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Multi-Objective Analysis of Ridesharing in
Automated Mobility-on-Demand

Michal Čáp and Javier Alonso-Mora

Dept. of Cognitive Robotics, 3ME, TU Delft, the Netherlands

Abstract—Self-driving technology is expected to enable the re-
alization of large-scale mobility-on-demand systems that employ
massive ridesharing. The technology is being celebrated as a
potential cure for urban congestion and others negative external-
ities of individual automobile transportation. In this paper, we
quantify the potential of ridesharing with a fleet of autonomous
vehicles by considering all possible trade-offs between the quality
of service and operation cost of the system that can be achieved
by sharing rides. We formulate a multi-objective fleet routing
problem and present a solution technique that can compute
Pareto-optimal fleet operation plans that achieve different trade-
offs between the two objectives. Given a set of requests and
a set of vehicles, our method can recover a trade-off curve that
quantifies the potential of ridesharing with given fleet. We provide
a formal optimality proof and demonstrate that the proposed
method is scalable and able to compute such trade-off curves for
instances with hundreds of vehicles and requests optimally. Such
an analytical tool helps with systematic design of shared mobility
system, in particular, it can be used to make principled decisions
about the required fleet size.

I. INTRODUCTION

Ubiquitous connectivity and rapid advances in automation
are expected to revolutionize transportation of both goods
and people. In particular, urban mobility is being rapidly
transformed due to the emergence of new forms of on-demand
transportation options, exemplified by services such as Uber
or Lyft. In the near future, self-driving technology is expected
to enable the realization of large-scale automated mobility-
on-demand (AMoD) systems that provide personal point-to-
point transportation that is as comfortable and affordable as
traveling by private car, but uses a smaller fleet of shared
vehicles, which translates to reduction of parking capacity
requirements [6, 21, 17].

The benefits of automated on-demand mobility can be
further increased by employing ridesharing, where multiple
passengers traveling in a similar direction can be matched and
transported in one vehicle. By employing fewer vehicles to
serve fixed transportation demand, ridesharing has potential
to reduce energy consumption, congestion and traffic-related
pollution [16, 2]. Yet, our ability to quantify the extent of those
benefits and to identify under what circumstances can those
benefits be achieved is very limited.

We will refer to mobility-on-demand systems that use both
autonomous vehicles and ridesharing as Shared Automated
Mobility-on-Demand (SAMoD) systems. When designing a
SAMoD system, we are typically interested in two main
performance metrics. On the one hand, the users of the system

are interested in the quality of service - users of the system
desire to minimize service discomfort, i.e, they prefer to be
delivered to their destination as fast as possible. On the other
hand, the entity operating the system is interested in the
minimization of the operation cost - this usually translates
in the aim to minimize the fleet size and the total energy
consumed by the system.

The service discomfort and operation cost objectives are
usually in conflict, i.e, both cannot be minimized simultane-
ously. Instead, improvement in one criteria must be traded for
degradation in the other criteria. For example, on the one hand,
user discomfort is minimized by matching each request with
a dedicated vehicle. And, on the other hand, the operation
cost can be reduced by matching multiple request to a single
vehicle, which in turn increases the user discomfort. Even
though the two objectives are fundamentally intertwined on
multiple levels, the majority of the existing work in SAMoD
only considers one of the objectives individually and assumes
a fixed fleet with a known number of vehicles. In particular,
there is no principled study on how the two objectives interact
on the operational level.

In this paper we model ridesharing as a multi-objective
vehicle fleet routing problem with two criteria: to maximize
service quality and to minimize operation cost. In contrast
to single objective optimization, multi-objective optimization
problems typically do not have one optimal solution. Instead,
we are interested in a set of Pareto-optimal solutions [10].
A solution is called Pareto-optimal if there is no other solution
that would achieve better performance in both considered ob-
jectives simultaneously. When the Pareto-optimal solutions are
represented on the objective plane, with one axis representing
the value of discomfort and the other axis the operation cost,
we obtain a Pareto curve that graphically describes the best
attainable trade-offs between the two objectives. Such a trade-
off curve represents the fundamental limits of ridesharing for
a particularity problem configuration at hand. In other words,
there is no ridesharing strategy that projects below this curve.

A. Contribution

This paper has two main contributions. Firstly, we provide a
formalization of ridesharing as a vehicle fleet routing problem
with two competing objectives. Secondly, we design a scalable
solution method for the problem. The method can generate
representative Pareto-optimal solutions for problem instances
consisting of a set of requests and a set of vehicles and



consequently recover the shape of the Pareto curve. Moreover,
we formally prove the optimality of the method. Finally, we
apply the method to compute the shape of Pareto curves both
for synthetic problems and for a collection of 427 historical
taxi trips in Manhattan.

