
 
 

Delft University of Technology

Towards life-long autonomy of mobile robots through feature-based change detection

Derner, Erik; Gomez, Clara; Hernandez, Alejandra C.; Barber, Ramon; Babuska, Robert

DOI
10.1109/ECMR.2019.8870940
Publication date
2019
Document Version
Accepted author manuscript
Published in
Proceedings of the European Conference on Mobile Robots (ECMR 2019)

Citation (APA)
Derner, E., Gomez, C., Hernandez, A. C., Barber, R., & Babuska, R. (2019). Towards life-long autonomy of
mobile robots through feature-based change detection. In L. Preucil, S. Behnke, & M. Kulich (Eds.),
Proceedings of the European Conference on Mobile Robots (ECMR 2019) IEEE.
https://doi.org/10.1109/ECMR.2019.8870940
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ECMR.2019.8870940
https://doi.org/10.1109/ECMR.2019.8870940


Towards Life-Long Autonomy of Mobile Robots Through
Feature-Based Change Detection

Erik Derner1,2,3, Clara Gomez3, Alejandra C. Hernandez3, Ramon Barber3, and Robert Babuška1,4

Abstract— Autonomous mobile robots are becoming increas-
ingly important in many industrial and domestic environments.
Dealing with unforeseen situations is a difficult problem that
must be tackled in order to move closer to the ultimate
goal of life-long autonomy. In computer vision-based methods
employed on mobile robots, such as localization or navigation,
one of the major issues is the dynamics of the scenes. The
autonomous operation of the robot may become unreliable if
the changes that are common in dynamic environments are
not detected and managed. Moving chairs, opening and closing
doors or windows, replacing objects on the desks and other
changes make many conventional methods fail. To deal with
that, we present a novel method for change detection based
on the similarity of local visual features. The core idea of
the algorithm is to distinguish important stable regions of
the scene from the regions that are changing. To evaluate the
change detection algorithm, we have designed a simple visual
localization framework based on feature matching and we
have performed a series of real-world localization experiments.
The results have shown that the change detection method
substantially improves the accuracy of the robot localization,
compared to using the baseline localization method without
change detection.

Index Terms— Life-long autonomy, change detection, mobile
robots, localization, place detection, computer vision in robotics.

I. INTRODUCTION

Mobile robots have become a key component for many
tasks in the robotics domain, such as object manipulation and
transportation, human-robot collaboration, or surveillance.
Deployment of autonomous mobile robots in industrial and
domestic environments poses a difficult challenge due to the
dynamics of the environments. These challenges give a rise
to the development of advanced methods that will be able to
deal with changes occurring in the environment to perform
tasks such as robot localization and navigation precisely and
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reliably. Novel approaches and suitable environment repre-
sentations are being sought to allow for life-long autonomy
of mobile robots in highly dynamic environments.

In this work, we present a novel approach for change
detection based on local feature descriptors. The robot
continuously monitors its environment and detects changes
that have occurred. Upon detection of a change, the robot
updates its representation of the environment to incorporate
the information about the change. The key point consists in
automatically learning the persistent regions of each scene,
which remain unchanged over a long period of time.

The type of changes that we mainly consider in our work
comprise moving chairs and items on tables, altering the
picture on computer or TV screens, changing the contents
of whiteboards and notice boards, opening or closing doors,
adjusting blinds in the windows, etc. These changes occur
every day in various industrial, domestic and office environ-
ments. Fig. 1 shows examples of such changes.

Fig. 1. Examples of changes that can be detected by the proposed algo-
rithm. Such changes may confuse methods assuming static environments.

The concept of change detection introduced in our method
can be used for robot localization and navigation, place
detection, etc. It allows the robot to recognize its surround-
ings more reliably and therefore perform these tasks more
precisely.

The paper is organized as follows. The related research
in the field of change detection is presented in Section II.
A baseline visual localization framework is introduced in
Section III and the proposed change detection method is
presented in Section IV together with its incorporation to
the localization framework. The experimental evaluation is
described in Section V and Section VI concludes the paper.
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II. RELATED WORK

Dynamic environments and changes in the environment
have been perceived as a challenge in most robotic navigation
contexts. In order to perform stable localization and path-
planning, robots must take into account these changes [1].
Change detection has attracted the interest of many authors
recently and different approaches have been proposed.

