,t0)" (2.30)

This method is called the linear propagation, as the resulting covariance matrix is obtained through lin-
ear operations from the initial one. Such a propagation is very straightforward to implement and once
the trajectory is propagated and the variational equations solved, the state transition matrix is available
at every time. The major drawback is that it relies entirely on the assumption that the uncertainties prop-
agate linearly, which is generally valid only for short periods of time. In the case of cislunar dynamics
such an assumption can become completely inaccurate in the event that a close approach of the Moon
happens during the time interval between ¢y and ¢. Therefore, other methods are also investigated in
order to provide better results, or to determine the domain of validity of the linear assumption.

2.4.3. Non-linear propagation

Overview

Having in mind the objective of reaching a more accurate depiction of the uncertainty over the propa-
gated trajectory, the linear assumption has to be abandoned, and other uncertainty propagation meth-
ods are considered.

The first uncertainty propagation method that does not require this assumption is the Monte-Carlo (MC)
method. In this method, the uncertainty is assumed to remain Gaussian, but the propagation itself is
performed using the dynamical propagator. Using the initial state and covariance, a sample of points is
drawn at random, following a normal distribution. Each of these points is then propagated to the time of
interest and the final distribution of the errors, still assumed to be Gaussian, should have a zero mean,
and its covariance matrix is obtained by computing the difference between each propagated point and
the nominal trajectory, and taking the covariance of those differences.
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Using the MC method allows to have a better representation of the dynamics of the system, that is
no longer limited by the linear domain but only by the accuracy of the dynamical model chosen for
the propagator. However, the point cloud that is obtained after the propagation can not lead to an
interpretation by itself. This is why, under the Gaussian assumption, the covariance matrix is computed
and used to quantify the uncertainty. However, as is shown in [Horwood and Poore 2014], even when
the samples are drawn according to a Gaussian distribution, the distribution can completely change
its shape, for instance by stretching along the trajectory, leading to a "banana-shape” cloud of points.
Using a Gaussian distribution is thus a poor representation of the uncertainty, and other methods can
prove more useful.

Gauss von Mises distribution

Based on the same principle as the MC method, [Horwood and Poore 2014] investigated the possibility
of propagating a sample of points to better model the uncertainty, but instead of extracting only the
covariance of the propagated points, they assumed that the final distribution was a Gauss von Mises
(GVM) distribution instead of a Gaussian one. Such a distribution has more describing parameters,
which allow it to fit more accurately to the data. Moreover, in the algorithm they provide, the selection
of the initial data points to be propagated is not done at random, but in a way that ensures that the
initial distribution is properly captured by the data points, thus avoiding the possibility that all the points
are "on the same side” of the trajectory, which could lead to skewed results in a classic MC method.

In the current study, the initial distribution is still assumed to be Gaussian, for the lack of more informa-
tion on the multiple error sources. Therefore the first step to apply the GVM method is to convert the
Gaussian distribution to a GVM one, which is explained in [Horwood and Poore 2014]. Afterwards, the
algorithm used is the same as shown in the paper.

2.5. Broader scope

2.5.1. Other potential study objects

In order to simplify the work, the present study, following the example of [Witte 2024], is using the
Chang’e 2 and 3 upper stages as the main study cases. However, a proper framework for orbit de-
termination in the cislunar space domain would preferably be usable with a broader range of objects,
instead of requiring several weeks to tune the model to each specific space object. As such, it is useful
to study how the framework that has been designed for the two initial objects can be extended to other
cases.

There are two options for such an extension of the study. The first one is to study how small variations
of the characteristics of the object impact the results of the process. For such an investigation, using
objects that are similar but not exactly the same is the most relevant, and other upper stages of similar
missions that also have reported a significant amount of tracking data are considered: the Chang’e 4
and 5 upper stages.

The other possibility for studying the effect of using different objects with the same process is to pushiit to
the limits and see what the consequences are. In such a case the objective would not be to study other
cylindrical shape man-made objects, but rather asteroids that can have very different characteristics
and to see whether the model is usable as is, or if some parameters require some adjustments. Since
the position of the asteroids is often known with more precision than that of all the man-made objects,
such a study would also allow for a better distinction between the observation errors and the dynamics
modelling ones. However, asteroids do not move in geocentric orbits and only occasionally briefly enter
cislunar space. They also have a much different area-to-mass ratio. This means that the behaviour
for asteroids is quite different and thus if the same model is able to perform well on asteroids it would
indicate a very broad range of capabilities.

2.6. Research objectives

Based on the preliminary research and the existing work, this study will be focused on improving the
existing framework for orbit determination of cislunar space objects. In order to do so the following
research objectives are formulated:

» Expanding the scope of the orbit estimation capabilities: The previous studies have all been
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concentrating their efforts to subcases of the cislunar space, be it by restricting the analysis to
certain types of orbit, of to certain estimation windows. In order to improve the process of orbit
determination, this work aims to increase the number of situations where orbit determination is
possible.

Identifying the main weak points of the current work: In order to improve the orbit determina-
tion process, a key element is to investigate the current solutions to characterise the error that is
made, and look for the possible explanations and sources for this error.

Improve the modelling of the observation and residuals: The orbit determination process
relies on observations, and the residuals are used to assess the adequateness of the estimation.
Through an in-depth analysis of the observations and residuals, this study will aim to improve the
performance of the orbit determination software.

Improve the modelling of the solar radiation pressure: Although the gravitational forces are
very accurately described, the model used for the solar radiation pressure is very simplified, and
the present study will aim to investigate the consequences of using a more refined model on the
quality of the estimation.

Formulation of the research questions
1. How much can the scope be extended, and what external inputs are required for the estimation
to be performed?

2. What is the main source of error in the estimated trajectories?

3. What is the impact of refined treatment of the observations and residuals on the performance of
the estimation?

4. How does a new solar radiation pressure model impact the quality of the orbit determination
process?

2.7. Thesis plan

This section presents the initial research plan, established prior to starting the work. As such, some
of the elements mentioned were not analysed, while new directions that were initially not considered
have led to unplanned analyses.

2.7.1. Familiarisation
3 weeks

In this first part of the thesis, the existing code from [Witte 2024] will be read and understood. Then, it
will be adapted to perform orbit estimations on one object and one window at a time. The inputs are as
follows:

* time window

* object to estimate, chosen among the Chang’e 2 and 3 upper stages

+ turn on the radiation coefficient estimation

+ turn on the observation bias estimation

» dynamical model to use, chosen among the ones studied in [Witte 2024]
* initial guess of the state

The model then performs the estimation using the WLS algorithm (see subsection 2.3.2), and gives
as an output the (refined) estimation of the initial state and the covariance matrix associated with this
estimation. Finally, a subdivision of the time frames into individual arcs will be performed in order to
cover the whole period.

The objective is to be able to perform an orbit estimation with control over the inputs, but still using the
dynamical model deemed best by [Witte 2024]. The time windows selected in this stage should cover
the whole time period for each object, and stable initial guesses should be found for each time window.
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2.7.2. SRP study

3 weeks

In this part, a new model for the SRP (3-constant model, described in subsection 2.2.2) will be added
to the propagator, and then it will be used in the orbit determination process. This will require the imple-
mentation (in Python or C++) of both a new acceleration model and an acceleration partial model. The
estimation results (estimated orbit, residuals, post-fit radiation pressure acceleration) will be compared
to the classical cannonball model. In order to evaluate the performance, two options are considered.
The first option, which will be implemented initially, is to use the real tracking data from Project Pluto
and compare the behaviour of the residuals for each time window with and without the new model. The
second option, used if no clear trend can be observed in the residuals evolution, is to use simulated
data and compare the results of using the 3-constant model versus the cannonball one. The obser-
vation data would be simulated using the same dynamical model as used in the estimation process,
with some random noise added. Using this setup allows one to eliminate the uncertainty due to the
dynamical modelling and observation errors, therefore giving a more refined insight of the effect of the
new model. In this scenario, it is possible to simulate the data either using the 3-constant model for
the SRP, thus checking if the code is able to retrieve the correct parameters, or using a fully panelled
model, thus testing the accuracy of the 3-constant model in a more realistic scenario. In the latter case,
assumptions need to be made on the panel model and body rotation.

The obijective is to have run the orbit estimation process with and without this new model and to have
drawn conclusions regarding its performance, measured by the evolution of the residuals, and (if appli-
cable) the best settings to be used.

2.7.3. Uncertainty study

Observation uncertainty
2 weeks

The first aspect of uncertainty that will be investigated is the uncertainty in the observations and how to
properly model it. Since a least-squares estimation model is used, random noise can only be assumed
as Gaussian. For biases, both direct observation biases and time biases will be considered (see sub-
section 2.3.1). Currently, [Witte 2024] models the random noise as Gaussian and the systematic noise
as a constant offset, assimilated to a time bias. Then, the initial covariance matrix is obtained as a
result of the WLS method and "inflated” using a so-called k-factor, as described in subsection 2.4.1.
Such a method is highly empirical and does not rely on any physical origin for the resulting uncer-
tainty. Therefore this phase will focus on studying the time and observation biases, with the objective
to be able to decouple them and provide a better estimate of the initial covariance matrix. In order
to do so, advantage will be taken of the fact that the time bias leads to an influence that is almost
exclusively seen along-track, whereas the observation bias impacts both the right ascension and dec-
lination. Therefore, the residual and the spacecraft velocity will be computed in the («, §) plane, and
the dot product of the two vectors will be calculated, giving insight on the magnitude of the along-track
residual and its influence on the overall residual. Due to the difficulty to automate this process and the
absence of knowledge of the expected results, this analysis will be performed "manually” for a few sets
of observations, and depending on the results an automated mean of performing this analysis may be
implemented.

Uncertainty propagation
3 weeks

After improving the initial value of the covariance, the propagation process will be investigated. Here,
the Monte-Carlo method (used in [Witte 2024]) will be replaced by the Gauss-von-Mises method de-
scribed in subsection 2.4.3. The results will then be compared and the settings will be adjusted.

The objective is to have a GVM uncertainty propagation process running, and to know how it compares
to the previous uncertainty propagation method.

PSA update
2.5 weeks
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The Period of Sufficient Accuracy (PSA) is defined in [Witte 2024] as the time after which the uncertainty
reaches more than the field of view of a typical observation telescope. This metric is fully deterministic
which may not be the best way to describe an uncertain situation. Therefore a revised version of the
PSA taking the probabilistic nature of the problem into account will be developed and compared to the
“classic” PSA.

The objective is to find a theoretical description of the new PSA, implement it and compare the results
with the previous version.

2.7.4. Multi-arc orbit determination

Classical
2 weeks

In this part, the "classical” multi-arc process described in subsection 2.3.3 will be used to perform
the orbit determination. The different possibilities for the arc lengths, separation points and globally
estimated parameters will be investigated and the accuracy of the results will be compared to the
typical process, using amongst others the newly redefined PSA.

The objective is to determine the best settings for a classical multi-arc process, and how it compares
to a single arc orbit determination.

Constrained
3 weeks

In this part, the settings from the classic multi-arc process are used, and a constraint is added at the
separation points to limit the size of the jumps in the state, as described in subsection 2.3.3. The orbit
determination process has first to be adapted to take this constraint into account, then the weight of
the constraint is adjusted and the effects on the orbit determination accuracy are studied.

The objective is to be able to perform a constrained multi-arc orbit determination, to find the best settings
and to evaluate how well they perform on the real data.

2.7.5. Additional objects
This part of the study aims to determine how applicable this work is to other objects, as explained in
subsection 2.5.1

Preliminary study
1 week

This first part is to be done early enough to decide whether the follow-up is worth doing.

In this preliminary study, first runs of the process are performed with the Chang’e 4 and 5 upper stages,
in order to determine if they give similar results to the previously studied objects (case 1) or if they lead
to unexpected, complex behaviour (case 2).

In the first case, the follow-up study can be deemed feasible, whereas the second option would require
a long investigation to find out both the reasons for big discrepancies and the solution for adapting the
settings. Such a task would be outside the scope of this study.