The proposed analytical tool helps with systematic design
of shared mobility system, in particular, it can be used to
make principled decisions about the required fleet size. Yet,
the proposed method is general and not limited to the anal-
ysis of SAMoD systems. It could also be employed to aid
systematic design of other multi-robot multi-task assignment
problems that include routing of a large vehicle fleet and tight
performance constraints.

B. Related Work

The early works in AMoD focused on the development
of models and algorithmic tools for on-demand fleets with
single-occupancy vehicles [6, 14, 17, 20, 15]. However, one
of the main promises of on-demand systems is the ability
to implement massive ridesharing. This is, to match multiple
customers, which are traveling in a similar direction, to a
single vehicle. This translates to a significant reduction in the
number of vehicles on the roads.

Ridesharing was traditionally formalized in the framework
of Vehicle Routing Problems (VRP) [19], typically as a
specific variant of VRP with Pickup and Delivery [4, 5, 3, 8]
or a Dial a Ride Problem (DARP) [7, 5]. Yet, the existing
exact VRP methods focus on instances with tens of vehicles
and requests [13, 9] and as such they are not applicable to
management or analysis of large-scale fleets that often consist
of thousands of vehicles and requests.

The potential for large-scale ridesharing was studied using
the shareability network model [16] revealing that up to 80%
of the taxi trips in Manhattan could be pairwise shared such
that the travel time is increased by no more than a couple
of minutes. The analysis was later extended to other cities
[18]. The model assumption of maximum two passengers in
a vehicle was later lifted in [2], where Alonso-Mora et al.
proposed a scalable technique for finding optimal assignment
of requests to a given fixed fleet of vehicles such that the
average travel delay is minimized. The problem of predictive
routing in MoD systems has been recently also addressed [1,
11].

In this paper, we borrow several algorithmic ideas from [2]
to design a multi-objective fleet routing algorithm that can be
used to study the trade-off between the operation cost and
the travel discomfort experienced by the users of the system.
Specifically, the vehicle-group assignment (VGA) component
presented in Section IV can be seen as a more concise
reformulation of the method by Alonso-Mora et al. [2] that,
e.g., avoids RV and RTV graph construction, which makes the
VGA algorithm simpler to implement and to analyze.

II. PROBLEM STATEMENT

Consider a fleet of vehicles that has to service a given set
of transportation requests. We study the problem of finding

a collection of Pareto-optimal system operation plans that
represent varying trade-offs between the service quality and
the operation cost.

A. Vehicle Fleet and Transportation Demand

There is a fleet of m ≥ 1 vehicles that can be used to serve
the transportation demand. Each vehicle v starts at a given
initial position oveh

v at time tveh
v . For convenience, we define

the set of vehicle indices as V = {1, . . . ,m}.
The transportation demand is modeled as a set of n trans-

portation requests. The i-th request is a tuple ri = (oi, di, ti),
where oi is the origin of request i, di is the destination of
request i, and ti is the time when the request i was announced.
The set of all request indices is denoted R = {1, . . . , n}.

Let tt(x1, x2) denote the travel time from point x1 to
x2, where each point represents an origin of a request, a
destination of a request, or an initial position of a vehicle.

B. Vehicle Plan

A plan for a vehicle v denoted πv =
((oveh

v , tveh
v ), o1, o2, . . .) encodes the initial spatio-temporal

position of the vehicle and a sequence of orders that the
vehicle should follow, where each order oi is either to pickup
a request r, or to drop-off a request r. For a plan to be valid,
for every order to pickup request r, the plan must contain
an order to drop-off the request r later in the sequence, and
vice versa, for every drop-off order, the plan must contain a
pickup order earlier in the sequence. The set of all requests
served by a valid vehicle plan πv is denoted as req(πv). The
set of all valid plans for vehicle v is denoted by Πv .

C. System Plan

A system plan assigns a particular plan to each individual
vehicle. For a system plan to be valid, each vehicle plan
must be valid and furthermore, all requests must be served
by exactly one vehicle. Thus, the set of all valid system plans
is denoted by Π and defined as

Π :=
{

(π1 ∈ Π1, . . . , πm ∈ Πm) :
⋃
v∈V

req(πv) = R and

∀i, j ∈ V i 6= j : req(πi) ∩ req(πj) = ∅
}
.