Most change detection algorithms are based on object
detection and tracking in long-term operation [2], [3], [4],
[5]. In [2] a robot patrols an indoor environment and detects
movable objects by change detection and temporal reason-
ing. Their objective is to determine how many movable
objects are there in the environment and track their position.
The Rao-Blackwellized particle filter and the expectation-
maximization algorithm are used to track the objects and
learn the parameters of environment dynamics. In [3] a
service robot is deployed in different indoor environments
and a hierarchical map of the environment is maintained
that takes into account the changes in object positions by
comparing current object detections to mapped ones. In [5]
the change detection problem is treated through reasoning
about observations. Observations are classified considering
long-term features, short-term features, and dynamic fea-
tures, which correspond to mapped static objects, unmapped
static objects, and unmapped dynamic objects respectively.
Short-term features produce local adjustments to the belief
about the trajectory of the robot, while long-term features
generate global adjustments.

Other works directly detect changes and correspondences
between robot views or images [6], [7], [8], [9], [10], [11],
[12]. Full RGB-D views are used in [6] to build a map
of the robot world. Changes between successive views are
computed to discover the objects (moved areas) and learn
them. Similarly, in [8], a Truncated Signed Distance Function
(TSDF) grid and 3D reconstructions of the environment are
maintained. New observations are aligned with previous ones
and included in the new reconstruction. The new reconstruc-
tion is compared to the previous one in order to identify
dynamic clusters between both reconstructions. Image views
are used in [9] to detect changes using Gaussian Mixture
Models (GMMs). As GMMs have long computational times,
Vertical Surface Normal Histograms provide main plane
areas which are discarded in the search of changes. Change
detection is accomplished as the difference in the Gaussians
generated for two images. Pointclouds from a LiDAR are
compared to an octree-based occupancy map in [10] to obtain
a set of changes. Change candidates are computed with
the Mahalanobis distance and filtered to eliminate outliers.
Authors in [11] proposed a 2D LiDAR-based framework
for long-term indoor localization on prior floor plans. The
system combines graph-based mapping techniques and Bayes
filtering to detect significant changes in the environment.
They use an ICP-based scan matching to determine the
probability that a LiDAR scan related to a trajectory pose
corresponds to the currently observable environment. This
probability is used to improve the trajectory estimation

through the update of the previous nodes. In [12] a method
for life-long visual localization using binary sequences from
images is proposed. It is assumed the idea of using sequences
of images instead of single images for recognizing places.
Features are extracted using global LDP descriptors to obtain
the binary codes of each image. These binary descriptors are
efficiently matched by computing the Hamming distance.

Change detection has also been broadly studied for out-
door environments [13], [14], [15]. Structural change detec-
tion from street view images is performed in [13]. Multisen-
sor fusion SLAM, deep deconvolution networks and fast 3D
reconstruction are used to determine the changing regions be-
tween pairs of images. In [14], a Bayesian filter is proposed
to model feature persistence of road and traffic elements.
Single-feature and neighbouring-feature information are used
to detect changes in feature-based maps and estimate feature
persistence. Big effort has been also made to overcome
seasonal changes for outdoor environment navigation [16],
[17], [18], [19]. In [16], HOG features and deep convo-
lutional networks are used to compare and match the new
acquired image with a database of images independently of
the weather and seasonal conditions. The approach presented
in [17] compares different variants of SIFT and SURF feature
detectors in the frame of an appearance-based topological lo-
calization on panoramic images capturing seasonal changes.

Many algorithms need computationally demanding learn-
ing processes or the maintenance of heavy map reconstruc-
tions to perform change detection. On the contrary, the ap-
proach proposed in this paper relies on local feature detection
and matching, which allows to run in real time on low-cost
hardware platforms. While a lot of related methods deal with
seasonal changes, we focus on changes that typically occur
in indoor environments.

III. VISUAL LOCALIZATION FRAMEWORK

The change detection method proposed in this paper can
be used for localization or place detection with various
algorithms based on local features. In this section, we present
a simple visual localization framework that will serve as a
baseline and that will be later extended with the proposed
change detection method.

An overview of the method is presented in Fig. 2. For now,
we assume that the change detection module is not present
and we introduce the baseline localization framework.

At first, a robot equipped with a camera builds a dis-
crete representation of the environment in the form of a
visual database, where images are stored together with
their location coordinates. Note that a robot featuring a
self-localization capability in a static environment needs to
be employed to build the map (visual database). Standard
methods based on wheel encoders and laser rangefinder
readings can be applied to perform this task.

In the life-long deployment, the robot continuously local-
izes itself in the environment using feature matching against
the previously built visual database. The matching procedure
will be described in detail in Section III-B.



Fig. 2. Overview of the visual localization framework. The long-term
localization uses a previously built visual database. Query images from
the robot are matched against the visual database and the closest match
determines the position of the robot. The change detection module monitors
the changes in the matched images and updates the visual database when
it detects a difference.

