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HIGHLIGHTS

Bayesian optimisation for lightweight
variable-stiffness composite design.
Fibre paths, layer count, and thickness
optimised under winding constraints.
Bayesian optimisation uses up to 70 %
fewer simulations than genetic algo-
rithms.

Results show smoother thickness and tai-
lored stiffness for buckling control.

The method enables efficient and adap-
tive design of advanced composite struc-
tures.
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ABSTRACT

This study presents a Bayesian Optimisation (BO) framework for the mass minimisation of variable-stiffness (VS)
composite cylinders under multiple buckling constraints, incorporating manufacturing limitations derived from
filament winding processes. A computationally efficient single-curvature finite element model is used to evaluate
the linear buckling response of multilayered shells. BO simultaneously optimises fibre paths, number of layers,
and thickness distribution, achieving comparable or improved performance relative to a Genetic Algorithm (GA)
while reducing simulation time by up to 70 %. Across most design loads, BO delivers structurally efficient solutions
with smooth thickness transitions and local stiffness tailoring. Although GA outperformed BO in the highest load
case in terms of weight and buckling capacity, BO retained competitive performance and demonstrated higher
modal richness. Buckling mode analyses revealed that BO designs support mixed-mode instabilities with greater
circumferential complexity, enhancing structural adaptability. In contrast, GA designs exhibited more uniform
fibre paths and axial-dominated modes, reflecting conservative reinforcement strategies. These findings highlight
the capability of BO to exploit complex design spaces more effectively, offering a scalable and data-efficient alter-
native to traditional optimisation methods. The proposed framework is particularly well suited for high-fidelity,
simulation-driven design of advanced composite structures where computational cost and manufacturability are
critical constraints.
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1. Introduction

The pursuit of high-performance and lightweight structures has
intensified across various sectors, including aerospace, automotive, en-
ergy, and marine [1] industries. Among the promising solutions, variable
stiffness (VS) composite structures [2] have emerged as a cutting-edge
design paradigm due to their ability to spatially tailor fibre orienta-
tions, thereby enabling superior load-bearing and buckling resistance
compared to conventional straight-fibre laminates [3,4].

This increased design freedom is primarily driven by recent ad-
vances in advanced manufacturing techniques, including automated
fibre placement (AFP) [5], continuous tow shearing (CTS) [6], tailored
fibre placement (TFP) [7], and more recently, additive manufacturing of
continuous fibre composites [8,9] and filament winding [3,10]. These
technologies allow for precise control over fibre paths, enabling en-
gineers to manufacture increasingly complex and efficient structures
[11]. However, the potential of VS composites comes at the cost of
substantially larger design spaces, leading to high-dimensional and
computationally expensive optimisation problems [12,13].

Traditional optimisation techniques, such as gradient-based and
gradient-free methods (e.g., evolutionary algorithms), notably genetic
algorithms (GA), have been extensively used in composite design
[7,14,15]. While effective, these methods often require thousands of
structural evaluations, making them impractical for iterative design
involving high-fidelity finite element (FE) models and manufacturing
constraints [16].

Bayesian optimisation (BO) is a sample-efficient, surrogate-based
global optimisation technique particularly well-suited for expensive-to-
evaluate black-box functions [17,18]. It constructs a probabilistic model,
typically a Gaussian Process (GP), to approximate the objective function
and iteratively selects new sampling points by maximising an acquisition
function that balances exploration and exploitation [19].

In contrast to gradient-based methods, which require explicit deriva-
tives and are often trapped in local minima when dealing with
non-convex or noisy functions [20], BO operates without gradient
information, making it robust for non-smooth or multi-modal prob-
lems. Compared to traditional gradient-free techniques such as Genetic
Algorithms (GAs), BO offers faster convergence and significantly fewer
function evaluations by leveraging probabilistic modelling and adaptive
sampling. These features make BO particularly attractive for engineering
design problems where function evaluations involve expensive simula-
tions, such as the buckling analysis of composite structures with complex
architectures [21].

To address these challenges, this study introduces a novel Bayesian
optimisation (BO) framework for the mass minimisation of variable
stiffness composite cylinders under multiple buckling load constraints
and manufacturing feasibility limits. BO is a powerful global optimisa-
tion strategy that combines Gaussian process (GP) surrogate modelling
with probabilistic acquisition functions, enabling efficient exploration of
complex, high-cost design spaces with a limited number of evaluations
[22-24]. Though widely adopted in machine learning, hyperparame-
ter tuning [25] and materials informatics [26,27], its application to
structural optimisation of VS composites remains largely underexplored.

This paper makes the following key contributions:

1. We propose the first Bayesian meta-optimisation framework for
weight minimisation of variable stiffness composite cylinders un-
der eigenvalue-based buckling loads and realistic manufacturing
constraints;

2. We incorporate the recently developed single-curvature
Bogner-Fox-Schmit-Castro (SC-BFSC) finite element formu-
lation for accurate and efficient eigenvalue and mode-shape
computations; and

3. We compare the performance of the proposed BO framework
against a benchmark genetic algorithm, assessing not only the
quality of the optimised solutions but also the computational
efficiency.
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The structure of the paper is as follows: Section 2 details the Bayesian
optimisation strategy and the meta-optimisation framework; Section 3
describes the SC-BFSC finite element formulation used for buckling anal-
ysis; Section 4 presents numerical results and comparative analysis with
the GA approach; and Section 5 concludes with key findings and fu-
ture directions for research in data-driven optimisation of advanced
composites.

2. Optimisation problem

Fig. 1 shows two adjacent filaments revolved around a cylinder with
a total length of L. The blue and grey colours indicate whether a fila-
ment is frontal or dorsal concerning the back of the cylindrical shell. The
filaments are always separated by the circumferential direction Ac, with
Ac,,i, < Ac < Acy,,,- The filament angle distribution 6(x) is interpolated
using a second-order function interpolating three values of the filament
winding angle 6,, 6, and 63, respectively defined at x = {0, L/4, L/2},
for 0 < x < L/2. Moreover, when L/2 < x < L the second-order in-
terpolation is done using 65, 6, and 65, defined at x = {L/2,3 L/4,L},
respectively. Note that 6, = 6, and 05 = 6, are used to impose a sym-
metric 0(x) with respect to the middle cross section of the cylinder.
An overlap design is produced when using Ac,,;,, where no gaps are
present because the filaments touch at the minimum filament angle;
whereas Ac,,,, produces a gap design, without overlaps, where the fila-
ments touch at the maximum filament angle. The present study focuses
on overlap designs, with the premise that they are required to produce
pressure-tight shells.