In-depth study
2 weeks

This part is done only is the time remaining is sufficient and if the preliminary study has resulted in case
1.

In this part, the framework is applied to the Chang’e 4 and 5 upper stages, and the differences in
performance w.r.t. the original objects are studied. If possible, explanations to those differences are
sought, and if the previous settings do not yield optimal results in this case, new ones are investigated
and the causes for the use of different settings is also investigated.



Methodology

3.1. Estimation setup

As described in subsection 2.3.4, and based on the analysis performed in [Witte 2024], the numerical
integration setup used in this study uses the Cowell propagator with a RKF7(8) integration scheme.
Using those settings allows for the orbit estimation process to reach an accuracy of less than 900" for
more than 6 months in the context of [Witte 2024]. Given the high similarities with the present study, a
similar accuracy is expected.

Finally, the dynamical model selected in [Witte 2024] is also kept almost identical for this study, as its
goal is to study new information rather than performing an investigation that has already been done.
The only exception to this is the modification of the SRP model that is described in section 3.6. The
selected dynamical model is therefore the one shown in Table 3.1, with only one of the two SRP models
being used at a time.

In the estimation process, the initial state is always estimated, and it is also possible to estimate the
parameter(s) of the SRP model used (e.g. C,. for the cannonball model). This leads to two different
settings for each SRP model. In addition to those four settings, it is also possible to include in the esti-
mated parameters the observation biases described in subsection 2.3.1. Those biases are estimated
per ground station, with one bias computed for the right ascension and the other for the declination.
When estimating the biases, the same settings can be considered. However, when their parameters
are not estimated but kept to the default values both SRP models have the same theoretical behaviour,
and this will be verified in section 4.4. Therefore, only the cannonball model is kept for the settings with
the observation biases included in the estimated parameters. This leads to a total of seven settings
used in this study, that are summed up in Table 3.2.

The method used for the estimation is the Weighed Least Squares algorithm described in subsec-
tion 2.3.2. It is implemented using the open-source C++ package TU Delft astrodynamics toolbox
(Tudat) and its Python port TudatPy [Dirkx, Mooij, and Root 2019].

In the WLS method, some weights are attributed to the observations as explained in subsection 2.3.2

Table 3.1: Dynamical models used in the study

Acceleration type Source Implementation
Gravity Earth  Spherical harmonics [5,5]
Gravity Sun Point mass
Gravity Moon Point mass
Gravity Jupiter Point mass
Radiation Pressure Sun Cannonball model
Radiation Pressure Sun Three-constant model

22
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Table 3.2: Estimation settings used

Settings n° SRP model SRP parameter(s) estimated Observation biases estimated
1 Cannonball No No
2 Cannonball Yes No
3 Three-constant No No
4 Three-constant Yes No
5 Cannonball No Yes
6 Cannonball Yes Yes
7 Three-constant Yes Yes

Table 3.3: A priori covariance inputs

Parameter Source A priori input
C, Cannonball SRP oc, =0.1
A TCM SRP oa, =10 m?
Ag, A3 TCM SRP Oays =1m?
€obs Observations Oey. = 107° rad

and subsection 2.4.1. In the baseline estimation process, the weights are initially considered identical
for all the observations, with a weight of 1.5 arcsecond. This value has been selected in the continuation
of [Witte 2024], and according to the recommendations of [Veres et al. 2017]. This weighting scheme
will be refined as described in section 3.5.

This method also allows to introduce an a priori covariance matrix, whose role is explained in subsec-
tion 2.3.2 and subsection 2.4.1. The inputs for this covariance matrix are given in Table 3.3. The values
for the cannonball radiation parameter and the observation biases are taken from [Witte 2024], while the
values for the parameters introduced in the three-constant model are elaborated upon in Appendix C.

3.2. Data presentation

The observation data described in subsection 2.3.1 used in this study is presented more in-depth in
this section. First, an overview of the Keplerian elements of both objects under consideration is plotted,
along with the times of the observations, in Figure 3.1 and Figure 3.2.

In those figures, it is possible to identify several key features of the orbits considered. Beginning with
Chang’e 2, it can be noted that the data is significantly more sparse until the end of 2014. After this the
data looks rather homogeneous, until the end of 2016/beginning of 2017 where there is a jump in the
eccentricity and semi-major axis plots followed by a short period with no observations. Two additional
combinations of a sudden jump in the orbital elements with a gap in the observation data can be seen
in 2019 and at the end of 2020.

As for the Chang’e 3 upper stage, it appears that the beginning (until 2016) of the observation period
is quite chaotic, while having a dense set of observations. At the end of 2016, there is a sudden jump
in all the orbital elements, and following this their behaviours seem to be more smooth (although not
flat as a perfectly Keplerian orbit would be). Over a ~2-year period following the jump in 2016 the data
becomes much more sparse, before progressively getting more dense at the beginning of 2019.

In addition to the Keplerian elements, the distance to the Moon is plotted in Figure 3.3. In this figure,
a threshold of 50.000km is selected to detect a "close approach”. This value has been empirically
chosen with the objective to correlate the close approaches to the jumps seen in the Keplerian elements
evolution, rather than from a dynamical perspective. Indeed, it can be observed that all of the times
where the distance to the Moon crosses the threshold correspond to a jump in at least one of the orbital
elements in Figure 3.1 and Figure 3.2. This leads to the identification of 4 close approaches for the
Chang’e 2 upper stage: on 23/09/2011, 27/10/2016, 19/04/2019 and 12/06/2019. For the Chang’e 3
upper stage, only two close approaches are obtained with this process: on 16/07/2014 and 16/09/2016.
This method, however, does not explain the last jump in the semi-major axis of the Chang’e 2 upper
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Figure 3.1: Keplerian elements of the Chang’e 2 upper stage over the whole observation period
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Figure 3.3: Distance to the Moon over the observation periods, along with the 50.000km threshold for a close approach

stage at the end of 2020.

The presence of the lunar close approaches provides a logical explanation to both the jumps in the
orbital elements and the lack of data. Indeed, a close fly-by of the Moon leads to a large perturbation,
susceptible to greatly modify the trajectory. This in turn makes the future position of the object harder
to predict and it is thus lost for some time.

3.3. Full-window coverage

In [Witte 2024], the estimation process has been performed on a restricted number of samples (win-
dows) from the whole observation period. This choice has been well argued and made sense for a first
work on the topic. However, a major reason for having those windows and selecting them was the lack
of reliability of the initial guess provided by the MPC data. Indeed, it is explained that for a number of
conditions (initial guess time/estimation period), the initial state estimate extracted from the MPC data
led the estimation process to not converge, thus being unexploitable.

In order to remediate this issue, the current work implemented a bootstrapping method where an initial
external guess is used for the first window (or arc), but for every following window the estimated state
from the current one is propagated to the initial guessing time and used as an initial guess.

This requires the estimation windows to not be too distant in time, as a propagation of an imperfect
state with an imperfect dynamical model would lead to a very wrong initial state estimate for the next
arc. However, this constraint is completely compensated by the fact that bridging long time intervals
between two periods of interest can be done by simply adding intermediate windows.

In practice, a close approach of the Moon can often make this process more complex than theory would
have it. Indeed, a close approach of the Moon pushes the dynamics of the system in a highly non-linear
regime, with small errors in the state before the flyby being amplified by several order of magnitude.
This alone can make the estimator struggle to converge after a lunar close approach. Unfortunately,
this difficulty to predict the trajectory after a lunar approach also impacts the observations: if the object
is not close enough (within the typical telescope field of view) to the estimation, then it will be "lost” and
not be observed with the same regularity until it is found again, usually by chance. Putting those two
effects together means that a close approach to the Moon makes the dynamics harder to predict, while
having less observations to guide the estimator. And thus in such cases even the initial guess provided
by the previous window can not always make the estimator converge. This is not an impossible obstacle
to overcome, as tuning the window length and the time of the first estimation can allow the estimator
to cross this period while still converging.

This bootstrapping method aims at reducing the number of external guesses needed to perform the
estimation over the whole observation period. However, as long as they are the only guesses available,
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it means that in order to obtain the initial guess for an arc that is located far away from this external
guess there is a lot of computation time required, because all the intermediate arcs are needed to reach
the selected one.

In order to remediate this situation, the estimation is ran over the full observation period, using the
necessary external guesses, and the states are saved through this estimation, to be reused for the
following analyses. The interval between two consecutive saves has been chosen as a trade-off be-
tween the guarantee of obtaining a guess that leads to a stable estimation process when used, and the
amount of information that would be stored. In practice, it has been found that storing the estimated
state every month was too scarce, as it would often result in being unable to reach convergence for the
estimation process, especially when near a close approach of the Moon. On the other hand, reducing
this interval to one week leads to the disappearance of almost all convergence issues.

A useful consequence of being able to perform the estimation in such a self-sustained manner is that
this makes the work done in this study more applicable to real-life situations. Indeed, in the previous
situation where the initial guess is provided by an external source (which could be different from the
MPC data), the estimation process that is described can only be applied once some other process has
already estimated the position of the space object to a satisfying point. This means that the framework
described would, in the best case scenario, serve as an improvement over the initial guess, and in
the worst case scenario be as accurate as the provided initial guess, and therefore become redundant.
However with this method, the new framework can use new data to estimate the position of the space
object as long as it has an initial guess from sometime in the past, which is much closer to a real-life
estimation situation.

In addition to this bootstrapping method, the stability of the initial guess has been increased (for es-
timation windows with the same length) by moving the time of the initial guess from the beginning of
the window to the midpoint of the window as described in subsection 2.3.4. This ensures that the
differences between the true trajectory and the estimated one that are due to improper modelling of
the environment have less time to grow, thus making the convergence of the Least Squares algorithm
simpler.

Finally, in order to reduce the computation time required for performing orbit estimation over all the
arcs, a parallel computation framework has been setup. This method requires an initial guess for each
of the arcs, and then performs the orbit estimation in parallel for all the inputs it has been provided,
and returns the estimated parameters along with the residuals. The initial guesses for all the arcs are
retrieved from the states saved during the initial estimation that was performed using the bootstrapping
process described above. This configuration allows to cut the runtime of a full estimation by an order of
magnitude, with the potential of even further reduction when more cores are available on the computer
running the estimation.

3.4. Arc overlap

As the true trajectory is always unknown, it is not possible to know the exact value of the error. Moreover,
the observation residuals, while providing useful information regarding the error, do not guarantee that
all the error comes from mismodelling the trajectory. Indeed, the residuals that are neither flat nor
random after the estimation process can come from:

» an improper value of the postfit initial state or parameters
+ an inaccurate modelling of the environment
+ unresolved errors in the observations themselves (biases)

The first source is usually considered to be the least impactful one, as the Least Squares algorithm is
specifically designed to find the initial state that minimizes the residuals. This is however not foolproof,
as it relies on linearising the problem and could find a value that is not the ideal one if the initial guess
is in the wrong region of the design space.

The second source is significantly more important, as its consequences have an impact on several
key parts of the estimation process. First, having inaccurate dynamics leads the modelled trajectory to
diverge from the real one, even with exactly the right initial conditions. Such a divergence will cause



3.4. Arc overlap 27

residuals to increase as the simulation gets further from the initial time. Butimproper physical modelling,
along with any error not parametrised in the estimation, also impacts the initial state estimation. Indeed,
the Least Squares method uses the linearized partials of the forces considered in order to perform its
steps. As such, the estimated initial guess will also be impacted by a flawed acceleration modelling.

Finally, the observation biases are the errors introduced before any estimation process is even consid-
ered: at the time of the observation. They can have various sources but they are less representative
of the quality of the estimation process (unless they are themselves estimated). The relative contribu-
tion of those biases to the error is not yet known as it is one goal of this study to analyse the different
contributions to the error. However, such observation biases are taken into account in astrometric ob-
servations of near-Earth asteroids, such as in [Vere$ et al. 2017]. The present study is focusing on
objects closer to Earth whose angular velocity (as seen from the station) is larger, and thus time biases
for instance can be expected to pay a more prominent role, as a similar time difference will lead to a
higher error in the estimated position.

