
Georgi Krasimirov Kuzmanov

G
eorgi K

rasim
irov K

uzm
anov

Media applications inherit high media specific computational power and wide
data bandwidth requirements, potentially limiting performance eff icient
implementations on general purpos e processors. This dissertation describes a
reconfigurable processor, which can diminish and even overcome these
application specific limitations while remaining as flexible as a general purpose
processor. The proposal is referred to as The Molen Polymorphic Media
Processor and it is based on the co-processor architectural par adigm. The basic
idea comprises a core general purpose processor, which controls the executi on
and the reconfiguration of a reconfigurable co-processor, tuning the latter to
specific media algorithms. A fully operational prototype implemented in the
Xilinx Virtex II ProTM technology is described. An experimental evaluation of t he
prototype is performed considering MJPEG, MPEG-2, and MPEG-4. The
experimentally obtained speedups approach up to 98% of the theoretically
attainable maximums.

ISBN : 90-9018801-0

The Molen Polymorphic Media
Processor

The M
olen Polym

orphic M
edia Processor

TU Delft

Stellingen behorende bij het proefschrift /
Propositions to the Ph.D. thesis

The Molen Polymorphic

Media Processor

van / by

Georgi Krasimirov KUZMANOV

Delft, 13 December 2004.

1. To speedup a media application, designer’s efforts should be twofold:
first, to increase the media specific computational power; second, to
increase the data memory bandwidth.

2. To speedup program execution, conventional caches exploit linear spa-
cial data locality. Many visual media algorithms, however, inherit mul-
tidimensional spacial locality. Therefore, conventional caches are not
quite beneficial for such algorithms.

3. General purpose machines, augmented with reconfigurable hardware,
can entirely fill the gaps between pure GPPs and pure ASICs both in
flexibility and in performance.

4. ”... the effort expended on achieving high parallel processing rates is
wasted unless it is accompanied by achievements in sequential processing
rates of very nearly the same magnitude.” Amdahl, G.M. [1967]
Corollary: In GPP designers’ society, accelerating an application 20% is
considered spectacular. Meanwhile, in the ASIC world, an acceleration
of 200% may be considered next to miserable.

5. A university engineering researcher should give industry the clearest
indications for the feasibility and worthiness of his ideas.
Corollary: Having a good idea is as important as properly presenting it
to the potentially interested parties.

6. The most powerful engine that drives progress forwards is the human’s
curiosity. The general driving question is ”What if...?”.

7. People are unlimited in their desires, but limited in their capabilities.
Corollary: Competing with yourself is the hardest competition to win.

8. A real help is not to pay one’s bills but to teach one how to help oneself.

9. ”Time exists in us, so do we exist in time. It changes us, so do we
change it.” Vassil Levski (1837-1873),

Bulgarian National Hero
Consequently, we can not abandon our historical time, but we can
change it.

10. Though moussaka is widely known to be Greek, it is actually a Mediter-
ranean dish prepared according to different local traditions. One should
taste Bulgarian moussaka to realize the obvious difference to, e.g.,
Samian moussaka. As a rule, however, nothing tastes better than
mamma’s mousaka.

These propositions are considered defendable and as such have been
approved by the supervisor Prof. dr. Stamatis Vassiliadis.

1. Om een media toepassing te versnellen, zou de ontwerper zich twee
doelen moeten stellen: Ten eerste het versnellen van de media speci-
fieke rekenkracht; ten tweede het versnellen van de data geheugen band-
breedte.

2. Om de uitvoering van programmas te versnellen exploiteren conven-
tionele caches de lineaire ruimtelijke lokaliteit. Vele visuele media al-
goritmen daarintegen hebben multidimentionale ruimetelijke lokaliteit.
Hierdoor zijn conventionele caches niet goed voor dergenlijke algoritmen.

3. General Purpose Processoren (GPP), aangevuld met herconfigureerbare
hardware kunnen zowel qua flexibiliteit als qua prestaties de kloof tussen
GPPs en pure ASICs volledig dichten

4. “... de moeite die gespendeerd wordt aan het bereiken van hoge par-
allele verwerkingssnelheden gaat verloren tenzij het gepaard gaat met
vergelijkbare sequentiele verwerkingssnelheden.” Amdahl, G.M. [1967]
Corollary: In de GPP gebied wordt het versnellen van een applicatie
met 20% als spectaculair gezien. In de ASIC wereld daarintegen kan
een versnelling van 200% als teleurstellend gezien worden.

5. Een universitair onderzoeksingenieur moet duidelijke indicaties over de
haalbaarheid en waarde van zijn ideeën geven aan de industrie.
Corollary: Het hebben van een goed idee is net zo belangrijk als het
goed presenteren aan potentiële geintereseerden.

6. Het sterkste mechanisme dat de vooruitgang drijft is de menselijke
nieuwsgierigheid. De algemene sturende vraag is: “Wat als...?”.

7. Mensen zijn ongelimiteerd in hun verlangens maar gelimiteerd in hun
kunnen.
Corollary: De strijd met jezelf is de moeilijkste om te winnen.

8. Echte hulp is niet het betalen van iemands schulden maar iemand leren
hoe zij zichzelf kan helpen.

9. “Tijd bestaat in ons, dus bestaan we in de tijd. Tijd verandert ons, dus
veranderen wij de tijd.” Vassil Levski (1837-1873),

Bulgaarse Nationale Held
Het gevolg hiervan is dat wij onze historische tijd niet kunnen ontsnap-
pen, maar wij kunnen het wel veranderen.

10. Hoewel moussaka bekend staat als een Grieks gerecht is het eigenlijk
een mediteraans gerecht voorbereid volgens verschillende lokale tradities.
Men zou de Bulgaarse moussaka moeten proeven om zich de duidelijke
verschil te realiseren ten opzichte van bv. de Samiaanse moussaka. Maar
de regel is in ieder geval dat niets beter smaakt dan mamma’s moussaka.

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd
door de promotor Prof. dr. Stamatis Vassiliadis

The Molen Polymorphic

Media Processor

The Molen Polymorphic

Media Processor

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op maandag 13 december 2004 om 13:00 uur

door

Georgi Krasimirov KUZMANOV

Computer Systems Engineer
Technical University of Sofia
geboren te Sofia, Bulgarije

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. S. Vassiliadis

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter Technische Universiteit Delft
Prof. dr. S. Vassiliadis, promotor Technische Universiteit Delft
Prof. dr.-Ing. J. Becker Universität Karlsruhe
Prof. dr. ir. E. Deprettere Universiteit Leiden
Prof. dr. ir. H.J. Sips Technische Universiteit Delft
Prof. dr. John Long Technische Universiteit Delft
Prof. dr. W. Luk Imperial College London
Prof. dr. A. Popov Technical University of Sofia
Prof. dr. C.I.M. Beenakker, reservelid Technische Universiteit Delft

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Kuzmanov, Georgi Krasimirov
The Molen Polymorphic Media Processor
Georgi Krasimirov Kuzmanov. – [S.l. : s.n.]. – Ill.
Thesis Technische Universiteit Delft. – With ref. –
Met samenvatting in het Nederlands.
Съдържа кратък обзор на български език.

ISBN 90-9018801-0

Subject headings: reconfigurable machines, media processing, MJPEG,
MPEG, microcode, performance, prototyping.

Copyright© 2004 Georgi Krasimirov KUZMANOV
All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without permission of the
author.

Printed in The Netherlands

To all my teachers, family, and friends
with gratitude and love

The Molen Polymorphic
Media Processor

Georgi Krasimirov Kuzmanov

Abstract

I
n this dissertation, we address high performance media processing based
on a tightly coupled co-processor architectural paradigm. More specif-
ically, we introduce a reconfigurable media augmentation of a general

purpose processor and implement it into a fully operational processor pro-
totype. The proposed media Molen prototype is implemented on the Xilinx
Virtex II Pro™ technology. Its entire ”backbone” infrastructure utilizesless
than 1% of the reconfigurable resourcesof the prototyping chip xc2vp20. Con-
sequently, virtually the entire reconfigurable area is available for implementa-
tions of media processing units and memory. Such a reconfigurable area is
used to addressescomputational intensive kerneland memory intensive ac-
cessrequirements of media applications. More specifically, we consider for
reconfigurable implementation several MPEG-4 performance limiting kernels
including the repetitive padding, the accepted quality function, and the dis-
crete wavelet transform. Compared to pure software execution, we obtain up
to two orders of magnitudekernel speedups. The memory bandwidth limi-
tation problem is solved by introducing a scalable, rectangularly addressable
memory organization for accessing block-organized visual data. When im-
plemented in hardware, the proposed memory organization suggests8X data
transfer speedups. We evaluate the proposed processor prototype also at the
application level by experimenting on MJPEG, MPEG-2, and MPEG-4. The
experiments clearly indicate that our proposal can be employed to accelerate
media applications. More specifically, the performance results obtained at the
application level suggest thatoverall application speedups of 2X-3Xcan be ex-
pected, approachingup to 98% of the theoretically attainable maximum appli-
cation speedups. Reconfigurable technologies, other than Virtex II Pro™ , are
also considered and suggest similar performance improvements giving clear
indications that our proposal isgeneral and technology independent.

i

Acknowledgements

This dissertation was born after four years of enthusiasm and confusion, hopes
and disappointments, hard work till late hours but also joy of sharing thoughts
with people from numerous lands and cultures. I was granted the chance to
enjoy and suffer all these emotions during my PhD study by one person who
took the ”risk” of approving me for a PhD position just after two phone inter-
views. First and foremost, I would like to thank my advisor, prof.dr. Stama-
tis Vassiliadis, for being that person. It has been my privilege to work with
dr. Vassiliadis whose professional expertise is indisputable and widely known.
But I also appreciate the chance to know the visionary Stamatis who, with his
energy, open mindness, and sunny character, made me feel the science fun.

My immediate thanks go to all my colleagues and friends from the Computer
Engineering (CE) Lab family. The truly international environment they created
enriched my personality beyond the scientific and professional frames of com-
puter engineering. Special thanks to Georgi Gaydadjiev with whom we shared
numerous scientific ideas, but also moments of fun. I thank Pyrrhos Stathis
and especially Casper Lageweg, for the ”extraordinary efforts” they made to
ensure that the propositions and the abstract of this dissertation sound just as
good in Dutch. Also thanks to my roommate Jari Nikara for the interesting
technical discussions including, by the way, our common passion for old time
classic cars. I also give credits to my friends at the ”Bulgarian” lunch table
in the faculty canteen for dissipating much of the homesickness I may have
experienced otherwise.

I would like to acknowledge the institutions that financially supported my re-
search, namely PROGRESS, the embedded systems research program of the
Dutch organization for Scientific Research NWO, the Dutch Ministry of Eco-
nomic Affairs, and the Technology Foundation STW. Special thanks to my
colleagues from the Artemis project (AES.5021), prof.dr. Ed Deprettere, dr.
Andy Pimentel, dr. Jos Eindhoven, and Todor Stefanov, with whom we had a
fruitful and successful collaboration.

iii

To date, I also consider this dissertation an emanation of my lifetime. There-
fore, I would like to express gratitude to all my teachers who greatly con-
tributed for building my background of knowledge and will to qualify for the
position in the CE Lab and to meet the challenges involved. My special thanks
go to prof.dr. Angel Popov with whom I published my first papers and who,
believing in me, recommended me to prof.dr. Vassiliadis. Thanks go to my
former colleagues from ”Info MicroSystems” Ltd., Sofia, and especially to the
company head dr. Marin Marinov. They greatly contributed to the successful
start of my engineering career in the friendly and enthusiastic atmosphere of a
typical hightech startup.

Throughout the past four years, my warmest thoughts have always been with
those Bulgarian friends of mine, with whom every time we meet is as if we
have never separated. Despite the thousands of kilometers between us, I felt
their close support, therefore I thank them warmly. Hereby, I would also like
to thank my family and my close relatives for their lifetime love and support.

Finally, with my deepest love and gratitude I would like to thank my parents,
Rumiana and Krasimir, for their love, patience, trust, advices, and support
during the entire life of mine. I hope that I have been a son deserving them.

G.K. Kuzmanov Delft, The Netherlands, 2004

iv

Contents

Abstract i

Acknowledgments iii

List of Tables ix

List of Figures xi

List of Acronyms xiv

1 Introduction 1

1.1 Media background . 2

1.1.1 Visual data compression 2

1.1.2 MPEG-4 - the content-based coding standard 4

1.1.3 Media design requirements and potential limitations . 7

1.2 General reconfigurable approach 11

1.3 Dissertation objectives . 13

1.4 Dissertation overview . 15

2 Molen Background 17

2.1 General approach . 17

2.2 Organization and microarchitecture 19

2.3 Programming paradigm and sequence control 23

2.4 Conclusions . 28

v

3 MPEG-4 Hardwired Kernels 29

3.1 Hardwired repetitive padding 30

3.1.1 Background and motivation 32

3.1.2 The application specific processor approach 34

3.1.3 The augmented ALU 39

3.1.4 Simulation results and evaluation 45

3.2 The accepted quality function 54

3.2.1 Definition of the ACQ function 54

3.2.2 Implementation . 55

3.2.3 Scalability and data bandwidth 56

3.2.4 Evaluation . 57

3.3 Lifting based discrete wavelet transform 59

3.3.1 DWT background . 60

3.3.2 The lifting scheme 61

3.3.3 The proposed design 64

3.3.4 Design evaluation . 71

3.4 Conclusions . 75

4 Visual Data Rectangular Memory 77

4.1 Introduction . 78

4.2 Motivation . 79

4.3 Block addressable memory 82

4.4 Experimental results and related work 92

4.5 Conclusions . 96

5 The Xilinx Virtex II Pro Prototype 97

5.1 The arbiter . 98

5.1.1 General requirements to the arbiter. 98

5.1.2 Arbiter implementation 101

5.1.3 Arbiter testing and hardware complexity 106

5.2 Theρµ-code unit . 108

vi

5.2.1 Manipulations on theρµ-code 108

5.2.2 ρµ-code unit implementation 111

5.3 XREGs, memory organization, and clocks 113

5.4 The polymorphic interface 116

5.5 Overall synthesis results . 118

5.6 Program code annotation . 119

5.7 Conclusions . 122

6 Performance Evaluation 125

6.1 Performance evaluation methodology 126

6.2 Reconfigurable units considered 129

6.3 Experimental results . 131

6.3.1 MJPEG real experimental evaluation 132

6.3.2 MPEG-2 experimentally projected evaluation 135

6.3.3 MPEG-4 theoretically estimated speedup 141

6.4 Conclusions . 149

7 General conclusions 151

7.1 Summary . 151

7.2 Contributions . 154

7.3 Proposed research directions 156

A Amdahl’s Law Illustrations 157

Bibliography 159

List of Publications 169

Samenvatting 171

Кратък обзор (summary in Bulgarian) 173

Curriculum Vitae 175

vii

List of Tables

1.1 MPEG-4 Visual Profiles@Levels definitions and processing
speed in MacroBlocks per second [MB/s]. 6

3.1 Computational demands of the MPEG-4 Core@L1 and
Main@L4. 35

3.2 Values ofNP8
n andNP16

n . 38

3.3 Truth table for the control signals of the output multiplexer. . . 41

3.4 Area-performance results for the Xilinx xc4085xlpg559-09 chip. 46

3.5 Area-performance results for the Altera epf10k20rc240-4 chip. 46

3.6 Processing speed at clock frequencyFn=1 GHz. 50

3.7 Hardware gates estimations. 51

3.8 ACQ Processing speed and required data bandwidth according
to the number of processing elements (for Altera FPGA). . . . 59

3.9 Synthesis results for the lifting based DWT unit, 4-4 polyno-
mial filter and a 64x32 picture. 73

3.10 Performance evaluation for polynomial filters of different de-
grees and a constant picture size of 352x288 pixels. 74

3.11 Performance evaluation for different picture sizes and constant
polynomial filter degrees of 4-4. 74

4.1 Number of LAM cycles in different access scenarios. 81

4.2 Access time pern× n block in LAM cycles.t = T2DA
TLAM

. . . . 82

4.3 Synthesis for frames up-to 512x1024 (device 2vp50ff1152). . 93

4.4 Estimated transfer speedups forTLAM = 10ns. 94

ix

4.5 Comparison to other proposed schemes. 94

5.1 Arbiter synthesis results for xc2vp20, speed grade-5. 108

5.2 ρµ-code unit synthesis results for xc2vp20, speed grade-5. . . 113

5.3 Molen organization synthesis results (* RP infrastructure only,
without any CCU implemented). 119

6.1 Synthesis results per CCU implementation. 131

6.2 Synthesis parameters for the Core Generator™ IPs. 131

6.3 Synthesis results for the automatically generated DCT* CCU. 133

6.4 Overall MJPEG speedup by the DCT∗ Molen CCU implemen-
tation. 134

6.5 MPEG-2 profiling results for the considered functions. 135

6.6 Cycle numbers for different SAD implementations. 137

6.7 Local speedup for the MPEG-2 kernels considered (si = TSEi
Tρi

). 137

6.8 Projected overall MPEG-2 speedup per kernel (Si = 1
1−(ai−ai

si
)
).138

6.9 Overall speedup estimations for the entire MPEG-2. 139

6.10 PowerPC cycles for the repetitive padding algorithm per block. 143

6.11 PPC cycles forTmem, Tpadd, Tcd, andTCCU 144

6.12 Repetitive padding local speedups by the Molen prototype. . . 144

6.13 I/O parameters and data of the ACQ CCU. 144

6.14 ACQ CCU synthesis results for Virtex II Pro 144

6.15 PowerPC cycles for the ACQ function per 16×16 BAB. 145

6.16 Average local speedup in different MPEG-4 scenarios. 147

6.17 Estimated overall MPEG-4 speedups in different scenarios. . . 149

x

List of Figures

1.1 Make applications fit - a typical reconfigurable design flow. . . 12

2.1 The general Molen approach: program transformation example. 18

2.2 The Molen machine organization. 20

2.3 Thep-set, c-set, andexecuteinstruction format. 21

2.4 ρµ-code unit internal organization. 22

2.5 The sequencer residence table. 22

3.1 The repetitive padding algorithm. 33

3.2 The padding processing element. 36

3.3 A single scan line/column padding structure. 37

3.4 Possible configurations - ”I” denotes initialization and/or in-
termediate result buffer. 40

3.5 ALU augmentation for a single pixel padding. 41

3.6 Scan line / column padding augmentation of an ALU. 42

3.7 Data initialization and buffering for luminance line / column
processing by a 64-bit ALU. 43

3.8 Data structure influence on the performance (mappings on Xil-
inx FPGA considered). 48

3.9 Processing speed for different ALU operand sizes and
Fn=1 GHz. Note the logarithmic scale. 51

3.10 Alpha threshold influence on the VOP visual quality: left -
alphath=0; right - alphath=256. 55

3.11 Accepted quality single pixel-block processing element. 57

xi

3.12 The ACcepted Quality processing structure. 58

3.13 Wavelet prototype function - an example. 60

3.14 The lifting scheme. 62

3.15 Calculations in the predict phase forN = 4, L = 12. 65

3.16 The predict module. 66

3.17 Calculations in the update phase forÑ = 4 andL = 12. . . . 68

3.18 The update module. 69

3.19 Synchronizing FIFO buffers for forward transform. 71

3.20 Top-level organization of the lifting-based DWT unit. 72

4.1 Addressing problem in LAM. 80

4.2 Memory hierarchy with 2DAM. 81

4.3 Mapping of scan-line organized pixels into a 2D addressing
space. 84

4.4 Modules assignment and internal addressing fora=2, b=4,
N=16. 85

4.5 2DAM for a=2, b=4, andN = 2n ≥ 16. 86

4.6 Module address generation. 87

4.7 LAM interface forW=2, a=2, b=4. 88

5.1 General organization of the proposedπISA emulating arbiter. . 100

5.2 Reconfigurable instruction encoding:ρ-form. 103

5.3 Reconfigurable instruction execution timing. 104

5.4 Test program. 107

5.5 Test program waveforms. 107

5.6 Microcode termination techniques. 109

5.7 Molen finalization. 110

5.8 General view of theρµ-code unit. 111

5.9 An example of XREGs allocation for two CCUs. 114

5.10 The CCU polymorphic interface. 117

5.11 Top-level schematic of the Virtex II Pro Molen prototype. . . . 120

xii

6.1 Mapping MJPEG onto the Virtex II Pro Molen prototype. . . . 132

6.2 Kernels execution cycles for PowerPC ISA and fixedρµ-code. 137

6.3 Overall MPEG-2 encoder speedup with three SAD configura-
tions. 138

6.4 Experimental versus theoretical speedups. 140

6.5 Influence of nonlinearity on the overall MPEG-2 encoder
speedup. 141

6.6 Projected MPEG-4 speedups in different scenarios. 148

A.1 Theoretically maximum attainable speedup,Smax = 1
1−a . . . 157

A.2 Overall speedup dependance on the kernel speedup (differenta).158

xiii

List of Acronyms

ACQ ACcepted Quality (function in MPEG-4)
ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
ASIP Application Specific Integrated Processor
BAB Binary Alpha Block (in MPEG-4)
BRI Block of Reconfigurable Instructions
CCU Custom Computing (Configurable) Unit
c-set complete set
DCT/IDCT Discrete Cosine Transform / Inverse DCT
DWT/IDWT Discrete Wavelet Transform / Inverse DWT
FLWT Fast Lifting Wavelet Transform
FPGA Field Programmable Gate Array
GPP General Purpose Processor
HDL Hardware Description Language
ISA Instruction Set Architecture
LAM Linearly Addressable Memory
LR Link Register (of PowerPC)
MC Motion Compensation (in all MPEGs)
ME Motion Estimation (in all MPEGs)
MIR MicroInstruction Register
MPEG Motion Pictures Experts Group
JPEG Joint Pictures Experts Group
MJPEG Motion JPEG
PE Processing Element
PN Propagation Node (for MPEG-4 padding in this thesis)
p-set partial set
RP Reconfigurable Processor
SAD Sum of Absolute Differences
VO Video Object (in MPEG-4)
VOP Video Object Plane (in MPEG-4)
XREG eXchange REGister
XRn XREG n
πISA polymorphic ISA
ρµ-code reconfigurable microcode
ρCS-α reconfigurable Control Store address
ρCSAR reconfigurable Control Store Address Register
2DAM Two-Dimensionally Addressable Memory

xiv

Chapter 1

Introduction

Polymorphism: The capability of assuming different forms;
the capability of widely varying in form.

T
he industrial impact of digital technology and its growing economi-
cal importance urged the development of media standards for digital
visual compression such as JPEG, MJPEG, MPEG-1, and MPEG-2.

The latest complete visual coding standard, MPEG-4 [1, 2], includes numer-
ous new functionalities (e.g., content based coding, interactivity, natural and
synthetic scenes and objects) that impose severe speed limitations to existing
general purpose computers. In this dissertation, we assume such general pur-
pose processors (GPP) and improve their performance in the media domain by
introducing reconfigurable hardware extensions. We assume GPP platforms,
as opposed to application specific, because of the flexibility, programmabil-
ity, and compatibility features they posses [3]. In the present dissertation we
consider high performance. Other parameters, such as power consumption,
may lead to different architecture implementations and realizations1 of recon-
figurable processors and are considered as future research topics. We assume
reconfigurable hardware extensions of GPPs, because they have shown con-
siderable potential for speedups of computationally demanding algorithms.

This introductory chapter is organized in four sections. Section 1.1 delivers the
minimal background on media processing required. A general reconfigurable
design approach is sketched in Section 1.2. The thesis objectives are presented
in Section 1.3 outlining the dissertation scope. Section 1.4 overviews the re-
maining contents of the dissertation.

1In this dissertation, we employ the terminology definition from [3] for the three concep-
tual issues of any computer design: thearchitecture of any computer system is the conceptual
structure and functional behavior as seen by its immediate user (the programmer); theimple-
mentation is the logical organization of the dataflow and controls of a computer system; and
therealization is the physical structure embodying the implementation.

1

2 CHAPTER 1. INTRODUCTION

1.1 Media background

In this section, we provide the minimal required background on the media ap-
plications considered in this dissertation, namely the visual data compression
standards, with a special emphasis on MPEG-4. We also discuss some general
open questions regarding the performance of the media processing computers.

1.1.1 Visual data compression

We start the introduction to the visual data compression with a brief presenta-
tion of the digital presentation of visual data.

Color spaces:In digital visual systems, data are presented in still pictures or
frames (a sequence of still pictures) of natural scenes, sampled at regular in-
tervals of time. Each picture/frame comprises a number of samples (referred
to as picture elements, pels, or pixels), represented digitally by one or more
numbers and organized in a two-dimensional rectangular array. A pixel of a
gray scale (monochrome) image is represented by a single number, which in-
dicates its brightness (luminance). To represent colors, multiple numbers per
pixel are required. These numbers are organized in different systems, each
referred to as acolor space. A very popular color space is the RGB, where
three independent numbers represent the intensity of each primary color of
light, i.e., red/green/blue. In systems, utilizing RGB color space, each color is
usually presented with the same number of bits. The RGB color presentation,
however is not the most efficient one regarding data compression. Another
popular color space widely utilized in visual data compression is the so called
Y:Cr:Cb. This color space exploits the sensitivity of the human visual system
to luminance, which is higher than the sensitivity to chrominance. The lumi-
nance number (Y) is the weighted average of the primary colors red, green,
and blue. The two chrominance components (Cr and Cb) represent the dif-
ference between the red intensity and the luminance Y (Cr) , and the blue
intensity and Y (Cb), respectively. The transformations between the RGB and
the Y:Cr:Cb color spaces are extensively explained in the literature and we
will not give further details on them. We just note that the key advantage of the
Y:Cr:Cb over RGB is that the Cr and Cb components can be presented with a
lower resolution than Y, because the human eye is less sensitive to color than
to luminance. This makes Y:Cr:Cb more attractive for storage efficient digital
visual presentation and for visual data compression. Therefore, both the still
pictures compression standard JPEG, as well as the moving pictures standards
MPEG adopt the Y:Cr:Cb full color representation.

1.1. MEDIA BACKGROUND 3

Macroblocks: The basic building block of a JPEG or an MPEG picture is
the macroblock. A macroblock comprises one Y 16x16 block of luminance
pixels and two chrominance (Cr and Cb) blocks. The dimensions of the Cr
and Cb blocks depend on the particular color resolution. In the most popu-
lar macroblock format, the so called 4:2:0, the dimensions considered for a
chrominance block are 8x8. The dimensions of the chrominance blocks (thus
the chrominance resolution) may vary resulting in different macroblock for-
mats, e.g., 4:2:2 and 4:4:4 (more details can be easily found in the literature).

Digital visual data compressionis mainly based on exploiting specific prop-
erties of the human visual system to reduce the redundancy in the visual data.
In processing still pictures (JPEG), the aim is to reducespacial redundancies
in the image. For moving pictures (MPEG), bothspacialandtemporal redun-
dancieshave to be reduced.

Spacial redundancy:A common approach to reduce the spatial redundancy
in a picture is the utilization oforthogonal transforms. The two-dimensional
Discrete Cosine Transform (2D DCT) is the most popular and the most widely
implemented transform in visual data compression. It is performed over each
8x8 block and is used as a basic approach in JPEG and all MPEG standards.
Basically, the DCT decomposes visual data into discrete spatial frequencies,
concentrating the image energy in a small number of large valued transform
coefficients. The DCT transform coefficients can be processed in a manner,
consistent with the properties of the human eye. In a quantization algorithm,
following the DCT, the small coefficient values are discarded and only the
substantial ones are considered for further processing. Thus, reducing the
amount of visual data, some level of compression is obtained. The DCT is
a block-based transform. Other orthogonal transforms consider the entire im-
age rather than discrete pixel blocks and they are referred to asimage-based
transforms. In JPEG2000, as well as in some algorithms for still images com-
pression in MPEG-4, the image based Discrete Wavelet Transform (DWT) is
utilized. DWT is based on the so calledwavelets, a mathematical concept for
function decomposition [4]. Some of the features of the wavelets, that make
them very successful and widely implemeted in recent image compression al-
gorithms are:

• Wavelets provide high compression ratios: in terms of visual quality
they perform much better than competing technologies like DCT.

• The wavelet transforms are symmetric: both the forward and the inverse
transform have the same complexity, allowing fast compression and de-
compression.

4 CHAPTER 1. INTRODUCTION

• Multi-resolution signal analysis allows progressive transmission and
zooming, without the need for extra storage.

• Wavelets can be used for various image-processing operations. The pos-
sibility to combine image processing and compression is a very appeal-
ing factor.

Temporal redundancy:To exploit temporal redundancy, all MPEG standards
adoptmotion compensationtechniques. Motion compensation is a process of
coding differences (motion) between frames in a video sequence [5]. These
differences are estimated as a displacement between pixel areas in the current
frame (being encoded) and a previously encoded frame. The measurment of
this displacement is themotion vector. A process, calledmotion estimation, is
performed to determine the motion vectors for each macroblock. This process
includes a search algorithm for best matching between the block to be encoded
and an area of previously encoded frame. As a criteria for best block matching,
the minimal Sum of Absolute Differences (SAD) function is usually used. The
SAD sums all absolute differences between the corresponding pixels in two
pixel blocks. The best matched pixel area in the reference picture is the one
that minimizes its SAD with the current block.

1.1.2 MPEG-4 - the content-based coding standard

MPEG-4 [1, 2] aims at providing descriptions of tools and algorithms for ef-
ficient storage, transmission and manipulation of video data in various multi-
media environments. The basic approach relies on thecontent-based coding,
which, combined with various new functionalities, makes MPEG-4 radically
different from its predecessors. This approach contributes to more efficient
compression and better visual quality at comparable bitrates. Furthermore,
content-based representation of visual data gives the end user opportunities for
interaction with the content of a visual scene.

Video objects and video object planes:For content-based coding, MPEG-4
uses the concept of avideo object plane(VOP). A VOP is an arbitrarily shaped
region of a frame, which usually corresponds to a semantic object in the visual
scene. A sequence of VOPs in the time domain is referred to as a Video Object
(VO). This means that we can view a VOP as a ”frame” of a VO. Each of the
video objects is transmitted by a separate bitstream of arbitrary-shaped VOPs.
Each VOP in MPEG-4 is defined by itsshapeand texture, which are coded
differently.

1.1. MEDIA BACKGROUND 5

VOP shape:In MPEG-4, shape is used to distinguish an object from the back-
ground and to identify the borders of a VOP. The shape information is provided
in binary or grayscaleformat. The binary format represents the object shape
as a pixel map, which has the same size as the bounding rectangular box of
the VOP. Each pixel from this bitmap takes one of two possible values, which
indicate whether a pixel belongs to the object or not. The binary shape repre-
sentation of a VOP is referred to asbinary alpha plane. This plane is parti-
tioned into 16x16binary alpha blocksand each binary alpha block (BAB) is
associated with the macroblock, which covers the same picture area. In the
grayscale shape format, each pixel can take a range of values, which indicate
its transparency. The transparency value can be used for different shape effects
(e.g.,blending of two images).

VOP texture: Texture encoding of a VOP macroblock is performed with re-
spect to its shape. There are three types of macroblocks in an arbitrary shaped
VOP:opaque macroblockscompletely located inside the VOP,boundary mac-
roblockscontaining the VOP boundary pixels, andtransparent macroblocks
entirely outside the VOP boundary. Transparent macroblocks are discarded
and not encoded and the internal macroblocks are processed by conventional
2D DCT. For boundary macroblocks, different techniques such as shape adap-
tive DCT (SA-DCT) are employed.

Motion estimation: In MPEG-4, motion estimation is similar to MPEG-1/2
with some modifications. The most important new features in motion estima-
tion algorithms for arbitrary shaped VOPs are the specialpaddingtechniques
and the agreement on acoordinate system. The purpose of padding is to ensure
more accurate block matching by replacing the pixels outside the boundary of
the VOP with certain values. In MPEG-4, an object can be anywhere in a
video frame, so anabsolute frame coordinate systemis used for referencing
the position and motion of all VOPs.

Synthetic objects: In addition to the scenes and objects of natural video, re-
ferred to asnatural scenes and objects, MPEG-4 also presents the option to
combine synthetic scenes and objects with natural ones. The standard treats
synthetic objects as a subset of the computer graphics and includesfacial,
body and 2D meshanimation. Synthetic object processing, however is not
considered in this dissertation.

Profiles@Levels and real-time implementability: Assuming audio-visual
data compression standards, MPEG-4 [2] is the first to address content-based
coding concepts. These new concepts impose a large number of specific tech-
niques, approaches, and tools, which implement the standard on various in-

6 CHAPTER 1. INTRODUCTION

teractive multimedia environments. Unlike its predecessors, MPEG-4 is much
more demanding in terms of computational complexity with even more data
intensive algorithms. To allow the efficient implementation of the standard,
the MPEG-4 requirements define several application profiles. Within each
profile, a number of levels constrain the computational complexity and the
required data bandwidth of the application. Each profile level states the val-
ues for certain parameters, which are used to judge whether an application
meets the functional and implementational requirements of the level. Table 1.1
presents the required data processing speed according to the MPEG-4 Visual

Table 1.1: MPEG-4 Visual Profiles@Levels definitions and processing speed
in MacroBlocks per second [MB/s].

Profile Level Session Size # VO Max. MB/s Boundary MB/s
Main L4 1920x1088 32 489600 244800

L3 CCIR 601 32 97200 48600
L2 CIF 16 23760 11880
L1 N.A. N.A. N.A. N.A.

Core L2 CIF 16 23760 11880
L1 QCIF 4 5940 2970

Simple L2 CIF 4 23760 N.A.
Scalable L1 CIF 4 7425 N.A.
Simple L3 CIF 4 11880 N.A.

L2 CIF 4 5940 N.A.
L1 QCIF 4 1485 N.A.

Profiles@Levels definitions [6]. TheSimpleVisual Profile provides efficient
coding of rectangular video objects. TheSimple ScalableProfile is useful
for applications, providing more than one level of quality, e.g., Internet use.
TheCoreProfile is the first to deal with arbitrary-shaped and temporally scal-
able objects, useful where a relatively simple content interactivity is required
(e.g., Internet multimedia). The most demanding visual profile is theMain
Profile. It augments the functionality of the Core profile by coding of inter-
laced, semi-transparent, and sprite objects. It can be used for interactive and
entertainment-quality broadcast and DVD applications [2]. At the highest level
of the Main profile (L4 in Table 1.1) a session with a frame size of 1920x1088
is processed, containing up to 32 video objects (VO) at a maximum of 489600
macroblocks2 per second. The last column of the table represents the required

2In Table 1.1, MB/s denotesmacroblocks per secondand should not be confused with
MBytes per second

1.1. MEDIA BACKGROUND 7

boundary macroblocks per second, which is an important criteria for evaluat-
ing the devices we are presenting further in this dissertation. Considering the
above explanations, we can conclude that the general performance demands
of the Simple MPEG-4 Profile are approximately the same as of MPEG-2,
since in this profile only rectangular video objects are defined. Therefore, it is
most challenging to meet the requirements of the most-demanding Core and
Main Visual Profile Levels of MPEG-4, where arbitrary-shaped visual objects
are processed. Complexity analysis [7] indicates that real-time software imple-
mentations of the intermediate CoreProfile@Level1 require more than 5 billion
RISC-like instructions per second. Consequently, we can safely conclude, that
real time implementations of the highest profiles and levels of MPEG-4 would
cost substantially more instructions per second (up to the order of 100 billion).
These processing requirements will significantly exceed the capabilities of the
general purpose processors, despite near future technology improvements.

1.1.3 Media design requirements and potential limitations

The specific functionalities of the media standards in many cases require per-
formance, exceeding the capabilities of the contemporary GPPs. Moreover,
many of these media functionalities impose performance requirements that
may not be met by the GPPs, despite the future silicon technology advances
in industry. To be more specific, as numerous explorations and analysis in the
literature and in practice suggest, the most crucial performance requirements a
media system must meet are for ahigh computational powerand anenormous
data throughput. Therefore, new processor designs, capable of meeting these
two key media performance requirements, are needed. To design adequately
performing media processors, we can approach the problems from different
points of view concerning thearchitecture, the implementation, and thereal-
izationof the media processor.

Architectural prospective: From the architectural point of view, we can de-
fine some issues that would help the implementation to meet the performance
requirements. An architecture, entirely dedicated to the application field (e.g.,
the MPEG standards), would obviously enable the implementation of a high
performance specialized processor, but this is the most costly solution. A far
more flexible and cost-effective approach is to redefine or possibly augment an
existing general purpose architecture.

Increased computational power:To increase the application specific computa-
tional power of a GPP, a popular approach is to define new, application specific
instructions as an extension of the general purpose Instruction Set Architecture

8 CHAPTER 1. INTRODUCTION

(ISA) [8–12]. The application domain must be analyzed for computationally
demanding functions or program kernels that would effectively improve sys-
tem performance when implemented as fast specialized instructions. In MPEG
1, 2 and 4, examples of such kernels are the DCT/IDCT transforms, as well as
the motion estimation and compensation algorithms. In MPEG-4, the new
functionality can be accelerated by defining new instructions supporting the
shape encoding, padding, or DWT.

Larger data throughput:Another important element of an architecture is its
basic data structurealso referred to as data type. If we carefully choose these
structures, we can also expect performance benefits. While in most GPP the
data types are bits, bytes and words, in many media standards, the 8x8pixel
blockcan be defined as a basic data structure. Similarly, the MPEG-4binary
alpha blockcan be referred to as a separate basic data type. Thus, utilizing im-
portant general features of the block-organized data, such asdata localityand
data reusability, combined with ISA extensions supporting block processing,
significant speedups can be enabled for underlying implementations.

Implementation prospective - potential limitations: The implementor must
accomplish the conceptual structure defined by the architecture into a logical
organization utilizing limited budget of hardware resources. In media domain,
however, the implementation process may face some problems, for instance:

• The architectural approach to increase computational power by introduc-
ing a unique instruction for each considered media functionality imposes
serious implementation problems regarding the number of the newly de-
fined instructions.The fixed and limited instruction format may become
prohibitive to implement larger numbers of unique instructions.

• Another implementation drawback can be caused by thediversity of
profiles and functionality contexts defined in the same media applica-
tion. Typically, media standards do not state precisely all the algorithms
that should be used to implement the described functionality and leave
more freedom to the implementors. Furthermore, the implementations
of some standard functionalities are optional (e.g., sprite encoding in
MPEG-4) and in many cases they can not even coexist with other op-
tional functionalities. Considering the above issues, the implementation
of a hardwired accelerator for each new functionality is not the perfect
solution due to three key reasons:

1. The lack of flexibility in hardwired implementations and the long
design cycles required, make such a solution inadequate to the dy-

1.1. MEDIA BACKGROUND 9

namic changes in the media application domain.

2. A large number of hardwired functional acceleratorsmay require
silicon area exceeding the available device budget. In such cases,
implementing the hardwired accelerators altogether would become
practically prohibitive.

3. MPEG encoders and decoders havedifferent computational re-
quirements. Therefore, it is not cost-efficient to implement the
standard functionality into hardwired circuits, which in some ap-
plication contexts can be extremely performance efficient, while in
others may not be utilized at all.

• Limited hardware resourcesmay cause severe implementation prob-
lems. While in desktop implementations some performance gains might
be achieved at the cost of enhanced amount of hardwired resources,
this may not be a solution in the embedded systems domain, where the
budged of system resources is by default far more limited.

Reconfigurable hardware, coexisting with a general purpose processor, has
been considered as a good candidate to address the media implementation and
performance limitations addressed above. Some machines employing such an
approach are presented below.

Reconfigurable machines:First of all, it is noted that in this dissertation,
we utilize the termreconfigurable machineas a general purpose proces-
sor augmented with reconfigurable hardware (e.g., FPGA)3. Numerous de-
sign concepts and organizations have been proposed to support this recon-
figurable computing paradigm. Some popular proposals of reconfigurable
processors are: PRISC [13], OneChip [14], RISA [15], Garp [16], Con-
CISe [17], PRISM and PRISM-II [18, 19], Chimaera [20], the SONIC archi-
tectures [21–24], etc. Furthermore, in the recent years, many industry lead-
ing vendors released soft GPP cores for reconfigurable processing. Popu-
lar examples are the Microblaze™ of Xilinx [25], Nios™ of Altera [26],
Xtensa™ of Tensilica [27], Avispa™ and Moustique™ of Silicon Hive
(http://www.siliconhive.com/). Xilinx and Altera made a step fur-
ther introducing FPGAs with embedded hard GPP cores- the PowerPC™ and
ARM™ , respectively. Even though the approach to combine a GPP with re-
configurable hardware is promising and many paradigms have been proposed

3We note that reconfigurable designs, which do not incorporate a GPP are not considered in
this dissertation and will not be discussed further.

10 CHAPTER 1. INTRODUCTION

(for a complete list of reconfigurable approaches in addition to the ones ref-
erenced above, see [28–30]), the architectures and organizations of such hy-
brid processors can be viewed mostly as open topics. Moreover, there exist
common shortcomings that characterize to various degrees the previously ref-
erenced reconfigurable proposals described by the following:

Shortcomings of current reconfigurable proposals:Traditional general pur-
pose media extensions, such as [10–12, 31], require long development cycle,
permanent op-code space for each domain considered, and restrict the num-
ber of the functions to be implemented in hardware to very few. Reconfig-
urable processors have partially resolved the above problems as they allow
to map a program portion to hardware, possibly even automatically [32, 33].
Currently, however, schemes assuming a GPP augmented with reconfigurable
fabric (e.g., [20, 34, 35]) still introduce a new instruction for each portion of
the application implemented in the FPGA. As a result, for a specific applica-
tion domain intended to be implemented in the FPGA, the designer and the
compiler are restricted by the unused opcode space. Due to the larger num-
ber of new reconfigurable operations supported, theopcode space explosion
problem is still presented and it can become severe for some applications.
Moreover, current reconfigurable proposals introduce some additional disad-
vantages, summarized below:

• Lack of compatibility : this shortcoming is related to the opcode space
explosion problem. Due to the fact that each newly introduced instruc-
tion has its unique format and encoding, general ISA compatibility is
not achievable.

• Limited number of parameters: In several proposals, the operations
mapped on an FPGA can only have a small number of input and out-
put parameters (e.g., [36, 37]). For example, in the architecture pre-
sented in [36], due to the encoding limits, the fragments mapped into
the FPGA have at most4 inputs and2 outputs. Similarly, in [37], the
maximum number of input registers is9 and output parameters can be
passed trough only one output register.

• No support for parallel execution of sequential operations on the
FPGA: The parallel execution of sequential operations can be an impor-
tant and powerful feature for reconfigurable computing, provided that
the data dependency allows it. Many reconfigurable architectures do not
take into account this issue and their mechanism for FPGA integration
cannot be extended to support parallelism (see for examples in [28]).

1.2. GENERAL RECONFIGURABLE APPROACH 11

• Technology dependence: each approach has a specific definition and
implementation bounded for a specific reconfigurable technology and
design. Therefore, the applications cannot be ported to a new reconfig-
urable platform without substantial efforts.

• No modularity : There are no mechanisms allowing reconfigurable im-
plementation hardware to be developed separately and ported transpar-
ently for the software, as indicated in [38]. This shortcoming is also
related to the aforementioned technology dependance problem.

The Molen processor paradigm [39,40] addresses and solves the shortcomings
of the current reconfigurable proposals discussed above. More details on how
all these shortcomings are resolved by Molen are presented in Chapter 2. In
all referenced reconfigurable approaches, including Molen, however, the in-
troduction of GPPs coexisting with reconfigurable hardware imposes design
approaches different from the traditional ones. In the section to follow, we
explain such a general reconfigurable design approach.

1.2 General reconfigurable approach

A general Hardware-Software Co-design methodology, used to fit a given
(media) application into a GPP augmented with reconfigurable hardware is
sketched in Figure 1.1. The design process is performed in several interactive
stages. First, an analysis of the application algorithms is performed. This stage
requires extensive profiling and software-hardware (SW/HW) partitioning of
the application. Candidate functions or kernels for hardware implementation
are identified through the SW/HW partitioning and considered for further hard-
ware design. SW/HW interface solutions have to be made at this initial design
stage as well, and later considered for program code annotation and hardware
implementation. The remaining design stages are performed in two separate
tracks, interacting with each other - one in software and the other in hardware.