The main objective of the present optimisation is to minimise weight
under buckling constraints by deciding on the number of layers and the
independent variables defining each layer, i.e. 6, 6, and 6;. A layer pro-
duced with overlapping variable-angle filaments of thickness #,,,, will
have a variable thickness h(x) given by Eq. (1), where Af(x) represents
the change in filament winding angle, as derived by Castro et al. [29]
and further discussed by Wang et al. [28].

_ hrow
h>) = s a0t M

Fig. 1. Design space per layer, modified from Wang et al. [28]. Top: gap design.
Bottom: overlap design.
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Hence, in a variable-angle filament-wound (VAFW) design strategy,
the total volume depends on the geometry of the cylinder, the number of
layers, and the filament angle distribution for each layer. In the present
study, the actual volume is divided by the volume of a constant-thickness
single-layer shell, producing a relative volume that is more sensitive to
the variables being optimised.

2.1. Constraints

With weight minimisation as the main objective, the buckling design
load is introduced as the limiting constraint. Instead of introducing a
constraint function in the objective function, a penalty function (PF) is
used to keep the optimisation unconstrained, allowing an easier com-
parison amongst different algorithms. The penalty functions are based
on the design load (DL) and the calculated critical buckling load of the
current design (P,,). The penalty function chosen is based on the square
law, which is continuous over the frontier of the feasible region, keep-
ing the information of boundary cases within the optimisation loop [30].
The penalty function based on the square-based law is given by

PF=max<1,%> (2)
095 % P,,
A= L )

Another constraint concerns manufacturability limits, where the designs
are considered unfeasible when 6,,;,, < 6(x) < 6,,,,, with the following
values 6,,;,, = 3.3° and 0,,,,, = 87.7° [28].

2.2. Design space

The optimisation problem is defined in such a way that it has the
ability to decide the number of desired layers, with only a maximum
number of layers given to keep the number of design variables. A con-
scious choice of 4 layers allows for comparisons of results from the work
of Wang et al. [31] (geometrical dimensions and material properties pre-
sented in Table 1). It also allows checking the integrity of the problem
without overloading CPU resources.

A maximum of 4 layers will be allowed in the investigated designs,
with each layer having 4 independent design variables, being the three
control points (6, 6, and 65); and a Boolean variable S used to activate
(S=True) or deactivate (S=False) each layer individually. Therefore,
the problem has 16 design variables, wherein 12 variables define the
composite steering path, and 4 Boolean variables control the topology,
by defining the number of layers. The produced layups are balanced and
the filament winding angle limits are [3.3°,87.7°] [28], here adopting
with a discretisation of 4.68°, resulting in a design space of 2.21 x 105
unique combinations.

The design space is illustrated in the buckling load versus mass graph
of Fig. 2. Each number of layers is colour-categorised, resulting in a
good representation of the buckling load limits for each case. It is an
interesting observation that there is a gap between the design sub-spaces
using 1 and 2 layers, which was also observed for other cylinder aspect
ratios.

Mathematically, the optimisation problem can be written as:

rgisn Vol([0,S]) - PF(6,S) (C)]
where [0,S] =[0,,60,,05,S] for each independent layer set
subject 0 O,y < O(X) < Oy %)
with:

+ O representing the set of control points for the filament-winding
angle distribution, for each independent layer.

+ S used to activate or deactivate a layer.

» PF(0,S) ensuring that designs not meeting the buckling load require-
ment are penalised.

+ The constraint 6,,;, < 6(x) < 6,,,, enforces manufacturing limitations
on minimum and maximum filament winding angles.
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Fig. 2. Illustration of the design space.

Table 1
Geometric dimensions of the cylinders and ma-
terial properties used in the optimisations.

Geometric dimensions

L 0.3m
D 0.3m

Material properties

E, 90 GPa

Ey 7 GPa

Via 0.32

G, =Gy, 4.4 GPa
Gy 1.8 GPa

h 04 x 10-m

tow

3. The Bayesian optimisation framework

Fig. 3 schematically illustrates the working mechanism of the pro-
posed BO framework [32]. The method utilises a surrogate model,
typically a Gaussian Process, to approximate the true objective function
based on a limited number of evaluations.

The horizontal axis represents a design variable, while the verti-
cal axes show the objective function (top) and the acquisition function
(bottom). The black curve in the upper plot represents the predicted sur-
rogate model f(x), constructed from previously evaluated data points,
which are shown as blue dots. The shaded region around the curve de-
notes the prediction uncertainty, capturing the confidence interval of
the model.

The lower plot displays the acquisition function u(x), which quan-
tifies the utility of evaluating the objective function at each point in
the design space. It guides the selection of the next evaluation point by
balancing exploration (sampling regions with high uncertainty) and ex-
ploitation (sampling regions with low predicted objective values). The
red point highlights the location of the next sample, selected at the
maximum of the acquisition function.

This iterative approach allows the optimiser to efficiently explore
the design space while minimising the number of expensive function
evaluations. In the context of this study, the BO framework enables the
discovery of lightweight, buckling-resistant composite configurations
with significantly reduced computational effort.

BO uses acquisition functions for evaluating the likelihood of the
points. The acquisition function uses the mean and variance values
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Fig. 3. The design space of the Bayesian optimisation framework over iterations
(@)t =15, (b) t =23, and (c) = 33.

provided by the Gaussian process regression model and calculates scores
based on its Acquisition type. If X are the points evaluated and fit to a
Gaussian model, and X* are the new points to be assessed, then the
acquisition function scores can be given as:

Scores = Acq. func (QP (X*,X)) (6)

where G.P is the Gaussian Process (GP) model, which outputs the
mean and variance for the prediction of the output of new points X*
concerning X.

With the goal of achieving an optimal surrogate model fit, an ex-
haustive design of experiments (DoE) is performed to understand how
the BO framework is influenced by different hyperparameters, different
kernels for the GP model, initial sample size and population size. Two
test datasets of sizes 1000 and 5000 are used. The selection of kernels
is based on the maximum log-likelihood value and the total computa-
tional time. Upon investigation, the Matern32 kernel is found to be best
suited for the problem at hand. The selection of the initial sample size
is based on the accuracy required by the GP model. The accuracy and
error calculation are examined with the help of R? variance score and
Mean Squared Error (MSE). The sample size is defined as a factor of
input variables that would help with a more generic representation of
the parameters for future use. With both the test data, it is seen that 10
times the input provides a good prediction accuracy.