Observe that if there are no further constraints, then a
valid system plan exists for any transportation demand. Conse-
quently, a system plan that minimizes any desired cost criterion
is guaranteed to always exist.

D. Optimization Criteria

There are two types of agents that have interest in the
choice of the system plan: a) the users of the system and
b) the operator of the system. While each of the users is
interested in maximization of the quality of service, the
operator is interested in the minimization of the operating
cost. Furthermore, we will use the term “service discomfort”
to represent the “negative” of service quality.



We assume that the discomfort perceived by user who issued
request r depends only on the plan of the vehicle that serves
the request.

Let qr(πv) be a chosen service discomfort metric that
measures the discomfort experienced by the customer who
issued request r when the request r is served by vehicle v
that follows plan πv . To declutter the notation, we define the
same metric over system plans and use qr(π) as a shorthand
for qr(πv), where πv ∈ π is the plan of vehicle that serves
request r.

We will define the discomfort metric as the time that elapses
between the request announcement and the drop-off at the
desired destination, i.e., qr(πv) := tdropoff

r (πv) − tr, where
tdropoff
r (πv) is the time when the request r is dropped off

under plan πv .
Furthermore, let sv(πv) denote the cost that the system

operator has the bear when vehicle v executes plan πv . For
simplicity, we will define sv(πv) to be equal to the time that
the vehicle v spends in operation when following the plan πv .

E. Baseline Plan

The system plan that minimizes the total user discomfort,
or equivalently, the average drop-off time, is referred to as a
baseline “maximum comfort” plan πBL and it is defined as

πBL := argmin
π∈Π

∑
r∈R

qr(π).

Furthermore, let qBLr := qr(π
BL) be the discomfort that

request r experiences under the baseline plan.
Note that in some of our target scenarios, a baseline plan

can be constructed trivially. Consider, for example, a system
with a depot storing m ≥ n vehicles that need to serve a set
of n requests. Then, the baseline plan is obtained by letting
each request to be served by a dedicated vehicle. In a peer-
to-peer ridesharing scenario, each passenger can either realize
the trip using his own private vehicle or rideshare and travel in
private car of another passenger. Thus, for n individual trips
to be made, there are m = n available vehicles. The baseline
plan then corresponds to a situation in which no two rides are
shared.

F. Trading Discomfort for Operation Cost

We can now proceed to the formalization of the problem
of finding the set of system plans that trade-off discomfort
for operation cost. The discomfort induced by ridesharing for
a particular request r can be measured by considering the
difference in discomfort relative to the baseline assignment.
Let δr(πv) := qr(πv)− qBLr represent the induced discomfort
that the request r experiences under vehicle plan πv . Now, we
can define the service quality metric cs : Π→ R≥0 as

cs(π = (π1, . . . , πm)) :=
∑
v∈V

∑
r∈req(πv)

δr(πv)

and operation cost metric co : Π→ R≥0 as

co(π = (π1, . . . , πm)) :=
∑
v∈V

sv(πv).

The above service quality metric aims to represents so-
called social optimum, i.e, it aims at minimization of total user
discomfort, which is equivalent to minimization of average
discomfort across all users. This objective necessarily leads
to solutions that distribute the discomfort unequally among
individual requests. In result, some customers suffer from
induced discomfort more than others. However, in many prac-
tical systems, the variance in induced discomfort as assigned
to individual requests must be controlled. For example, human
passengers are particularly sensitive to discomfort and are
likely to switch to an alternative mode of transport if the
induced discomfort is deemed significantly higher than the
discomfort that other users need to bear. Therefore, we also
introduce a bound on maximum induced discomfort of each
transportation request and use δmax

r to denote the bound on
maximum allowed induced discomfort assigned to a single
transportation request r.

Our goal is to study the dynamics of the interaction between
the induced discomfort and operation cost objectives subject
to maximum induced discomfort constraints on individual
requests. In particular, we would like to know what are the
best possible trade-offs between the two criteria that can be
potentially achieved. This can be expressed in a framework of
multi-objective optimization as follows.

Problem 1 (Multi-objective Fleet Routing). Given a fleet of
vehicles, a set of transportation requests, and a travel time
function, solve

argmin
π∈Π

(cs(π), co(π)) subject to

δr(π) ≤ δmax
r , ∀r ∈ R.

A solution to the above problem is a set of all Pareto-optimal
system plans, each representing a particular trade-off between
the service discomfort and operation cost.