Software track: Consider Figure 1.1. The original application code is first
modified according to the SW/HW partitioning and the interface solutions
made in the preceding stage. Usually, these modifications include code an-
notations utilizing either high level programming language techniques (e.g.,in
C, Java, etc.) or a lower assembler level language. The modified/annotated ap-
plication code is then compiled and linked for the targeted GPP architecture.
If code annotations are made in high level programming language manner, an

12 CHAPTER 1. INTRODUCTION

Algorithm (C program)

Analysis, SW/HW

partitioning &

interface solutions

Code annotation/

modification

Compile

Link

HW Design &

HDL Coding

Synthesis &

Optimization

HW Function

to Implement

Behavioral

Simulation

Netlist

Simulation

SW
 HW

Memory

& CPU

models

Processor

memory
 FPGA

Mapping

Figure 1.1: Make applications fit - a typical reconfigurable design flow.

accordingly modified retargetable compiler has to be used. In the case of lower
assembler level annotations, the native compiler for the GPP architecture can
be employed. The result of the compilation and link processes is a single or
a number of binary sequences (codes), each of them dedicated for a certain
location in the target memory organization. The generated binary codes are
loaded into corresponding memory models for SW/HW co-simulation.

Hardware track: Consider Figure 1.1. Hardware units supporting the func-
tions extracted for HW implementation are designed and coded in hardware
description language HDL. The HDL models are simulated at behavioral level
to validate the functional correctness of the designs. Behavioral simulations
may be performed over stand-alone models of the units. It is far more essential,
however, behavioral simulations to be performed over a model of the entire re-
configurable processor, i.e., including the compiled application programs. The
results of these simulations may impose changes in the initial hardware design
as well as some changes in the program code annotations. After the reconfig-
urable design is validated at behavioral level, the HDL codes of the hardware
units are synthesized and optimized. Once again, the resulting netlist design

1.3. DISSERTATION OBJECTIVES 13

description is co-simulated with the software to detect possible design errors.
Performed at lower level of abstraction, this simulation is the final validation
of the entire reconfigurable design before its physical implementation. Finally,
the synthesized and optimized design is mapped onto the targeted reconfig-
urable device (FPGA) and a configuration bitstream is generated.

Software-Hardware Tracks Interaction: The interaction between the soft-
ware and hardware design tracks, as depicted in Figure 1.1, is mainly per-
formed during several design validation phases. For design validation, we
consider SW/HW co-simulations at different levels of abstraction. There are
numerous methods for simulating the reconfigurable design, which can be
adapted to the approach from Figure 1.1. A discussion regarding the relevance
and appropriateness of each of these methods would be outside the scope of
this thesis, thus not considered further. In the particular approach, cycle accu-
rate event-driven HDL simulations are assumed. During the simulation phases,
design errors may occur both in the hardware and in the software. In these
phases, the design process is iterative and after relevant changes in the designs
(resp. their source codes), the process is repeated. Once an error free design
is obtained and validated, the software-hardware co-simulation is considered
complete. Next, binary codes for the distinct locations of the targeted mem-
ory organization are generated. An FPGA configuration bitstream is generated
from the synthesized and optimized HDL code of the hardware design track.
Finally, the linked binary codes of the application software are loaded into
the physical memories of the processor and the generated FPGA bitstream is
loaded into the targeted reconfigurable device(s).

1.3 Dissertation objectives

In this dissertation, we focus on media applications with emphasis on the visual
data compression standards MJPEG and MPEG. We are particularly interested
in MPEG-4 due to the computationally demanding functionalities it incorpo-
rates. To solve the performance problems regarding the execution of media
applications on GPPs, we introduce reconfigurable computing extensions sup-
porting the specific computational requirements of the considered media algo-
rithms. As identified in Subsection 1.1.3, current reconfigurable proposals suf-
fer a number of drawbacks, which have been resolved by the Molen processor
paradigm [39, 40]4. In this dissertation, we investigate how such a paradigm
can be augmented and applied to media processing represented by MJPEG,

4A detailed discussion on how such drawbacks are resolved is presented in Chapter 2.

14 CHAPTER 1. INTRODUCTION

MPEG-2, and MPEG-4. More specifically, the following objectives determine
the scope of this dissertation:

• Solve media computational complexity problems:We consider sev-
eral hardware units that perform media specific operations efficiently.
More specifically, we consider the MPEG-4 repetitive padding, the
MPEG-4 accepted quality function, and the discrete wavelet transform.
We also consider the sum of absolute differences, the discrete cosine
transform, and the inverse discrete cosine transform. Experiments sug-
gest that dramatic performance improvements,up to two orders of mag-
nitude, can be expected for the kernels considered. (The media specific
computational demanding problems are covered inChapter 3).

• Address and solve specific media memory access problems:The
memory bandwidth limitation problem is solved by introducing a new
scalable memory organization, which is controlled at microarchitectural
level and delivers sufficient amount of data to the units processing block-
organized visual data. Experiments suggest that data transferspeedups
of 8xcan be expected. (Chapter 4 presents the details).

• Address reconfigurable processor prototyping:We propose a Molen
prototype implementation on the Virtex II Pro technology of Xilinx, re-
ferring to the embedded PowerPC core as to a ”black box”. Thus, with-
out having to redesign the GPP core, we emulate reconfigurable oper-
ations using the original PowerPC ISA. The implemented Molen orga-
nization efficiently redirects (arbitrates) reconfigurable and standard in-
structions either to the GPP or to the reconfigurable units. A data com-
munication mechanism between the GPP and the reconfigurable units
exploits dedicated parameter exchange registers and shared memory
space. Important software considerations supporting the prototype are
delivered. The entire Molen ”backbone” infrastructure is implemented
in reconfigurable hardware, consumingless than 1% of the available
reconfigurable resourcesof the prototyping chip xc2vp20. This leaves
virtually the entire FPGA area for the application specific reconfigurable
implementations. (The prototype is described inChapter 5).

• Experimental prototype evaluation: We carry out series of experi-
ments on MJPEG, MPEG-2 and MPEG-4 to evaluate the performance
efficiency of the implemented Molen prototype. The theoretical bound-
aries of the maximum attainable speedups are investigated and estab-
lished as reference for our measurements. The experimentally obtained

1.4. DISSERTATION OVERVIEW 15

performance results for the Virtex II Pro Molen prototype suggest that
speedups of 2X-3X can be expected. In some scenarios, the speedups
approachup to 98% of the theoretically established maximum attain-
able speedups. We also investigate the influence of the attained kernel
speedups of the implemented reconfigurable accelerators on the over-
all speedup of the application. The boundaries of the cost-effective lo-
cal speedups of the accelerated kernels are investigated and determined.
(The experimental evaluations are presented inChapter 6).

• Technology independence:Although the Virtex II Pro technology has
been considered for the final prototype, in our designs we considered
other technologies of Xilinx as well as technologies of other vendors,
such as Altera. Evaluations for MIPS GPPs, rather than just for Pow-
erPC are also presented. Thus, we prove the applicability of our ap-
proach on different technologies, i.e., itstechnology independence. (We
prove the technology independence of the proposal by assuming differ-
ent reconfigurable technologies inChapters 3, 5, and6).

An overview of how the research objectives have been attained and how they
are presented in this dissertation follows.

1.4 Dissertation overview

This dissertation contains seven chapters in total described by the following:

In Chapter 2, a brief description of the Molenρµ-coded polymorphic pro-
cessor is presented. This reconfigurable machine is described starting with
the introduction of the general approach, followed by a concise description
of the machine organization, the underlying microarchitecture, programming
paradigm, and a discussion on the program sequence control. The discussion
also emphasizes on some specific features of this conceptually distinct ma-
chine organization, which help to overcome several common shortcomings of
the recent reconfigurable proposals. This dissertation targets the Molen poly-
morphic processor as a research platform for accelerating media applications.

Chapter 3 introduces three original hardware accelerator designs of high profile
MPEG-4 specific functions. The operation of the Molen processor is based on
the co-processor architectural paradigm. More specifically, a general-purpose
processor controls the execution and the configuration of a reconfigurable co-
processor, tuning the latter for specific algorithms. The proposed accelerators

16 CHAPTER 1. INTRODUCTION

in Chapter 3 are intended to be implemented as operational units within the
reconfigurable co-processor, thus increasing the computational power of the
Molen processor. To be more specific, three accelerating units are considered,
supporting the following MPEG-4 operations:repetitive padding, accepted
quality function, and lifting baseddiscrete wavelet transform.

To increase the data memory bandwidth required by a number of multimedia
accelerators, a supporting memory organization is proposed in Chapter 4. As
an alternative of traditional linearly addressable memories, we suggest a mem-
ory organization based on a rectangular array of memory modules. We also
discuss the interface between the proposed memory organization and a linearly
addressable memory accompanied by comprehensive examples. Synthesis and
experimental results indicate reasonably small reconfigurable hardware costs
and promising high performance figures. The design is envisioned to be more
cost-effective compared to related works.

A Xilinx Virtex II Pro based prototype of the Molen processor is described
in Chapter 5. Utilizing the embedded PowerPC processor we implement
the Molen paradigm by emulating reconfigurable operations with the original
PowerPC ISA. A minimal functionally complete ISA of only four additional
instructions is implemented by the proposed Molen prototype. The discussion
is focused on the microarchitectural support for the implemented ISA exten-
sion emulated on the embedded PowerPC 405 processor in the Virtex II Pro
FPGA. Some important considerations regarding the software support of the
proposed Molen prototype are discussed as well.

Due to the closely coupled co-processor based Molen organization we achieve
performance efficient processing, proved by experiments in Chapter 6. An
evaluation methodology comprising three approaches with respect to the re-
quirements of the prototype and the application are considered. Theoretical
grounds supporting the methodology are established to analyze the prototype
performance data for three considered applications, namely MJPEG, MPEG-2,
and MPEG-4.

Finally, concluding remarks are presented in Chapter 7. The chapter summa-
rizes the dissertation, outlines its contributions and proposes future research
directions.

Chapter 2

Molen Background

I
n this chapter, we briefly present the Molen polymorphic processor
paradigm symply referred to as Molen in the remainder of the presenta-
tion. The bases of a Molen processor are originally introduced in [39].

The general proposal is:by displaying means to maintain the reconfiguration
at architectural level, to achieve a high flexibility in tuning the system for the
specific application. The operation of Molen is based on the co-processor
architectural paradigm. Details regarding the general approach, architecture,
microarchitecture, organization and implementation of Molen are gradually
presented in this chapter and in the chapters to follow.

More specifically, this chapter is organized as follows. The general Molen
approach is presented in Section 2.1. Details on the underlying organization
and microarchitecture of a Molen polymorphic processor are discussed in Sec-
tion 2.2. Section 2.3 describes the Molen programming paradigm and adds
details on the program sequence control. Finally, the chapter is concluded
with Section 2.4.

2.1 General approach

In the discussion to follow, we present the general concept of transforming
an existing program to one that can be executed on the Molen reconfigurable
computing platform and hints to the new mechanisms, intended to improve ex-
isting approaches. The conceptual view of how program P (intended to execute
only on the GPP) is transformed into program P’ (executing on both the GPP
core and the reconfigurable hardware) is depicted in Figure 2.1. The purpose

17

18 CHAPTER 2. MOLEN BACKGROUND

FPGA

mflo	$2
sb	$2,16($fp)
lbu	$2,25($fp)
lbu	$3,33($fp)
addu	$2,$2,$3
sb	$2,17($fp)
lb	$2,26($fp)
lb	$3,34($fp)
sra	$2,$2,$3
sb	$2,18($fp)
lbu	$2,27($fp)

addu	$2,$3
for(i=0;i<8;i++)

for(j=0;j<8;j++)

a = a + c[i][j]−b[i][j];

else

a = a + b[i][j]−c[i][j];

if (b[i][j]<c[i][j])

interface

− architectural modifications
− organizational solutions

program kernel

model
VHDL

SAD a,b,c

(110 instructions
in total!)

Synthe−
sis

Program P Program P’

SAD a,b,c

α

GPP MEM

Reconfigurable
Hardware

Figure 2.1: The general Molen approach: program transformation example.

is to obtain a functionally equivalent program P’ from program P which (using
specialized instructions) can initiate both the configuration and execution pro-
cesses on the reconfigurable hardware. The sum of absolute differences (SAD)
calculation, a well known multimedia operation, is considered as an example
in Figure 2.1. The steps involved in this transformation are the following:

1. Identify pieces of software code ”α” in program P to be mapped in
reconfigurable hardware

2. Design a hardware unit performing the functionality of the extracted
program kernel ”α” and describe the design in HDL (e.g.,VHDL). Show
that ”α” can be implemented in hardware in an existing technology, e.g.,
FPGA, and map ”α” onto reconfigurable hardware.

3. Eliminate the identified code ”α” from program P. Insert an equivalent
code A (e.g., SAD a,b,c), which calls the hardware through a preestab-
lished SW/HW calling interface. This interface reflects the architectural
and organizational modifications of the original GPP and comprises:

• Parameters and results communication between the GPP and the
reconfigurable processor.

2.2. ORGANIZATION AND MICROARCHITECTURE 19

• Configuration code, inserted to configure the reconfigurable hard-
ware.

• Emulation code, used to perform the functionality of the hardware
accelerated kernel ”α”.

4. Compile and execute program P’ with original code plus code
having functionality A (equivalent to ”α”, i.e., SAD a,b,c) on the
GPP/reconfigurable processor.

The above steps illustrate a programming paradigm in which both software and
hardware descriptions are present in the same program. It should also be noted
that the only constraint on ”α” is its implementability, which possibly implies
complex hardware. Consequently, due to the complexity of this hardware, the
microarchitecture may have to support emulation [41], which in turn requires
the utilization of microcode. This reconfigurable microcode is termed (ρµ-
code) as it is different from the traditional microcode. The difference is that
such microcode does not execute on fixed hardware facilities. It operates on
facilities that theρµ-code itself ”designs” to operate upon.

2.2 Organization and microarchitecture

In this section we briefly describe the Molen organization and the underlying
microarchitecture.

The Molen organization: The two main components in the Molen machine
organization (depicted in Figure 2.2) are the ‘Core Processor’, which is a
general-purpose processor (GPP), and the ‘Reconfigurable Processor’ (RP).
Instructions are issued to either processors by the ‘Arbiter’ by means of a par-
tial decoding of the instructions received from the instruction fetch unit. Data
are fetched (stored) by the ‘Data Fetch’ unit from(to) the main memory. The
‘Memory MUX’ unit is responsible for distributing(collecting) data to(from)
either the reconfigurable or the core processor. The reconfigurable processor is
further subdivided into theρµ-code unit and thecustom configured unit(CCU).
The CCU consists of reconfigurable hardware, e.g., an FPGA, and memory.
Essentially, the CCU is intended to support additional and future functionali-
ties that are not implemented in the core processor. Pieces of application code
can be implemented on the CCU in order to speed up the execution of the over-
all application code. A clear distinction exists between code that is executed
on the reconfigurable unit (the RP targeted code) and code that is executed on
the core processor (remaining code). Data must be transferred across the code

20 CHAPTER 2. MOLEN BACKGROUND

Figure 2.2: The Molen machine organization.

boundaries in order for the overall application code to be meaningful. Such
data includes predefined parameters (or pointers to such parameters) or results
(or pointers to such results). The parameter and result passing is performed
through a mechanism utilizing so-called exchange registers (XREGs) depicted
in Figure 2.2. This mechanism is described in Section 2.3.

The support of operations by the reconfigurable processor can be initially di-
vided into two distinct phases: set and execute. In the set phase, the CCU is
configured to perform the supported operations. Subsequently, in the execute
phase the actual execution of the operations is performed. This decoupling al-
lows the set phase to be scheduled well ahead of the execute phase and thereby
hiding the reconfiguration latency. Furthermore, no specific instructions are
associated with specific operations to configure and execute on the CCU as
this will greatly reduce the opcode space. Instead, pointers toreconfigurable
microcode(ρµ-code), which emulates both the configuration and the execution
of programs, are used. Consequently, two types ofρµ-code are distinguished:

• reconfiguration microcode that controls the configuration of the CCU;

• execution microcode that controls the execution of the implementation
configured on the CCU.

The Molen microarchitecture: Experienced microcode designers will rec-
ognize that for performance reasons, there is a necessity of having microcode

2.2. ORGANIZATION AND MICROARCHITECTURE 21

that resides permanently in the control store and microcode that is pageable.
To represent this difference, a bit from the instruction word is dedicated to
implement resident/pageable microcode.In the instruction format, depicted in
Figure 2.3, the location of the microcode is indicated by the resident/pageable-
bit (R/P-bit) which implicitly determines the interpretation of the address field,
i.e., as a memory addressα (R/P=1) or as aρ-control store addressρCS-α
(R/P=0) indicating a location within theρµ-code unit. This location contains
the first instruction of the microcode which must always be terminated by a
dedicated microinstruction, e.g.,endop.

OPC R/P ρCS-α/α

p-set/c-set/execute

opcode
resident/pageable

address

0/1

Figure 2.3: Thep-set, c-set, andexecuteinstruction format.

Theρµ-code unit: The internal organization of theρµ-code unit is depicted in
Figure 2.4. Theρµ-code unit comprises three main parts: the sequencer, theρ-
control store, and theρµ-code loading unit. The sequencer mainly determines
the microcode execution sequence. Theρ-control store is used as a storage
facility for microcode. Theρµ-code loading unit, as its name suggests, is re-
sponsible for the loading of reconfigurable microcode from the memory. The
execution of microcode starts with the sequencer receiving an address from
the arbiter (see Figure 2.2) and interpreting it according to the R/P-bit. When
receiving a memory address, it must be determined whether the microcode is
already cached in theρ-control store or not. This is done by checking the
residence table (see Figure 2.5) which stores the most frequently used trans-
lations of memory addresses intoρ-control store addresses and keeps track of
the validity of these translations. It can also store other information: least
recently used (LRU) and possibly additional information, e.g., required for
virtual addressing1 support. In the case that a memory address is received and
the associated microcode is not present in theρ-control store, theρµ-code unit
initiates the loading of microcode from the memory into theρ-control store.
In the case aρCS-α is received or a valid translation into aρCS-α is found,
theρCS-α is transferred to the ‘determine next microinstruction’-block. This
block determines the next microinstruction to be executed:

1For the simplicity of the discussion, we assume that the system only allows real addressing.

22 CHAPTER 2. MOLEN BACKGROUND

Residence

Table

H

Determine next

microinstruction Sequencer

ρCSAR

SET

EXECUTE

fixed

pageable

fixed

pageable

ρ-Control Store

M

I

R

α/ρCS-αR/P

ρCS-α

ρCS-α, if present

α

ρCS-α

ρCS-α

from CCU

to CCU

ρµ-code

loading

unit

���������	�

microcode

Figure 2.4:ρµ-code unit internal organization.

α ρCS- ���������
	��

��� 	 �

ρCS- �

α

��
�	�� ��
�����
�� ��� ��

Figure 2.5: The sequencer residence table.

• When receiving the address of the first microinstruction: Depending on
the R/P-bit, the correctρCS-α is selected, i.e., from the instruction field
or from the residence table.

• When already executing microcode: Depending on previous microin-
struction(s) and/or results from the CCU, the next microinstruction ad-
dress is determined.

2.3. PROGRAMMING PARADIGM AND SEQUENCE CONTROL 23

The resultingρCS-α is stored in theρ-control store address register (ρCSAR)
before entering theρ-control store. Using theρCS-α, a microinstruction is
fetched from theρ-control store and then stored in the microinstruction regis-
ter (MIR) before it controls the CCU reconfiguration or before it is executed
by the CCU. Theρ-control store comprises two sections, namely asetsection
and anexecutesection. Both sections can be identical, probably differing in
microinstruction word sizes only. Each sections is further divided into afixed
part and apageablepart. The fixed part stores the resident reconfiguration and
execution microcode of thesetandexecutephases, respectively. Resident mi-
crocode is commonly used by several invocations (including reconfigurations)
and it is stored in the fixed part so that the performance of theset andexe-
cutephases is possibly enhanced. Which microcode resides in the fixed part
of theρ-control store is determined by performance analysis of various appli-
cations and by considering various software and hardware parameters. Other
microcode is stored in memory and the pageable part of theρ-control store acts
like a cache to provide temporal storage. Cache mechanisms are incorporated
into the design to ensure the proper substitution and access of the microcode
in the ρ-control store. This is exactly what is provided by the residence ta-
ble which invalidates entries when microcode has been replaced (utilizing the
valid (V) bit) or substitutes the least recently used (LRU) entries with new
ones. Finally, the residence table can be separate or common for both the set
and execute pageableρ-control store sections. In assuming a common table
implementation, an additional bit needs to be added to determine which part of
the pageableρ-control store is addressed (depicted as the S/E-bit in Figure 2.5).

The arbiter performs partial decoding of instructions in order to determine
where instructions should be issued. Its organization is of great importance for
the time- efficient operation of the entire Molen organization. We will describe
an arbiter implementation in Chapter 5 adding more substantial details.

2.3 Programming paradigm and sequence control

In the previous section, we briefly introduced the Molen organization and
microarchitecture. In this section, we present the Molen programming
paradigm [42], the instruction set architecture (ISA) that supports it, and the
program sequencing required to implement this programming paradigm.

The Molen programming paradigm is a sequential consistency paradigm
targeting the previously described organization, which allows parallel and con-
current hardware execution. Further in our discussion and experiments, we will

24 CHAPTER 2. MOLEN BACKGROUND

assume that the programming paradigm is intended for single program execu-
tion, which is not its general limitation, however. The Molen programming
paradigm requires only a one-time architectural extension of few instructions
to provide a large user reconfigurable operation space. The complete list of the
eight required instructions, denoted as polymorphic (πoλνµoρφικó) instruc-
tion set architecture (πISA), is as follows:

Six instructions are required for controlling the reconfigurable hardware:

• Two set instructions: these instructions initiate the configurations of the
CCU. When assuming partial reconfigurable hardware, we provide two
instructions for such purpose, namely:

– the partial set (p-set<address>) instruction performs those con-
figurations that cover common and frequently used functions of an
application or set of applications. In this manner, a considerable
number of reconfigurable blocks in the CCU can be preconfigured.

– the complete set (c-set<address>) instruction performs the con-
figurations of the remaining blocks of the CCU (not covered by the
p-set). Thiscompletesthe CCU functionality by enabling it to per-
form the less frequently used functions. Due to the reduced amount
of blocks to configure, reconfiguration latencies can be reduced.

We must note that in case no partial reconfigurable hardware is present,
thec-set instruction alone can be utilized to perform all configurations.

• execute<address>: this instruction controls the execution of the oper-
ations implemented on the CCU. These implementations are configured
onto the CCU by theset instructions.

• set prefetch <address>: this instruction prefetches the needed mi-
crocode responsible for CCU reconfigurations into a local on-chip stor-
age facility (theρµ-code unit) in order to possibly diminish microcode
loading times.

• execute prefetch<address>: the same reasoning as for theset
prefetch instruction holds, but now relating to microcode responsible
for CCU executions.

• break: this instruction is utilized to facilitate the parallel execution of
both the reconfigurable processor and the core processor. More pre-
cisely, it is utilized as a synchronization mechanism to complete the par-
allel execution.

2.3. PROGRAMMING PARADIGM AND SEQUENCE CONTROL 25

Two move instructions for passing values between the register file and ex-
change registers (XREGs) since the reconfigurable processor is not allowed
direct access to the general-purpose register file:

• movtx XREGa ← Rb: (move to XREG) used to move the content of
general-purpose register Rb to XREGa.

• movfx Ra ← XREGb: (move from XREG) used to move the content of
exchange register XREGb to general-purpose register Ra.

The <address> field in the instructions introduced above denotes the loca-
tion2 of the reconfigurable microcode responsible for the configuration and
execution processes, described in Subsection 2.2. It must be noted that a single
address space is provided with at least2(n−op) addressable functions, wheren
represents the instruction length andop the opcode length.

It should be noted that it is not imperative to include all instructions when im-
plementing the Molen organization. The programmer/implementor can opt for
different ISA extensions depending on the required performance to be achieved
and the available technology. There are basically three distinctiveπISA possi-
bilities with respect to the Molen instructions introduced earlier - theminimal,
thepreferredand thecompleteπISA extension. In more detail, they are:

• the minimal πISA: This is essentially the smallest set of Molen instruc-
tions needed to provide a working scenario. The four basic instructions
needed areset (more precisely:c-set), execute, movtx andmovfx. By
implementing the first two instructions (set/execute) any suitable CCU
implementation can be loaded and executed in the RP. Furthermore, re-
configuration latencies can be hidden by scheduling theset instruction
considerably earlier than theexecuteinstruction. Themovtx andmovfx
instructions are needed to provide the input/output interface between the
RP targeted code and the remainder application code.

• the preferred πISA: The minimal set provides the basic support, but it
may suffer from time-consuming reconfiguration latencies, which could
not be hidden, and that can become prohibitive for some real-time appli-
cations. In order to address this issue, twoset (p-setandc-set) instruc-
tions are utilized to distinguish among frequently and less frequently
used CCU functions. In this manner, thec-set instruction only con-
figures a smaller portion of the CCU and thereby requiring less recon-
figuration time. As the reconfiguration latencies are substantially (or

2Indirect pointing could be required in order to extend theρµ-code addressing space.

26 CHAPTER 2. MOLEN BACKGROUND

completely) hidden by the previously discussed mechanisms, the load-
ing time of microcode will play an increasingly important role. In these
cases, the twoprefetch instructions (set prefetchandexecute prefetch)
provide a way to diminish the microcode loading times by scheduling
them well ahead of the moment that the microcode is needed. Parallel
execution is initiated by aπISA set/executeinstruction and ended by a
general-purpose instruction.

• the completeπISA: This scenario involves allπISA instructions includ-
ing thebreak instruction. In some applications, it might be beneficial
performance-wise to execute instructions on the core processor and the
reconfigurable processor in parallel. In order to facilitate this parallel ex-
ecution, the preferred ISA is further extended with thebreak instruction.
Thebreak instruction provides a mechanism to synchronize the parallel
execution of instructions by halting the execution of instructions follow-
ing thebreak instruction. The sequence of instructions performed in
parallel is initiated by anexecuteinstruction. The end of the parallel
execution is marked by thebreak instruction. It indicates where the
parallel execution stops.

The exchange registers:The exchange registers (XREGs) are used for pass-
ing operation parameters to the reconfigurable hardware and returning the
computed values after operation execution. In order to avoid dependencies
between the reconfigurable processor and the core processor, the needed pa-
rameters are moved from the register file to the XREGs (movtx) and the results
stored back in the register file (movfx). During the execute phase, the defined
ρµ-code is responsible for taking the parameters of its associated operation
from the XREGs and returning the result(s). A singleexecuteinstruction does
not pose any specific challenge, because the complete set of exchange reg-
isters is available. When executing multipleexecuteinstructions simultane-
ously, overlapping utilization of the available XREGs has to be avoided. This
assumes an agreement on the conventions for the XREGs allocation.

Parameter exchange, parallelism and modularity: As shown earlier, the
exchange registers solve the limitation on the number of parameters as present
in other reconfigurable computing approaches (e.g., [36, 37]). If the param-
eters do not exceed the number of XREGs, parameters are passed by value,
otherwise - by reference. This allows an arbitrary number of parameters to
be exchanged between the calling (software) and called (hardware) functions,
where only the hardware resources determine the upper bound. The Molen
architecture also addresses an additional shortcoming of other reconfigurable

2.3. PROGRAMMING PARADIGM AND SEQUENCE CONTROL 27

computing approaches concerning parallel execution. In case that two or more
functions considered for CCU implementation do not have any true dependen-
cies, they can be executed in parallel. There is always a physical maximum of
how many operations can be executed in parallel on the CCU. This is, however,
an implementation dependent issue, e.g., reconfigurable hardware size, number
of XREGs, etc. and can not be considered as a limitation of the Molen archi-
tecture. In addition, it should be emphasized that the Molen hardware/software
(HW/SW) division ability is not limited to functions only. In case the targeted
kernel is part of a function, e.g., a highly computational demanding loop, it can
be appropriately transformed for use in the Molen programming paradigm by
defining a clear set of interface parameters and passing them via the XREGs
(as values or references) to the CCU implementation of the kernel.

The Molen paradigm facilitates modular system design. For instance, hard-
ware implementations described in an HDL (VHDL, Verilog or System-C)
language are mappable to any FPGA technology, e.g., Xilinx or Altera, in a
straightforward manner. The only requirement is to satisfy the Molen set and
execute interface. In addition, a wide set of functionally similar CCU designs
(from different providers), e.g. sum of absolute differences (SAD) or IDCT,
can be collected in a database allowing easy design space explorations.

Interrupts and miscellaneous considerations:The Molen approach is based
on the GPP co-processor paradigm (see for example [43–45]). Consequently,
all known co-processor interrupt techniques are applicable. In order to support
the core processor interrupts properly, the following parts are essential for any
Molen implementation:

1. Hardware to detect interrupts and terminate the execution before the
state of the machine is changed are assumed to be implemented in both
core processor and reconfigurable processor.

2. Interrupts are handled by the core processor. Consequently, hardware to
communicate interrupts to the core processor is implemented in CCU.

3. Initialization (via the core processor) of the appropriate routines for in-
terrupt handling.

It is assumed that the implementor of a reconfigurable hardware follows a co-
processor type of configuration. With respect to the GPP paradigm, the FPGA
co-processor facility can be viewed as an extension of the core processor ar-
chitecture. This is identical with the way co-processors, such as floating point,
vector facilities, etc., have been viewed in the conventional architectures.

28 CHAPTER 2. MOLEN BACKGROUND

2.4 Conclusions

Many current reconfigurable proposals fall short of expectations due to a num-
ber of shortcomings, the most essential of which are opcode space explosion,
lack of ISA compatibility, technology dependence, no design modularity, lim-
ited number of processing parameters, and no support for parallel reconfig-
urable execution. All these critical issues have been addressed and success-
fully solved by the Molen polymorphic processor paradigm.The basis of the
Molen processor is established on the capability to control program execu-
tion and hardware reconfiguration allowing intermingling of program code
and hardware description and by utilizing emulation microcode.This special
microcode is termed as reconfigurable microcode (ρµ-code) as it is different
from the traditional one. The difference is that instead of executing on fixed
hardware facilities, theρµ-code itself ”designs” the facilities to operate upon.
The main advantages of the Molen approach can be summarized as follows:

• Compact ISA extension.For a given ISA, a single architectural exten-
sion comprising 4 to 8 additional instructions provides unlimited num-
ber of reconfigurable functionalities per single programming space. This
realization is application independent and resolves the opcode space ex-
plosion problem as well as provides ISA compatibility and portability of
reconfigurable programs.

• Technology independent and modular design.The design concept is
not bound to any particular reconfigurable technology. It allows recon-
figurable modules designed by a third party to be ported easily into the
Molen organization.

• Arbitrary number of parameters and parallel processing. The
Molen processor organization and the programming paradigm based on
sequential consistency allow an arbitrary number of parameters as well
as parallel executions of no data dependent operations.

In the chapter to follow, we are going to present some computationally de-
manding MPEG-4 specific hardwired kernels. These kernels will be con-
sidered for CCU implementations in a Molen prototype design, described in
Chapter 5, and the experimental overall performance gains induced will be
evaluated in Chapter 6.

Chapter 3

MPEG-4 Hardwired Kernels

R
egardlessthe particular technology a Molen processor (described in
the preceding chapter) is implemented in, a number of computation-
ally demanding kernels has to be considered for custom computing

units (CCUs) designs to increase processor performance. Such designs should
be capable of accelerating the considered kernels in reconfigurable hardware
with respect to their pure software execution. In this chapter, we consider
three computationally demanding MPEG-4 kernels for hardware implementa-
tion. The considered kernels are defined in the higher profiles of MPEG-4.
This chapter emphasizes on the technology independence of the proposed de-
signs, therefore they are evaluated as stand-alone units both for reconfigurable
and ASIC realization. Multiple reconfigurable technologies by the two major
FPGA vendors Altera and Xilinx are considered. When we evaluate the Molen
prototype in Chapter 6, where entire programs are implemented, we consider
the Xilinx Virtex II Pro technology.

We start with two hardwired solutions forMPEG-4 repetitive padding, a per-
formance restricting algorithm for real time MPEG-4 execution. The first so-
lution regards application specific implementations, the second - general pur-
pose processing. For the application specific implementations, we propose a
systolic array structure and it is shown that the requirements of all MPEG-4 vi-
sual profile levels can be met. The second approach regards an augmentation of
a general purpose ALU with an extra functionality added to perform repetitive
padding. This approach allows the MPEG-4 repetitive padding algorithm to
run in real-time at an order of magnitude higher speeds than the requirements
of the most-demanding MPEG-4 visual profile levels. Speed and hardware es-
timations are reported for 32, 64, and 128-bit augmented ALUs. The trade-offs

29

30 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

between chip-area and performance are discussed and possible configuration
alternatives are proposed for both of the proposed padding structures.

Another considered candidate for hardware acceleration in MPEG-4 is theAC-
cepted Quality Function(ACQ), which determines whether the encoding of the
shape of an object gives an accepted quality according to some specified lossy
coding conditions. We propose a hardware implementation of the ACQ func-
tion as asystolic structure of processing elements. The structure is scalable
and can be implemented according to different memory bandwidth restric-
tions. The ACQ function can be implemented either as a reconfigurable or
as a hardwired unit in a dedicated MPEG-4 processor.

An important function in MPEG-4 (but also in other recent standards, e.g.,
JPEG2000) is the Discrete Wavelet Transform (DWT). At algorithmic level,
the so calledlifting schemerepresents the fastest implementation of the DWT.
In this chapter, we propose a lifting-based DWT hardware module design,
which is mapped on the Xilinx Virtex II FPGA. To accelerate the transform,
we introduce pipelining, data reusability and data parallelism. The design is
scalable, allowing more dramatic improvements in performance to be achieved
at higher degrees of parallelism.

It should be noted, that we also consider some extensively investigated MPEG-
2 kernels, such as SAD, DCT, and IDCT, which are also parts of MPEG-4. The
latter kernels have been implemented in the Molen prototype and their overall
impact is evaluated in Chapter 6.

The remainder of this chapter is organized as follows. The alternatives for
MPEG-4 repetitive padding hardware designs are described in Section 3.1. In
Section 3.2, the ACQ function design is presented. The lifting based DWT
hardware implementation is introduced in Section 3.3. Finally, the chapter is
concluded with Section 3.4.

3.1 Hardwired repetitive padding

This section addresses one important feature in MPEG-4, therepetitive
padding technique, defined at all Levels in the Core and Main Profiles of
the standard. Software profiling results, reported in [7, 46, 47], indicate that
padding is a computationally demanding and time consuming process, which
restricts the real time operation of the MPEG-4 codecs. We present two gen-
eral hardware approaches to implement the repetitive padding algorithm in
real time. The first approach assumes MPEG-4 application specific process-

3.1. HARDWIRED REPETITIVE PADDING 31

ing (ASIP) designs. It can be used as a hardware accelerator for an ASIP
MPEG-4 processor or reconfigurable processing [13,16,39,48–50].The second
approach aims at (hardware) augmentations of general-purpose Arithmetic-
Logical-Units (ALU) with application specific functional extensions. We show
that both of the approaches are beneficial for improving the execution of the
repetitive padding at little cost. More specifically, the following is shown re-
garding performance and cost:

• Performance - real time processing for all MPEG-4 profiles and lev-
els, utilizing the padding algorithm can be achieved. More specifically
it is shown that: Assuming available technologies, data processing rates
from 77 K up to 280 K macroblocks per second (MB/s) are achieved
employing 4 - 16 processing elements mapped on the xc4085xplg559-09
Xilinx FPGA and the epf10k20rc240-4 Altera FPGA. We show that even
higher processing speeds are achievable when more processing elements
are implemented (e.g. a 64 processing elements structure processes 950
K MB/s). It is also established that the required operating speed is low
1. For example the 16-pixel line processing FPGA implementations pro-
duce the wanted results in a frequency varying between 11 and 25 MHz.
For a 64-bit augmented ALU example, running at a frequency of 1 GHz,
we achieve 7.8 million MB/s, which also allows the MPEG-4 repetitive
padding to run at real time for all profiles and levels it is defined in.

• Hardware costs- we establish that scalable implementations, tunable to
the different Profiles@Levels requirements are feasible and show that:
To achieve the performance discussed in the previous paragraph, a low
number of FPGA cells (419 Xilinx CLBs and 1024 Altera LCs) is re-
quired for a 16-pixel processing unit. Only 344 AND-OR gates extra
hardware penalty costs are required for a 64-bit padding-aware ALU
augmentation example. We also show that the 32 and 128-bit imple-
mentation costs are 172 and 688 extra AND-OR gates respectively.

We also note that the proposed approaches are general and can be utilized in
different architectures and implementations. The remainder of the discussion
in this section is organized as follows. In Subsection 3.1.1 we give some back-
ground knowledge and detailed motivation for our research. Subsection 3.1.2
describes in details the ASIP padding structure. The general purpose ALU
padding augmentation is presented in Subsection 3.1.3. Subsection 3.1.4 gives

1We distinguish (data) processing speed, measured in [macroblocks/sec] (or [MB/s]) from
the device operating speed (frequency), measured in [Hz].

32 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

quantitative evaluations of both approaches and presents analytical and simu-
lation results in numbers.

3.1.1 Background and motivation

Like its preceding visual data compression (MPEG) standards, MPEG-4
adopts motion estimation and motion compensation techniques to exploit tem-
poral redundancies in the encoded video sequences. In MPEG-4, motion esti-
mation and compensation are defined over VOPs instead of frames.

The repetitive padding algorithm: For more accurate block matching in mo-
tion compensation/ decompensation of VOPs, MPEG-4 adopts the padding
process. The purpose of padding in MPEG-4 is to ensure more accurate
block matching in motion compensation algorithms for arbitrary shaped vi-
sual objects.The padding process defines the full-color values (luminance +
chrominance) for pixels outside the shape of a VOP. In padding, two types
of macroblocks are of interest. Macroblocks, which lie on the boundary of
the VOP are referred to as boundary blocks and are processed withrepeti-
tive padding. Exterior macroblocks (completely outside the VOP) are padded
using theextended padding method.Since repetitive padding is the most de-
manding padding algorithm, in this section we will consider the padding of
boundary macroblocks. The standard repetitive padding algorithm, as defined
in [1], is equivalent to the following steps:

• Step 1.Initialization. Define any pixel outside the object boundary as a
zero pixel. Make a duplicate binary alpha map.

• Step 2. Horizontal Repetitive Padding.Scan each horizontal line of a
block. Each scan line is composed ofzeroandnonzeroline segments
(according to the shape bits in the binary alpha map).

– In zero segments, between an end point of the scan line and the
end point of a nonzero segment, all zero pixels are replaced by the
pixel value of the end pixel of nonzero segment.

– In zero segments, between the end points of two different nonzero
segments, all zero pixels take the average value of these two end
points.

Nonzero segments are not processed. All shape bits, corresponding to
padded pixels are set in the duplicate binary alpha map.

3.1. HARDWIRED REPETITIVE PADDING 33

2
D+E

2
D+E

2
D+E

2
D+E

2
D+E

2
D+E

A B x x

x

x

x x x x

C xx

x ED

A B B B

ED

C CCC

A B B B

E

x x x x

D

C CCC

D E

1 1

1

1 1

0 0

0 0

0

0 0

0 0 0 0 0 0 0 0 1 1 11

1 1

1

1 1

1

111

1 1

1 1

1

1

1 1

11

1 1

1

1

1

S S’ S’

Horizontal Vertical

Repetitive
Padding

Repetitive
Padding

Original Result

Figure 3.1: The repetitive padding algorithm.

• Step 3.Vertical Repetitive Padding.Scan each vertical line of the block
and perform the identical procedure as described for the horizontal line.
The updated shape information from the duplicate binary alpha map is
used.

Figure 3.1 illustrates the repetitive padding algorithm with a simplified exam-
ples of a 4x4 pixel BAB and a 4x4 pixel luminance block. The original data
structures are in the left part of the Figure, where the definition of the zero
and non-zero pixels is depicted according to Step 1. The luminance block con-
tains color values (in the Figure these values are indicated by{A,B,C,D,E})
for the pixels, belonging to the shape of the VOP (non-zero pixels) and{x}
value (don’t care) for the rest (zero pixels). The central two squares of Figure
3.1 illustrate the resulting data after the horizontal repetitive padding (Step 2).
The duplicate BAB is indicated by S’ and the 4x4 luminance block is padded
accordingly. In this part, the example illustrates both cases, mentioned in Step
2,i.e., replicating a boundary pixel and estimating the average of two boundary
pixels. Finally (Step 3), the vertical repetitive padding is performed, identi-
cally to the horizontal, and the resulting BAB and luminance blocks are shown
in the right-most area of Figure 3.1. The same procedure (Steps 1 trough 3) is
executed for each of the two chrominance blocks from the padded macroblock,
as well.

After the boundary macroblocks are repetitively padded vertically and hori-
zontally, theextended paddingis performed on the blocks immediately next to

34 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

the boundary macroblocks. The extended padding algorithm, however, sim-
ply replicates the boundary pixel of an adjacent, padded macroblock, which
implies a simple pixel copying. Because of the low complexity of this data
processing, we are not discussing extended padding further.

Motivation: In this section we advocate hardwired solutions for repetitive
padding. The rational behind such a proposal is as follows: A summary of
the computational complexity of the QCIF, Core Profile Level 1 of MPEG-4
is reported in [7]. Since this is the lowest profile level, utilizing the padding
algorithm, we shall consider its real-time requirements as the minimum for a
hardware implementation. At this level, the computational power (reported
in [7]) for the software encoding of a single object is in the order of 4500 Mil-
lion (RISC-like) Instructions Per Second (MIPS). Assuming a software per-
formance optimization by a factor of up to 10 (assumed to be feasible in [7]),
the total computational complexity is within the computational capabilities of
the contemporary general purpose processors (500-1000 MIPS). In the case
of 4 video objects (see Table 1.1), however, the real-time software feasibility
becomes problematic with its requirements of approximately 4 times higher
computational workload. Given the above considerations, the need of a hard-
ware acceleration of MPEG-4 is evident, even at this low profile level. Further
analysis of the requirements for the software implementation (see again [7]) in-
dicates that the padding algorithm occupies some 175 MIPS for a single video
object, or around 700 MIPS for the maximum 4 video objects, stated at Level
1 of the Core profile (Table 1.1). Considering Table 1.1, we can estimate that
the required speed of 5940 MB/s for the Core Profile Level 1 is approximately
82 times lower than the speed requirements of the highest - Main@Level4
Profile (489600 MB/s). A simple arithmetic estimation, based on Table 1.1,
indicates that for the highest MPEG-4 profile level, the non-optimized soft-
ware padding would require approximately 57 000 MIPS and when extremely
optimized (i.e., 10 times speed-up) - in the order of 6000 MIPS. Even for the
significantly less complex decoder part of MPEG-4, the padding algorithm will
require some 24 000 MIPS for non-optimized software implementation down
to 2500 MIPS in dramatically optimized programming. All these approxi-
mated estimations of the MPEG-4 requirements are systematized in Table 3.1,
after considering the data from Table 1.1 and [7].

3.1.2 The application specific processor approach

Since padding is performed over horizontal and vertical pixel lines in identical
manner, we propose a scalable systolic structure to process pixel blocks per

3.1. HARDWIRED REPETITIVE PADDING 35

Table 3.1: Computational demands of the MPEG-4 Core@L1 and Main@L4.

Profile MPEG-4 # VO Boundary Software MIPS
Algorithm MB/s Requirements

Core@L1 All MPEG-4 1 742 4 500
Algorithms 4 2 970 18 000
Repetitive 1 742 175
Padding 4 2 970 700

Main@L4 Repetitive 1 7 650 1 794
Padding 32 244 800 57 400

line basis. Consequently, we define an elementary processing element (PE)
and a topology to connect functional groups of processing elements.