A. Building the Visual Database

First, we need to create the visual database that will serve
as a reference for localization. A mobile robot equipped
with a camera and using a standard localization method
moves around the environment and records images and their
locations. The visual database consists of individual records
ri, indexed by i ∈ {1, . . . ,N}, which have the following
structure:

• a grayscale image Ii, captured by the camera mounted
on the robot,

• a set of descriptors Di of the points of interest Pi
detected in image Ii, where Pi = {p1

i , p2
i , . . . , pmi

i } and
Di = {d1

i ,d
2
i , ...,d

mi
i },

• the coordinates ci = (xi,yi,ϕi) representing the location
(pose) of the robot.

A robust feature detector and descriptor needs to be
employed to detect points of interest and calculate their
compact representation. We have chosen Speeded-Up Ro-
bust Features (SURF) [20], however, other transformation-
invariant features could be used too.

B. Correspondence-Based Localization

Using the previously created visual database, the robot can
be deployed and localize itself using the real-time feed of
images from its camera that we refer to as the query images.
The following steps are performed to localize the robot:

1) Capture a grayscale image Iq – the query image.

2) Run the SURF detector and descriptor on the query
image. The set of descriptors on the query image Iq is
denoted as Dq = {d1

q ,d
2
q , . . . ,d

mq
q }.

3) Match the set of descriptors Dq found in the query
image against the sets of descriptors Di stored with
the database records ri.

4) Report the location of the robot as the location ci∗

stored with the database record ri∗ , which achieved
the highest ratio of correspondences pq,i∗/mi∗ among
all records ri in the database.

The index i∗ of the database record ri∗ with the highest ratio
of correspondences pq,i∗/mi∗ is determined by the following
equation:

i∗ = argmax
i

(
pq,i

mi

)
, (1)

where pq,i is the number of tentative correspondences be-
tween the query image and the database image Ii found by
the matching algorithm and mi = |Di|, i.e., mi is the number
of descriptors stored with the database record ri. It means that
we are searching for a database record which will have the
largest portion of its descriptors matched with the descriptors
found in the query image.

IV. CHANGE DETECTION METHOD

We propose a method for change detection that improves
the life-long autonomy of mobile robots through maintaining
an accurate and up-to-date representation of the environment.
The essence of the method consists in learning the scene
regions that are stable, distinguishing them from areas that
are changing. This task is performed through change detec-
tion and results in a representation robust to changes in the
environment. In the following text, we present the change
detection method and we show how it is incorporated in the
baseline localization framework.

A. Detecting Changes

The change detection algorithm is based on comparison of
feature descriptors. We define a similarity measure between
two descriptors d and d′ as their Euclidean distance:

s(d,d′) =
∣∣∣∣d−d′

∣∣∣∣
2 . (2)

Note that the lower is the similarity measure, the more
similar are the two features.

The outline of the change detection algorithm is as fol-
lows:

1) Based on the pairs of tentative correspondences found
by the matching algorithm, use MSAC [21]to estimate
the transformation between the query image Iq and the
best-match database image Ii∗ .

2) Transform the positions of the points of interest Pi∗

in the best-match database image Ii∗ to the coordinate
frame of the query image Iq, yielding a set of trans-
formed points of interest P̄i∗ .

3) Calculate the SURF descriptors D̄i∗ =
{d̄1

i∗ , d̄
2
i∗ , . . . , d̄

mi∗
i∗ } of the transformed points of

interest P̄i∗ in the query image Iq.



4) Calculate the similarity measure s j between the SURF
descriptors d j

i∗ corresponding to the points of interest
p j

i∗ in the database image Ii∗ and the SURF descriptors
d̄ j

i∗ of their projections p̄ j
i∗ in the query image Iq.

5) For all j ∈ {1, . . . ,mi∗}, if the similarity measure s j is
larger than a given threshold θ, the descriptor d j

i∗ and
the corresponding point of interest p j

i∗ is removed from
the database record.

The change detection is therefore based on computing the
similarity measure between the descriptors d j

i∗ calculated
on the best-match database image Ii∗ and their transformed
counterparts d̄ j

i∗ calculated on the query image Iq. Note
that this is different from using the points of interest Pq
and their descriptors Dq detected in the query image for
comparison. As the transformed points of interest from the
best-match database image and their descriptors are used
instead, the algorithm becomes more robust to the precision
and repeatability shortcomings of the feature detector.