III. SOLUTION APPROACH

Finding all Pareto-optimal solutions for a large-scale dis-
crete multi-objective optimization problem, such as the one
formulated in Problem 1, is not feasible in practice [10]. In
order to obtain an approximation of the shape of the Pareto
front for our problem, we apply a popular solution technique
known as scalarization [10]. In this approach we solve a
family of single-objective optimization problems parametrized
by a weight parameter w, each asking for a system plan
that minimizes a convex combination of the two considered
objectives:

Problem 2 (Single-objective Fleet Routing). Given a weight
parameter w ∈ [0, 1] solve

argmin
π∈Π

w · cs(π) + (1− w) · co(π) subject to

δr(π) ≤ δmax
r , ∀r ∈ R.

An optimal solution of the above single-objective optimization
problem is a Pareto-optimal solution for Problem 1. By finding
a solution to the scalarized version of the problem for a



sequence of weights w0 = 0 < w1 < . . . < wk−1 < wk = 1,
we can recover a collection of representative Pareto-optimal
solutions that can be used to recover the shape of the Pareto
front.

It should be noted, however, that although all solutions of
scalarized problem are Pareto-optimal solutions, the opposite
does not hold. In particular, the scalarization technique is able
to generate all Pareto-optimal solutions that lie on the convex
hull of the feasible set in the objective plane, but it is unable
to generate Pareto optimal solutions that lie strictly inside
the convex hull. However, such an approximation is often
sufficient, because it is capable of describing the dynamics
of the interaction between the two criteria and moreover,
there is typically a good choice of representative solutions
on the convex hull to choose from. Most importantly, using
scalarization, one can efficiently recover the shape of Pareto-
front even for large problem instances, as we will discuss in
the following section.

IV. VEHICLE-GROUP ASSIGNMENT METHOD

The single-objective optimization problem stated in Prob-
lem 2 is a specific variant of a vehicle routing problem with
multiple vehicles and time windows, a class of problems
that are known to be NP-hard. In result, it cannot be solved
efficiently in general. In this section, we introduce a method,
that we will refer to as Vehicle-Group Assignment Method
(VGA), that can solve many large-scale real-world instances
of the problem optimally in practical time.

Vehicle-group assignment method finds optimal solution
to Problem 2 by generating all possible groups of requests
that each vehicle can serve and then by finding an optimal
assignment of such groups to individual vehicles.

We will refer to a set of request as a group. We say that a
group G ⊆ R is feasible for vehicle v if the vehicle can serve
all requests from the group without violating the maximum
induced discomfort constraints. If a group G is feasible, we use
c(v,G) to denote the cost of minimum-cost plan for vehicle v
that serves all requests in group G. The actual optimal plan for
vehicle v to serve requests in group G is denoted as π(v,G). In
order to determine the feasibility and cost of vehicle v serving
all requests in group G, one needs to solve a vehicle routing
problem for a single vehicle starting at a given initial position
and visiting pickup and destination positions of each request
r ∈ G, such that a) the pickup point of each request is visited
before the drop-off point and b) the maximum drop-off delay
of each request is not exceeded.

Then, we can define Fv ⊆ P(R) to be a set of all feasible
groups for vehicle v, where P(R) denotes the set of all subsets,
i.e., the power set, of the set R.

A useful property of group feasibility, initially observed
in [2], is the following: For a group to be feasible, all its
subgroups must be feasible as well. More formally, for any
vehicle v, we have G ∈ Fv only if ∀ G′ ⊂ G : G′ ∈ Fv .
This observation can be exploited to design a procedure that
iteratively generates the sets F 1

v , F
2
v , . . . containing feasible

Algorithm 1: Iterative generation of groups for vehicle v.
The boolean-valued function feasible(v,G) evaluates to
true, if vehicle v can serve all requests in group G without
violating the maximum induced discomfort constraints.

1 F 0
v ← {∅};

2 F 1
v ← ∅;

3 for i ∈ R do
4 if feasible(v, {i}) then
5 F 1

v ← F 1
v ∪ {i};

6 k = 2;
7 while F k−1

v 6= ∅ do
8 F kv ← ∅;
9 forall G ∈ F k−1

v , r ∈ F 1
v do

10 if ∀G′ ⊂ G ∪ {r}, |G′| = k − 1 : G′ ∈ F k−1
v and

feasible(i, G ∪ {r}) then
11 F kv ← F kv ∪ {G ∪ {r}};

12 k ← k + 1;

13 Fv ← F 0
v ∪ F 1

v ∪ F 2
v ∪ · · · ∪ F kv ;

groups of size 1, 2, . . . for vehicle v. The pseudocode of the
group generation procedure is given in Algorithm 1.