The processing element.A single processing element (PE), which is dedi-
cated to process each pixel of a block, is depicted in Figure 3.2. The same
processing element is used for luminance and chrominance padding. The fol-
lowing equations describe the functionality of the processing element:

OS = (S ∨ LIN ∨RIN), (3.1)

O = OS ∧ I ∨OS ∧ [(LIN + RIN) >> i], (3.2)

i = LIN ∧RIN ,

LO = S ∧ |S, I| ∨ S ∧RI, RO = S ∧ |S, I| ∨ S ∧ LI, (3.3)

S′ = S ∨ LIN ∨RIN ; (3.4)

where∨ and∧ represent logicalORandANDoperations respectively, overline
stands for logical negation,A >> i denotes ”shifti positions right the binary
vector A”, and + is an arithmetic summation of binary vectors,
OS stands for Output Select signal,
N represents the width of the processed data (further, we assume N=8),
LI, RI are left and right input vectors with width N+1,
LO,RO are left and right output vectors with width N+1,
I, O are data input and output vectors with width N,
S is the shape (input) bit before processing,
S
′
is a mask output bit after processing,

LIN denotes the first N (least-significant) bits ofLI (bits 0 to N-1),

36 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

NLI

NRI

C
OUT

− Multiplexer

SI

O

PE

S’

RO
RI

LI
LO

LI RI

ROLO

S

Byte Adder

OS’

I(OP1) S(OP2)

"PE" − Processing Element

Figure 3.2: The padding processing element.

LIN represents theN th (the most-significant) bit ofLI,
and|S, I| denotes the concatenation of bit S and vector I.

The operation of the PEis explained by the following:

• If the input shape bitS is set (the pixel belongs to the object), then:

– The outputO takes the value of the inputI, i.e. the pixel keeps its
color.

– The value of the input (pixel)I is propagated to the left and to
the right (via outputsLON andRON) for further processing. The
shape input bitS is propagated by the same multiplexers and oc-
cupies the most-significant bits ofLO andRO.

– The output bitS
′
is set, meaning the pixel has been processed.

• If the input shape bitS is zero (the pixel does not belong to the object
and has to be padded), then:

– The outputO takes the average value of theLIN andRIN inputs,
i.e. the pixel takes the padded value.

– TheLI value is propagated viaRO and theRI - via LO including
color and shape information.

– The output bitS
′
is set, meaning the pixel has been processed.

The systolic structure: To process a line from a macroblock, we implement
the systolic structure of processing elements, depicted in Figure 3.3. For the

3.1. HARDWIRED REPETITIVE PADDING 37

PE

SI

O S’

LI
LO

RO
RIPE

SI

O S’

PE

SI

O S’

PE

SI

O S’

Figure 3.3: A single scan line/column padding structure.

proper circuit operation, the left-most and right-most inputs of the structure
should be initialized with zero vectors. This would mean that there are no
pixels to the left and to the right of the macroblock, which could influence
the padding values. This structure is scalable and can contain an arbitrary
number of processing elements. Since a macroblock consist of one 16x16
luminance and two 8x8 chrominance blocks, it is efficient to implement struc-
tures of 8 or 16 PE. Furthermore, it is possible to implement several structures,
identical to the one in Figure 3.3. For example, if we implement eight such
structures, we will be able to process eight lines in parallel. This is possible,
because in the padding algorithm there is no data dependency between any two
lines or columns. The data dependency is just between the pixels in the same
line/column. Even a larger, two dimensional structure for processing an en-
tire block in parallel is implementable. Implementations, which process more
than one macroblock lines in a time, however, require higher data throughput
and the utilization of more complicated addressing approaches would become
necessary.

We can easily evaluate the processing speed of the structure, given its oper-
ating frequency. Let us assume a chain ofn PE as depicted in Figure 3.3,
operating at frequencyFn [Hz]. Assume the value ofn having practical sig-
nificance to be 4, 8, 16. Further assume two more parameters of the particular
implementation, denoting the following:NP8

n andNP16
n regard the numbers

of cycles, necessary to process an 8-pixel (chrominance) and a 16-pixel (lumi-
nance) line respectively.Some potential values of these parameters are shown
in Table 3.2. The processing of 16 pixels by any nPE configuration will take
NP16

n
Fn

[seconds] and for a 256-pixel luminance block-16·NP16
n

Fn
[s]. Identically,

the processing of two 8x8-pixel chrominance blocks will take16·NP8
n

Fn
[s] to the

same unit configuration. Since a macroblock consists of 256 luminance and
128 (2 x 64) chrominance pixels, padded vertically and horizontally, a whole
macroblock will be padded for32

Fn
· (NP8

n + NP16
n) [s]. If we implement a

38 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

configuration, which processes two and more (sayk) 16-pixel lines in a time,
we can formulate theProcessing speedas follows:

Processing speed =
Fn · k

32 · (NP8
n + NP16

n)
(3.5)

Formulation (3.5) is still valid forn < 16, assuming in this case thatk=1.

Table 3.2: Values ofNP8
n andNP16

n .

n Average Worst Case
NP8

n NP16
n NP8

n NP16
n

4 2.5 5.5 3 7
8 1 2.5 1 3
16 0.5 1 0.5 1

16·k 0.5 1 0.5 1

In Table 3.2 we separate the values for each of the parameters into two groups,
namely: average values and worst case values. The numbers represent the
count of processing cycles at operating frequencyFn for different numbers of
processing elements (column ”n”). The cycle countNP8

n is unproportionally
greater for chrominance line padding whenn < 8 compared to the case when
n ≥ 8. Identical is the case with the cycle countNP16

n whenn < 16 compared
to the case whenn ≥ 16. The reason for this is that when we use structures
with less processing elements, we cut the data propagation chain within the line
to be padded by dividing this line into sublines to be processed. In such cases
extra processing cycles are required to complete the computations, because
padding is highly data dependent regarding the data within a line (column).
For example, if we assume padding of a chrominance line (8 pixels) and a 4
PE structure, we will be required at most 3 cycles. In the first cycle we pad the
first 4 pixels, but in this cycle we may need data from the second 4 pixels of
the line. Therefore we propagate the padding result from the first 4 pixels to
the the second cycle, in which we already have all the required data to pad the
second 4 pixels. The result of this second cycle can already be used to pad the
first 4 pixels of the line. Note that within these three cycles any chrominance
line can be padded, regardless the pixel data it contains and no more cycles are
required. Therefore we denote this cycle number as the worst case (see Table
3.2). Further cycle reduction can be done by analyzing the last shape bits of the
sublines being padded. In the last example, if the right-most shape bit of the
first 4 pixels of the chrominance line is 1, the subline need not be processed

3.1. HARDWIRED REPETITIVE PADDING 39

again in a third cycle, because no data from the second subline is required.
Therefore two cycles would be enough to pad the whole chrominance line and
we can estimate the required number of cycles for padding a chrominance line
with 4 PE to be on average 2.5 (Table 3.2). The timing of such a padding
scheme is discussed in more details in the section to follow and Figure 3.7(b).

Possible configurations: For the line/column repetitive padding unit, there
could be several configuration options. We report three possibilities:

1. 16 PE unit - processes one luminance line/column and two chrominance
per operating cycle.

2. 8 PE or 4 PE unit - processes a half/quarter of luminance and one/half
chrominance line/column. An additional control circuit is required, to
maintain intermediate computational results.

3. 32, 64, ..., 256 PE unit- processing more than two luminance and more
than four chrominance lines/columns per operating cycle. The extreme
configuration would process the whole macroblock.

Figure 3.4 depicts a general view of the discussed possible configurations of
the padding unit. The blocks, named ”I” are buffers which store the Initial-
ization values for configurations, containing multiple of 16 PE. For Config-
urations with less than 16 PE, these buffers are used for storing intermediate
values, in order not to cut the data propagation chain for longer (up to 16 pixel)
lines. The buffering organization and timing is discussed in more details in the
section to follow.

3.1.3 The augmented ALU

In this section we describe a second approach for repetitive padding. We con-
sider a general purpose ALU, augmented to support repetitive padding. To
accommodate padding we consider sub-word data parallelism. Our general as-
sumption is:accommodate padding without creating critical ALU paths and
preserve the ALU functionality.Since 8-bit integer chrominance and lumi-
nance data representations are frequently used, we assume the same data for-
mats (our scheme with proper considerations will accommodate ”N-bit” quan-
tities as stated in MPEG-4, N being 10, 12 etc.).

Pixel processing: A single byte processing structure, which is dedicated to
process each pixel of a block, is depicted in Figure 3.5. Its organization is sim-
ilar to the organization reported in Figure 3.2, but it is extended with additional

40 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

PE PE PE PEI I

(a) Up to 16 PE;

PE PE PE PEI I

PE PE PE PEI I

PE PE PE PEI I

(b) 32, 64,..., 256 PE.

Figure 3.4: Possible configurations - ”I” denotes initialization and/or interme-
diate result buffer.

pipelining to fit into the general purpose ALU cycle. We pipeline the process-
ing flow by dividing it into two stages. The first stage contains a Propagation
Node (PN) and two multiplexers. The multiplexers are required to preserve the
original functionality of the ALU. A byte controlled adder and an output mul-
tiplexer build the second pipeline stage. The byte controlled adder is a part of
the original multi-byte ALU adder, with controllable carries between the bytes.
The padding output multiplexer can be merged with the existing ALU output
multiplexer and that is depicted in Figure 3.5 by the dash-lined arrow, from the
logical part of the ALU (LU). The function of the PN is to propagate the appro-
priate values to its adjacent padding PNs and to supply data and control signals
to the byte controlled adder and the output multiplexer. Its functionality can be
described by Equations (3.3) and (3.4). Table 3.3 represents the control signals
of the output multiplexer (SR(COUT , ADD) means Shift Right with 1-bit the
ADDer output together with its carry). Signal ”Control” determines whether
the ALU will perform padding, or its original operation(s).

3.1. HARDWIRED REPETITIVE PADDING 41

NLI

C =0
IN

NRI

SI

LI
LO

RO
RI

S’A BI

3

PN

S’

LI RI

ROLO

Control

Control

C
OUT

OS’

Byte Adder

S

St
ag

e
1

St
ag

e
2

I From LU

A B

I

- Register

"PN" - Propagation Node

- Multiplexer

Op A
Op B

I(Op A) S(Op B)

Figure 3.5: ALU augmentation for a single pixel padding.

Table 3.3: Truth table for the control signals of the output multiplexer.

Control S RIN RIN O
0 X X X ADD
1 0 0 0 I
1 0 0 1 ADD
1 0 1 0 ADD
1 0 1 1 SR(COUT , ADD)
1 1 X X I

Line / column padding: To process a line or a column from a block by an n-
byte ALU, we have to implement a chain of n PN (i.e. n-pixel parallel padding)
similar to the structure in Figure 3.3. A section of such processing circuitry for
two adjacent pixels is depicted in Figure 3.6. The added ALU logic has to
perform the functions described in equations (3.1) - (3.4). Each node from
the propagation chain propagates the pixel values from left to right and from
right to left when its corresponding shape bit S is zero. When a shape bit is
1, the corresponding propagation node transmits the value of the pixel (driven
via input I) to its adjacent propagation nodes. The proper multiplexer input
is selected to drive the appropriate value out of the ALU. This structure is
scalable and can contain an arbitrary number of propagation nodes, depending
on the ALU width (i.e. n elements for an n-byte ALU).

42 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

C
IN

C
IN

OUT
C

PN PN
RO

RI

LO

LI LI

LO

SISI

+ +

S’ IIS’

ResultShape’

+I From Logical Unit

Op A Op B

St
ag

e
1

St
ag

e
2

Figure 3.6: Scan line / column padding augmentation of an ALU.

Putting everything together: Since a macroblock consist of one 16x16 lumi-
nance and two 8x8 chrominance blocks, it is efficient to implement structures
processing 8 or 16 pixels simultaneously. This means that with 64 or 128-bit
ALUs we will be able to pad an entire line or column of chrominance and/or
luminance blocks in pipeline manner having a pipeline length of two ALU
cycles. The proposed structure is also capable of performing padding when
implemented on smaller ALUs. In the remainder of the section, we will de-
scribe in more details the padding process flow, performed by a 64-bit ALU.
Data buffering and initialization are identical for the application specific im-
plementation, described earlier. First, for the proper circuit operation, the left-
most and right-most inputs of the structure should be initialized. Figure 3.7(a)
depicts a general view of the 64-bit initialization for luminance line / column
padding. The operand control circuit (OpControl) is a part of the operands
critical path. It is responsible for setting the adder operands and performs
operations like sign extension, operand masking etc. The result control (RC)
circuit deals with flags handling like overflows, carries, equal zero etc. The BA
and BB buffers are 8-bits wide and contain the initialization values, required
by the unit to start the operation. Since a luminance line (16x8-bit) can not be
processed in one pass by a 64 bit (8x8-bit) ALU, we assume that the left-most
half (the left-most subline) of the line is processed first. In the previous section
it has been noted that a full line can be padded in the worst case (maximal)

3.1. HARDWIRED REPETITIVE PADDING 43

BA

BB BA

BBPN Chain

Shape’ A B

64

64

Op A Op B
St

ag
e

2
St

ag
e

1

64-bit Byte
Controlled Adder

Logical
UnitRC

Op_Control

LU

(a) General view of the pipeline stages (OpControl- operand control,
RC- result control, LU- logical unit);

BN - Buffer N; X-Don’t care; 0-zero.

BA

BA2.1

2.2

BB

BB

0 0

0

0

X

X

X X

1. PN Chain

PN Chain

PN Chain

(b) Data buffering by cycles.

Figure 3.7: Data initialization and buffering for luminance line / column pro-
cessing by a 64-bit ALU.

44 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

number of cycles, regardless the data dependency within the line. For the as-
sumed ALU and a luminance line this number of cycles is 3. It has also been
noticed that a cycle reduction by exploiting intraline data dependency is pos-
sible. The cycle partitioning of the luminance line padding in such a scenario
is illustrated in Figure 3.7(b). Depending on the right-most shape bit of the
subline, padded in the first cycle, the full-line padding would require one or
two more cycles:

If the right-most shape bit of the first half of the luminance line is ”0”, it means
that data from the other half of the line is required to pad the first half. Thus the
data, propagated to the right is stored into BA register. In the next cycle this
data is used to fully pad the second half of the line, and the byte, which has to
be propagated to the left is stored in buffer BB. Now, a third cycle is executed
on the first half of the luminance line, with the proper right-to-left propagation
value stored in the BB buffer.

If the right-most shape bit of the first half of the luminance line is ”1”, the pixel
value to be propagated right is stored into buffer BA, and the first half of the
luminance line is completely padded. Just one more cycle is required to pad
the second half of the luminance line, provided the right propagation value is
driven to the left input of the circuit from BA.

Since the right-most shape bit of the first half of the luminance line is available
before the next operands (describing the other half of the line) are issued, we
have branch determination (a perfect branch prediction) [51] for the pipeline.
Since the PN structure is similar to the application specific PE, Equation (3.5)
is valid for a padding augmented ALU if we consider a long data sequence.
We can consider n as the number of bytes the ALU processes in a cycle and
NP8

n , NP16
n - the average number of cycles spent to process one chrominance

and one luminance linein a long data sequence. Therefore, we can conclude
that in a long data sequence, a complete luminance line processing by a 64-
bit padding augmented and pipelined ALU would take on average 2.5 cycles
to perform (NP16

n = 2.5). The padding of a chrominance line by the same
ALU would take approximately one cycle (NP8

n = 1). The processing flow is
similar for a 32-bit ALU, but the required average cycle number for luminance
line processing is 5.5 (at least 4, at most 7 cycles), and the analysis is made
on the right-most shape bits of each byte to be processed. Given the shape
information of the whole line is available a-priori we can still make a branch
determination, i.e. we can predict the operands issue sequence perfectly. The
data in Table 3.2 can be used again in Equation (3.5) to evaluate the processing
speed of ALUs with different operand widths.

3.1. HARDWIRED REPETITIVE PADDING 45

Note on Figure 3.7(b) that the left and right-most inputs of the whole lumi-
nance line are initialized with ”0”, including the propagation of the shape bit.
This is also valid for the chrominance line processing and for all up or down
scaling ALU implementations (say 32 or 128 bit ALUs). In addition, if we
assume the worst-case scenario for all cases, no shape bit analysis would be
required. An implementation according such an assumption would lead to sim-
pler data sequence control and would still yield very high processing speeds.

3.1.4 Simulation results and evaluation

In this section we evaluate the proposed implementations using the following
measurements:processing speed in MB/s(macroblocks per second)and chip
area (in logical blocks). For the evaluations we have taken into account:the
ability to exploit parallelism, pipelining, system inherent delay, and the vari-
ation of the processing cost in time[52]. A comparison between our designs
and padding units, previously reported in literature is also presented.

A. Systolic array implementation

To evaluate the proposed array padding structure, we have explored configu-
rations with different numbers of PEs. We assume reconfigurable technology
for two reasons. First of all, reconfigurable technologies run slower than gate
arrays or other direct hardware implementation technologies. The implica-
tion of the previous statement is: showing the viability of our approach in
reconfigurable technologies also proves its viability to all other current and
near future technologies with other speed/area characteristics. Second, we en-
vision (for cost efficiency) that assuming application specific requirements,
such a unit could be incorporated in a reconfigurable augmented processor,
e.g., [13,16,39,48–50], which in current research appears to gain acceptance.
The evaluation has been made in terms ofchip areaandspeed. We have written
synthesizeable VHDL models of a single PE and a generic multi-element struc-
ture of PEs. To get realistic values for the parameters of the unit, we have syn-
thesized the VHDL models for two popular FPGA families - Altera and Xilinx,
using the standard synthesis and simulation tools, provided by the vendors. We
have not chosen the cutting-edge-of-technology chips for the implementation,
because we have been interested in achieving high performance with lower
technological generations of FPGAs (proving the proposed scheme for worse
case conditions). We evaluated both the Xilinx xc4085xlpg559-09 [53] and
the Altera epf10k20rc240-4 [54] chips, because they can be run at compara-

46 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

ble frequencies (around 100 MHz). Their chip organization, however, is quite
different and area is estimated for each of the families. For both chip families
we have evaluated structures of 4, 8 and 16 PEs and speed has been reported
in MHz. Two extra evaluations for 32 and 64 PEs Xilinx mappings, have been
done to illustrate how the data organization and the number of processing ele-
ments influence the performance of the unit.

Area and speed evaluation:Table 3.4 reports the area estimates for the Xil-
inx chip in the absolute units the vendor defines - CLBs (Configurable Logic
Blocks) and in percentage of the available gate array area. For the Altera chip,
results are reported in Table 3.5 in similar manner but the units for the absolute
area are referred to as Altera defines them, namely - LCs (Logical Cells).

Table 3.4: Area-performance results for the Xilinx xc4085xlpg559-09 chip.

CLB’s Speed
PE total % MHz MB/s

Average Worst C.
4 45 of 3136 4 24.5 95 700 76 600
8 206 of 3136 7 18.2 162 500 142 200
16 419 of 3136 14 11.4 237 500 237 500

32 838 of 3136 27 11.4 475 000 475 000
64 1676 of 3136 53 11.4 950 000 950 000

Table 3.5: Area-performance results for the Altera epf10k20rc240-4 chip.

LC’s Speed
PE total % MHz MB/s

Average Worst C.
4 254 of 1152 22 24.8 96 900 77 500
8 511 of 1152 44 19.8 176 800 154 700
16 1024 of 1152 88 13.4 279 200 279 200

The speed estimations for both FPGA families suggest similar results. Besides
the operating frequency, measured in MHz, we also evaluated the actual data
processing speed of the different configurations. Since VOPs may vary in size
and resolution, the MPEG-4 requirements group has defined the binding cri-
teria for implementation complexity in terms oftransferred macroblocks per
second(Table 1.1). For consistency with this definition, in the last two columns
of Tables 3.4 and 3.5, we have estimated the processing speed in macroblocks

3.1. HARDWIRED REPETITIVE PADDING 47

per second ([MB/s]) according to Equation (3.5), more specifically - the av-
erage and worst case values. The reported numbers indicate that the padding
structure can meet the real-time requirements for a broad range of visual res-
olutions. If we consider the implementation with 16 PEs, the estimated oper-
ating frequencies (11.4 MHz and 13.4 MHz) mean that the padding unit can
process up to 237 500 MB/s (macroblocks per second) or 279 167 MB/s, de-
pending on the FPGA family. Note that for structures with PE number, which
is a multiple of 16, the average and worst case speeds are equal. This is due
to the data dependency within a line and the 16-pixel wide data structure to be
processed (already discussed along with the introduction of Table 3.2). In such
large structures, the required number of cycles to pad a 16-pixel line is fixed
(NP16

n =const).

TheCoreandMain profile levels of MPEG-4 require processing speeds in the
range between 2970 and 244800 Boundary MB/s to maintain from 4 up to 32
VOPs. It is obvious that the operating speed ranges, achievable by the proposed
padding unit, completely match the required values. Even the most demanding
profile level,level 4of theMain MPEG-4 profile, requires 244 800 Boundary
MB/s for a high resolution session type (1920 x 1088) and 32 objects. This
rate is in the order of the reported speed results for the feasible padding unit
implementations. Furthermore, the unit can also meet the requirements for
the maximum operating speeds from Table 1.1 (5940 MB/s - 489600 MB/s).
This allows the boundary macroblock detection to be avoided as a processing
stage, preceding the repetitive padding and all blocks in the visual scene to
be padded. The potentials of the structure indicate capabilities to meet even
more-demanding future profiles of the visual data compression standards.

Data-area-speed dependency:Results in Table 3.4 and Table 3.5 also indi-
cate that the actual operating speed depends both on the number of processing
elements and the structure of the processed data. For configurations with less
than 16 PE, the area-speed relation is not proportional. The situation is dif-
ferent for structures with more than 16 PEs. The last two rows of Table 3.4
illustrate the influence of the data organization (16x16 pixel macroblocks) and
the configuration of the structure on the processing speed (for numbers of el-
ements lower and higher than 16). Since any two different lines (columns)
within a macroblock are padded independently from each other, by paralleliz-
ing the processing per lines (columns), we significantly increase the processing
speed without changing the operating frequency. On the other hand, struc-
tures with less than 16 PE, require extra circuitry to maintain the intermediate
computational results. Therefore the number of the processing cycles is much
higher and depends on the data. Figure 3.8 depicts the discussed influence of

48 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

250 000

500 000

750 000

4 8 16 32 64

P
ro

ce
ss

in
g

S
pe

ed
 [M

B
/s

]

Number of PE (~Area)

Figure 3.8: Data structure influence on the performance (mappings on Xilinx
FPGA considered).

the data organization on the area-speed relation. It is evident that for struc-
tures with more than 16 PE the speed increases with the same rate as the area
does. These properties of the implementation should be taken into account
when either the area or the speed constraints of the unit are crucial.

B. ALU augmentation

As indicated in the previous section, our assumption is:accommodate padding
without creating critical ALU paths and preserve the ALU functionality. Re-
garding the augmented general purpose ALU implementation, the key issue is
not which frequency will the modified ALU perform but rather if such augmen-
tation will create a critical path on the general purpose ALU (with the use of
the byte controlled adder and the multiplexing), thereby potentially decreasing
the processor operational frequency. Furthermore, it is of interest to establish
if the expenses in terms of hardware are significant.

Critical paths / speed estimation.Before addressing the critical path of the
stages, we discuss generally what is considered to be an ALU critical path.
The ALU critical path in a general purpose design can be approximated to be

3.1. HARDWIRED REPETITIVE PADDING 49

twice the delay of an adder when it is assumed that the execution of an ALU
operation is performed in a single cycle. Given that a 64-bit adder using 2x2
AND-OR (or equivalent) gates requires 7 logic stages [55], the ALU can be
approximated by 14 2x2 AND-OR logic stages. Regarding the critical path
penalty issue, it has been noted that byte/nibble controlled adders (used in the
past to perform, for example, decimal operations) will not increase the cycle
time. The reason for such a possibility is that the masking is embedded im-
plicitly in the stages. For a precise description and discussion for a controlled
adder (more complex than the controlled adder proposed here), the interested
reader is referred to [56].

The computation of padding requires two pipeline stages2: one computing
the PN operation and one performing the masked ALU operation (see Figure
3.7(a)).
Pipeline stage 1:The following operations are performed in this stage:

• Operands are routed through the propagation chain.

• Data, to be processed in Stage 2, is loaded in the pipeline latches.

• Control signals for the output multiplexer are generated.

The first stage critical path is clearly linear to the length of input data and
it is a serial operation. This critical path is equal to the number of bytes in
the ALU operands plus one multiplexers. Given that the worst case is the
largest input ALU , implemented in practice (64 bit), the critical path is equal
to the delay of1 + 64

8 = 9 multiplexers which fits into a single ALU cycle.
For usual 32-bit units the delay is equal to 5 multiplexer delays. It should be
noted, that operands are passed through the Propagation Nodes only when a
padding operation is performed. They are bypassing the first pipeline stage for
a conventional ALU operation, adding one extra input in the already existing
bypassing multiplexer. Consequently, the first cycle of padding computations
will not imply a critical path problem. The bottomline is that for evaluating the
performance of the scheme, proposed here, it is safe to assume no augmenta-
tion to the processor cycle times.
Pipeline stage 2: In this pipeline stage the following operations that could
comprimise the critical path are performed:

• The Byte Controlled Adder performs masked additions over the data
stored in the pipeline latches.

2NOTE: A pipeline stage is performed in a machine cycle, a logic stage is performed with
the delay of a gate.

50 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

• The output multiplexer issues the appropriate results according to the
generated control signals (see Table 3.3 and Figure 3.5).

The ALU critical path penalty could have been augmented by a single 2-way
AND element (added possibly to the critical path of the byte controlled adder).
Such a penalty has been shown to be avoidable [56] with implicit computa-
tions. Thus it should not extend the critical paths of a general purpose ALU
implementation. The critical path penalty for reading from the general pur-
pose register or bypassing the operands of the ALU is a 2-1 multiplexer and it
should be noted that such a multiplexer already exists. It is used, for example,
to perform bypassing of operands from other units, direct data passing from
caches etc. The only foreseeable penalty is adding a single input to the already
existing multiplexer, which is not anticipated to create critical path problems.

In estimating the expected performance we note thatan ALU instruction takes
1 cycle, padding takes 2 cycles. To estimate the possible speed achievable
from the proposed solution we consider the following: Let us assume ann · 8-
bit padding augmented ALU operating at frequencyFn [Hz]. Let us assume
values ofn that have practical significance - 4, 8, 16 (i.e., 32, 64 or even 128-bit
ALU). To evaluate the speed of the ALU we can use Equation (3.5) which gives
results for long data sequences. Assuming a value ofFn = 1GHz (which is
currently easily achievable for general purpose processors) and using the data
from Table 3.2 into Equation (3.5), we calculated the implementation speeds,
given in Table 3.6.

Table 3.6: Processing speed at clock frequencyFn=1 GHz.

ALU n Speed [MB/s]
bits Average Worst Case

32-bit 4 3 906 250 3 125 000
64-bit 8 8 928 600 7 812 500
128-bit 16 20 833 300 20 833 300

The most demanding profile level,level 4of the Main MPEG-4 profile, re-
quires 244 800 Boundary MB/s for a high resolution session type (1920 x
1088) and 32 objects (Table 1.1). This rates are an order of magnitude lower
than what the augmented ALU implementations achieve (see Figure 3.9). The
potentials of the structure indicate capabilities to meet even more-demanding
future profiles of the visual data compression standards [57].

3.1. HARDWIRED REPETITIVE PADDING 51

200 000

2 000 000

20 000 000

32 64 128

[M
ac

ro
B

lo
ck

s
/ s

ec
on

d]

Number of ALU bits

Our scheme

Figure 3.9: Processing speed for different ALU operand sizes andFn=1 GHz.
Note the logarithmic scale.

Table 3.7: Hardware gates estimations.

ALU n Number of
bits extra gates

32-bit 4 172
64-bit 8 344
128-bit 16 688

Hardware estimations: We choose the 2x2 AND-OR logic block as a basis
for the hardware estimations. The reason for such a choice lies on the fact
that such a block is commonly available to most technology libraries [55]. A
one-bit 2 to 1 multiplexor is a 2x2 AND-OR gate. The hardware penalty for a
single byte padding structure is: 2 x 9-bit multiplexers, 2 x 8-bit multiplexers
and 1 OR gate. That makes 2x9+2x8+1=35 2x2 AND-OR gates. An n-byte
implementation will costn · 35 AND-OR gates plus additional cost for the
ALU multiplexer of n · 8 gates, i.e.n · 43 2x2 AND-OR gates. Table 3.7
contains the exact values of the hardware penalties for different ALU sizes. It
is noted that our estimations, as indicated in Table 3.7 strongly suggest that
the hardware cost is rather minimal when compared to current chip sizes. It is
important to note that for padding in the worst case scenario no data analysis
is required therefore it implies no additional hardware. When data analysis is

52 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

implemented, the hardware overhead can be estimated as additional inputs to
the operand addressing circuit (in the presented 64-bit example it is a single
input to the operand addressing circuit).

Related work: The repetitive padding algorithm is described in [1, 5], but
some modifications have also been reported. In [58–60] new algorithms or
algorithm modifications are proposed to redefine or even substitute the orig-
inal repetitive padding. All of them suggest software improvements of the
coding efficiency and visual quality and do not focus on the hardware exe-
cution, nor on performance. They are software algorithms and they are not
hardware implementations, consequently they are not pertinent to the work
presented here. The idea for a dedicated VLSI hardware padding accelerator
was reported in [61]. The unit, proposed there, has a complex organization
and processing control - it is dedicated for 64-bit data, contains 3 sub-units,
operating in 4 internal states with low flexibility and scalability. The achieved
processing speed is 245 000 MB/s at clock frequency 100 MHz. Compared to
it, our proposals have the following advantages:

• Faster processing- if we assume the same operating speed (100 MHz)
for both ASIC and ALU schemes, our 64-bit implementations are 3
times faster(781 2503 MB/s vs. 245 000 MB/s).

• Flexibility and scalability- we have shown that our approaches allow
high levels of scalability and flexibility which is not the case in [61].

• Simple hardware- the control schemes of our implementations are sim-
pler, thus more cost effective than the design discussed in [61]. Our
hardware overhead is just a few multiplexers vs. the 3 subunit design
with high communication complexity.

A hardware acceleration of the padding, which appears to be faster, is dis-
cussed in [62]. In such a proposal, the padding algorithm is modified to sup-
port specific instruction set extensions as the horizontal and vertical padding
processes are divided into two phases each. These two phases consequently
scan the lines/columns into two opposite directions and perform the padding
operations. In the proposed solution there is a hardwired dedicated padding
unit with high control overhead, supporting 8 new instructions. Its estimated
processing speed at 100 MHz clock frequency is 250 000 MB/s for 32-bit data
width. This proposal differentiates with schemes described here in the follow-
ing:

3Data in Table 3.6 should be divided by 10 to get the numbers for 100 MHz clock.

3.1. HARDWIRED REPETITIVE PADDING 53

• Higher processing speeds.In [62], the processing speed is reported only
for a 32-bit unit. Although the design is claimed to be scalable and
implementable for larger data types, for 64- and 128-bit units data are
not reported. For 32-bit data our units are over 20% faster (312 500
MB/s vs. 250 000 MB/s). If we predict the processing speed for 64 and
128-bit units according to the scheme proposed in [62], the processing
speed of the unit discussed there increases (at most) linearly with the
operand width. Our approaches allow an exponential speed up when the
data width increases, because of the better data processing scheme. For
64-bit data and the same clock frequency (100 MHz) our units can be
estimated to be over 50% faster, while for 128-bit data, the estimated
speed up is over a factor of 2.

• Simpler control. To perform the padding algorithm, our units require
only one additional instruction, while in [62] 8 new instructions are in-
troduced. As a rule in computer engineering, a higher number of addi-
tional instructions imposes more severe architectural modifications and
more complicated data paths and control circuitry in the implementation.
It is always preferable to limit the opcodes added into an architecture.
Our proposal is clearly better as it requires the minimum (one) instruc-
tion addition to an instruction set.

Both [62] and [61] present hardware estimations for 0.35µm CMOS technol-
ogy and do not report any technology independent hardware estimations (e.g.,
number of logical gates). Consequently, we can not make an exact and inde-
pendent comparison between the hardware size complexities of these units.

Finally, in the present discussion we use the standard repetitive padding algo-
rithm (differentiates from [58–60]) as we scan each line and column of a mac-
roblock bidirectionally in parallel (differentiates from [62] where the padding
algorithm is modified), thus saving a number of processing cycles. Our two
approaches for the hardware acceleration of the algorithm are scalable (differ-
entiates from [61]) and differentiate from all of the above mentioned references
with the reconfigurable implementation and the general-purpose ALU modifi-
cation (for padding not reported in literature before).

54 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

3.2 The accepted quality function

Previous research, reported in [46, 47, 63, 64], indicates that after motion es-
timation, the next computationally most demanding algorithm in MPEG-4 is
the shape encoding. An essential part of the shape encoding process is the ne-
cessity to ascertain whether the encoded BAB has an accepted visual quality
under some specified lossy coding conditions. To achieve this, the so-called
”ACcepted Quality” (ACQ) function is defined. The ACQ function is inten-
sively used in three basic procedures of the MPEG-4 encoding process, namely
mode decision, binary motion estimation and compensationandrate control:

• Mode decision: A mode decision procedure is performed over each
BAB and there exist seven modes to code the shape information of each
macroblock [1].

• Binary motion estimation and compensationfor shape: This is the
most demanding part of shape encoding in terms of performance. The
motion estimation and compensation for shape is similar to the tradi-
tional motion estimation and compensation for full-color video frames,
but in MPEG-4 it is performed over the binary alpha map.

• Rate control is obtained through block level size conversion of all
BABs. The conversion ratio (CR) is 1/4, 1/2 of or the original size.
Each 16x16 BAB is down-sampled to (16xCR)x(16xCR) and then up-
sampled back to 16x16 by means of filters [1].

In this section, we introduce a scalable systolic hardware implementation of
the new MPEG-4 ”ACcepted Quality” function.

3.2.1 Definition of the ACQ function

Each BAB is divided into 16 4x4 pixel blocks (PB) and this data structure
is used by the criterion for an accepted quality. A dedicated function called
accepted quality function(ACQ) is defined in the MPEG-4 video verification
model [1]:

Definition 3.1 Given the current original binary alpha block i.e. BAB and
some approximation of it i.e.BAB

′
, it is possible to define a function

ACQ(BAB
′
) = MIN(acq0, acq1, ..., acq15), (3.6)

3.2. THE ACCEPTED QUALITY FUNCTION 55

Figure 3.10: Alpha threshold influence on the VOP visual quality: left - al-
pha th=0; right - alphath=256.

where

acqi =
{

0 if SAD PBi > 16 ∗ alpha th
1, otherwise.

(3.7)

and SAD PBi(BAB,BAB
′
) is defined as the sum of absolute differences

for PBi, where an opaque pixel has value of 255 and a transparent pixel has
value of 0.The parameteralphath has values of{0,16,32,64,...,256}.

The ACQ function determines whether the encoding (BAB
′
) of a certain BAB

gives an accepted quality result according some specified lossy coding condi-
tions. These conditions are formally included in the alpha threshold parameter.
Figure 3.10 depicts the influence of thealpha th parameter on the appearance
of an encoded VOP. The higher thealpha th value is, the lower the acceptable
quality of the encoding is. Ifalpha th=0, then encoding will be lossless (with
the highest visual quality).

3.2.2 Implementation

To implement the ACQ function we make some mathematical manipulations
first. Let us representSAD PBi as follows:

SAD PBi = 255
15∑

j=0

|Pi.16+j − P
′
i.16+j | (3.8)

wherePi.16+j andP
′
i.16+j are thebinarizedvalues of thej−th pixels fromPBi

andPB
′
i respectively and a value of0 represents a transparent pixelwhile a

56 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

value of1 - an opaque one. According to these assumptions, we can substitute
the absolute difference in (3.8) with axor operation:

SAD PBi = 255
15∑

j=0

(Pi.16+j ⊕ P
′
i.16+j) =

= 255(PBi ⊕ PB
′
i) = 256(PBi ⊕ PB

′
i)− (PBi ⊕ PB

′
i) (3.9)

wherePBi ⊕ PB
′
i denotes the bit sum of the bit-by-bitxor over the pixel

blocks.

According to Definition 3.1 and Equation (3.9):

acqi = (SAD PBi ≤ alpha th ∗ 16) =

= [256(PBi ⊕ PB
′
i) ≤ alpha th ∗ 16 + (PBi ⊕ PB

′
i)] (3.10)

and
ACQ(BAB

′
) = AND16(acq0, acq1, ..., acq15) (3.11)

According to Definition 3.1,alpha th ∗ 16 = alpha th5 ∗ 256, where
alpha th5 denotes the five MSD ofalpha th. On the other hand the result of
(PBi ⊕ PB

′
i) is a five-digit number and we can reduce theacqi computation

to the comparison of two 5-digit numbers as follows:acqi = [(PBi⊕PB
′
i) ≤

alpha th5.
256
255] and since256

255 ≈ 1:

acqi ≈ [(PBi ⊕ PB
′
i) ≤ alpha th5] (3.12)

The implementation of Equation (3.12) is depicted on Figure 3.11. We can
assume the discussed structure as a basic processing element (PE) and, taking
into account Equation (3.11), we can build the systolic processor shown on
Figure 3.12.

3.2.3 Scalability and data bandwidth

The proposed circuit would take two cycles for execution in a real implemen-
tation - one cycle for the adder tree and one for the comparator. If pipelined,
the structure can produce a valid result every cycle given the data throughput
requirements are met. On the other hand, the structure is scalable and can meet
any memory bandwidth restrictions. For its efficiency, however, a multiple of
16 bits per cycle bandwidth is recommended, ranging between 16 and 256

3.2. THE ACCEPTED QUALITY FUNCTION 57

bits/cyc for a single BAB. Figures 3.11 and 3.12 show the two extreme cases
- a pixel block processor and a BAB processor. These two processors differ in
the granularity and the throughput of the processed data. If we use an on-chip
memory buffer with a suitable organization for the ACQ engine, we will be
able to achieve higher data throughput.

HA

FA FA FA FAFA

FAFA

FAHA

HA

FA

HA

HAFA

16 16

16

PBi PBi’

ACQi

5

acqi

16-5
Counter

FA

>=

acqi

55

alpha_th[8:4]

alpha_th[8:4]

Figure 3.11: Accepted quality single pixel-block processing element.

3.2.4 Evaluation

To evaluate the proposed structure of the ACQ function accelerator, a single
processing element and an array of processing elements have been modeled in
VHDL and RTL simulations have been run. The VHDL models have been
synthesized for Altera FPGA. The reference software for the evaluation of
the structure is Altera Max+Plus II. The simulation results indicate that each
processing element performs theacqi function within 60 ns. The evaluation of
the MIN function takes about 2 ns. Table 3.8 suggests the processing latency
and memory bandwidth, required for different number of processing elements
in an Altera FPGA. Besides the operating latency, we use another measurement

58 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

for the speed of the engine in terms of processed data units per time unit. In the

alpha_th

ACQ(BAB’)

BAB’

C15C1

ACQ
0

ACQ
1

ACQ
15

BAB

C0

Figure 3.12: The ACcepted Quality processing structure.

proposed engine, the basic data units are BABs and we achieve a speed of up
to 16 129 032 BAB/s. Since there is a macroblock corresponding to any BAB
and the macroblock processing speed is defined in the MPEG-4 profiles [6], we
can use our results to estimate the real-time operating capabilities of the circuit.
For the core and main MPEG-4 profiles, the required real-time rates to process
16 and 32 video objects are 23 760 MB/s and 97 200 MB/s (macroblocks
per second) respectively (see Table 1.1). These numbers are well below our
simulation results and, assuming that a macroblock manipulation involves a
BAB processing as well, it is evident that the proposed ACQ engine can easily
meet the real-time constrains of a dedicated MPEG-4 shape processor.

3.3. LIFTING BASED DISCRETE WAVELET TRANSFORM 59

Table 3.8: ACQ Processing speed and required data bandwidth according to
the number of processing elements (for Altera FPGA).

Number of Processing BAB/s Data
PE time in ns bandwidth
1 992 1 008 065 16 bit
2 496 2 016 129 32 bit
8 124 8 064 516 128 bit
16 62 16 129 032 256 bit

3.3 Lifting based discrete wavelet transform

The Discrete Wavelet Transform (DWT) has become a basic encoding tech-
nique for recent data compression algorithms. Compared to traditional DCT-
based processing, DWT yields higher compression ratios and better visual
quality. We consider the so calledlifting scheme[65], an implementation of
the DWT recognized to be fast and extremely cost efficient. In the lifting
scheme, half of the data samples are used to predict the other half. The trans-
form process is split into three phases, which are iterated until all samples are
processed to a certain level of granularity. Applying the inverse transform in
the lifting scheme, as long as the transform coefficients are not quantized, will
always result in a perfect reconstruction of the original picture, regardless of
the precision of the applied arithmetic. Moreover, it is possible to use integer
arithmetic without encountering problems due to finite precision or rounding.

In this section, we introduce an original hardware design of the lifting based
Wavelet Transform. To maximize the performance of the design, we utilize
different techniques such as pipelining, parallel operating modules and data
reusability. Synthesis results for a a basis structure implemented in a Xil-
inx Virtex II FPGA indicate trivial reconfigurable area utilization of 985 CLB
slices, 669 Flip-Flops, 22 Block RAMs and 8 multiplier blocks. The design
can achieve high performance for filters factorized in lifting steps.

The remainder of this section is organized as follows. In Subsection 3.3.1, we
present some limited background on the DWT and its traditional implementa-
tions. The lifting scheme is briefly described in Subsection 3.3.2. We introduce
our design in Subsection 3.3.3 and evaluate it in Subsection 3.3.4.

60 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

)
(
t

t

Figure 3.13: Wavelet prototype function - an example.

3.3.1 DWT background

Time-limited signals (space-limited in case of pictures) can be represented effi-
ciently using a basis of block functions (Dirac delta functions), but these block
signals do not efficiently handle frequency limitations. Band-limited signals
can be represented efficiently using a Fourier basis but Sines and Cosines are
not limited in time. Wavelet functions, as a compromise between the pure time-
limited and band-limited basis functions, combine the best of both. Wavelets,
literally meaning small waves, are mathematical concepts for decomposing a
function, sayf, into sets of other functions known as wavelet bases-Ψa,b(t):

f =
∑

t

Ca,b ·Ψa,b(t) (3.13)

For an efficient representation of the signalf, using only a few coefficientsCa,b,
it is very important to use a suitable family of functionsΨa,b. The functions
Ψa,b should match the features of the data we want to represent.

In order to get the variable time-frequency localization(resolution), a wavelet
called mother waveletor prototype functionΨ(t) is defined. One possible
mother wavelet is depicted in Figure 3.13. Basis functionsΨa,b(t) are calcu-
lated as scaled and translated versions of the prototype:

Ψa,b(t) =
1√
b
·Ψ(

t− a

b
) , (3.14)

whereb is the scaling coefficient anda is the translating coefficient. In addi-
tion, the Discrete Wavelet Transform (DWT) is introduced:

3.3. LIFTING BASED DISCRETE WAVELET TRANSFORM 61

Definition 3.2 TheDWT with resolution level j (i.e., scaleb = 2j) at time k is
defined as:

Ψj,k(t) = 2−
j
2 ·Ψ(2−j · t− k) (3.15)

Considering Equations (3.13) and (3.15), any signal can be represented as the
sum of a set of wavelet coefficients at an infinite number of scales:

f(t) =
∑

j,k

Cj,k ·Ψj,k(t) (3.16)

Cj,k =
∫ +∞

−∞
f(t) ·Ψj,k(t)dt (3.17)

This equation resembles the Fourier Transform and is called theclassic wavelet
transform[66].

Traditional DWT implementations: DWT can be implemented using differ-
ent prospects of the transform. For example, the wavelet transform coefficients
can be generated using 2 channelfilter bankscalled synthesis filters. The input
signal is split into two signals using a low-pass filterh(t) and its orthogonal or
bi-orthogonal high-pass filterg(t). Multiple levels or ”scales” of the wavelet
transform are made by repeating the filtering and decimation process on the
lowpass branch outputs only. The process is typically carried out for a finite
number of scales, resulting the wavelet coefficients.

