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Abstract

In the past decade data-driven approaches have
been at the core of many business and research
models. In critical domains such as healthcare
and banking, data privacy issues are very stringent.
Synthetic tabular data is an emerging solution to
privacy guarantee concerns. Generative Adversar-
ial Networks (GANSs) are one of the emerging so-
lutions for synthesizing data. However in order to
capture all relevant relationships between columns,
tabular data needs to be numerically encoded. As
columns might be of different types, this is a
challenging task as proven by recent approaches
[24]. Throughout this paper, we focus on the di-
mensionality explosion problem, which leads to
high-dimensional datasets alongside computational
overhead and increase in training time. We intro-
duce a novel synthesis pipeline - LCT-GAN - an
improvement to the current state-of-the-art in tabu-
lar data synthesis CTAB-GAN [24]. Our approach
addresses the dimensionality explosion problem by
introducing a low-dimensional embedding step via
an autoencoder prior to training. It is then com-
bined with a novel conditional GAN architecture,
operating in latent space. After thorough evalua-
tion, we observe that our solution achieves more
than 30% improvement in certain statistical met-
rics in comparsion to CTAB-GAN, accompanied
by 5 fold decrease in size and 150 times speedup
in training time for a single epoch. We successfully
show that it is possible to embed data using autoen-
coders, and that GANSs are able to learn complex
relationships in latent space in the context of tabu-
lar data.

1 Introduction

Data-driven approaches have been at the core of many busi-
ness and research models for a while now. Grocery stores
optimise their stock based on data gathered, tied to unique
customers through discount cards. Banks assess risks, trust
and creditworthiness of loan applicants by means of analy-
sis on big data. Hospitals gather numerous data points for
each patient - radiological images, insurance claims and med-
ical records - which are later on used to improve their pro-
cesses, and simplify management [6]. Solving complex prob-
lems in various fields, happens through data-hungry methods
such as machine learning. In critical domains such as health-
care and banking, data privacy issues are very stringent, as
large amounts of sensitive data is involved, and stored in a
distributed manner [12].

While data sharing is crucial for knowledge development,
privacy concerns and strict regulation (e.g., European General
Data Protection Regulation (GDPR)) unfortunately limit its
full effectiveness. Thus, to effectively utilize specific meth-
ods, privacy concerns and regulatory constraints need to be
addressed. The most common method used in practice is the
anonymization of identifiable data, however most similar ap-
proaches are susceptible to de-anonymization attacks [2]. As

a result of that, synthetic tabular data emerges as an alter-
native to enable data sharing while fulfilling regulatory and
privacy constraints [8].

Synthetic tabular data is an emerging solution to privacy
guarantee concerns [16]. Synthetic data statistically resem-
bles real data and can comply with a multitude of strict reg-
ulations due to its synthetic nature. Most commonly datasets
are organized in tables and populated with both continuous
and categorical variables, or a mix of the two. Generative Ad-
versarial Networks (GANs) are one of the emerging solutions
to learning a data distribution. GANSs are first trained on a
real dataset, trying to learn it’s multi-dimensional probability
density function, subsequently sampling from it, thus gener-
ating new samples. The sampled data should be resembling
statistically the original dataset. However, when GANs are
used in the context of tabular data, a multitude of additional
challenges come up.

1.1 Challenges of Tabular Data

Tabular data consists of many different types of variables: nu-
merical, textual, categorical are at the core of every data table.
In order to build machine learning algorithms around tabular
data, it needs to be encoded to numerical space, whilst captur-
ing all important features and not introducing unwanted rela-
tionships. There exist various encoding schemes, they range
from straight-forward, to very challenging, as shown in [24]
[16] [3].

Categorical columns are amongst the biggest challenges
to encode. Simplistic approaches such as label encoding - as-
signing a number for each category, resulting in a single col-
umn - introduces unwanted relationships between categories.
Another embedding solution might be using word2vec [15],
however that would introduce a layer of complexity, inca-
pable of handling different languages and out-of-vocabulary
words (OOV). A workaround is to use one-hot-encoding.
This way it captures the categorical nature, without any un-
wanted relationships. However it requires to create new
columns corresponding to the number of all possible cate-
gories in the column. Potentially this might result in a ta-
ble with exponentially increased number of columns - dimen-
sionality explosion. As a consequence this leads to increased
use of computational resource when training.

|-
Figure 1: Visualized dimensionality explosion of using one-hot en-
coding for categorical variables.