After feasible groups have been generated for all vehicles,
we need to choose a single group for each vehicle such that
every request is served by exactly one vehicle. A vehicle-group
assignment, typically denoted by a, is a mapping V → P(R).
For example, an assignment a = {(1, {2, 3}), (2, {1}), (3, ∅)}
represents the fact that vehicle 1 will serve requests 2 and 3,
vehicle 2 will serve request 1 and vehicle 3 will be idle. The
minimum-cost vehicle-group assignment a∗ can be obtained
by solving the following optimization problem:

Problem 3 (Vehicle-Group Assignment). Given a set of
feasible groups and a group cost function for each vehicle,
solve

argmin
a(1)∈F1,...,a(m)∈Fm

∑
v∈V

c(v, a(v)) subject to

a(i) ∩ a(j) = ∅ ∀i, j ∈ V, i 6= j.

Then, the optimal system plan π = (π1, . . . , πm) can be re-
covered by taking π1 = π(1, a∗(1)), . . . , πm = π(m, a∗(m)).

To solve Problem 3 using off-the-shelf ILP solvers, we can
make the following straightforward conversion to a binary
integer linear program:

argmin
{xv,G}

∑
v∈V

∑
g∈Fv

xv,G · c(v,G) subject to∑
G∈Fv

xv,G = 1 ∀v ∈ V∑
v∈V

∑
G∈Fv

xv,G · 1Fv (r) = 1 ∀r ∈ R

xv,G ∈ {0, 1} ∀v ∈ V, ∀G ∈ Fv,



where 1S(x) is the indicator function, i.e., 1S(x) = 1 if x ∈ S
and 1S(x) = 0 otherwise.

The decision variables xv,G represent all possible vehicle-
group assignments. The first constraints enforces that there is
exactly one group assigned to each vehicle, while the second
constraint enforces that every request is assigned to exactly
one vehicle. If xv,G = 1 in the optimal solution, then we have
a∗(v) = G.

The vehicle-group assignment formulation turns out to be
beneficial when the constraints on maximum drop-off delay
become tight. Such constraints effectively eliminate groups
containing requests that are far away from the vehicle, because
the vehicle cannot arrive to the request in time. Furthermore, in
some settings, such constraints will also effectively eliminate
formation of larger groups of requests.

V. THEORETICAL ANALYSIS

The Vehicle-Group Assignment method is an optimal so-
lution algorithm for Problem 2, as stated by the following
theorem.

Theorem 4. If and only if a∗ is a solution to Problem 3, then
(π(1, a∗(1)), . . . , π(m, a∗(m))) is a solution to Problem 2.

Proof: Recall the definition of Problem 2:
argminπ∈Π w · cs(π) + (1 − w) · co(π) subject to
δr(π) ≤ δmax

r , ∀r ∈ R and define cwv (πv) :=
w ·
∑
r∈req(v) δr(πv) + (1 − w) · sv(πv). Then, the objective

criterion can be expressed as a sum of cost functions over
single-vehicle plans as follows: w · cs(π) + (1 − w) · co(π)
= w ·

∑
v∈V

∑
r∈req(v) δr(πv) + (1 − w) ·

∑
v∈V sv(πv)

=
∑
v∈V

(
w ·
∑
r∈req(v) δr(πv) + (1− w) · sv(πv)

)
=
∑
v∈V c

w
v (πv).

Similarly, the constraint δr(π) ≤ δmax
r , ∀i ∈ R, can be

equivalently expressed as δr(πv) ≤ δmax
r , ∀r ∈ req(v) ∀v ∈

V . Recall the definition of the set of all valid system plans Π
and make the constraint forcing that every request is served
by at most one vehicle explicit. We obtain the following
reformulation of the above problem:

argmin
π1∈Π1,...,πm∈Πm

∑
v∈V

cwv (πv) subject to

δr(πv) ≤ δmax
r , ∀r ∈ req(πv) ∀v ∈ V.

req(πi) ∩ req(πj) = ∅ ∀i, j ∈ V, i 6= j.

