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H I G H L I G H T S

• In a system with high renewable energy and high flexibility, the use of a strategic reserve may increase the volatility of electricity prices. It will also be difficult to 

parametrize.

• With a capacity market, the parametrization of the demand curve and the derating factors also become more challenging in a system with more renewable energy 

and flexibility.

• A capacity subscription reveals the consumers’ need for capacity during scarcity periods. However, the short contract duration may lead to investment cycles or to 

under investments if consumers do not consider the risk of extreme weather events.

A R T I C L E I N F O
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A B S T R A C T

Motivated by generation system adequacy concerns, many European countries have introduced capacity remu

neration mechanisms (CRMs) to ensure sufficient investments in power generation. However, it is uncertain 

whether the existing CRMs will promote sufficient adequacy and flexibility in a decarbonized power system, 

where supply and demand will become more weather-dependent. We assess the effectiveness of a centralized 

capacity market, a strategic reserve, and a decentralized capacity market via capacity subscriptions in a climate

neutral, weather-driven power system. We develop a co-simulation of two agent-based models simulating myopia 

in both operational and investment decisions. We simulate weather uncertainty by running the model with 40 

different weather years. Our results from a case study based on the Netherlands indicate that a strategic reserve 

may increase electricity price volatility in the long-term. A centralized capacity market is more cost-effective than 

a strategic reserve, but administratively setting its parameters is prone to over- or underprocurement. Capacity 

subscription allows consumers to select their desired level of reliability. Results indicate that these decentral

ized capacity markets may yield a clearer signal for the needed dispatchable capacity and promote demand-side 

response, but it may be challenging to provide long-term certainty for investors.

-

-

-

1. Introduction

Uncertainty regarding commodity prices, CO 2 

prices, demand 

growth, technological breakthroughs, and regulatory interventions, cou

pled with increasing weather dependence in a future system with nearly 

100 % electricity produced from variable renewable energy (VRE), and 

missing markets are reasons why investors in liberalized electricity mar

kets may not have enough incentives to invest in sufficient capacity to 

ensure system adequacy [1]. We investigate the effectiveness of vari

ous capacity remuneration mechanisms (CRMs) in ensuring that there 

are enough resources to meet demand (up to a predefined reliability 

standard). Capacity remuneration mechanisms have been on the rise in

-

-

-

recent years in Europe; from 2020 to 2022, the yearly cost of these mech

anisms has doubled to 5.2 bn Eur [2]. Recently, Spain and Germany 

announced that a CRM will be introduced [3,4]. The EU used to con

sider CRMs as temporal measures, but now acknowledges that they may 

be needed permanently [5].

-

-

In this study, we compare an energy-only market (EOM) with a 

strategic reserve (SR), a capacity market (CM), and a capacity subscrip

tion (CS) in a defossilized future power system in the Netherlands. We 

consider an EOM to be the reference case because it is the current 

market design in the Netherlands. We compare this to a CM because 

it is widely implemented across the world, and an SR because it is

-
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Nomenclature

Abbreviations

𝐴𝐵𝑀 Agent-based model

𝐴𝑂 Affordability options

𝐴𝐶𝐸𝑅 Agency for the cooperation of energy regulators

𝐴𝑀𝐼𝑅𝐼𝑆 Agent-based market model for the investigation of renew

able and integrated energy systems

𝐵𝐸𝑆𝑆 Battery energy storage system

𝐶𝑀 Capacity market

𝐶𝑂𝑁𝐸 Cost of new entry

𝐶𝑅𝑀 Capacity remuneration mechanism

𝐶𝐹𝐷 Contract for difference

𝐶𝑆 Capacity subscription

𝐷𝑆𝑅 Demand side response

𝐸𝑀𝐿𝑎𝑏𝑝𝑦 Energy modelling laboratory Python
𝐸𝑂𝑀 Energy only market

𝐸𝑈 European Union

𝐸𝑉 Electric vehicle

𝐻𝑃 Heat pump

𝐼𝑅𝑀 Installed reserve margin

𝐿𝑆 Load shedding 

𝑂𝑅𝐷𝐶 Operating reserve demand curve

𝑃 𝑎𝐶 Pay as cleared

𝑅𝑂 Reliability option

𝑅𝑆 Reliability standard

𝑆𝐷𝐶 Sloped demand curve 

𝑆𝐹 𝑃 𝐹 𝐶 Standardized fixed price forward contracts 

𝑆𝑅 Strategic reserve

𝑉 𝑂𝐿𝐿 Value of lost load

𝑉 𝑅𝐸 Variable renewable energy

𝑊 𝑇 𝑃 Willingness to pay

-

Indices

𝑔 Generator 

𝑡 Time steps during market clearing horizon

𝑦 Year

ℎ Hour

𝐶𝐺 Consumer group

Sets

𝐺𝑆𝑅 Set of all generators in SR

𝑇 𝑆𝑅 Set of all time period when SR is active

Parameters

𝐶𝐴𝑃𝐸𝑋 Capital expenditures

𝐷∕𝐸 Debt-to-equity

𝜌 Debt interest rate

𝐷 Demand

𝐷𝑃 Downpayment

𝐹𝐶 Fixed cost

𝑖 Equity interest rate 

𝐼𝑅𝑅 Internal rate of return 

𝐿 Loans 

𝑂𝑃𝐸𝑋 Operational expenditures 

𝑉 𝐶 Variable cost

𝑇𝐶 Construction time 

𝑇 𝐸𝐿 Expected lifetime 

𝑊 𝐴𝐶𝐶 Weighted average cost of capital

Variables 

𝐷𝐹 Derating factor 

𝐸𝑁𝑆 Energy non supplied 

𝐻2  

𝑇 Hydrogen production target

𝐾 Capacity 

𝜋 Annual profit 

𝐿𝑜 Loans 

𝐿𝑂𝐿𝐸 Loss of load expectation 

𝑁𝑃 𝑉 Net present value 

𝑝 Wholesale market price

𝑞 Energy produced

recommended by the EU regulation. 1 The last option we review is 

CS, a not-yet implemented nor well-studied decentralized type of CRM 

that provides better incentives for demand-side response, which will 

be greatly needed in a power system dominated by weather-dependent 

electricity production. 2

Previous studies have simulated CRMs with optimization models[7], 

system dynamics [8], and equilibrium models [9,10]. Most of these 

studies model a benevolent central planner, assume market equilibrium 

and perfect foresight, and don’t consider the lumpiness of investments. 

Agent-based models (ABMs) offer an option to represent myopic in

vestments where investors build new power plants as long as they are 

expected to be profitable, with no guarantee of long-run equilibrium 

and considering the lumpiness and time lag in the commissioning of in

vestments as explained in Section 3.1.2. Due to this lumpiness, more 

capacity may be installed than strictly needed to meet the demand for 

capacity, which can lead to volatile CM prices [11].

-

-

Capacity mechanisms have been modeled with various ABMs. 

PowerACE was employed to model the German transition and the cross

border interaction [12]. EMIS-AS was applied to model the transition

-

1 In case a Member State has resource adequacy concerns, the EU recommends 

implementing a strategic reserve [6], and if an SR is insufficient, an alternative 

CRM may be considered.
2 We use the term decentralized market to refer to the case where the demand 

for capacity is decentralized (following the logic of the decentral capacity obliga

tions used by ACER [2]). Note, however, that buyers and sellers in CS meet in 

an exchange, similar to a central capacity market.

-

[13]. EMLab [14] was used to study a strategic reserve and a ca

pacity market. Nevertheless, those models simulate dispatch decisions 

with (linear) optimization problems while we apply another ABM for 

the short-term market, AMIRIS [15]. In AMIRIS, the dispatch is not 

based on a central objective function with perfect foresight, but rather 

on the interplay of agents and robust storage dispatch strategies that 

cause an efficiency gap in comparison to an optimization approach 

[16,17]. Through a co-simulation, we use the strengths of both models; 

EMLabpy (which is based on EMLab) simulates investment decisions, 

while AMIRIS simulates dispatch decisions with flexible generators, rep

resenting myopic behavior in the long-term investment decisions as 

well as in the short-term dispatch decisions. This is relevant consid

ering that models with perfect foresight can exaggerate the value of 

storage [18]. Furthermore, previous studies have shown that power sys

tem optimization models with perfect foresight tend to underestimate 

total system costs and overestimate the decarbonization pace in com

parison to myopic investment models, which better reflect real-world 

conditions. There is also some evidence that myopic investment can re

sult in stranded assets, as investments are optimized in the short-term 

rather than in the long-term [19,20], but on the other hand, myopic 

decisions may lead to underinvestment.

-

-

-

-

-

-

We find that a capacity market incentivizes more capacity with more 

stability, but there is a risk of incorrectly parametrizing the demand and 

the contribution of supply. With a strategic reserve, the use of the re

serve might become volatile, which causes high and volatile electricity 

prices. Finally, in capacity subscription, the DSR of consumers can regu

late the demand for capacity, but there is a risk of investment cycles due

-

-
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to consumers drastically changing their willingness to pay and a lack of 

long-term contracts.

The rest of the paper is organized as follows, Section 2 offers a syn

thesis of the current literature around implemented CRMs and provides 

an overview of the new CRM proposals for power systems with high 

share of VREs and high flexibility. Section 3 explains the applied co

simulation and how the strategic reserve, capacity market, and capacity 

subscription are modeled. Section 4 describes the data and the scenarios. 

Section 5 presents the results from the analysis, and their implications 

are discussed in Section 6. Finally, Section 8 concludes by summarising 

the paper’s main findings.

-

-

2. Literature review

According to the theory of optimal spot pricing, an energy-only-

market (EOM) can incentivize enough investments if, during scarcity, 

prices rise above the marginal costs of the peak technology to the will

ingness to pay of consumers [21,22]. However, this applies to a market 

under “ideal” conditions, such as with risk-neutral actors, perfect fore

sight, perfect competition, complete markets, etc. [23]. However, in 

reality, these ideal conditions are not met. In many markets, price caps 

are set to a value lower than the value of lost load (VOLL), leading to 

the so-called ‘missing money problem’, as they reduce the expected aver

age revenues of generation companies, and thereby reduce the incentive 

to invest. Moreover, without real-time prices, consumers’ willingness to 

pay (WTP) cannot set the price during scarcity periods. Furthermore, 

the high share of VREs depresses prices in times of abundant wind and 

solar energy, and the availability of flexibility is uncertain. Risk aversion 

and high uncertainty, exacerbated by the energy transition, further dis

courage investments in the absence of complete markets for risk trading 

[24]. 