Overall, the residuals while providing good information for the quality of the estimation (and of the
prediction if additional residuals are used outside of the estimation window) do not give a complete and
direct information regarding the absolute error of the trajectory of the space object.

In [Witte 2024], the analysis of the performance of the estimation was in part done by comparing the
out-of-sample residuals of windows of different lengths. Because the observation data is not homoge-
neously spread across the observation period, such comparisons can only be done between windows
that end on the same date. In this study, the windows (or arcs) selected all have different ending dates,
which renders this method inadequate.

Using overlapping arcs can help remediate this issue by opening up a way to gain information (more
specifically a lower bound) of the real error done by the estimator without the need for comparable
residuals. The reason this is possible is because when two arcs use a 1 year window for the sampling
data but the starting dates are different by 6 months, the initial states estimated for those two arcs will
not correspond to the same trajectory (due to the partially different data that is taken into account). This
means that during the 6 months of overlap of those two arcs there are two estimations of the trajectory
that are available. Computing the difference between those two trajectories then allows to find a lower
bound for the absolute error with respect to the true trajectory.

Assuming we have the real trajectory x,. and the two estimated ones x.; and x.., the error that the
estimator can make is: max(||x, — x.1||, ||x» — Xe2]||)- In the best case scenario, this error is minimised
by having x,. = % and in this case the error of the estimator becomes
Xel — Xe2
- 2 3.1

e= " (3.1)
Therefore, the difference between the trajectories computed from the two overlapping arcs gives twice
the lower bound of the true error that results from using this estimation process.

This is already useful as it gives an order of magnitude of the uncertainty that comes with estimating the
trajectory, but the results are not only in magnitude of the error, but can also be treated component-wise.
In such an analysis, the ¢ error vector is projected along different reference frames to gain insight on
the way the error is tied to the trajectory itself.

Indeed, the internal representation of the state that comes with the Cowell propagator is the Cartesian
coordinates. Analysing the error vector in this frame would, however, not give conclusive results, as
those coordinates vary over several orders of magnitude, and their correlation to the physical trajectory
of the object is not easy to interpret from a graph.

For this reason, different frames are chosen to project the position difference, thus giving a better
understanding of the physical reality behind the difference. The two frames chosen for this analysis
are the RSW and TNW frames, as described in [Vallado 2001] and illustrated in Figure 3.4. The RSW
frame is defined by having the X-axis point from the origin to the object (thus being called Radial), the Y-
axis is contained in the orbital plane pointing in the direction of the velocity, but not collinear to it unless
the orbit is circular, or at certain points of elliptic orbits (such as the periapsis and the apoapsis), and
the Z-axis completes the right-handed coordinate system. The TNW frame on the other hand has its
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Figure 3.4: Definition of the RSW and TNW reference frames [Vallado 2001]

X-axis aligned with the velocity of the space object, pointing in the same direction (thus the Tangential
name), the Y-axis in the orbital plane pointing away from the origin (but not necessarily in the exact
direction of the origin except in the special cases mentioned above for the RSW frame), and the Z-axis
completing the right-handed system.

It has to be noted that those frames are dependent on the estimated state of the space object, and thus
the frames corresponding to the two different solutions will present some differences. In order to assert
the effect of those differences on the projection of the error vector, the analysis will include testing using
the frames of each solution, in order to check that there are no major variations.

Following this analysis, a first explanation for the position difference between the two estimated trajec-
tories can be investigated. This explanation is the idea that one of the estimated trajectories is "lagging
behind” the other one, thus indicating that the two estimated positions are lying on similar orbits, but
located at different points on this orbit. In order to test this possibility, the instantaneous delay between
the two estimated positions is computed. This delay is defined as the along-track delay, and thus is
computed using the T-component of the position difference, divided by the estimated velocity (which is,
by definition of the TNW frame, exclusively along the T- direction). The expression for the instantaneous
delay is thus:

(3.2)

3.5. Residual analysis

It has been mentioned in subsection 2.3.1 that the observations are not entirely accurate, with multiple
effects potentially impacting the measured quantities. This, in addition to the fact that the model used
in the estimation process is not perfect, leads to the apparition of differences (or residuals) between
the actual observations and the simulated ones. Those residuals give a measure of the performance
of the estimation process, and therefore this section presents methods to analyse the residuals and
potentially reduce their values.

First, two methods for refining the weighting scheme are presented in subsection 3.5.1. The process of
visualising the residuals in the along-track/cross-track coordinates is then described in subsection 3.5.2.
Finally, some analyses on the behaviour of the residuals are introduced in subsection 3.5.3.
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Table 3.4: Weighting scheme settings

Settings n°® Batch weighting Right ascension weighting

1 Yes Yes
2 Yes No
3 No No

3.5.1. Weighting schemes

As described in subsection 2.4.1, two corrections to the uniform weighting scheme used in [Witte 2024]
are considered: the batch weighting defined in Equation 2.25 and the right ascension weighting defined
in Equation 2.26. The best model is expected to be the one where both of these corrections are applied.
This is thus the estimation settings that are used as a baseline in this study. In order to investigate the
impact of those weighting schemes, two additional settings are defined in Table 3.4. The right ascension
weighting is first turned off in setting n° 2, and then the batch weighting is also turned off in setting n°
3.

In order to evaluate the impact of those weighting schemes on the residuals, the Root-Mean-Square
(RMS) of the residuals can be computed. This indicator is computed both on the in-sample (IS) residuals
and the out-of-sample (OOS) ones. The IS residuals refer to the residuals computed only on the
observations within the estimation window, while the OOS residuals are computed on the observations
from a 6-month period following the estimation window.

Those analyses are also performed to evaluate the impact of including the observation biases in the
estimated parameter vector, as described in section 3.1. However, since the biases are only estimated
on the ground stations that provide the in-sample observations, some out-of-sample observations have
no bias estimated. For this reason, when estimating the observation biases the residuals are only
analysed in sample.

Another processing that can be relevant for making the observations more realistic is to filter out the
observations that lead to an excessive value for the residuals. The rationale for doing this is the fact
that if an observation that is used for performing the estimation still has a residual of over 0.01° it does
not bring satisfying information to the estimation. Indeed, if the Least Squares process is not able to
get closer to this observation, two options are possible. The first is that the observation is wrong, likely
because of the different sources of error that have been mentioned above, or even because it has been
attributed to the wrong space object. In this situation excluding the outlier observations allows to avoid
taking wrongful information into account when estimating the trajectory of the space object, which is
most likely to lead to better results when validating the trajectory with out-of-sample observations.

The second possibility is that the physical modelling that is currently used is imperfect enough to be
unable to accommodate for those observations. In this case, including them in the estimation forces
the estimation process to compromise and can potentially lead to a trajectory that performs worse out
of sample (i.e. over-fitting). In this situation, excluding the observation allows to improve the trajectory,
but it is not completely discarded. Indeed, it is important to know that the model is not able to take all of
the observations into account as it could lead to identifying weaknesses in the dynamical model, that
can then be solved in future studies.

3.5.2. Along-track/cross-track conversion

Given the sources of errors discussed in subsection 2.3.1, in particular the streak effect, it is expected
that the residuals will be larger in the along-track direction. In order verify this, the residuals can be visu-
alised in the along-track/cross-track plane. To do that, the direction of the velocity of the spacecraft has
to be determined for each observation. This however can not be done simply by using a rotation matrix
from the inertial reference frame to the right ascension/declination frame, because the coordinates in
which the observations and residuals are computed are angular ones that are not linearly related to
the Cartesian coordinates. The transformation from Cartesian coordinates (x,y, z) to («, d) is found in
[Montenbruck and Gill 2013] and can be expressed:

a=arctan Y § = arctan —— (3.3)
x
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In this expression, it is important to chose the adequate quadrant for o depending on the sign of =z,
taking « between -90° and 90° if x > 0, but between 90° and 270° when x < 0.

The solution chosen to obtain the velocity in the («, §) plane in the present study is therefore to take
inspiration from Figure 2.2, on which the direction of the velocity can be clearly seen from the alignment
of the observations, and the sense could be easily determined by knowing which observation was done
first.

Using series of consecutive observations would allow to recover the observed velocity in the («, ¢) plane,
but there are no guarantee that multiple observations are always available, nor that they are close
enough to allow to determine the velocity from their alignment. Therefore, instead of the observed
velocity, the estimated one is used. The velocity is thus retrieved from the estimated trajectory by
simulating a second observation shortly after the real one, and using the difference between the two
simulated observations as the velocity vector, as shown in Equation 3.4.

= () ail((n) - (i2) o

Here v is the velocity vector in the («, d) plane, At is the time interval between the two simulated ob-
servations, and asgim i (resp. dsim, i) indicates the right ascension (resp. declination) of the i-th simulated
observation.

The velocity vector v gives the along-track direction, and in order to obtain a vector that points in the
vé), and they both

e

cross-track direction it is possible to simply rotate v by 90°, thus yielding w = <U
have the same norm: v = w.

Once the along- and cross-track directions have been properly computed in the right ascension/decli-
nation plane, they can then be used to rotate the residual vector to the new frame by projecting it on its
base vectors. The along-track residual is obtained by projecting the residual vector on the unit velocity
vector and the cross-track residual by projecting on the unit vector w = w/w = w/v

A\ 1 a Vo aVa 1 P5U
pu=p Y= () (1) = et (35)
v v \ Ps Vs v
w 1 (pa —v —Pals + psv
== (b () — ettt (36)
v v \ P Vo v

Here, p, (resp. ps, pat, pct) is the right ascension (resp. declination, along-track, cross-track) component
of the residual vector p.

The observations for a given arc are then combined in a single analysis to allow for a more global
overview of the results.

3.5.3. Spread analysis
Finally, the direction of the largest spread in computed by performing a linear regression on the residu-
als:

Pot = apat + b (3.7)

Such a regression is done to find whether or not the residuals are mostly distributed along-track, cross-
track, or if there is not clear trend. Indeed, the value of the slope a provides information on the main
direction of the spread of the residuals. If the slope is close to 0, the linear regression is almost flat and
the residuals are mostly distributed along-track. A slope of +1 indicates that the main direction of the
spread is exactly at a 45° angle between along- and cross-track, and a slope value above 10 indicates
that the residuals are mostly distributed cross-track.

Finally, in order to have a full overview of the residuals distribution in all the arcs at the same time, the
slopes of the linear regression of all the arcs can be analysed. However, the relevance of the slope
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should be taken into account in the analysis, as computing a linear regression is not always the most
relevant treatment to apply to a cloud of points. For instance, in the case of points that are perfectly
distributed along a circle, any direction has the same spread, and therefore the slope computed from
a linear regression would be very sensitive to a small variation of a few points.

In order to take this effect into account, the spread ratio is also computed for each arc. The spread
ratio r is defined as the ratio of the standard deviation in the along-track direction o4 and the one in the
cross-track direction oat:

r= 28 (3.8)

Oct

Due to this definition, a spread ratio of 1 indicates that the data distribution is mostly homogeneous in
the two direction, thus meaning that the slope value for this arc should not be considered too highly.
On the other hand, a spread ratio above 2 or below 0.5 indicates that the data is likely elongated in
one direction, meaning that the slope value is relevant or this arc and should be taken into account for
drawing any conclusions.

3.6. Three constant model

In order to improve the accuracy of the orbit determination and propagation of cislunar space debris,
a new SRP force model has been investigated. This model has been presented in section 2.2, and
the initial guess for the parameters is taken to be [—C).A,0,0]. On top of this model for the radiation
pressure, the shadowing effect of the Earth is also taken into account, using the expression found in
Section 3.4 of [Montenbruck and Gill 2013].