After investigating the GP model and initial sample size, three ac-
quisition functions are assessed, again aiming for an optimum BO
framework: Probability of improvement (PI); Expected Improvement
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(EI) and Lower Confidence Bound (LCB). The characteristics of
each function and exploration—exploitation weights are evaluated.
Individually, LCB is found to be the most efficient. However, an overall
improvement is observed when the acquisition functions are used on a
rotational basis with each iteration. This is because although the selec-
tion of sample points has a good distribution over the design space, it is
random in nature.

For consistency with the GA setup, the maximum number of iter-
ations in the BO framework is fixed at 2500. To minimise redundant
evaluations once the design space becomes saturated, two early-stopping
criteria are implemented. The first criterion monitors the optimised
weights and terminates the optimisation if 25 non-penalised designs
with identical volume (rounded to ten decimal places), are encountered,
indicating stagnation. The second criterion activates after 1000 itera-
tions and terminates the run if the current optimum remains unchanged
for 500 successive iterations, implying a lack of further improvement.
These criteria ensure that the optimisation process remains efficient
while maintaining the potential to identify high-quality solutions.

3.1. Surrogate model verification

The surrogate verification is achieved by predicting for test points
when trained on a separate set of training points, wherein the deviation
between the prediction and actual values is compared. The performance
of different training hyperparameters is compared using the coefficient
of determination/variance score —co < R? < 1, defined as the ratio
between the variance explained by the model to the total variance [33]:

Z,-N;f“ (y,- - )71')2

e (- 7)

RP=1- %)

where y; is the true response, y, is the model prediction for the point,
N, is the total number of test samples and y; is the mean of true test
values. A good model can be characterised through an R? greater than
0.8; when 0.5 < R? < 0.8 there is the presence of observable error in the
model; and R? < 0.5 implies a weak model prediction and the presence
of significant error. Values R> < 0 signify that the prediction is worse
than the average model and should not be used.

The MSE is used to understand the error in the model. MSE is the
mean of the overall squared prediction error, which is shown in Eq. (8):

Niest

! (yi _);i)z 8

test j—1

MSE =

A perfect model should have an MSE of 0, while any good model
should have it close to zero.

3.1.1. Testing methods

There are several methods to test the surrogate model [33], such as
Jackknife error, bootstrap error and K-fold cross-validation error. The
K-fold cross-validation error splits the testing and training points. The
model is trained with all subsets, and the process is repeated until each
subset becomes the test set. If the samples can render a good representa-
tion of the design space, then the K-fold test will provide a good average
R? score with minimum variance. Here, the verification is performed
with a 5-fold cross-validation, as shown in Fig. 4.

3.2. Inputs and outputs

For the surrogate modelling, 2 cases are considered: 1st case is the
use of input variables as orientation angles at control points and output
as the objective; In the 2nd case, the inputs remain the same but the
output used for modelling is changed to buckling load from the objective
function. The reason is that this will give a direct correlation between
the design variables and the buckling load, and the complexity of using
penalty functions (PF) and manufacturing constraints is removed. The



J.H.S. Almeida, A. Ashok, M. Uzair et al.

Iteration 1 Test | Train | Train | Train | Train
Iteration 2 Train | Test | Train | Train | Train
Iteration 3 Train | Train | Test | Train | Train
Iteration 4 Train | Train | Train | Test | Train
Iteration 5 Train | Train | Train | Train | Test

Fig. 4. The proposed 5-fold cross-validation process.

predicted buckling load is used to calculate the PF, which is multiplied
by the relative volume to obtain the output.

With the help of K-fold cross-validation with R? and MSE scores, it is
observed that in the 1st case, even though a more complex objective is
used, it is very efficient, and the GP model is able to predict with good
accuracy. The prediction is similar between the reduced switch variable
and normal (15 X 16, refer to Section 4), even though there is a reduction
in the number of input variables. The GP model can interpret the Boolean
switch variables effectively. Interestingly, the 2nd case is the slowest in
the optimisation process and the GP model prediction is lower than Case
1. This is attributed to post-processing of the predicted buckling loads,
leading to larger errors, and the slower nature can be attributed to the
second calculation of relative volume and objective function, which even
though minor, added up when the data points increased.

3.3. Acquisition functions

The acquisition function utilises the information from the GP model
about the input variables and translates them into scores. The highest
score points are chosen for running the actual test, as this has the high-
est chance of being the optimal point or a point from an unexplored
region. Three acquisition functions are focused on here: Probability of
Improvement (PI), Expected Improvement (EI) and Lower Confidence
Bound (LCB). The focus is on the static state of the acquisition function.
Probability of improvement

Probability of Improvement (PI) was first introduced by Kushner
[34]. The function measures the maximum probability of a point im-
provement over its current best-known value. The function is purely
exploitative in nature, which is a drawback since this may cause it to
ignore points that have good value but high uncertainty. To reduce
this effect, a trade-off parameter ¢ is introduced in the function. It is
formulated as Eq. (9). ®() is the normal cumulative distribution func-
tion (CDF). In simple terms, CDF provides the probability of a function
yielding a result lower than or equal result than that provided.

PI(x,&) = P [Fy 2 fipay +£]

— - l'i(x)_(.“max"'g)
o(x) 9

_((#09) = (Hax +€)
- o(x)

Expected improvement:

Although PI introduced the parameter ¢, it is still limited in selecting
points likely to improve the objective. Expected Improvement (EI) is
proposed to address this shortcoming [35,36].

Define:
HX)—pmax—=€ -
———mx " jfe(x) >0
7= o(x) ) (10)
0, if 6(x) =0

Then, the acquisition function for EI is given by:

— { (HX) = fiay = &) D(Z) + 0(XP(Z), if o(x) > 0
0, ifo(x) =0

(€8]
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In Eq. (11), the first term promotes exploitation, and the second
encourages exploration. ® and ¢ denote the cumulative distribution
function (CDF) and the probability density function (PDF) of the stan-
dard normal distribution, respectively. The parameter ¢ controls the
trade-off between exploration and exploitation; a typical value is & =
0.01 [37,38], which can be increased to encourage more exploration.
For large ¢&, the algorithm approaches random sampling.

Lower/upper confidence bound:

The lower/upper confidence bound (LCB or UCB) is used for
minimisation/maximisation problems. It tries to manage exploration—
exploitation by being optimistic when faced with uncertainty. Eq. (12)
gives the formulation for LCB, which is quite simple in nature. LCBs tend
to require fewer iterations to reach the global optima [39,40].