Define Πv(G) := {π ∈ Πv : req(v) = G},
fv(G) := ∃π ∈ Πv(G) : ∀r ∈ req(πv) : δr(π) ≤ δmax

r ,
πv(G) := min

π∈Πv(G)
cwv (π) s.t. δr(πv) ≤ δmax

r , ∀r ∈ req(πv),

cv(G) := cwv (πv(G)). Assume arbitrary partitioning of re-
quests to m disjoint groups. That is, let G1 ⊆ R, . . .,
Gm ⊆ R such that ∀i, j ∈ V, i 6= j : Gi ∩ Gj = ∅ and⋃
v∈V Gv = R. Given such partitioning, the optimal system

plan π(G1, . . . , Gm) = (π′1, . . . , π
′
m) is a solution to

argmin
π1∈Π1(G1),...,πm(Gm)∈Πm

∑
v∈V

cwv (πv) subject to

δr(πv) ≤ δmax
r , ∀r ∈ req(v) ∀v ∈ V.

Observe that the optimization problem is decoupled and thus
it is feasible if and only if ∀v∈V fv(Gv). If it is feasible, we
can obtain the optimal value for each optimization variable
πv , v ∈ V independently as

πv =
argmin
π′
v∈Πv(Gv)

cwv (π′v) subject to

δr(π
′
v) ≤ δmax

r , ∀r ∈ req(v)
= πv(G).

The minimum of the objective value can be obtained as∑
v∈V cwv (πv) =

∑
v∈V cv(Gv).

Now we prove the two directions of the equality.
1) By contradiction. Let π∗1 , . . . , π

∗
m be a solution to Prob-

lem 2. Now assume that a∗ is a solution to Problem 3, but
∃v ∈ V , such that req(π∗v) 6= a∗v . This implies that there
is another partitioning to groups that admits lower value of
objective function. This is impossible because the solution
to Problem 3 is a partitioning that minimizes the objective
function.

2) By contradiction. Let a∗1, . . . , a
∗
m be a solution to Prob-

lem 3. Now assume that π∗ is a solution to Problem 2, but
∃v ∈ V , such that req(π∗v) 6= a∗v . There are two possibilities:
a) It holds that ∀v ∈ V : req(π∗v) = a∗v . This implies,
that π∗is not an optimal plan given partitioning a∗. This is
impossible because given a particular feasible partitioning the
two formulations have been shown to be equivalent. b) It
holds that ∃v ∈ V : req(π∗v) 6= a∗v , i.e., the optimal
solution to Problem 2 lies in different partitioning than the
partitioning corresponding to the solution to Problem 3. This
is impossible, because the problem is formulated such that
all feasible partitionings are explored and the one containing
minimum cost solution is selected.

VI. EXPERIMENTAL ANALYSIS

In this section, we demonstrate the applicability of the
proposed multi-objective optimization technique. We use the
algorithm to obtain insights into the dynamics of interaction
between the quality of service and the operation cost in a
given transportation system. We first apply the algorithm in
context of an idealized transportation system operating on an
Euclidean plane and then demonstrate the applicability of the
method to solve a real-world ridesharing problem.

A. Ridesharing in Euclidean Plane

We start by analyzing the behavior of the algorithm using
synthetic instances that represent a fleet of holonomic vehi-
cles moving at constant unit speed in the Euclidean plane
and that have to service a collection of randomly generated
travel requests in a rectangular region of the plane. More
specifically, we generate n requests such that the origin point
and destination point are sampled uniformly from region
[0, 100] × [0, 100] and the announcement time is sampled
from interval [0, 50]. We consider the peer-to-peer ridesharing
scenario, i.e., each of the generated requests is assumed to
have its own vehicle available at the origin of the request
at the time of announcement of the requests. In result, each
generated instance has n vehicles and n requests.
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Figure 1. Ridesharing in Euclidean Plane. Top-left: Pareto curves in objective plane. Markers represent individual Pareto-optimal solutions. The line represent
convex lower-bound on the Pareto-front. Bottom-left: The dependency between the average induced discomfort and fleet size used by Pareto-optimal solutions.
Right: Three representative Pareto-optimal solutions for δmax

r = 1 qBL
r . The origin of each request is denoted by a red circle and its destination is denoted

by a red diamond. Blue boxes represent vehicles. The routes of vehicles that carry only one vehicle are shown by thin blue lines. The routes of vehicles that
carry multiple requests are highlighted in green.

Illustration of Solution

Next, we illustrate how can be the VGA method used the
recover the shape of Pareto front for a random synthetic
problem instance. Figure 1-A shows the random instance
in consideration. The instance consists of 50 random re-
quests with origin points shown as red circles and destination
points shown as red diamonds and 50 vehicles depicted as
blue squares, initially located at the origin of each request.
Figure 1-A also shows the baseline system plan: In this case,
each vehicle picks-up its nearest request and drives directly to
the drop-off point of the request.