In order to verify the validity of the implementation of the new model for the SRP, it has to be tested
before being used in the actual estimation process. In order to do that, a simplified situation is consid-
ered, with a reduced dynamical model and individual components being turned on one at a time. Then,
a second validation step is taken by comparing the result of a propagation with the cannonball model
and another one with the TCM setup to imitate the cannonball model. Finally, in order to validate the
implementation of the model in an estimation context, the partials are also tested in the linear regime.
The way to validate this is to propagate the trajectory with a small variation of the initial state and then
compare the difference in position predicted by the solution of the variational equations and the actual
difference that results from the propagation. The results of this process are presented in Appendix C.

Then, the new performance of the estimation process is analysed by first studying the evolution of the
in-sample residuals. As this study aims to look at a global improvement over the whole observation
period, the residuals are no longer considered per observation, but per arc. The way to do that is to
compute the RMS of the residuals for each arc, and to then compare those values with the cannonball
model to the ones obtained with the TCM.

In addition to comparing the cannonball model to the TCM, the effect of estimating the parameters is
also investigated. Indeed, when including new parameters there is the possibility of giving too much
freedom to the estimation process (if the number of observations is too small), and thus it is worth
making sure that the residuals actually go down when estimating the parameters compared to using
the default values.

Once the IS residuals have been analysed, the out-of-sample residuals also have to be investigated.
The reason for that is to make sure that if the IS residuals go down it is not simply due to over-fitting
the trajectory. Over-fitting would indeed lead to a decrease in the IS residuals, but the estimated state
and parameters would not be representative of the real trajectory and the OOS residuals would then
increase. Checking the OOS residuals thus allows to investigate the accuracy of the prediction portion
of the process, which is the most relevant part in a real-life application.



Results

In this chapter, the main results obtained during this study are presented. First, the results of extending
the estimation period to a broader portion of the observation period are discussed in section 4.1. Then,
the position difference during the arc overlaps is computed, analysed, and some potential explanations
for the observed behaviour are proposed in section 4.2. In section 4.3, the distribution of the post-
fit residuals is analysed, and the effects of changing the weighting scheme are investigated. Finally,
section 4.4 delves into the impact of replacing the cannonball radiation model with the TCM.

4.1. Full coverage

In this section, the new periods covered by the estimation process are presented, along with the num-
ber of external guesses required and their location. The bootstrapping process, described in detail in
section 3.3, is applied to the observation data presented in section 3.2. In this process, an external
guess is used to initialise the WLS method for the first window. Then, for each new window (or arc),
the initial guess is taken from the estimated trajectory obtained with the previous arc. The estimation
is performed using the settings n° 1 from Table 3.2, which uses the cannonball SRP model, and esti-
mates only the initial state. This leads to a very efficient estimation where the need for initial guesses
has been reduced to only one for the whole period for Chang’e 3, and two for Chang’e 2, as can be
seen in Figure 4.1 and Figure 4.2.

For Chang’e 3, the situation is very close to ideal: the only external initial guess that is used dates back
approximately ten years before the last observation data. This would be the ideal situation in a real-life
scenario. Indeed, when e.g. planning for a future mission, the most relevant information is obtaining
trajectory prediction in the future. This matches the Chang’e 3 profile, as almost all the observation
period is located after the external guess.

For Chang’e 2 on the other hand, two guesses were needed and even then the whole observation
window is not covered. The coverage stops on the 01/02/2014, while the observation data goes back
until 11/10/2010. It has been decided that the coverage did not need to be extended over this 3.3 year
period. The reason for this choice is a tradeoff between the effort required to be able to properly cover
this period versus the benefits from doing it. Indeed, the process of finding an initial guess that covers
as much data as possible is not deterministic and relies on a lot of trial and error. Indeed, potential
initial guesses are obtained as interpolations from the TLE data provided by the Find_Orb software
[Gray 2022], and thus there is an infinite amount of possibilities. Moreover, it can be hard to predict
whether including an extra data point will help the convergence of the Least Squares algorithm or hinder
it. This can depend on many factors such as the amount by which the additional observation would
differ from the otherwise-estimated trajectory, the amount of time between the last used observation
and the new one etc. As a conclusion, obtaining an external guess (or several of them) that would allow
for a coverage of the initial 3.3 years would involve a lot of manual testing, as the number of possibilities
is large, and there is no way to evaluate a guess before actually testing it.

In addition to that, the outcome of extending the coverage have no guarantee to prove useful to this

32
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study. Indeed, the scarcity of the data in this period means that the convergence of the estimation
process is far from assured, which in turn implies that the guess given from one arc could be too far
from the real trajectory to be of use for the next arc. From a very quick overview, this could mean
that three to five external guesses could be required for these 3.3 years, whereas only 2 guesses are
needed for the remaining 8-year period. In addition to making things more difficult, the sparse data also
makes the process less relevant to the real-life applications. This is due to the fact that more recent
data tends to be more dense, as can be seen later for both Chang’e 2 and Chang’e 3.

Finally, once again comparing the situation to a real-life one, being able to estimate the state of the
studied space object eight years in the past is usually not the main focus. It is obviously useful for a
better understanding of its history and for improving the ability of the estimation process to handle more
"rough” estimating conditions, but it is beyond the scope of the present study, and thus the two guesses
covering most of the observation window are deemed satisfying and kept as such for the following.

Those results show that the estimation process implemented in this study is, in some cases, able to
provide relevant predictions in a realistic scenario, thus showing its operational validity. It is, however,
not always the case, as the Chang’e 2 example showed. From this, it is important to note that the model
has shown its capabilities, but that the data distribution is a very important factor in the prediction power,
and the framework described in the present study can be affected by the observations. This translates in
requiring an external guess from late in the data, and back-propagating it. This is of course not possible
when working on the estimation of current data, as back-propagating would require an external guess
from the future. In such cases, it is possible to perform an Initial Orbit Determination (IOD) to obtain a
rough initial guess, which can then be refined using the process studied in the present work. Several
methods for IOD are described and compared in [Schaeperkoetter 2012].

As explained in section 3.3, the estimated states are then saved, with a time interval of 1 week between
two entries, as such an interval has been found to limit the amount of data to store, while allowing for
almost no stability issues when using the saved states as initial guesses. The very few ones that remain
are, once again, located right after the close approaches of the Moon, and they are not always solved
with more dense saves, but rather by using the next/previous saved states as an initial guess. Since
the arcs considered in the present study have a length of one year, a shift of one week for the initial
guess is considered to have a very limited impact on the uncertainty at the ends of the arc, and thus
one week is found to be a satisfactory compromise between stability of the estimation and size of the
saved states.

4.2. Arc overlap study

In this section, after performing the estimation over the periods shown in Figure 4.1 and Figure 4.2, the
process described in section 3.4 is applied to every set of two consecutive arcs. This is done in order
to find the lower bound for the true error, and potential explanations as to where it is originating from.

The position difference between the estimated trajectories in the overlap between two successive arcs
is computed and analysed. The different components of the position difference in the arc overlaps
are analysed in several manners to deduce the underlying sources of error in the estimation. It is
found that the difference is almost exclusively in-track and that its behaviour can be well explained
by the introduction of an instantaneous delay between the two estimated positions. In addition, some
possible explanations for such a delay to be present are given.

The analyses conducted and presented in this section are based on the totality of the arcs considered in
section 3.3 and their overlaps. However, for clarity purposes details of only two representative overlaps
have been selected and will be presented here. Those overlaps are the overlaps between arcs 1-2 and
3-4 of the Chang’e 3 data. The orbital elements for those two overlaps are presented in Figure 4.3
and Figure 4.4. Several plots summarizing figures of merit for all overlaps of both objects will also
be presented, and individual figures for each arc are available in Appendix A for a more exhaustive
overview.

4.2.1. Component-wise analysis
The evolution of the magnitude of the position difference in the two overlaps considered can be seen
in Figure 4.5. The most prominent observation is the fact that the magnitude of the difference between
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Figure 4.6: Overview of the magnitude of the position difference during the arc overlaps

the two estimated positions varies periodically, with spikes appearing every 12 days in the first case,
and every 17 days in the second case. Moreover, the amplitude of the spikes is not constant across
the arc overlap, but gets smaller in the second half of both figures. This is likely explained by the fact
that the position difference gets smaller near observation data. Indeed, when displaying the times of
the observations (dashed lines) on this plot, it appears that the observations are located in the second
half of the overlap period, where the magnitude of the spikes is smaller.

In order to be able to get a rapid overview of the behaviour of the position difference over the different
arc overlaps, the mean and maximum value of the magnitude of the position difference are computed
and plotted in Figure 4.6.

This figure shows that for most of the arc overlaps the behaviour of the maximum, minimum, median
and mean of the position difference is comparable. This is not the case however for the overlaps 4-7
of the Chang’e 3 data. The most likely reason for this observation is the fact that the arcs 5 and 6
have much less observation data, along with being located shortly after the lunar close approach of the
16/09/2016, presented in section 3.2. Therefore, it is expected that the error made in those three arcs
is significantly larger than in the other ones, and thus the five overlaps in which they are involved also
exhibit this behaviour. As for the Chang’e 2 data, the values are less stable, but there are no outliers
that show a trend similar to the behaviour seen in the Chang’e 3 case.
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Figure 4.7: Magnitude of the position difference in the overlap between two consecutive arcs, plotted against the magnitude of
the position of the latter arc.
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Figure 4.8: Position difference in the RSW frame for the overlap between two consecutive arcs

In addition to the trends that can be observed, it is useful to note that the mean and median have almost
identical behaviours in the case of Chang’'e 3, and very similar ones for Chang’e 2. This indicates
that the distribution of the values is rather symmetrical, which in turn shows that the behaviour of the
maximum and minimum are not due to extreme outliers, but are indeed a good indicator of the behaviour
of the whole distribution. Those two plots thus prove that the behaviour observed in the two overlaps
chosen as examples can be generalised to all the overlaps.

In order to gain more information about the position of the spikes in the magnitude of the position
difference along the orbit, the magnitude of the position difference is plotted against the magnitude
of the position. As the magnitude of the position difference is very small (less than 2%) compared to
the magnitude of the position, using the latter for either of the estimated trajectories does not impact
the results significantly, and the estimated position from the second arc is used in the plots shown
in Figure 4.7. In this figure, it appears very clearly that the points with the largest amplitude for the
position difference (i.e. the spikes) are located where the magnitude of the position is the smallest. The
conclusion is thus that the spikes in the position difference are located near the periapsis of the orbit.

The position difference is then projected it onto the RSW and TNW frames as described in section 3.4
and the plots presented in Figure 4.8 and Figure 4.9 are obtained. In those figures, it can be seen that
the spikes in the magnitude of the difference are still present, but their "repartition” among the three
components differs between the RSW and the TNW plot. In particular, the TNW frame allows for a more
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Figure 4.10: Overview of the absolute value of the TNW decomposition of the position difference during the arc overlaps.

convenient decomposition, and further analyses will be conducted on this frame, with more information
on the RSW frame being put in Appendix A.

The reason the TNW frame is preferred to the RSW is because only one of the three components
exhibits the spikes in its time evolution. In addition to that, the other two components oscillate around
zero, but with an amplitude that is smaller than the T component by about one order of magnitude, and
with a smooth behaviour. This first indicates that the TNW frame is more adequate for studying the
position difference between two consecutive arcs. Indeed, the majority of the difference is manifested
in a single direction of the frame, as opposed to two needed in the RSW case. It also represents an
additional proof that the difference between the two trajectories is mostly due to an offset in an otherwise
very similar trajectory, as the position difference is almost exclusively in the tangential direction. Indeed,
a difference in the tangential direction, provided that it is small compared to the scale of the whole
trajectory, can be interpreted as one of the estimated positions being ahead of the other, which can
also be phrased as an in-track position difference.

In order to ascertain the validity of using the TNW frame for the decomposition of the position difference
in the rest of the arc overlaps, the maximum of the absolute value of the three components is plotted for
all the overlaps in Figure 4.10, along with the mean and median of the absolute value of the tangential
component.