LCB(x) = p, — éo(x) (12)

3.4. The BO framework

The BO begins with an initial population size, which is selected us-
ing the LHS sampling criterion. The maximum criterion is chosen in the
Latin Hypercube Sampling (LHS), maximising the minimum Euclidean
distance between points. These initial data points and their correspond-
ing calculated objectives are used to fit the Gaussian regression model.
The acquisition functions take the points and, with the help of the GP
model, assess the points from the predicted mean, while the variance
provides scores for each point. The best-scored point is evaluated, and

Optimisation
Parameter

’ Design

Material
Parameters

Properties

Create Initial Training
Population
Xi > 1

l

Gaussian Process Model
GP X, Y

Create Random Data set for
Evaluation

[

l

If any ( [x],, ) fails
maximum curvature
constraint —> delete

v

Scores = Acq. func (G.P (X;, [x],))

!

idx = minimum (scores)
e* = x,, [idx]

y* = Objective (x*)

Update Training set with (x*, y*)
X;=[X;,x%]
Y=Y, 5%
No Stopping Criteria :

Convergence or
Maximum Generations (i)

i Yes

Optimum Solution:
opt_idx = minimum(Y;)

Xhest > Vbest = Xi lopt_idx] , Y{opt_idx]

Fig. 5. The flowchart for the Bayesian optimisation framework.
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Table 2
Performance of acquisition functions with varying weight factors.

Computers and Structures 316 (2025) 107868

Acquisition function Weight Obj. (50 kN) Conv. (50 kN) Obj. (1000 kN) Conv. (1000 kN)
MPI - 0.16622 240 0.00397 150
LCB 0.1 0.15602 360 0.00372 155
0.2 0.15880 325 0.00397 148
0.3 0.15581 320 0.00389 350
0.4 0.16325 310 0.00384 290
0.6 0.16112 310 0.00389 240
0.8 0.16720 340 0.00389 240
EI 0.01 0.16290 355 0.00406 295
0.025 0.15601 360 0.00410 310
0.05 0.16278 380 0.00383 105
0.1 0.16286 365 0.00372 155
Combo (LCB, PI, EI) - 0.15410 245 0.00395 380
Table 3
The BO parameters.
Parameter Value

Initial sampling size 10 times the input variables

Angle increment 0.5
Number of iterations 2500
Tolerance le-3
Population size 50

Acquisition function
Exploration weight

Combination of EI, LCB and PI
EI=0.025,LCB=0.3, PI=NA

its actual objective value is then added to the training population of
inputs and outputs to be fit. The buckling constraint is part of the objec-
tive function, and the manufacturing constraints are applied externally.
If constraints are not met, then the corresponding training point is not
considered, avoiding spending time on unfeasible sets. This process is re-
peated until a maximum number of generations is reached or when the
predicted solution has converged over a certain number of generations.
The framework is illustrated in Fig. 5.

For finding the best parameters, the use of pseudo-random sets is
considered. This helps replicate results that are used to compare the
performance when parameters are changed. This is useful for the com-
parison of the acquisition functions. The performance of the acquisition
functions is measured by monitoring their convergence to the mini-
mum and their ability to find the optimum solution among the selected
options.

Since each acquisition function prioritises different points, the idea
proposed by Brochu et al. [41] could have been used to make use of
all 3 sets of acquisition functions, selecting the best point from all sets.
The disadvantage is that this would have increased the actual calcula-
tion by a factor of 3 (if all 3 MPI, EI and LCB are considered). Instead,
the use of the acquisition function on a rotation-based approach is pro-
posed. This uses a combination of LCB, EI and PI, which change at each
iteration. After preliminary investigations, a rotation strategy with ac-
quisition functions using EI (weight = 0.025), LCB (weight = 0.3) and
PI, is chosen. The performance of the acquisitions function with varying
weight factors and the parameters in the BO framework are shown in
Tables 2 and 3.

3.5. Bayesian optimisation setup

The current framework is implemented in the Python language.
Other than the standard libraries, “Scikit-Learn (sklearn)” module is used
for the GP model fit [42] and “Scikit-Optimise (skopt)” is employed for
LHS sampling [43].

4. Linear buckling in VAFW cylinders
4.1. Discretisation

The Single-Curvature Bogner-Fox-Schmit-Castro (SC-BFSC) s
adopted to accurately calculate the linear buckling of variable-stiffness

Fig. 6. The SC-BFSC element and coordinate system used to construct the
cylindrical shell.

filament wound cylinders. As first proposed by Castro and Jansen [44],
the BFSC introduces in-plane displacement (u, v) and its first derivatives
as shown in Eq. (13), creating 10 DOFs per node, with i = 1,2,3,4:

T
e R S RSN Y B N B R A |
ul = {u s u, v UL v wh wl wl, wxy} (13)

The SC-BSFC has been successfully applied to composite shells using
Sanders’ kinematics [31,45]. The cylinder is modelled with the x axis
representing the axial (from 0 — L), y the circumferential (from 0 —
2zr) and z the radial normal direction, as illustrated in Fig. 6. For the
finite element discretisation, the cylinder is divided into n sections along
its axis and m along its circumference, creating m X n elements, which
are kept with an aspect ratio of approximately one. The displacement
fields u, v, w, are approximated as:

4
U,, U,, W, = 2 S (5]

i
i=1

where S;"”'w are Hermite shape function matrices [46] that allow the
in-plane and out-of-plane displacements to be approximated using 3rd-
order polynomials:
S¢=[H H* H' 0 0 0 0 0 0 0
§/=0 0 0 H, H* H' 0 0 0 0

s“=0 0 0 0 0 0 H H* H H"] (15)

i

with the cubic Hermite functions H,, HY, H}, H” calculated using
natural coordinates as per [47]:

H; = %(5 +EVH(EE — D1 +n)*(mm; - 2)

HX——§§(§+§)2(§§ = D+ n)*(am; = 2
i T T 3psi i i n+n)"(nn; )
y fy 2 2

H = _ﬁ(é + &) = 2m(n +n)~(nm; — 1)

o _ Oxly 2 2
H" = 75[(5 + &) — Dimy(n + n)~(nm; — 1) (16)
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where ¢, 7, are respectively the finite element dimensions along x, y,

as represented in Fig. 6; and &, 5 are natural coordinates:
a7)

such that &;, n; at each node are (-1, -1), (+1,-1), (+1,+1) and (-1, +1).
With the proposed nodal connectivity for the SC-BFSC element, the
nodal degrees-of-freedom u,; and the respective shape functions ;"""
are concatenated as:

up={Up Uy Uy "e4}T

si=[sy s 85 8

s'=lsy 83 sy sy

sv=[sv sy Sy SY] 1s)

with §%, §¥ and S* being matrices of shape 1 x 40.