High-dimensional data introduces a lot of training over-
head. In the case of tabular synthesis, there are categori-
cal columns with hundreds or thousands of possible values,



which results in immense amount of dimensions for each ta-
ble, due to one-hot-encoding. Embeddings are techniques
used to reduce dimensionality. Multiple embedding tech-
niques are explored further in Section 2.

1.2 Research Questions and Contributions

In this paper, we are building upon the current state-of-the-
art tabular data synthesis solution CTAB-GAN+, looking for
an answer to the following research question: Are latent em-
beddings a viable solution to increase efficiency in tabular
data synthesis?

We aim to address the dimensionality explosion problem
and increase effectiveness of handling categorical variables
and high-dimensional data. To such end, we explore a novel
method of compressing data to improve the performance of
generative tabular data synthesis solutions. We propose to use
autoencoders as an embedding solution - reducing the dimen-
sionality of tabular data. Specifically, we design a novel data
synthesis pipeline, termed Latent Conditional Tabular GAN
(LCT-GAN), including an adversarial network architecture
and an autoencoder as preprocessing step.

The evaluation process consists of encoding multiple
datasets, consequently comparing the original dataset with
their decoded counterparts, using a multitude of metrics, such
as Jensen-Shannon divergence (JSD) [5], Wasserstein dis-
tance (WD) [13] and difference in pair-wise correlation (Diff.
Corr.) as seen in [24]. Moreover, performance of the novel
data synthesis pipeline is further evaluated via machine learn-
ing based analysis on the generated synthetic data, observ-
ing and comparing metrics to the same machine learning per-
forming on the original dataset.

Our extensive evaluation shows significant improvement
in training. In some cases with high-dimensional data we
see LCT-GAN outperforming CTAB-GAN within limited
amount of training time, improving up to 30% machine learn-
ing utility metrics and up to 23 % statistical similarity. We
show that autoencoders are a viable embedding solution, by
proving that they are able to learn and reconstruct tabular
data. Alongside that we demonstrate that LCT-GAN is able
to learn in latent space. As a whole LCT-GAN reveals great
promise, as a first iteration latent embedding solution in the
field of tabular data synthesis.

2 Related Work

Related work in the field can be split into two categories:
Tabular data synthesis solutions and Deep latent solutions.
The first category goes through different solutions tackling
the data synthesis problem with or without embedding solu-
tions, whereas the second category lays out solutions in dif-
ferent fields, motivated by similar approaches of latent encod-
ing of data prior fitting machine learning models.

2.1 Tabular data synthesis solutions

Throughout this research are building upon the current state-
of-the-art in tabular data synthesis - CTAB-GAN+ [25]. It
is a novel conditional tabular GAN architecture that can ef-
fectively model diverse data types. However one of the prob-
lems, not addressed by CTAB-GAN, is the dimensionality ex-

plosion problem leading to sub-optimal use of computational
resources.

Another tabular GAN solution is CT-GAN [23], which
leverages the usage of conditional vector to oversample the
minority class to address imbalanced tabular data gener-
ation, alongside wasserstein distance and gradient penalty
for stable training. Several other studies extend GANs to
provide proper support for generation of categorical vari-
ables - MedGAN [4], CrGAN-CNet [17], TableGAN [19].
MedGAN has tried to integrate an autoencoder into the train-
ing process to improve statistical similarity. CrGAN deals
additionally with missing values. TableGAN being one of the
contenders for the state-of-the-art in statistical similarity, it is
outperformed by CTAB-GAN in terms of privacy guarantees.

Although aforementioned algorithms can generate tabu-
lar data including some accommodation for categorical vari-
ables, they do not represent any efforts into mitigating the
dimensionality explosion problem.

2.2 Deep latent solutions

One of our core contributions in this paper is the evaluation
of embedding solutions. Deep latent solutions incorporate in
some way or form a latent embedding for the use of speeding
up training, enabling algebraic manipulation or data recon-
struction.

Fourier descriptor [14] is used in image processing as an
embedding, transforming an image to it’s sine and cosine
components.

A very well known technique for dimensionality reduction
is PCA [7]. Tt provides a simple way of finding the best vec-
tors in space, using which you can represent the most amount
of the real data. This comes with a great trade-off between
dimensions reduced and information loss.