In this figure, it is visible that the maximum of the absolute value of the T component is about one order
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Figure 4.11: Instantaneous delay, computed from the TNW frame of the latter arc

of magnitude above the other two components. In addition to that, the mean and median of the T-
component are similar, indicating that the high maximum value is not due to outliers. Those elements
put together allow to conclude that the position difference is mostly explained by an in-track difference,
and that this result can be generalised to all the arc overlaps considered in this study.

One thing to take into consideration when using the RSW and TNW reference frames is the fact that
those frames depend on the Cartesian state of the space object, and thus are different between the
two estimated trajectories, as described in section 3.4. However, the impact of using one or the other
has been investigated and the results, shown in Appendix A, have proven that this does not have any
influence on the conclusions drawn from those plots.

4.2.2. Delay analysis

The next step of this investigation is to look at a possible explanation for the behaviour of the position
difference. Therefore, the delay described in section 3.4 is computed and investigated. The reason
such a delay bears physical meaning is because the position difference is (almost) exclusively along
the tangential component of the TNW frame, and thus the position difference vector is (almost) collinear
to the velocity vector. The ratio between the magnitude of the T component of the position difference
and the estimated velocity of the object is thus a very good indicator of the time separating the two
estimated trajectories. This instantaneous delay is then plotted for the overlap between arcs 1-2 and
3-4, and the resulting plot is shown in Figure 4.11.

In this plot, it can be seen that the instantaneous delay between the two trajectories behaves very
differently from the various position differences seen before. Namely, the general behaviour is no longer
dominated by large amplitude oscillations (or spikes), but rather seems to be consisting of a general
trend with oscillations around the trend. Although the frequency of those secondary oscillations is the
same as the one of the spikes present in Figure 4.5 (i.e. the orbital period), the oscillations exhibit a
much smoother behaviour compared to the spikes.

Once again, the maximum and the mean of the absolute value of the delay are plotted for all the
overlaps, in order to show that the behaviour can be replicated throughout the observation period. The
results, shown in Figure 4.12, indicate a similar behaviour as the one seen in Figure 4.6. The metrics
are similar over all the overlaps, except for the ones from 4-7 for Chang’e 3 (because of the arcs 5 and
6 that have less data).

This reasoning can be continued further to deduce that the root cause of those variations is likely to
be found in the dynamical modelling of the environment. Indeed, whereas the evolution of the position
difference is related to orbital effects, with large variations happening near periapsis, the evolution of
the instantaneous delay exhibits a different behaviour without any rapid variations in time.

This could for example be explained by a mismodelling of the SRP. Indeed, when using the cannonball
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Figure 4.12: Overview of the absolute value of the instantaneous delay in the arc overlaps

model, over the course of a full orbit the Sun will accelerate the object during the half where it is going
away from the Sun, and slow it down during the other half. If two objects are on the same orbit but with
a time difference between them, then such a model of the force at the furthest point from the Sun will
cause the first object to start slowing down while the other is still accelerated, thus reducing the delay.
At the point closest to the Sun, the effect is reversed and the delay increases again, thus explaining the
fast oscillations with the same period as the orbit. The slow trend is not as easy to explain, and could
arise from various effects in the dynamical model used in this study.

Another potential explanation for this delay can be found when taking into account the fact that the
accuracy of the estimation is highly dependent on the quality of the observations, and on the proper
treatment of those observations. In particular, timing errors are very common in astronomy observa-
tions, and thus a combination of timing errors from different sources could be at play in this situation.
Although the observations in the overlap between the two arcs are the same for the two estimations, the
rest of the observations differ and could be a part of the explanation for a time shift along the trajectory.

Finally, it is important to keep in mind that this section has investigated the position difference between
two trajectories that were fully estimated and propagated using theoretical models, with real observation
data used only as an input. As such, the fact that the position difference is in-track indicates that this
direction is the least constrained, and the one in which the error is most likely to be concentrated.

Moreover, the behaviour of the delay is completely defined by the simulation settings, with the only
external inputs being the estimated initial states. Therefore, if a different force model were to reduce
the amplitude of this delay, it would mean that the estimated states are matching each other more
closely, which indicates that the force model would be more representative of the reality as it is able to
better "connect the dots”.

4.3. Residual analysis

In this section, the residuals are computed and visualised in the along-track/cross-track plane as de-
scribed in section 3.5. After discussing the residuals using the most refined weighting scheme pre-
sented in section 3.5, the impacts of modifying the settings are discussed. It is found that, despite
improving the behaviour of the residuals, the impact of the weighting corrections is minor and other ef-
fects are expected to give better results. Finally, two additional methods, observation filtering and bias
estimation, are investigated. The estimation setup used throughout this section uses the cannonball
radiation pressure model, without including C,. in the estimated parameter vector (settings 1 and 5 of
Table 3.2).

The analyses conducted and presented in this section are based on the totality of the arcs considered
in section 3.3. However, for clarity purposes details of only two representative arcs have been selected
and will be presented here. Those are the arcs 0 and 13 of the Chang’e 3 data. The orbital elements for
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Figure 4.13: Keplerian elements during arc 0 for the Chang’e 3 upper stage

these two arcs can be seen in Figure 4.13 and Figure 4.14. Several plots summarizing figures of merit
for all overlaps of both objects will also be presented, and individual figures for each arc are available
in Appendix B for a more exhaustive overview.

The residuals are first computed and converted in the along-track/cross-track plane as described in
section 3.5. They are computed using setting n° 1 from Table 3.4 and can be found in Figure 4.15. The
linear regression used to identify the main direction of the spread, introduced in subsection 3.5.3, is
also plotted.

In this figure, it can be seen that there are clusters of residuals belonging to the same ground station (of
the same colour). However, the observations of a given station are not all grouped in a single cluster,
but rather they are split between different sets of observations. This concurs with the batch weighting
of the observations described in subsection 2.4.1.

In addition, it appears that the linear fit is mostly horizontal, thus indicating that the main direction of
spread for the residuals is the along-track direction. This confirms that the main biases to take into
account have an along-track effect. However, it appears that there are some clusters of observations,
such as the green one on the right of the plot for arc 13, that can "pull” the fit in a way that overvalues
the systematic errors of a given ground station, once again showing the importance of adjusting the
weights to diminish the relative importance of a large cluster, and indicating that there is potentially
more to be done.

4.3.1. Weighting corrections

In order to ascertain the effect of weighting the right ascension observations according to the declina-
tion value, as presented in subsection 2.4.1, this weighting correction is turned off (setting n° 2 from
Table 3.4). The updated residuals for the two example arcs can be found in Figure 4.16.

On this plot no significant difference can be found when comparing to Figure 4.15. This seems to
indicate that, while more realistic and physically accurate, the adjustment of the right ascension weights
according to the value of the declination does not have a significant impact on the residual distribution.

Then, the effect of the batch weighting are investigate by turning this correction off (setting n° 3 from
Table 3.4) and the residuals are re-computed. The resulting residuals after conversion in the along-
track/cross-track plane are shown in Figure 4.17.
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In this figure, two main differences can be seen compared to Figure 4.16. The first is that the linear
regression leads to a more horizontal slope, which indicates that the main direction of the residual
distribution is getting closer to purely along-track. The second difference is that the overall spread of
the residuals is reduced. This can be seen by noticing that the plot in Figure 4.16 is more "zoomed in”
than the one in Figure 4.17. Such a result is, however, not as important for arc 13 as it is for arc 0.

Those results indicate that the batch weighting, as opposed to the right ascension weighting, does
impact the residuals. Moreover, this impact is an improvement because it reduces both the overall
spread of the residuals, and the discrepancy between the along-track spread and the cross-track one.

One possible explanation for the different effects of the two weighting corrections studied is that the
batch weighting process impacted mostly the along-track direction, while the right ascension weighting
process affects the trust in the right ascension observation, which does not reflect on a specific direction
in the along-track/cross-track plane.

As explained in section 3.5, the comparison of the plots for all the arcs one by one for the three settings
used in this study would be a tedious and inaccurate process, considering that visual comparison of
two figures by a human is not the most reliable method. Therefore, the slopes of the linear regression
presented in subsection 3.5.3 can be plotted, and in order to include their relevance, they are plotted
against the spread ratio of the residuals.

The results are computed for each of the three possible weighting settings, and the resulting plot is
shown in Figure 4.18. In this figure the most obvious trend is the fact that the absolute value of the
slope decrease as the spread ratio increases.

This is logical as a higher spread ratio means that the residuals are more elongated in the along-track
direction, and thus the absolute value of the slope is small. Moreover, the absolute values of the
slopes are all below 0.8. Since a slope value of 1 or -1 indicates a main spread at an angle of 45°,
or exactly between the two directions, the fact that the slopes are all below this threshold shows that
the main direction of the spread is always closer to the along-track axis than the cross-track axis. In
conclusion, the residuals are overall more spread in the along-track direction, even with the refined
weighting scheme.

Finally, in order to extend the comparison between the three weighting settings used in this section, an
overview of the RMS of the in- and out-of-sample residuals is presented in Figure 4.19 and Figure 4.20.
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Figure 4.20: RMS of the out-of-sample residuals

In the OOS plot, it can be noted that two arcs for Chang’e 2 (n° 13 and 14) and two for Chang’e 3 (n°
6 and 10) do not have data points. This is caused by the fact that in the 6-month period following the
end of their arc there are no observations, which means that no residuals can be computed with this

out-of-sample period.

The main conclusion that is drawn from those plots is the fact that the RMS of the residuals is almost
identical using the three weighting settings, indicating that the improvements noted earlier are minor.
However, for arc 9 of Chang’e 2 and arcs 13 and 16 of Chang’e 3, there is a clear improvement of the
OOS residuals when including the batch weighting (setting 2 vs 3), and except for arc 13 of Chang’e 3
the right ascension weighting further reduces the RMS of the OOS residuals (setting 1 vs 2).

An opposite effect can be observed for Chang’e 2 in the IS residuals of arc 10 and the OOS residuals
of arc 2. In those cases, the most refined weighting scheme does not perform as well as the other two.
This effect is, however, smaller than the improvements noted above.

Those results indicate that the corrections applied to the weighting scheme do allow, in certain condi-
tions, to reduce the values of the residuals. However, this reduction is far from systematic and has a
very small amplitude, which indicates that the main origin for the residuals is not the observation weight-
ing, but something else. Both weighting corrections should still be included as they overall reduce the

residuals more than they increase them.
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Figure 4.21: Residuals with the ground station biases included in the estimated parameters

4.3.2. Additional methods

In addition to the new weighting schemes, two other options have been investigated. The first one was
to filter the outlier observation as described in section 3.5. This process only led to 9 observations
being filtered for the whole 10-year period of the Chang’e 3 observations, and all those observations
were during the arcs 14 and 15, that happen right after a gap in the data. No observations were filtered
for the Chang’e 2 data. Filtering more points is possible by reducing the threshold of the filter but then
the filtered residuals are less outliers, and the estimation process becomes less stable, increasing the
OOS residuals.

The second option is to estimate the right ascension and declination biases for each station and for
each arc using the settings described in section 3.1 (n° 5 of Table 3.2). The effect of this process on
the in-sample residuals is shown in Figure 4.21.

In this figure, the results are very clear: including the observation biases in the estimated parameters
does allow for a better fit of the observations over every arc considered in this study. Moreover, this
improvement of the residuals is more significant than the differences observed in the weighting scheme
corrections. This indicates that the effect of observation biases is larger than the improper weighting,
and thus should be higher on the list of effects to correct for.

There is however one important thing to keep in mind, as only the IS sample residuals have been anal-
ysed for the bias estimation (as explained in section 3.5). Indeed, including the observation biases in
the estimated parameter vector adds a considerable amount of degrees of freedom for the estimator,
as there are often at least 5 different ground stations providing observations during a single arc. This
means that the number of values to estimate goes from 6 to 16, thus more than doubles. A potential
consequence of this high number of adjustment variables is that the estimation process returns a trajec-
tory that over-fits the data in-sample, and diverges very quickly once out-of-sample. Therefore, in order
to confirm the added value of estimating the ground station biases, an analysis on the OOS residuals
would be required in future studies. As stated before, such an analysis would have to find a way to
either compute the residuals for ground stations that have no estimated biases (using default values),
or to exclude the observations from those ground stations from both the baseline residual computation
and the "improved” one.