4.2. Total potential energy

Applying equivalent single-layer (ESL) theory, which assumes the
heterogeneous laminate to be statistically equivalent to a single layer,
the total potential energy for an SC-BFSC finite element is defined as Eq.
19):

1 Y4 X2
O = —/ / (Ne+ Mk)dxdy (19)
2 Y=y Jx=xq

where N = {N,,,N,.N xy}T represents the resultant membrane force

T T .
and M = {M, .M, M} areits distributed moments. The subscripts
used in the integration limits indicate the node connectivity. Sanders’

kinematics for cylindrical shell plates is adopted, as per Eq. (20):

Exx u,, + %w,i
E=VEw (= U,y+%w+%w,§+%rlzvz—%0w,y
Yxy Uy + U,y + W, W0, — ~ VW,
Kxx “Wsxx
K =1k, 0=1 ~W,, + %U,y (20)
Kyy —2w,xy + %U,X

with (-),, = 0(-)/dx used as a compact notation for partial derivatives.
Here, ¢ represents the extensional strain and « the rotational strain.

At the bifurcation point, there exists an equilibrium for the domain
of the structure or assembly of finite elements, as shown in Eq. (21).

e

Ne
SO =) 5B, = N5+ MTsk)dQ, =0 (21)
Too=3 [ )de,

e=1 e

The strain variation can be calculated by taking partial differentia-
tion of the displacements and their shape functions as shown in Eq. (22).
The curvature of the cylinder is factored into the circumferential strain
from out-of-plane displacements.

o€ = By, ou,
(22)
ok = Byéu,
where B,, and B,, are defined as:
8% +w, S
B, =8+ %sw +w, 8 + rlzusv - %usg‘ - %w,ysv (23)

u v w w_ 1, qw_1 v
S’y+S,X+w,XS9y+w,yS,x ruS9X rw,xS
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_S,',.{éx
1 ov
By = —S’”;V + ;Sfy 24)
) 1
—ZSy';y + ;S";

Noting that the partial derivatives of $**% are directly calculated from
the shape functions of Eq. (18) in terms of the natural coordinates &, 5.
These derivatives are obtained using the Jacobian relations.

0 _%0
ax 2 9E 25)
a %o
oy 2o0n

4.3. Neutral equilibrium criterion

The neutral equilibrium criterion implies 6*® = 0, which is shown
in Eq. (26).

nB "E
82 = 2 8¢, = Z [/ (6NTse +6M oK) dQ,
e=1 Q

e=1 e

(26)
+ / (NT8% + M"6%) dQ, | =0
Q€
where the first part of the equation forms the constitutive stiffness ma-
trix, and the second part represents the geometric stiffness, both being
matrices of size 40 x 40. In the constitutive stiffness matrix, for linear
analysis, the non-linear terms, when expanded into displacement terms

containing w,, w, and w,,, are ignored. The final expression is shown

in Eq. (27).
K, = // (B,"AB,, + B,," BB, + B,  BB,, + B, DB,)dxdy 27)
Xy

with A, B, D being the laminated composite constitutive matrices, which
are calculated based on the correct offset d(x) of each filament-wound
layer, rendering the correct positioning of each layer concerning the
filament winding mandrel radius, as illustrated in Fig. 7.

The second integral is the geometric stiffness matrix Kg, and pro-
vides information on the non-linear effects of pre-buckling membrane
stress NoT = { Ny, Noyy» Noy, ). Here it is considered that 6% << § [48],
leading to Eq. (28):

S f‘;T N, OXXS ,wx

Kgoe = // . Sf;TNOny;;' dxdy (28)
W [SUT NoxyS™ + 8T Ny, S

4.4. Eigenvalue problem

The pre-buckled stress N, of Eq. (28) is calculated from the nodal dis-
placement of the corresponding element u,. For a symmetric laminate,
it can be written as per Eq. (29):

NOxx Suyx
No={No,, t =A|S", + 18" 5% u,, 29
Noxy S, +8Y,

where g, is calculated from the global displacement vector, solved using
the static analysis given by:

Uy = K_lfo (30)

with f being the pre-buckling load. It is assumed that at the bifurca-
tion point, there is a value of internal membrane stresses N = AN, that
satisfies the neutral equilibrium:

ou” (K + AKgy) =0 (3D

where K is the constitutive stiffness matrix and Kg, is the geometric
stiffness matrix. For Eq. (31) to be zero, the determinant of the stiffness
part should be zero:
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ZA a) Incorrect ply distribution

0 L2 LX

Fig. 7. (a) Incorrect ply distribution with a constant mid-surface at z = 0; and (b)
correct ply distribution with a varying offset d(x) applied to the mid-surface. The
outward face position of each ply z,(x) for k = 1,2, ...,6 is shown. Reproduced
from Wang et al. [31].

det (K + 1Kgp) =0 (32)

leading to an n'" order characteristic polynomial, whose roots 1 repre-
sent the linear buckling eigenvalues.

5. Results and discussion

The GA-based optimisation is implemented [32] to serve as a bench-
mark for the BO framework, using the Python module OpenMDAO [49].
In GA, the discretisation of the design space of each variable is performed
by defining the bits. In this algorithm, the design space is divided into
the order of binary numbers (2"). Here, the bit size is taken as 6 for all
the steering angle variables. Therefore, the design space is divided into
128 (2°) parts with increments of 1.32 deg.

Population Size: The recommended value for population size is 4 times
the Dit size. After trial and error with different sizes, 4 times the bit size
is found to perform the best.

Mutation rate: The default value for mutation is 0.01. This was increased
to 0.02, which resulted in better results. The possible reason for the im-
provement is the higher number of mutated children that are available,
which results in better exploration.

Maximum generations: The convergence is tested with two loading cases:
50 kN, which is a very safe value for layer 1, and 500 kN, which is on
the upper limit of using 2 layers and lower limit of employing 3 layers.
This means that the minimum weight option is the 2-layer case, which is
a tricky case for the optimiser. This helps to show the versatility of the
solver in finding both a straightforward design load and a tricky one.
The convergence in the GA occurs at about 95 generations, which is
found to be similar for the rest of the load cases. Therefore, a maximum
generation of 100 can be taken as the limit. The set of parameters used
in GA is given in Table 4.