Word2vec [15] is widely-spread in the field of Natural Lan-
guage Processing (NLP). It provides efficient word associa-
tions and word embeddings. Using word2vec in the context
of tabular data would ultimately require training a different
model for each categorical column, as each embedding needs
specific context. In addition to that it does not handle out-
of-vocabulary words, e.g. unseen classes, so for example if
we get a new person’s phone number / address / nationality,
which has not been before in the dataset, word2vec is not go-
ing to work.

Using latent representation from a trained autoencoder is
not seen often. However it has been seen in the field of molec-
ular generation (A de novo [20]) and point-cloud generation
(IGANSs in [1]). Their novel approaches achieve state-of-the-
art level in their corresponding fields.

This paper is a thorough introduction of using autoen-
coders as an embedding solution in the field of tabular data
synthesis.

3 Background

Throughout this research are be building upon CTAB-GAN+
[25], a novel conditional table GAN architecture that can ef-
fectively model diverse data types, including a mix of contin-
uous and categorical variables. CTAB-GAN+ also addresses
data imbalance and long tail issues, i.e., certain variables



have drastic frequency differences across large values. One
of the problems which is not addressed by CTAB-GAN+ is
the dimensionality explosion problem. When training tabu-
lar GAN, data dimension is a limitation. For algorithms such
as CTGAN and CTAB-GAN+, they use variational gaussian
mixture to encode continuous columns, one-hot encoding to
encode categorical column. Thus, if there is high dimensional
categorical column, the final encoded data will encounter the
dimensionality explosion problem.

3.1 Conditional Generative Adversarial Networks
(CGAN)

GANSs are a popular method to generate synthetic data first
applied with great success to images and later adapted to tab-
ular data. GANs leverage an adversarial game between a gen-
erator trying to synthesize realistic data and a discriminator
trying to discern synthetic from real samples.

The conditional GAN, or CGAN for short, is a type of
GAN that allows for the conditional generation of data. Data
generation can be conditional on multitude of classes and or
other data. It is appended to the noise as the input of the
GAN and to the training data of the discriminator, allowing
the GAN to condition itself. An illustrative diagram can be
found in Figure 4

On top that, using Wasserstein Distance (WD) and replac-
ing weight clipping with a constraint on the gradient norm
of the critic to enforce Lipschitz continuity, introduced in
WGAN-GP [9] allows for stable training and improved per-
formance.

3.2 Autoencoders

Autoencoders [11] are an unsupervised learning technique in
which we leverage neural networks to learn the most efficient
latent representation of input data. Their architecture has an
imposed bottleneck which forces a compressed knowledge
representation of the original input. If the input features were
each independent of one another, this compression and sub-
sequent reconstruction would be a very difficult task. How-
ever, if some sort of structure exists in the data (i.e. corre-
lations between input features), this structure can be learned
and consequently leveraged when forcing the input through
the network’s bottleneck. A diagram image can be seen in
Figure 3.

3.3 Maetrics of interest

Jensen-Shannon divergence (JSD)

JSD [5] provides a measure to quantify the difference be-
tween the probability mass distributions of individual cate-
gorical variables belonging to the real and synthetic datasets,
respectively. This metric is symmetric and bounded between
0 and 1, allowing for easy interpretation of results.

Wasserstein Distance

Wasserstein [13] distance is used to capture how well the dis-
tribution of variables are emulated by synthetically produced
datasets. In a similar manner this is used for the stable train-
ing of GANs [9] alongside a gradient penalty.

Difference in pair-wise correlation
In order to evaluate how well feature interactions are pre-
served, we first compute the pair-wise Pearson correlation
matrix for the columns within real and synthetic datasets in-
dividually, ranging between [—1,+1]. Similarly, the Theil
uncertainty coefficient is used to measure the correlation be-
tween any two categorical features, ranging between [0, 1].
And the correlation ratio between categorical and continuous
variables is used, which falls in the range of [0, 1].

Finally, the difference between pair-wise correlation matri-
ces for real and synthetic datasets is computed. This helps us
to conclude our evaluation of statistical similarity.