-

-

-

-

The EU argues that scarcity prices should provide incentives to retail

ers to hedge via forward markets. However, government interventions 

during periods of high prices, consumer contracts with durations of 3 

years or less, and the ability of customers to switch between retail

ers prevent retailers from signing long-term contracts [23]. Assuming 

individual consumers cannot (e.g., due to the absence of smart meter

ing infrastructure) or may not be disconnected selectively (e.g., due to 

regulation), retailers that have hedged enough energy are likely to be 

curtailed at the same level as those that did not hedge their position. This 

makes resource adequacy a public good, and creates a “missing market” 

for forward contracts, as Wolak explains [25]. Additional factors con

tributing to the illiquidity of long-term markets, as identified by Batlle 

et al. [26], include the absence of demand response and policy interven

tions during periods of stress, among others. Ren et al. [27], on the other 

hand, argue that with the advent of smart meters, resource adequacy 

can be treated as a private good, as these devices allow disconnecting or 

limiting the offtake of consumers selectively. While such an approach is 

not devoid of disadvantages, it would allow for more advanced capacity 

remuneration mechanisms, such as capacity subscription.

-

-

-

-

-

CRMs have been introduced across the world to alleviate the miss

ing money and missing market issues. In what follows, we subsequently 

discuss different capacity remuneration mechanisms (CRMs), differen

tiating between those that have been implemented (Section 2.1) and 

those that have been proposed for power systems with high shares of 

weather-dependent generation (Section 2.2).

-

-

2.1. Current capacity remuneration mechanisms in Europe

In general, CRMs are designed in such a way that the reliability stan

dard (RS) is met. The RS is the socioeconomically optimal level of supply 

security. It is the level at which the cost of additional capacity (defined 

as the cost of new entry, CONE) and the maximum that consumers are 

willing to pay to avoid a supply interruption (defined as the value of lost 

load, VOLL) are balanced [28].

-

A capacity market is a market-wide mechanism in which power 

plants are contracted and receive annual payments for being available

during stress events. In a centralized CM, the demand for capacity is set 

administratively through a sloped demand curve (SDC). 3 In contrast, in a 

decentralized CM, retailers or consumers receive a capacity obligation to 

ensure availability with their generators, capacity certificates, or bilat

eral contracting. Large consumers are incentivized to flexibly schedule 

their demand to minimize capacity payments [30].

-

Implementing a capacity market requires estimating each technol

ogy’s contribution to the reliability of the power system. Derating factors 

(DF) are “the statistical degree to which the installed capacity is expected 

to contribute to resource adequacy when energy not served (ENS) oc

curs” [28]. If the central authority sets the DFs too high or too low, 

some technologies can be favored over others. Excluding some tech

nologies may lead to welfare loss, as their potential would be ignored 

[31]. Remunerating batteries and energy or duration-limited demand 

response for their availability is not straightforward. They may not be 

available during scarcity events due to their energy-limited nature and 

imperfect foresight. This should be considered in adequacy assessment 

guidelines [32].

-

-

-

Although the European electricity regulation stipulates that CRMs 

should be technology-neutral [6], in practice, each country rewards dif

ferent types of generators. VREs are allowed to participate in many 

capacity markets (for an overview of these, refer to [30,33,34]). In the 

presence of effective penalties for not delivering, the participation of 

VREs in a CRM could expose them to significant risk, leading to genera

tors charging an extra premium or limiting the capacity that they offer 

to the market. In the opposite case, in which VREs are not awarded in 

a CM, their contribution to peak demand should be deducted from the 

administratively set demand for capacity [35]. Lynch et al. [36] showed 

that with high VREs, CM prices can increase, but demand-side response 

(DSR) can help keep capacity market prices low as it also contributes to 

more scarcity prices in the energy-only market.

-

-

To provide capacity providers an incentive to be available during 

periods of scarcity, some capacity markets feature penalties for non

delivery during scarcity periods, such as in the reliability options used 

in the Belgian CRM [37]. In this mechanism, generation companies sell 

call options to the TSO or to retail companies. The seller agrees to supply 

energy when the market price surpasses a strike price and to return the 

difference between the market price and the strike price to the buyer. If 

the seller cannot deliver during scarcity moments, i.e., when the market 

price is higher than the strike price, then the seller still needs to return 

the difference between the market price and the strike price. This can be 

considered an implicit penalty. ROs can be organized centrally or bilater

ally, and there are multiple design options with respect to the reference 

market, the indexation, the penalties for underperformance, the capacity 

commitment, etc. [38]. Reliability options (ROs) can be used in central

ized capacity markets to provide revenue clawback during periods of 

high wholesale market prices [39,40].

-

-

-

As an alternative to a capacity market, a strategic reserve is a mecha

nism that intends to maintain some plants as a backup, taking them out 

of the market and dispatching them at a high price only when the mar

ket is not cleared in the day ahead or intraday markets. The mechanism 

intends to extend the lifetime of these power plants in case adequacy is 

at risk.

-

-

2.2. Proposals for CRMs in power systems with a high degree of renewables

and demand side flexibility

In current centralized CMs, a central authority is responsible for esti

mating the capacity needed to ensure reliability. This authority doesn’t 

face penalties or rewards for over- or under-investing other than the po

litical pressure to avoid shortages. Consumers are the ones who bear 

the consequences, either of lost load or of over-contracting, with no 

possibility of managing their risks and preferences [41]. In contrast,

-

-

3 It is typically sloped to prevent market power and to create some elasticity 

[9,29].
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in decentralized CRMs, the responsibility for setting the demand for 

capacity is shifted from retailers and TSOs to consumers, incentivizing 

them to manage their energy consumption during periods of scarcity 

and providing an intrinsic incentive for flexibility. Instead of building 

more capacity, consumers’ flexibility can help reduce the need for peaker 

plants, thereby reducing the system’s costs. In addition, the quality of 

supply can become a private good. In recent years, several proposals 

have emerged to achieve this.

The missing markets and missing money can be remediated with ca

pacity payments, forward energy trading, or enhanced scarcity pricing. 

In recent years, there have been more proposals to achieve resource ad

equacy through long-term energy products (paying for energy instead of 

capacity). For example, Wolak [25] proposed Standardized fixed price 

forward contracts (SFPFC) where retailers are obliged to hold shaped 

forward contracts for energy. The contract is settled ex-post to match the 

actual load over the delivery period, but the energy price is determined 

in advance. Similarly, Batlle et al. [26] proposed that suppliers should 

ensure a level of hedging. Furthermore, Bilimoria et al. [41] proposed a 

mechanism in which consumers with a high VOLL pay for insurance to 

avoid being curtailed, and the insurer-of-last-resource uses the insurance 

premium to pay for the costs of plants in a strategic reserve.

-

-

Others have proposed improving short-term markets, typically with 

the aim to strengthen the frequency and predictability of scarcity prices. 

A notable example is the operating reserve demand curve (ORDC). This 

mechanism intends to reflect the value of reserves based on how scarce 

they are. It can be seen as a no-regret measure because these price adders 

make no difference in the case of abundant flexibility [42]. Note that 

CRMs and improvements to short-term markets and long-term energy 

trading are not mutually exclusive. However, in this research, we focus 

on CRMs that improve resource adequacy by remunerating capacity.

The European Electricity Regulation stipulates that CRMs should pro

mote non-fossil flexibility resources such as DSR and storage in CRMs 

[43]. Due to the electrification of much of industry, transport, and 

HVAC, DSR has an increasing potential to reduce the peak loads and, 

thus, the total system costs. In CMs, DSR has been included by allowing 

it to participate on the supply side as providers of interruptible capac

ity (typically with a limited duration and with specific derating factors). 

However, Apostolopoulou and Poudineh outline some issues with the 

participation of demand-side responses in the supply-side of capacity 

markets. One of them is the long lead times between the capacity con

tract and the delivery obligation. Further, in some CMs, there is no limit 

to the time during which DSR should be available. More relevant is 

that DSR does not have a schedule obligation and can offer its capac

ity at a high declared price [34]. Lambin [44] argues that DSR with 

very high activation prices (at VOLL or higher), therefore activated very 

seldomly, should receive lower capacity payments. 4 Finally, there is a 

risk of manipulation of the baseline consumption pattern, which requires 

verification methods. These issues could be avoided if DSR could partic

ipate on the demand side of the capacity market. In what follows, we’ll 

introduce some proposals for doing so.

-

-

-

-

-

2.2.1. Mechanisms to unlock DSR in capacity markets

Capacity Subscription (CS) allows consumers to subscribe to their 

indispensable capacity during scarcity, explicitly participating on the de

mand side of the capacity market. In this way, the demand curve for the 

capacity market is no longer set with a single weighted average VOLL, 

as it is done with current capacity markets [28], but through a decen

tralized demand for capacity. Similar to a yearly CM, generators recover 

part of their costs from the CS subscription. Consumers buy the capacity 

credits at the volume that they need, and if the CS price is expensive, 

they would start looking for alternatives (such as batteries, EV charging, 

home energy management systems, etc.) to become more flexible and

-

-

4 In the Belgian CM, DSR is derated by the number of hours that it can be 

activated but does not consider the activation price[45].

keep their subscribed capacity low [46,47]. The implementation of CS 

requires the installation of smart meters. In countries like Spain, where 

consumers are already asked to declare their valley and peak consump

tion contracted capacity, asking them for their desired capacity in times 

of scarcity would not be a big effort [48].

-

In times of scarcity, the load-limiting devices restrict consumption to 

the subscribed capacity levels. It may be a challenge for household con

sumers to select the level of capacity to which they subscribe. Options 

include basing it on their previous year’s needs and requiring a mini

mum capacity subscription. Retailers might need to inform consumers 

about the most likely times when scarcity could emerge. In times of 

scarcity, consumers should be warned some time in advance. The sub

scriptions are traded in annual auctions in advance of the season, and 

the subscription is valid for one year. Another detail to consider is a sec

ondary market where consumers could adjust their contracted volume, 

i.e., when their living situation changes.

-

-

-

-

The original proposal for CS does not directly protect consumers from 

high prices. The assumption was that by avoiding physical shortages, the 

electricity price would stay close to the marginal cost of generation of the 

most expensive unit during near-scarcity periods. However, in a future 

market with a high volume of flexible demand – which may have a high 

willingness to pay – certain consumers, like households, may want more 

certainty. As we do in this paper, it is possible to combine CS with a 

clawback, such as an individualized reliability option, i.e., a pre-agreed 

or regulated maximum price, in exchange for the capacity payment that 

is made by the consumer, as proposed by de Vries [49] and Hu et al. [50]. 

In this case, power plants that have sold capacity credits are required to 

return profits from selling electricity above a pre-agreed strike price to 

consumers for the volume of subscriptions that consumers purchased 

[51]. 

A similar mechanism is priority pricing, in which consumers sub

scribe to multiple capacity strips (with different electricity prices) 

according to their flexibility. A higher electricity price is paid for more 

essential segments of demand, which have a lower chance of being cur

tailed. Aggregators offer a menu of reliability price–quantity pairs and 

aggregate consumers’ subscriptions to participate in the demand side 

of a CM [34,52]. A similar implementation is multilevel demand sub

scription (MLS), where consumers adapt their subscription based on the 

duration of the shortage. Mou et al. compared priority pricing against a 

multilevel demand subscription (MLS) and found that with an MLS, the 

subscribed energy demand is better approximated to the real consump

tion of households, which makes them subscribe to less energy and more 

capacity, incurring lower total costs [53].