Another implementation-oriented prospect of the DWT is theFast Wavelet
Transform. In this case, the DWT can be factorized into a product of a few
sparse matrices using similarity properties. When these factors are applied
to the multiplication with a vector, the order of operations reduces, thus the
transform is called ”fast”.

3.3.2 The lifting scheme

The Lifting scheme is an efficient implementation of a wavelet transform
algorithm. The basic idea behind the lifting scheme isto use the correla-
tion in the data to remove the redundancy. It was primarily developed as a
method to improve wavelet transform, and then it was extended to a generic
method to create so-called second-generation wavelets (i.e. wavelets which do
not necessarily use the same function prototype at different levels). Second-
generation wavelets are much more flexible and powerful than first generation
wavelets [65]. In [67], it is shown that any discrete wavelet transform can
be obtained with a finite number of lifting steps. The lifting scheme is an

62 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

Update

+

Predict
Split

j+1,k

j,k

j,k

Figure 3.14: The lifting scheme.

implementation of the filtering operations at each level. The algorithm can
be described in three phases, namely:Split phase, Predict phaseandUpdate
phase, as illustrated in Figure 3.14.

Split Phase:Assume the scheme starts with an input data set ofλ0,k samples,
wherek represents the data element and zero signifies the original data level.
In the first stage, the data setλ0,k is split into two subsets of the separated even
and odd samples:

λ−1,k = λ0,2k ; γ−1,k = λ0,2k+1 . (3.18)

The negative indices have been used according to the convention: the smaller
the data set, the smaller the index. The subsampling into even and odd samples
is also referred to as thelazy wavelet transformbecause it does not de-correlate
the data.

Predict Phase or Dual Lifting: In this step the even subsetλ−1,k is used
to predict the odd subsetγ−1,k by a prediction functionP (λ−1,k). The pre-
diction function should be such that the more correlation in the original data,
the closer the predicted value to the originalλ−1,k. Further, each sample of
the subsetγ−1,k is replaced by the difference between itself and its predicted
value, namely:

γ−1,k := λ0,2k+1 − P (λ−1,k) (3.19)

Broadly speaking, two types of prediction functions are considered -piecewise
linear and non-linear orinterpolating:

Piecewise linear- the odd samples are predicted as the average of its two even
neighbors,λ−1,k andλ0,k+1 , which is given by:

γ−1,k := λ0,2k+1 − 1
2
(λ−1,k + λ0,k+1) (3.20)

Interpolating subdivision- this model uses the same basic idea as the piece-
wise linear but uses 2 or more neighbors to either side and an interpolating

3.3. LIFTING BASED DISCRETE WAVELET TRANSFORM 63

function to predict the odd samples. The order of the interpolating subdivision,
denote it byN, is important because it sets the smoothness of the interpolating
function used to find the wavelet coefficients. This function is referred to as
the dual wavelet andN is referred to as the number ofdual vanishing moments.
Thusthe number of dual vanishing moments defines the degree of the polyno-
mials that can be predicted by the dual wavelet.Depending onN, the wavelet
coefficients can measure the failure to predict. For instance,N =2 indicates the
failure to be linear andN=4 measures the failure to be cubic.

Update Phase or Primal Lifting: The lastλ coefficients of the predict phase
are samples from the original data and present the coarsest level, which in-
troduces considerable aliasing. We would like some global properties of the
original data set to be maintained in the smaller setsλj,k. For example, in the
case of images, we would like smaller images to have the same overall bright-
ness, i.e. the same average pixel value. This problem is solved by introducing
the third stage of the lifting scheme, theupdate stage. In this stage the coef-
ficient λ−1,k is lifted with the help of the neighboring wavelet coefficients so
that a certain scalar quantityQ (e.g., the mean), is preserved:

Q(λ−1,k) = Q(λ0,k) (3.21)

Therefore, a new (update) operatorU is applied:

λ−1,k := λ−1,k + U(γ−1,k) (3.22)

In this phase, also referred to asprimal lifting, a scaling functionis calcu-
lated from the previously calculated wavelet coefficients to maintain some
properties among all theλ coefficients throughout every level. The order of
this function is some even valuẽN referred to asreal vanishing moment, not
necessary equal toN.

Inverse Transform: The inverse transform of the lifting scheme just follows
the reverse data flow in the setup of the forward transform with small changes
like switching between additions and subtractions. The following summarizes
the forward and the inverse transform lifting steps:

Forward transform: Inverse transform:
Split: λj,k = λj+1,2k Update: λj,k = λj,k − U(γj,k)

γj,k = λj+1,2k+1

Predict: γj,k = γj,k − P (λj,k) Predict: γj,k = γj,k + P (λj,k)
Update: λj,k = λj,k + U(γj,k) Merge: λj+1,2k = λj,k

⋃
λj+1,2k+1 = γj,k

64 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

A comprehensive method to calculate dual and primal lifting coefficients is
described in [68].

Integer transform: The lifting scheme can be easily adjusted to integer arith-
metic by scaling and rounding the predict and update filter results. Moreover,
as indicated in [69, 70], a perfect reconstruction of the original image is ob-
tained regardless the rounding errors. This is a very important property of
the lifting scheme, which means thatwe can build an integer version of every
wavelet transform and implement it efficiently without losing precision.

Advantagesof the lifting scheme, compared to the classical filter bank algo-
rithm:

1. Lifting leads to a speedup, therefore it is also referred to asfast lifting
wavelet transform(FLWT). Asymptotically, for long filters, the lifting
scheme has half the computational complexity of the classical filter bank
wavelet implementation [67].

2. All operations within a lifting step can be done entirely in parallel while
the only sequential part is the order of lifting operations.

3. Lifting allows adaptive wavelet transforms. The analysis of a function
can start from the coarsest level, followed by data processing at finer
levels in the areas of interest.

4. Lifting can be done in-place, which means auxiliary memory is not
needed. The new stream at every summation point replaces the old one.

5. It is easy to build non-linear wavelet transform by lifting. For example,
the lifting scheme allows integer-to-integer transform, while keeping a
perfect reconstruction of the original data set.

3.3.3 The proposed design

The implementation of the lifting algorithm will be explained assuming a sig-
nal of length 12 and a polynomial filter with numbers of dual and real van-
ishing moments, both equal to 4 (L=12, N=4, Ñ=4). The proposed design,
however, is scalable and can be implemented for arbitrary signal lengths and
different numbers of filter coefficients. The filter coefficients can be calculated
according to the scheme explained in [68].

3.3. LIFTING BASED DISCRETE WAVELET TRANSFORM 65

A. The predict module

All predict phase calculations for the considered example (N = 4, L = 12)
are illustrated in Figure 3.15. The magnified circle depicts the arithmetic op-

Figure 3.15: Calculations in the predict phase forN = 4, L = 12.

erations involved in the calculation of eachγ:

γj−1− = (λj,k ·Fi,0)+(λj,k+2 ·Fi,1)+(λj,k+4 ·Fi,2)+(λj,k+6 ·Fi,3) (3.23)

That is: 4 multiplications, 4 additions/subtractions and 16 memory accesses (4
times read l, read lifting coefficients, readγ, and writeγ). These operations
consume quite many processor cycles when implemented sequentially. In our
design, we introduce parallel processing and data reusability as depicted in
Figure 3.16. To meet the requirement for high memory throughput, we break
the design problem into four sub-problems, namely:

1. AccessingN λs concurrently;

2. AccessingN filter coefficients concurrently;

66 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

Figure 3.16: The predict module.

3. Reading inputγ concurrently;

4. Writing back predictedγ concurrently.

Following, the devised solutions to each of these subproblems are presented.

AccessingNλs concurrently:Observing Figure 3.15, it can be noticed that in
the calculations of two consecutiveγs, at least three out of fourλs are common.
This implies that reading only oneλ from the memory will be sufficient to
calculate the followingγ, provided thatλs from the preceding calculations are
temporally stored in buffers for reuse. Therefore, we implemented a pipeline
of N stages forλ inputs. During initialization, the pipeline is filled inN cycles.
After that,N λs are issued to the multipliers in parallel (see Figure 3.16).

AccessingN filter coefficients concurrently:This is accomplished by using
separate banks of RAM for the filter coefficients, as depicted in Figure 3.16.

Reading inputγ concurrently: For the parallel processing of the unit,γ inputs
have to be read simultaneously withλ inputs. This means that two different

3.3. LIFTING BASED DISCRETE WAVELET TRANSFORM 67

locations of the image storage area have to be accessed at the same moment.
To solve this design problem, we utilize true dual port memories with separate,
independably addressable input/output ports. Using such memories for picture
data, we accessγs andλs concurrently (see Figure 3.16). The embedded RAM
blocks of the Xilinx Virtex II FPGA chip can be configured as true dual port
memories.

Writing back predictedγ concurrently: Readingγ andλ inputs simultane-
ously occupies both ports of the dual port picture RAM. To write the predicted
γ back into memory within the same system cycle, we designed the picture
RAM to operate at a frequency two times higher than the rest of the design. In
this case four memory locations per system cycle are addressed.

Boundary treatment: For correct processing of the signal around its bound-
aries, filter coefficients are modified near the beginning and the end of the input
sequence. Note in Figure 3.15, that the first two and last three (i.e., the bound-
ary) calculations are performed over identical samples. Therefore, around the
signal boundaries the pipeline with theλ coefficients has to be stalled and only
the corresponding filter coefficients andγ should be read. This is achieved by
theenable signals of theλ pipeline in Figure 3.16.

Scaling: In order to obtain a satisfactory precision of the integer arithmetic and
to alleviate the effect of the introduced huge non-linearities, filter coefficients
are scaled up first (not explicitly depicted in Figure 3.16) and the result is later
scaled down with a factor of2−PS (the triangle in Figure 3.16).

Forward and inverse predict: The predict phases of the forward and in-
verse transform differ just in one operation, namely addition is substituted by
subtraction (see Subsection 3.3.2). Therefore, the same predict module can
be used for both forward and inverse transform by selectively alternating the
FW/IV signal in Figure 3.16. This signal controls the multiplexing of the pos-
itive or negative (two’s complement) result of the multiple-input adder to the
final adder, thus essentially performing either addition or subtraction.

B. The update module

Figure 3.17 illustrates the calculations during the update phase for the consid-
ered example. In each row, oneγ updates thoseλs, which it has affected in the
preceding predict phase. This can be described by the following pseudocode:

for n = 0 to Ñ {λj−1,n+ = γi · Li,n}

68 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

In the assumed scenario (N = 4, Ñ = 4, andL = 12), eachγ updates 4
λs. This results in 4 multiplications, 4 additions/subtractions and 16 memory
accesses. Regarding memory throughput, design problems similar to those in
the predict phase have been considered:

1. Accessingλs concurrently

2. Accessing filter coefficients concurrently;

3. Reading inputγ concurrently;

4. Writing back updatedλs concurrently.

Figure 3.17: Calculations in the update phase forÑ = 4 andL = 12.

Figure 3.18 depicts the organization of the update module. The pipeline is
filled from different sources to accommodate all computations illustrated in
Figure 3.17. The following explains how control signals configure the update
module to operate in the four different configurations, namelyinitialization,
boundary processing, pipelined processing, andempty pipeline.

Initialization: During initialization, the pipeline registers are filled with the
initial data. The control signalnextλ is set to 1 and theγ input is reset to 0. In

3.3. LIFTING BASED DISCRETE WAVELET TRANSFORM 69

Figure 3.18: The update module.

the first 4 cycles, the contents of theλ registers are shifted to their neighbor at
the left side, whileλ3 keeps reading the data from the picture RAM. Simulta-
neously with filling the lastλ, the corresponding filter coefficients and the first
γ value (first left-effected boundaryγ) are being loaded via the update coeffi-
cient andγin inputs of the module, respectively. The updatedλs are calculated
at the output of the adders and are ready to be stored.

Boundary processing:This configuration is used for processing of bound-
ary affectedγ samples (except the last right-affected one) and the last non-
affectedγ. Signalnextλ is reset to 0, which stalls the pipeline and the loaded
(boundary-affecting)λs are not shifted, i.e., they are stored in the same register.
Different, boundary-specific filter coefficients are issued, the output sample is
calculated and issued viaλout.

Pipelined processing:All boundary non-affectedγs (except the last one) are
processed with this configuration. The control signalnextλ is set to 1, which
enables the pipeline and all updatedλ outputs are shifted. The rightmostλ

70 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

register (λ3) is loaded with a newλ value, and the updatedλ value is available
atλout.

Empty pipeline: This configuration is utilized for the last boundary right-
affectedγ and is almost identical to the initialization. The only difference
is that allλ values have to be written back into the memory, when they are
available atλout.

Scaling: To increase the calculation accuracy, the stored filter data is scaled up.
Just like the predict module (Figure 3.16), the update module includes logic
for scaling down the result after each multiplication (illustrated by triangular
symbols in Figure 3.18).

Forward and inverse update: The update phases of the forward and inverse
transform differ in the addition-subtraction operations, just like the predict
phases (see Subsection 3.3.2). The control signal FW/IV switches between
summation and subtraction, to make the module perform both forward and
inverse transform.

C. Parallel operation of the predict and update modules

It has been explained how the predict and update modules calculate one out-
put in every cycle. However, parallel operation of both modules leads to 6
memory operations per cycle (for predict module - theλ and γ inputs and
the γ output, and for update module - theλ andγ inputs and theλ output).
On the other hand, the dual port memory is accessed twice per system cy-
cle, accommodating a maximum of 4 memory accesses per cycle. Therefore,
a straight-forward parallel implementation of both the predict and the update
modules would exceed the memory bandwidth. In the forward transform, the
three required memory accesses for the predict module and the output of the
update module can be directly accommodated to the picture memory. Figure
3.19 illustrates how the two modules can be synchronized by First-In-First-Out
(FIFO) buffers for the forward transform. Following, we explain how data are
provided to the inputs of the update module for the forward transform.

Providing data to the γ input of the update module: It can be seen in Fig-
ure 3.14 that theγ input of the update module can be fed with the output of
the predict module. Introducing a FIFO buffer between the output of predict
module and theγ input of the update module, absorbs the unequal delivery
and consumption rate of data at the beginning and at the end of the predict and
update phases (see Figure 3.19).

3.3. LIFTING BASED DISCRETE WAVELET TRANSFORM 71

Figure 3.19: Synchronizing FIFO buffers for forward transform.

Providing data to the λ input of the update module: Figure 3.14 shows that
the update phase uses the sameλs as the predict phase, but at a different instant
of time. Consequently, it is not possible to fill theλ pipelines of both predict
and update modules with the output of the picture RAM. Placing a FIFO buffer
before theλ input of the update module is a solution to this timing problem.
This buffer, in fact, solves the synchronization problems and allows the update
module to reuse theλs (see Figure 3.19).

In the inverse transform, the synchronization scheme is identical with the only
difference that the FIFOs provide data to the inputs of the predict module and
the update module receives data from the picture memory.

3.3.4 Design evaluation

Figure 3.20 illustrates the top-level design organization of the complete lifting-
based DWT unit. Following, we present hardware synthesis results and per-
formance evaluations.

Synthesis results:The VHDL description of the entire lifting-based DWT unit
has been synthesized using Synplify Pro synthesis package (version 7.0) for the
Xilinx Virtex II FPGA technology. Table 3.9 presents the hardware resource
utilization for the Xilinx x2v1000-5 chip considering a test picture of 64x32
pixels (8 bits gray-scale) and a 4-4 polynomial filter. Except for the number of
BRAM blocks (required for the picture memory), the values in Table 3.9 also
apply for larger picture dimensions.

72 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

F
igure

3.20:
Top-levelorganization

ofthe
lifting-based

D
W

T
unit.

3.3. LIFTING BASED DISCRETE WAVELET TRANSFORM 73

Table 3.9: Synthesis results for the lifting based DWT unit, 4-4 polynomial
filter and a 64x32 picture.

Device Xilinx x2v1000-5 %

Number of Slices 985 out of 5 120 19%
Number of Slice Flip Flops 669 out of 10 240 6%
Number of 4 input LUTs 1 637 out of 10 240 15%
Number of BRAMs: 22 out of 40 55%
Number of 18x18 multipliers 8 out of 40 20%
Maximum Frequency > 5x107 Hz N.A.

Performance evaluation:We consider two performance evaluation scenarios.
First, we evaluate the design for different degrees of the polynomial filters and
fixed picture size. Second, we fix the polynomial degrees and evaluate the per-
formance for different picture sizes. The evaluation criteria for the standalone
hardware implementation aretransform time(in clock cycles and inµseconds),
pictures per second, andcycles per pixel. Additionally, we consider a Molen
processor implementation. We implement the proposed DWT in the recon-
figurable processor, assuming a core MIPS processor operating at 1 GHz. In
the considered Molen setup, we estimate the time to perform the DWT on an
entire image including all transfers to/from the main memory. Then, we com-
pare the Molen performance results to a pure software sequential execution on
a general-purpose MIPS processor, operating at 1 GHz. An existing software
application, called LIFTPACK [68], has been used as a reference. The perfor-
mance has been evaluated by a cycle-accurate simulator of the assumed MIPS
processor (more precisely,sim-outorderfrom the SimpeScalar toolset [71]).

The performance results for different polynomial degrees are reported in Table
3.10. Obviously, the hardware transform time increases with the increase of
the polynomial degree. What should be noted, however, is that this increase is
not as fast as the transform time increase of the pure software implementation.
Since we consider constant image size, the data transfer time from the main
memory does not depend on the polynomial degree and the Molen execution
time follows the pure hardware performance curve. Therefore, as the last row
of Table 3.10 suggests,the higher polynomial degrees of the lifting filters, the
more dramatically the Molen processor outperforms the corresponding pure
software implementation of the DWT.

The influence of the picture size on the performance of the proposed unit can
be evaluated through Table 3.11, where polynomial filter degrees of 4-4 are
assumed. To perform the following evaluations we introduce the termprocess-

74 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

Table 3.10: Performance evaluation for polynomial filters of different degrees
and a constant picture size of 352x288 pixels.

Clock frequency for the DWT unit is 50 MHz, for the MIPS - 1GHz.
Category unit Filter polynomial degree

Filter degree - 2-2 4-4 8-8
HW transform time FPGA cycles 152000 160000 175000
(DWT unit, 50MHz) µsec 3040 3200 3500
Pictures per sec on FPGA pic/sec 329 313 286
FPGA cycles per pixel FPGA cyc/pix 1.5 1.6 1.7

Molen execution* µsec 3210 3370 3670
Pure SW execution MIPS cycles 9831292 13395008 22061284
(MIPS 1GHz) µsec 9831 13395 22061
SW/Molen speedup - 3.06 3.97 6.01
* Transform time and main memory data transfers included.

Table 3.11: Performance evaluation for different picture sizes and constant
polynomial filter degrees of 4-4.

Clock frequency for the DWT unit is 50 MHz, for the MIPS - 1GHz.
Category unit Picture size

Picture format pixels 176x144 352x288 720x560
HW transform time FPGA cycles 46000 160000 586000
(DWT unit, 50MHz) µsec 920 3200 11720
Pictures per sec on FPGA pic/sec 1087 313 85
FPGA cycles per pixel FPGA cyc/pix 1.8 1.6 1.5

Molen execution* µsec 962 3370 12577
Pure SW execution MIPS cycles 3314925 13395008 63300925
(MIPS 1GHz) µsec 3315 13395 63301
SW/Molen speedup - 3.44 3.97 5.03
* Transform time and main memory data transfers included.

ing efficiency as the number of cycles spent per pixel. The lower this number,
the higher the efficiency. Filling the pipelines in the beginning of each one-
dimensional transform (i.e., transforming a single row or a single column) and
updating left- and right- affected boundaryγs, leads to cycles in which no out-
put is generated (see Subsection 3.3.3). Furthermore, the parallel execution of
the predict and update modules cannot start immediately at the beginning of
each one-dimensional transform, but after a number of cycles, when both of
the predict outputs become available for the update inputs. Therefore, a bet-
ter processing efficiency is observed for larger pictures, where the influence of

3.4. CONCLUSIONS 75

these constant overhead delays diminishes. This is confirmed by the results in
Table 3.11 where the number of hardware cycles spent per pixel is lower for
higher picture dimensions (see row ’FPGA cycles per pixel’). Therefore,for
larger pictures, the processing efficiency of the proposed hardware DWT unit
grows. Regarding the Molen organization, the data transfer time from the main
memory is proportional to the picture size. However, the relative part of this
data transfers is negligible, compared to the DWT transform time, therefore
the Molen implementation has virtually the same processing efficiency as the
standalone DWT unit. The result is, as suggested in the last row of Table 3.11:
the larger picture dimensions, the more severely the Molen processor (embed-
ding the proposed hardware DWT unit) outperforms the corresponding pure
software DWT implementation.

3.4 Conclusions

In this chapter, we considered three computationally intensive kernels for hard-
ware implementation to accelerate data processing in the higher MPEG-4 pro-
files. Two hardware approaches to realize the MPEG-4 repetitive padding al-
gorithm in real-time were discussed. The first approach proposed a design of
a simple dedicated systolic structure. It is shown that an operating frequency
of up to 13.4 MHz allows a processing speed of up to 280 K macroblocks per
second to be achieved by only 16 processing elements (PE), mapped on a rel-
atively small Altera FPGA. Evaluations for a Xilinx FPGA indicate that a sys-
tolic padding unit with 64 PEs can process approximately 950 K macroblocks
per second, thus achieving performance well above the requirements of the the
most-demanding MPEG-4 visual profiles and levels. The second approach for
a hardware repetitive padding implementation described a scheme for general
purpose ALU augmentation, which could accelerate the MPEG-4 padding al-
gorithm by orders of magnitude. We proposed a pipelined implementation of
the idea, thus preserving the original functionality and timing scheme of the
target ALU. At trivial hardware costs, we could easily achieve real-time per-
formance at the most-demanding profile levels of MPEG-4. We proved that
the proposed design is scalable by applying it on ALUs with different operand
widths. Another performance demanding part of MPEG-4, the so-called ac-
cepted quality (ACQ) function, was also considered in this chapter. A possible
systolic hardware implementation was proposed. Evaluations indicate capa-
bilities of processing speeds far beyond the MPEG-4 real-time requirements.
More precisely, results indicate capabilities of processing up to 16 129 032

76 CHAPTER 3. MPEG-4 HARDWIRED KERNELS

BAB/s. Finally, we introduced a hardware accelerator of the Discrete Wavelet
Transform based on the so called lifting scheme. Different performance en-
hancing design techniques were introduced in the unit, like pipelining, parallel
module operation and data reuse. The performance evaluation of the unit sug-
gested that for larger picture sizes its processing efficiency grew. The DWT
unit was evaluated as a part of the reconfigurable processor in a Molen orga-
nization. Simulation results clearly indicated that for large picture dimensions
and long polynomial lifting filters, a Molen organization embedding the DWT
unit severely outperforms a pure software DWT implementation (by 3-6 times
in the considered scenarios). For the DWT unit alone, an operating frequency
of 50 MHz was reported by the Xilinx FPGA synthesis tools and assumed for
the simulations. The core Molen processor was chosen to be an out-of-order,
MIPS running at 1GHz. All three considered functional accelerators could be
implemented as stand-alone units or embedded in a reconfigurable processor.
In Chapter 6, we resynthesize the padding and the ACQ custom computing
units for the Xilinx Virtex II Pro technology and evaluate their contribution
to the performance speedup of a proposed Molen processor prototype. The
padding unit and the ACQ function are processing block-organized visual data.
The efficient processing of this specific data organization requires large mem-
ory throughput, impossible to be obtained by traditional linearly addressable
memories. In the chapter to follow, we propose a scalable memory organiza-
tion capable to deliver block organized data to the relevant processing units at
the required throughput speeds.

Chapter 4

Visual Data Rectangular
Memory

I
n this Chapter, we focus on the parallel access of randomly aligned rect-
angular blocks of visual data, common for various media applications.
As an alternative of traditional linearly addressable memories, we sug-

gest a memory organization based on a rectangular array of memory modules.
A highly scalable data alignment scheme incorporating module assignment
functions and a new generic addressing function are proposed. The addressing
function implicitly embeds the module assignment functions and is separable,
which potentially enables short critical paths and saves hardware resources.
We also discuss the interface between the proposed memory organization and a
linearly addressable memory accompanied with comprehensive examples. An
implementation, suitable for MPEG-4 is presented and mapped onto an FPGA
technology as a case study. Synthesis results indicate reasonably small hard-
ware costs for an exemplary512× 1024 2D addressable space and a range of
access pattern dimensions. The design is envisioned to be more cost-effective
compared to related works. Regarding performance, our experiments suggest
that a speedup of 8X can be expected.

The chapter starts with Section 4.1 giving a short introduction to the problem.
Section 4.2 motivates the presented research and formally introduces the par-
ticular addressing problem. In Section 4.3, the addressing scheme is described
and the corresponding memory organization with a possible implementation
are discussed. Case study synthesis results for FPGA technology are reported
and related work is compared to our design in Section 4.4. Finally, the chapter
is concluded with Section 4.5.

77

78 CHAPTER 4. VISUAL DATA RECTANGULAR MEMORY

4.1 Introduction

The problems of conflict-free parallel accesses of different data patterns out
of a two-dimensional storage have been extensively explored for long time in
several research areas. Vector processors designers have been interested in
memory systems that are capable of delivering data at the demanding band-
widths of the increasing number of pipelines, see for example [72–75]. Differ-
ent approaches have been proposed for optimal alignment of data in multiple
memory modules [72, 74–78]. Module assignment and addressing functions
have been utilized in various interleaved memory organizations to improve the
performance. In graphical display systems, researchers have been investigat-
ing efficient accesses of different data patterns: blocks (rectangles), horizontal
and vertical lines, forward and backward diagonals [78, 79]. While all these
patterns are of interest in general purpose vector machines and graphical dis-
play systems, rectangular blocks are the basic data structures in visual data
compression. The most computationally intensive algorithms, like motion es-
timation and the discrete cosine transform, operate on square pixel blocks,
requiring a significant data throughput. Therefore, the visual data compression
standards have narrowed the problems towards block (rectangularly) accessi-
ble memories with emphasis on high-performance implementations. Further-
more, to utilize the available bandwidth of a particular machine efficiently, new
scalable memory organizations, capable of accessing rectangular pixel patterns
are needed. In this chapter, we propose an addressing function for rectangu-
larly addressable systems, with the following characteristics:

• Rectangular sub-arrays out of a two-dimensional data storage can be
accessed with high scalability. The addressing is separable, which saves
addressing hardware. We also introduce implicit module assignment
functions to further improve the designs. Finally, we propose a conflict
free data routing circuitry avoiding large critical path penalties.

• Reasonably small hardware costs are shown by an FPGA case study im-
plementation. In our experiments, we consider the maximum available
on-chip memory of the Xilinx Virtex II Pro 2vp50ff1152 device, which
is sufficient to implement a512× 1024-byte data storage. The proposed
implementation requires from as little as 534 slices for2 × 4-pixel pat-
terns up to 3287 slices for8 × 8 ones, which is between 1% and 13%
of the today’s reconfigurable device resources considered. Speedups
around 8x are estimated for the case study FPGA implementations ver-
sus traditional linearly accessible memories.

4.2. MOTIVATION 79

4.2 Motivation

In this section, we consider the memory addressing and accessing problem by
considering the MPEG standards. The problems described here, as well as
the solutions described later are, however, of a general nature regarding vector
rectangular data accessing.

The addressing problem - a motivating example.Most of data processing in
MPEG standards is not performed over separate pixels, but over certain regions
(blocks of pixels) from a frame. This generates problems with data alignment
and access in system memory. To illustrate these problems, let us consider
the followingmotivating example. Assume a single port Linearly Addressable
Memory (LAM) and a pixel plane divided into blocks with dimensions 4x2,
with each pixel represented by a byte. Further, assume that the video informa-
tion is stored as a scan-line (see Figure 4.1(a)) and that the system is capable
of accessing 8 consecutive bytes per cycle. Obviously, neither of the blocks
containing pixels{8, 9, 10, 11, 24, 25, 26, 27} and{26, 27, 28, 29, 42, 43,
44, 45} is accessible by a single memory transfer. This is because these blocks
are not aligned into consecutive memory locations (see Figure 4.1(b)). Even
though the memory system could be accessing all data, because it can access
linearly 8 bytes in a single memory cycle, in fact it can access, for example,
either bytes{26, 27, 28, 29} or bytes{42, 43, 44, 45}, but not all 8{26, 27, 28,
29, 42, 43, 44, 45}. Consequently, even though an 8-byte memory bandwidth
is available, redundant data fetches can not be avoided.

Another approach to process block-organized data may be to reorder data into
the LAM. If we position blocks into consecutive bytes (Figure 4.1(c)), we will
be able to access such blocks in a single memory cycle (e.g., pixels{8, 9, 10,
11, 24, 25, 26, 27}). In MPEG, however, some of the most demanding al-
gorithms (e.g., motion estimation) require accessing block data at an arbitrary
position in the frame, thus in memory. In the Figure 4.1(c) example, accessing
block{26, 27, 28, 29, 42, 43, 44, 45} requires 4 cycles, even though the band-
width is 8 bytes. This is because only two of its bytes can be accessed in one
memory access cycle (i.e., either{26, 27}, or {28, 29}, or {42, 43}, or {44,
45}). Figure 4.1(c) suggests that in such cases data fetching may become even
less effective than the scan-line alignment scheme.

In the rest of the presentation, for conciseness, we will refer to blocks like{8,
9, 10, 11, 24, 25, 26, 27} in Figure 4.1(a) as aligned, and to the remaining
blocks (like{26, 27, 28, 29, 42, 43, 44, 45}) as non-aligned. The borders
between aligned blocks in the Figure are marked with thick line crosses.

80 CHAPTER 4. VISUAL DATA RECTANGULAR MEMORY

0
 1
 2
 3

16
 17
 18
 19

4
 5
 6
 7

20
 21
 22
 23

8
 9
 10
 11

24
 25
 26
 27

12
 13
 14
 15

28
 29
 30
 31

32
 33
 34
 35

48
 49
 50
 51

36
 37
 38
 39

52
 53
 54
 55

40
 41
 42
 43

56
 57
 58
 59

44
 45
 46
 47

60
 61
 62
 63

64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79

scan-line length

80
 81

block to access
aligned block
 border between aligned blocks

(a) Pixels in a video frame;

scan-line length

2 ... 23
 24
 25
 26
 27
 28
 29
 40
30...39
 41
 42
 43
 44
 45
 46
 47
 48 ...

block to access

0
 1

(b) Scan-line alignment;

0
 1
 23
 8
 9
 10
 11
 24
 25
 26
 12...15
 28
 29

block to access

27

block 2

30...41
 42
 43
 44
 45
56...59
 46...

block 3
 block 6
 block 7
block 0

(c) Block-based alignment.

Figure 4.1: Addressing problem in LAM.

Formal problem introduction and proposed solution. Let us assume a
LAM with word length of w bits (w = 8, 16, 32, 64, 128) and the time for
linear memory access to beTLAM . The time to access a singlea× b sub-array
of 8-bit pixels, depending on its alignment in the LAM will be:
1.) Aligned sub-array:8·a·bw · TLAM ;
2.) Not aligned sub-array:(8·a

w + 1) · b · TLAM .
The time to accessN a× b blocks with respect to their alignment will be:
1.) All N blocks aligned:N · 8·a·b

w · TLAM ;
2.) None of the blocks aligned:N · (8·a

w + 1) · b · TLAM ;
3.) Mixed: N · [1a · 8·a

w + a−1
a (8·a

w + 1)] · b · TLAM =

= N · (8 · a
w

+ 1− 1
a
) · b · TLAM (4.1)

By mixedaccess scenario we mean accessing both aligned and non-aligned
blocks. In (4.1), we assume that the probability to access an aligned block is
1
a , while for a non-aligned block it isa−1

a . For simplicity, but without losing
generality, assume square blocks ofn× n, (i.e.,a=b=n). Further assuming N
blocks to access, we can estimate the number of LAM cycles as indicated in
Table 4.1. Obviously, the number of cycles to access ann×n block in a LAM
is a square function ofn, i.e.,O(n2).

4.2. MOTIVATION 81

Table 4.1: Number of LAM cycles in different access scenarios.

all aligned none aligned mixed
8·n2

w ·N (8·n2

w + n) ·N (8·n2

w + n− 1) ·N

LAM

2DAM
 Block

Processing

Unit(s)

W
 a x b

T
LAM
 T
2DA

Figure 4.2: Memory hierarchy with 2DAM.

An appropriate memory organization may speed-up the data accesses. Con-
sider the memory hierarchy in Figure 4.2 with time to access an entiren × n
block from the 2D Accessible Memory (2DAM) to beT2DA. In such a case,
the time to accessN n× n sub-blocks in the mixed access scenario will be:

N
n · 8·n2

w · TLAM + N · T2DA, [sec]⇔

(8·n
w + T2DA

TLAM
) ·N , [LAM cycles].

That is the sum of the time to access the appropriate number of aligned blocks
(i.e.,Nn) from LAM plus the time to access allN blocks from the 2DAM. It is
evident that in a mixed access scenario, the number of cycles to access ann×n
block in the hierarchy from Figure 4.2 is a linear function ofn, i.e.,O(n) and
depends on the implementation of the 2D memory array. Table 4.2 presents
access times per singlen×n block. Time is reported in LAM cycles for some
typical values ofn andw. Three cases are assumed for LAM:

1. Neither of theN blocks is aligned - worst case (WC);

2. Mixed block alignment (Mix.);

3. All blocks are aligned - best case (BC).

The last two columns contain cycle estimations for the organization from
Figure 4.2. In this case, both mixed and best case scenarios assume that

82 CHAPTER 4. VISUAL DATA RECTANGULAR MEMORY

Table 4.2: Access time pern× n block in LAM cycles.t = T2DA
TLAM

.

n w LAM 2DAM
WC Mix. BC Mix./BC WC

8 72 71 64 8+t 64+t
8 16 40 39 32 4+t 32+t

32 24 23 16 2+t 16+t
8 272 271 256 32+t 256+t

16 16 144 143 128 16+t 128+t
32 80 79 64 8+t 64+t

aligned blocks are loaded from the LAM to the 2DAM first and then non-
aligned blocks are accessed from the 2DAM. The 2DAM worst case (con-
trary to LAM) assumes that all blocks to be accessed are aligned. Even in
this worst case, the 2DAM-enabled hierarchy may be better than LAM best
case if the same aligned block should be accessed more than once. For
example, assume accessingk times the same aligned block. In LAM, this
would takek · 8·n2

w = [8·n
2

w + (k − 1) · 8·n2

w], while with 2DAM, it would

cost [8·n
2

w + (k − 1) · T2DA
TLAM

] LAM cycles per block. Obviously, to have a
2DAM enabled memory hierarchy, faster than pure LAM, it would be enough
if 8·n2

w > T2DA
TLAM

. All estimations above strongly suggest thata 2DAM with
certain organization may dramatically reduce the number of accesses to the
(main) LAM, thus considerably speeding-up related applications.

4.3 Block addressable memory

In this Section, we present the proposed mechanism by describing its address-
ing scheme, the corresponding memory organization and a potential imple-
mentation.

Addressing scheme:AssumeM ×N image data stored ink = a× b memory
modules (1 ≤ a ≤ M ; 1 ≤ b ≤ N). Furthermore, assume that each module is
linearly addressable. We are interested in parallel, conflict-free access ofa× b
blocks at any (i,j) location, defined as:

B(i, j) = {I(i + p, j + q)|0 ≤ p < a, 0 ≤ q < b},
0 ≤ i ≤ M − a, 0 ≤ j ≤ N − b.

To align data ink modules without data replication, we organize these modules
in a two-dimensionala×b matrix. A module assignment function, which maps

4.3. BLOCK ADDRESSABLE MEMORY 83

a piece of data with 2D coordinates(i,j) in memory module(p, q) : 0 ≤ p <
a, 0 ≤ q < b, is required. We separate the function denoted asmp,q(i, j), into
two mutually orthogonal assignment functionsmp(i) andmq(j). We define
the following module assignment functions for each module at position(p,q):

mp(i) = (i− p) mod a (4.2)

mq(j) = (j − q) mod b (4.3)

The addressing function for module(p,q) with respect to coordinates(i,j) is
defined as:

Ap,q(i, j) = (i div a + ci) · N

b
+ j div b + cj (4.4)

ci =
{

1, i mod a > p
0, otherwise.

cj =
{

1, j mod b > q
0, otherwise.

Obviously, if p = a − 1 ⇒ ci = 0 for ∀i; if q = b − 1 ⇒ cj = 0 for
∀j, respectively. In essence,ci andcj are the module assignment functions,
implicitly embedded into the linear addressAp,q(i, j).

Example: Consider the motivating example of Section 4.2 and the pixel area
from Figure 4.1(a). The same pixel area is mapped into a 2D addressing space
with N=16 as depicted in Figure 4.3. In this new mapping, we address data
by columns and rows, as 2D addressing is the actual addressing performed at
algorithmic level. That is, byte 27 is referred to as(1,11). Consequently, we
have to perform the physical memory partitioning and assignment of data. As-
sume that data will be stored into linearly byte addressable memory modules,
organized in a2×4 matrix. Because in our example we have5×16 = 80-byte
memory, we subdivide the physical memory into 8 modules in total, 10 bytes
each. Each pixel has to be allocated in a specific module by the assignment
function. The memory module assignments of all pixels from the considered
pixel area for a=2, b=4 are depicted in Figure 4.4(a). In the Figure, the pixel
with 2D address(1,11)from Figure 4.3 is allocated by the module assignment
function in module(1,3). At the second addressing level, the linear address
of each individual pixel within the module (intra-module address), has to be
determined. The addressing function (4.4) generates a unique intra-module
address within an uniquely assigned memory module, for each and every byte
from the 2D addressing space. The intra-module address of pixel(1,11)deter-
mined by (4.4) is 2, denoted as A2 in module(1,3), see Figure 4.4(b). Con-
sequently, the proposed addressing scheme is in fact performed at two levels-
module assignment and intra-module addressing.

84 CHAPTER 4. VISUAL DATA RECTANGULAR MEMORY

0
 1
 2
 3

16
 17
 18
 19

4
 5
 6
 7

20
 21
 22
 23

8
 9
 10
 11

24
 25
 26
 27

12
 13
 14
 15

28
 29
 30
 31

32
 33
 34
 35

48
 49
 50
 51

36
 37
 38
 39

52
 53
 54
 55

40
 41
 42
 43

56
 57
 58
 59

44
 45
 46
 47

60
 61
 62
 63

64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79

scan-line length

80
 81

block to access
aligned block

0,0
 0,1
 0,2
 0,3

1,0
 1,1
 1,3
1,2

0,4
 0,5
 0,6
 0,7

1,4
 1,5
 1,7
1,6

0,8
 0,9

1,8
 1,9

2,0
 2,1
 2,2
 2,3

3,0
 3,1
 3,2
 3,3

2,4
 2,5
 2,6
 2,7

3,4
 3,5
 3,6
 3,7

2,8
 2,9

3,8
 3,9

4,0
 4,1
 4,2
 4,3
 4,4
 4,5
 4,6
 4,7
 4,8
 4,9

j

i

b=4

a=2

0,10
 0,11
 0,12
 0,13
 0,14
 0,15

1,11
1,10
 1,12
 1,13
 1,15
1,14

2,10
 2,11
 2,12
 2,13
 2,14
 2,15

3,10
 3,11
 3,12
 3,13
 3,14
 3,15

4,10
 4,11
 4,12
 4,13
 4,14
 4,15

N = 16

Figure 4.3: Mapping of scan-line organized pixels into a 2D addressing space.

As it has been stated, our scheme addresses and simultaneously accesses en-
tire blocks rather than individual bytes. In the presented example, blocks are
of dimension2 × 4 bytes. By our definition, blocks are addressed by the 2D
coordinates of their upper-left pixels. Consider the shaded non-aligned block
{26-45} from the motivating example. This block will be addressed asB(1,10),
see Figure 4.3. Note that the pixels of a block are accessed from all 8 mod-
ules simultaneously, in parallel. Using (4.2)-(4.4), we can calculate the linear
address of the pixels from the considered block for each module(p,q) with
respect to 2D addressi,j=(1,10):

• module (p,q)=(0,0)
i mod a = 1 > p ⇒ ci = 1
j mod b = 2 > q ⇒ cj = 1

}
⇒ A0,0(1, 10) = 7

• module (p,q)=(1,3)
i mod a = 1 = p ⇒ ci = 0
j mod b = 2 = q ⇒ cj = 0

}
⇒ A1,3(1, 10) = 2

That is, the pixels of blocki,j=(1,10) will be allocated at address 7 in mod-
ule (p,q)=(0,0)and at address 2 in module(p,q)=(1,3). Identically, the intra-
module addresses of the remaining 6 pixels of the considered block can

4.3. BLOCK ADDRESSABLE MEMORY 85

0,0
 0,1
 0,2
 0,3

1,0
 1,1
 1,2
 1,3

0,0
 0,1
 0,2
 0,3

1,0
 1,1
 1,2
 1,3

0,0
 0,1
 0,2
 0,3

1,0
 1,1
 1,2
 1,3

0,0
 0,1
 0,2
 0,3

1,0
 1,1
 1,2
 1,3

0,0
 0,1
 0,2
 0,3

1,0
 1,1
 1,2
 1,3

0,0
 0,1
 0,2
 0,3

1,0
 1,1
 1,2
 1,3

0,0
 0,1
 0,2
 0,3

1,0
 1,1
 1,2
 1,3

0,0
 0,1
 0,2
 0,3

1,0
 1,1
 1,2
 1,3

0,0
 0,1
 0,2
 0,3
 0,0
 0,1
 0,2
 0,3
 0,0
 0,1
 0,2
 0,3
 0,0
 0,1
 0,2
 0,3

m
q
(j)

m
p
(i)

b=4

a=2

N = 16

(a) Module assignments of the 2D pixel area;

0,0
 0,4
 0,8
 0,12
 2,0
 2,4
 2,8
 2,12
 4,0
 4,4
 4,8
 4,12

A0
 A1
 A2
 A3
 A4
 A5
 A6
 A7
 A8
 A9
 A10
 A11

module
(1,3)

1,3
 1,7
 1,11
 1,15
 3,3
 3,7
 3,11
 3,15
 -
 -
 -
 -

N/b

A0
 A1
 A2
 A3
 A4
 A5
 A6
 A7
 A8
 A9
 A10
 A11

module
(0,0

(b) 2D addresses and linear addressing within modules.

Figure 4.4: Modules assignment and internal addressing fora=2, b=4, N=16.

be calculated for each of the remaining 6 modules to beA0,1(1, 10) = 7,
A0,2(1, 10) = 6, A0,3(1, 10) = 6, A1,0(1, 10) = 3, A1,1(1, 10) = 3,
A1,2(1, 10) = 2. Figure 4.4(b) illustrates the internal linear addressing and
data alignment within the considered two memory modules. Note that having
the intra-module addresses of all pixels in the considered block, we only need
to know which module contains the upper-left pixel(i,j)=(1,10) to reorder the
data properly. The upper-left pixel of blockB(1,10) is calculated (from the
zeroes of (4.2) and (4.3)) to be located in module(p,q)=(1,2). Thus, having
each and every of the 8 block pixels localized in each and every of the 8 mod-
ules, we can access the entire block in one cycle by accessing all the modules
in parallel. Yet identically, it can be shown that any2 × 4 block, regardless
its position (thus including aligned blocks), can be accessed in a single cycle.
Recall that blockB(1,10)is the 2D notation of block{26-45} from the moti-
vating example. This block was accessible in 2 or 4 cycles from a conventional
8-byte LAM, thus 2 to 4 times slower than the proposed scheme at the same
bandwidth of 8 bytes per cycle.