5.1. Verifying BO with GA

To verify the performance of the BO framework, a comparative anal-
ysis with GA is conducted. Fig. 8 displays the convergence histories
for both methods under two loading conditions: 50 kN and 500 kN.
The results demonstrate that BO outperformed GA in terms of conver-
gence speed and solution quality. In the 50 kN case, BO converged to
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Table 4

The parameters used in the GA optimisations.
Parameters Value
Maximum generation 100
bits size 6
Mutation rate P, 0.02
Crossover rateP, 0.1
Elitism True

a near-optimal mass below 0.4 kg within approximately 300 iterations,
whereas GA required over 1000 iterations to reach a similar mass. For
the more demanding 500 kN case, BO achieved a converged solution
near 1.1 kg in under 1200 iterations, while GA required up to 1800
iterations and still converged to a slightly heavier structure.

An interesting trend observed in the convergence behaviour of BO
is its tendency to identify near-optimal low-mass solutions early in
the optimisation cycle, often within the first 150 to 200 iterations.
However, in later stages, the optimiser shifts towards exploring struc-
turally more robust configurations. This may result in a slight increase in
mass but better satisfy buckling and manufacturability constraints. This
behaviour is particularly evident in the 50 kN case, where convergence
is not solely driven by early-stage gains but also by subsequent refine-
ments that align the solution with stricter feasibility limits. This pattern
highlights the capacity of BO in balancing rapid early improvements
with continued exploration for resilient, constraint-satisfying designs.

BO convergence curves are smoother and more stable, reflecting
its data-efficient search strategy and the effectiveness of its surrogate
modelling in navigating the design space. In contrast, GA exhibited a
more erratic convergence pattern, especially for the 500 kN load case,
suggesting a broader but less directed exploration of the design space.

These findings reinforce the advantages of BO in handling compu-
tationally expensive optimisation tasks. Its ability to efficiently balance
exploration and exploitation makes it particularly well-suited for the
design of advanced composites with complex design spaces. While GA
remains a viable and widely used baseline method, BO offers significant
computational savings and improved performance.

Optimisation results are presented for five representative design load
cases: 50 kN, 100 kN, 200 kN, 500 kN, and 1000 kN. These load levels
are selected to enable direct comparison with the benchmark solutions
reported by Wang et al. [31], allowing for a more rigorous evaluation
of the proposed BO strategy. Among the acquisition strategies explored,
a rotational scheme, alternating between Probability of Improvement
(PI), Expected Improvement (EI), and Lower Confidence Bound (LCB),
offered the most favourable trade-off between convergence speed and
computational cost. Exploration weights are set to 0.025 for EI and 0.3
for LCB to balance local exploitation and global exploration during the
search effectively.

The optimised design variables and corresponding structural re-
sponses for both BO and GA are summarised in Table 5. Across all load
cases, both methods achieved structurally sound solutions that meet
buckling performance requirements while minimising structural weight.
For example, in the 50 kN case, BO identified a configuration weighing
0.4135 kg that sustains a buckling load of 53.00 kN. As the applied
load increases, both the structural complexity and number of design
variables grow, as reflected in the 1000 kN case, where BO proposed
a multi-layered configuration weighing 1.4102 kg and resisting up to
1038.45 kN of compressive load.

These results highlight the robustness of the BO framework in explor-
ing moderately sized design spaces and converging toward lightweight,
high-performance solutions. The diversity in optimal configurations
across load levels illustrates the adaptability of the method to different
structural demands.

A quantitative comparison of the optimal solutions obtained using
BO and GA, summarised in Table 5, shows that BO consistently achieves
results closely aligned with those of GA while significantly reducing
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Fig. 8. Convergence plots for both (a) GA and (b) BO frameworks for two design loads.
Table 5
Comparison of BO and GA results for different design loads.
Design Method Optimised design variables Weight Buckling Weight
load (kg) load (kN) Diff. (%)"
50 kN BO [59.5, 87.5, 40.7] 0.4135 53.00 9.34
GA [42.3, 63.3, 53.3] 0.3782 52.80 -
100 kN BO [22.0, 22.0, 31.4] / [12.7,12.7,12.7] 0.7248 176.48 0.14
GA [7.3,7.3,7.3] / [27.3, 26.3, 27.3] 0.7238 204.57 -
200 kN BO [22.0, 31.4, 22.0] / [59.5, 59.5, 59.5] 0.7264 270.72 0.36
GA [19.3, 18.3,19.3] / [29.3, 29.3, 29.3] 0.7238 248.47 -
500 kN BO [59.5, 40.7, 50.1] / [50.1, 40.7, 50.1] / [59.5, 59.5, 68.8] 1.0905 535.49 0.40
GA [35.3, 35.3, 34.3] / [25.3, 22.3, 24.3] / [64.3, 67.3, 64.3] 1.0861 581.13 -
1000 kN BO [3.3, 40.7, 78.2] / [40.7, 68.8, 31.2] / [22.0, 59.5, 59.5] 1.4102 1038.45 15.30
GA [18.3, 37.3, 33.3] / [34.3, 75.3, 64.3]1 / [9.3, 39.3, 35.3] 1.2229 1051.54 -

* Diff. (%) =((BO — GA)/GA) x 100

computational cost. In the 50 kN case, GA produced a slightly lighter
design (0.3782 kg) compared to BO (0.4135 kg), with nearly identical
buckling capacities (52.80 kN vs. 53.00 kN). For the 100 kN and 200 kN
cases, the weight differences remained below 0.2 %, and buckling loads
are also within a comparable range.

The most notable discrepancy arises at 1000 kN, where BO produced
a design approximately 15.3 % heavier (1.4102 kg vs. 1.2229 kg), with
a slightly lower buckling load (1038.45 kN vs. 1051.54 kN). This sug-
gests that, in this instance, GA identified a more optimal configuration.
However, during the optimisation process, BO discovered some feasible
solutions around 1.33 kg that satisfied the buckling constraint (i.e PCR
> 95 % of the design load), indicating that further tuning of acquisition
parameters, such as the exploitation-exploration trade-off or adaptive
sampling strategies, could enhance performance.

From a computational standpoint, BO demonstrates clear efficiency.
While GA required 2401 function evaluations and approximately 8 h
to converge, BO achieved its optimal solutions in just 800 evalu-
ations and 2.5 h. This threefold reduction in computational effort,

especially evident in the 50 kN case, underscores the suitability of BO
for simulation-intensive optimisation of advanced composites.
Although the current BO implementation delivers excellent perfor-
mance in most scenarios, convergence in complex or multimodal spaces
could be further improved through modifications such as incorporat-
ing rotational acquisition functions, adjusting Pareto Front weighting
strategies, or integrating a trust-region approach. Nonetheless, its data
efficiency and consistent results make BO a compelling framework for
design optimisation problems involving high-fidelity simulations.