The similarity measure (2) is adapted to the following
form:

s j =
∣∣∣∣∣∣d j

i∗ − d̄ j
i∗

∣∣∣∣∣∣
2
, where j ∈ {1, . . . ,mi∗} . (3)

The set of descriptors Di∗ and the respective set of points
of interest Pi∗ is then updated by removing the elements with
the similarity measure above the threshold θ:

D′i∗ = Di∗ \
{

d j
i∗ : s j > θ ∀ j ∈ {1, . . . ,mi∗}

}
, (4)

P′i∗ = Pi∗ \
{

p j
i∗ : s j > θ ∀ j ∈ {1, . . . ,mi∗}

}
. (5)

The updated sets D′i∗ and P′i∗ replace the original sets Di∗

and Pi∗ in the database record ri∗ .

(a) (b)

Fig. 3. A database image (a) and a query image with one object missing
on the third shelf from the top (b). The crosses represent points of interest
in both images. Tentative correspondences found by the matching algorithm
are shown in green. Cyan circles show the transformations of the points of
interest from the database image to the query image. Magenta circles show
points of interest that were identified as a change.

Fig. 3 shows an example of a scene on which we can
illustrate the principle of the change detection algorithm.
An item, e.g. a toolbox, has been removed from one of
the shelves after building the visual database. The change
detection algorithm transforms the points of interest from the
database image to the query image and calculates their SURF
descriptors. They are then compared to the corresponding
SURF descriptors in the database image. Since the descrip-
tors in the region of the toolbox have the similarity measure

above the threshold, they are removed, together with the
respective points of interest, from the respective sets linked to
the database image. Note that as a by-product, some unstable
features may be removed as well.

B. Life-Long Operation

The localization framework presented in Section III can be
now extended by the change detection module. An overview
of the life-long localization is shown in Fig. 2. In the life-
long operation, the robot continuously localizes itself in the
environment and maintains its visual database up to date by
incorporating changes detected in the environment.

An important condition that makes the change detection
method efficient is that wrong matches (localization failures)
need to be avoided as much as possible, because incorporat-
ing false positive changes in wrong matches decreases the
quality of the visual database. To avoid this, we introduce
two conditions that serve as a confidence criterion: a spatial
and a temporal condition.

The spatial condition calculates the mean Euclidean dis-
tance ms (in the (x,y)-space of the robot) between the best
match and the ns successive most similar matches of the
query image with the images in the visual database (starting
with the second-most similar match) and compares it with a
reference mean of distances mr. The reference mean mr is
calculated as the mean Euclidean distance of the best match
and nr closest database records in the (x,y)-space, where
the best match itself is excluded from this set. Typically, the
number of closest reference points nr is set to be several
times larger (e.g. 5×) than ns. If the mean distance of the
most similar matches ms is larger than the reference mean
distance mr, the confidence criterion is not met. Note that
the reference means mr can be pre-calculated offline for all
database records for efficiency.

The temporal condition checks if the distance between
the current location and the previous location is smaller
than a given threshold δ. It takes into account the physical
limitations of the robot and discards unreliable matches in
cases when the robot appears to have moved further than it
possibly could. The temporal condition is tested only if the
spatial condition was met both for the current and for the
previous image, which allows for recovery after a localization
failure.

Only if both conditions are met, the change detection
module is run and the visual database is updated. This
way, the chance of incorporating false positive changes on
wrongly matched images is minimized.

The presented approach allows for localization in unstruc-
tured dynamic environments even in cases when standard
localization methods based on a static map would fail. Note
that the amount of changes between the moment of building
the visual database and the current state of the environment
can be large. The method can deal with such changes
thanks to the adaptation to gradually emerging changes by
continuously updating the visual database.



V. EXPERIMENTS

We have chosen the popular robotic platform TurtleBot 2
to validate our method. The robot is equipped with a camera
Asus Xtion PRO LIVE, which provides RGB and depth
images. However, only grayscale images are used in our
method. We have used an extension attached to the top of
the TurtleBot in order to fix the camera at a higher position,
as can be seen in Fig. 4. The position of the robot is captured
through odometry based on wheel encoders.

Fig. 4. Mobile robot TurtleBot 2 equipped with a camera used in the
experiments.

A. Environments

Due to the lack of publicly available data sets capturing
dynamic environments, which would be well suited for the
type of changes that we focus on in this paper, we have
created three data sets in different environments at the
Carlos III University in Madrid. The data sets in each of
the environments – Lab, Classroom, and Hall – consist of
multiple sequences. The sequences have been recorded on
different days and at different times of the day, capturing
various changes in the environment (moving chairs and items
on the desks, changing the picture on computer screens,
opening and closing window blinds, etc.). The trajectories
and examples of images for each environment are shown
in Fig. 5. The number of images and the length of the
trajectories for each of the sequences are given in Table I.