In conclusion, this section has shown that it is possible to slightly improve the residuals on average by
using a refined weighting scheme compared to the uniform weighting used in Table 3.4. Filtering the
observations has proven to cause only a few excluded data points, and thus is not considered to be
significant in this situation. Finally, estimating the observation biases of the ground stations leads to
reduced in-sample residuals. The validity of such a process needs to be investigated further to verify
if the trajectory is indeed better, or if a high number of parameters allows the estimator to over-fit the
data.
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Figure 4.22: Estimated values of the C,. parameter

4.4. Use of the three constant model

After implementing the TCM, it has first been validated and the a priori covariance parameters have
been tuned to the values presented in section 3.1. Those values were chosen to prevented the esti-
mated parameters from blowing up to absurd values, as described more in detail in Appendix C. Once
these steps have been taken, the first analyses can be performed with the TCM in place. The residuals,
both in- and out-of-sample, are compared when implementing the TCM, and the instantaneous delay
from section 4.2 is also used to evaluate the performance of this model. Finally, the cumulative impact
of estimating the observation biases described in subsection 2.3.1 with the various SRP configurations
is studied.

4.4.1. Model results

Four different settings (n° 1-4 from Table 3.2) are used, and the values for the estimated parameters
are shown in Figure 4.22 and Figure 4.23. As explained in subsection 2.3.1, the values for the physical
characteristics of the Chang’e 2 and 3 upper stages might not be accurate, but the errors in those
parameters are absorbed by the estimation process. For instance, in the cannonball model expression
given in section 2.2, if the value taken for A is half of the real value, then the estimation process will yield
a value for C,. that is twice the real value. This, however, does not change the values of the residuals
beyond potential numerical rounding errors.

More specifically, in this study, it can be computed from the numbers given in subsection 2.3.1 that the
A/m ratio used in the estimation is smaller than the one using the corrected values. As a result, the
estimates for C,. are expected to be above the "correct” estimate. This is coherent, as the values present
in Figure 4.22 are mostly above 1.5. Since C,. is expected to be between 1 and 2, real values could
very well be lower than the current estimates. However, it is important to note that as no information
was acquired regarding the material used, the main conclusion that can be drawn from this figure is
the fact that the values are comprised within the physically acceptable range for C,.. There are two
exceptions to these boundaries, namely the first arc of Chang’e 2 and the last arc of Chang’e 3. Those
arcs are located at the edges of the estimation periods, and thus it is logical that the estimation process
leads to less physically meaningful values. Therefore, the conclusion that the C,. estimates are in the
correct neighbourhood is not invalidated by those two outliers.

As for the TCM parameters, only the mass of the object experiencing the force appears in Equation 2.13.
Therefore the mismodelling of the surface area does not impact the values of the parameters. Given
that the mass used in the estimation was likely larger than the real mass of the upper stages, it can be
assumed that the actual values of the TCM parameters are lower than the estimated values presented
in Figure 4.23. Since those parameters do not, however, convey a direct physical meaning, it is not
possible to continue the analysis to verify whether smaller values would be more reasonable.
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Figure 4.23: Estimated values of the TCM parameters
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Figure 4.24: RMS of the IS residuals for the different SRP configurations

4.4.2. Model comparison

In order to have a global visualisation of the residuals evolution without comparing the residual plots
of all the arcs for all the different settings, the RMS of the IS residuals is computed for each arc, its
evolution is plotted over the different arcs. The resulting plots are shown in Figure 4.24.

In this figure, it can first be observed that the curves obtained for both SRP models without estimating
the parameter(s) are almost perfectly superimposed. This is an additional proof that not only the TCM
implementation is adequate, but also that the default value selected for the parameter manages to
imitate the cannonball model very accurately. As a consequence of this result, the cannonball model
without estimation will be used as the baseline in the future analyses, while the TCM without estimation
will be omitted in order to reduce the amount of information on a single figure.

A second observation is that for all the arcs the order between the three setups (baseline, cannon-
ball estimated, TCM estimated) is the same, with the residuals for the baseline being the largest, then
the residuals of the cannonball model with the parameter estimated, and finally the TCM with the pa-
rameters estimated with the lowest residuals. This is a very promising result as it indicates that the
TCM performs better than the cannonball model inside the estimation window. Moreover, the fact that
both models perform better than the baseline when estimating the parameters is coherent, and a good
indication that the estimator is working as it should.

In order to verify the performance of the TCM on the prediction part of the orbit determination process,
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Figure 4.25: RMS of the OOS residuals for the different SRP configurations

the RMS of the residuals is then computed on a 6-month out-of-sample period, for the three setups,
and the results are shown in Figure 4.25. On those plots, four arcs (n° 13 and 14 of Chang’e 2 and
n° 6 and 10 of Chang’e 3) do not have data points. This is caused by the fact that in the 6-month
period following the end of their arc there are no observations, which means that no residuals can be
computed with this out-of-sample period.

This figure shows that once again in almost all the arcs the baseline performs the poorest, then the
cannonball model with C,. being estimated, and finally the TCM with its parameters estimated performs
the best. The only exceptions are arcs 0, 9 and 12 of Chang’e 2 and 11, 12 and 16 of Chang’e 3.
However, in arc 12 of Chang’e 2 and 11 of Chang’e 3 the TCM still has the lowest RMS of the residuals,
notably being better than the baseline. In arcs 0 of Chang’e 2 and 12 and 16 of Chang’e 3 it is the
baseline that is performing the best, but the difference with respect to the other two configurations is
quite small compared to the arcs where the TCM is performing the best. Finally in arc 9 of Chang'e 2
the TCM is performing worse than the baseline, with a difference of the same order as the improved
times.

It is however performing almost the same as the estimated cannonball model, which indicates that the
issue is probably coming from the fact that arc 9 is ending on the 03/08/2019, at the same time as two
lunar close approaches. Indeed, the Chang’e 2 upper stage experiences two lunar close approaches
on 19/04 and 12/06/2019 (as seen in section 3.2), and there are no observations between those close
approaches and the end of the estimation window for arc 9. As such, the OOS period is significantly
harder to predict, due to the perturbing effect of a lunar fly-by on the dynamics. This shows that the
TCM is performing better also outside of its training dataset, which shows that the good performance
exhibited in Figure 4.24 is not due to over-fitting but indeed to a better modelling of the trajectory, that
results in a better predictive power for the evolution of the space object in the future.

Another result to put in regard to the beginning of this study is to compute the instantaneous delay
from subsection 4.2.2 with this improved dynamical model. The resulting comparison between the
maximum and the mean of the absolute value of the delay for all the arc overlaps considered is shown
in Figure 4.26 and Figure 4.27.

In these figures, it can be seen that for Chang’e 2 the instantaneous delay is reduced compared to the
baseline model in some of the arcs, but not in all. Mainly, in the final arc overlaps (9-14) the baseline
performs better than the refined dynamical model. This is likely due to the fact that this period is the
end of the observation window for the Chang’e 2 upper stage. At this time the dynamics are harder to
predict, as the two jumps in the orbital elements seen in section 3.2 show. In the rest of the arcs, the
TCM performs mostly better than the baseline except in two arcs (1 and 4), but even then the difference
is small compared to the arcs where it performs better. For Chang’e 3, the results are clearer, with the
TCM results being better than the baseline in every overlap except n® 12 and 17. In the case of overlap
17 it is only worse when looking at the maximum of the delay, but when looking at the mean the TCM
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Figure 4.28: RMS of the IS residuals when estimating the observation biases for the different SRP configurations

performs better. As for overlap 12, the difference w.r.t. the baseline is once again small compared to
the times the baseline is worse. Overall, this indicates that using the TCM with parameter estimation is
a better default dynamical model than the baseline. It can, however, lead to slightly worse predictions
in the case of complicated dynamical changes (e.g. lunar close approaches).

4.4.3. Impact of estimating the observation biases

Finally, the impact of adding the observation biases to the estimation with the three SRP configurations
considered (baseline, cannonball with C,. estimated, TCM with parameters estimated) is investigated.
The in-sample residuals are computed for the settings 1 (baseline), 5, 6 and 7 of Table 3.2. The results
are shown in Figure 4.28.

In this figure, it can first be seen that the baseline (cannonball model, no parameters estimated) almost
always performs the worst. Two arcs (6 of Chang’e 2 and 7 of Chang’e 3) do not exhibit this behaviour
but the difference is small. However, the settings that perform the best on all the arcs considered without
exception is setting 6, where the biases are estimated, but the SRP model used is the cannonball model
and not the TCM. This result is quite surprising at first, as the TCM was performing better than the
cannonball model previously. Moreover, since the TCM is an extension of the cannonball model, the
residuals should always be lower when using the former, as it gives more freedom to the estimator.

There are at least two reasons that can explain the order observed in Figure 4.28. The first is that the
residuals that are minimised by the estimator are weighted according to the weights matrix defined in
subsection 2.4.1. The RMS on the other hand was computed giving all the residuals the same weight,
which means that the residuals that the orbit determination process is minimising are not exactly the
same ones that are plotted. This would explain why a setting with more parameters could lead to a
higher value for the RMS of the IS residuals. Another possibility is that adding the observation biases to
the TCM gives "too much” freedom to the estimator, and the estimated trajectory is in a local minimum
of the cost function, but not the global minimum. Such a phenomenon relies on the existence of local
minima in the neighbourhood of the "real” trajectory, which is not very typical of orbital dynamics, but
the high non-linearity of the dynamics in this study could allow for their existence.

Finally, the same caution that was described in section 4.3 should be observed here, as only the IS
residuals were analysed. The risk of over-fitting the trajectory, as described in subsection 2.3.2, is thus
quite high with the increased number of parameters. As a consequence, further analyses would be
needed before considering that this setting is suitable for determining the orbit of cislunar space object.
Those analyses would ideally study both the OOS residuals and the arc overlap (position difference
and instantaneous delay) to verify the quality of the estimated orbit.



Conclusions and recommendations

5.1. Conclusions

The present study has investigated different ways to improve the performance of an existing frame-
work for the orbit determination and propagation of objects in cislunar space, more specifically upper
stages of lunar missions. The framework, originally started and presented in [Witte 2024], has been
implemented using the open-source Tudat software, developed in the TU Delft [Dirkx, Marie Fayolle,
et al. 2022]. The present study carried out estimations on longer periods of time and with more data
points than [Witte 2024], reducing the need for external inputs. Those external inputs are taken from
the Find_Orb software, that performs initial orbit determination.

Firstly, a bootstrapping method has been implemented for providing the initial guess required by the
orbit determination process. This method has allowed to increase the portion of the total observation
window that is covered by the estimation process compared to [Witte 2024]. In addition, the reliance on
external guesses has been reduced. This is a progress because it has been concluded in [Witte 2024]
that the trajectories provided by Find_Orb are not as accurate as the results of the orbit determination
described in the present work.

In order to identify the main source of error in the estimation and prediction process, different esti-
mations of the same period of time were then conducted using partially overlapping datasets. The
difference between the estimated trajectories was used as an indicator for the minimum true error that
comes from using this estimation framework. The mean values for the magnitude of the position dif-
ference were found between 102 and 10* km. The position difference was then thoroughly analysed in
order to partially quantify the error, identify its origin, the cause for its evolution, and potential solutions
to reduce it. It was found that the error is mostly along-track, and can be well explained by the presence
of a time offset, or delay, between the estimated trajectories. This delay was found to have a mean
value between 10% and 10* s across the different arc overlaps considered in this study. Two main origins
for such a delay have been proposed, namely a dynamical origin and an observational origin. In the
dynamical origin case, the delay is thought to be caused by an improper modelling of the environment,
especially the SRP. This explanation is considered likely because the effects of mismodelling the SRP
would lead to similar effects as the ones that are observed. As for the observational origin, the source
of the delay is then attributed to the imperfect nature of the observations, especially when it comes to
timing errors.