4 LCT-GAN

LCT-GAN is a tabular data synthesis pipeline, designed to
overcome the dimensionality explosion problem. As all
machine learning methods perform computations on num-
bers, we need to transfer tabular data to proper numeri-
cal space. Building upon CTAB-GAN, we have leveraged
their tabular encoding tools, perserving information about
multi-mode continuous distributions, categorical and mixed
variables. Categorical variables are handled via one-hot-
encoding, which results in highly dimensional data. This is
where LCT-GAN diverges from CTAB-GAN as an approach.
It introduces an additional embedding step, with the goal to
mitigate the dimensionality explosion problem. This embed-
ding step, significantly influences the training process later,
which prompted for the creation of a novel conditional GAN
architecture, operating on latent space.

LCT-GAN performs two steps - (i) tabular encoding & em-
bedding and (ii) generation. The encoding embedding step
has the goal to embed all tabular training data to a numerical
representation (tabular encoding), consequently to a lower-
dimensional space (embedding). The generation step hap-
pens with all data embedded in the aforementioned lower-
dimensional space. Vectors from the lower-dimensional (la-
tent) space are called latent vectors. They are fed as train-
ing data and also as the target of generation. As the data is
in lower-dimensional space, it takes less effort and computa-
tional resources to efficiently learn it, so we can sample from
it. Later on the sampled latent vectors are decoded corre-
sponding to the means of embedding, e.g. in this case - via
the decoder of an autoencoder.

4.1 Overview

All core components of LCT-GAN are illustrated in Figure
2. LCT-GAN consists of a tabular autoencoder and a la-
tent conditional GAN. The autoencoder serves as an embed-
ding solution. It maps from original dataset space to lower-
dimensional latent space, consequently mapping from latent
space, back to original dataset space. The tabular autoen-
coder, learns the latent representation of a given dataset, ef-
fectively learning how to compress and decompress data. As
latent space is lower-dimensional compared to dimensionally
exploded data, this requires the introduction of a conditional
GAN operating in latent space. This GAN architecture oper-
ates on latent data, which results in a lot of saved computa-
tional resources at some cost of statistical similarity perfor-
mance, due to lossy embedding.
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Figure 2: High-level architecture overview.

4.2 Encoding

Before we jump to generative models, we need an efficient
way to encode and decode tabular data to numerical data. For
this initial encoding, LCT-GAN uses the Mixed-type encoder
introduced in CTAB-GAN+ [25].

Tabular data is encoded variable by variable. There are
three types of variables continuous, mixed and categorical.
Mixed variables are defined as mixed if they contain both
continuous and categorical values, or continuous with miss-
ing values.

Continuous values are seen as a Gaussian mixture. How-
ever first one needs to estimate the number of modes in a
gaussian mixture, which is why Variational Gaussian Mix-
ture Model is used (VGMM) [18] to estimate the number of
modes and fit a gaussian mixture. The resulting gaussian mix-
ture can be expressed as:

3
M = Zwk/\/(,uk,ak) (D

k=1

Where k& is the number of modes, N is a normal distribu-
tion, wg, i and oy, are the weight, mean and standard devia-
tion of each mode.

Categorical values are encoded via a one-hot encoded
vector. Missing values are treated as a separate class, thus
additional bit in the one-hot encoded vector is added. This is
where most of the dimensionality in the training data is intro-
duced, and what we are trying to mitigate, via an additional
embedding.

There are additional implementation details expressed in
CTAB-GAN+ [25] paper.

4.3 Embedding

Efficient two-way embeddings are a widely respected chal-
lenge. LCT-GAN makes use of an autoencoder (AE) to trans-
late the data from a high-dimensional numerical space, to a
very low-dimensional latent space.

Auto Encoder

Latent
space

Decoder

Figure 3: Architecture diagram of an autoencoder

The autoencoder consists of two distinct parts - encoder
and decoder. The encoder’s output is a low dimensional, la-
tent vector. The goal for the decoder is to learn how to de-
code this latent vector. The resulting architecture is as shown
in Figure 3. Encoder learns how to compress data, and the
decoder learns how to decompress it.

The AE in LCT-GAN uses dense linear layers for both the
encoder and decoder. The decoder is a mirrored architecture
of the encoder. Mean-Squared Error (MSE) is used as a loss
function, signalling the differences between the input and the
output.

To evaluate whether we are correctly decoding, we com-
pute Jensen-Shannon Divergence, Wasserstein Distance and
Pair-wise correlation difference between the original and the
decoded dataset. After we confirm that the autoencoder
is fully trained, we use it’s encoder to embed the high-
dimensional numerical tabular data, to a latent vector of size
32 - rapidly decreasing the size of the data that is to be trained
with.