-

-

-

-

3. Methodology

We simulate a fully decarbonized power system and study the perfor

mance of an EOM, an SR, a CM and CS subject to inter-annual weather 

variability. We have created a co-simulation between two ABMs, AMIRIS 

and EMLabpy, thereby combining the strengths of widely tested mod

els. AMIRIS simulates bidding behavior in power markets. Power plants 

owners maximize their profits considering limited foresight. They bid in 

the wholesale market according to generation and electricity price fore

casts [15]. EMLabpy simulates investment decisions based on AMIRIS 

market results. We simulate a single myopic agent that invests in power 

plants as long as their expected NPV is positive. To simulate weather un

certainty due to weather-driven generation and temperature-dependent 

loads, we test 40 years with different weather profiles (based on the his

torical weather profiles from 1980 to 2019 (see Section 4.1). However, 

the investment decisions are based on a representative weather year. 

This co-simulation allows us to represent the effects of myopic invest

ment decisions based on market results from myopic short-term market 

participation decisions. 5 The code and all data required for our case

-

-

-

-

-

-

5 Furthermore, the co-simulation allowed us to store the data in two databases 

and to minimize the information read by each module, as needed. For example,
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Fig. 1. Overview of the co-simulation methodology.

study (see Section 4) can be found at https://github.com/TradeRES/

toolbox-amiris-emlab.

 

The subsequent section provides an overview of the co-simulation 

workflow, followed by an explanation of the logic behind the investment 

and decommissioning decisions.

3.1. Workflow

Fig. 1 shows the co-simulation workflow. We conduct an investment 

loop prior to the start of the year-by-year simulations to account for a 

possible need for investment at the start of the simulation. The year

by-year workflow commences with dismantling power plants that have 

reached their lifetimes and are unprofitable (see Section 3.1.3). Next, 

the portfolio of power plants in the model is transferred from EMLabpy 

to AMIRIS, which simulates hourly wholesale market bids, prices, and 

revenues, based on distinct weather and load profiles. The financial per

formance of all generators is registered. Then, investment decisions are 

made iteratively based on the forecast of future market outcomes by 

AMIRIS (see Section 3.1.2). As a final step, the capacity payments are 

computed, considering the CRM design at hand.

-

-

3.1.1. Dispatch in AMIRIS

In AMIRIS, dispatch decisions are modeled with an hourly resolution 

for a weekly rolling time horizon. Storage is scheduled with the robust 

strategy, where bids are based on an initial forecast of electricity prices 

with a margin. This forecast is based on the bids of inflexible agents 

and VREs availability. See Section 4.1.3 for a further description of the 

flexible load representation and [15] for more details about AMIRIS.

3.1.2. Investment decisions

In each year 𝑦, EMLabpy’s investment decisions are made by itera

tively evaluating the anticipated profitability of candidate technologies 

in market results four years ahead (Y+4). The candidate technology

-

the financial results were not fed to the dispatch module, and the weather pro

files were not fed to the investment decisions module. However, a disadvantage 

of the co-simulation was that a large part of the runtime was spent reading and 

writing to the databases.

-

with the highest anticipated NPV is scheduled to be installed and com

missioned in year Y+4. The future availability of these plants is factored 

into the expected revenues for subsequent investments. As a result, each 

additional power plant has lower expected revenues. When the prof

itability expectation for all technologies falls below zero, the investment 

cycle ends. This approach leads to a ‘pipeline’ of plants that are un

der construction. To maintain computational feasibility, new plants are 

grouped by technology and commissioning year. Due to the iterative pro

cess, the technologies selected for investment in the first iterations, with 

the highest expected NPVs, may perform worse than expected due to 

consecutive investments in later iterations in the same simulation year.

-

-

-

-

Some technologies have a shorter lead time than four years. 

Nevertheless, they are installed in the year of the market’s estima

tion (Y+4) to prevent investment cycles, as more capacity would be 

installed than anticipated. 6 The weather and demand profiles for the 

future market estimation are based on a representative historical year 

with a median renewable energy production level (2004 in our data set, 

see Section 4).

-

3.1.3. Decommissioning

To simulate the fact that older power plants are more inefficient and 

therefore enter the merit order curve at a lower rate than newer plants, 

the variable costs of installed power plants increase by 0.005 % each 

year. 7 To represent the irreversibility of investments, we consider that 

generators are dismantled only after their technical lifetime has been 

reached, meaning that there are no early retirements. If the average net 

profits of the past four years have been positive, then the lifetime of a 

plant is extended (up to a predefined maximum per technology), and its 

fixed costs are raised. All revenues and costs are considered to determine 

profitability, including loan payments. The lifetime extension is consid

ered in the investment algorithm. The actual dismantling year might

-

6 Four years is the lead time for hydrogen turbines. Ideally, the market would 

be tested for each lead time ahead, but to limit the computational effort, we 

compute only Y+4.
7 Another option was to decrease the efficiency, but this would not be possible 

for VRES, as their generation is dependent on capacity factors.

Applied Energy 391 (2025) 125878 

5 

https://github.com/TradeRES/toolbox-amiris-emlab
https://github.com/TradeRES/toolbox-amiris-emlab


I. Sanchez Jimenez, K. Bruninx and L.J. de Vries

Fig. 2. Sloped demand curve in our simulations considering a centralized 

capacity market.

differ from the assumed dismantling year at the time of investment due 

to changes in the generation portfolio and differences between the ac

tual simulated weather and the reference weather year that was used in 

the investment decision.

-

3.2. Policy options

This section describes the three capacity remuneration mechanisms 

considered in our analysis.

3.2.1. Capacity market

Our model of the central capacity market is inspired by the Belgian 

CM [54]. The capacity demand curve’s parameters (Fig. 2) are set as fol

lows. The CONE, which represents the cost of additional firm capacity, 

is calculated as the sum of the capital and annual fixed costs, adjusted 

to each technology’s derating factor as explained in Art. 15 of the ACER 

methodology [28]. The fixed costs 𝐹 𝐶 are the annual fixed operating 

and maintenance costs associated with keeping a plant available for op

eration. In our simulations, the reference technology is the one with the 

cheapest CONE. The net-CONE is calculated by subtracting the revenues 

from the energy-only market from the CONE. 8 For point A, the price 

corresponds to the price cap, here the maximum of the net-CONE*1.5 

and the CONE. At point B, the price is the net-CONE (represented with 

the slashed line). Finally, the price at point C is zero. Recalculating the 

price cap based on the net-CONE in each year caused capacity prices to 

become volatile. Therefore, we only calculate the capacity price cap and 

the net-CONE in the first simulation year. 9 The capacity at point B is the 

target capacity. We set capacity at the lower margin A to be 5 % lower 

than the target capacity and point C to be 5 % higher.

-

-

For the supply side of the CM, we assume that companies bid their 

missing revenues, i.e., the additional revenues they would need to 

achieve a net positive cash flow in the next year. New generators con

sider their fixed costs 𝐹 𝐶, operating expenditures 𝑂𝑃 𝐸𝑋 (which include 

variable costs and fuel costs), and annualized capital costs (loans 𝐿) 

-

10:

 

𝜋 

𝑁𝑒𝑤𝑃 𝑙𝑎𝑛𝑡𝑠
𝑦 = 

∑

ℎ∈𝐻
𝑝 ℎ 

. 𝑞 ℎ − 𝑂𝑃 𝐸𝑋 𝑦 

− 𝐹𝐶 𝑦 

− 𝐿 𝑦 

∀𝑦 ∈ 𝑌 (1)

We model existing generators as price takers that exclude their 

annualized capital costs from their bids:

𝜋 

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑃 𝑙𝑎𝑛𝑡𝑠
𝑦 = 

∑

ℎ∈𝐻
𝑝 ℎ . 𝑞 ℎ 

− 𝑂𝑃 𝐸𝑋 𝑦 

− 𝐹𝐶 𝑦 ∀𝑦 ∈ 𝑌 (2)

8 Note we do not account for ancillary market revenues and variable CONE. 
9 During the initialization phase, a lower installed capacity could cause ex

tremely high revenues and a low price cap; therefore, the price cap is exogenous 

for that simulation phase.

-

10 -For sake of simplicity, we omit any index referring to companies or tech

nologies.

New and existing generators’ CM bids are set to zero if the anticipated 

wholesale market revenues exceed their total costs.

( −𝜋
𝑏𝑖𝑑 𝑦 

= max 0
 𝑦,  

 

𝐾 . 𝐷𝐹

)

∀𝑦 ∈ 𝑌 (3)

We estimate the derating factors (DF) of each technology by the av

erage energy produced during the hours of scarcity and near-scarcity 

relative to their nameplate capacity in an EOM model run of 40 years, 

considering the installed capacity at the start of the simulation. 

-

11 We 

do not model ramping constraints or forced outages, so the DF of dis

patchable technologies is equal to 1. We model a pay-as-cleared (PAC) 

capacity auction with annual contracts that clears 4 years in advance.

-

3.2.2. Strategic reserve (SR)

In an SR, the generators with the highest operating costs (the old

est ones) are placed in the reserve and removed from the market. The 

EU regulation states that the price of energy produced by a strategic 

reserve that is dispatched during a shortage must be at least equal to 

the VOLL [6]. 12 The SR operator (typically, the TSO) retains the mar

ket revenues and uses them to offset the cost of contracting the reserve 

capacity:

-

-

𝜋 

𝑆𝑅 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟
𝑦 = 

∑

𝑡∈𝑇 

𝑆𝑅

∑

𝑔
𝑝 𝑡 

. 𝑞 𝑡,𝑔 − 𝑆𝑅 

𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑠
𝑦,𝑔 ∀𝑦 ∈ 𝑌 ∀𝑔 ∈ 𝐺 

𝑆𝑅 (4)

Power plants in the reserve are paid for their cost of remaining on

line, which includes their fixed costs, loans (if they have not already 

been paid off), and the variable costs and fuel costs in case they are 

activated.

-

𝑆𝑅 

𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑠
𝑦,𝑔 = 

∑

𝑡∈𝑇 

𝑆𝑅

(𝑂𝑃 𝐸𝑋 𝑔 

.𝑞 𝑦,𝑡,𝑔 

)+𝐹𝐶 𝑦,𝑔 

+𝐿 𝑦,𝑔 

∀𝑦 ∈ 𝑌 ∀𝑔 ∈ 𝐺 

𝑆𝑅 (5)

In our simulation, plants are eligible to enter the reserve four years 

before the end of their lifetime. They may stay there for a maximum of 

ten years (or until their maximum lifetime has been reached). Similar to 

the German SR, contracted plants remain in the reserve until they are 

decommissioned. They are not permitted to return to the market once 

they are no longer contracted. The technologies that may participate 

in an SR in our model are H 2 

turbines and biofuel plants (see Section 

4). Partial capacities are not accepted; therefore, an additional marginal 

amount of capacity may be contracted if required.