To obtain a set of Pareto-optimal solutions, we solve Prob-
lem 2 for a sequence of weight parameter values ranging from
w = 0 to w = 1. We repeat the process for three different
bounds on induced discomfort δmax

r . The three resulting Pareto
curves, one for each value of δmax

r , are shown in the top-left
plot in Figure 1. Another parameter of interest that can be
measured for each Pareto-optimal solution is the number of
vehicles used in the system plan. The bottom-left plot in Fig-
ure 1 shows the dependency between the induced discomfort
and the number of active vehicles.

In Figure 1, plots A, B, and C, we show Pareto-optimal
system plans corresponding to three selected points on Pareto
front for δmax

r = 1 qBLr . We can see that the system plan A,
that projects to the point at the top-left end of the Pareto
front, employs no ridesharing, since this plan optimizes solely
the service quality. When we move in down along the Pareto
curve, the respective Pareto-optimal plans contain an increas-
ing number of trips that were merged together and are served
by a single vehicle as exemplified by system plan B. The
system plan C corresponds to the bottom extreme point of

the Pareto curve and achieves the lowest operating cost that
can be achieved subject to constraints on maximum induced
discomfort, in this case δmax

r = 1 qBLr .
Even though the shown system plans are Pareto-optimal

with respect to operation cost, that we define as total operation
time over all vehicles, we can see that minimization of
operation cost also indirectly leads to reduction of the fleet.
This is because the only way to minimize operation cost is to
share more rides, which in turn reduces the number of active
vehicles in the solution.

Another phenomena that can be observed in our illustrative
example is that the Pareto curve for an instance with a
induced discomfort bound δmax

r = 0.6 qBLr approximately
coincides with the Pareto front for instance with relatively
looser bound δmax

r = 1 qBLr at the top part of the curve,
but diverges at its bottom end. This divergence results from
the conflict between the service quality objective, that asks
for the minimization of the average induced discomfort, and
the constraint that bounds the maximum induced discomfort
of individual requests. Some Pareto-optimal solutions from
the loosely constrained instance are not feasible in the case
of more tightly constrained instances, because they distribute
induced discomfort unequally among the individual requests
and consequently violate the maximum induced discomfort
bounds.

Application to Fleet Sizing

In the previous section, we have illustrated how we can
generate a set of Pareto-optimal solutions for a problem
instance consisting of a fixed set of requests and a fixed fleet
of vehicles. Each such Pareto-optimal system plan implicitly
prescribes how many and which specific vehicles from the
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Figure 2. Top: Pareto curves for instances with n ∈ {50, 100, 200}
randomly generated travel requests in the same spatio-temporal region. The
thick lines represent the “expected” Pareto curve for given density. Bottom:
The number of vehicles (100% represents n vehicles) used in Pareto optimal
solution corresponding to the individual Pareto curves.

fleet should serve the requests in order to achieve a partic-
ular Pareto-optimal trade-off between the operation cost and
service discomfort.

The multi-objective fleet optimization approach can there-
fore be used for the purpose of operational fleet optimization,
i.e., it answers the questions of how many and which of the
currently available vehicles should be used to achieve optimal
performance when serving a given, deterministically known
transportation demand.

In the following, we would like to demonstrate that the
method can be also used to get insights in the issue of strategic
fleet optimization, i.e, to determine what is the optimal size
and composition of a fleet of a transportation system before
the transportation demand is revealed. For most transportation
system, we have access either to historical data or to statistical
information about the transportation demand to be served.
Then, we can either use the historical data or take a sample
from a demand model and use our method to obtain a set
of Pareto-optimal system plans. By computing such Pareto-
optimal system plans for different realizations of demand to be
served, we can study which vehicles are active in each Pareto-
optimal system plan. Then, we can estimate the distribution of
different fleet parameters, e.g., we can recover the distribution
of fleet sizes. Such information can be used to determine
the appropriate fleet size for a system in hand. One can, for
example, choose the fleet size such that it is larger than the

size of 95% of optimal fleets achieving discomfort of 2% and
at the same time larger than 99% of optimal fleets achieving
discomfort of 5%.

