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Abstract 

The growing number of space objects in low-Earth orbit necessitates accurate orbit predictions to decrease the likelihood of opera-
tional disruptions. The challenges in accurately capturing how gas particles interact with the objects’ surfaces result in uncertainties in 
their aerodynamic coefficients, directly affecting the accuracy of orbital perturbation models. Currently, gas–solid boundary interactions 
are accounted for by empirical models like those proposed by Sentman and Cercignani-Lampis-Lord. These models have one or two 
adjustable parameters, typically tuned based on orbital tracking and acceleration data. However, these models are inadequate in accu-
rately representing crucial processes at the gas–solid interface such as multiple reflections, shadowing, and backscattering resulting from 
the roughness of real surfaces. We propose a new, physics-based gas-surface interaction model that leverages electromagnetic wave the-
ory to incorporate macroscopic effects on the gas particle scattering distribution resulting from surface roughness. Besides better describ-
ing the physics of gas-surface interaction, this model’s parameters can be determined by combining ground measurements to characterise
the surface roughness and molecular dynamics simulations to specify the atomic-scale interaction. The model is verified for the entire
parameter range using a test-particle Monte Carlo approach on a simulated rough surface. In addition, we successfully replicate several
experimental results available in literature on the scattering of Argon and Helium on smooth and rough Kapton and Aluminium sur-
faces. We conclude by demonstrating the model’s effect on the aerodynamic coefficients for simple shapes and comparing these results
with those produced with the Sentman and Cercignani-Lampis-Lord models, thereby demonstrating that previously observed inconsis-
tencies between these models and tracking data of spherical satellites can be explained by surface roughness.
© 2025 The Author(s). Published by Elsevier B.V. on behalf of COSPAR. This is an open access article under the CC BY license (http:// 
creativecommons.org/licenses/by/4.0/). 
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1. Introduction 

Aerodynamic drag is a primary perturbation force for 
resident space objects (RSO) located in the thermosphere
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at altitudes below 600 km (Mehta et al., 2 014). Therefore, 
accurate drag modelling is crucial for satellite precise orbit 
determination (POD) applications, such as the calibration 
of atmospheric models. This necessity is especially pro-
nounced when multiple satellites with complex geometries 
and time-varying orientations relative to the incident gas 
flow are used for such calibrations. Estimating the drag 
forces for objects with known position, velocity and atti-
tude relies on four quantities: their aerodynamic coeffi-
cients (drag, lift, and sideslip), their area to mass ratio,
SPAR. 
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the atmospheric neutral density, and wind (Bernstein and 
Pilinski, 2022; Mehta et al., 2023; Siemes et al., 2023). As 
the majority of space debris in low-Earth orbit (LEO) have 
unknown geometries and attitudes, equivalent aerody-
namic coefficie nts normalised to a spherical shape are
derived from past tracking data (McLaughlin et al.,
2011). However, such an analysis requires accurate values 
for the previously mentioned atmospheric properties. 
While models that can provide these properties exist, e.g.
NRLMSISE-00 (Picone et al., 2002), JB2008 (Bowman 
et al., 2008), and the Drag-Temperature Mod el (DTM)
(Bruinsma, 2015), they lack consistency, producing system-
atic differences of up to 30 % in neutral density values
(Bruinsma et al., 2023) at altitudes above 400 km. Several 
satellites are currently used for collecting new thermo-
spheric measurements to improve these models: the Grav-
ity Recovery and Climate Experiment (GRACE) and 
their Follow-On (GRACE-FO) satellites, the Swar m satel-
lites, the Gravity Field and Steady-State Ocean Circulation
Explorer (GOCE) satellite, and the Challenging Minisatel-
lite Payload (CHAMP) satellite (Siemes et al., 2023). These 
satellites have been chosen because of their low altitude 
and the high quality of their GNSS tracking data and/or 
the presence of onboard accelerometers. However, accu-
rately deriving neutral density and crosswind observations 
from acceleration data requires prior knowledge of the
satellites’ aerodynamic coefficients across all orientations.
Numerous studies, including those by Bernstein and 
Pilinski (2022),Mehta et al. (2023), and Siemes et al.
(2024), have highlighted that the accuracy of density obser-
vations derived from acceleration data is significantly influ-
enced by these coefficients. Particularly during solar 
maximum conditions, variations in the aerodynamic model 
can result in discrepancies up to 30% according to these 
authors. In free molecular flow, the aerodynamic coeffi-
cients are solely determ ined by the scattering of atmo-
spheric gas particles on the satellite’s surface. Therefore,
reducing density observations’ uncertainty is crucially
dependent on an in-depth understanding of the intricate
scattering mechanisms (Mehta et al., 2014).