Because the SR is contracted 1 year ahead, the investment algorithm 

does not have information about which plants will be in the reserve in 

the investment reference year 4 years ahead. For this reason, the in

vestments are made under the assumption that the policy will remain 

in place and, therefore, the plants that are currently in the reserve will 

remain in the reserve.

-

3.2.3. Capacity subscription (CS)

In a market with CS, consumers purchase capacity contracts in a cen

tralized auction. In case of shortages, consumers are limited to their 

subscribed capacity [51]. This situation is referred to as load limiting 

(LL). Consumers may choose to subscribe to less capacity than their peak 

demand if their estimated cost of being limited during scarcity hours is 

lower than the cost of capacity. Consumer groups are modeled as having 

a number of load segments with different values of lost load.

-

In our model, consumers subscribe to capacity for the following year. 

They choose their subscription levels based on the total share of sub

scribed consumers and the experienced shortages during the current 

simulation year. The consumers’ bid prices and volumes for capacity are 

based on their differentiated VOLL (see Table 1) and the duration and

-

11 The near-scarcity hours are those during which DSR is also operational. 
12 The regulation recommends to dispatch at the VOLL or at a higher value 

than the intraday technical price limit.
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Fig. 3. For each consumer group, the hourly energy not supplied, per blocks of 100 MW, determines the volume-price bids. In this way, we simulate consumer groups 

assigning different values to parts of their load. For example, households might value lower their EV load. The demand curve is then the aggregation of all consumers’ 

segmented bids.

Table 1 

The VOLL of different categories of consumers [58,59].

VOLL [Eur/MWh] Load share [%]

Transport 78,082 4

Public sector 75,286 9

Commercial and service sector 56,496 13

Industry, non-energy-intensive 50,618 5

Industry, energy-intensive 44,904 28

Household other 33,635 9

Household city center 28,646 21

Household feed-in areas 27,499 8

Industry SME 19,207 3

The VOLLs in [58] were based on surveys in which respondents were asked 

to value their reliability supply relative to their total bill costs, and that year, 

the electricity prices were extraordinarily high. De Nooij et al. [59] determined 

VOLLs per consumer group through a production function approach. We applied 

a factor of 1.5 to account for inflation.

depth of the shortage from the dispatch results of the current year, as il

lustrated in Fig. 3. If the electricity supply is tight, the marginal value of 

a higher capacity subscription increases, and therefore consumers’ bids 

for capacity increase, as explained below.

-

First, we calculate the hourly unsubscribed demand per consumer 

group𝐷 

𝑢𝑛𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑 by subtracting the subscribed capacity 𝐾 

𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑 from𝐶𝐺,ℎ 𝐶𝐺  

their hourly demand 𝐷 . represents𝐶𝐺,ℎ  This   

 

the hourly load of each 

consumer group that can be limited.

𝐷 

𝑢𝑛𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑
𝐶𝐺,ℎ = 𝑚𝑎𝑥(0, 𝐷 𝐶𝐺,ℎ − 𝐾 

𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑
𝐶𝐺 ) (6)

Next, the probability of being limited 𝑃 (𝐿𝐿) 𝐶𝐺,ℎ 

is calculated as the 

share of unsubscribed demand per consumer group relative to the total 

unsubscribed demand:

𝑃 (𝐿𝐿) 𝐶𝐺,ℎ =
𝐷 

𝑢𝑛𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑
𝐶𝐺,ℎ

∑ 

𝐶𝐺 𝐷 

𝑢𝑛𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑
𝐶𝐺,ℎ

(7)

In case of scarcity, the curtailed load is distributed to the consumer 

groups according to the 𝑃 (𝐿𝐿)𝐶 . This𝐺,ℎ    

 

assumes that all unsubscribed 

load is equally likely to be curtailed, hence, in expectation, the energy 

not served per consumer group reads:

𝐸𝑁𝑆 𝐶𝐺,ℎ = 𝑃 (𝐿𝐿) 𝐶𝐺,ℎ . 𝐸𝑁𝑆 ℎ (8)

To determine the bid price for the next capacity contract auction, we 

start by assessing the value of the current subscription volume 𝑏𝑖𝑑𝑃𝐶 𝐺,0.

We do this by calculating the expected avoided cost of lost load by 

subscribing to an additional unit of capacity of 1 MW:

𝑏𝑖𝑑𝑃 𝐶𝐺,0 = 

∑ 

ℎ
𝑚𝑖𝑛(1, 𝐸𝑁𝑆 𝐶𝐺,ℎ 

) . 𝑉 𝑂𝐿𝐿 𝐶𝐺 

(9)

This yields the bid price for 𝑏𝑖𝑑𝑃 for the current subscription𝐶𝐺,0     

 

volume in the next capacity contract auction. Then, we determine the 

bid price 𝑏𝑖𝑑𝑃 per capacity increment of 100 MW. To find the𝐶𝐺,𝑏        

 

𝑏   

value for extra capacity, we determine the expected avoided cost per 

additional capacity subscription block 𝑏 of 100 MW as follows:

𝑏𝑖𝑑𝑃 𝐶𝐺,𝑏 = 

∑ 

ℎ
𝑚𝑖𝑛(𝑚𝑎𝑥(0, 𝐸𝑁𝑆 𝐶𝐺,ℎ 

− (𝑏 − 1) . 100), 𝑏 . 100) . 𝑉 𝑂𝐿𝐿 𝐶𝐺 (10)

Note that this calculation is based on the latest energy-only market 

results, i.e., it assumes that the ENS does not change. In years without 

shortages, consumers’ marginal value of capacity would hence decrease 

to zero. For this reason, we apply a minimal bid price of 9000 Eur/MW 

for the current subscription volume 𝑏𝑖𝑑𝑃𝐶 𝐺,0.  

 

This reflects an assumed 

awareness among consumers that they must continue purchasing capac

ity to avoid future shortages. This minimum price is higher than the 

fixed costs of hydrogen turbines to ensure their continued presence.

-

Finally, all bid blocks are aggregated into a decreasing stepped de

mand curve for capacity and the market is cleared as a pay-as-bid 

auction. Bids below the clearing price are not accepted and bids that 

are equal to the clearing price might be partially accepted on a pro-rata 

basis.

-

On the supply side, generators offer their capacity in the same way 

that a CM, as explained in Section 3.2.1. However, investors do not have 

a precise estimate of the CS price at the time of investment because the 

CS market is cleared one year in advance, and investment decisions are 

made four years in advance. We assume that agents base their invest

ments on the average CS price over the past three years. 

-
13 In years with 

high CS prices, generators have strong incentives to invest, but they stop 

investing if there are enough generators in the investment pipeline to 

cover the expected demand, plus a margin of 5 % to accommodate the 

lumpiness of generator investments.

Finally, we run a two-sided pay-as-cleared auction. To ensure that 

subscribed consumers never experience curtailment of their subscribed 

demand, only dispatchable technologies that will be operational in year 

Y+1 are allowed to sell credits.

13 For the first years of a model run, the average of the available past simulation 

results is taken.
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Table 2 

Capacity Market scenarios.

Scenario Endogen. DF Target volume [GW] Participating technologies Auction time

CM N 20 H2 turbines, bioenergy, nuclear Y-4

CM_VRES_BESS N 26.5 PV, wind, BESS, H2 turbines, bioenergy, nuclear Y-4

CM_VRES_BESS_lowTV N 24.5 PV, wind, BESS, H2 turbines, bioenergy, nuclear Y-4

CM_endogen_lowTV Y 24.5 PV, wind, BESS, H2 turbines, bioenergy, nuclear Y-4

Table 3 

Strategic Reserve scenarios.

DSR Activation price Margin % Participating technologies Selection time

SR Y 4000 10 H2 turbines, bioenergy Y-1

SR_noDSR N 4000 10 H2 turbines, bioenergy Y-1

4. Case study

In this section, we first describe the data used, then describe the de

sign of our model experiments, and finally, we describe the indicators 

used to assess the performance of the policy options.

-

4.1. Data 

4.1.1. Technologies

We consider only carbon-free technologies. These include hydrogen

fueled open-cycle gas turbines (H 2-OCGT) and closed-cycle  

 

gas turbines 

(H 2-CCGT), wind onshore, wind offshore, lithium-ion batteries  

 

with

energy-to-power ratios of 2 and 4 h, photovoltaic (PV) systems, and bio

fuel. Based on [55], we consider H 2 

-fueled turbines. However, other 

options, like turbines fueled by synfuels, biogas, etc., would perform 

similarly [13]. For all technologies, the equity interest rate is 7 % and 

the debt-to-equity ratio is 80 %. The debt-interest rates are distinguished 

by technology. The technology costs and fuel prices are obtained from 

the TradeRES database [56] (see Tables 9 and 11).

-

-

To assess the impact of weather variability on the reliability of the 

power system, we calculate capacity factor profiles per technology, 

considering technological advancements, as described in [1].

4.1.2. Initial power plant portfolio

We take the initial power plant set from the output of the optimiza

tion model COMPETES [7], which is a reference model for Dutch energy 

policy. We use the output of a model run without cross-border transmis

sion capacity as shown in Table 9. We assume that one existing nuclear 

plant, Borssele (with a capacity of 484 MW), will remain operational 

rather than being decommissioned in 2033.

-

-

4.1.3. Load

The capacity of electrolyzers and industrial heating demand are also 

derived from COMPETES. In contrast to this co-simulation, COMPETES 

simulates sector coupling; the flexibility of industrial heating stems from 

the possibility of switching to gas boilers when the price of electricity 

is high. AMIRIS can model one type of load-shifter, and because indus

trial heat is the largest flexible demand source, we model this load as 

the load-shifter with a price-cap. Its maximum willingness to pay corre

sponds to the natural gas price factored with the CO 2 

price. The annual 

demand from the industrial load shifter was 36,757 GWh, with a peak 

consumption of 6155 MW, and the installed capacity of electrolyzers was 

37,450 MW. The electricity demand of the electrolyzers is modeled as 

a load-shedder, the production of which is interrupted if the electricity 

price is higher than the opportunity cost of the hydrogen market price 

(corrected for the electrolyzers’ conversion efficiency).

-

-

Because AMIRIS currently only facilitates one load shifter agent, we 

consider heat pumps (HP) and electric vehicles (EV) as static loads, even 

though, in reality, these technologies may provide significant flexibility 

[57]. We augment historical demand profiles with the projected amount 

of HPs and account for the correlation with temperature (see [1]).

We consider the average of two studies on the Value of Lost Load 

(VOLL) of consumers in NL. See Table 1. We assume that in the future, 

11 % of consumers, the ones with the lowest VOLL (household feed-in 

areas and industry SMEs) will be able to offer DSR, meaning they will 

have a VOLL of 1500 Eur/MWh, which is lower than the power exchange 

price cap. In this publication, we refer to this load as DSR.