To illustrate the value of the above approach, we will use
it analyze how does the spatio-temporal density of demand
in the system influence the cost savings that can be realized
by employing ridesharing. We first generate a set Euclidean
ridesharing instances with n = 50, n = 100, and n = 200
requests randomly generated in a spatio-temporal region of
fixed size as described in Section VI-A. Then, we compute
a set of Pareto-optimal solutions for each such instance. The
Pareto curves for sampled instances are shown by thin lines in
the top plot in Figure 2, where each demand density is plotted
in a different color. The thick line represents “expected” Pareto
curve for an instance with the indicated number of requests,
obtained by averaging the values of the operation cost and
average induced discomfort over the individual samples for
individual values of w = 0, . . . , 1. We can see that the Pareto
curves for instances with different number of request (i.e.,
instances having different demand density) occupy different
parts of the objective plane. We can further observe that when
demand-density is increased, solutions having both lower
operation cost and lower user discomfort can be found. More
specifically, for 50 requests in the given space-time region,
one can reduce operation cost by 6% in exchange for average
2% discomfort degradation. In contrast, for 200 requests in
the same region, one can reduce operation cost by 12% in
exchange for 1.8% discomfort. The bottom plot in Figure 2
shows the number of vehicles used in sampled Pareto-optimal
solutions for different demand densities. Again, when the
demand density is higher, we can find more favorable trade-
offs between the fleet size and induced discomfort. As we can
see, such an experiment provides a quantitative justification
for the intuition suggesting that the benefits of ridesharing are
best realized in areas with high density of travel requests.

B. Case Study: Ridesharing in Manhattan

In this section, we demonstrate the applicability of the
proposed technique for analysis of a real-world transporta-
tion system. More specifically, we analyze the potential of
ridesharing among taxi passengers in Manhattan. We base our
analysis on the dataset released by NYC Taxi and Limousine
Commission that contains a pickup time and origin and
destination geo-coordinates for each passenger trip served by
any of the 13 586 yellow taxis in New York City [12]. From
this dataset, we select a 60-second slice of data from Tuesday,
May 7th 2013 between 9:00:00 am and 9:01:00am, which
consists of 427 requests across Manhattan. Furthermore, we
consider the complete roadgraph of Manhattan consisting of
4 092 nodes and 9 453 edges. The travel time along each
edge is estimated using the method described in [16]. The
travel time between any two points on the map is then
computed by finding the minimum-time path between the two
given points on the roadgraph. We apply the proposed multi-
objective optimization method to compute the Pareto-curve
that represents best attainable trade-offs between operation
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Figure 3. Manhattan Case Study. Three representative Pareto-optimal system plans for δmax
r = 0.25 qBL

r . The routes of vehicles that carry only single
passenger are plotted in semi-transparent grey. The routes of vehicles that carry multiple passengers are plotted by thicker line in color.
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Figure 4. Manhattan Case Study. Top: Pareto curves in objective plane for
different values of δmax

r . The markers represent projections of representative
Pareto-optimal solutions. Bottom: The number of vehicles used in each
Pareto-optimal system plan.

cost and induced discomfort for such set of travel requests.
The results for different bounds on maximum individual

discomfort are shown in Figure 4. The system plans corre-
sponding to three different points (denoted A, B, and C) on
the Pareto front for δmax

r = 0.25 qBLr are shown in plots
A, B, and C in Figure 4. The paths of taxis that carry one
passenger are shown in light gray, the paths of taxis that
were assigned multiple passengers are highlighted in color.
We can see that for δmax

r = 0.25 qBLr , it is possible to

reduce the operation cost of the fleet to 76% of the baseline
operation cost (i.e., each request travels alone) and reduce the
number of active vehicles from 452 to 292, while the average
induced discomfort per request would increase to 48 s, which
corresponds to δr = 0.09 qBLr .

VII. CONCLUSION

Urban mobility is being transformed by newly emerging
forms of on-demand transportation. Self-driving technology,
in particular, is expected to enable the operation of large
centrally-controlled vehicle fleets. In this paper, we argued that
the potential for ridesharing arises when the system operation
cost can be traded-off for user discomfort and we studied
the dynamics of the interaction between the two competing
objectives. In particular, we formulated the problem as a multi-
objective fleet routing problem and designed a computational
method based on the idea of vehicle-group assignment. The
method can compute a set of representative Pareto-optimal
system plans to achieve different trade-offs between cost of
operation and user discomfort. We gave a formal proof of
optimality of the proposed method. Furthermore, we showed
that the method is remarkably scalable and is capable of
computing such trade-off curves for instances consisting of
hundreds of requests and vehicles. In particular, we applied
the method to a set of 427 taxi requests that were issued in
Manhattan in a 60-second long time window.

In future work, we will investigate how the proposed method
can be adapted, possibly by introducing approximations or
heuristics, to compute the trade-off between operation cost
and quality of service in even larger instances of the problem.
We will also study what is the best way to use the information
provided by our method to design shared automated mobility-
on-demand systems and to appropriately select the required
number of vehicles in the fleet.
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