Memory organization and implementation: The key purpose of the pro-
posed addressing scheme is to enable performance-effective memory imple-
mentations optimized for algorithms requiring the access of rectangular blocks.
Designs with shortest critical paths are to be considered with the highest prior-
ity, as they dictate machine performance. Equations (4.2)-(4.4) are generally

86 CHAPTER 4. VISUAL DATA RECTANGULAR MEMORY

Aj
0
(j)

shuffle
 shuffle
 shuffle
 shuffle

shuffle

Module

(0,0)

Module

(0,1)

Module

(0,2)

Module

(0,3)

Module

(1,0)

Module

(1,1)

Module

(1,2)

Module

(1,3)

j

i

Aj
1
(j)
 Aj
2
(j)
 Aj
3
(j)

Ai
0
(i)

Ai
1
(i)

R
i
(i)

R
j
(j)

i

j

Figure 4.5: 2DAM fora=2, b=4, andN = 2n ≥ 16.

valid for any natural value of parametersa, b andN. To implement the pro-
posed addressing and module assignment functions, however, we will consider
practical values of these parameters. Since pixel blocks processed in MPEG
algorithms have dimensions up to16× 16, values of practical significance for
parametersa andb are the powers of two up to 16 (i.e., 1, 2, 4, 8, 16). For the
particular implementation example we will consider the discussed block size -
a× b = 2× 4.

Module addressing:An important property of the proposed module address-
ing function is itsseparability. It means that the function can be represented
as a sum of two functions of asingle and uniquevariable each (i.e., vari-
ables i and j). The separability ofAp,q(i, j) = Aip(i) + Ajq(j) allows the
address generators to be implemented per column and per row (see Figure
4.5) instead of implemented as individual addressing circuits for each of the
memory modules. Taking into account the separability ofAp,q(i, j) and con-
sidering an arbitrary range of picture dimensions to be stored, we can define
Ch = N = 2n, n ≥ 4 as ”horizontal capacity” of the 2DAM (to be dis-
cussed later). The requirements for the frame sizes of all MPEG standards and
for Video Object Planes (VOPs) [1] in MPEG-4 are constituted to be multi-
ples of 16, thus,N is a multiple of24 by definition. Assuming the discussed
practical values of N and b, further analysis of Equation (4.4) suggests that
j div b + cj < N

b and(j div b + cj)max = N
b − 1, i.e., no carry can be ever

generated betweenAip(i) andAjq(j). Therefore, we can implementAp,q(i, j)

4.3. BLOCK ADDRESSABLE MEMORY 87

j div b
 j mod b

j-address

LUTq
INC

log
2
(b)

Ajq(j)

c
j

log
2
(N
/b)

(a) Generation circuit of q-addresses for1 ≤ q < b;

j mod cj i mod ci

b q=0 q=1 q=2 a p=0

0 0 0 0 0 0 0
0 1 1 0 0 1 1
1 0 1 1 0 - -
1 1 1 1 1 - -

(b) LUTs contents fora=2, b=4.

Figure 4.6: Module address generation.

for every module(p,q)by simply routing signals to the corresponding address
generation blocks without actually summatingAip(i) + Ajq(j). Figure 4.6(a)
illustrates address generation circuitry of q-addresses (Ajq(j)) for all modules
except the first (1 ≤ q < b). With respect to (4.4), ifcj is 1 the quotientj
div b should be incremented by one, otherwise it should not be changed. To
determine the value ofcj , a Look-Up-Table (LUT) withj mod binputs can be
used. For the assumed practical values ofa andb (≤ 16), such a LUT would
have at most 4 inputs, i.e.,cj is a binary function of at most 4 binary digits.
Row p-addresses are generated identically. Forp=1 or q=3, ci = 0, cj = 0
respectively. Therefore, address generation in these cases does not require a
LUT and an incrementor. Instead, it is just routingi div a and j div b to the
corresponding memory ports, i.e., blocksAi1(i) andAj3(j) in Figure 4.5 are
empty. Figure 4.6(b) depicts all 4 LUTs for the casea× b = 2× 4. The usage
of LUTs to determineci andcj is not mandatory, fast pure logic can be utilized
instead. However, we use LUTs for two main purposes: 1.) to illustrate the de-
sign concept; and 2.) LUTs fit better in the FPGA implementation considered
further in this chapter.

Data routing circuitry: In Figure 4.5, the shuffle blocks, together with blocks
Rp(i) andRq(j), illustrate the data routing circuitry. The shuffle blocks are
in essence circular barrel shifters, i.e. having the complexity of a network of
multiplexors. Ann × n shuffle is actually ann → 1 n-way multiplexor. In

88 CHAPTER 4. VISUAL DATA RECTANGULAR MEMORY

Module

(0,0)

Module

(0,1)

j

i

AGEN

Module

(0,2)

Module

(0,3)

Module

(1,0)

Module

(1,1)

Module

(1,2)

Module

(1,3)

LAM

memory

Data (W=2)

Address

(A
LAM
)

WE
j

WE
i

Figure 4.7: LAM interface forW=2, a=2, b=4.

the example from Figure 4.5, thei-level shuffle blocks are four (2 → 1) 16-
bit multiplexors and thej-level one is (4 → 1) 64-bit. To control the shuffle
blocks, we can use the module assignment functions forp = q = 0, i.e.,
Ri(i) = i mod a andRj(j) = j mod b. These functions calculate the(p,q)-
coordinates of the ”upper-left” pixel of the desired block, i.e., pixel(i,j). For
the assumed practical values ofa andb being powers of two, the implementa-
tion of Ri(i) andRj(j) is simple routing of the least-significantlog2(a) -bits
(resp.log2(b)) to the corresponding shuffle level.

2DAM capacity: Earlier, we have defined the ”horizontal capacity” of 2DAM
asCh = N = 2n, n ≥ 4. Ch is themaximal scanline length in bytes (pixels),
the 2DAM can store without addressing conflicts. The ”vertical capacity” of
2DAM is denoted asCv and defined as themaximal number ofCh-byte (Ch-
pixel) scanlines the 2DAM can store. Finally, the capacityC2DAM of a 2DM is
defined as the couple (Ch ×Cv)-bytes (pixels), rather than as a single number.

LAM interface: Figure 4.7 depicts the organization of the interface between
LAM and 2DAM (recall Figure 4.2) for the modules considered in Figure 4.5.
Data bus width of the LAM is denoted by W (in number of bytes). In the
particular example, W is assumed to be 2, therefore modules have coupled
data busses. For each(i,j) address, the AGEN block sequentially generates
addresses to the LAM and distributes write enable (WE) signals to a corre-
sponding module couple. Two module WE signals (WEi,WEj) are assumed
for easier row and column selection. In the general case, the AGEN block
should sequentially generatea·bW LAM addresses for each(i,j) address. Pro-
vided that pixel data is stored into LAM in scan-line manner, the set of LAM
addresses to be generated is defined as follows:

4.3. BLOCK ADDRESSABLE MEMORY 89

ALAM (i, j) = {a · (i div a) + k} ·N + b · (j div b) + l ·W

Which, assuming that only aligned blocks will be accessed from the LAM (i.e.,
(i,j) are aligned), can be simplified:

ALAM (i, j) = (i + k) ·N + j + l ·W (4.5)

k = 0, 1, ..., a− 1; l = 0, 1, ..., b
W − 1.

In the 2DAM, the data words should be simultaneously written in modules:

(p, q) = (k, l ·W), (k, l ·W + 1), ..., (k, l ·W + W − 1) (4.6)

at local module address:

ALAM
p,q (i, j) = (i div a) · N

b
+ j div b. (4.7)

Note, that accessing only aligned blocks from the LAM enables thorough
bandwidth utilization. When only aligned blocks are addressed, all address
generators issue the same address, due to (4.4). Therefore, during write oper-
ations into 2DAM, the same addressing circuitry can be used as for reading.
If the modules are true dual port, the write port addressing can be simplified
to just proper wiring of bothi andj address lines because the incrementor and
the LUTs from Figure 4.6(a) are not required. Therefore, module addressing
circuitry is not depicted in Figure 4.7.

Addressing consistency:In the following, we will prove that the described
scheme provides a consistent LAM and 2DAM addressing. It means that each
and every byte is allocated in the same memory module and at the same intra-
module address by both LAM and 2DAM addressing schemes.

Lemma 4.1 x mod z = x− n · z iff 0 ≤ x− n · z < z; ∀x, n, z ∈ N.

Proof. 1. If x mod z = x− n · z ⇒ 0 ≤ x− n · z < z; ∀x, n, z ∈ N is true
by the definition ofmodoperation. 2. If 0 ≤ x − n · z < z ⇒ x mod z =
x − n · z; ∀x, n, z ∈ N. Let x mod z = x − p · z. Then, by definition
0 ≤ x− p · z < z. Assumep 6= n ⇒ |p− n| ≥ 1. We derive the system:

∥∥∥∥
0 ≤ x− n · z < z
0 ≤ x− p · z < z

90 CHAPTER 4. VISUAL DATA RECTANGULAR MEMORY

The only solution of the systemp = n contradicts to the assumption¥

Lemma 4.2 (x− y) mod z = (x mod z − y) mod z; ∀y < z; ∀x, y, z ∈ N

Proof. By definition x mod z = x − n1 · z and(x mod z − y) mod z =
(x mod z−y)−n2·z. ⇒ By substitution and based on Lemma 4.1, we derive:
(x mod z− y) mod z = (x−n1 · z− y)−n2 · z = (x− y)− (n1+n2) · z =
(x− y) mod z ¥

Lemma 4.3 (x div y) · y = x− x mod y

Proof.

∥∥∥∥∥∥

x mod y = p
x div y = k
k · y + p = x

⇒
(x div y) · y =
= k · y = x− p =
= x− x mod y ¥

Theorem 4.1 (Consistency between the 2DAM and the LAM addressing
schemes).Assume the 2DAM and LAM addressing interface schemes defined
by (4.2)-(4.4) and (4.5)-(4.7), respectively. Any byte(i‘, j‘) is allocated in the
same memory module at the same intra-module address by both addressing
schemes.

Proof. Consistency of module assignments.Consider byte(i‘, j‘). In consis-
tence with (4.5), we definek = i‘ mod a andl = (j‘ mod b) div W . Consider-
ing the LAM interface and Lemma 4.3, the module, where byte(i‘, j‘) should
be stored is calculated as follows:

(p, q) = (k, l ·W + (j‘ mod b) mod W) =
= (k, {(j‘ mod b) div W} ·W + (j‘ mod b) mod W) =
= (k, (j‘mod b)− (j‘mod b)modW + (j‘mod b)modW)

⇒ (p, q) = (k, j‘ mod b) (4.8)

Consider (4.2)-(4.3) for the 2DAM module allocation and Lemma 4.2, then:

mp(i‘) = mq(j‘) =
= (i‘ − p) mod a = 0 = (j‘ − q) mod b = 0

(i‘mod a− p) mod a = 0 (j‘mod b− q) mod b = 0;
(k − p)mod a = 0; k < a j‘mod b < b

⇒ p = k; q = j‘mod b (4.9)

Equations (4.8) and (4.9) indicate that any byte(i‘, j‘) will be allocated in
the same memory module both by the LAM interface and by the 2DAM read
circuitry.

4.3. BLOCK ADDRESSABLE MEMORY 91

Consistency of intra-module addresses.Assume(i,j) is the aligned block, con-
taining byte(i‘, j‘), i.e.,i div a = i‘ div a, j div b = j‘ div b.
Consider (4.4):Ap,q(i‘, j‘) = (i‘ div a + ci) · N

b + j‘ div b + cj ,
from (4.9):p = i‘ mod a andq = j‘ mod b⇒ ci = cj = 0, ⇒
Ap,q(i‘, j‘) = (i‘ div a) · N

b + j ‘ div b ⇒(Recall the assumption)
Ap,q(i‘, j‘) = (i div a) · N

b + j div b, identical to (4.7)¥
Example: We consider a single (arbitrary chosen) byte and show that it is
allocated in the same memory module and at the same intra-module address
both by the LAM and by the 2DAM addressing schemes.

Assume that visual data is scan-line aligned in LAM with word length of 2
bytes and big-endian convention. Consider the byte with 2D address(1,11),
see Figure 4.3. The memory hierarchy of Figure 4.2 indicates that byte(1,11)
has to be loaded from the LAM into the 2DAM by means of the proposed
LAM interface. Assuming that the 2DAM is first loaded in its entirety, all
aligned blocks of the considered5 × 16-byte area are to be loaded from the
LAM into the 2DAM. Byte (1,11) is assigned in the LAM as part of aligned
block (0,8). The LAM addresses of the four 2-byte words containing the pixels
of the block areALAM = 8, 10, 24, 26, see Figure 4.3. The LAM address
of the 2-byte word, containing the considered pixel(1,11) is calculated from
(4.5) to be: ALAM (0, 8)k=1,l=1 = (0 + 1) · 16 + 8 + 1 · 2 = 26. Recall
Figure 4.3, where byte(1,11) had LAM address 27. Thus, in the assumed
big-endian LAM convention, the considered byte 27 is the most significant
byte of the 2-byte memory word aligned at address 26. Considering (4.6),
this 2-byte word should be stored into modules(1,2) and (1,3), see Figure
4.7. The most significant byte, i.e., byte 27, should be stored into module
(p, q)k=1,l=1 = (k, l · W + W − 1) = (1, 3). Its intra-module address with
respect to the LAM interface is calculated from (4.7) to be:

ALAM
1,3 (0, 8) = (0 div 2) · 16

4
+ 8 div 4 = 2

That is,byte(1,11)with LAM address 27, will be stored by the LAM-to-2DAM
interface into module (1,3) at intra-module address 2.

Consider the 2DAM addressing scheme, the shaded non-aligned block(1,10)
in Figure 4.3 and Figure 4.4, and (4.2)-(4.4). Indeed,considering the 2DAM
addressing scheme, byte(1,11)can be read from address location 2 of module
(1,3), as it was shown in the previous example.

Critical paths: Regarding the performance of the proposed design, we should
consider the created critical path penalty. Assuming generic synchronous
memories where addresses are generated in one cycle and data are available

92 CHAPTER 4. VISUAL DATA RECTANGULAR MEMORY

in another, we separate the critical paths into two: address generation and data
routing. For the proposed circuit implementation, the address generation criti-
cal path (CPA) is determined by:

CPA = max(CPadd M
a

, CPadd N
b
) + CPLUT .

That is the critical path of either alog2(M
a)-bit or a log2(N

b)-bit adder,
whichever is longer, and the critical path of one (max. 4-input) LUT. The
data routing critical path (CPD) is:

CPD = CPmuxa + CPmuxb
.

That is, the sum of the critical paths of onea → 1 multiplexor and oneb → 1
multiplexor.

4.4 Experimental results and related work

In the previous sections, we have considered the theoretical aspects of our pro-
posal illustrated by simplified examples. In this section, an experimental case
study for a number of real-world FPGA-based designs is presented, followed
by a comparison to other related works reported in literature.

Case study: A generic VHDL model of the memory organization has been
developed and synthesized for the recent Virtex II Pro FPGA technology of
Xilinx. We assume reconfigurable technology for two reasons. First, showing
the viability of the organization in reconfigurable technology also proves its
viability to all other current and near future technologies. Second, we envi-
sion, for cost-efficiency, that assuming MPEG specific requirements, the or-
ganization may be incorporated in a reconfigurable augmented processor [39].
Table 4.3 contains synthesis results for the 2vp50ff1152 FPGA device (the
last column displays some of the resources available on the chip). The on-
chip memory volume allows frames or VOPs sized up-to512x1024pixels to
be stored. It should be noted that more than one frame can be stored in the
memory and accessed, depending on the particular frame format. For exam-
ple, up-to fourteen CIF frames (144x176) can be stored into the implemented
512x1024storage. This issue is much more beneficial in MPEG-4, where the
arbitrary shaped VOPs to be stored vary both in size and number for each par-
ticular codec session. Synthesis data for practical MPEG pattern sizes of2x4,
4x8, 8x8 and 16x16-pixelsindicate that respective structures can be efficiently

4.4. EXPERIMENTAL RESULTS AND RELATED WORK 93

Table 4.3: Synthesis for frames up-to 512x1024 (device 2vp50ff1152).

a× b 2 x 4 4 x 8 8 x 8 16 x 16 Avail.

2-1mux 192 1280 3072 16384 N.A.
Adders: 4 10 14 30 N.A.

bits/# 8/1 7/3 6/7 5/15 N.A.
bits/# 8/3 7/7 7/7 6/15 N.A.

Slices 534 1512 3287 15408 24640
% 1 6 13 63 100

LUT4 928 2630 5723 26805 49280
% 1 5 11 54 100

IOs 100 292 548 2084 756
BRAM 8x 32x 64x 256x 522K

64K 16K 8K 2K

implemented with a fraction of the available FPGA resources. Only the16x16
pattern creates a resource conflict with regard to the available IO pins of the
chip. This conflict, however, should not be considered as a problem, since
structures with bandwidth of that magnitude are usually intended for on-chip
implementations. In the ’Adders’ rows of Table 4.3, the notation ’bits/#’ de-
notes the number of bits in an adder and the corresponding number of such
adders, respectively. Results indicate that in the most common case of8 × 8
block patterns, 3287 Virtex II Pro slices are required, which is 13% of the
2vp50ff1152 FPGA device resources.

In Table 4.4, transfer speedup estimations are presented, assumingTLAM =
10ns. Calculations are made according to the figures and notations presented
in Table 4.2. In BC, all blocks are assumed to be non-aligned, while in WC
the very unlikely scenario that all blocks are aligned and accessed only once is
considered.T2DA values are derived from the synthesis reports for the designs
considered in Table 4.3. Figures in Table 4.4 indicate that even in the unfavor-
able case when 2DAM is slower than the LAM, considerable transfer speedups
of up to 8x can be achieved, due to the proposed memory organization.

Related work: Accessing blocks of memory has been in the hearts of vector
(array) processors researchers and developers for long time. Two major groups
of memory organizations for parallel data access have been reported in liter-
ature - organizations with and without data replication (redundancy). We are
interested only in those without data replication. Another division is made with
respect to the number of memory modules - equal to the number of accessed
data points and exceeding this number. Organizations with a prime number of

94 CHAPTER 4. VISUAL DATA RECTANGULAR MEMORY

Table 4.4: Estimated transfer speedups forTLAM = 10ns.

a× b T2DA t= w Transfer speedup
T2DA

TLAM
BC Mix. WC

8 7,45 7,34 0,97
8x8 16,7ns 1,67 16 7,05 6,88 0,95

32 6,54 6,27 0,91
8 8,03 8,00 0,99

16x16 18,8ns 1,88 16 8,05 8,00 0,99
32 8,10 8,00 0,97

memory modules can be considered as a subset of the latter. An essential im-
plementation drawback of such organizations is that their addressing functions
are non-separable and more complex, thus slower and costly to implement. We
have organized our comparison with respect to block accesses, discarding other
data patterns, due to the specific requirements of visual data compression. It
should be noted, however, that our design can be easily augmented to accesses
horizontal and verticala × b lines, just by slightly modifying the module as-
signment functions and preserving the same addressing function. To compare
designs, two basic criteria have been established: scalability and implementa-
tion drawbacks in terms of speed and/or complexity. Comparison results are
reported in Table 4.5.

Budnik and Kuck [72] described a scheme for conflict free access of
√

N×√N
square blocks out ofN ×N arrays, utilizingm > N = 2n memory modules,
whereM is a prime number. Their scheme allows the complicated full cross-
bar switch as the only possibility for data alignment circuitry and many costly
modulo(M)operations with M not a power of two. In a publication, related to
the development of the Burroughs Scientific Processor, Lawrie [74] proposes

Table 4.5: Comparison to other proposed schemes.

Related Work scalability # modules implementation drawbacks or limitations

Budnik, Kuck [72]
√

N ×√N from N ×N primem > N = 2n mod(m), crossbar, no addressing
Lawrie [74]

√
N ×√N m = 2.N ; N = 22n+1 mod(m), no addressing

Voorhis, Morin [75] p× q from M ×N m ≥ p× q not separable,mod(pq),mod(pq+1),
Kim, Prasanna [76]

√
N ×√N from N ×N m = N certain blocks are inaccessible

De-lei Lee [77]
√

N ×√N from N ×N m = N many modules for higherN
Sproull et al. [79] 8× 8 8× 8 time-space multiplexing, not general

Park [78] p× q from M ×N primem > p× q not separable, many adders, big LUTs
HiPAR-DSP [80,81] N ×N m = (1 + N)2 2×N + 1 additional modules,mod(m)
HiPAR-DSP16 [82] p× q from M ×N m >> p× q big number of modules,mod(m)

This proposal p× q from M ×N m = p× q none of the above,
rectangular patterns only

4.4. EXPERIMENTAL RESULTS AND RELATED WORK 95

an alignment scheme with data switching, simpler than a crossbar switch, but
still capable to handle only

√
N × √N square blocks out ofm=2N modules,

whereN = 22n+1. Both schemes in [72] and [74] require larger number
of modules than the number of simultaneously accessed (image) points (N).
Furthermore, in both papers authors do not describe the necessary addressing
circuitries for their schemes. Voorhis and Morin [75] suggest various address-
ing functions consideringp × q subarray accesses and different number of
memory modules M: bothm = p × q andm > p × q. Neither of the func-
tions proposed in [75] is separable, which leads to an extensive number of
address generation and module assignment logic blocks. In [76] authors pro-
pose a module assignment scheme based on Latin squares, which is capable
of accessing

√
N × √

N square blocks out ofN × N arrays, but not from
random positions. Similar drawbacks has the scheme proposed in [77]. One
early graphical display system, described in [79], can be considered a partial
case of our scheme, since authors describe square8 × 8 submatrix accesses
and memory alignment similar to the proposed in our scheme. The authors
in [79] did not consider rectangular subarray accesses, which are not directly
deducible from the proposed reading. No formalization of the addressing func-
tions was presented either. A more recent display system memory, capable of
simultaneous access ofp × q rectangular subarrays is described in [78]. The
design, proposed there, utilizes a prime number of memory modules, which
enables accesses to numerous data patterns, but disallows separable address-
ing functions. Therefore, regarding block accesses, it is slower and requires
more memory modules than our proposal. Large LUTs (in size and number)
and yet longer critical path with consecutive additions can be considered as
other drawbacks of [78]. A memory organization, capable of accessingN×N
square blocks, aligned into(1 + N)2 memory modules was described in [80].
The same scheme was used for the implementation of the matrix memory of
the first version of HiPAR-DSP [81]. Besides the restriction to square accesses
only, that memory system uses a redundant number of modules, due to ad-
ditional DSP-specific access patterns considered. A definition of rectangular
p × q block random addressing scheme from the architectural point of view
dedicated for multimedia systems was introduced in [83], but no particular
organization was presented there. In the latest version of HiPAR16 [82], the
matrix memory was improved so that a restricted number of rectangular pat-
terns could also be accessed. This design, however, still uses excessive number
of memory modules asp andM respectivelyq andN should not have common
divisors. E.g., to access the example2 × 4 pattern, the HiPAR16 memory re-
quires3×5 = 15 memory modules, instead of 8 for our proposal. The memory

96 CHAPTER 4. VISUAL DATA RECTANGULAR MEMORY

of [82] would require more-complicated circuitry. Similarly to [79], [81, 82]
assume separability, however, the number of utilized modules is even higher
than the closest prime number top × q. Compared to [72, 74, 76–82], our
scheme enables higher scalability and lower number of memory modules. This
reflects directly to the design complexity, which has been proven to be very low
in our case. Address function separability reduces the number of address gen-
eration logic and critical path penalties, thus enables faster implementations.
Regarding address separability, we differentiate from [72, 74–78], where ad-
dress separability is not supported. As a result,our design is envisioned to
have the shortest critical path penalties among all referenced works.

4.5 Conclusions

We presented a scalable memory organization capable of addressing randomly
aligned rectangular data patterns out of a virtual 2D data storage. High per-
formance is achieved by reduced number of data transfers between memory
hierarchy levels, efficient bandwidth utilization, and short hardware critical
paths. In the proposed design, data are located in an array of byte addressable
memory modules by an addressing function, implicitly containing module as-
signment functions. An interface to a linearly addressable memory has been
provided to load the array of modules. Theoretical analysis proving the consis-
tency and efficiency of the linear and the two-dimensional addressing schemes
has been also presented. The implementation of the organization was evalu-
ated by experimental synthesis. Results indicate that a scalable range of such
organizations can be efficiently mapped on recent FPGA technologies. At rea-
sonably small hardware costs, we achieved considerable speedups of up to 8X
for an experimental case study design versus traditional linearly addressable
memories. The design is envisioned to be more cost-effective compared to
related works reported in literature. The proposed organization is intended
for specific data intensive algorithms in visual data processing applications,
but can also be adopted by other general purpose applications with high data
throughput requirements including vector processing. In the chapter to follow,
we present A Virtex II Pro Molen prototype, which can embed the proposed
memory organization at microarchitectural level, thus supporting some of the
block processing CCUs implemented.

Chapter 5

The Xilinx Virtex II Pro
Prototype

T
he original Molen proposal [39] assumes that the arbiter is actually the
standard instruction decoding unit of the core processor, augmented
with additional functionality. This assumption, however, implies that

the Molen designer can access the internal structure of the core processor,
which in many cases may become an implementation prohibitive requirement.
Given that current reconfigurable technology does not allow such a design, we
investigate in this dissertation whether it is possible to implement the Molen
paradigm without changing the design of the core processor. In this chapter,
referring to the core processor as to a ”black box”, we implement the Molen
paradigm by emulating reconfigurable operations with the ISA of the targeted
core processor. An important challenge is to preserve the closely coupled GPP-
RP organization and to achieve performance efficient processing. We have
chosen the Virtex II Pro platform of Xilinx [84] as a target FPGA technol-
ogy for our prototype design. An implementation of the minimal functionally
complete MolenπISA is proposed, comprising the instructions:set, execute,
movtx, andmovfx. The discussion is focused on the microarchitectural sup-
port for the implementedπISA, emulated on the embedded PowerPC 405 pro-
cessor in the Virtex II Pro FPGA. Some important considerations regarding the
software support of the Molen prototype are discussed as well.

The prototype designs of the key Molen units are presented in separate sec-
tions of this chapter. Section 5.1 deals with the design aspects of the prototype
arbiter and its implementation description. Theρµ-code unit prototype imple-
mentation is presented in Section 5.2 including some discussion on important

97

98 CHAPTER 5. THE X ILINX V IRTEX II PRO PROTOTYPE

ρµ-code manipulations. The design considerations behind the implementation
of the exchange registers, the memory organization, and the clock domains are
introduced in Section 5.3. Section 5.4 describes the interface, a designer must
implement, to embed a CCU in the prototype organization. The software code
annotations required to support the reconfigurable functionality of Molen are
explained in Section 5.6. The chapter is concluded in Section 5.7.

5.1 The arbiter

In this section, we introduce the design of an arbiter, which is a potentially
performance limiting unit of the Molenρµ-coded processor. An analysis of
the general requirements to a Molen arbiter is presented, followed by specific
software considerations, architectural solutions, implementation issues and a
functional testing routine for the proposed prototype arbiter. The complete
arbiter design has been described in VHDL and synthesized for the Xilinx Vir-
texII Pro technology. Synthesis results indicate a very low hardware utiliza-
tion, namely:less than 1% of the reconfigurable hardware resources available
on the selected prototyping VirtexII Pro FPGA chip (xc2vp20).

The section is organized as follows. We start with Subsection 5.1.1 describing
the design requirements to a general arbiter. In Subsection 5.1.2, software and
hardware considerations for the particular arbiter design for PowerPC and Vir-
tex II Pro FPGA are presented. Subsection 5.1.3 discusses functional testing
and presents hardware synthesis results for the specific implementation of the
arbiter.

5.1.1 General requirements to the arbiter.

The arbiter is a unit, which directs instructions either to the GPP or to the RP,
controls their proper co-processing, and manages the main memory access.
Thus, the arbiter is closely connected to three major units of theρµ-coded
processor, namely the GPP, the memory and the RP (more precisely to theρµ-
code unit). Each of these parts of the organization has its own requirements
that should be considered when an arbiter is designed. Regarding the core
processor the arbiter should:

• Preserve the original behavior of the core processor when no reconfig-
urable instruction is executed. Create the shortest possible critical path
penalties on these executions.

5.1. THE ARBITER 99

• Emulate reconfigurable instruction execution behavior on the core pro-
cessor using its original instruction set and/or other architectural fea-
tures.

• Reconfigurable instructions should be encoded in consistence with the
instruction encoding of the targeted general purpose architecture.

Regarding theρµ-code unit the arbiter should:

• Distribute control signals and the address of the microcode to be loaded
or executed to theρµ-unit.

• Consume minimal hardware resources. This is crucial if the arbiter is
mapped together with theρµ-unit on the same FPGA. Thus more recon-
figurable resources will be available for the CCU.

For proper memory management, the arbiter should be designed to:

• Arbitrate the data access between theρµ-unit and the core processor.

• Allow speeds within the capabilities of the utilized memory technology,
i.e., not creating performance bottlenecks in memory transfers.

The arbiter should also provide proper timing for reconfigurable instruction
execution to all units referred above.

πISA emulation: We already noted that in the original Molen proposal it was
assumed that the GPP instruction decoding unit is augmented with arbitrating
capabilities to support the Molen architecture. This assumption, however, lim-
its the applicability of the approach only to designers who have access to the
internal structure of the targeted GPP. We propose another design approach,
namely:emulateπISA instructions with the original ISA of the targeted GPP
architecture. In Figure 5.1, a general view of an arbiter organization supporting
suchπISA emulation is presented. The operation of such an arbiter is entirely
based on decoding the input instruction flow. The unit either redirects these in-
structions, or generates a dedicated sequence of instructions to control the state
of the core processor during reconfigurable operations. In such an organiza-
tion, the critical path penalty to the original instruction flow can be reduced
to just one 2-1 multiplexer, thus negligible. Once either of the reconfigurable
instructions has been decoded, the following actions are initiated:

1. Arbiter emulation instructions are multiplexed to the processor instruc-
tion bus. These instructions emulate reconfigurable instruction execu-
tion by driving the processor into wait or halt state.

100 CHAPTER 5. THE X ILINX V IRTEX II PRO PROTOTYPE

Decode
 Controls

Arbiter Emulation

Instructions

MUX

Control

Arbiter

Instructions from

Memory

Instructions

to the Core Processor

Occupy

Memory
 micro address
 Ex/Set

Start

reconf.

operation

End of
reconf.

operation

Figure 5.1: General organization of the proposedπISA emulating arbiter.

2. Control signals from the decoder are generated to the control block in
Figure 5.1. Based on these controls, the control block performs the fol-
lowing:

• Redirects the microcode location address of the corresponding re-
configurable instruction to theρµ-unit.

• Generates an internal code signal (Ex/Set) for the decoded recon-
figurable instruction and delivers it to theρµ-unit.

• Initiates reconfigurable operation by generating’start reconf. op-
eration’ signal to theρµ-unit.

• Reserves the data memory control for theρµ-unit by generating
memory occupysignal to the (data) memory controller.

• Enters a wait state until signal’end of reconf. operation’arrives.

An active’end of reconf. operation’signal initiates the following actions:

1. Data memory control is released back to the core processor.

2. An instruction sequence is generated to ensure proper exiting of the core
processor from the wait state.

3. After exiting the wait state, the control of the program flow is transferred
back to the instruction immediately after the reconfigurable instruction,
which has been executed last.

5.1. THE ARBITER 101

5.1.2 Arbiter implementation

Software considerations:In the proposed prototype design, the core proces-
sor is driven into a wait state, while a reconfigurable operation is executing.
This wait state is initiated, maintained, and eventually discontinued by arbiter
emulation instructions. Due to performance reasons, however, we decided in-
structions related to the special operating modes of PowerPC not to be used
for emulation. We motivate this decision with the argument that exiting such
special operating modes is usually performed by interrupt, which would slow
down our implementation. Furthermore, we may lose generality if we imple-
ment the design with instructions strictly specific for the chosen architecture.
Therefore, we decided to emulate the wait state of the GPP during reconfig-
urable operations by unconditional branch instructions. Such instructions are
implemented in almost all popular GPP architectures. From the PowerPC in-
struction set we employed the’branch to link register’(blr) and ’branch to
link register and link’(blrl) to emulate a wait state and to get the processor out
of this state. The difference between these instructions is thatblrl modifies the
link register (LR), whileblr does not. For both instructions, the next instruc-
tion address is the effective address of the branch target, stored in LR. When
blrl is executed, the new value loaded into LR is the address of the instruction
following the branch instruction. To drive the processor into a wait state we
utilize instructionblr , while to ’wake it up’ we useblrl . Thus the emulation
instructions, stored into the corresponding block in Figure 5.1 are reduced to
only one instruction for wait and one for ’wake-up’ emulation.

Let us assume the following mnemonics for the three microcode related re-
configurable instructions:’psetrm addr’, ’csetrm addr’ and’execrm addr’.
To implement the proposed mechanism, we only need to initialize LR with a
proper value, i.e. the address of the reconfigurable instruction. This should be
done by the compiler with the’branch and link’ (bl) instruction of PowerPC.
The assembly code of an application program containing the’complete set’
instruction should be similar to the following:

bl label1 → bl — branch tolabel1 ; LR = label1
label1: cset rm addr → blr — branch tolabel1 ; LR = label1

To the right of the arrows, the actual instructions driven by the arbiter to the
PowerPC instruction bus are denoted, LR values are also presented. Obviously,
the processor will execute branch instruction to the same address, because LR
remains unchanged and points to an address containingblr instruction. Thus
we drive the processor into an eternal loop. It is the responsibility of the ar-
biter to get the processor out of this state. When the reconfigurable instruction

102 CHAPTER 5. THE X ILINX V IRTEX II PRO PROTOTYPE

is complete, an’end op’ signal is generated by theρµ-unit to the arbiter, which
initiates the execution ofblrl exactly twice. Thus, the effective address of the
next instruction is loaded into the LR, which points to the address of the in-
struction immediately following the reconfigurable one and the processor exits
the eternal loop. Below, the instructions generated by the arbiter to finalize a
reconfigurable operation are displayed (instruction alignment is at 4 bytes):

label1: cset rm addr → blr — branch tolabel1
→ blr — branch tolabel1

.......
→ blrl — branch tolabel1
→ blrl — branch tolabel1+4

label1+4: next instr → — next instruction
The proposed implementation allows also the execution ofblocks of reconfig-
urable instructions(BRI) defined below:

Definition 5.1 We defineBRI as any sequence of reconfigurable instructions
starting with the instruction ’bl’ and containing arbitrary number of consecu-
tive reconfigurable instructions. No other instructions can be utilized within a
BRI.

Utilizing BRI saves the necessity to initialize LR every time a reconfigurable
instruction is invoked, thus saving a couple ofbl instructions. In this scheme
only onebl instruction is used to initialize LR in the beginning of the BRI. The
time spent for executing a single reconfigurable operation (Tρ) is estimated to
be the time for thereconfigurable execution(TρE), consumed by theρµ-unit,
plus the time for threeunconditional taken branch instructions(TUTB) :

Tρ = 3× TUTB + TρE (5.1)

Assuming the number of reconfigurable instructions in the BRI to beNBRI ,
the execution time of a reconfigurable instruction within a BRI costs:

Tρ = 2× TUTB + TρE +
TUTB

NBRI
(5.2)

In other words,the time penalty for single reconfigurable instruction execution
is 3× TUTB and within a BRI execution - between2× TUTB and3× TUTB.

Optionally, the’instruction synchronization’instruction (isync) can be added
before a BRI to avoid out-of-order executions of previous instructions during
reconfigurable operation. This choice, however, depends on the particular pro-
gram, being implemented.

5.1. THE ARBITER 103

24-bit microcode address
000110

0
 5
 6
 29
 30
31

00 - complete set;
10 - partial set;
01 - execute.
OPC = 6

Figure 5.2: Reconfigurable instruction encoding:ρ-form.

Instruction encoding: To perform the Molen processor reconfigurations, the
PowerPC Instruction Set Architecture (ISA) should be extended. Here, we will
consider three microcode related instructions from theπISA, namely:execute,
p-setand c-set. To encode these three instructions with respect to their efficient
implementation and utilization, we have considered the following:

• The encoding scheme should be consistent with the PowerPC instruction
format with opcodes (OPC) encoded in the six most-significant bits of
the instruction word (see Figure 5.2).

• All three instructions have the same OPC field and same instruction
form, which is similar to the I-form. Let us call the new form of the
reconfigurable instructionsρ-form.

• The OPCodes of the instructions are as close to the OPC of the emulation
instructions as possible (shortest Hamming distance), i.e.blr andblrl .
From the free opcodes of the PowerPC architecture, such is opcode ’6’
(”000110b”).

• Instruction modifiers are implemented in the two least-significant fields
of the instruction word, to distinguish the three reconfigurable instruc-
tions.

• A 24-bit address, embedded into the instruction word, specifies the
location of the microcode in memory. A modifier bit R/P (Resi-
dent/Pageable), assumed to be a part of the address field, specifies where
the microcode is located and how to interpret the address field. If R/P=1
a memory address is specified, otherwise an address of the on-chip stor-
age in theρµ-code unit is referred. The address always points to the
location of the first microcode instruction. This first address should con-
tain the microcode length or its final address. A microprogram is termi-
nated by anendopmicroinstruction.

104 CHAPTER 5. THE X ILINX V IRTEX II PRO PROTOTYPE

Arbiter Signals

4BFFFFF948000005 4800000D60000000 4BFFFFF948000005 1800002C60000000 1800002C60000000 1800002C60000000 1800002C60000000 1800002C60000000 1800002C60000000 1800002C60000000 8001000C7C0803A6 382100084E800020 3CA0000060A582F8

4BFFFFF948000005 4800000D60000000 4BFFFFF948000005 4E80002060000000 4E80002060000000 4E80002060000000 4E80002060000000 4E80002160000000 4E80002160000000 4E80002060000000 8001000C7C0803A6 382100084E800020 3CA0000060A582F8

00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00

3 0 3

000000 00000B 000000

PPC Registers

FFC000B0 FFC000B4 FFC000C0 FFC000B8 FFC000C4 FFC000C8 FFC000CC FFC000D0 FFC000D4

FFC000B0 FFC000B8 FFC000C4 FFC000BC FFC000C8 FFC000CC

9800 ns 9900 ns 10 us 10100 ns

sl_mem_clk

Arbiter Signals

instr_in 4BFFFFF948000005 4800000D60000000 4BFFFFF948000005 1800002C60000000 1800002C60000000 1800002C60000000 1800002C60000000 1800002C60000000 1800002C60000000 1800002C60000000 8001000C7C0803A6 382100084E800020 3CA0000060A582F8

instr_out 4BFFFFF948000005 4800000D60000000 4BFFFFF948000005 4E80002060000000 4E80002060000000 4E80002060000000 4E80002060000000 4E80002160000000 4E80002160000000 4E80002060000000 8001000C7C0803A6 382100084E800020 3CA0000060A582F8

sl_start_op1

sl_start_op1_5

sl_start_op1_75

end_op

sl_end_op

sl_end_op2

sl_start_op2

sl_busy

start_op

sl_xx 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00

sl_which_op

set_ex 3 0 3

mc_addr 000000 00000B 000000

rm_occupy

PPC Registers

exeaddr FFC000B0 FFC000B4 FFC000C0 FFC000B8 FFC000C4 FFC000C8 FFC000CC FFC000D0 FFC000D4

lr FFC000B0 FFC000B8 FFC000C4 FFC000BC FFC000C8 FFC000CC

Entity:testbench Architecture:behavioral Date: Sun Feb 23 16:43:21 W. Europe Daylight Time 2003 Row: 1 Page: 1

Figure 5.3: Reconfigurable instruction execution timing.

Hardware requirements: To implement the arbitration of the PowerPC in-
struction bus, the following design considerations have to be taken into ac-
count:

• The only input information, related to instruction decoding, arbitration
and timing is obtained through the instruction bus.

• PowerPC instruction bus is 64-bit wide and instructions are fetched in
couples (doublewords).

• Speculative (dummy) prefetches are performed, which should not dis-
turb the right timing of a reconfigurable instruction execution.

• Both the arbiter and theρµ-code unit strobe input signals on rising clock
edges and generate output controls on falling clock edges.

Theρµ-code arbiter for PowerPC has been described in synthesizable VHDL
and mapped on the Virtex II Pro FPGA. Figure 5.3 displays the timing of this
implementation. The unit uses the same clock signal (’sl memclk’) as the
utilized instruction memory. The only inputs of the arbiter unit are theinput
instructionbus (’instr in’) andend of (reconfigurable) operation(’end op’).

5.1. THE ARBITER 105

The decode unitof the arbiter (see Figure 5.1) decodes the OPCodes of both
fetched instructions simultaneously. Non-reconfigurable instructions are redi-
rected (via the MUX) to output’instr out’, directly driving the instruction bus
of PowerPC. Alternatively, when either of the decoded two instructions is re-
configurable, the instruction code ofblr is multiplexed via’instr out’ from
the ’emulation instructions’block. Obviously, the critical path penalty to the
original instruction flow is just one 2-1 multiplexer and the decoding logic
for a 6-bit value. In any case, this is the equivalent delay of a single logical
2-2 AND-OR gate or two 4-input FPGA Look-Up-Tables (LUT), thus negli-
gible. The decode block generates two internal signals to the control block -
sl start op1 (explained later) andsl xx. The latter signal indicates the align-
ment of the fetched instructions with respect to the reconfigurable ones. A
one represents a reconfigurable instruction, a zero - any other instruction. For
example, assuming big endian alignment:”sl xx=10” means a reconfigurable
instruction at the least-significant and a non-reconfigurable instruction at the
most-significant address.

The control blockgenerates signalstart (reconfigurable) operation(’start op’)
for one clock cycle delayed with two cycles after the moment a reconfigurable
operation is prefetched and decoded, thus filtering short (dummy) prefetches.
In Figure 5.3 the rising edge of the internal signalsl start op1indicates the mo-
ment a reconfigurable operation is decoded. One can see that signal (’start op’)
is generated only when the reconfigurable instruction is really fetched, i.e.
whensl start op1 takes longer than one clock cycle. Dummy prefetch filtra-
tion has been implemented by two flip-flops, connected in series and clocked
by complementary clock edges. The outputs of these flip-flops are denoted by
signalssl start op1 5 andsl start op1 75. The output control to theρµ-unit,
sl start op is generated between two falling clock edges.

Synchronously with the decoding of a reconfigurable instruction, the two in-
struction modifier fields (output signalsetex) andmicrocode address(24-bit
outputmc addr) are registered on rising clock edge (recall Figure 5.2). The
internal flip-flopsl which op is used only when both of the fetched instruc-
tions are reconfigurable (sl xx=”11”) to ensure the proper timely distribution
of setex, mc addr and controls. In addition, two internal signals (flip-flops)
are set when reconfigurable instruction is decoded. These two signals denote
that theρµ-unit is performing an operation (sl start op2) and that the arbiter
is busy (sl busy) with such an operation, therefore another reconfigurable exe-
cution can not be executed. To multiplex the data memory ports to theρµ-unit
during reconfigurable operations, signalsl start op2is driven out of the arbiter,
via external signalrm occupyto the data memory controller.

106 CHAPTER 5. THE X ILINX V IRTEX II PRO PROTOTYPE

When a reconfigurable instruction is over,’end op’ is generated by theρµ-
unit and strobed on rising clock edge. At this moment, thesl start op2 flip-
flop is reset, thus releasing the data memory (viarm occupy) for access by
other units. Now, the control logic should guarantee that theblrl instruction
is decoded exactly twice. This is done by a counter issuing activesl endop
for precisely twoblrl cycles, i.e., eight clocks. Instruction codes ofblr and
blrl differ only in one bit position. Therefore, redirectingsl endop via the
MUX to this exact position of’instr out’ while blr is issued, drivesblrl to the
PowerPC. When’end op’ is strobed by the arbiter, another counter generates
thesl endop2signal to prevent other reconfigurable operations from starting
executions before the current reconfigurable operation has finished properly.
The falling edge of signalsl endop2 synchronously resets signalbusy, thus
enabling the execution of reconfigurable operations coming next.

5.1.3 Arbiter testing and hardware complexity

The reliability of the arbiter operation is important, therefore we propose a
test program algorithm to validate its functionality for all possible instruction
sequence scenarios.