4.2. Experiment design

We evaluate the performance of a capacity market, a strategic re

serve, and capacity subscription, subject to weather uncertainty, with 

an EOM as a reference. After comparing some variations within each 

mechanism, we compared one scenario of each mechanism, which are 

denoted in bold letters in the following Tables 2, 3, and 4. To make the 

CRMs comparable, we sized them so that the involuntary load shedding 

was reduced to a similar level.

-

We compare a case in which only dispatchable technologies (nu

clear, H 2 

turbines, biofuel) are allowed to participate in the capacity 

market (Scenario ‘CM’, Table 2) with a scenario in which BESS and 

VRES may also participate (‘CM_VRES_BESS’), following the recommen

dation in EU regulation Art. 22 of [6] about technology-neutral CRMs. 

We calculated the target capacity from the average peak load during 

the top 4 h of scarcity in an EOM simulation of 40 weather years. For 

the CM scenario, the target capacity is reduced by the derated initial in

stalled capacity of the non-participating technologies. Additionally, we 

evaluate a lower target volume (TV) for the CM with VREs and BESS 

(‘CM_VRES_BESS_lowTV’) because, with a volume of 26.5, the shortages 

were reduced to zero hours in most years, which indicates that the CM 

was oversized.

-

-

-

In the CM_VRES_BESS scenario, the derating factor (DF) is calculated 

before the simulations. We also test a scenario in which the DFs are en

dogenous (‘CM_endogen_lowTV’). In the latter case, we recalculate the 

DF during the simulation based on the availability of each technology 

in scarcity and near-scarcity hours, using the outcome of a market sim

ulation for Y+4 considering a median weather year (see Section 3.2.1). 

We reset the new value to the average of the past 4 years, omitting the 

DFs of years in which there are no near-scarcities. 

-

-

14 Table 2 presents an 

overview of the CM scenarios.

For the basic SR scenarios, we set the SR activation price to 4000 

Eur/MWh, which is equal to the day-ahead price cap. The EU regulation 

states that during periods when the SR is dispatched, the imbalances in 

the market are to be settled at a price level that is at least equal to the 

VOLL [6]. The SR volume is calculated using the highest forecasted non

flexible demand of a median weather year times a margin of 10 %. We 

selected this margin because it resulted in a LOLE similar to the other 

CRMs, allowing us to compare the CRMs.

-

14 In years with a slight excess capacity with no shortages, DF would be zero, 

which would ignore the potential contribution of technologies during scarcity.
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Table 4 

Capacity Subscription scenarios.

Memory Min. price RO Participating technologies Auction time

CS Y Y N H2 turbines, bioenergy, nuclear Y-1

CS_RO Y Y Y H2 turbines, bioenergy, nuclear Y-1

CS_noMinPrice Y N N H2 turbines, bioenergy, nuclear Y-1

CS_noMemory N Y N H2 turbines, bioenergy, nuclear Y-1

Fig. 4. Left: Installed capacity per technology in an EOM. Solar energy was the technology with the highest installed capacity. Right: Annual generation per technology 

in EOM. The annual production of wind energy was volatile year-to-year.

We conduct a sensitivity analysis in which there is no DSR at a lower 

price than VOLL (SR_noDSR). In an SR, only H 2 

turbines and biofuel 

are allowed to enter the reserve. Table 3 indicates the availability of 

DSR, the activation price of the SR, the capacity margin (share) that is 

provided by the SR, the technologies that are contracted in the SR and 

the time when plants are selected to participate in the SR.

In our study of CS, we compare a simple CS design with one in which 

generators that sell capacity have a clawback when the prices in the 

wholesale market are above a strike price, in other words, a CS with 

reliability option (CS_RO). In this way, the payback reduces the costs to 

consumers and the revenues for generators. We implement a strike price 

of 150 Eur/MWh, following the recommendation to set the strike price 

at least 25 % above the most expensive generator [60].

We assume that generators consider the past three annual CS prices 

for their investment decisions and that consumers offer the average of 

the current simulation year’ bid (as explained in Section 3.2.3) and the 

bids from the past three years. We test a scenario where neither con

sumers nor generators consider the past results (CS_noMemory). Finally, 

we investigate a scenario in which consumers do not submit offers with 

a minimum price (CS_noMinPrice). For an overview of the considered 

scenarios, see Table 4.

-

4.3. Key performance indicators (KPIs)

The policy objective for the tested market designs is to achieve 

a sustainable, secure, and affordable power system. Because we do 

not consider fossil-fueled technologies, we do not include environmen

tal indicators and only consider adequacy and financial indicators. In 

this section, we describe the indicators that we use to compare the 

CRMs.

-

• Adequacy-related KPIs

– Energy Not Served (ENS) (MWh/year): Load that cannot be served.

We distinguish between voluntary shedding (DSR) (Section 4.1.3 ), 

and involuntary shedding, to which we refer as load shedding (LS).

Fig. 5. Difference in the average installed capacity over the last 10 simulation 

years between the CM scenarios and an EOM. In all CM scenarios, the installed 

capacity of H 2 

-turbines increased.

– Loss Of Load Expectation (LOLE) (hours/year): number of hours

during which resources are insufficient to meet the demand. 15

– Hydrogen production (MWh): Power consumed by electrolyzers to

produce hydrogen.

• Financial KPIs:

– Weighted averaged yearly electricity prices (Eur/MWh):

𝑝 𝑦 

=
∑𝐻

ℎ 𝑝 ℎ 

. 𝑞 ℎ
∑𝐻

ℎ 𝑞 ℎ
(11)

15 The demand of electrolyzers and DSR is modeled as a load shedder, but this 

is not counted as ENS or LOLE.
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Table 5

Capacity market average (𝑥) and standard deviation (𝜎) results. In CM_VRES_BESS scenario all technologies participated, in CM_VRES_BESS_lowTV, the target volume 

was smaller, and in CM_endogen_lowTV the DFs were calculated endogenously.

EOM CM CM_VRES_BESS CM_VRES_BESS_lowTV CM_endogen_lowTV

ENS [MWh]
𝑥 6375 2268 867 5500 3650

𝜎 7577 3909 2579 15,797 8950

LOLE [h]
𝑥 4.23 1.85 0.68 3.40 2.48

𝜎 4.77 2.55 1.90 6.97 4.78

Weighted average electricity prices [Eur/MWh]
𝑥 38.53 37.52 36.73 37.96 37.53

𝜎 4.47 3.80 3.38 4.57 4.21

Cost recovery [%]
𝑥 120.71 121.26 122.13 123.40 123.16

𝜎 8.26 6.87 6.73 9.29 8.15

Weighted average CRM Costs [Eur/MWh]
𝑥 0.00 1.00 2.25 1.51 1.91

𝜎 0.00 0.59 1.14 0.69 0.85

Cost to consumers [Eur/MWh]
𝑥 38.53 38.52 38.98 39.47 39.43

𝜎 4.47 3.88 3.72 4.65 4.34

Total system costs [mln. Eur]
𝑥 10,543 10,302 10,320 10,539 10,445

𝜎 711 653 602 959 754

CRM costs [mln. Eur]
𝑥 0 321 721 484 610

𝜎 0 188 361 219 265

Fig. 6. ENS was reduced in all CM scenarios. Allowing BESS and VREs to partic

ipate in a CM with a lower target volume led to high ENS volumes in years with 

low VREs.

-

– Total CRM Costs (Eur), in which 𝑝𝐶 𝑅𝑀 is𝑦  the CRM clearing price: 

𝐶 

𝐶𝑅𝑀
𝑦 = 𝑝 

𝐶𝑅𝑀
𝑦 . 𝑞 𝑦,𝑔 ∀𝑔 ∈ 𝐺 

𝐶𝑅𝑀 (12)

– Cost recovery (%):

𝐶𝑅 𝑦 = 

𝑝 𝑦 . 𝑞 𝑦 + 𝐶 

𝐶𝑅𝑀
𝑦

∑ 

𝑔 

(𝑂𝑃 𝐸𝑋 𝑦 + 𝐹𝐶 𝑦 

+ 𝐿 𝑦 

+ 𝐷𝑃 𝑦) 

∀𝑔 ∈ 𝐺 (13)

The loans 𝐿 are calculated with the debt-to-equity ratio 𝐷∕𝐸, the 

expected lifetime 𝑇 ,𝐸𝐿  and the interest rate per technology 𝑖

𝐿 𝑦 = 

𝐶𝐴𝑃 𝐸𝑋 . 𝐷∕𝐸
1
𝑖

(

1 − 

1
(1+𝑖) 

𝑇EL 

) (14)

The downpayments 𝐷𝑃 are considered to be paid during the 

construction years 𝑇𝐶 . 

𝐷𝑃 𝑦 = 

𝐶𝐴𝑃 𝐸𝑋 . (1 − 𝐷∕𝐸)
𝑇 𝐶

(15)

– Weighted average CRM Costs (Eur/MWh):

𝑝 

𝐶𝑅𝑀
𝑦 =

𝐶 

𝐶𝑅𝑀
𝑦

∑𝐻
ℎ 𝑞 ℎ

(16)

Fig. 7. Capacity market prices were constantly higher if it was oversized.

– Cost to consumers (Eur/MWh): This is the weighted average

payments by consumers for electricity supply including their 

expenditures on a CRM, if applicable.

𝐶 

𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑠
𝑦 = 𝑝 𝑦 + 𝑝 

𝐶𝑅𝑀
𝑦 (17)

– Total system costs (Eur):

𝐶 

𝑠𝑜𝑐𝑖𝑒𝑡𝑦
𝑦 = 

 

𝑔
(𝑉 𝐶 𝑦 

+𝐹𝐶 𝑦 

+𝐿 𝑦 

+ 𝐷𝑃 𝑦 

)+𝐸𝑁𝑆 𝑦 

. 𝑉 𝑂𝐿𝐿 ∀𝑔 ∈ 𝐺

(18) 

∑

The total system costs represent the total cost of generation plus

the cost to consumers for any unserved energy. Here, the 𝑉 𝑂𝐿𝐿 

is the weighted average VOLL over all consumer groups in Table

1. For CS, 𝑉 𝑂𝐿𝐿 is the weighted average VOLL of unsubscribed 

demand sections.

– Normalized annual NPV (Eur):
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Fig. 8. Capacity market reduced wholesale market prices but adding up the 

capacity costs, the yearly costs to consumers were higher than an EOM, except 

in CM scenario.

The annual NPV is calculated assuming that revenues and costs 

remain constant for each operational year.