4.4 Generation

Once we have the latent embeddings, we proceed to the gen-
eration phase. GANSs as the leading architecture in generative
applications, are at the core of LCT-GAN.

We are employing a conditional generative adversarial net-
work. As we are working with latent data, we can afford to
build the discriminator and generator as linear dense layers,
instead of complicated convolutional and residual architec-
tures. This further improves the training speed and use of
computational resources.
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Figure 4: Architecture diagram of a Conditional GAN
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Similarly to CTAB-GAN+ we are using conditional vec-
tors to counter imbalanced training datasets. Whenever real
data is sampled, we use conditional vectors to classify and re-
balance the training data. The conditional vector is a bit vec-
tor given by the concatenation of all mode one-hot encodings
for all types of variables. Each conditional vector specifies a
single mode or category.

4.5 Architectures

In this subsection, we will outline the final Autoencoder and
LCT-GAN neural network architectures, used in the compu-
tations of the results section. Most design choices are made,
taking performance into account, which is why linear layers
persevere as an approach over more complex ideas.

Autoencoder

Autoencoder is composed of simple linear dense layers, se-
mantically split into two - an encoder and decoder. The de-
coder is symmetrical in terms of layer sizes. There are 6
densely connected layers, connected sequentially with sizes
in the form of m x n where m is the dimension of the input
and n the output of a given layer:

len(x) x 128,128 x 64,64 x 64,64 x 128,128 x len(z')

Where len(z) is the length of the input, len(z’) is the
length of the reconstructed input where len(z) = len(a'),
as we want x and z’ to be as close as possible to each-other.
Between each layer there is non-linearity introduced in the
form of LeakyReLU in order to avoid the vanishing gradient
problem as much as possible [22].

Network size is static across input and output dimension,
as all datasets used in the evaluation, were similar in size,

the only exception is Loan, where the bottleneck (bolded) is
changed to 32, to improve perfomance, as the training data
size is 59

Latent Conditional GAN

Generative Adversarial Networks are generally composed of
two networks. A Generator and a Discriminator. The goal
of the generator is to try and learn the probability distribution
of a dataset through the guidance of a Discriminator. The
Discriminator is a classifier, trying to predict whether a given
data sample is from the original data distribution or not, this
loss is later propagated to the generator, guiding him to im-
prove. The goal of the two networks is to reach Nash equilib-
rium.

We can condition GANS to generate a specific class of data,
by introducing a conditional vector. The construction of this
conditional vector is leveraged from the current state-of-the-
art in tabular data synthesis CTAB-GAN. As seen in Figure 4,
this conditional vector is fed once alongside the noise vector
and another time when training the discriminator. It helps the
GAN differentiate between different data features, and gener-
ate them on demand.

As we are operating in latent space, there is no need for
complex neural network architectures, we should be able to
learn the space through very simple dense layers.

The Generator consists of 4 layers structured in the fol-
lowing way, represented in the form of m x n where m is the
dimension of the input and n the output of a given layer:

len(z) x 16,16 x 32,32 x 64,64 x len(])

where z is the noise vector input to the generator, and [ is the
desired generated latent vector.

The first three layers are combined with LeakyReLU with
value of 0.1 and Batch Normalization with a value of 0.8.
The final dense layer is succeeded by a tahn non-linearity.
The tanh activation function results in higher values of gradi-
ent during training and higher updates in the weights of the
network.

The Discriminator also consists of 4 linear dense layers
structured the following way:

len(l) x 64,64 x 32,32 x 16,16 x 1

Each layer is succeeded by a LeakyReLU non-linearity,
with a value of 0.2. The final output layer has a Sigmoid
activation layer, to ensure the outputs are in the probability
range, as the discriminator is a classifier.

4.6 Training process

Training GANSs is notoriously hard. Autoencoders are adding
an additional layer of complexity on top of that, as latent
space is specific to an autoencoder. Meaning that we cannot
expect good performance out of an autoencoder and GAN al-
gorithm, not trained in sync with each-other (e.g. training an
autoencoder to decode latent space [y, while GAN is trained
on latent data from latent space /5 from another autoencoder
with different architecture and parameters). This made the ex-
ploration of hyperparameter tuning a challenging task, along-
side the mode collapse problem, which was very apparent in
some cases.