Testing: To test the operation of the arbiter, we need an assembly program,
strictly aligned into memory and testing all possible sequences of instruction
couple (doubleword) alignments. Figure 5.4(a) depicts the transition graph of
such a test sequence. A bubble in this graph represents an instruction cou-
ple alignment with respect to the reconfigurable instructions: one represents
a reconfigurable instruction, a zero - any other instruction. Arrows indicate
fetching of the next aligned instruction couple (we refer to these fetches as
transitions). The minimal number of such transitions to cover all possible situ-
ations is 16 and the numbers next to each of the arrows indicate the position of
the transition in the sequence of the test program. An extra 00 to 00 transition
(transition 0) is performed to test the dummy prefetch filtration, the arbiter
should be able to perform. Its corresponding assembly code is presented in
Figure 5.4(b) and is in the beginning of the test program. The waveforms of
the whole test program execution can be observed in Figure 5.5.

FPGA synthesis results:The VHDL code of the Arbiter has been simulated
with Modeltech’s ModelSim and synthesized with Project Navigator ISE 5.2
SP3 of Xilnx. The target FPGA chip was XC2VP20-5 (speed grade 5). Hard-
ware costs reported by the synthesis tools are presented in Table 5.1. These
results strongly suggest that at trivial hardware costs theρµ-arbiter design
can arbitrate the PowerPC instruction bus without causing severe critical path

5.1. THE ARBITER 107

00
 01

11
10

Start

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(a) Transition graph;

...
bl labelA

labelB: bl labelC
nop

//dummy prefetch here
labelA: bl labelB
labelC: bl label1

label1: cset rm addr
.......

(b) Dummy prefetch test.

Figure 5.4: Test program.

penalties and frequency decreases. Moreover, virtually all reconfigurable re-
sources of the FPGA are available for designing reconfigurable microcoded
custom computing units. Regarding the reported total number of flip-flops
in the arbiter design (69), the majority of them (52) are used for registering
mc addr andsetexoutputs. Thus only 17 flip-flops are spent for the control

Arbiter Signals

4E8000204E800020 4E8000204E800020 480000054E800020

00 00 11 00 10 00 10 11 01 11 10 00

3 0 3 1 3 2 3 0 3 1 3 0 3 1 3 0 3 1 3 2 3 0 3 1 3 2 3 0 3 1 3 2 3

000000 00001E 000000 00001F 000000 00002A 000000 00002B 000000 00002C 000000 00002D 000000 00002E 000000 00000B 000000 00000C 000000 00000D 000000 00000E 000000 00000F 000000 00001A 000000 00001B 000000 00001C 000000 00001D 000000

PPC Registers

FFC00024 FFC00038 FFC0003C FFC00040 FFC00044 FFC00054 FFC00058 FFC00064 FFC00070 FFC00078 FFC0007C FFC00084 FFC0008C FFC00090 FFC00094 FFC00098 FFC000A0

FFC00038 FFC0003C FFC00040 FFC00044 FFC00048 FFC00054 FFC00058 FFC0005C FFC00064 FFC00068 FFC00070 FFC00074 FFC00078 FFC0007C FFC00080 FFC00084 FFC00088 FFC0008C FFC00090 FFC00094 FFC00098 FFC0009C FFC000A0 FFC000A4

6 us 7 us 8 us 9 us

sl_mem_clk

Arbiter Signals

instr_in

instr_out 4E8000204E800020 4E8000204E800020 480000054E800020

sl_start_op1

end_op

sl_end_op

start_op

sl_xx 00 00 11 00 10 00 10 11 01 11 10 00

sl_which_op

set_ex 3 0 3 1 3 2 3 0 3 1 3 0 3 1 3 0 3 1 3 2 3 0 3 1 3 2 3 0 3 1 3 2 3

mc_addr 000000 00001E 000000 00001F 000000 00002A 000000 00002B 000000 00002C 000000 00002D 000000 00002E 000000 00000B 000000 00000C 000000 00000D 000000 00000E 000000 00000F 000000 00001A 000000 00001B 000000 00001C 000000 00001D 000000

rm_occupy

PPC Registers

exeaddr FFC00024 FFC00038 FFC0003C FFC00040 FFC00044 FFC00054 FFC00058 FFC00064 FFC00070 FFC00078 FFC0007C FFC00084 FFC0008C FFC00090 FFC00094 FFC00098 FFC000A0

lr FFC00038 FFC0003C FFC00040 FFC00044 FFC00048 FFC00054 FFC00058 FFC0005C FFC00064 FFC00068 FFC00070 FFC00074 FFC00078 FFC0007C FFC00080 FFC00084 FFC00088 FFC0008C FFC00090 FFC00094 FFC00098 FFC0009C FFC000A0 FFC000A4

Entity:testbench Architecture:behavioral Date: Mon Feb 24 18:16:51 W. Europe Daylight Time 2003 Row: 1 Page: 1

Figure 5.5: Test program waveforms.

108 CHAPTER 5. THE X ILINX V IRTEX II PRO PROTOTYPE

block, including the two embedded counters (2×4 flip-flops). We estimate that
the number of the control flip-flops may be further reduced and the frequency
enhanced if required.

Table 5.1: Arbiter synthesis results for xc2vp20, speed grade-5.

Number of Slices 84 out of 10304 < 1%
Number of Slice Flip Flops 69 out of 20608 < 1%
Number of 4 input LUTs 150 out of 20608 < 1%
Minimum clock period 7.004ns
Maximum Frequency 142.776MHz

5.2 Theρµ-code unit

In this section, we describe theρµ-code unit design. In Subsection 5.2.1 we
first discuss some problems regardingρµ-code loading and propose their so-
lutions by introducingρµ-code manipulations. Subsection 5.2.2 adds details
about the actual implementation of theρµ-code unit.

5.2.1 Manipulations on theρµ-code

In the original Molen architectural description [39], the end of theρµ-code
is marked by anend op microinstruction. Conceptually, this is correct, how-
ever it creates implementation drawbacks with respect to whether theρµ-code,
stored into memory, is a sequence of microinstructions (execute instruction)
or a configuration bitstream (set instruction). The following discussion en-
lightens the related problems and proposes possible solutions.

ρµ-code termination: Considering theexecute ρµ-code, a singleend op mi-
croinstruction at the end of theρµ-code segment suffices for the proper ter-
mination of the reconfigurable operation, provided theρµ-code is properly
aligned into memory. This technique, however, would not work withset ρµ-
code, because the reconfiguration bitstreams are arbitrary bit sequences. More-
over, a pre-defined and widely accepted standard for such bitstreams does not
exist, i.e., the same high-level hardware description file will result in com-
pletely different configuration bitstreams, which will vary per vendor and per
device. Therefore, it is impossible to find a unique bit pattern not presented
in the reconfiguration bitstreams, and use it as anend op microinstruction.

5.2. THE ρµ-CODE UNIT 109

0

0

0

0

0

1
 end_op

microinstruction/ bit pattern
 microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

END
 microcode address

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microprogram
LENGTH

microinstruction/ bit pattern

a)
 b)
 c)
..............................

start address

end address

Figure 5.6: Microcode termination techniques.

On the other hand, if theend op bit pattern is not unique for the entireρµ-
code segment, aρµ-code loading may be terminated earlier by a faultend op
microcode and the operation of the system will be compromised. Obviously,
additional techniques should be developed for properρµ-code termination.

Figure 5.6 depicts three possible solutions that can be utilized to solve theρµ-
code termination problem. In Figure 5.6a), a flag bit is utilized to indicate
whether the memory word is anend op (1), or any other microinstruction/bit
pattern (0). This approach has been proposed in [85] and is applicable for
both thesetand theexecuteρµ-codes. Its severe drawbacks are the redundant
memory space utilization and the severity of the microprogram (resp. recon-
figurable bitstream) alignment into the main memory. An alternative approach
is illustrated with the examples in Figure 5.6 b) and c). In both cases, an addi-
tional microcode word is aligned at the starting address of the microprogram
segment. The microcode word may contain either the length of the micropro-
gram (Figure 5.6 b) or its final address (Figure 5.6 c). This approach is more
efficient in terms of memory space because just a single extra microinstruction
word is required. The latter two examples are functionally equivalent to each
other and differ only in their underlying hardware implementations.

ρµ-code finalization: In all three cases ofρµ-code termination, explicit bi-
nary information should be added to theρµ-code. For instance, in the case of
end op attached at the end of theset ρµ-code, additional flag bits should be
inserted into the ’raw’ bit pattern (see Figure 5.6a)) and the expandedρµ-code
bit patterns should be properly aligned into the targeted memory organization.
Therefore, a process transforming a ’raw’ configuration bitstream into a prop-
erly memory alignedρµ-code is required.

Definition 5.2 The process of preparing theρµ-code for its final alignment
into the targeted main memory of a Molen processor is calledρµ-code final-
ization.

The position of the (automated)ρµ-code finalization tool in a generalized
Molen CCU design process is depicted in Figure 5.7. A CCU algorithm is

110 CHAPTER 5. THE X ILINX V IRTEX II PRO PROTOTYPE

described in a hardware description language (HDL) and targeted to a par-
ticular FPGA technology via logic synthesis, place and route tools. The bit-
stream generation tool, typically supplied by the FPGA vendor, generates the
complete configuration bitstream file. This file is ready to be loaded into the
targeted FPGA via any of the configuration paths supported (e.g., JTAG or
dedicated configuration controllers). The Molen processor paradigm, how-
ever, requires a CCU configuration bitstream, i.e., aset ρµ-code, to be stored
in the system main memory similarly to the software modules (see Chapter 2).
A CCU is configured (i.e., configuration bitstream is loaded into the FPGA)
via theρµ-code unit, which should be capable of identifying the end of the
set ρµ-code as discussed earlier. Therefore, the ’raw’ configuration bitstream
should be ’wrapped’ according to the selectedρµ-code termination technique.
This is performed by theρµ-code finalization tool. This tool utilizes additional
information for the specific Molen configuration, stored in configuration files
(conf in Figure 5.7). Such configuration files, for instance, should contain
information about the targeted system memory organization, so that theset
ρµ-code be aligned accordingly. Theset ρµ-code endianess is transparent for
the proposed process and does not require special consideration.

Figure 5.7: Molen finalization.

5.2. THE ρµ-CODE UNIT 111

The discussedρµ-code finalization process can be fully automated by the
Molenρµ-code finalization tool. The product of this tool is a binary sequence,
compliant with the Molen programming paradigm. The finalized binary se-
quence can be a file, a linkable object, or a high-level data structure incor-
porating the binary information (e.g., included directly in a C project before
compilation).

5.2.2 ρµ-code unit implementation

The proposed design of anρµ-code unit utilizes theρµ-code termination mech-
anism from Figure 5.6c), i.e., assuming the end microprogram address value
is stored at the starting microcode location. A general view of the design is
depicted in Figure 5.8.

Figure 5.8: General view of theρµ-code unit.

Operation: Theρµ-code loading unit, as its name suggests, loads micropro-
grams from the external memory. It also initiates the operation of the se-
quencer, once the desired microprogram is transferred to or has been available
in theρ-control store. Theρµ-code unit operates as follows:

112 CHAPTER 5. THE X ILINX V IRTEX II PRO PROTOTYPE

1. When a πISA instruction is decoded, the arbiter generates signal
start op, which initiates a reconfigurable operation.

2. Theρµ-code loading unit sequentially generates the addresses of the mi-
croprogram (through the ’Data Address’ bus in Figure 5.8) to the main
memory starting with addressmc addr. During the address generation,
theρ-control store is write enabled by signalsl cs write. Thus, the de-
sired microprogram is stored into theρ-control store via the write-only
portData In.

3. Once the desired microprogram is available in theρ-control store, i.e.,
the end address of the microprogram in the external memory has been
reached, signalrm start opactivates the sequencer.

4. The sequencer starts to generateρµ-code addresses towards theρCSAR
(reconfigurable Control Store Address Register). The microinstruction
to be executed by the CCU is loaded into the microinstruction register
(MIR).

5. Statussignals from the CCU are directed to the sequencer to deter-
mine the next microcode address. Once the status signals indicate that
the CCU has completed the operation, the sequencer generates signal
endop to the arbiter.

The endop signal indicates that the reconfigurable operation has completed
and the arbiter initiates the execution of the next instruction from the applica-
tion program. The next instruction can be either from the standard ISA of the
core processor, or an instruction from the implementedπISA. If the latter is
the case, the operation flow described above is repeated.

FPGA mapping: The Virtex II Pro FPGA has been used as a target recon-
figurable technology. For the particular prototype, we assumed a microcode
word length of 64 bits and a logical main memory segment of 4Mx64-bits
(22-bit address) for microprograms. Theρ-control store has been designed
to handle up-to 8KBytes in 64-bit microcode words. The primary microcode
storage units of theρ-control store have been implemented into the BRAM
memory blocks of the FPGA fabrics. Theρ-control store BRAMs are config-
ured as a monolithic dual port memory. Each of the two ports is unidirectional
- one read-only and one write only. The read-only port is used to feed the MIR,
while the write-only one loads microcodes from the external memory into the
pageable section of theρ-control store. The VHDL code of theρµ−code unit
has been synthesized with Project Navigator ISE 5.2 SP3 of Xilinx. The target

5.3. XREGS, MEMORY ORGANIZATION, AND CLOCKS 113

Table 5.2:ρµ-code unit synthesis results for xc2vp20, speed grade-5.

Number of Slices 71 out of 10 304 1%
Number of Slice Flip Flops 78 out of 20 608 < 1%
Number of 4 input LUTs 171 out of 20 608 1%
Number of BRAMs: 4 out of 112 3%
Maximum Frequency [MHz] ≈ 130

FPGA chip was xc2vp20-5 (speed grade 5). Reconfigurable hardware utiliza-
tion, as reported by the synthesis tools, is presented in Table 5.2.

5.3 XREGs, memory organization, and clocks

The exchange registers (XREGs):The XREGs provide the interface for the
communication between the GPP and the reconfigurable processor (RP). From
the programmer’s (GPP) point of view, the XREGs are considered as vari-
ables, used to communicate with the functions mapped on the CCUs. These
variables correspond to physically implemented registers, accessible both by
the GPP and the CCUs of the RP. It is not advised to exchange large pieces
of data via the XREGs, because this would decrease the performance of the
machine dramatically. Typical exchanged values should be small pieces of
data. Bysmall pieces of data we mean data comprising a single register up
to a few registers, e.g., function parameters and results, memory addresses,
CCU configuration parameters, etc. Since parameters and results are passed to
or written from the XREGs both by the GPP and the RP, both co-processors
should support the same register allocation mechanism. An example of such
mechanism is described below and has been implemented by our prototype.

XREG allocation: The XREG allocation mechanism, proposed hereafter, is
not mandatory for the implemented XREG organization of our prototype. It
is just one possible implementation, used in the experiments and by the CCUs
considered in this thesis. We note that other allocation mechanisms can be
implemented without changing the XREGs design of our prototype. Figure
5.9 illustrates the proposed register allocation for two CCUs. In the proposed
mechanism, the first register of the XREG register file (XR0) is reserved for
an offset address within the register file. Each of the CCUs uses this offset
address to allocate its own registers. The allocated registers of the parame-
ters and/or results of a CCU will be referred to asXREG blocks. Though not
mandatory, it is advisable an XREG block to contain sequentially allocated

114 CHAPTER 5. THE X ILINX V IRTEX II PRO PROTOTYPE

Offset address=
XRN

Param 1

Param 2

Result1

Result2

Offset address=
XRM

Param 1

Param 2

Result1

XR0

XRN

XRN+1

XRN+2

XRN+3

XRM

XRM+1

XRM+2

CCU1
 CCU2

Figure 5.9: An example of XREGs allocation for two CCUs.

registers. There is no specific limit on the size of an XREG block other than
the size of the entire implemented XREG file. In the example of Figure 5.9, an
XREG block of four registers with offset XRN is allocated within the XREG
file for CCU1. For CCU2, XR0 contains the value XRM, which allocates a
XREG block of three registers at address XRM. Generally, both XREG blocks
should not be overlapping, unless common registers are used by both CCUs,
e.g., for communications. Though feasible, the assumption of explicit commu-
nication between two or more CCUs via common XREGs will not be consid-
ered further in this thesis. The offset value may be loaded in XR0 every time a
CCU functionality is called by the software, but may be loaded once, as well.
For example, every time before anexecuteor a set instruction is executed,
an XREG offset can be loaded in XR0. Or, alternatively, only the first time
a c-setor p-set instruction is executed (i.e., upon initialization), a preceding
offset value loading in XR0 can be required. The choice of the offset loading
moment depends on the CCU implementation, as well. The following example
of a program piece illustrates in pseudocode the communication between the
software part of an algorithm and a CCU:

movtx XR0, OFFSET // Load the offset address in XR0
for (All Parami)

{movtx [OFFSET+i], Parami}; // Load all parameters of the CCU
synchronize; // Synchronize parameter loading
set/executeADDRESS; // Asetor anexecuteinstruction
for (All Result j)

{movfx Resultj, [OFFSET+imax+j]}; // Read the results from the CCU

5.3. XREGS, MEMORY ORGANIZATION, AND CLOCKS 115

The programmer should be aware of the XREGs structure of each particular
CCU. For automatic allocation of XREG blocks, the CCU XREGs information
can be provided by CCU specification files. It is a programmer’s responsibility
to allocate the XREG blocks correctly, so that no register allocation conflicts
between the CCUs appear.

XREGs prototype implementation: The XREGs have been implemented as
a dual-port register file. One port is connected to the GPP, the other - to the
RP, more precisely to the CCUs. Both of the XREG file ports are bidirectional
(i.e., read-write ports) and with separate and independent address busses. In
the Virtex II Pro FPGA, the GPP is a PowerPC core. We decided to utilize the
Device Control Registers (DCR) interface of PowerPC for the GPP interface
of the XREG file. The DCR ports are easily connected to the GPP-side ports
of the XREG. Moreover, the DCR transfers are supported by two dedicated
PowerPC instructions:mtdcr andmfdcr . Thus, theπISA instructionsmovtx
andmovfx have been mapped tomtdcr andmfdcr , respectively. The RP port
of the XREG file has been connected to the CCUs via an interface, described
in Section 5.4. In the particular prototype, a single BRAM block (2KBytes)
organized as512× 32-bit storage has been utilized for the XREG file.

Memory organization: For transferring large amounts of data, e.g., image
data arrays, the XREG mechanism is not efficient. A huge performance penalty
has to be paid if every piece of data is moved from the PowerPC allocated
memory, via the XREGs, to the CCU allocated memory. To avoid such perfor-
mance draw-backs, a shared memory is implemented. Thus, the core processor
and the CCUs process the same pieces of data without having to transfer them
from one location to another. The arbiter determines the access to the mem-
ory by the dedicated signal ’occupy memory’(see Figure 5.1) based on the
performed instruction. In case the instruction is from the standard ISA, the
memory control is directed to the PowerPC, if aπISA instruction is executed,
the memory control is transferred to the RP, more precisely - to the active CCU.

For the memory design of the prototype, we considered the on-chip memory
blocks of the utilized FPGA. The available BRAM blocks in xc2vp20 allow
the implementation of 128 KBytes memory for both data and instructions.
The PowerPC has a Harvard architecture with separated instruction and data
addressing spaces. Therefore, for better performance, we separated the main
memory into two equal segments - 64 KBytes for instructions and other 64
KBytes for application data. Both the instruction and the data memory are or-
ganized with 64-bit word memories. In this case, we note that the amount of

116 CHAPTER 5. THE X ILINX V IRTEX II PRO PROTOTYPE

memory is limited only by the available on-chip memory. By utilizing external
memories, it is possible to extend the memory volume up to the entire mem-
ory space addressable by PowerPC (i.e., 32-bit addresses). The later option,
however, has not been considered in the described prototype.

Regarding the proposed two-dimensionally addressable memory, discussed
with details in Chapter 4, its usage is application specific, therefore it is consid-
ered optional. Such a memory is not part of the common ”back-bone” memory
architecture. It is implemented as a part of the RP and controlled by microcode,
i.e., this memory is considered as a part of the reconfigurable microarchitec-
ture. A particular CCU is responsible to access the two-dimensional data cor-
rectly, thus making the two-dimensional memory transparent for the Molen
programmer.

Clock domains: Due to the polymorphic nature of the Molen processor and
for performance efficiency, three clock domains have been implemented in our
prototype:

• PPC clk- clock signal to the core processor. The frequency of this signal
has been set to 250 MHz, the maximum recommended for the PowerPCs
in xc2vp20-5;

• mem clk- clock signal to the main memory. This signal has been set to
be three times lower than the PPCclk, i.e., 83 MHz;

• CCU clk- clock signal to the CCU driven by an external pin. It may
be utilized by any CCU, which requires frequencies, different from the
PPCclk and memclk.

5.4 The polymorphic interface

An important advantage of the Molen paradigm is that a new application
specific functionality can be embedded without changing the architecture of
the processor, nor its organization. Ideally, no architecture- or organization-
specific requirements should be imposed to the CCU design. It is desirable
almost any third-party design of an application-specific accelerator to be im-
plemented as a CCU easily. Such an accelerator may be designed either by
hand or generated automatically. Therefore, the interface between the ’back-
bone’ Molen organization and its potential CCUs should be as unrestrictive
as possible. At architectural level, the interface between the core processor
and the CCUs is determined by theπISA, the exchange registers, and the

5.4. THE POLYMORPHIC INTERFACE 117

shared data memory space. Consequently, the underlying hardware organi-
zation should support the interface, defined by the architecture. Figure 5.10
depicts the hardware interface signals between a single CCU and the rest of
the Molen organization. In accordance with the architectural definition, each

Figure 5.10: The CCU polymorphic interface.

CCU can interface with three parts of the Molen organization: theρµ-code
unit, the XREGs, and the data memory.

Microprogrammable and self-controlled CCUs: The interface with theρµ-
code unit is based on the microprogrammable control paradigm. A microin-
struction is directed to the CCU via the bus MIR, and status signals are gen-
erated to the sequencer of theρµ-code unit. The proposed control interface
is general and supports not only microprogrammable CCUs, but also CCUs
with embedded hardwired control units. For such self-controlled CCUs the
two synchronizing signalsCCU start andCCU endare explicitly depicted in
Figure 5.10. TheCCU start signal initiates the operation of the CCU and the
CCU endindicates that the CCU has completed its task. In order a hardwired
control CCU to be embedded in the Molen processor, only the requirement to
support such a start-stop synchronization should be met. It is sufficient that a
CCU has an input starting signal, which initiates its operation and a flag output
signal indicating when an operation has completed. In essence, theCCU start

118 CHAPTER 5. THE X ILINX V IRTEX II PRO PROTOTYPE

signal is a part of the MIR bus and theCCU endsignal- a part of the status bus.
Furthermore, any wire of the MIR bus can be utilized as aCCU start signal to
an individual CCU and identically, any wire of the status bus can be utilized
as aCCU end signal. Thus, allowing start-stop operations of the CCUs we
leave the interface open not only for microprogrammable units, but also for
self-controlled accelerators.

Data memory and XREG file interfaces: To allow data communications
between the core processor and a CCU, two separate interfaces are provided.
For exchanging parameters and results, which do not exceed a few register-
wide words, the XREG interface can be utilized. We mentioned that in the
Virtex II Pro prototype a single BRAM block has been used to implement the
XREG file. Therefore, the implemented CCU interface to the XREGs assumes
a BRAM organized as 512×32-bit memory, i.e. 32-bit data busses and a 9-bit
address bus (See Figure 5.10). Large amounts of data are not exchanged via the
XREGs. Instead, a shared memory is implemented allowing the PowerPC and
the CCUs to allocate and process data in the same (shared) memory locations.
Regarding the data memory interface of the CCUs, we considered the same
interface format as it is for the PowerPC GPP, i.e., 64-bit data busses and 32-
bit addresses. In addition, a byte-enabled writing into the data memory can be
implemented in a CCU utilizing the busbrw data.

Additional synchronizing signals: The three clock signals of the prototype
design described earlier,PPC clk, memclk, andCCU clk, are available for
any CCU design, as well as aresetsignal is presented.

5.5 Overall synthesis results

As a platform FPGA, we used a Xilinx xc2vp20-5 device from the Virtex II
Pro™ family. The Molen organization has been described in VHDL and syn-
thesized by the Xilinx XST tool of ISE 5.2, SP3. In this section, we con-
sider only the reconfigurable hardware overhead caused by the Molen-specific
”backbone” infrastructure described above, i.e., the arbiter, theρµ-code unit
and the associated infrastructure. No CCU implementations are considered in
this hardware evaluation as they are application specific and vary per configu-
ration. Data memory has not been considered in the hardware cost estimation,
as well, because arbitrary memory volumes can be implemented, without in-
fluencing the overall utilization of the other hardware categories. A top level
view of the implemented prototype is depicted in Figure 5.11. The arbiter, the
ρµ-code unit (rmunit), the XREG file (xregfile) and the clocks generator are

5.6. PROGRAM CODE ANNOTATION 119

Table 5.3: Molen organization synthesis results (* RP infrastructure only, with-
out any CCU implemented).

Device xc2vp20 RP* Arbiter Total incl. Available %
Speed Grade -5 XREGs Resources
Number of Slices 71 84 156 10304 1
Number of Slice Flip Flops 78 69 147 20608 1
Number of 4 input LUTs 171 150 322 20608 1
Number of BRAMs: 4 N.A. 5 112 4
Maximum Frequency [MHz] 130 143 130 N.A. N.A.

presented. The molencore block wraps the PowerPC processor and the main
memory. We recall that a microcode word length of 64 bits and aρ-control
store of 8KBytes have been considered. The XREGs have been implemented
in a single 2KBytes BRAM organized as512× 32-bit storage.

Synthesis results: Hardware costs reported by the synthesis tools are pre-
sented in Table 5.3. The first column displays the particular FPGA resources
considered. Column two reports the actual values of these resources, con-
sumed by the reconfigurable processor, without considering any CCU imple-
mentation. This includes theρµ-code loading unit, the sequencer and theρ-
control store. Column three presents resource utilization of the arbiter. In
column four, the overall resource consumption of the reconfigurable proces-
sor infrastructure, the arbiter and the XREGs is presented. Finally, columns
five and six respectively present the available FPGA resources in the xc2vp20
chip and the utilized part of these resources by the Molen organization (in %).
Synthesis results strongly suggest that the Molen infrastructure consumes triv-
ial hardware resources, thus leaving virtually all FPGA resources available for
CCU implementations.

5.6 Program code annotation

This section can be considered as a guideline for the implementation of a back-
end PowerPC compiler supporting the Molen paradigm. In the following dis-
cussion, we explain by an example how a program code is annotated to support
the new architectural extension. For our experiments with the Virtex II Pro pro-
totype, we utilized the publicly available compiler GCC for PowerPC. Some
considerations, specific for the particular implemented design are explained.
The following example describes a code annotation for anexecuteoperation

120 CHAPTER 5. THE X ILINX V IRTEX II PRO PROTOTYPE

F
igure

5.11:
Top-levelschem

atic
ofthe

V
irtex

IIP
ro

M
olen

prototype.

5.6. PROGRAM CODE ANNOTATION 121

with two input parameters and one result. The input parameters are the ad-
dresses of memory aligned data arrays with input and output data, the result is
a scalar value.

Example:

/*Declarations*/
long long int inp block[];
long long int outp block[];
long long int result;
long unsignedXREGvalue;

/*Load a CCU XREG block offset of 0x56 into XR0*/
asm(”mtdcr 0x0, 0x56”);

/*Load the first parameter (the input array address) in XR56*/
XREGvalue = (long unsigned) inp block;

asm(”mtdcr 0x56, XREGvalue”);
/*Load the second parameter (the output array address) in XR57*/
XREGvalue = (long unsigned) outp block;

asm(”mtdcr 0x57, XREGvalue”);

/*Start theexecuteoperation*/
asm(”sync”); /* Synchronize*/
asm(”nop”);
asm(”nop”);
asm(”nop”);
asm(”bl label1”);
asm(”label1:executeρµc addr”);/*Here a BRI can be included, as well*/
asm(”nop”); /* This line must not be a branch target*/

/*End theexecuteoperation*/

/*Read the result from XR58*/
asm(”mfdcr XREGvalue, 0x58”);

In the above example, a CCU XREG block offset of 0x56 is assumed and the
value is loaded in the first register (XR0) of the XREG file. The address of the
input arrayinp block is loaded in the first position (XR56) of the CCU XREG
block as the first parameter of the execute operation. The second parameter
is loaded in the next position of the CCU XREG block (XR57). Once the pa-
rameters of the CCU function have been loaded into the corresponding XREG

122 CHAPTER 5. THE X ILINX V IRTEX II PRO PROTOTYPE

block, theexecuteoperation can be invoked. Note, that the same example can
be considered for thesetoperations as well.

Before proceeding with the actualexecuteoperation, the programmer has to
make sure that all possible preceding out-of-order operations have completed.
Therefore, the PowerPCsyncinstruction is included in the example code (also
explained in Section 5.1). For example, out-of-order operations in the consid-
ered prototype are the memory accesses. We assume that between thesync
instruction and the Molen instruction (execute) execution, all instructions, in-
cluding the Molen one, execute in-order. The threenop instructions immedi-
ately aftersyncare required due to the prefetch pipeline of the PowerPC, which
is 3 stages deep. Thus, we make sure that theexecuteoperation is fetched
and decoded by the arbiter aftersynchas completed. In essence, the three
nop instructions can be replaced by some other in-order executing PowerPC
instructions (i.e., no memory transfers), which may be considered by the com-
piler optimization process. Theexecuteinstruction itself is invoked, utilizing
the branch-to-link-register mechanism, described in details in Section 5.1. At
this place a block of reconfigurable instructions (recall BRI from Section 5.1)
can be implemented, as well. In the example, after theexecuteinstruction a
nop is included. In essence, this can be any other instruction, with only one
limitation: this instruction should not be a branch target. If the instruction,
immediately after theexecute(or after the last BRI instruction) is a branch tar-
get, theexecutewill be erroneously fetched and decoded by the arbiter, thus
erroneously executed. This can happen if the instruction after theexecuteis
fetched, being targeted by a branch. In such a case, due to the memory align-
ment, both 32-bit instructions can be fetched through the 64-bit instruction bus
simultaneously.

5.7 Conclusions

In this chapter, we proved in practice that the Molen concept can be imple-
mented by emulation of reconfigurable operations without changing the de-
sign of the core processor. Thus, we also prove the practical feasibility of
the Molen paradigm in general. More specifically, we utilized the original
PowerPC ISA to emulate the execution of the minimal functionally complete
πISA on the Virtex II Pro platform FPGA. We proposed efficient designs of
the potentially performance limiting parts of theρµ-coded processor, namely:
the arbiter, theρµ-coded unit, the exchange registers, the memory organiza-
tion, and the clock domains and distribution. The arbitration betweenπISA

5.7. CONCLUSIONS 123

and original PowerPC ISA instructions was investigated. All design aspects
of an arbiter have been described, including software considerations, archi-
tectural solutions, implementation issues and functional testability. We also
addressed several specific problems regardingρµ-code related manipulations.
More specifically, the generation, processing, memory alignment and load-
ing of ρµ-codes were investigated and alternative design considerations were
proposed with an emphasis on theset ρµ-code. Aρµ-code unit design was
described and its prototype-specific synthesis data were presented. The con-
sidered organization of the exchange registers (XREG) file was introduced in
details and a possible XREG allocation discipline was proposed. The imple-
mented memory organization and the available clock domains were also de-
scribed. Additionaly, it was emphasized on the importance of the CCU de-
signers’ interface for the practical implementation of new application-specific
functionalities. In this direction, we defined an open, non-restrictive, CCU
interface based on a general microcode control, and supporting general (ex-
change) register and memory accesses. The proposed interface can be utilized
to embed various third-party designed CCUs in the Molen concept with mini-
mal (if any) design changes of these CCUs. Synthesis results for the back-bone
Molen infrastructure, i.e., all described units excluding data memory and any
particular CCU, indicate a very low utilization of the reconfigurable resources
of the selected Virtex II Pro XC2VP20 device. Utilization figures, as a part
of all available resources on the chip, vary between 1% and 4% per particu-
lar resource category. Thus, virtually the entire FPGA area remains available
for CCU implementations. And last, but not least, by means of an example
of an annotated C-code segment, we explained the high-level software support
for the Molen (application-specifically) augmented architecture. We also gave
practical tips how to program for the proposed Molen prototype and explained
why certain programming considerations have to be observed. As far as the
GPP and the RP in the proposed prototype remain as closely coupled as in the
original Molen proposal, we expect and in the remainder of this thesis prove
its high performance benefits. Theoretical and experimental performance eval-
uations of the Virtex II Pro Molen prototype implementation with some em-
bedded CCUs are presented and analyzed in the following Chapter 6.

Chapter 6

Performance Evaluation

I
n this chapter, we evaluate the performance of the proposed Virtex II Pro
prototype experimentally. The evaluation methodology comprises three
approaches, considered with respect to the requirements of the prototype

and the application. These approaches are referred to asreal experimental
evaluation, experimentally projected evaluation, and theoretical estimation.
The chapter establishes theoretical grounds to support the proposed methodol-
ogy and to analyze the prototype performance for the considered applications,
which are MJPEG, MPEG-2, and MPEG-4. A discussion on the manual versus
automated custom computing unit (CCU) design for the Molen polymorphic
processor outlines the boundaries of the implementability of both methods.
Automatically and manually generated CCU designs are utilized throughout
the evaluation. The obtained experimental results can be considered as an in-
dication for the potentials of a general Molen processor for speeding up various
computationally demanding applications.

The chapter is organized as follows. In Section 6.1, the evaluation method-
ology, its constituent approaches and some theoretical grounds are described.
Section 6.2 discusses the manual vs. automated CCU design considerations
and presents synthesis data on the CCUs, considered for the experiments but
not discussed in Chapter 3. Experiments and experimental results are reported
in Section 6.3, which is divided into three subsections, each of them dealing
with the MJPEG, MPEG-2, and MPEG-4 applications. Finally, the chapter is
concluded with Section 6.4

125

126 CHAPTER 6. PERFORMANCEEVALUATION

6.1 Performance evaluation methodology

For the experimental performance evaluation we have considered three evalu-
ation approaches, which have been established with respect to two implemen-
tation limitations that apply. The first limitation is the availability of an estab-
lished or a reliablebenchmark program. The other limitation is the amount of
the availableprototype program memory, which is currently 64 KBytes. The
three evaluation approaches are:real experimental, projected, andtheoretical
estimation.

A real experimentalevaluation is considered for reliable benchmark applica-
tions, which fit into the prototype memory, i.e., when neither of the mentioned
limitations applies. Such an application is the MJPEG software implemen-
tation, considered in our experiments. In the real experimental scenario, the
original benchmark program is compiled and run on the prototype processor.
The duration of the data processing for the entire program is measured in num-
ber of PowerPC clock cycles. In the following step, the benchmark program is
annotated (as described in Section 5.6) to support application specific kernels
and those kernels are loaded into the FPGA as CCUs. The annotated bench-
mark program is executed again on the prototype with the considered CCUs
configured. PowerPC cycles for the entire data processing are measured again.
The ratio between the execution cycle numbers before and after the program
code annotation gives the actual speedup of the benchmark.

A projectedevaluation is required when the considered benchmark program
code exceeds the amount of program memory implemented on the prototype.
With this approach, we project the entire application speedup assuming the im-
plementability of a larger program memory. We measure locally the speedup
for each of the interesting kernels using the real experimental approach on
program segments that can fit into the prototype memory. Using these local
speedups per kernel and a generalized formulation of the Amdahl’s law [86],
the overall speedup of the entire application is projected. We considered this
approach for the popular Berkeley MPEG-2 encoder and decoder benchmarks.

A theoretical estimationis employed to evaluate the potential speedups of
unreliable or unestablished benchmarks, where only the general trends and
functions of the application are defined.Though any prediction on the overall
speedup of such applications will be highly speculative, the speedups of some
kernels can be precisely measured if the real experimental approach is applied
locally. In our experiments, we consider the highest profiles of MPEG-4. This
was indicated in Chapter 3 where we introduced some hardware accelerators

6.1. PERFORMANCE EVALUATION METHODOLOGY 127

of high profile MPEG-4 kernels. These accelerators are considered in our eval-
uation of the MPEG-4 kernel speedups. Their impact on the overall MPEG-4
speedup can be theoretically estimated by means of the Amdahl’s law. Since
there are no reliable applications of the Core and Main MPEG-4 profiles that
can be used for benchmarks, we can only speculate on how much such ap-
plications would be speeded up when they become available. Note that for
these theoretical estimations real experiments are carried out when the local
speedups of the considered MPEG-4 kernels are measured on the Molen pro-
totype.

More details on each of the utilized performance evaluation approaches are
presented along with the reported experimental results for each of the bench-
mark applications, considered further in this chapter.

Amdahl’s law and reconfigurable computing: As we already indicated, the
Amdahl’s law can be utilized for the evaluation of the projected speedup of
an application running on a Molen processor. In fact, this law can be used not
only for evaluations with different degree of speculation, but it can be also used
to evaluate the theoretical boundaries of the projected speedups, including the
real experimental evaluation approach. Following, we do not utilize the orig-
inal notations of the Amdahl’s law [86], but introduce our own, instead. Our
notations intuitively correspond to the specifics of this thesis and contribute to
its readability and better understanding.

Assume a sequential software benchmark, whereT is the execution time of
the original program andTSEi - the time to execute its kerneli in software.
Further assumeTρi is the execution time for a reconfigurable hardware imple-
mentation of the same kerneli (notations are consistent with Equations (5.1)
and (5.2)). The overall speed-up of the benchmark program with respect to the
reconfigurable hardware implementation of kerneli is:

Si =
T

T − TSEi + Tρi
=

1
(1− ai) + ai

si

(6.1)

Whereai is the fraction taken by kerneli from the total time of the sequential
software execution, andsi is the (local) speedup of kerneli in reconfigurable
execution scenario. That is,ai = TSEi

T , 0 < ai ≤ 1 andsi = TSEi
Tρi

, si >

0. Identically, assume that totally all considered kernels take a fraction ofa
from the application execution time, i.e.,a =

∑
i ai, 0 < a ≤ 1. Then, all

considered kernels will speedup the benchmark by:

S =
T

T −∑
i TSEi +

∑
i Tρi

=
1

(1− a) +
∑

i
ai
si

(6.2)

128 CHAPTER 6. PERFORMANCEEVALUATION

Theoretical analysis: Consider Equation (6.2). We are interested to estab-
lish the theoretical boundaries of the execution speedup that can be achieved.
Clearly, if we assume that a reconfigurable kernel implementation executes for
time 0, the local speedup with respect to its software execution will approach
its maximum, i.e., infinity:

smax
i = lim

Tρi→0

TSEi

Tρi
= ∞ (6.3)

Assume that all considered kernels execute for time 0 in reconfigurable sce-
nario. That is,∀i, si → ∞ (from Equation (6.3)) and considering Equation
(6.2), we devise:

Smax = lim
∀i,si→∞

S =
1

1− a
(6.4)

WhereSmax is the theoretical maximum of the achievable speed-up, given the
fraction a, which corresponds to a certain kernel partitioning of the bench-
mark application. Obviously, the biggera, the bigger the speedup. That is, the
more sequential portions of the execution time of a program we accelerate in
reconfigurable hardware, the faster the overall speedup. A careful analysis of
Equation (6.4) suggests that an order of magnitude acceleration is attainable
only if more than 90% (a=0.9) of the application are accelerated. Therefore,
speedups of sequential algorithms in orders of magnitude are impractical to
achieve, unless virtually the entire application execution time is accelerated by
dedicated hardware. One more support for this statement is the fact that two
orders of magnitude accelerations can be achieved only if 99% (a=0.99) of the
execution time is reduced to 0. Obviously, for orders of magnitude speedups,
a GPP is virtually unnecessary and the entire application should be imple-
mented (if possible) in dedicated hardware. Generally, such a solution will
increase the silicon cost of a design and will bring all disadvantages related
to the hardwired designs, mainly losing flexibility and even implementability.
On the other hand, in the general purpose computing society, even acceler-
ations of 10% are considered spectacular. In this field, if we are capable to
achieve accelerations between 50% and 1000% by implementing only a few
selected kernels in (reconfigurable) hardware, we can safely claim a consider-
able speedup.

Some convenient graphical interpretations of the Amdahl’s law are illustrated
in Appendix A along with examples with practical parameter values. The pro-
posed analysis will be used as a guideline and will be referenced when we
evaluate our experimental results.

6.2. RECONFIGURABLE UNITS CONSIDERED 129

Experimental testbench: Our experiments have been carried out
on an Alpha-Data development board ADM-XPL (for details check
http://www.alpha-data.com/) equipped with the Xilinx Virtex II Pro
chip xc2vp20-5. The FPGA chip is an engineering silicon with a speed grade
5 recommending PowerPC clock frequency of 250 MHz. In our experiments,
we run the hardware at this frequency, but in the evaluations we tried to discard
its absolute value. Wherever possible, our evaluations are made on relative ba-
sis and, instead of absolute time, PowerPC cycle numbers are considered. The
Xilinx standard development tools embedded in the ISE 5.2. (Integrated Soft-
ware Environment) SP3 have been utilized both for the synthesis and FPGA
mapping. Behavioral hardware simulations have been performed with Mod-
elSim SE 5.7c of Modeltech. Programs have been compiled with the public
domain compiler GCC included in the EDK 3.2 (Embedded Development Kit)
of Xilinx.

6.2 Reconfigurable units considered

In this section, we discuss the two conceptually different approaches to design
a reconfigurable unit (CCU) supporting a specific kernel functionality, namely
the manualand theautomatedhardware design generation. We also report
the synthesis data for those units considered in our experiments, the internal
organization details of which are beyond the scope of this dissertation.

Automatically generated vs. manual designs:During the discussion related
to Figure A.2 in the Appendix 6.1, we argue that in order to obtain 90% of the
top theoretical speedup (Smax), a kernel that consumes between 50% and 90%
of the entire application execution time, must be accelerated locally between
10 and 80 times, respectively. This conclusion gives practical boundaries of
the feasibility and the design requirements of a potential reconfigurable im-
plementation. Additionally, experimental results, reported later in this chapter,
prove that beyond certain point, growing local kernel accelerations do not con-
tribute efficiently to the overall application speedups. The implication is that
in many practical cases, severe kernel speedups of, say, several orders of mag-
nitude, are not required for their supporting hardware accelerators. Thus, not
necessarily the most efficient kernel accelerator is the most efficient reconfig-
urable implementation application-wide. This conclusion opens a design gap,
which can be filled by automatically generated hardware.

Generally speaking, automatically generated designs are far from the optimal
hardware as they are neither faster, nor more cost-effective in silicon area com-

130 CHAPTER 6. PERFORMANCEEVALUATION

pared to the manually designed units. In the reconfigurable devices, however,
the customizable hardware gates are constantly increasing in number, which
releases the requirement for cost-effective area designs. Moreover, as far as
power consumption is not concerned, expanding the hardware within the avail-
able reconfigurable resources may not be considered as implementation pro-
hibitive. On the other hand, our analysis suggests that a Molen machine organi-
zation can speed up application processing significantly, without implementing
the most time efficient CCU designs.

Yet, in certain cases, where some severe design requirements have to be met,
the manual design of CCUs is indispensable. Very often, the manual design
can make the difference between implementability and non-implementability
within a given set of requirements, e.g., limited availability of reconfigurable
resources. Adding the low maturity of recent tools for automated hardware
generation as well as the vast number of non-trivial and irregular hardware op-
erations, often makes the manual approach the only option for a CCU design.
In the experiments to follow, we employed both the automated and the manual
approaches for the designs of the considered CCUs.