𝐶𝑎𝑠ℎ𝐹 𝑙𝑜𝑤 𝑦 

=
{

−𝐷𝑃 𝑦 

for 0 ≥ 𝑦 ≥ 𝑇 𝐶

𝑝𝑦 . 𝑞 𝑦 + 𝐶 

𝐶𝑅𝑀
𝑦 − 𝐹𝐶 𝑦 

− 𝑉 𝐶 𝑦 

− 𝐿 𝑦 

for 𝑇 𝐶 

> 𝑦 ≥ 𝑇 𝐶 

+ 𝑇 𝐸𝐿

(19)

The debt interest rate 𝜌 was the same for all technologies

𝑁𝑃𝑉 𝑦 = 

∑ 𝐶𝑎𝑠ℎ𝐹 𝑙𝑜𝑤 𝑦

(1 + 𝜌) 

𝑦 (20)

For the normalized annual 𝑛𝑁𝑃 𝑉 the capacity of the generator 𝐾
is considered

𝑛𝑁𝑃 𝑉 𝑦 

= 

𝑁𝑃𝑉 𝑦

𝐾
(21)

5. Results

We present the results of an EOM as a reference case and compare 

them to an electricity market with a CM, with an SR, and with CS. At 

the end of this section, we present a comparison of these mechanisms.

5.1. Energy-only market (Reference case)

In the EOM simulation, the LOLE was above 4 h for 26 years, 4.23 h 

on average. The average electricity price was 38.53 Eur/MWh and the 

average investment cost recovery was 120 %. In all simulations, on

shore wind was the most profitable technology, and it always reached 

its physical limit. Fig. 4 shows that although PV was the technology 

with the largest installed capacity, most energy was produced by off

shore wind. The annual output of the dispatchable technologies varies 

significantly as a result of the differences in the availability of wind and 

solar energy in each weather year. The dispatchable technologies had 

the lowest returns on investment. In the last years of the simulation, the 

installed capacity of batteries was 4.8 GW. This decrease with respect to 

the initial capacity of 21 GW can be explained because we apply a con

servative storage dispatch strategy (Section 3.1.1) and because we do 

not model ramping constraints on competing dispatchable technologies 

or ancillary services markets, reducing the profitability of BESS.

-

-

-

Fig. 9. Average difference of installed capacity in 10 last simulation years with 

SR scenarios. Without DSR prices were more volatile which incentivized more 

batteries.

Table 6 

SR results.

EOM SR SR_noDSR

ENS [MWh]
𝑥 6375 2992 8129

𝜎 7577 5157 11,103

LOLE [h]
𝑥 4.23 2.30 10.83

𝜎 4.77 3.29 9.47

Weighted average 𝑥 38.53 42.92 46.60

electricity prices 𝜎 4.47 8.02 8.53
[Eur/MWh] 

Cost recovery [%]
𝑥 120.71 136.75 148.89

𝜎 8.26 19.66 22.08

Weighted average 𝑥 0.00 0.74 0.78

CRM Costs [Eur/MWh] 𝜎 0.00 0.37 0.38

Cost to consumers 𝑥 38.53 42.96 46.17

[Eur/MWh] 𝜎 4.47 7.49 7.82

Total system costs 𝑥 10,543 10,466 10,368

[mln. Eur] 𝜎 711 700 672

CRM costs 𝑥 0 235 249

[mln. Eur] 𝜎 0 112 115

5.2. Results: capacity market

In a CM that awarded only dispatchable technologies, most CM pay

ments went to H 2 

-OCGT plants. Hence, more H 2 

-OCGT capacity and, 

remarkably, wind offshore was installed (2.6 GW) compared to an EOM. 

The BESS and PV capacity, which didn’t receive CRM payments, was re

duced by 3 GW. A similar effect was observed even if VREs and BESS 

were awarded due to their low DFs. Nevertheless, their capacity was re

duced in a lower proportion than the increase in H 2 

-OCGT (see Fig. 5). 

For the scenario where DFs were calculated ex-ante, the BESS with an 

E-P ratio of 4 h resulted in a DF of 25 %, and the ones of 2 h a DF of 11 %. 

Wind offshore and onshore DF were 6 and 12 % respectively, while the 

DF of PV was 0. In the simulation where the DF were calculated en

dogenously, CM_endogen_low_TV, we observed an initial overshoot in 

the DF of BESS and a stable value after 15 years, at 45 %. The DF of 

wind offshore decreased to almost 0 %, and less of this technology was 

installed. BESS capacity facilitated higher utilization and capture prices 

of solar energy, and therefore both technologies either reduced or in

creased in the same direction. In other words, although there were no 

capacity payments for PV, more of this technology was installed when 

BESS capacity increased.

-

-

-

-

-

A CM helped reduce shortages in all scenarios. In scenario 

CM_VRES_BESS, considering a target volume of 26.5 GW, the LOLE was 

reduced to 0.6 h/Y. Considering a lower target volume of 24.5 GW, the 

LOLE was 3.4 h/Y (see Table 5). With a lower target volume, the short

ages in the scenarios that awarded VRES and BESS were at a similar level

-
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Fig. 10. Adding up yearly costs and surplus revenues from power plants in the 

strategic reserve, the extra costs were almost 0 Eur/MWh.

Fig. 11. In an SR_noDSR the involuntary load shedded was higher because there 

was no DSR activation.

as the CM where only dispatchable technologies participated. However, 

in one year, there was a very high shortage of almost 100 GWh (higher 

than with an EOM), as shown in Fig. 6, illustrating the risk of estimating 

the DF of VREs and BESS based on average performance that may hide 

very poor performance in extreme years.

Fig. 7 shows that CM prices were very volatile, which may be 

attributed to the myopic nature of investment decisions, imperfect fore

sight, and the lumpiness of investments. The investor agent lacks a 

precise assessment of the decommissioning year of the power plants. 

Higher or lower profitability than anticipated could lead to the decom

missioning of certain units earlier or later than economically optimal. 

During years with lower available capacity, new H 2-turbines set the 

 

ca

pacity price. In contrast, during years with a surplus of installed capacity 

(with respect to the capacity target), existing power plants set the price.

-

-

-

Fig. 12. Annual normalized NPV by technology in SR scenarios.

If the capacity target was oversized, then the prices were constantly 

higher because new turbines set the price in most years; this was the 

case in CM_VRES_BESS scenario.

Due to the reduction of scarcity prices, wholesale market prices were 

also reduced, as shown in Fig. 8. Adding expenses in the EOM and the 

CRM payments, the total costs to consumers were higher than in an EOM, 

except for the CM scenario. In contrast, in all CM scenarios, as shown in 

Table 5, the total system costs were lower than in an EOM. This is due to 

the reduction of ENS. However, in the CM_VRES_BESS_lowTV scenario, 

there was one year with a high shortage, which led to total system costs 

of more than 15.2 bn (compared to 10.5 bn on average), which reflects 

the danger of outliers and relying on average DFs to value intermittent 

sources and BESS in a capacity market.

5.3. Results: strategic reserve

Due to the introduction of the SR, the lifetime of the H 2 

turbines was 

extended to the maximum. Hence, investments in new H 2 

turbines were 

delayed, and the cost recovery increased. We observed an increase of 

3 GW in H 2-OCGT and offshore investments, as shown  

 

in Fig. 9. This 

is similar to the size of the reserve (3.2 GW). Due to the lumpiness of 

investments in power plants, the reserve volume was 4 GW in most years. 

In some years, there were not enough old power plants available to enter 

the reserve, and the reserve volume decreased to 2 GW. Fig. 10 presents 

the costs of keeping plants in reserve and the surplus revenues from a 

high SR activation price (difference between the market price and the 

variable costs) of these assets. Adding costs and surplus revenues, the 

total costs of maintaining the plants in reserve were zero in most years.

More capacity in SR led to similar reliability compared to CM but re

sulted in much higher costs to consumers due to higher and more volatile 

electricity prices. On average, electricity prices were 4.39 Eur/MWh 

higher in SR than in an EOM, and in SR_noDSR 8.06 Eur/MWh higher. 

Although a higher installed capacity reduced the involuntary LS to an 

average of 2.3 h (SR scenario, Fig. 11), the DSR activation was, on 

average, 2.8 times higher than in the EOM scenario. This is because 

the SR activation price (4000 Eur/MWh) was higher than the DSR price 

(1500 Eur/MWh). As a result, the power plants in the SR were only 

activated after the DSR volume was fully exhausted. Higher electricity 

prices resulted in higher revenues for all technologies, especially for dis

patchable technologies. H 2 

turbines’ lifetime was also extended, which 

caused an increase in their profitability, as illustrated in Fig. 12. In a mar

ket without DSR (SR_noDSR scenario), the number of activation hours 

of plants in the reserve increased from 12.2 to 26.9 h, and the LOLE 

increased from 2.3 to 10.85 h/Y. More volatile and higher electricity

-

-

-
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Fig. 13. In CS_noMemory scenario, the investment cycles were remarkable because both the investments and the WTP of consumers changed drastically. Note that 

the CS price was smoother in the other scenarios where the consumers and investors accounted for the results of the last 3 years.

Fig. 14. Yearly CS clearing price.

prices incentivized more batteries and solar energy, as shown in Fig. 

9. Due to the fewer involuntary shortages, the SR_noDSR scenario pre

sented lower total system costs than an SR with DSR. However, that 

scenario presented the highest costs to consumers, as shown in Table 6. 

We also tested an SR with the same reserve margin and a lower activa

tion price than the DSR (<1500 Eur/MWh) and observed that this may 

worsen the returns of peak-load plants and of plants that are not in re

serve, reducing the investment incentives and increasing the shortages. 

This occurred as a result of the SR plants activating earlier than the DSR, 

which decreased wholesale market prices during periods of scarcity.

5.4. Results: capacity subscription

-

-

-

Capacity subscription led to investment cycles (see, e.g., the installed 

capacity of H 2 

-OCGT in Fig. 13b). This is because consumers’ bids were 

based on their expected ENS during shortage hours in the preceding 

years. The investments were reflected in increased generation capac

ity only after four years. More capacity reduced the shortages, which 

decreased the willingness to pay (WTP) for capacity. This resulted in

-

Fig. 15. Difference in the average installed capacity in 10 last simulation years 

between the CS scenarios and an EOM.

periods of low CS prices and, subsequently, a decrease in investments, 

leading to more shortages. Fig. 13a shows how, following years of 

shortages, the expected CS price peaks with a delay.

The WTP increased substantially following years of severe shortages, 

resulting in extremely high CS prices. CS_noMemory was the scenario 

with the highest capacity price volatility, as shown in Fig. 14, and with 

the most volatile profitability for H 2 

turbines, as shown in Fig. 18. This 

indicates that the stability of the capacity price depends on the degree 

to which consumers consider the risk of shortages. The high CS prices 

in CS_noMemory incentivized the highest investments, as shown in Fig. 

15, and fewer shortages. However, as shown in Table 7, the total system 

costs were also the highest in that scenario.

An issue with a CS is that consumers may decrease their WTP to 

a level that would be insufficient for generators to invest or maintain 

the plants in operation. Introducing a minimal price resulted in a more 

stable CS volume. However, the CS costs were similar to those of a CS 

without a minimum price.