Latent data seemed to be within a random scale, which was
hard for a GAN to learn, which is why we normalized the
data from [—1,+1], which increased variety and mitigated,
to some extent, mode collapse.

Techincal limitations were imposed during the training
process by hardware. An Intel i7-8550U mobile CPU was
used to measure the training time of each algorithm and com-
pare it, how it enhances the current state-of-the-art CTAB-
GAN. Further improvements to the algorithm implementation
such as proper GPU support, might further emphasise the il-
lustrated differences in the *Results’ section.

LCT-GAN has implemented Wasserstein Distance and
Gradient Penalty as introduced in WGAN-GP [9] to make
training more stable.

5 Experiments and Evaluation

The evaluation of LCT-GAN is divided into two parts: eval-
vating performance of the embedding solution, evaluating
generative performance combined with the use of computa-
tional resources (time spent training). As we are targeting ef-
ficiency, the core metric we are looking at is training time, as-
sociated with performance. We ran experiments, comparing,
given a fixed amount of time, which algorithm performs bet-
ter, outlining the gains in efficiency, achieved by LCT-GAN.

There are two types of performance assessment performed.
Statistical similarity comparison, and a machine learning
based analysis.

In order to ensure thorough evaluation, we test on 4 widely
used machine learning datasets: Adult, Credit, Covertype
and Load. All code, necessary to reproduce the outlined
experiments can be found on https://github.com/Vik Velev/
LCT-GAN

5.1 Experimental Setup

Statistical similarity comparison of synthetic datasets
through Jensen-Shannon Divergence and Wasserstein Dis-
tance is performed. These metrics are used to quantitatively
measure the statistical similarity of real and synthetic data.

Machine Learning based analysis is used to contrast syn-
thetic and real data by comparing the performance of the most
widely used machine learning algorithms: Decision Trees,
SVM, Random Forest, Logistic Regression and Multi-Layer
Perceptron.

First off the data, set for comparsion, is split into training
and test sets. Consequently, synthetic data is generated from
the training dataset. Afterwards both the synthetic data and
original are separately used to train the aforementioned ma-
chine learning algorithms, and afterwards both are evaluated
on the original test set. Machine Learning performance is
measured via accuracy, F1-score and AUROC.

5.2 Results

Autoencoder

is at the core of our generative pipeline - it lays the founda-
tions for LCT-GAN, building the latent space which the GAN
is trained on. The autoencoder needs to be able to encode a
datum z and successfully decode it to =/, with minimal differ-
ence between x and z’. In order to make sure our embedding

solution works, we ran series of experiments, verifying the
performance of the decoder by observing the statistical simi-
larities between original datasets and the decoded dataset.

Dataset \ Avg. WD  Avg. JSD Diff Corr
Adult 0.01788 0.08821 0.32489
Credit 0.00966 0.00373 1.92776
Covertype | 0.03044 0.00310 1.73784
Loan 0.03524 0.00283 0.21129

Table 1: Statistical similarity difference between real data and de-
coded data. Demonstrating the decoding performance of our em-
bedding solution and the learned latent space. (500 epochs, batch
size of 512)

In Table 1, we can see that, even with some difference, the
autoencoder is able to learn how to encode and decode tabular
data correctly, even with simple Dense / Linear layers as an
architecture. This shows great promise in autoencoders as an
embedding. For the sake of comparsion, the time it took to
train these autoencoders is 30 minutes each. The performance
of our autoencoder also servers as an upper bound of results,
when it comes to generated data.

LCT-GAN efficiency

Table 5 illustrates how LCT-GAN compares in efficiency to
CTAB-GAN. We have measured, given limited training time,
all relevant metrics to statistical similarity, as a way to com-
pare convergence and computational resources spent per unit
of performance. We chose 15, 30 and 60 minutes as the time
windows to simulate limited training resources (e.g. cloud
workstations, which are billed by the minute or hour).

We can see an increase in efficiency when it comes in time
per epoch is accompanied by a degraded performance in some
cases. Some of that degradation might be due to lost informa-
tion As we can see Jensen-Shannon Divergence and the rest of
the statistical metrics are getting better after each time-period,
showing that LCT-GAN is able to learn through multiple ab-
straction layers in latent space.