Once this analysis had been performed, a more in-depth investigation of the residuals and astrometric
observations was conducted. The typical order of magnitude of the residuals was 10 arcsec. In order to
gain insight on the correlation between the orbital behaviour and the residuals, the latter were converted
into the along-track/cross-track frame. It was then found that they were mostly spread in the along-track
direction. Such a result indicates that the along-track direction is less closely fitted during the orbit
estimation process, which is coherent with the delay that was previously found.

In order to improve the treatment of the observations a refined weighting scheme taking into account the
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amount of observations produced in a batch, as described in [Farnocchia et al. 2015], was implemented.
It also included a correction for the correlation between right ascension and declination observations
and a filter for outlier observations. It did not, however, lead to significant improvements in the quality
of the estimated trajectories. This result indicates that the main source of uncertainty is not due to the
weighting, but that other aspects have a more significant impact.

As a part of the investigation on the treatment of the observations, right ascension and declination
biases were estimated for the different ground stations providing observations. The results of including
those biases in the estimation were rather positive, leading to significantly reduced residuals in-sample.
This should, however, be taken with precaution as the analysis has not been extended to the out-of-
sample period. Therefore, it is possible that the trajectory resulting from this new estimation is over-
fitting the observation data and would not be useful for prediction purposes.

Finally, another domain of interest for improving the estimation process that was investigated is the
dynamical modelling of the environment, and more specifically the solar radiation pressure force. This
work has identified and implemented a new model, described in [McMahon and Scheeres 2015], more
refined than the cannonball model that was previously used. It was first tested and validated in order to
ensure that its implementation matched its theoretical behaviour, and its parameters were tuned so that
the default values matched the cannonball model. With this new model, both the estimation (in-sample
residuals) and the prediction (out-of-sample residuals) were improved, indicating that it is better suited
to the cislunar context than the cannonball model. The RMS values of the IS residuals were reduced by
up to a factor 3, while the RMS of the OOS residuals went down by factors 2-20 in most cases. Finally,
it was found that the TCM was leading to improvements in the delay previously computed, although
those improvements were not as consistent as the decrease in the residuals values.

From all those results, the research questions can now be answered:

1. How much can the scope be extended, and what external inputs are required for the esti-
mation to be performed?
The scope of the estimation has been extended to the major part of the observation period for the
Chang’e 2 upper stage, and to the whole extent of the observation period for Chang’e 3. More-
over, the number of external inputs required is drastically reduced, going down to 1 in the case
of the Chang’e 3 upper stage, and 2 for the Chang’e 2 one.

2. What is the main source of error in the estimated trajectories?

The true error being, by definition, not obtainable, the position difference in the overlap between
two consecutive arcs has been used as a lower bound and an indicator. It has been found that
the main direction of the error was the along-track direction, and that the evolution of this error
over time was best explained by a time difference between the estimated states. It can thus be
safely assumed that the main source of error is also a wrongful positioning of the estimation on
the orbit, but that the shape of the orbit is otherwise accurate. Two effects that could cause such
an orientation of the error are an improper modelling of the SRP and the presence of timing errors
in the observations.

3. What is the impact of refined treatment of the observations and residuals on the perfor-
mance of the estimation?
The observations modelling and treatment has been refined, through adjusting their weights, fil-
tering outlying observations, and estimating the ground station biases. Although the first two
processes did not lead to a significant improvement in the quality of the estimation, the estima-
tion of the biases reduced significantly and consistently the residuals. This result, while promising,
should be considered with caution as it could be caused by overfitting the data.

4. How does a new solar radiation pressure model impact the quality of the orbit determina-
tion process?
A new SRP model has been implemented, and it has been found that the TCM is able to perform
better than the cannonball model both in-sample and out-of-sample. Moreover, the inclusion of
this model reduces the position difference in the arc overlaps and thus improves the overall qual-
ity of the estimation. The improved results of this process can reach a factor 20, and are typically
between 2-3 times better than the baseline.
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5.2. Recommendations
Taking the present work’s results into account, some recommendations can be given for future investi-
gations:

+ Although this study used multi-arc orbit determination methods to perform analyses over the whole
observation periods rather than specific windows, the constrained version of this process was
never implemented. Such a method, described in [Lari and Milani 2019], or at least a more global
version of the classical multi-arc one, could allow to define global parameters, such as the SRP
parameters, to be estimated, thus leading to more physically coherent results.

» The impact of including the ground station biases in the estimated parameters has been shown to
reduce the values of the in-sample residuals, but further analyses on the out-of-sample residuals
should be performed. Those would allow to evaluate how much of the improvement is due to
over-fitting the observation data, and how much is actually resulting in a better trajectory that is
suitable for predictions (namely regarding potential collisions).

In order to bring this work closer to real-life applications, orbit determination and prediction need to
be supplemented with an uncertainty propagation method, as it is the required output to determine
the probability of collision with a given object during a mission. The Gauss-von-Mises method
described in subsection 2.4.3 seems to be a promising solution that should be investigated in
future studies.

Although the use of the TCM has already significantly improved the quality of the orbit estimation,
this model is not directly correlated to actual physical phenomenons. Therefore, a further analysis
of the SRP behaviour, and of other models that are based on more physical effects could lead to
even better results and understanding of the dynamical environment,
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Arc overlap study

A.l. Full results of the arc overlap study

In this section, the plots for all the overlaps considered (14 for Chang’e 2 and 19 for Chang’e 3) are
shown. The plots shown here are the magnitude of the position difference and the evolution of the
instantaneous delay over the arc overlap.
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Figure A.8: RSW decomposition of the position difference, plotted vs the true anomaly as computed from the latter arc

A.2. True anomaly as a variable

It has been established in section 4.2 that the behaviour of the position difference is well explained by
an instantaneous delay between two estimated trajectories. This indicates that the reason the position
difference grows larger near periapsis is due to a higher estimated velocity. An alternate option for
plotting the position difference can thus be used, by replacing the x-axis with the true anomaly of the
estimated position.

This new visualisation is applied to the magnitude of the position difference in Figure A.7, the RSW
decomposition of the difference (using the RSW frame of the second trajectory) in Figure A.8 and the
TNW decomposition of the difference (using the TNW frame of the second trajectory) in Figure A.9

In these plots it can be seen that the spikes and discontinuities are completely smoothed when plotted
with respect to the true anomaly instead of the time. In particular, the TNW plot now exhibits sharper
behaviour in the "dips” between the spikes, i.e. at apoapsis. This is due to the same "time dilation”
phenomenon that rendered the spikes more smooth near periapsis. Indeed, the reason for the spikes
to be so concentrated was the fact that over the same period of time, the true anomaly varies much
faster near the apoapsis. In a similar way, over a similar difference in true anomaly, time goes by much
faster near apoapsis. The RSW plot, however, gives a different insight for this phenomenon, that will
be discussed in the following section.
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A.3. RSW frame results

In the RSW decomposition of the overlap position difference, seen in Figure 4.8, the spikes are mostly
present in the R- and S-components, with the S-component presenting the same type of spikes that
are seen in the magnitude of the position difference, whereas the radial component shows very sharp
variations, almost looking like discontinuities. On the W-component it can be noted that the differences
are much smaller and that the curve is significantly smoother than the two other ones, thus indicating
that the position difference between the two estimated trajectories is mostly contained in the plane
of the orbit, and that the "spiky” behaviour of this difference is not restricted to only one of the other
components.

When plotting the RSW decomposition of the position difference against the true anomaly in Figure A.8,
the R and S plots appear to be very smooth, and resemble sine waves, comprised inside an envelope.
This provides more insight for the other plots, as it shows two smooth behaviour in two different di-
rections. When those two sine waves are squared and added, then their combination leads to the
apparition of the sharper dips in the TNW and magnitude plots. However, there is no easy way of
analysing the behaviour of oscillations along those two directions, especially since they are not aligned
with the more physically relevant in-track and cross-track directions.

This behaviour can still be seen as an indication that the position difference can be described through
analytical equations. Indeed, in a simpler context the equations for the difference in position or the
delay can be derived, such as the Clohessy-Wiltshire equations found in [Wakker 2015] for two objects
in circular orbits. Those equations give a very similar result to what was obtained in the RSW frame in
Figure A.8, with sinusoidal oscillations in two different directions, and thus this situation could potentially
be well-explained by such formulas. However, the complexity of the environment for this study makes
it significantly harder to derive even an approximation of a mathematical expression that would explain
all the effects that are visible here.

A.4. TNW frame analysis

Knowing where the difference between the two estimated trajectories comes from and the mechanism
of how it leads to such a behaviour for the position difference is already a very satisfactory result, but it
can be improved even further, namely by investigating the reason why two estimations that share half
their data points seem to frequently exhibit this type of difference.

In order to perform this investigation, the plot from Figure A.9 is used as a basis. Indeed, this plot
shows that most of the position difference is found in the Tangential direction. One possible expla-
nation for the two trajectories being offset specifically in this direction could be that the observations,
being two-dimensional, do not allow for a proper sampling of this specific direction. At first glance this
seems counter-intuitive, as the sampling is done from the Earth, meaning that the T- and W- directions
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Figure A.10: Unsampled portion of the TNW frame during arc 1

are perfectly sampled while the Normal one is where all the uncertainty is concentrated. However, this
reasoning would be more adequate when using the RSW, where the Radial component always points
from the Earth to the object. In the case of the TNW frame, and considering the highly elliptical na-
ture of the orbits considered in the present work, the Tangential component can have a non-negligible
alignment with the line-of-sight from the ground station, especially if the observations are performed far
from the periapsis and the apoapsis. In order to check this theory, the unsampled portion of the TNW
frame is computed for each observation.

This computation is done by retrieving the Cartesian position of the ground station that performed the
observation, subtracting it from the position of the space object. After dividing the resulting vector
by its norm the unit vector that is obtained gives the direction of the space object as seen from the
ground station, which is the unsampled direction. The TNW frame is then converted into Cartesian
coordinates using the rotation matrix. After that, the dot product of each of the T, N and W unit vectors
with the unsampled direction vector is computed, and the result is squared. The reason for squaring
the dot products is the fact that projecting a unit vector onto another one gives the cosine of their angle.
However, the sum of those cosines is not constant, whereas the sum of the squares of those cosines
adds up to 1 regardless of the orientation of the vectors. Therefore, projecting the unsampled direction
unit vector on the TNW frame and squaring the results gives the proportion of this vector in each of the
three directions. The resulting decomposition of the unsampled direction during the overlap between
arcs 1-2 is then plotted versus the true anomaly of the estimated position, and the results are shown in
Figure A.10

In this figure, it can first be observed that a significant part of the observations (more than 50%) happen
with a line-of-sight oriented so that the unsampled direction is mostly along the T direction. This obser-
vation could provide an explanation to why the two estimated trajectories are able to differ mostly along
this direction. Moreover, it can be seen that those observations are close to the apoapsis (between
140 and 220°). This concentration can also explain why the position difference takes the form of a
delay. Indeed, if all the observations are located at (roughly) the same point on the trajectory its shape
is still obtainable by the estimator. This is because the semi-major axis for instance can be found from
the orbital period using Kepler’s third law, and the observations of an arc over a sufficient number of
revolutions allows the estimator to constrain the trajectory to its actual shape. However, the unsampled
portion of the T component means that a small error can be made regarding the position of the space
object along this orbit. This error, which depends on the specific observation set, can be considered
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Figure A.11: Flight path angle [Wakker 2015]

random, and thus the difference between two consecutive estimations also presents a random error
along the tangential component.