5.2. Fibre paths and thickness distribution

Figs. 9-13 illustrate the optimised fibre orientations and thick-
ness distributions obtained via BO (left) and GA (right) for increasing
load levels. The visualisations highlight differences in design strategies
between the two approaches as structural complexity increases.

For the 50 kN case (Fig. 9), both BO and GA generate relatively
simple, symmetric fibre paths using a single layer. The helical winding

Thickness [mm]
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Fig. 9. Bayesian (left) and GA (right) results, 50 kN, single layer.
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Fig. 10. Bayesian (left) and GA (right) results, 100 kN, single layer, layers 1 (top) and 2 (bottom).
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Fig. 11. Bayesian (left) and GA (right) results, 200 kN, layers 1 (top) and 2 (bottom).
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Fig. 12. Bayesian (left) and GA (right) results, 500 kN, layers 1 (top) to 3 (bottom).

patterns are nearly uniform, but the BO design introduces subtle spatial
variation in thickness, likely responding to local stress concentrations.
This is visible in the smooth gradient of red and blue tones, in contrast
to the more uniform thickness of the GA solution, which maintains a
consistent but less tailored configuration.

In the 100 kN case (Fig. 10), two layers are activated, and the ben-
efits of BO’s local adaptation begin to emerge. BO varies fibre angles
across layers, particularly in the second layer, where slight asymme-
tries and refined orientation shifts are observed. Thickness is distributed
more progressively, indicating material efficiency and structural intent.
GA, on the other hand, employs near-identical helical paths across both
layers with minimal variation, resulting in a less adaptive design that
prioritises symmetry over local stress accommodation.

At 200 kN (Fig. 11), the difference in design strategy becomes more
evident. BO further tunes the fibre orientations across both layers, in-
troducing diagonal winding angles and controlled thickness gradients
that reflect anticipated buckling-critical regions. The thickness distribu-
tion remains smooth and functionally graded. In contrast, the GA result
exhibits more abrupt transitions and localised thickness increases, par-
ticularly in the second layer, possibly reflecting compensatory material
placement due to a lack of local orientation refinement.

11

In the 500 kN case (Fig. 12), with three active layers, BO lever-
ages its surrogate-assisted search to generate distinct fibre orientations
in each layer, along with non-uniform thickness modulations that fol-
low likely stress paths. This gradient-based reinforcement offers a more
sophisticated material placement strategy. GA, by comparison, main-
tains globally repetitive fibre patterns across all layers with fewer
local deviations. While both designs meet performance requirements,
the BO solution exhibits superior material targeting and structural
customisation.

The distinction becomes most pronounced at 1000 kN (Fig. 13). The
solution provided by BO exhibits highly non-uniform fibre orientations
and a smoothly varying thickness profile, particularly evident in the
intermediate and bottom layers. The design suggests clear spatial align-
ment with load distribution and likely buckling deformation modes.
Meanwhile, GA again employs more repetitive fibre architecture with
noticeably thicker regions concentrated in the middle layer, indicating
overcompensation rather than optimisation. The BO result shows better
alignment of material usage with structural demand, reinforcing critical
areas while avoiding excess.

Overall, the progression of results highlights the strength of BO in
producing structurally efficient and spatially adaptive designs across
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Fig. 13. Bayesian (left) and GA (right) results, 1000 kN, layers 1 (top) to 3 (bottom).

a wide range of loading conditions. BO systematically varies fibre
orientations and thickness distributions to respond to local demands,
enabling lightweight yet robust structures. GA, although capable of gen-
erating feasible solutions, tends to adopt more conservative and uniform
strategies, often relying on increased thickness rather than refined ori-
entation control. This comparison underscores the capability of BO to
exploit the design space more intelligently, particularly for complex
composite structures governed by buckling performance.

5.2.1. Manufacturing considerations

While the optimisation results demonstrate the structural efficiency
of BO-generated designs, their manufacturability must be critically as-
sessed, particularly with respect to automated composite fabrication
processes such as filament winding (FW) and automated fibre placement
(AFP). The following considerations are essential when evaluating the
feasibility of implementing the optimised fibre paths.

Fibre path curvature and continuity. ~FW typically supports symmetric
helical or hoop winding with continuous and relatively simple fibre
trajectories [50]. Sharp changes in fibre angle, abrupt shifts between
regions, or asymmetries across the shell, characteristics frequently seen
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in BO, optimised designs under higher load cases—are difficult to realise
using standard FW techniques. Such features may require multi-pass
programming, segmental winding, or complex mandrel adjustments.

In contrast, AFP technologies offer more flexibility. Fibre paths can
be steered along variable angles, enabling the implementation of spa-
tially adaptive BO strategies. However, AFP is not without constraints;
tight curvatures and abrupt orientation changes can introduce gaps,
overlaps, or local wrinkling, especially when the curvature radius falls
below allowable thresholds for a given tow width [51].

These observations suggest that the more complex and refined fibre
paths generated by BO are naturally better suited to AFP, whereas the
regular, symmetric helical patterns of GA are more compatible with FW.

Layer transition and coverage. =~ The BO framework frequently introduces
inter-layer variation, where each layer exhibits distinct fibre angles and
thickness distributions tailored to the local stress field. While advanta-
geous structurally, these features introduce manufacturing complexity.

In FW, changing fibre orientations between layers is possible but
requires reprogramming of the machine and may negatively impact
layer compaction or resin flow consistency [3]. In AFP, such inter-layer
variations are more manageable through selective ply stacking, but they
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Fig. 14. Buckling modes for the optimum cylinders using BO for the design loads of (a) 50 kN, (b) 100 kN, (c) 200 kN, (d) 500 kN, and (e) 1000 kN. The buckling

shapes are shown in 2D (left) and in 3D (right).

increase toolpath planning complexity and may still result in practical
issues like tow gaps or overlaps during add/drop transitions.

Thickness gradient implementation. —Thickness modulation is another
critical design feature that distinguishes BO from GA results. The abil-
ity to vary thickness locally and continuously, as seen in BO outcomes,
is challenging to implement using FW, which generally builds uni-
form layers. Achieving such gradients would require careful control
of overlapping passes or local winding speeds, which are limited in
practice.
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AFP, however, is more capable of achieving thickness variation
through tow-by-tow control, allowing selective material build-up or
reduction [4]. GA solutions, with their inherently more uniform and
symmetric thickness profiles, are simpler to manufacture via FW and
thus offer a practical baseline for production readiness.