Looking at each dataset performance more closely we can
see that for datasets with integer continuous columns or a lot
of categorical columns, such as Adult and Covertype, LCT-
GAN outeperforms CTAB-GAN for the given training time.
For example training on the dataset Covertype we can see
about 20% improvement in machine learning accuracy for 15
minutes training, 25% for 30 minutes and 33% for 60 min-
utes. However datasets with a lot of real continuous columns
such as Credit, seems to be a challenge for LCT-GAN to learn
effectively and additional tweaking might prove to be useful.

All in all using latent space as an intermediary representa-
tion for tabular data is showing great promise. LCT-GAN as a
novel approach in this context, is able to learn going through
datasets about 150 times faster, as they are in latent space,
compressing them more than S times (e.g. 331 vs. 64 dimen-
sions per row) in size. When accounting for the training of
autoencoder, LCT-GAN still performs faster, however needs
more epochs to learn the relationships in latent space.

As a summary - we successfull show that LCT-GAN is able
to learn complex patterns through a latent embedding, con-
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Approach Training Time Dataset Accuracy Diff AUC F1-Score Avg. WD  Avg. JSD Diff Corr  s/epoch
Adult 9.12887 0.23000  0.25636 0.10141 0.08764  2.47028 400.12
15 minut Covertype 36.83585 0.39111  0.43352 0.02652 0.03939  5.18157 606.00
utes Credit 2.96318 0.40695  0.38449 0.00942 0.16099  2.10457 542.17
Loan 8.70000 0.11605  0.22446 0.03647 0.06017  2.07039 12.01
Adult 8.46350 0.08763  0.04773 0.06141 0.10041 1.67055 406.23
CTAB-GAN 30 minutes Covertype 3777141 0.39083  0.42852 0.02393 0.03989  4.93570 612.76
Credit 5.83141 036330 042172 0.00731 0.08544  2.12346 539.23
Loan 6.95000 0.08072  0.22642 0.03948 0.06461 1.61641 12.23
Adult 482751 0.08410 0.06189 0.03371 0.12482 1.63593 401.16
60 minutes Covertype 37.44809 0.38852  0.42228 0.02506 0.04036  4.86093 608.14
Credit 1528137 0.47540  0.43807 0.00675 0.10345 2.19736 546.11
Loan 432500 0.07297 0.12701 0.03776 0.03568  0.96509 13.45
Adult 6.87378 0.17121  0.30094 0.03519 0.33090  2.55401 2.75
15 minutes Covertype 29.15499 0.24819  0.29968 0.08067 0.05759  5.38522 2.93
u Credit - - - 0.05234 0.02938  5.21766 3.30
Loan 8.10000 0.20059  0.33139 0.07520 0.05652  2.45248 0.26
Adult 7.73364 0.20239  0.29372 0.03690 0.26007 1.77521 2.90
LCT-GAN 30 minutes Covertype 27.52151 0.23035  0.32369 0.05780 0.04830  4.81472 2.95
Credit - - - 0.05238 0.02938  5.21228 3.37
Loan 7.25000 0.19262  0.36607 0.07062 0.19332  2.28565 0.24
Adult 8.16101 0.17960  0.27275 0.03753 0.25199  1.46671 2.83
60 minutes Covertype 2445717 0.20414  0.27737 0.05125 0.04768  3.77253 2.93
Credit - - - 0.03963 0.02938  5.19638 3.16
Loan 6.70000 0.12376  0.26787 0.07341 0.09637  2.13683 0.25

Figure 5: Efficiency comparison, combining all aforementioned metrics alongside with training time on an i7-8550U CPU. All metrics are
as differences to the original datasets, which is why lower is better across all columns. Accuracy, AUC and F1-score are averaged across all
5 machine learning algorithms. Dashes (-) mean that the specified metric could not be computed due to lack of data variety. Bolded values

represent metrics, where LCT-GAN performs better than CTAB-GAN.

verging faster than CTAB-GAN in the case of big datasets
with a lot of categorical and integer columns. Even though
LCT-GAN does not outperform CTAB-GAN in the long run,
it performs well as a first-iteration approach in applying deep
latent solutions for tabular synthesis. LCT-GAN shows great
promise and should continue to be improved in various ways
discussed in Section 7.

6 Responsible Research

Data privacy is sought after as an essential part of human in-
tegrity. This section will go over potential ethical issues, and
highlight important topics such as reproducability and scien-
tific integrity.