If a clawback is implemented, the mechanism can provide price 

stability to subscribed consumers in a market-compatible manner. 16 A

16 While CS promotes more dispatchable capacity, the original design doesn’t 

shield consumers from high electricity prices [46]. Ensuring sufficient capacity 

does not translate into price protection for consumers because a shock in fuel 

prices or high-price imports can still occur.
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Table 7 

CS results.

EOM CS CS_RO CS_noMinPrice CS_noMemory

ENS [MWh]
𝑥 6375 3279 3998 3220 1802

𝜎 7577 5059 5802 4687 3843

LOLE [h]
𝑥 4.23 2.33 2.63 2.40 1.23

𝜎 4.77 3.41 3.47 2.83 2.49

Weighted average electricity prices [MWh]
𝑥 38.53 37.56 37.79 37.70 37.02

𝜎 4.47 3.74 3.91 3.79 3.50

Cost recovery [%]
𝑥 120.71 120.92 113.83 121.08 118.60

𝜎 8.26 8.27 4.83 7.44 7.57

Weighted average CRM Costs [Eur/MWh]
𝑥 0.00 1.27 −0.02 1.20 1.41

𝜎 0.00 1.13 1.41 1.20 2.20

Cost to consumers [Eur/MWh]
𝑥 38.53 38.83 37.77 38.90 38.44

𝜎 4.47 4.10 3.39 4.10 3.81

Total system costs [mln. Eur]
𝑥 10,543 10,458 10,495 10,464 10,461

𝜎 711 649 669 666 609

CRM costs [mln. Eur]
𝑥 0 406 −1 384 457

𝜎 0 363 452 384 712

Fig. 16. Yearly costs to Consumers in CS scenarios.

Fig. 17. Cash flows in CS_RO scenario.

clawback reduced cost recovery for generators by 7 %, as shown in 

Table 7, and lowered the costs to consumers by 1 Eur/MWh, as shown 

in Fig. 16. Furthermore, it reduced the windfall profits of plants that

Fig. 18. Annual normalized NPV by technology in CS scenarios.

had already recovered their fixed costs, and in some years, the returned 

clawback was higher than the CM costs (Fig. 17).

5.5. Comparison of the CRMs

In this section, we compare the following scenarios, an EOM, a CS, 

a CM without VREs and batteries (to be comparable with CS), and an 

SR. Fig. 19 shows that all CRMs accomplished the main goal of reducing 

shortages to a similar level. However, an SR caused higher DSR acti

vation since the plants in reserve became active only after the DSR. 

As depicted in Fig. 20, the yearly installed capacity of dispatchable 

technologies was most stable with a CM. This was the reason for CM 

presenting the lowest shortages. Lower voluntary and involuntary cur

tailment led to lower total system costs, which were the lowest with a 

CM (see Fig. 21). The lack of a long-term investment signal is an issue 

with CS and SR.

-

-

Fig. 21 illustrates that both a CS and a CM reduced the volatility 

and the median electricity price across the different years. Costs to con

sumers under CS and CM differ by at most 0.3 EUR/MWh w.r.t. EOM, 

indicating that the reduction in shortages was offset by higher pay

ments to generators. In contrast, an SR increased the cost to consumers 

by 5.13 Eur/MWh, which increased generator cost recovery on aver

age by 16.04 %. The increased price volatility in SR incentivised more 

H 2 

turbines and increased the profitability of BESS, which were able 

to exercise energy storage arbitrage. With CM and CS, the profitability

-

-

-
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Fig. 19. LOLE and ENS by CRM. The mechanisms reduced the shortages to a similar LOLE and ENS. However, the activation of the DSR was much higher in an SR.

Fig. 20. Yearly installed capacity of dispatchable technologies which include 

nuclear, bioenergy, and H 2 

turbines.

of H 2 

-OCGT improved and became more stable, but the profitability of 

BESS decreased, which reduced their installed capacity as shown in Figs. 

22 and 23.

Table 8 summarizes a qualitative comparison of the three mecha

nisms. A CM reduces at most the shortages and the total system costs. 

Electricity price volatility increases with an SR but is reduced with a CM 

and a CS. Low volatile prices keep the costs to consumers in CM and CS at 

a similar level as an EOM, and this can be even lower if a clawback is im

plemented. In an SR, the volatile electricity prices can incentivize more 

DSR. However, in an SR, investors rely on scarcity prices and, therefore, 

don’t increase their revenue certainty. Revenue certainty is higher with 

CS because there are extra payments for capacity. Nevertheless, the price 

is not guaranteed. Hence, the CM is also the mechanism that increases at 

most the certainty for investors. If CM payments are awarded with long

term contracts, the investor’s certainty can increase even more (we did 

not model this). Nevertheless, CS is the mechanism that can best avoid 

a wrong parametrization because it can self-regulate the target volume.

-

-

-

6. Discussion

In this section, we elaborate on some of the strengths and 

weaknesses of the modeled capacity remuneration mechanisms. The

success of capacity markets and strategic reserves depends on difficult 

parametrization questions. These are less of a problem with capacity 

subscription, but this faces other implementation issues, such as the pos

sibility of consumers underestimating the risk of scarcity events and the 

resulting investment cycles.

-

6.1. Capacity market

One of the main challenges of a capacity market is its accurate 

parametrization. The price cap of the demand curve is typically deter

mined with the CONE and the net-CONE, which can become volatile. 

Our analysis did not consider the revenues from balancing and ancillary 

services, or their option value (extrinsic value), which can be higher 

for dispatchable technologies [61]. Furthermore, we assumed that fuel 

prices would remain constant; however, fuel prices could increase fluctu

ations in the wholesale market revenues. 

-

-
17 In many European markets, 

the CONE is set by DSR, which has very broad values ranging from 

7500 Eur/MW to 60,000 Eur/MW [2]. Giving a range at which the price 

cap can vary, as it is in some European countries, could avoid volatile 

capacity prices.

Similarly, the regulator needs to parametrize the potential contribu

tion to adequacy per technology, a task that is increasingly challenging 

due to the growing flexibility of demand. The net contribution of each 

technology depends, among other factors, on the weather, which makes 

estimating the derating factors (DF) a nearly impossible task and prone 

to self-fulfilling or self-destroying parametrization [31]. In practice, 

cyclical variations in DFs, similar to the ones we observed with BESS, 

may occur. Even if only dispatchable technologies can participate in a 

CM, to determine the expected residual demand, it is important – but 

challenging – to consider the contribution of ineligible or opt-out, but 

operational power plants.

-

Additional complexity may occur in case an RO is implemented, as 

Mastropietro explains that participating power plants would factor in 

the probability of incurring penalties for unavailability during scarcity 

periods [38]. Because the function of a CRM is to provide reliability and 

the issue exists when VREs are not available, it appears to be better to 

remunerate VREs, if necessary, not via a CRM, but through well-designed 

contracts for differences (CFDs) which do not distort short-term market 

signals and investment decisions [62,63].

17 Moreover, fuel price changes would affect the revenues of VREs and hydro

gen generators differently, resulting in plants being decommissioned sooner or 

later than anticipated, complicating the sizing of the CM.

-
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Fig. 21. A CM was the mechanism that reduced total system costs without increasing the costs to consumers.

Fig. 22. Difference in the average installed capacity over the last 10 simulation 

years between CRM scenarios and an EOM.

Similarly, estimating the availability of batteries during shortages is 

becoming more challenging. Their charging and dispatch strategy has a 

large influence on the shape of the remaining shortfall and, therefore, on 

adequacy indicators such as LOLE [32]. Furthermore, battery operators 

may be exposed to high penalties if these are not available at scarcity 

moments [64]. Billimoria et al. suggest an alternative way to remuner

ate batteries through a revenue collar with a soft cap and a yardstick 

contract basis [65]. An overview of other options can be found in [66].

-

In our simulations, we don’t model long-term contracts; therefore, we 

observed volatile CM prices, which could bring uncertainty to generators 

who invest and expect higher compensation but do not receive it con

sistently each year. This reflects the importance of awarding long-term 

contracts in CMs. 18

-

 Securing long-term capacity contracts could offer 

lower capital costs because the debt share could be higher and the equity

18 In reality, the majority of capacity market payments are awarded in long

term contracts [2].

-

Fig. 23. Normalized annual NPV by technology

returns could be lower [67–69]. An advantage of subsidizing capacity 

through auctions is the facilitation of a more coordinated deployment 

while creating competition.

6.2. Strategic reserve

Similar to a CM, setting the SR parameters – mainly the volume 

and activation price – is becoming more complex. The SR volume and 

the activation price should be set in such a way that generators out

side the reserve do not experience reduced revenues (due to lower 

scarcity prices compared to the situation without the SR, as the ac

tivation price functions as a price cap) [70]. Demand flexibility and

-

-

Applied Energy 391 (2025) 125878 

16 



I. Sanchez Jimenez, K. Bruninx and L.J. de Vries

storage may set the electricity price during scarcity moments. 19 In 

these hours, the electricity price will exceed the marginal cost of the 

most expensive dispatchable unit without a need for activating the re

serve. This may complicate the estimation of the net effect of the SR 

on generator income. Although an SR only pays the generators in the 

reserve, this mechanism can incentivize more investments by increas

ing the frequency of scarcity prices. The occurrence of scarcity prices 

can also increase due to weather uncertainty. However, scarcity prices 

are not well accepted by consumers, politicians, or network operators 

[71]. Moreover, when taking into account risk aversion, scarcity pricing 

methods are not as efficient as promoting the creation of extra capac

ity through a CM [8]. An alternative mechanism that intends to trigger 

scarcity prices as a function of how close the system is to scarcity is 

the operating reserve demand curve (ORDC). Bajo-Buenestado analyzed 

a system with an ORDC and increasing wind energy and concluded 

that relying on price scarcity mechanisms might become less effective 

because the price adder would become more dependent on random 

weather events [72]. For these reasons, an SR may be used temporar

ily, when rapid changes in the system are foreseen. During the energy 

transition, while the flexibility levels and capacity of electrolyzers are 

low, an SR could prove advantageous, as identified by Holmberg [73]. 

Nevertheless, in the long term, this mechanism might not be the most 

suitable.

-

-

-

-

6.3. Capacity subscription

In the current CRMs, a central authority is responsible for setting 

the reliability standard and, hence, the demand for capacity. The costs 

of a CRM are typically socialized as network tariffs. A major advan

tage of CS is that it does not require a central authority to establish a 

capacity target. Consumers choose the level of capacity to which they 

subscribe, providing an accurate signal of the level of demand. Capacity 

subscription allocates the costs of dispatchable capacity to consumers, 

making reliability a private good. With CS, consumers are encouraged to 

be responsive and reduce demand during periods of shortage or invest in 

private backup facilities (like batteries) if this is cheaper than contract

ing capacity. Exposing consumers, large and small, to the cost of backup 

dispatchable capacity provides them with an efficient economic signal, 

facilitating the needed flexibility in future decarbonized power systems.