Overall, the non-uniform thickness and variable fibre orientations
observed in BO designs align more naturally with AFP capabilities.
However, when FW is the target manufacturing process, incorporating
these advanced designs may require additional filtering, adaptation, or
manufacturing-aware constraints within the optimisation loop.
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Fig. 15. Buckling modes for the optimum cylinders using GA for the design loads of (a) 50 kN, (b) 100 kN, (c) 200 kN, (d) 500 kN, and (e) 1000 kN. The buckling

shapes are shown in 2D (left) and in 3D (right).

It is important to note that the manufacturing constraints embedded
in the optimisation framework are derived based on filament winding
limitations [31,52]. These included bounds on allowable fibre angles,
continuity of fibre paths, and restrictions on abrupt inter-layer devi-
ations. As such, the BO-generated designs remain within the feasible
envelope of FW capabilities, despite appearing more locally refined than
their GA counterparts.

However, some of the BO solutions, particularly under high load
cases, approach the practical limits of FW, such as the minimum wind-
ing angle and layer asymmetry tolerances. While still manufacturable,

14

these configurations may demand more advanced winding strategies,
such as segmented or adaptive winding paths. Alternatively, their im-
plementation may be facilitated through hybrid methods or AFP, which
offer additional flexibility in fibre steering and layer-by-layer tailoring.

Therefore, while the current results demonstrate the ability of BO
to operate within FW-compatible constraints, further enhancement of
manufacturability could be achieved by explicitly incorporating process-
aware penalisation or reward mechanisms into the optimisation objec-
tives, particularly if broader production strategies (e.g., AFP or hybrid
deposition) are to be considered.
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5.3. Buckling mode shape analysis

Figs. 14 and 15 show the first-mode buckling shapes of the opti-
mised variable-stiffness composite cylinders obtained using BO and GA,
respectively, for design loads ranging from 50 kN to 1000 kN. These
mode shapes reveal important characteristics regarding the distribution
of stiffness and the structural response of the optimised configurations.

Figs. 14 and 15 show the first buckling modes for the optimised
cylinders obtained using BO and GA, respectively, across all load levels.
The results are presented in both 2D (axial vs. circumferential coor-
dinate) and 3D views, allowing for a detailed comparison of modal
characteristics.

At lower load levels (50 kN and 100 kN), both BO and GA yield
diagonal buckling modes with evident torsional features. However,
the BO solutions exhibit more localised and sharper lobe formations
(Fig. 14(a)—(b)), suggesting enhanced circumferential stiffness modula-
tion. In contrast, the GA designs (Fig. 15(a)-(b)) show more uniform and
broader deformation bands, with lower spatial resolution in the lobes.
These differences indicate that BO achieves finer tailoring of stiffness
distribution, promoting the emergence of higher-order or mixed-mode
deformations.

At intermediate load levels (200 kN and 500 kN), the distinction be-
comes more pronounced. The BO buckling modes Fig. 14(c)—(d) reveal
a superposition of axial and circumferential waves, forming oblique and
spatially heterogeneous patterns. The lobes are non-uniform yet struc-
tured, pointing to locally responsive reinforcement strategies shaped
by the optimisation process. Conversely, the GA modes Fig. 15(c)-(d)
display increased axial wave dominance, particularly at 500 kN, with
relatively symmetric, repetitive lobes and reduced circumferential rich-
ness. This suggests that GA solutions prioritise axial stiffness, possibly
sacrificing modal adaptability.

At the highest load case (1000 kN), both optimisation strategies con-
verge to globally stable and symmetric buckling patterns. Nevertheless,
the BO result Fig. 14(e) continues to exhibit finer-scale circumferential
features and a slightly higher apparent mode order, reflecting sus-
tained tailoring across layers. In contrast, the GA solution Fig. 15(e)
appears more globally uniform, with longer axial half-wavelengths and
reduced modal richness. This may indicate a stiffer but less responsive
design, relying more on global thickness accumulation than localised
reinforcement.

Overall, the updated buckling mode analysis reinforces the struc-
tural benefits of BO. By enabling adaptive local variations in stiffness
and thickness, BO promotes the activation of complex, multi-directional
buckling shapes that better align with the structural demands. While
GA yields feasible and robust configurations, its tendency toward sym-
metric and conservative patterns may limit the activation of beneficial
higher-order modes under complex loading conditions.

6. Conclusion

We proposed a Bayesian Optimisation (BO) framework for the mass
minimisation of variable-stiffness composite cylinders subjected to a
wide range of buckling-driven load cases (50 kN to 1000 kN). The formu-
lation incorporated manufacturing constraints compatible with filament
winding, and structural evaluations were performed using a compu-
tationally efficient single-curvature Bogner-Fox-Schmit—Castro (BFSC)
finite element formulation tailored for thin-walled shells.

The BO framework demonstrated two key advances: by optimising
local fibre orientations (through three control-point angles per layer),
and by achieving convergence to near-optimal solutions with signif-
icantly fewer function evaluations than a baseline Genetic Algorithm
(GA). Across most design loads, BO produced designs with comparable
or improved buckling resistance while maintaining similar or slightly
higher mass. Notably, for the 1000 kN case, GA resulted in a lighter
design with marginally better structural performance, although BO
solutions around 1.326 were also identified, suggesting scope for further
tuning of hyperparameters.
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The analysis of fibre paths and thickness distributions revealed that
BO generates spatially adaptive, non-uniform designs with finer control
over material allocation. These designs showed better alignment be-
tween stiffness variation and stress demand, particularly in higher load
cases. While this enhances structural responsiveness, it also introduces
complexity from a manufacturing standpoint. GA, in contrast, produced
more symmetric and uniform configurations, which are inherently more
compatible with filament winding.

Buckling mode analyses confirmed the benefits of BO in capturing
rich, mixed-mode deformations, with higher circumferential lobe den-
sity and increased mode order compared to GA. These features reflect
the ability of BO to locally tailor stiffness and delay global instabilities.
In contrast, GA solutions tended towards lower-order axial-dominated
buckling modes with less structural adaptability.

Importantly, BO achieved high-quality solutions with far fewer
simulations—typically requiring only 800 evaluations and 2.5 h of com-
putational time, compared to over 2400 evaluations and 8 h for GA. This
data efficiency underscores the value of surrogate-assisted optimisation
in simulation-driven design workflows.

In summary, the proposed BO framework offers a powerful and scal-
able approach for the design of lightweight composite structures under
buckling constraints. Its ability to generate structurally adaptive solu-
tions with significant computational savings makes it particularly well
suited for complex, high-fidelity applications. Future work will explore
the integration of experimentally measured geometric imperfections,
enabling the optimisation of imperfect structures.
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