TABLE I
PROPERTIES OF THE IMAGE SEQUENCES USED IN THE EXPERIMENTS.

Data set Sequence Images Length

Lab

L-DB (database) 41 10.0 m
L-Q1 (query) 89 10.5 m
L-Q2 (query) 85 10.2 m
L-Q3 (query) 84 9.7 m
L-Q4 (query) 103 10.0 m

Classroom

C-DB (database) 57 14.1 m
C-Q1 (query) 113 14.2 m
C-Q2 (query) 106 13.9 m
C-Q3 (query) 103 14.0 m

Hall

H-DB (database) 58 22.5 m
H-Q1 (query) 58 7.1 m
H-Q2 (query) 57 6.9 m
H-Q3 (query) 59 6.9 m
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Fig. 5. Examples of images (left) and trajectories (right) from the
environments used in the experiments.

B. Experimental Setup

At first, we have constructed visual databases L-DB, C-DB
and H-DB for the environments Lab, Classroom, and Hall,
respectively. The playback of the recorded query sequences
served as a stream of query images in real time. Each query
image was matched with the most similar image in the visual
database and the coordinates associated with the most similar
database image were returned as the pose of the robot. If the
conditions for confidence (as described in Section IV-B) were
met, the record of the best match in the visual database was
updated with the detected changes.

In all experiments, we have used the following default con-
figuration. The similarity threshold for change detection was
set to θ = 0.5. With regards to the confidence criterion, the
number of closest samples ns was set to 2 and the number of
reference samples nr = 10. The temporal difference tolerance
was set to δ = 0.5 m. We have empirically evaluated that the
default values work well for all tested scenarios. However,
they may be adjusted for improved performance on data sets
with substantially different properties.

C. Results

We have executed a cascade of subsequent runs of the life-
long localization algorithm on query sequences from all three
environments. We have compared the root-mean-squared
(RMS) localization errors on query sequences matched
against the original visual databases and against visual



databases that have been updated by executing localization
with change detection on one of the query sequences. The
results are summarized in Table II, where ‘–’ in the ‘Updated
on’ column means that the original visual database was used,
i.e., without any updates made based on the changes observed
in the environment.

The RMS localization errors are shown in Table II. The

TABLE II
LOCALIZATION RMS ERRORS ON DIFFERENT QUERY SEQUENCES.

SEQUENCES EVALUATED ON A DATABASE UPDATED WITH CHANGES

DETECTED IN A PREVIOUS SEQUENCE ARE DISPLAYED IN BOLD.

Visual Updated Query Localization
database on sequence RMS error

L-DB – L-Q2 0.56 m
L-DB L-Q1 L-Q2 0.35 m
L-DB – L-Q3 0.52 m
L-DB L-Q1 L-Q3 0.26 m
L-DB – L-Q4 0.66 m
L-DB L-Q1 L-Q4 0.49 m
C-DB – C-Q3 0.63 m
C-DB C-Q1 C-Q3 0.54 m
C-DB C-Q2 C-Q3 0.42 m
H-DB – H-Q2 0.64 m
H-DB H-Q1 H-Q2 0.54 m
H-DB – H-Q3 0.91 m
H-DB H-Q1 H-Q3 0.54 m

results show that the change detection algorithm leads to
an improved localization accuracy. Employing the change
detection yields an average improvement of 38 % on the
query sequences from the Lab environment, 24 % for the
Classroom environment and 28 % for the Hall environment.

The processing time of a single query image is 200–
300 ms on a standard laptop1 for all experiments.

VI. CONCLUSIONS

We have proposed a method for change detection based
on comparison of local visual features and we have shown
how the change detection method can be incorporated into
a simple localization framework. We have introduced two
conditions that evaluate the confidence of a correct localiza-
tion. This way, we avoid decreasing the quality of the visual
database by introducing changes from wrongly matched
images. The experimental evaluation has shown that updating
the representation of the environment with the information
about the changes leads to a considerably more accurate
localization.

In the future work, we plan to extend the method to
make it more robust, e.g. by adding features for objects
newly present in the scene and introducing feature weights to
distinguish between short-term and long-term changes. We
will also compare our method with alternative state-of-the-art
approaches used for localization.

A possible line of future research would be to incorporate
the semantic information into the change detection algorithm,
e.g. by applying an object detection method to determine the
changes in the scenes based on object occurence.

1CPU Intel Core i7-4610M (2 cores @ 3.0 GHz), 16 GB RAM
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