Implications of privacy invasive business practices can be
seen across different industries. If personal data is shared
across different institutions it becomes inherently hard to se-
cure and impose strict regulations. The data becomes prone
to breach in any institution and people are the end-victims
paying for the inconsiderations of businesses.

In order to make sure this research does not have any nega-
tive impact on data privacy preservation, additional metrics
might be added, to make sure, that generated data points
are sufficiently distanced from real ones, preventing de-
annonymization attacks. Differential Privacy is a topic that
is further explored in CTAB-GAN+ [25].

In order to make progress, we need to build upon previ-
ous work. For that to be possible we need to produce repro-
ducible research. Reproducability is crucial for the field of
machine learning and data science. Results in most papers
are very hard to reproduce due to the non-deterministic sta-
tistical nature of the algorithms and computational resources.
The progress of this research has been recorded in a GitHub
repo alongside pickled binaries, with trained models, helping
the reproducability of the results shown above. All code can
be found here: https://github.com/VikVelev/LCT-GAN

In order to preserve scientific integrity, all sources and ref-
erences have been thoroughly checked. Good research prac-
tices go a long way and we advice everyone to do the best
they can in encouraging writing, reading and reproducing sci-
entific research in a proper and responsible manner.

7 Shortcomings and Future Work

Even without ground-breaking results, embedding solutions
in the field of tabular data synthesis show good promise.
There are a lot of ways the approaches discussed in LCT-
GAN can be improved and this section will outline some pos-
sible extensions and improvements of LCT-GAN.

One of the main shortcomings of LCT-GAN is that, given
enough computational resources and training time, CTAB-
GAN outperforms it on pure statistical similarity and machine
learning performance. However due to technical limitations


https://github.com/VikVelev/LCT-GAN

and time constraints the differences, sufficient experiments
are yet to be run to estimate the difference in quality.

There are not any obstacles in the pure mathematical sense,
to build a close-to-perfect Autoencoder. Further experiments
with the autoencoder architecture must be explored. For ex-
ample a possible approach to discuss might be using convolu-
tional layers instead of dense layers, alongside exploring so-
lutions showing great promise in other fields such as residual
layers [10] or randomly wired neural networks [21].

Given enough computational power, an exhaustive hyper-
parameter search is bound to improve the current results.

An additional way to improve LCT-GAN would be to delve
into the neural network architectures behind the latent dis-
criminator and generator. As of now all experiments are done
with a single architecture, which might be hindering perfor-
mance in certain bigger datasets. This could be mitigated by
exploring different architectures and adapt the architectures
based on the input size of the dataset.

Algebraic manipulation of data through it’s latent space is
an exciting field to explore as well. One could potentially
build a powerful data imputation solutions based on interpo-
lation or other algebraic operations in latent space of other
latently similar (minimum distance between latent vectors)
data.

8 Conclusion

High-dimensional data has proven to be a huge overhead
when training machine learning algorithms. In this paper we
took a closer look at using autoencoders for embedding high-
dimensional tabular data. Subsequently using the embedded
data as training data for a tabular synthesis pipeline called
LCT-GAN. LCT-GAN is a complex architecture consisting of
an autoencoder as an embedding step and a novel conditional
GAN architecture, operating on latent (embedded) space.

Data synthesis solutions aim to generate data as close as
possible to the original dataset. As a novel first-iteration ap-
proach, the ultimate goal of LCT-GAN is to show that latent
embeddings are a viable technique. We successfully show
that it is possible to embed data using autoencoders, and that
GAN:Ss are able to learn complex relationships in latent space
in the context of tabular data.

LCT-GAN was evaluated through a multitude of statisti-
cal similarity metrics, and machine learning based analysis.
Consequently compared against the current state-of-the-art in
tabular data synthesis CTAB-GAN. We observe that within
less time and with less computational overhead than CTAB-
GAN, in some cases we achieve more than 30% improve-
ment in relevant statistical metrics. This is accompanied by
a 150x speedup in training time for a single epoch in popular
datasets and reducing the size of the data about 5 fold.

Given enough computational resources, CTAB-GAN is
able to learn more complex patterns and achieve better per-
formance, however the application of latent embeddings in
tabular data synthesis is yet to be explored fully. At the end,
we discuss how LCT-GAN could be improved and point to
multiple weaknesses which could be easily addressed as a
first step to unravel the true potential of latent embeddings.
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