In addition to those conclusions, a validation process is performed to ensure that the calculations of
the unsampled direction are done properly. To do that, a theoretical formula giving the portion of each
of the component that is unsampled as a function of the true anomaly is derived. For this analytical
formula to exist, two assumptions are made. The first one is that the orbit is an ellipse, as this allows
to use the existing formulas for the flight path angle to obtain the angle between the T component and
the position vector (going from the centre of the Earth to the centre of mass of the object. The second
assumption is that the ground stations are all located at the centre of the Earth, thus allowing to use the
position vector to obtain the line of sight. Having made those two assumptions, the flight path angle ~
as defined in [Wakker 2015] and shown in Figure A.11 can be computed.

The expression for its value as a function of the true anomaly can be found in [Wakker 2015] in the
form:

esin @
=" A.1
tany 1+ecosb (A1)
This equation can be inverted to obtain
esin @
Y= arctan (:[J,—ecosg) (A2)

And finally the unsampled portion of the T component, defined as the square of its projection on the
unit vector of the line-of-sight, is given by:

er(0) = sin? y = sin? <arctan <%)> (A.3)

In this expression, the eccentricity of the orbit is the only parameter that is left to determine, which
is logical as a perfectly circular orbit would have the tangential component of the TNW frame be at
all times perpendicular to the position unit vector, thus being always perfectly sampled. Since the
eccentricity of the trajectory that is the focus of the present study is not constant in time, it is chosen
to plot er(0) for different values of e, thus allowing to see the variation in the profiles that comes with a
varying eccentricity. The resulting plot for the T component can be seen in Figure A.12. The R- and W-
components are not shown as the W would be a flat line with a zero value, while the unsampled part
of the R component can be expressed as:

er(0) =1—er(0) (A.4)

thus being directly obtained by flipping the curve for e along a horizontal axis.

The first observation that can be made on this plot is the fact that, as expected, the lowest eccentricities
lead to lower unsampled portions of the T component. Another expected behaviour is the fact that e
increases as the true anomaly gets away from 0°, and then gets smaller again when getting close to
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Figure A.12: Theoretical unsampled portion of the T component for different values of the eccentricity

apoapsis at 180°. One additional noteworthy observation is the fact that the width of the gap near 180°
is getting lower as the eccentricity of the orbit gets bigger, meaning that more eccentric trajectories
not only have an overall larger portion of the T component that is unsampled by the two-dimensional
observations, but also that the region where it is properly sampled gets narrower.

Comparing this theoretical plot to the one obtained with the real observation and estimation data in
Figure A.10 gives a very good match, which confirms the validity of the analysis

The two assumptions that were made to obtain the theoretical plot make it not directly useful to draw
conclusions on the origin of the delay, but it can still be used to validate the way the real observation
plot has been made.

Once again, as the velocities for the two virtual objects are not necessarily the same, the one for the
second arc (arc 2) is used to compute the delay, under the assumption that the differences between
the two velocities are close enough to cause only a minor variation in the delay. This assumption was
justified earlier by arguing that a small relative difference in position led to a small relative difference
in the reference frames and the position magnitude. Those arguments were very direct, as both the
reference frames and the position magnitude are directly related to the position. This is not the case for
the velocity, which is only indirectly related to the position through the conservation of energy principle.
Therefore, it is also relevant to check that the choice of using the velocity of one arc does not consider-
ably change the results. In order to verify this assumption, the delay is computed in a second manner,
using the TNW position difference computed from the arc 2 frame, but with the velocity extracted from

arc 1:

T2 (0)
v1(0)
Although this calculation does not correspond directly to a physical phenomenon, it is helpful to isolate
the effect of using one velocity instead of the other. The two versions of the delay are then subtracted

to one another, and the delay difference Agciay(0) = Atinst(0) — Atinst pis(0) is plotted against the true
anomaly in Figure A.13.

Atinst,bis (9) == (A5)

This plot confirms that using the velocity of arc 2 as an approximation leads to at most 4 seconds of error
in the instantaneous delay computation, which represents less than 1% of the instantaneous delay, as
can be seen in the plot on the right.
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Figure A.13: Difference in the two instantaneous delay computations for the overlap between arcs 1 and 2

In conclusion, the major part of the position difference between the two virtual objects estimated from
two consecutive arcs can be assigned mostly to the tangential direction, i.e. alongside the velocity. This
in turn can be converted into an instantaneous delay, thus meaning that the main difference between
the two estimated trajectories is a time difference rather than a difference in the shape of the orbit.
This is a relevant information for real-life situations as it implies that the uncertainty on the position of
the space object is mostly on where it lies on the orbit rather than on the characteristics of the orbit
itself. This means that for lunar space mission, even without an accurate and complete knowledge of
the position of the object, planning a trajectory (or performing a manoeuvre) that stays away from the
estimated orbital path should considerably decrease the risk of collision. It should however be noted
that improving the accuracy of the estimation process is still a very important goal, since it is not realistic
for a lunar mission to design a trajectory that would avoid all orbits of cislunar space debris, so the work
cannot be considered over.



Residual analysis

B.1. Full results of the along-track/cross-track residuals

In this section, the plots for all the arcs considered (15 for Chang’e 2 and 20 for Chang’e 3) are shown.
The plots shown here are the observation residuals using the baseline weighting setting (n° 1 of Ta-
ble 3.4), and after the conversion from RA/DEC to along- and cross-track.
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Figure B.1: Residuals for the Chang’e 2 upper stage
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Figure B.3: Residuals for the Chang’e 3 upper stage
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B.2. Residual conversion process

The result of the process described in section 3.5 to obtain the velocity in the along-track/cross-track
plane can be seen in Figure B.4, with 100s used as the delay between the two simulated observations.

T
—14.247

On this figure, it can be noted that the amount of time chosen before the second simulated observa-
tion is adequate compared to the size of the residual. Indeed, it is of the same order of magnitude
as the residual, which indicates that the potential error that could be made when assuming that the
velocity is constant over this interval of time is smaller than the residual, while still being a time interval
large enough to absorb any effects that would arise from numerical inacurracies when simulating the

observations.

Moreover, whereas in Figure B.4 the point that was used as an origin for the direction was the simulated
observation, in the analyses performed in section 4.3 it is assumed that the velocity obtained from the
simulated observations can be used in place of the velocity, and thus the origin of the new reference
frame is the actual observation point(s).



Use of the 3-constant model

C.1. Validation of the model

In order to validate the model, tests were performed on a controlled environment. This environment
included the use of the Delfi-C3 satellite as an object, whose characteristics are better known, and a
very simplified acceleration set, comprising only the point mass gravity of the Sun and the Earth, on
top of the SRP.

The direction of the acceleration is first tested by setting the parameters to 0 except for one of them,
turning off all the other accelerations and checking that the movement of the space object is in the
direction that is expected. This first step ensures that the base vectors for the acceleration are properly
oriented.

Knowing that the base vectors are correct, the values for the parameters then have to be validated,
as far as it makes sense to test them. Indeed, since the second and third parameters do not directly
match a physical phenomenon that can be modelled, finding a theoretical value is not considered. For
the first one though, it is possible to match the value of the parameter to the corresponding cannonball
model value, and then it is found that this parameter should have a value of: —C,. x A. Therefore, it is
possible to test the validity of the 3-constant model by propagating a satellite with the cannonball SRP
on one side, and the 3-constant model using this theoretical value on the other side. A comparison of
the two processes is shown in Figure C.1

In order to obtain this figure, the same initial state is propagated for 10 days, once with the cannonball
model and then with the TCM, with a parameter set of [-C,.A,0,0]. The difference between the two
positions is computed and the magnitude of this difference is plotted vs the time elapsed since the
beginning of the propagation.

The result of this analysis is the fact that the position difference, while exhibiting fast oscillations, in-
creases linearly in magnitude with the time, reaching a maximum of 1.75 m after 10 days. Such a
difference is negligible compared to the other sources of error, even when considered on longer pe-
riods of time. Indeed, if this difference was increasing at the same rate over the whole 10 years of
the observation window, it would still not reach 1 km of difference between the two models. Such a
result indicates that the TCM is able to accurately "imitate” the cannonball model when restricting it to
a simpler version of the model.

Those first steps made sure that the new SRP model was correctly implemented for propagation pur-
poses, but since the objective of this study is to use the new model in an estimation context, some
additional tests were performed. The partials of the acceleration with respect to the state and the pa-
rameters were also needed, and their expressions were taken from [McMahon and Scheeres 2015]. In
order to test the validity of those expressions, the state transition matrix (resp. the sensitivity matrix) is
propagated alongside the trajectory. Then, the state is propagated again with a small initial perturbation
on the different state (resp. custom parameters) values. The state transition (resp. sensitivity) matrix
is then used to predict the position difference A;;, between the reference trajectory and the perturbed
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Figure C.1: Magnitude of the position difference using the cannonball radiation pressure or the TCM

one, and the actual position difference A, is saved. Finally, the relative error in the position difference

is computed as: ¢, = %. Due to the fact that linearization errors are always present, the relative

error is not expected to bé equal to zero or even in the order of magnitude of the numerical precision
of the machine, but values lower that 102 are considered satisfying enough for the purposes of vali-
dating the model. Such values are attained in the current implementation, and the model is therefore
validated.

C.2. A priori covariance impact

As has been described in subsection 2.4.1, the a priori covariance matrix can be used to give more
weight to the initial guess. This has become highly relevant when implementing the new model for
the SRP. Indeed, without using an a priori covariance matrix, the first results for the three estimated
parameters can be seen in Figure C.2.

In this figure, most of the results cannot be properly interpreted because of the results of the arcs 5
through 7. In those arcs, the values of the three parameters blow up, and reach absurdly high values.
In order to better visualise those results, the logarithms of the absolute values of the parameters are
plotted in Figure C.3.

Once plotted in a logarithmic scale, it can be noticed that, except for the arcs 5-7, the value of the main
parameter remains almost constant. A similar phenomenon can be observed, although with less stable
values, for the two orthogonal parameters.

The reason for the sudden increase of more than one order of magnitude during the arcs 5-7 is likely
the fact that during arc 5 there is a lunar close approach that makes the Least Squares method less
effective, and the year following this close approach has only sparse data that does not constrain the
trajectory enough. This leads to what is very likely to be an over-fitting of the observations inside the
observation sample, at the cost of having physically absurd values for the parameters.

In order to moderate the effect of over-fitting, and considering the fact that the observations alone do not
provide enough constraints to keep the estimated values of the parameters within reasonable bounds,
an a priori covariance matrix is introduced. Since the initial guess for the Cartesian state (position-
velocity) has not exhibited any need for constraints, and there is no way to get a proper insight on the
confidence on the initial state, the a priori covariance matrix is not applied to these parameters.
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Figure C.2: Values of the estimated parameters of the TCM over the 20 arcs of the Chang’e 3 observation period
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Figure C.4: Logarithmic values of the estimated parameters of the TCM after including an a priori covariance matrix

As for the parameters of the TCM, the a priori covariance matrix is used to prevent them from blowing
up but should not be too restrictive and overconfident in the initial guess. As such, it is taken to be
one order of magnitude lower than the typical value for the main parameter, i.e. 10, and an order of
magnitude lower than that for the other two parameters, i.e. 1. Following this addition of the a priori
covariance, the new logarithmic graph of the estimated parameters can be found in Figure C.4.

This time, the parameters are not blowing up to absurdly high values, but the radial (main) parameter
is staying very close to all the other estimated values for the other arcs, which is coherent. The two
orthogonal parameters go down to very low values (1-5 orders of magnitude lower than the estimates
for the other arcs) which is an indicator that the estimation is not as stable as in the other cases. While
not ideal, such low values mean that the orthogonal parameters are considered as having almost no
influence on the trajectory compared to the radial one, which means that the TCM is almost identical
to a cannonball model in this situation. This is preferable to having the orthogonal parameters being
predominant (as in Figure C.3), because it is coherent with the physical meaning of this model. Indeed,
the radiation pressure exerted by the Sun, even if it can be modelled using orthogonal components,
should primarily be directed in the radial direction, pointing away from the Sun.
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