Synthesis data for the designs considered:For the experiments reported in
Subsection 6.3.1, we utilized the Compaan [32, 87] and Laura [33] tools to
generate automatically a CCU, which supports four computationally demand-
ing operations of the MJPEG encoding algorithm altogether. The obtained
synthesis results are reported together with the experiment description in Sub-
section 6.3.1. Experimental results presented in Subsection 6.3.2 regard the
MPEG-2 application, where the Sum-of-Absolute-Differences (SAD) opera-
tion, the Discrete-Cosine Transform (DCT) and its inverse transform (IDCT)
are considered for CCU implementations. Since these three operations have
been extensively investigated in the literature, we are not focusing on their
organizational details. Interested readers are referred to the sources, describ-
ing the devices we implemented for our experiments. Following, synthesis
data for the considered designs are presented. Table 6.1 displays synthesis
results considering the Xilinx xc2vp50 FPGA device. For the SAD func-
tion, we implemented the organization proposed in [88]. The super-pipelined
16-byte version of this SAD organization (SAD16) is capable of processing
one 16-pixel line (1 pixel is 1 byte) of a macroblock in 17 cycles at over 300
MHz. The 128-byte version (SAD128) processes eight macroblock lines in 23
cycles, and the 256-byte version (SAD256), processes an entire 16x16-pixel
macroblock in 25 cycles. SAD256 requires more resources than available in
the xc2vp20 chip, therefore we consider it for an implementation on a larger
FPGA (e.g., xc2vp50). To support the DCT and IDCT kernels, we synthe-

6.3. EXPERIMENTAL RESULTS 131

Table 6.1: Synthesis results per CCU implementation.

Device xc2vp20 SAD16 SAD128 SAD256 DCT IDCT Available
Speed Grade -5 (xc2vp50) Resources
Slices 831 6807 13613* 4314 5436 10304
Slice Flip Flops 1448 11862 23724* 7964 9876 20608
4 input LUTs 1390 11379 22757* 6832 8624 20608
BRAMs N.A. N.A. N.A. * 2 2 112
Fmax [MHz] 310 310 310* 96 96 N.A.
* Results for xc2vp50 FPGA

Table 6.2: Synthesis parameters for the Core Generator™ IPs.

Parameter 2-D DCT 2-D IDCT
Data width [bits] 16 (signed) 16 (signed)
Coeff. width [bits] 24 24
Result width [bits] 16 (rounded) 16 (rounded)
cycles/input sample 6 8
Internal latency [cyc] 94 97

sized the 2-D DCT and 2D-IDCT v.2.0 cores available as IPs in the Xilinx
Core Generator Tool. The parameters for their synthesis are presented in Table
6.2. Considering the implemented clock domains and synthesis results (from
Table 6.1) in our experiments, we have run the DCT and IDCT functions at
memclk frequency (83MHz). The SAD designs were clocked by PPCclk,
i.e., at 250MHz.

Synthesis data on the hardware supporting the considered MPEG-4 kernels
have been reported in Chapter 3. The speedups of these kernels are evaluated
experimentally in Subsection 6.3.3.

6.3 Experimental results

In this section, we consider three benchmark applications to evaluate the per-
formance gains attained by the Molen Virtex II Pro prototype. The considered
three applications are MJPEG, MPEG-2, and MPEG-4. Each of these bench-
marks is evaluated with one of the three evaluation approaches, proposed in
Section 6.1 and results are reported in three separate subsections.

132 CHAPTER 6. PERFORMANCEEVALUATION

Figure 6.1: Mapping MJPEG onto the Virtex II Pro Molen prototype.

6.3.1 MJPEG real experimental evaluation

An MJPEG (Motion JPEG) encoder processes the frames in a video sequence
as a series of JPEG images. We consider an MJPEG object-oriented source
code written in C++. The compiled MJPEG application fits into the imple-
mented memory of our Virtex II Pro Molen prototype, therefore we utilize the
real experimental approach to evaluate the performance gains. An automated
process is employed to synthesize a CCU, supporting four computationally
demanding operations of the MJPEG encoding algorithm altogether.

Mapping MJPEG on the Molen Prototype: Figure 6.1 illustrates how the
MJPEG encoder is mapped on the Molen Virtex II Pro prototype. The four
operations, considered for automatic hardware generation areblock input, pre-
shift, 2D-DCTandblock output. These three operations are embedded in a sin-
gle hardware design generated with the Compaan [32, 87] and the Laura [33]

6.3. EXPERIMENTAL RESULTS 133

Table 6.3: Synthesis results for the automatically generated DCT* CCU.

Device xc2vp20 CCU CCU+ Available
Speed Grade -5 wrapper Resources
Slices 1804 1975 10304
Slice Flip Flops 2271 2388 20608
4 input LUTs 2014 2228 20608
BRAMs 4 4 112
Multipliers18x18 8 8 112
Fmax [MHz] 100 100 N.A.

tool-sets, which utilize Khan Process Networks (KPN) [89] for intermediate
modelling format. The output of the Laura tool-set is a synthesizable VHDL
code. Since the Laura tool-set does not consider the Molen CCU interface (see
Chapter 5), we manually designed a Molen consistent wrapping interface to
embed the generated hardware unit as a CCU. The core functionality among
the considered four is the 2D-DCT, therefore, we refer to all four operations
as to a single kernel denoted by DCT∗. The DCT∗ CCU is synthesized with
the Xilinx tools and mapped on the Virtex II Pro FPGA. Synthesis results are
reported in Table 6.3. Column 2 contains the resource utilization for the auto-
matically generated unit without the Molen specific interface implemented. In
Column 3, synthesis data for the Molen interface wrapper (see Figure 6.1) is
also considered.

The Molen program code supporting the DCT∗ CCU (see Section 5.6), as well
as the rest of the MJPEG C++ code (i.e., not including the DCT∗ kernel) are
considered for PowerPC execution, more precisely they are mapped into the
main memory. For the experiments, we considered an image size of48 × 48
and 4:2:2 YUV macroblock format, i.e., a16×16-pixel macroblock comprises
four 8 × 8 Y (luminance) blocks and four8 × 8 chrominance blocks (two U
and two V blocks). The DCT∗ kernel processes ”half” macroblocks at a time,
i.e., two luminance and two (U and V) chrominance blocks.

Speedup evaluation:In the real experimental evaluation approach, the origi-
nal benchmark program is compiled and run on the prototype processor first.
The duration of the data processing for the entire program is measured in num-
ber of PowerPC clock cycles. Separately, the benchmark program is annotated
(as described in Section 5.6) to support the considered CCUs, which are loaded
into the FPGA. The annotated benchmark program is executed on the Molen
prototype. The new CCU configuration and the PowerPC cycles for the entire
data processing are counted again. The ratio between the execution cycle num-

134 CHAPTER 6. PERFORMANCEEVALUATION

Table 6.4: Overall MJPEG speedup by the DCT∗ Molen CCU implementation.

sequence frame No Total MJPEG execution Overall SpeedupSi

[cycles] for ai = 0.61, si = 6.22
Software DCT* CCU exper. Smax % of Smax

tennis 1 84556800 40307208 2.10 2.57 81.69
2 84615272 40393200 2.09 2.56 81.67
3 84689544 40462000 2.09 2.56 81.69
4 84629288 40439904 2.09 2.56 81.59
5 84615808 40436592 2.09 2.57 81.57
6 84594184 40409512 2.09 2.57 81.58
7 84471640 40308680 2.10 2.57 81.50
8 84434216 40263576 2.10 2.57 81.49

barbara 1 85371112 41131512 2.08 2.53 81.94
artemis 1 85577112 41354208 2.07 2.52 82.01

bers before and after the program code annotation gives the actual speedup of
the benchmark. For the experiments we considered three picture sequences:
tennis, barbara, andartemis, the first one comprising eight48 × 48 frames,
the latter two comprising only a single frame. Table 6.4 contains the exper-
imental data on these three sequences. Column 3, labelled ”Software”, con-
tains the total number of cycles, required by the entire MJPEG application,
when running as a pure software. The next column, labelled ”DCT* CCU”,
indicates the total number of cycles, required by the MJPEG execution on the
Molen prototype configured with the automatically generated DCT* CCU. In
column 6 (”exper.”), the experimentally attained speedups are presented, as the
numbers from column 2 are divided by the numbers in column 4, thus straight-
forwardly calculating the overall MJPEG speedup. We are also interested how
close we are to the theoretically maximum attainable speedupsSmax, as de-
vised in Equation (6.4), therefore, we carried out additional experiments, to
obtain parametersai andsi. For parameterai, we simply measured the num-
ber of cycles required to execute the DCT* kernel in software and divided it
by the total number of MJPEG execution cycles. Thus, we calculated, that the
DCT* software kernel constitutes roughly 61% of the total execution time of
the pure software MJPEG encoding algorithm. Employing Equation (6.4) with
the calculated exact values ofai results to the theoretical speedups, reported
in column 6 of Table 6.4. Finally, in column 7, we estimate how close the
experimentally measured speedups are to the theoretical maximum.

6.3. EXPERIMENTAL RESULTS 135

Table 6.5: MPEG-2 profiling results for the considered functions.

MPEG-2 application encoder decoder
sequence # frames@Res. SAD DCT IDCT Total IDCT

carphone 96@176x144 51.1 % 12.5 % 1.3 % 64.9 % 50.4 %
claire 168@360x288 53.8 % 11.8 % 1.0 % 66.6 % 37.6 %

container 300@352x288 56.2 % 10.7 % 1.0 % 67.9 % 40.4 %
tennis 112@352x240 60.0 % 9.5 % 0.8 % 70.3 % 40.5 %

6.3.2 MPEG-2 experimentally projected evaluation

We target the Berkeley implementation of the MPEG-2 encoder and decoder
included in libmpeg2. Following, we describe the experiments that have been
carried out and report the obtained results. To calculate the projected speedup
of the entire MPEG-2 application, we employed the experimentally projected
evaluation approach, because the compiled application code is too large to fit
into the implemented program memory of the Molen prototype. We profile the
application after running it on a larger system with a PowerPC processor. The
profiling data are used to identify and design performance critical kernels as
CCU implementations. We run the extracted kernels on the prototype Molen
processor and directly measure the performance gains. Using these measure-
ments, the profiling data, and the Amdahl’s law interpretation from Section
6.1, we estimate the projected overall speedup, rather than directly run the
entire MPEG-2 application on the Molen prototype.

Software profiling results. The first phase of the experimentation is to iden-
tify the kernels, which consume most of the application execution time. These
kernels will be considered as candidates for reconfigurable hardware imple-
mentations. Due to the memory limitations of the Molen prototype imple-
mentation, the compiled MPEG-2 code did not fit in the available program
memory. Therefore, we profiled the application on a separate system with a
PowerPC 970 processor running at 1600 MHz. The input data comprised a
set of four popular video sequences, namelycarphone, claire, containerand
tennis. Profiling results for each considered function and its descendants (ob-
tained with the GNU profilergprof) are presented in Table 6.5 per sequence.
For the MPEG-2 encoder, the total execution time spent in SAD, DCT and
IDCT operations (Table 6.5, column 6) emphasizes that these functions re-
quire around 2/3 of the total application time. Note, that although the IDCT
function in MPEG-2 encoder takes only around 1% of the total encoding time

136 CHAPTER 6. PERFORMANCEEVALUATION

(Table 6.5, column 5), in the MPEG-2 decoder it requires on average around
42% of the total decoding. Also note, that the profiling results are data depen-
dent and slightly vary per data sequence. Consequently, all three considered
functions are good candidates for hardware implementations although their in-
dividual part of the total execution time vary per sequence and per (encoder or
decoder) application.

Local kernel speedups.We have embedded the considered CCU implemen-
tations of SAD, DCT and IDCT within the Virtex II Pro Molen prototype and
carried out experiments in two stages:

Stage 1.Extract the kernels of interest from the original MPEG-2 application
source code used in the profiling phase without any further code modifications.
Compile these software kernels for the original PowerPC ISA and run them on
one of the embedded PowerPC405 processors. Obtain the number of PowerPC
cycles consumed per kernel execution.

Stage 2.Substitute the kernel software code with a new piece of code to sup-
portπISA. Compile the new code. Load the CCU configuration supporting the
corresponding kernel into the reconfigurable processor. Run the newly com-
piled CCU-enabled kernel on the Virtex II Pro Molen prototype and obtain the
number of PowerPC cycles consumed during its execution.

For our experiments, we considered the same data sequences as used in the pro-
filing phase. In both stages, the PowerPC timers are initialized before a kernel
is executed and are read immediately after the kernel execution has completed.
Thus, the exact number of PowerPC cycles, required for the entire kernel exe-
cution is obtained. Figure 6.2 depicts in logarithmic scale the measured cycles
obtained in the two experimentation stages for each of the three kernels, con-
sidered in the experiments. It has been noted that the SAD, the DCT and the
IDCT software implementations are slightly data dependent. Therefore, there
are four chart groups illustrated in Figure 6.2, which depict the cycle numbers
consumed in the software execution of each testbench sequence. On the con-
trary, the CCU implementations of all three kernels are data independent. This
implies that the same processing cycles are required for the same amount of
data, regardless the contents of the benchmark data sequence. Therefore, only
one chart group (the last one in Figure 6.2) presents the cycle numbers, con-
sumed by the Molen prototype. In Figure 6.2, only results for fixedρµ-code
CCU implementations are depicted. Additionally, we have considered both
fixed and pageableρµ-code implementations for SAD16 and SAD128 and the
obtained execution cycle numbers are reported in Table 6.6. The cycle num-
bers of the right-most chart group and in Table 6.6 include all kernel related

6.3. EXPERIMENTAL RESULTS 137

Figure 6.2: Kernels execution cycles for PowerPC ISA and fixedρµ-code.

Table 6.6: Cycle numbers for different SAD implementations.

SAD16 SAD128 SAD256
fixedρµ-code 898 311 264
peageableρµ-code 914 331 284

XREG transfers, memory transfers and data processing. The pagableρµ-code
total cycle numbers in Table 6.6 include the transfers from the main memory
to theρ-control store, as well. After obtaining the execution cycle numbers for
each kernel both on PowerPC and on the Molen prototype, the kernel speedup
is calculated for all data sequences with respect to each CCU implementation.
Table 6.7 presents the calculated kernel speedups.

Projected application speedup:Consider Equation 6.1. Further consider pa-
rametersai to be the profiling results reported in Table 6.5 and parameters
si- the local kernel speedups in Table 6.7. Thus, employing Equation 6.1, the
overall speedup figures for the entire MPEG-2 encoder and MPEG-2 decoder

Table 6.7: Local speedup for the MPEG-2 kernels considered (si = TSEi
Tρi

).

SAD16 SAD128 SAD256 DCT IDCT
fixed pag. fixed pag. fixed pag. fixed fixed

carphone 6.5 6.4 18.9 17.7 22.2 20.6 302.3 24.4
claire 8.3 8.1 23.9 22.5 28.2 26.2 302.2 24.4
container 12.2 12.0 35.2 33.1 41.5 38.6 302.1 24.4
tennis 12.1 11.9 35.0 32.9 41.2 38.3 302.1 32.3

138 CHAPTER 6. PERFORMANCEEVALUATION

Table 6.8: Projected overall MPEG-2 speedup per kernel (Si = 1
1−(ai−ai

si
)
).

encode decode
SAD16 SAD128 SAD256 DCT IDCT IDCT

fixed pag. fixed pag. fixed pag. fixed fixed fixed
carphone 1.76 1.76 1.94 1.93 1.95 1.95 1.14 1.01 1.94
claire 1.90 1.89 2.06 2.06 2.08 2.07 1.13 1.01 1.56
container 2.07 2.06 2.20 2.20 2.21 2.21 1.12 1.01 1.63
tennis 2.22 2.22 2.40 2.39 2.41 2.41 1.10 1.01 1.65

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 5 10 15 20 25 30 35 40 45 50 55 60

S
i (

O
ve

ra
ll

sp
ed

du
p)

si (SAD speedup)

a=0.511 (carphone)

a=0.538 (claire)

a=0.562 (container)

a=0.600 (tennis)

90% of Smax

SAD16

SAD128

SAD256

Figure 6.3: Overall MPEG-2 encoder speedup with three SAD configurations.

are projected per kernel contribution and results are reported in Table 6.8. The
data related to the three considered SAD implementations and reported in Ta-
bles 6.5, 6.7, and 6.8 are summarized and illustrated in Figure 6.3. The figure
depicts the overall MPEG-2 encoder speedup depending on the local speedup
of the SAD operation for the four considered data sequences. The speedup,
attained by each of the proposed SAD configurations is marked with differ-
ent symbols. Figure 6.3 suggests that the SAD16 configuration alone (empty
squares) can speedup the entire MPEG-2 encoder by less or around 90% of
the maximum theoretically attainable speedup. Obviously, SAD128 (solid

6.3. EXPERIMENTAL RESULTS 139

Table 6.9: Overall speedup estimations for the entire MPEG-2.

MPEG2 encoder* MPEG2 decoder
theory impl. impl./th. theory impl. impl./th.

carphone 2.85 2.64 93% 2.02 1.94 96%
claire 2.99 2.80 94% 1.60 1.56 98%
container 3.12 2.96 95% 1.68 1.63 97%
tennis 3.37 3.18 94% 1.68 1.65 98%
* fixed ρµ-code SAD128 + DCT + IDCT

squares) and SAD256 (circles) CCU implementations outperform SAD16 al-
lowing more than 90% of the theoretical limit to be attained in speedup, which
is due to their parallel processing organization. Though SAD256 clearly out-
performs SAD128 in processing the SAD kernel alone, the overall impact of
this processing superiority over the entire MPEG-2 decoder is negligible. Due
to the fact that both SAD128 and SAD256 configurations are in the saturation
zone of the overall performance curves in Figure 6.3, both of them perform
with almost identical overall efficiency. Therefore, we can conclude that from
the three proposed SAD configurations, SAD128 is the optimal one, because
it severely outperforms SAD16. On the other hand, the hardware complexity
of SAD128 is dramatically (twice) lower compared to SAD256 at the cost of a
slight performance decrease. Similar analysis can be carried out for the DCT
and IDCT implementations, as well as for an arbitrary design, considered for
a CCU implementation.

That is,the overall performance speedup of the Molen processor depends non-
linearly on the individual performance of the implemented reconfigurable ker-
nels. Experiments suggest that a saturation point is reached, beyond which
further local kernel accelerations are inefficient application-wide.

So far, we have analyzed the individual impact of a reconfigurable kernel on
the overall performance of an application. Let us focus on the combined in-
fluence of several reconfigurable kernels on the overall performance. Consider
Equation (6.2) and the experimental results in Tables 6.5 and 6.7. We calcu-
lated the projected overall speedup figures for the entire MPEG-2 encoder and
MPEG-2 decoder applications and report them in Table 6.9. Columns labelled
”theory” present the theoretically attainable maximum speedup (Smax) calcu-
lated with respect to Equation (6.4) and illustrated in Figure A.1. Columns
labelled with ”impl.” contain data for the projected speedups with respect to
the considered Molen implementation and Equation (6.2). For the MPEG-
2 encoder, the simultaneous configuration of the SAD128, DCT, and IDCT

140 CHAPTER 6. PERFORMANCEEVALUATION

 3.18

 2.96

 2.8

 2.64

0.7030.6790.6660.649

S
 (

M
P

E
G

-2
 e

nc
od

er
)

a (MPEG-2 encoder)

carphone

claire

container

tennis

Figure 6.4: Experimental versus theoretical speedups.

operations employing fixed microcode implementations has been considered.
For the MPEG-2 decoder, only the IDCT reconfigurable implementation has
been employed. Columns with label ”imp./th.” in Table 6.9 indicate (in %)
how close the real speedup is to the theoretically attainable one. Reported re-
sults strongly suggest that the actual speedups of the MPEG-2 encoder and
decoder obtained during our practical experimentation very closely approach
the theoretically estimated maximum possible speedups, which is graphically
illustrated in Figure 6.4.

Speedup amplification effect:Figure 6.5 illustrates how the nonlinearity of
the speedup curve influences the overall MPEG-2 encoder speedup. On the
left-hand side of the figure, experimental results for the individual CCU im-
plementations of IDCT, DCT and SAD are depicted. Note that when DCT
is implemented alone, just 12,5% from the application are accelerated yield-
ing a total of 14% overall acceleration. When SAD is implemented alone, the
speedup is 1.94×, i.e., an acceleration of 94%. If both SAD and DCT are im-
plemented altogether, the speedup is 2.55, which is 31.4% acceleration with
respect to the SAD alone implementation. Thus, the contribution of the DCT
CCU implementation to the overall speedup is amplified more than twice in
the SAD+DCT configuration (i.e., 14% vs. 31.4% DCT-affected overall accel-
eration). The more to the right on the overall speedup curve a unit operates,
the stronger thespeedup amplification effect. This is proved once again by the

6.3. EXPERIMENTAL RESULTS 141

 2.64
 2.55

 1.94

 1.14

 1.01

0.636 0.649 0.511 0.125 0.013

S
 (

M
P

E
G

-2
 e

nc
od

er
)

a (carphone)

One order of magnitude speedup

IDCT
DCT

SAD

SAD+DCT

SAD+DCT+IDCT

Smax

Figure 6.5: Influence of nonlinearity on the overall MPEG-2 encoder speedup.

SAD + DCT + IDCT configuration in Figure 6.5 where a speedup of 2.64 is
attained versus 2.55 for the SAD+DCT configuration. It is a 3.5% acceleration
caused by the IDCT which, due to its small part of the total execution time,
contributes with only around 1% to the overall acceleration if implemented
alone (i.e., when operating in the left-most part of the overall speedup curve).

Summary: The MPEG-2 application was accelerated very closely to its the-
oretical limits by implementing SAD, DCT and IDCT as reconfigurable co-
processors in the Molen Virtex II Pro prototype. The MPEG-2 encoder overall
speedup was in the range between 2.64 and 3.18 while the speedup of the
MPEG-2 decoder varies between 1.65 and 1.94.

6.3.3 MPEG-4 theoretically estimated speedup

Experimental results for the MJPEG and MPEG-2 applications, reported in the
previous two subsections, indicate that the Virtex II Pro Molen processor can
approach application speedups very close to the theoretically attainable max-
imum speedups. The two example applications considered so far, however,
are already established benchmarks in the media domain. Therefore, we have
been able to evaluate their performance in entirety on the prototype Molen plat-
form. As already mentioned, in this dissertation we are also addressing future
media applications and more specifically, the applications related to the high-

142 CHAPTER 6. PERFORMANCEEVALUATION

est MPEG-4 visual profiles and levels, which are not available in a mature and
efficient software code to date. Therefore, we consider only separate kernels of
the Core and Main MPEG-4 profiles as we implement them in the Molen con-
text and evaluate local speedups against their pure software implementation.
For the impact of these local kernel speedups on the overall MPEG-4 exe-
cution, we can only speculate until a mature, performance efficient MPEG-4
testbench becomes available. These speculations can be founded on the estab-
lished Amdahl’s low based methodology, which proved to be applicable in the
previous two examples.

Experimental framework: We considered the publicly available source code
of the MPEG-4 MoMuSys project. The application is written in strict ANSI
C language and presents an implementation of the MPEG-4 video verification
model [1]. The code is far from efficient performance-wise, it is full with
redundant pieces of code, which execute identical functionalities. Therefore,
this application can not be considered as an established benchmark and it is
only a functional verification of the standard. Many separate subroutines of
this application, however, are programmed efficiently and can be considered
for evaluation. Such are the routines implementing the repetitive padding al-
gorithm and the ACQ function, considered in Chapter 3. We extracted these
kernels, compiled them for PowerPC and executed them on the Molen proto-
type. We also employed the related hardware accelerators as CCUs, annotated
the kernel software code according to the Molen rules, and run the annotated
code on the prototype configured with the related CCUs. Eventually, we mea-
sured the performance gains, just like we did for MPEG-2.

MPEG-4 repetitive padding: We resynthesized the padding unit, described
in Chapter 3, for the Virtex II Pro technology and embedded it as a CCU in
the Molen prototype. For the considered configurations of 4, 8 and 16 process-
ing elements, synthesis tools reported maximal operating frequencies of 137
MHz, 107 MHz, and 92 MHz, respectively. These results suggested that all
three configurations can be clocked by thememclk signal of the implemented
prototype, i.e., we clocked them at 83 MHz (see Chapter 5). The padding
CCU reads the texture and shape data for each boundary block, processes this
block, and returns its padded texture data back into the main Molen memory.
We noticed that the compiler code optimization effort influences the measured
numbers of cycles, therefore we carried out experiments both without com-
piler optimization (option O0) and maximum optimization (O3). Experimen-
tal results are presented in table 6.10. We considered several BAB patterns to
evaluate the performance gains, because the software implementation of the
padding algorithm is data dependent unlike the CCU implemented padding

6.3. EXPERIMENTAL RESULTS 143

Table 6.10: PowerPC cycles for the repetitive padding algorithm per block.

Padding Software -O0 Software -O3 CCU -O0 CCU -O3
8 x 8 16x16 8 x 8 16x16 8 x 8 16x16 8 x 8 16x16

PATT0 42581 132117 11637 36277
PATT1 70329 259449 17865 65097
PATT2 68233 232065 16889 54873 599 1143 368 912
PATT3 46088 232161 17445 52929
PATT4 70820 256068 17093 60661

Average 59610 222372 16186 53967 599 1143 368 912

units. The BAB patterns are notated by PATTN and an average cycle number
for the considered BAB patterns is presented. Cycle numbers are reported for
pure software PowerPC implementation and Molen Padding CCUs consider-
ing no compiler optimization (-O0), maxim optimization (-O3), and8× 8 and
16×16 processed block dimensions. We note that in the Molen execution sce-
nario the measured cycle numbers include all data transfers between the CCU
and the main memory, all XREGs transfers, the related address arithmetic, and
the actual processing time. The address arithmetic is introduced to calculate
the starting addresses of the texture and shape data in the main memory and is
implemented in C code, therefore its execution in time depends on the com-
piler optimization capabilities. A deeper analysis of the CCU scenario cycle
numbers suggests that the memory transfer cycles and data processing cycles
are constant. That is:

TCCU = Tmem + Tpadd + Tcd (6.5)

WhereTCCU denotes the total execution time of the padding kernel in the
Molen CCU scenario in cycle numbers,Tmem - cycles for memory transfers,
Tpadd - cycles for the actual padding processing, andTcd - a compiler depen-
dent cycle number. Table 6.11 presents the cycle numbers forTmem, Tpadd, and
Tcd. Based on the experimental results in Table 6.10, local kernel speedups per
block are calculated and reported in Table 6.12.

The MPEG-4 ACQ function: We implemented the ACQ function design in-
troduced in Chapter 3 as a CCU in the Virtex II Pro Molen prototype. The
proposed structure was augmented with registers for the input BAB data and
for the output result of the function. For the experiments, we considered only
a 16PE structure, processing an entire16× 16 macroblock in two cycles. The
ACQ CCU first loads all necessary data from the main memory and then pro-
cesses them. The result of the ACQ computations is available in the corre-

144 CHAPTER 6. PERFORMANCEEVALUATION

Table 6.11: PPC cycles for
Tmem, Tpadd, Tcd, andTCCU .

8 x 8 16x16

Tmem 160 640
Tpadd 72 136
Tcd-O0 367 367
Tcd-O3 136 136

TCCU -O0 599 1143
TCCU -O3 368 912

Table 6.12: Repetitive padding local
speedups by the Molen prototype.

si -O0 si -O3
8 x 8 16x16 8 x 8 16x16

PATT0 71 116 32 40
PATT1 117 227 49 71
PATT2 114 203 46 60
PATT3 77 203 47 58
PATT4 118 224 46 67

Average 100 195 44 59

Table 6.13: I/O parameters and data of the ACQ CCU.

Parameter Description Location Size
original BAB address input parameter1 XREG1 32 bits
decoded BAB address input parameter2 XREG2 32 bits
α threshold input parameter3 XREG3 9 bits
original BAB input data data memory 256 Bytes
decoded BAB input data data memory 256 Bytes
ACQ result output parameter1 XREG4 1 bit

sponding XREG two cycles after the data are loaded into the local ACQ buffer.
The input and output parameters of the ACQ CCU implementation are summa-
rized in Table 6.13. As indicated, the total number of the parameters exchange
registers is 4. Synthesis results for the implemented ACQ CCU version with 16
PE are reported in Table 6.14. We run the ACQ CCU on the Molen prototype
as we considered two compiler optimization options again. Without optimiza-
tion (-O0), the function was completed for 640 PowerPC cycles, considering
-O3, the ACQ is computed in 415 PowerPC cycles. These computational times
include all data and parameter transfers and are dominated by the BAB data

Table 6.14: ACQ CCU synthesis results for Virtex II Pro
(local data buffer not considered).

Device xc2vp20-5 used available %
Number of Slices 561 10304 5
Number of Slice Flip Flops 81 20608 <1
Number of 4 input LUTs 871 20608 4
Maximum Frequency [MHz] 90 N.A. N.A.

6.3. EXPERIMENTAL RESULTS 145

Table 6.15: PowerPC cycles for the ACQ function per 16×16 BAB.

(CCU cycles, considered forsi, are 640 with -O0, and 415 with -O3.)
α Pattern ACQ SW -O0 SW -O3 si si

th Origin. Fast Origin. Fast -O0 -O3

0 PAT00 1 202981 51751 28303 23391 81 56
PAT16 0 164977 42087 22999 19071 66 46
PAT32 0 50905 13183 7063 6087 21 15
PAT64 0 50905 13167 7063 6087 21 15
PAT128 0 50905 13151 7063 6087 21 15
ALL0 0 50933 13119 7070 6087 21 15

ALL255 0 13033 3495 1790 1791 5 4
16 PAT00 1 202981 51751 28304 23383 81 56

PAT16 1 202981 51743 28304 23383 81 56
PAT32 0 50905 13183 7064 6075 21 15
PAT64 0 50905 13167 7064 6075 21 15
PAT128 0 50905 13151 7064 6075 21 15
ALL0 0 50933 13119 7071 6075 21 15

ALL255 0 13033 3495 1791 1779 5 4
32 PAT00 1 202981 51751 28304 23383 81 56

PAT16 1 202981 51743 28304 23383 81 56
PAT32 1 202981 51687 28304 23383 81 56
PAT64 0 50905 13167 7064 6075 21 15
PAT128 0 50905 13151 7064 6075 21 15
ALL0 0 50933 13119 7071 6075 21 15

ALL255 0 13033 3495 1791 1779 5 4
64 PAT00 1 202981 51751 28304 23383 81 56

PAT16 1 202981 51743 28304 23383 81 56
PAT32 1 202981 51687 28304 23383 81 56
PAT64 1 202981 51623 28304 23383 81 56
PAT128 0 50905 13151 7064 6075 21 15
ALL0 0 50933 13119 7071 6075 21 15

ALL255 0 13033 3495 1791 1779 5 4
128 PAT00 1 202981 51751 28304 23383 81 56

PAT16 1 202981 51743 28304 23383 81 56
PAT32 1 202981 51687 28304 23383 81 56
PAT64 1 202981 51623 28304 23383 81 56
PAT128 1 202981 51559 28304 23383 81 56
ALL0 0 50933 13119 7071 6075 21 15

ALL255 0 13033 3495 1784 1779 5 4

Average 113933 29121 15869 13252 46 32

loads, as the actual processing takes only 8 PowerPC cycles. To determine
the execution time of the ACQ software kernel, required to calculate the at-
tained speedup, we extracted the relevant pieces of code from the MoMuSys
application. We already mentioned that this is not an optimal MPEG-4 imple-
mentation, which was confirmed by our experiments. Therefore, we modified
the original software code of the ACQ kernel to execute almost 4 times faster,
as suggested by the experimentally measured execution cycle numbers. Table
6.15 reports the experimental results from running the software ACQ kernel
on the Molen prototype. We considered a single original BAB pattern and pat-
terns with different distortions from the original as decoded BABs. The pattern

146 CHAPTER 6. PERFORMANCEEVALUATION

number in column 2 of Table 6.15 is equal to the value of theα threshold, for
which the ACQ function result switches from 0 to 1 (see column 3), i.e.,the
maximum shape distortion for which the decoded quality is still acceptable,
given theα threshold. For example, PATT32 has an acceptable shape quality
(distortion) forα threshold≥ 32, but not forα threshold< 32. The ALL0 and
ALL255 patterns are entirely transparent and entirely opaque BABs, respec-
tively. Experiments were carried out for all defined values of theα threshold
(see column 1, Table 6.15). We report cycle numbers both for the original ACQ
kernel code (Origin.) and our (Fast) ACQ kernel implementation without com-
piler optimization in columns 4-5, and with maximum compiler optimization
(-O3) in columns 6-7. Considering the measured cycles from the CCU exe-
cution, we calculated the achieved local kernel speedupssi and report them
in the last two columns of Table 6.15 both in no compiler optimization and in
maximum compiler optimization scenario. The reportedsi are with respect to
our faster implementation of the ACQ kernel. The bottom line of Table 6.15
contains the average values for the considered items.

Overall MPEG-4 speedup: To date, there are no established benchmarks or
efficient software implementations of the Core and Main profiles of MPEG-
4 dealing with arbitrary shaped objects. Therefore, we determine the overall
speedup of a high profile MPEG-4 application speculatively, based on some
theoretically established profiling results, reported in the literature. Due to the
diversity of the possible kernels implemented in an MPEG-4 context, such pro-
filing results can not be obtained for a general MPEG-4 application, but rather
for specific implementation scenarios (contexts). We consider profiling results,
reported in [7,46,62,63,90], to establish different scenarios, which implement
only the normative parts of the Core MPEG-4 profile. For each of the consid-
ered kernels, we assume the local speedups for their CCU implementations,
experimentally measured on the Virtex II Pro Molen prototype. With all the
experimental data and assumptions, we employ the Amdahl’s law again. To
support the evaluation of the overall MPEG-4 speedup, we define theaverage
local speedup:

Theaverage local speedupis defined as the speedup of all sections of the ap-
plication software comprising the kernels considered for reconfigurable hard-
ware execution with respect to their summarized reconfigurable implementa-
tion.

6.3. EXPERIMENTAL RESULTS 147

Table 6.16: Average local speedup in different MPEG-4 scenarios.

Scenario a Padding ACQ SAD DCT IDCT s̄av

ai si ai si ai si ai si ai si

MPEG-4 Encoder
Sc.1 [90] 0.84 0.038 100 0.104 46 0.660 28 0.006 300 0.010 26 31.7
Sc.2 [7] 0.82 0.039 100 0.104 46 0.660 28 0.005 300 0.008 26 30.7
Sc.3 [46] 0.97 0.001 100 0.064 46 0.900 28 0.004 300 0.005 26 28.9
Sc.4 [63] 0.96 0.007 100 0.056 46 0.880 28 0.008 300 0.007 26 29.0

MPEG-4 Decoder
Sc.1 [90] 0.24 0,155 100 N.A. 46 N.A. 28 N.A. 300 0.089 26 49.1
Sc.2 [7] 0.24 0,155 100 N.A. 46 N.A. 28 N.A. 300 0.088 26 49.2
Sc.3 [46] 0.27 0,042 100 N.A. 46 N.A. 28 N.A. 300 0.226 26 29.4
Sc.5.1 [62] 0.16 0,160 100 N.A. 46 N.A. 28 N.A. 300 0.001 26 98.3
Sc.5.2 [62] 0.28 0,270 100 N.A. 46 N.A. 28 N.A. 300 0.010 26 90.8
Sc.5.3 [62] 0.23 0,140 100 N.A. 46 N.A. 28 N.A. 300 0.090 26 47.3

Denote the average local speedup bys̄av and consider the notations from Equa-
tions (6.1) and (6.2). Formally, Definition 6.3.3 can be presented as follows:

s̄av =
∑

TSEi∑
Tρi

=
a · T∑

Tρi
=

a∑ Tρi

T

=
a∑ TSEi
si·T

=
a∑ ai

si

(6.6)

With the help ofs̄av, we can analyze the overall impact of all considered ker-
nels on the MPEG-4 performance by substituting them with an imaginary sin-
gle kernel. The average local speedup takes into account the individual contri-
bution of each kernel with respect to its (of the kernel) local speedup and its
part from the entire application execution. Table 6.16 presents the average lo-
cal speedups calculated from experimental results for MPEG-4 high profile ap-
plications. The different scenarios are based on the profiling estimations from
the publications referred in column one. Scenarios 5.1, 5.2, and 5.3 (extracted
from [62]) correspond to bitstreams L6, L5, and Children, respectively. The
theoretically estimated projected overall speedups of the same MPEG-4 high
profile applications in the considered scenarios are presented in Table 6.17.
Figure 6.6(a) graphically presents the influence of the average local speedup
of the reconfigurable kernels on the overall speedup of a projected MPEG-
4 encoder in the four considered scenarios. Identically, the influence on the
overall MPEG-4 decoder speedup for the relevant six scenarios is depicted in
Figure 6.6(b). Clearly, in the scenarios accelerating smaller parts of the appli-
cation, the experimental speedup easily approaches the theoretically attainable
maximum. Such are scenarios 1 and 2 for the encoder evaluation and all sce-
narios for the decoder evaluation, where overall speedup approaches 90% and
above of the theoretical maximum. In the MPEG-4 encoder scenarios 3 and
4, however, thēsav value is not sufficient to attain even 70% of the theoretical
maximum, illustrated by an explicit curve in Figure 6.6(a).

148 CHAPTER 6. PERFORMANCEEVALUATION

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

S
i (

M
P

E
G

-4
 o

ve
ra

ll
sp

ed
du

p)

average local speedup

MPEG-4 encoder

Sc.1

Sc.2

Sc.3

Sc.4

70% of Smax

(a) MPEG-4 encoder;

 1

 1.1

 1.2

 1.3

 1.4

 10 20 30 40 50 60 70 80 90 100

S
i (

M
P

E
G

-4
 o

ve
ra

ll
sp

ed
du

p)

average local speedup

MPEG-4 decoder

Sc.1&2

Sc.3

Sc.5.1

Sc.5.2

Sc.5.3

(b) MPEG-4 decoder.

Figure 6.6: Projected MPEG-4 speedups in different scenarios.

6.4. CONCLUSIONS 149

Table 6.17: Estimated overall MPEG-4 speedups in different scenarios.

Scenario a s̄av S SMAX

MPEG-4 Encoder
Sc.1 [90] 0.84 31.7 5.48 6.41
Sc.2 [7] 0.82 30.7 4.75 5.43
Sc.3 [46] 0.97 28.9 16.74 38.46
Sc.4 [63] 0.96 29.0 13.28 23.64

MPEG-4 Decoder
Sc.1 [90] 0.24 49.1 1.31 1.32
Sc.2 [7] 0.24 49.2 1.31 1.32
Sc.3 [46] 0.27 29.4 1.35 1.37
Sc.5.1 [62] 0.16 98.3 1.19 1.19
Sc.5.2 [62] 0.28 90.8 1.38 1.39
Sc.5.3 [62] 0.23 47.3 1.29 1.30

MPEG-4 evaluation summary: We implemented several MPEG-4 compu-
tationally demanding kernels on the Virtex II Pro prototype and measured di-
rectly the speedups versus their pure software implementation. For the repet-
itive padding and the ACQ kernels, specific and normative for the highest
MPEG-4 profiles, we obtained average local speedups between 32X and 195X
with respect to the considered compiler optimization and the size of the pro-
cessed data. Due to the lack of an established MPEG-4 benchmark software
and the various possible configuration contexts, we could only speculate on the
overall attainable speedup. Considering profiling data, evaluated and reported
in the related literature, we projected overall speedups between 20% and 16X
depending on the particular MPEG-4 context implemented.

6.4 Conclusions

In this chapter, we evaluated the performance benefits of the Molen polymor-
phic media processor carrying out a series of experiments on the Virtex II Pro
prototype. We considered three media applications: an MJPEG encoder, an
MPEG-2 encoder-decoder, and a high-profile MPEG-4 encoder-decoder. Due
to the limited resources, implemented in the utilized Molen prototype, and due
to the different complexity of the considered media applications, we introduced
three different approaches to analyze the performance benefits. We established
the theoretical boundaries of the attainable speedups and compared our exper-
imental data to the proposed theory. The MJPEG acceleration was evaluated

150 CHAPTER 6. PERFORMANCEEVALUATION

with a real experimental approach by running the entire application on the pro-
totype processor and directly measuring the cycles consumed by both the pure
software and the Molen scenario runs. A single CCU supporting four DCT
related operations altogether was synthesized automatically for the MJPEG
Molen execution and proved to give sufficient speedup. More precisely, around
82% of the theoretical maximum attainable speedup was experimentally mea-
sured. A different approach was considered for the evaluation of the MPEG-2
encoder and decoder. These applications appeared to be too large to fit into
the implemented memory of the prototype, therefore they have been profiled
in a bigger system. Three computationally demanding MPEG-2 kernels, con-
suming almost 70% of the entire software execution time, were implemented
as CCUs. Their local speedups were measured using the real experimental
approach on the Molen prototype. The essence of this approach was: utiliz-
ing the profiling data, the experimentally measured real kernel speedups, and
the Amdahl’s law, we projected the overall MPEG-2 speedup on the Molen
processor. The projected speedups varied between 96% and 98% of the the-
oretically maximum attainable MPEG-2 speedups. We also considered future
media applications, not available yet, more specifically- the arbitrary shaped
objects processing in the high MPEG-4 profiles. We employed theoretical
estimations based on experimentally measured real local speedups of several
MPEG-4 computationally demanding kernels. Then, based on evaluations in
the related literature, we speculated on the expected profiling data regarding
the considered kernels and theoretically projected overall speedups between
1.2X and 16X for the implementation scenarios considered. Overall, we con-
clude that:Media applications can be accelerated by the Molen reconfigurable
processor dramatically.

Chapter 7

General conclusions

W
e haveaddressed key performance drawbacks in media processing.
As a solution, we have proposed a reconfigurable media augmen-
tation of a general purpose processor, altogether referred to as the

Molen polymorphic media processorand implemented the proposal into a fully
operational processor prototype. To solve media computational problems, we
have considered reconfigurable hardware units that perform media specific op-
erations. The high data throughput requirements have been met by a proposed
scalable memory organization, designed to deliver block organized visual data
through a wide bandwidth. We have considered the Virtex II Pro™ technology
as a prototyping platform. To evaluate the performance benefits of the proto-
type, we have carried out experiments on MJPEG, MPEG-2, and MPEG-4.

This chapter summarizes the contents of the dissertation, outlines its contribu-
tions and proposes future research directions. It is organized in three sections.
Section 7.1 summarizes the main conclusions we obtained from the presented
research efforts. In Section 7.2, we highlight the main contributions of this
dissertation. Finally, in Section 7.3, we propose some open research directions
motivated by short discussions.

7.1 Summary

In Chapter 2, the basis of the Molen processor was described asthe capabil-
ity to control program execution and hardware reconfiguration from the soft-
ware identically, utilizing emulation microcode, termed asρµ-code. Common
shortcomings of recent reconfigurable proposals were considered by the Molen

151

152 CHAPTER 7. GENERAL CONCLUSIONS

polymorphic processor paradigm. We addressed opcode space explosion, ISA
compatibility, technology dependence, design modularity, limited number of
parameters, and parallel reconfigurable execution. The main advantages of the
Molen approach can be summarized as follows:

• Compact ISA extension.For a given ISA, a single architectural exten-
sion comprising 4 to 8 additional instructions provides unlimited num-
ber of reconfigurable functionalities per single programming space. This
realization is application independent and resolves the opcode space ex-
plosion problem as well as provides ISA compatibility and portability of
reconfigurable programs.

• Technology independent and modular design.The design concept is
not bound to any particular reconfigurable technology. It allows recon-
figurable modules designed by a third party to be ported easily into the
Molen organization.

• Arbitrary number of parameters and parallel processing. The
Molen processor organization and the programming paradigm based on
sequential consistency allow an arbitrary number of parameters as well
as parallel executions of no data dependent operations.