-

-

However, consumers may find it challenging to determine their need 

for capacity. Their VOLL is affected by the timing and duration of short

ages, as well as whether they were pre-notified. If consumers base their 

subscription levels on their recent experience with shortages, as was the 

case in our simulations, they may ignore the risk of extreme weather 

events. This could lead to demand cycles and volatile prices in the CS 

market, as we illustrated in our case study. In real life, the ability of con

sumers to estimate their need for contracted capacity is a key issue in the 

design of CS. Pilot programs are needed to find out the degree to which 

consumers can do this. Regulation enforcing a minimum capacity vol

ume, potentially based on the previous year’s consumption pattern, may 

be needed. Furthermore, investors might not solely rely on a three-year 

average for their investment decisions. Nevertheless, our simulations 

exemplify that with CS, there is a risk of under- or over-contracting 

capacity if consumers and generators over-react.

-

-

-

In our simulations, the maximum load limited during scarcity hours 

was consistently lower than the volume of demand not covered by sub

scriptions. This indicates that the unsubscribed load was never fully 

curtailed during periods of scarcity. However, if some consumers wish to 

consume more than their subscribed capacity, a secondary capacity mar

ket could be established wherein unused capacity may be temporarily 

traded during a scarcity period. We did not simulate this option.

-

-

19 Note that we simulated a single DSR activation price. In reality, DSR will be 

activated at various price levels, resulting in more and smoother scarcity prices.

Table 8 

Qualitative comparison of CRMs.

EOM CM SR CS

Limiting shortages − − +++ + + 

a ++

Reducing total system costs 0 ++ + +

Reducing costs to consumers 0 − 

b − − − 

b

Reducing electricity price volatility 0 ++ − − − + 

Incentivizing demand response + − 

d ++ 

d +++ 

Revenue certainty for investors − − ++ 

c − +

Avoidance of under/oversizing + − − +

a Involuntary shedding was reduced, but voluntary DSR increased.
b Lower costs to consumers if a clawback is implemented.
c Higher certainty if payments are awarded in long-term contracts.
d Higher if DSR can participate.

An issue with CS is that consumer contract capacity per year. 

Consumers, especially households and small businesses may be un

willing or unable to sign capacity contracts for more than one year. 

Consumers may be reluctant to hedge against high energy prices if these 

prices are not seen often. Secondly, they may encounter difficulties in 

selecting the consumption level to hedge well in advance. If generation 

companies cannot secure contracts longer than one year, they may not 

be able to finance sufficient investment, so the mechanism would not 

achieve its primary objective. A possible solution could entail a central 

authority taking the volume risk, acting as an intermediary, buying long

term contracts, and selling them as annual contracts to consumers. This 

may be a necessary step during the energy transition, while the central 

purchasing authority might be phased out once the power sector has 

been decarbonized. If the authority only purchases contracts for low (or 

zero) carbon dispatchable capacity, the volume risk would be lower dur

ing the period that this capacity was phased in. The German government 

acknowledged this by proposing the integration of a long-term capacity 

market with a decentralized capacity market into a combined capacity 

market [74].

-

-

-

In CS, there could also be multiple reliability levels, similar to pri

ority pricing, where consumers receive differentiated electricity prices 

for different “reliability levels” of consumption [34]. Nevertheless, that 

would require aggregators to create tariffs based on the number of con

sumers at each level, making it more flexible but also more complex and 

less transparent. CS may increase transaction costs, and consumers need 

a way to handle the complexity. Therefore, we expect that retailers will 

need to provide simple and transparent offers, guide consumers, and in

form them about scarcity in advance. Making reliability a private good 

can cause equity issues. Low-income households might undersubscribe, 

and consumers with lower subscription levels could be curtailed dispro

portionately often. In our simulations, we observed very high CS prices, 

but these are unlikely because consumers will not be willing to pay more 

than the cost of a private battery. Energy poverty could be addressed by 

subsidizing a minimum volume of capacity, although establishing this 

level of essential demand will be a challenge [27].

-

-

-

-

7. Limitations of the model and future work

We model the Netherlands as an island system and as a copper plate. 

Therefore, we do not consider the participation of foreign power plants 

in the capacity market. We do not simulate market power, 20 risk aver

sion, or penalties that may be imposed if generators receiving capacity 

payments are unavailable at a scarcity moment.

-

We assume that other sectors will trigger hydrogen demand; hence, 

we did not consider the costs of electrolyzers, hydrogen transport, 

or hydrogen storage. We also do not consider fuel prices, electricity

20 Suppliers that own pivotal facilities may retire units that could participate 

in a CM to increase the price, pivotal firms may inflate their bids, or companies 

may coordinate to extract high prices. [75].
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Table 9 

Technologies costs [56].

Investment

costs

Fixed

costs

Variable

costs

Efficiency Charging

efficiency

Discharging

efficiency

Energy to

Power Ratio

Technical

lifetime

Technical

limit

COMPETES

capacity

€/MW €/MW €/MWh % % % y MW GW

Biofuel 2,400,000 61,676 1.83 31 – – – 25 12,040 6.0

Hydrogen 435,983 7893 4.79 43 – – – 25 – 8.4

OCGT

Hydrogen 850,698 27,647 4.24 60 – – – 25 – 0

CCGT

Lithium ion 220,000 570 1.80 – 92 92 2 25 – 26.1

battery

Lithium ion 380,000 570 1.80 – 92 92 4 25 – 0.0

battery 4

Nuclear 7,940,450 111,166 3.50 35 – – – 40 – 6.0

Solar PV large 290,000 7400 0.50 – – – – 25 82,099 107.9

Solar PV 640,000 8900 0.50 – – – – 25 26,964 0.0

rooftop

Wind offshore 1,640,000 33,000 3.25 – – – – 30 70,000 56.6

Wind onshore 1,090,288 12,059 1.3 – – – – 30 12,000 12.0

Table 10 

Other technologies data.

Max. lifetime

extension

Permit

time

Lead

time

Investment

block

Debt interest

rate

y y y MW %

Biofuel 6 1 3 300 5

Hydrogen 6 2 2 400 8

OCGT

Hydrogen 6 2 2 400 8

CCGT

Lithium ion 1 0 1 300 5

battery

Lithium ion 1 0 1 300 5

battery 4

Nuclear 10 2 5 500 8

Solar PV 3 1 1 300 5

large

Solar PV 3 1 1 300 5

rooftop

Wind 5 1 2 500 5

offshore

Wind 

onshore

4 1 2 500 5

Table 11 

Fuel costs [56].

Eur/MWh

Nuclear 1.69

Biofuel 50.29

Hydrogen 45.07

CO2 168.00

demand growth, disruptive technology innovations, and other uncer

tainties. However, a unique uncertainty was sufficient to conceptually 

illustrate the difference between the effectiveness of CRMs. We assume 

a well-established hydrogen market with a stable price. In practice, H 2 

production will be correlated with VRE production, which may lead to 

high H 2 

prices during weeks with low VRE. With electricity being pro

duced from H 2 

during shortage periods, electricity prices may exhibit 

even greater volatility.

-

-

We model national CRMs, in line with most CRMs in Europe. 

However, capacity markets can cause locational distortions where dis

tant sites are overrewarded if all plants of a single technology are 

assigned the same DF [62]. Some alternatives are to distinguish DFs 

by location, to clear CMs ex-ante per zone (as done in Italy), to add lo

cational constraints (as done in Ireland), and to give preference in the

-

-

market to generators in a location. This and other alternatives could 

have consequences, for example, on CM liquidity, and should be further 

investigated.

Furthermore, we recommend simulating the interaction with net

work tariffs. CS for capacity could also be combined with network tariffs 

that are based on the same principle of capacity subscription [76], in 

which case the maximal subscription should be the same for both. In 

a congested area, consumers could be restricted to a maximal capacity 

subscription per household.

A possible extension of the model can be to simulate the option for 

mothballing and de-mothballing. Furthermore, other technologies, such 

as CCS and long-term storage, could be tested. Moreover, we recom

mend simulating long-term capacity or energy contracts and exploring 

possible interactions with a yearly capacity market and capacity sub

scription. Finally, we recommend researching consumers’ preferences 

between hedging their energy and limiting their load during scarcity 

moments.

-

-

-

8. Conclusions

We studied the performance of a capacity market (CM), a strategic 

reserve (SR), and a not-yet-implemented capacity subscription (CS) in a 

climate-neutral, high VREs system, subject to weather uncertainty. To 

this end, we developed a co-simulation framework consisting of two 

agent-based models, AMIRIS, mimicking day-ahead energy market out

comes, and EMLaby, mimicking myopic investment behavior with no 

equilibrium.

-

With CM and CS, total costs to consumers remained at similar levels 

as in an EOM while reducing shortfalls in volume and duration, thus 

reducing the total system costs. CM and CS offer a choice of whether 

to remunerate all or only dispatchable generation technologies. The 

latter appears to be the better choice, because imperfectly estimated 

derating factors of VREs and batteries can distort the market, and these 

technologies might not deliver their expected reliability.

With an SR, H 2 

turbines that would be decommissioned are kept 

out of the market; in this way, SR extended the lifetime of these tech

nologies more than the other CRMs. An SR caused volatile and high 

day-ahead/short-term electricity prices, mainly due to the dispatch of 

the reserve at the market price cap. The increased price volatility in

centivized more investments in H 2  

 

turbines, keeping the capacity of 

batteries at a similar level to an EOM. However, the price volatility might 

not be desirable, as the total cost to consumers increases. For this reason, 

its usefulness appears to be limited to cases in which unprofitable plants 

need to be kept available for a period, e.g., during the energy transition, 

until replacements have been built.

-

-
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In contrast, both a CM and a CS can enhance the security of supply 

and stabilize electricity bills for consumers. In a CM, a central entity 

determines the capacity demand curve. Even if only dispatchable tech

nologies can participate in a CM, the derating factors of all technologies 

have to be established to determine the target capacity. In contrast, with 

a CS, consumers purchase yearly subscriptions that ensure their electric

ity supply will not be limited below the subscribed level during periods 

of scarcity. In our model of CS, consumers base their willingness to pay 

on experienced shortages, and generators base their investments on CS 

prices. Because the CS contract duration was one year and due to the as

sumed limited “memory” of consumers and generators, periodic scarcity 

events caused investment cycles. We observed larger investment cycles 

when consumers and generators do not have any “memory” regarding 

past shortages, ignoring the risk of extreme weather events. Longer-term 

contracts for capacity could reduce investment cycles, but households 

cannot be required to sign multi-year electricity contracts. During the 

energy transition, a solution may, therefore, be that an intermediary 

agent (a government agency or a regulated entity on behalf of the gov

ernment) would contract capacity long-term from generators and sell it 

in annual contracts to consumers. The advantage over a capacity market 

remains the incentive for consumers to develop flexible solutions behind 

the meter and the fact that the net demand for dispatchable capacity is 

revealed.

-

-

-

-
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