In Chapter 3, we considered three computationally demanding kernels from
the high profiles of MPEG-4. Two hardware approaches to realize the MPEG-
4 repetitive padding algorithm in real-time were discussed. The first approach
proposed a design of a simple dedicated systolic structure. The second ap-
proach described a scheme for general purpose ALU augmentation, which
could accelerate the MPEG-4 padding algorithm by orders of magnitude. We
proposed a pipelined implementation of the idea, thus preserving the original
functionality and timing scheme of the target ALU. We proved that the pro-
posed design is scalable by applying it on ALUs with different operand widths.
At trivial hardware costs, we could easily achieve real-time performance fig-
ures at the most-demanding profile levels of MPEG-4 both by the systolic ar-
ray implementation and by the augmented ALU. The results and discussions
on the proposed hardwired padding units have been reported in [91–93]. An-
other performance demanding part of MPEG-4, the so-called accepted quality
(ACQ) function, was also accelerated by a proposed systolic hardware imple-
mentation. Evaluations indicate capabilities of processing speeds far beyond
the MPEG-4 real-time requirements. The proposed ACQ implementation was
originally reported in [83]. In the same chapter, we also introduced a hardware
accelerator of the Discrete Wavelet Transform (DWT) based on the so called

7.1. SUMMARY 153

lifting scheme. Different performance enhancing design techniques were in-
troduced in the unit, like pipelining, parallel module operation and data reuse.
The performance evaluation of the unit suggested that for larger picture sizes
and longer polynomial filters its processing efficiency grows. A brief descrip-
tion of the proposed DWT unit we published in [94]. All three considered func-
tional accelerators were designed for implementations either as stand-alone
units, or as custom computing units in the reconfigurable Molen coprocessor.

Chapter 4 introduces a scalable memory organization capable of addressing
randomly aligned rectangular data patterns out of a virtual 2D data storage.
High performance is achieved by reduced number of data transfers between
memory hierarchy levels, efficient bandwidth utilization, and short hardware
critical paths. In the proposed design, data are located in an array of byte
addressable memory modules, which are loaded via an interface to a linearly
addressable memory. Theoretical analysis proved the consistency and effi-
ciency of the linear and the two-dimensional addressing schemes. A scalable
implementation of the organization was evaluated by experimental reconfig-
urable synthesis. At reasonably small hardware costs, we achieved consider-
able speedups of up to 8x for an experimental case study design versus tra-
ditional linearly addressable memories. The design is envisioned to be more
cost-effective compared to related works reported in literature. Though the
proposed organization was intended for specific visual data processing applica-
tions, it can be also adopted by other general purpose applications, e.g., vector
processing. We published a short description of the proposed memory organi-
zation in [95] and a complete, more elaborate work is presented in [96].

In Chapter 5, we proposed a working prototype of the Molen processor based
on the Xilinx Virtex II Pro technology. With this prototype, we proved in prac-
tice that the Molen concept can be implemented by emulating reconfigurable
operations by the ISA of the core GPP, without changing the design of the
latter. Thus, we also proved the practical feasibility of the Molen paradigm
in general. More specifically, we utilized the original PowerPC ISA to em-
ulate the execution of the minimal functionally completeπISA on the Virtex
II Pro platform FPGA. We proposed efficient designs of the potentially per-
formance limiting parts of theρµ-coded processor, namely: the arbiter, the
ρµ-coded unit, the exchange registers, the memory organization, and the clock
domains and distribution. We also addressed and investigated the generation,
processing, memory alignment and loading ofρµ-codes and proposed alterna-
tive design considerations. Additionaly, we defined an open, non-restrictive,
polymorphic interface for third party CCU designers based on a general mi-
crocode control, and supporting general access to the exchange registers and

154 CHAPTER 7. GENERAL CONCLUSIONS

the data memory. Synthesis results for the proposed ”backbone” Molen infras-
tructure, indicate just between 1% and 4% utilization per particular reconfig-
urable resource category of the selected Virtex II Pro xc2vp20 device. Thus,
virtually the entire FPGA area remains available for CCU implementations.
We also motivated a high-level software support for the Molen architecture
giving practical tips how to program for the proposed Molen prototype.

Due to the closely coupled GPP and RP in the proposed prototype, high perfor-
mance benefits were attained. Theoretical and experimental performance eval-
uations of the proposed prototype with some embedded CCUs were presented
and analyzed in Chapter 6. We employed a performance evaluation method-
ology, comprising three approaches. These approaches were referred as to
real experimental, experimentally projected, andtheoretical estimation. The
chapter established theoretical grounds to analyze the prototype performance
for the considered applications MJPEG, MPEG-2, and MPEG-4. Automati-
cally and manually generated CCU designs are utilized during the experiments.
Based on the experimental results and employing theoretical analysis, we con-
cluded that implementing a larger portion of the program execution time into
performance efficient CCUs improves the overall performance speedup more
dramatically than accelerating smaller portions of the execution time locally.
Experimentally obtained speedup figures very closely approach the theoreti-
cally established maximum attainable speedups.

In [40, 97–100], we reported some of the considerations on the prototype de-
sign, as well as some performance evaluations and results.

We should note that in this dissertation we did not target the Molen processor
beginning with a high level language (e.g., C) program. To this purpose, a
compiler, not considered in the presentation, is required. Such a compiler is
being developed currently and some results have been reported in [101,102].

7.2 Contributions

The main contributions of this dissertation are highlighted below.

• Our major contributions in speeding up media applications are:

– We proposed two hardware approaches to realize the MPEG-4
repetitive padding. To our best knowledge, our padding acceler-
ators are the fastest and the most cost efficient designs supporting
the MPEG-4 repetitive padding algorithm so far.

7.2. CONTRIBUTIONS 155

– We designed a scalable structure performing the MPEG-4 ACQ
function in hardware. This has been the first hardware implemen-
tation of the function ever reported in the literature.

– We introduced an original design performing the Discrete Wavelet
Transform based on the lifting scheme. The processing efficiency
of the proposed design grows with the dimensions of the processed
picture and the length of the particular polynomial filter imple-
mented.

– We proposed a scalable memory organization capable of address-
ing rectangular data patterns in a 2D data storage. High perfor-
mance is achieved by reducing the number of data transfers be-
tween the memory hierarchy levels, efficient bandwidth utilization
and short hardware critical paths. To date, regarding the considered
rectangular access patterns, the design is envisioned to be the most
cost-effective among related works. Though the proposed mem-
ory organization was intended for media specific algorithms, it can
be also adopted by other general purpose operations, e.g., vector
processing.

• We developed theρµ-coded processing concepts to the maturity of a
practical working implementation and introduced a working prototype,
mapped on the Virtex II Pro technology of Xilinx. More specifically:

– We proved that the Molen concept is feasible and can be imple-
mented without having to redesign the original GPP. We developed
a scheme for the synchronized operation of the core and the re-
configurable processor by emulating the Molen specific operations
with the instruction set of the core (PowerPC) processor.

– We proposed efficient designs of the potentially performance limit-
ing parts of theρµ-coded processor: the arbiter, theρµ-coded unit,
the exchange registers, the memory organization and the clock do-
mains.

– We proposed and implemented an open polymorphic interface for
the potential CCU designers. The interface is determined both at
software and at hardware level and is with minimal restrictions,
thus enabling a wide range of third party media accelerating de-
signs to be embedded as Molen CCUs.

– The experiments with MJPEG, MPEG-2, and MPEG-4 on the
Molen prototype suggest that speedups of 2X-3X can be expected.

156 CHAPTER 7. GENERAL CONCLUSIONS

We proved experimentally that in some scenarios of the considered
media applications, the Molen processor can approach up to 98 %
of the theoretically attainable maximum speedups.

7.3 Proposed research directions

We propose the following directions for continuation of the proposed research.

• In this dissertation, we considered the MPEG visual data compression
standards. We paid special attention to the highest profiles of the MPEG-
4 standard, but considered only natural video processing. Another com-
putationally demanding part of the highest MPEG-4 profiles is the syn-
thetic video processing which includes numerous algorithms from the
computer graphics domain. An interesting research direction could be
to investigate, e.g., the software algorithms for 2D and 3D mesh ani-
mations, facial and body animations. Specific kernels from these algo-
rithms can be implemented as CCUs.

• We have not considered the MPEG-4 preprocessing stage, where the
objects are initially determined. Computationally intensive algorithms
involving edge detection and semantical object identification can be also
targeted by the proposed Molen concept.

• The complete polymorphic ISA extension of eight instructions contains
more potentials for application speedups. A more elaborate prototype
can be developed to investigate experimentally the influence of the ad-
ditional instructions on the overall application speedup.

• Considering the boundaries of the implementation efficiency of the re-
configurable units established in this dissertation, a tool for their auto-
matic generation can be developed.

• In this dissertation, we focused on performance improvement of media
applications without considering the power dissipation by the proposed
designs. Low power constraints can be followed as a guideline for fur-
ther research and design improvements. Low power Molen processors
can extend the practical application domain of the Molen concept to-
wards power critical implementations, e.g., mobile devices.

Appendix A

Amdahl’s Law Illustrations

Figure A.1 illustrates Equation (6.4) giving the dependency of the maximum
speedup theoretically attainable with respect on the portion of the application
execution time considered for acceleration. Obviously, this dependency is not
linear. If half of the execution time of a program (a = 0.5) is reduced to a

30

20

10

5

2

10.950.90.80.50

S
m

ax

a

One order of magnitude speedup

Figure A.1: Theoretically maximum attainable speedup,Smax = 1
1−a .

minimum, the maximum attainable theoretical speedup will be2. If, however,
80% of the application are accelerated, the theoretical limit of the speedup is
already5×. An order of magnitude acceleration is attainable only if more than
90% of the application are accelerated, as explicitly indicated in Figure A.1.

157

158 APPENDIX A. A MDAHL ’ S LAW ILLUSTRATIONS

 0
 0.5

 1
 1.5

 2

 2.5
 3

 3.5
 4

 4.5

 5
 5.5

 6

 6.5
 7

 7.5

 8
 8.5

 9
 9.5
 10

 10.5
 11

 10 20 30 40 50 60 70 80 90 100

S
i (

O
ve

ra
ll

sp
ed

du
p)

si (Kernel speedup)

a=1.0
a=0.9

a=0.8

a=0.7

a=0.5

90% of Smax

Figure A.2: Overall speedup dependance on the kernel speedup (differenta).

Figure A.2 illustrates how the overall application speedup depends on the local
speedup of a kernel. The dependency is depicted for values ofa between 0.5
and 0.9 after Equation (6.1), assuming only one kernel, i.e.,a = ai (a=1.0 is
given only as a reference). Assume a practical value of the overall speedup
to be 90% of the theoretically attainable maximum in acceleration, i.e.,Si =
0.9 × Smax. Figure A.2 suggests thatto achieve 90% ofSmax, a kernel that
consumes between 50% and 90% of the entire application execution time, must
be accelerated locally between 10 and 80 times, respectively.In Figure A.2,
this is illustrated by the intersecting points between the speedup curves for
different a and the curve presenting 90% ofSmax. We make this analysis
more clear by the following example:

Example: Consider a kernel, which consumes 80% of the entire application
execution time. According to Figure A.1, the maximum speedup that can be
theoretically attained is 5 times. Figure A.2 suggests that 90% of this theoret-
ical speedup can be achieved if the kernel is speeded up locally by a factor of
about 36. Thus, the overall speedup of the application will be0.9× 5 = 4.5.

Similar analysis can be done for overall speedups less than 90% ofSmax. In
Figure A.2, the curves denoting less than 90% ofSmax occupy some space to
the left of the depicted curve for 90% ofSmax, i.e., less local kernel speedups
will be required.

Bibliography

[1] ISO/IEC JTC11/SC29/WG11, N3312, “MPEG-4 video verification
model version 16.0.”

[2] ISO/IEC JTC11/SC29/WG11 N4030, “MPEG-4 overview,” March
2001.

[3] G. Blaauw and F. Brooks,Computer Architecture: Concepts and Eval-
uation. Addison-Wesley, 1997.

[4] S.G.Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,”IEEE Trans. Patt. Anal. Mach. Intell., vol. 11,
no. 7, pp. 674–693, 1989.

[5] Y. Q. Shi and H. Sun,Image and Video Compression for Multimedia
Engineering. Boca Raton CRC Press, 2000.

[6] ISO/IEC JTC11/SC29/WG11 N2802, “ISO/IEC 14496-2. Generic Cod-
ing of Audio-visual Objects- Part2: Visual. Final Proposed Draft,” July
1999.

[7] J. Kneip, S. Bauer, J. Vollmer, B. Schmale, P. Kuhn, and M. Reissmann,
“The MPEG-4 video coding standard - a VLSI point of view,” inIEEE
Workshop on Signal Processing Systems,(SIPS98), pp. 43–52, 8-10 Oct.
1998.

[8] S. Wong, S. Cotofana, and S. Vassiliadis, “Multimedia Enhanced
General-Purpose Processors,” inInternational Conference on Multime-
dia and Expo, pp. 1–4, July 2000.

[9] S. Wong, S. Cotofana, and S. Vassiliadis, “Coarse Reconfigurable Mul-
timedia Unit Extension,” in9th Euromicro Workshop on Parallel and
Distributed Processing PDP 2001, pp. 235–242, February 2001.

159

160 BIBLIOGRAPHY

[10] A. Peleg and U. Weiser, “MMX Technology Extension to the Intel Ar-
chitecture,”IEEE Micro, vol. 16, pp. 42–50, August 1996.

[11] R. B. Lee, “Accelerating Multimedia with Enhanced Microprocessors,”
IEEE Micro, vol. 15, pp. 22–32, April 1995.

[12] R. B. Lee, “Subword Parallelism with MAX-2,”IEEE Micro, vol. 16,
pp. 51–59, August 1996.

[13] R.Razdan,PRISC:Programmable Reduced Instruction Set Computer.
PhD thesis, Harvard University, May 1994.

[14] R. D. Wittig and P. Chow, “OneChip: An FPGA Processor With Recon-
figurable Logic,” inIEEE Symposium on FPGAs for Custom Computing
Machines, pp. 126–135, April 1996.

[15] S.M.Trimberger, Reprogramable Instruction Set Accelerator.
U.S. Patent No. 5,737,631, April 1998.

[16] J.R.Hauser and J.Wawrzynek, “Garp: A MIPS processor with a re-
configurable coprocessor,” inIEEE Symposium on FPGAs for Custom
Computing Machines, pp. 12–21, April 1997.

[17] B. Kastrup, A. Bink, and J. Hoogerbrugge, “ConCISe: A Compiler-
Driven CPLD-Based Instruction Set Accelerator,” inIEEE Symposium
on FPGAs for Custom Computing Machines, pp. 92–100, April 1999.

[18] P. M. Athanas and H. F. Silverman, “Processor Reconfiguration through
Instruction-Set Metamorphosis,”IEEE Computer, vol. 26, pp. 11–18,
March 1993.

[19] M.Wazlowski, L.Agarwal, T.Lee, A.Smith, E.Lam, H.Silverman, and
S.Ghosh, “PRISM-II Compiler and Architecture,” inProc.IEEE Work-
shop on FPGAs for Custom Computing Machines, pp. 9–16, April 5-7,
1993.

[20] S. Hauck, T. Fry, M. Hosler, and J. Kao, “The Chimaera Reconfigurable
Functional Unit,” inProc. IEEE Symp. on Field-Programmable Custom
Computing Machines, pp. 87–96, 1997.

[21] S. D. Haynes, P. Y. Cheung, W. Luk, and J. Stone, “SONIC - A Plug-In
Architecture for Video Perocessing,” inProceedings of the 9th Interna-
tional Conference on Field Programmable Logic and Applications (FPL
1999), pp. 23–30, LNCS 1673, 1999.

BIBLIOGRAPHY 161

[22] T. Rissa, P. Y. K. Cheung, and W. Luk, “SoftSONIC: A Customisable
Modular Platform for Video Applications,” inProceedings of the 14th
International Conference on Field Programmable Logic and Applica-
tions (FPL 2004), pp. 54–63, LNCS 3203, September 2004.

[23] T. Wiangton, P. Y. K. Cheung, and W. Luk, “A Unified Codesign Run-
Time Environment for the UltraSONIC Reconfigurable Computer,”
in Proceedings of the 13th International Conference on Field Pro-
grammable Logic and Applications (FPL 2003), pp. 396–405, LNCS
2778, September 2003.

[24] N. P. Sedcole, P. Y. K. Cheung, G. A. Constantinides, and W. Luk,
“A Reconfigurable Platform for Real-Time Embedded Video Image
Processing,” inProceedings of the 13th International Conference on
Field Programmable Logic and Applications (FPL 2003), pp. 606–615,
LNCS 2778, September 2003.

[25] XILINX, MicroBlaze RISC 32-Bit Soft Processor.
URL: http://www.xilinx.com/, 2002.

[26] ALTERA, Nios 3.0 CPU Data Sheet. URL: http://www.altera.com/,
March, 2003.

[27] Tensilica,Xtensa Product Brief. URL: http://www.tensilica.com.

[28] M. Sima, S. Vassiliadis, S.Cotofana, J. van Eijndhoven, and K. Vissers,
“Field-Programmable Custom Computing Machines - A Taxonomy,” in
12th International Conference on Field Programmable Logic and Ap-
plications (FPL), pp. 79–88, LNCS 2438, September 2002.

[29] K. Compton and S. Hauck, “Reconfigurable computing: a survey of
systems and software,”ACM Comput. Surv., vol. 34, no. 2, pp. 171–
210, 2002.

[30] S. Seng, W. Luk, and P. Y. K. Cheung, “Run-Time Adaptive Flexible
Instruction Processors,” inProceedings of the 12th International Con-
ference on Field Programmable Logic and Applications (FPL 2002),
pp. 545–555, LNCS 2438, 2002.

[31] M. Tremblay, J. O’Conner, V. Narayanan, and L. He, “VIS Speeds New
Media Processing,”IEEE Micro, vol. 16, pp. 10–20, August 1996.

162 BIBLIOGRAPHY

[32] A. Turjan, T. Stefanov, B. Kienhuis, and E. Deprettere, “The Compaan
Tool Chain: Converting Matlab into Process Networks,” inDesigner’s
Forum of DATE 2002, pp. 258–264, 2003.

[33] C. Zissulescu, T. Stefanov, B. Kienhuis, and E. Deprettere,
“Laura:Leiden Architecture Research and Exploration Tool,” in13th In-
ternational Conference on Field Programmable Logic and Applications
(FPL 2003), pp. 911–920, LNCS 2778, September 2003.

[34] A. L. Rosa, L. Lavagno, and C. Passerone, “Hardware/Software De-
sign Space Exploration for a Reconfigurable Processor,” inProc. of the
DATE 2003, pp. 570–575, 2003.

[35] M. Gokhale and J. Stone, “Napa C: Compiling for a Hy-
brid RISC/FPGA Architecture,” inProc. IEEE Symp. on Field-
Programmable Custom Computing Machines, pp. 126–135, April 1998.

[36] F. Campi, M. Toma, A. Lodi, A. Cappelli, R. Canegallo, and R. Guer-
rieri, “A VLIW Processor with Reconfigurable Instruction Set for Em-
bedded Applications,” inIn ISSCC Digest of Technical Papers, pp. 250–
251, Feb 2003.

[37] A. Ye, N. Shenoy, and P. Banerjee, “A C Compiler for a Processor with
a Reconfigurable Functional Unit,” inACM/SIGDA Symposium on FP-
GAs, pp. 95–100, 2000.

[38] J. Becker and R. Hartenstein, “Configware and morphware going main-
stream,”J. Syst. Archit., vol. 49, no. 4-6, pp. 127–142, 2003.

[39] S. Vassiliadis, S. Wong, and S. Cotofana, “The MOLENρµ-coded pro-
cessor,” in11th International Conference on Field Programmable Logic
and Applications (FPL), pp. 275–285, August 2001.

[40] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzmanov,
and E. M. Panainte, “The Molen Polymorphic Processor,”IEEE Trans-
actions on Computers, vol. 53, pp. 1363–1375, November 2004.

[41] S. Vassiliadis, S. Wong, and S. Cotofana, “Microcode processing: Po-
sitions and directions,”IEEE Micro, vol. 23, pp. 21–30, July/August
2003.

BIBLIOGRAPHY 163

[42] S. Vassiliadis, G. Gaydadjiev, K. Bertels, and E. Moscu Panainte, “The
Molen Programming Paradigm,” inProceedings of the Third Interna-
tional Workshop on Systems, Architectures, Modeling, and Simulation,
pp. 1–7, July 2003.

[43] A. Padegs, B. Moore, R. Smith, and W. Buchholz, “The IBM Sys-
tem/370 vector architecture: Design considerations,”IEEE Transac-
tions on Computers, vol. 37, pp. 509–520, 1988.

[44] W. Buchholz, “The IBM System/370 vector architecture,”IBM Systems
Journal, vol. 25, no. 1, pp. 51–62, 1986.

[45] M. Moudgill and S. Vassiliadis, “Precise interrupts,”IEEE Micro,
vol. 16, pp. 58–67, January 1996.

[46] H.-C. Chang, L.-G. Chen, M.-Y. Hsu, and Y.-C. Chang, “Performance
analysis and architecture evaluation of MPEG-4 video codec system,”
in IEEE International Symposium on Circuits and Systems, vol. II,
pp. 449–452, 28-31 May 2000.

[47] H.-J. Stolberg, M. Berekovic, P. Pirsch, H. Runge, H. Moller, and
J. Kneip, “The M-PIRE MPEG-4 codec DSP and its macroblock en-
gine,” in IEEE International Symposium on Circuits and Systems,
vol. II, pp. 192–195, 28-31 May 2000.

[48] J. M. Rabaey, “Reconfigurable Processing: The Solution to Low-Power
Programmable DSP,” in1997 ICASSP Conference, pp. 275–278, April
1997.

[49] P. Athanas and H. Silverman, “Processor reconfiguration through
instruction-set metamorphosis,”IEEE Computer, vol. 26, pp. 11–18,
March 1993.

[50] S.C.Goldstein, H.Schmit, M.Moe, M.Budiu, S.Cadambi, R.R.Taylor,
and R.Laufer, “PipeRench:a coprocessor for streaming multimedia ac-
celeration,” inThe 26th International Symposium on Computer Archi-
tecture, pp. 28–39, May 1999.

[51] M. Putrino and S. Vassiliadis, “Resolution of branching with predic-
tion,” International Journal of Electronics, vol. 66, pp. 163–172, Febru-
ary 1989.

[52] ISO/IEC JTC11/SC29/WG11 N2485, “Implementation study group fre-
quently asked questions,” October 1998.

164 BIBLIOGRAPHY

[53] XILINX, DataSource CD-ROM. XILINX, 2000.

[54] ALTERA, Data Book. Altera Corp., 1998.

[55] C. Chang, S. Vassiliadis, and J. Delgado-Frias, “An investigation of bi-
nary CLA and ripple CMOS adder designs,”Microprocessing and Mi-
croprogramming Journal, vol. 40, pp. 1–21, January 1994.

[56] M. Putrino, S. Vassiliadis, and E. Schwarz, “Parallel binary byte adder /
subtracter,”International Journal of Electronics, vol. 65, pp. 139–153,
February 1988.

[57] ISO/IEC JTC11/SC29/WG11, “New MPEG-4 profiles under consider-
ation,” July 2001.

[58] E. A. Edirisinghe, J. Jiang, and C. Grecos, “Shape adaptive padding
for MPEG-4,” IEEE Transactions on Consumer Electronics, vol. 46,
pp. 514–520, August 2000.

[59] A. Kaup, “Object-based texture coding of moving video in MPEG-
4,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 9, pp. 5–15, February 1999.

[60] J.-H. Moon, J.-H. Kweon, and H.-K. Kim, “Boundary block-merging
(BBM) technique for efficient texture coding of arbitrarily shaped ob-
ject,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 9, pp. 35–43, February 1999.

[61] C. Heer and K. Migge, “VLSI hardware accelerator for the MPEG-4
padding algorithm,” inIS&T:SPIE Conference on media processors,
vol. 3655, pp. 113–119, 1999.

[62] M. Berekovic, H.-J. Stolberg, M. B. Kulaczewski, P. Pirsh, H. Moler,
H. Runge, J. Kneip, and B. Stabernack, “Instruction set extensions for
mpeg-4 video,”Journal of VLSI Signal Processing, vol. 23, pp. 27–49,
October 1999.

[63] H.-C. Chang, Y.-C. Wang, M.-Y. Hsu, and L.-G. Chen, “Efficient al-
gorithms and architectures for MPEG-4 object-based video coding,” in
IEEE Workshop on Signal Processing Systems, pp. 13–22, 11-13 Oct
2000.

BIBLIOGRAPHY 165

[64] S. Vassiliadis, G. Kuzmanov, and S. Wong, “MPEG-4 and the New Mul-
timedia Architectural Challenges,” inin Proceedings of the 15th Inter-
national conference on Systems for Automation of Engineering and Re-
search (SAER 2001), pp. 24–32, January 2001.

[65] W. Sweldens, “The lifting scheme: A custom-design construction of
biorthogonal wavelets,”Appl. Comput. Harmon. Anal., vol. 3, no. 2,
pp. 186–200, 1996.

[66] C.M.Brislawn, “Classification of nonexpansive symmetric extension
transforms for multirate filter banks,”Applied and Comp. Harmonic
Analysis, vol. 3, pp. 337–357, 1996.

[67] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lift-
ing steps,”J. Fourier Anal. Appl., vol. 4, no. 3, pp. 245–267, 1998.

[68] G. Ferńandez, S. Periaswamy, and W. Sweldens, “LIFTPACK: A soft-
ware package for wavelet transforms using lifting,” inWavelet Applica-
tions in Signal and Image Processing IV, pp. 396–408, Proc. SPIE 2825,
1996.

[69] R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Losless
image compression using integer to integer wavelet transforms,” inIn-
ternational Conference on Image Processing (ICIP), Vol. I, pp. 596–
599, IEEE Press, 1997.

[70] R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Wavelet
transforms that map integers to integers,”Appl. Comput. Harmon. Anal.,
vol. 5, no. 3, pp. 332–369, 1998.

[71] D.C.Burger and T.M.Austin, “The simplescalar tool set, version 2.0,”
Tech. Rep. CS-TR-1997-1342, University of Wisconsin-Madison, 1997.

[72] P. Budnik and D. J. Kuck, “The organization and use of parallel mem-
ories,” IEEE Transactions on Computers, vol. 20, pp. 1566–1569, De-
cember 1971.

[73] P. M. Kogge,The Architecture of Pipelined Computers. McGraw-Hill,
1981.

[74] D. H. Lawrie, “Access and alignment of data in an array processor,”
IEEE Transactions on Computers, vol. C-24, pp. 1145–1155, December
1975.

166 BIBLIOGRAPHY

[75] D. C. van Voorhis and T. H. Morrin, “Memory systems for image pro-
cessing,”IEEE Transactions on Computers, vol. C-27, pp. 113–125,
February 1978.

[76] K. Kim and V. K. Prasanna, “Latin squares for parallel array access,”
IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 4,
pp. 361–370, 1993.

[77] D. lei Lee, “Scrambled Storage for Parallel Memory Systems,”
in Proc.IEEE International Symposium on Computer Architecture,
pp. 232–239, May 1988.

[78] J. W. Park, “An efficient buffer memory system for subarray ac-
cess,”IEEE Transactions on Parallel and Distributed Systems, vol. 12,
pp. 316–335, March 2001.

[79] R. F. Sproull, I. Sutherland, A. Thomson, S. Gupta, and C. Minter, “The
8 by 8 display,”ACM Transactions on Graphics (TOG), vol. 2, no. 1,
pp. 32–56, 1983.

[80] J. Kneip, K. Ronner, and P. Pirsch, “A data path array with shared mem-
ory as core of a high performance DSP,” inProceedings of the Interna-
tional Conference on Application Specific Array Processors, pp. 271–
282, August 1994.

[81] J. P. Wittenburg, M. Ohmacht, J. Kneip, W. Hinrichs, and P. Pirsh,
“HiPAR-DSP: a parallel VLIW RISC processor for real time image pro-
cessing applications,” in3rd International Conference on Algorithms
and Architectures for Parallel Processing, 1997. ICAPP 97., pp. 155–
162, December 1997.

[82] H. Kloos, J. Wittenburg, W. Hinrichs, H. Lieske, L. Friebe, C. Klar,
and P. Pirsch, “HiPAR-DSP 16, a scalable highly parallel DSP core for
system on a chip: video and image processing applications,” inIEEE
International Conference on Acoustics, Speech, and Signal Processing,
vol. 3, pp. 3112–3115, IEEE, May 2002.

[83] G. Kuzmanov, S. Vassiliadis, and J. T. J. van Eijndhoven, “A 2D Adress-
ing Mode for Multimedia Applications,” inEmbedded Processor De-
sign Challenges: Systems, Architectures, Modeling, and Simulation
(SAMOS 2001), pp. 291–307, LNCS 2268, July 2001.

BIBLIOGRAPHY 167

[84] XILINX, Virtex-IIPro Platform FPGA Handbook. Xilinx, October
2002.

[85] J.S.S.M.Wong, Microcoded Reconfigurable Embedded Processors.
PhD thesis, Delft University of Technology, December 2002.

[86] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” inProceedings of the AFIPS 1967
Spring Joint Computer Conference, pp. 483–485, 1967.

[87] B. Kienhuis, E. Rypkema, and E. Deprettere, “Compaan: deriving
process networks from Matlab for embedded signal processing archi-
tectures,” inProceedings of the 8th International Workshop on Hard-
ware/Software Codesign (CODES), pp. 13–17, May 2000.

[88] S. Vassiliadis, E. Hakkennes, J. Wong, and G. Pechaneck, “The Sum
Absolute Difference Motion Estimation Accelerator,” in24th EUROMI-
CRO conference (EUROMICRO 98), vol. 2, pp. 559–566, August 25-27
1998.

[89] G. Kahn, “The Semantics of a Simple Language for Parallel Program-
ming,” in Proceedings of the IFIP Congress ’74, pp. 471–475, August
5-10 1974.

[90] P. Kuhn and W. Stechele, “Complexity analysis of the emerging MPEG-
4 standard as a basis for VLSI implementation,” inSPIE Visual Comu-
nications and Image Processing (VCIP), vol. 3309, pp. 498–509, Jan.
1998.

[91] G. Kuzmanov, S. Vassiliadis, and J. T. J. van Eijndhoven, “Hardwired
MPEG-4 Repetitive Padding,”IEEE Transactions on Multimedia, ac-
cepted for publication, to appear in August 2005.

[92] G. Kuzmanov and S. Vassiliadis, “ALU Augmentation for MPEG-4
repetitive padding,” inProceedings of the 2002 Euromicro Conference
on Massively-Parallel Computing Systems (MPCS’02), pp. 45–51, April
2002.

[93] G. Kuzmanov and S. Vassiliadis, “Reconfigurable repetitive padding
unit,” in Proceedings of the 12 th ACM Great Lakes Symposium on VLSI
(GLSVLSI’02), pp. 98–103, ACM Press, April 2002.

168 BIBLIOGRAPHY

[94] G. Kuzmanov, B. Zafarifar, P. Shrestha, and S. Vassiliadis, “Reconfig-
urable DWT unit based on lifting,” inProceedings of ProRISC 2002,
pp. 325–333, November 2002.

[95] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis, “Visual Data Rectan-
gular Memory,” inProceedings of the 10th International Euro-Par Con-
ference, (Euro-Par 2004), pp. 760–767, LNCS 3149, September 2004.

[96] G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis, “Multimedia Rect-
angularly Addressable Memory,”IEEE Transactions on Multimedia, ac-
cepted for publication, to appear in 2005/2006.

[97] G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis, “Loadingρµ-
code: Design Considerations,” inProceedings of the Third International
Workshop on Computer Systems: Architectures, Modeling, and Simula-
tion (SAMOS 2003), pp. 8–11, LNCS 3133, July 2003.

[98] G. Kuzmanov and S. Vassiliadis, “Arbitrating Instructions in anρµ-
coded CCM,” inProceedings of the 13th International Conference on
Field Programmable Logic and Applications (FPL 2003), pp. 81–90,
LNCS 2778, September 2003.

[99] G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis, “The MOLEN Pro-
cessor Prototype,” inProceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’04), pp. 296–
299, April 2004.

[100] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis, “The Virtex II Pro
MOLEN Processor,” inProceedings of the Fourth International Work-
shop on Computer Systems: Architectures, Modeling, and Simulation
(SAMOS 2004), pp. 192–202, LNCS 3133, July 2004.

[101] E. M. Panainte, K. Bertels, and S. Vassiliadis, “Compiling for the
Molen Programming Paradigm,” inProceedings of the 13th Inter-
national Conference on Field Programmable Logic and Applications
(FPL’03), pp. 900–910, September 2003.

[102] E. Moscu-Panainte, K. Bertels, and S. Vassiliadis, “The PowerPC
Backend Molen Compiler,” in14th International Conference on Field-
Programmable Logic and Applications (FPL 2004), pp. 434–443,
LNCS 3203, September 2004.

List of Publications

International Journals

1. G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis.Multimedia Rect-
angularly Addressable Memory. IEEE Transactions on Multimedia,
accepted for publication, to appear in 2005/2006.

2. G. Kuzmanov, S. Vassiliadis, and J. T. J. van Eijndhoven.Hardwired
MPEG-4 Repetitive Padding. IEEE Transactions on Multimedia, ac-
cepted for publication, to appear in August 2005.

3. S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. Moscu Panainte.The Molen Polymorphic Processor. IEEE Trans-
actions on Computers, 53(11): 1363–1375, November 2004.

Conference Proceedings

1. G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis.Visual Data Rectan-
gular Memory . In Proc. of the Tenth International Euro-Par Confer-
ence (Euro-Par 2004), LNCS 3149, pages 760–767, September 2004.

2. G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis.The Virtex II Pro
MOLEN Processor. In Proc. of the Fourth International Workshop on
Computer Systems: Architectures, Modeling, and Simulation (SAMOS
2004), LNCS 3133, pages 192–202, July 2004.

3. G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis.The MOLEN
Processor Prototype. In Proc. of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’04), pages 296–
299, April 2004.

169

170 L IST OF PUBLICATIONS

4. G. Kuzmanov and S. Vassiliadis.Arbitrating Instructions in an ρµ-
coded CCM. In Proc. of the 13th International Conference on Field
Programmable Logic and Applications (FPL 2003), LNCS 2778, pages
81–90, September 2003.

5. G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis.Loading ρµ-code:
Design Considerations. In Proc. of the Third International Work-
shop on Computer Systems: Architectures, Modeling, and Simulation
(SAMOS 2003), LNCS 3133, pages 11–19, July 2003.

6. G. Kuzmanov, B. Zafarifar, P. Shrestha, and S. Vassiliadis.Reconfig-
urable DWT unit based on lifting . In Proc. of ProRISC 2002, pages
325–333, November 2002.

7. G. Kuzmanov and S. Vassiliadis.Reconfigurable Repetitive Padding
Unit . In Proc. of the 12 th ACM Great Lakes Symposium on VLSI
(GLSVLSI’02), pages 98–103, ACM Press, April 2002.

8. G. Kuzmanov and S. Vassiliadis.ALU Augmentation for MPEG-4
Repetitive Padding. In Proc. of the 2002 Euromicro Conference on
Massively-Parallel Computing Systems (MPCS’02), pages 45–51, April
2002.

9. S. Vassiliadis, G. Kuzmanov, and S. Wong.MPEG-4 and the New
Multimedia Architectural Challenges. In Proc. of the 15th Interna-
tional Conference on Systems for Automation of Engineering and Re-
search (SAER-2001), pages 24–32, September 2001.

10. G. Kuzmanov, S. Vassiliadis, and J. T. J. van Eijndhoven.A 2D Adress-
ing Mode for Multimedia Applications . In Proc. of Embedded Pro-
cessor Design Challenges: Systems, Architectures, Modeling, and Sim-
ulation (SAMOS 2001), LNCS 2268, pages 291–307, July 2001.

Earlier publications, not directly related to this dissertation:

1. P. Manoilov, G. Kouzmanov, T. Stefanov, and A. Popov.Development
of a Low Area Custom Microprocessor Core. Automatics & Informat-
ics Journal,No 5, pages 33–39, 1999. (in Bulgarian, English abstract)

2. P. Manoilov, G. Kouzmanov, T. Stefanov, and A. Popov.Two Ap-
proaches in One for a Quick and Efficient Design of Low Area Cus-
tom Microprocessor Cores. In Proc. of the 7th International Confer-
ence ”Electronics’98”, book 2, pages 57-64, Sozopol, Bulgaria, 1998.

Samenvatting

In dit proefschrift besteden wij aandacht aan hoge prestatie media verwerk-
ing. Wij stellen een herconfigureerbare media aanvulling op een standaard
processor voor en implementeren deze in een volledig operationeel processor
prototype, waaraan gerefereerd wordt als deMolen polymorphic media pro-
cessor. De werking van het prototype is gebaseerd op het co-processor archi-
tectuur paradigma. Specifieker gesproken regelt een kern bestaande uit een
standard processor de uitvoering en herconfigurering van de herconfigureer-
bare co-processor, waarbij de laatste ingesteld is voor specifieke media algo-
ritmen. Wij stellen oplossing voor die essentiele media verwerkingsproblemen
wat betreftmedia specifieke verwerkingssnelheidenbeperkte geheugen band-
breedte. Om media reken problemen op te lossen beschouwen wij hardware
eenheden die specifieke media operaties uitvoeren. Aandacht wordt besteed
aanMPEG-4 functionaliteit die tot op heden niet in brede zin onderzocht is.
Het probleem van de beperkte geheugen bandbreedte is opgelost door de in-
troductie van een schaalbare geheugen organisatie, welke een voldoende ho-
eveelheid data levert aan de eenheden die per blok georganiseerde visuele data
verwerken. De experimenten suggereren een8x snellere data verplaatsing.
Het voorgestelde Molen prototype is geimplementeerd met de Xilinx Virtex
II Pro ™ technologie. Zonder de ingebouwde PowerPC kern opnieuw te on-
twerpen emuleren wij de herconfigureerbare operaties door gebruik te maken
van de originele PowerPC instructies. De gehele Molen ”basis” infrastruc-
tuur gebruiktminder dan 1% van de herconfigureerbare grondstoffenvan de
prototype chip xc2vp20. Als gevolg hiervan is zogoed als het gehele hercon-
figureerbare oppervlak beschikbaar voor de media verwerkingseenheden. Om
het geimplementeerde Virtex II Pro™ Molen prototype te evalueren voeren
wij experimenten met MJPEG, MPEG-2, en MPEG-4. Deze experimenten
geven duidelijk aan dat de beschouwde aanpak gebruikt kan worden om media
toepassingen te versnellen. Specifieker gesproken de behaalde resultaten sug-
gereren dat eentotale applicatie versnelling van 2x-3xverwacht mag worden,
welke tot 98% van de theoretisch maximaal haalbare versnellingkan komen.
Herconfigureerbare technologieen, anders dan de Virtex II pro™, worden ook
beschouwd en laten zien dat het voorstel onafhankelijk is van de technologie.

171

Кратък обзор

Предмет на настоящата дисертация е високо производителната
обработка на визуална информация, която съпътства редица
медийни приложения. Конкретното предложение, наречено
"полиморфичен медиен процесор Молен" (the Molen polymor-
phic media processor), се състои от процесор с общо предназначение,
разширен с реконфигурируем хардуер и е реализирано върху
функционално завършен прототип. Молен основава действието
си на копроцесорен архитектурен модел, в който процесор с общо
предназначение контролира изпълнението и конфигурацията
на реконфигурируем копроцесор, настройвайки последния към
специфични медийни алгоритми. Предложени са решения на
ключови проблеми в медийната обработка, свързани с характерната
висока изчислителна скорост и необходимостта да бъдат обменяни
голямо количество данни с паметта за единица време. Проблемите
от изчислително естество са разрешени с разработката на
реконфигурируеми хардуерни устройства, изпълняващи специфични
медийни операции. Особено внимание е отделено на някои функции
в медийния стандарт MPEG-4, чиито потенциал за хардуерна
реализация не бе напълно изследван преди настоящата дисертация.
Проблемът с интензивния обмен на данни е разрешен посредством
мащабируема организация на паметта, способна да захранва бързи
устройства, които обработват блоково организирана визуална
информация. Експериментален анализ показва до 8-кратно
увеличение на скоростта за обмен на данни. Предложеният
прототип на процесора Молен е реализиран върху технологията
Virtex II Pro™ на Xilinx. Основно предимство е възможността,
без да се препроектира вграденият процесор PowerPC, да се
емулират реконфигурируеми операции посредством оригиналната
му система от инструкции. Пълната скелетна инфраструктура
на представения прототип на Молен заема по-малко от 1% от
ресурсите на използвания реконфигурируем чип xc2vp20. По този
начин практически цялата реконфигурируема площ остава на
разположение за реализация на различни медийни хардуерни
устройства. С цел оценка на реализирания прототип са представени
експерименти върху програмни приложения на медийните стандарти
MJPEG, MPEG-2 и MPEG-4. Експериментите ясно показват,

173

174 Кратък обзор

че предложените подходи могат да се приложат успешно при
ускоряване на различни алгоритми за обработка на визуална
информация. Резултатите доказват практически достижимо общо
ускорение на разглежданите медийни приложения от порядъка на 2-
3 пъти, като доближават 98% от теоретично изчисленото максимално
бързодействие. Предложението е универсално и технологично
независимо, за което свидетелстват и допълнително включените
в настоящата дисертация изследвания върху реконфигурируеми
платформи, различни от Virtex II Pro™.

Curriculum Vitae

Georgi KUZMANOV was born on the 12th of August,
1974 in Sofia, Bulgaria. In 1988 he was admitted in the
Vocational High School of Microprocessor Technology -
Pravetz, Bulgaria, where he obtained the qualification of
a ”Technician in Microprocessor Technology” in 1993.
The same year, Georgi Kuzmanov enlisted the Computer
Systems Faculty of the Technical University of Sofia (TU

Sofia), Bulgaria. In 1998, he received his M.Sc. degree and an engineering ti-
tle in computer systems from TU Sofia, successfully defending his thesis titled
”Design, Analysis, and Area Minimization of the Operating Unit of an Ap-
plication Specific Microprocessor Core”. The results of his graduation work
have been implemented in a family of microprocessor cores produced by ”Info
MicroSystems” Ltd., Sofia and their successor ”FabLess” Ltd., Sofia.

Between 1998 and 2000, Georgi Kuzmanov was with ”Info MicroSystems”
Ltd., Sofia, where he had been involved in several reconfigurable computing
and ASIC projects as a research and design engineer.

In June 2000, Georgi Kuzmanov joined the Computer Engineering (CE) lab of
Delft University of Technology (TU Delft), The Netherlands, as a researcher,
where he had been working towards his Ph.D. degree with scientific advisor
prof. dr. Stamatis Vassiliadis. Recently, he has been employed as a full-time
researcher in the same scientific group. This dissertation contains the outcome
of his research activity in the CE Lab, TU Delft, during the period 2000-2004.

Since 1995 Georgi Kuzmanov is an IEEE member. His current research in-
terests include: reconfigurable computing, video and image processing, mul-
timedia embedded systems, computer arithmetic, computer architecture, and
computer organization.

175

	The Molen Polymorphic Media
	Stellingen behorende bij het proefschrift /
Propositions to the Ph.D. thesis
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Acronyms
	Chapter 1
Introduction
	1.1 Media background
	1.2 General reconfigurable approach
	1.3 Dissertation objectives
	1.4 Dissertation overview

	Chapter 2
Molen Background
	2.1 General approach
	2.2 Organization and microarchitecture
	2.3 Programming paradigm and sequence control
	2.4 Conclusions

	Chapter 3
MPEG-4 Hardwired Kernels
	3.1 Hardwired repetitive padding
	3.2 The accepted quality function
	3.3 Lifting based discrete wavelet transform
	3.4 Conclusions

	Chapter 4
Visual Data Rectangular
Memory
	4.1 Introduction
	4.2 Motivation
	4.3 Block addressable memory
	4.4 Experimental results and related work
	4.5 Conclusions

	Chapter 5
The Xilinx Virtex II Pro
Prototype
	5.1 The arbiter
	5.2 The pu-code unit
	5.3 XREGs, memory organization, and clocks
	5.4 The polymorphic interface
	5.5 Overall synthesis results
	5.6 Program code annotation
	5.7 Conclusions

	Chapter 6
Performance Evaluation
	6.1 Performance evaluation methodology
	6.2 Reconfigurable units considered
	6.3 Experimental results
	6.4 Conclusions

	Chapter 7
General conclusions
	7.1 Summary
	7.2 Contributions
	7.3 Proposed research directions

	Appendix A
Amdahl’s Law Illustrations
	Bibliography
	List of Publications
	Samenvatting
	Curriculum Vitae