Many models have been developed to capture the com-
plexity of gas–solid dynamics at a microscopic scale under 
free-molecular-flow conditions. Scattering kernels treat this 
problem as a boundary condition to the Boltzmann equa-
tion and employ an interpolation through one or two
adjustable parameters between scattering with zero and full
thermal accommodation to the surface temperature (Mehta 
et al., 2014; Bernstein and Pilinski, 2022; Livadiotti et al.,
2020; March et al., 2021); thus offering empirical simplicity 
at the cost of physical accuracy. Physical GSI models, on 
the other hand, model specific microscopic interac tion phe-
nomena assuming short residence times on the surface, but
often disregard others (Murray et al., 2015; Murray et al.,
2017; Livadiotti et al., 2020; Kleyn, 2003). Molecular 
dynamics simulations can accurately model most GSI 
encountered in the thermosphere. How ever, they become
computationally impractical when modelling the full mor-
812
phology of rough surfaces (Liang et al., 2018; Liang
et al., 2021). An extensive overview of existing GSI mod-
elling approaches is given in Section 2. The most common 
approach in orbital aerodynamics is to employ a one-
parameter scattering kernel that assumes a fully diffuse 
reflection of incident gas molec ules with an exit velocity
according to the degree of accommodation to the surface
temperature (March et al., 2021). Chosen for its simplicity 
and ease of fitting to in-orbit aerodynamic acceleration 
data, this kernel rapidly loses accuracy at altitud es above
400 km, where helium becomes the predominant species
over atomic oxygen (Walker et al., 2014; Pardini et al.,
2010). Other scattering kernels assume a lobular, quasi-
specular reflection of incident particles and have found 
great success in reproducing ground-based experimental 
results for noble gases such as helium and argon scattering
on clean, microscopically smooth surfaces with incident
beam energies smaller than 0.5eV (Cercignani an d
Lampis, 1971). However, when applied to RSOs in the alti-
tude range of interest, where incident energies are between 
1.2eV and 5eV, they result in even larger deviations in drag
coefficients compared to those observed for spherical satel-
lites (Pardini et al., 2010; Bernstein et al., 2020). 

The gap between the observed aerodynamic behaviour 
of objects in orbit and the scattering lobes observed in 
ground experiments has led to speculation about various 
potential sources of error. These include inaccuracies in 
the geometric models of RSOs, imprecise values for the 
atmospheric composition and temperature, and sub-
optimal selection of empirical parameters in the employed 
scattering kernels, or the possibility that the GSI modelling 
has overlooked a crucial process. This situation has 
spurred researchers to significantly refine aerodynamic 
algorithms in the last decade. H igher-fidelity geometry
models have been developed for the accelerometer-
carrying satellites (March et al., 2 019), with a GSI analysis 
as the natural next step (March et al., 2 021). Further 
improvements have been made in the selection of parame-
ters to existing scattering kernel approaches based on 
known atmospheric trends to empirically account for the 
degradation of surfac es when exposed to atomic oxygen
(Pilinski et al., 2 013). Most of these approaches, however, 
have either had little success in eliminating the high-
altitude uncertainties or require a high complexity in the 
form of many tunable parameters, thus prohibiting their 
use due to t he scarcity of data in the thermosphere
(Bernstein and Pilinski, 2 022). This has led in recent years 
to a shift from physical to data-based modelling of RSO 
aerodynamics, such as the response sur face method devel-
oped by Mehta et al. (2017) and Mehta and Linar es
(2018), to circumvent the need to model a seemingly too 
complex phenomenon. Such methods, alas, do not shed 
insight into the underlying dynamics and have a range of 
applicability limited to the datasets t hey were trained on.
Parallel to this, Erofeev et al. (2012),Erofeev and
Nikiforov (2014 ),  an  d Liu et al. (1979) have conducted a 
large number of experimental studies on Kapton and alu-
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minium surfaces, which were degraded to resemble those in 
the space environment, in which both the angular scatt er-
ing indicators and the momentum impinged on the surface
samples were recorded. Erofeev et al. (2012) found very 
large levels of backscattering of the incidence gas particles 
for many different gas-material combinations, especially at 
near-parallel incidence angles. Furthermore, a narrowing 
of the scattering indica tor was detected at normal inci-
dence, where a more diffuse scattering according to the
Knudsen cosine law was expected. Erofeev et al. (2012)
established a link between these unexpected effects and 
the roughness in the sample detected through either an 
electron microscope or atomic force microscopy (AFM). 
Although the most pronounced effects were found for the
atomic oxygen-bombarded Kapton film, they were present
for all materials, including those previously assumed to be
smooth, such as aluminium (Erofeev and Nikiforov, 2014). 
Similar results were reported as early as the 1970s (Erofeev, 
1971) and also in more recent studies (Roman et al., 2023;
Hellwig et al., 2019) analysing the scattering of OH radicals 
and carbon ions from rough surfaces. Given these corrob-
orating findings, we consider the full spectrum of rough-
ness displayed by real surfaces to play a crucial, possibly 
primary, role in determining the scattering behaviour of 
gas particles under free molecular flow conditions. Further-
more, we highlight that current GSI models do not ade-
quately incorporate these effects, a point further discussed
in Section 2. As such, the omission of roughness effects 
could be the main reason for the disagreement between 
existing GSI models and the observed aerodynamic beha-
viour in the thermosphere.

The aim of this paper is to address the inconsistencies 
between in situ RSO aerodynamic observations and the 
predictions of different popular GSI kernels through a 
new theoretical framework founded in electromagnetic 
wave scattering theory. This framework leverages the wave 
nature of gas particles to capture the influence of the full
roughness spectrum on their scattering dynamics. More
specifically, we propose a three-dimensional multireflection
model based on the Kirchhoff approximation by Beckman 
et al. (1987) to account for the variation in the local surface 
normal induced by the roughness from macroscopic to 
atomic scales. The model assumes isotropic surfaces and 
allows for their height profile to be defined statistically 
through an arbitrary number of adjustable parameters per-
taining to a Gaussian mixture model with a data-fitted
Gaussian autocorrelation function. This approach circum-
vents the computationally impractical task of inscribing the
roughness properties into the RSO geometry as performed
in several other studies (Erofeev et al., 2012; Erofeev and
Nikiforov, 2014). It further offers robust, analytical expres-
sions for the rescattering probabilities and aerodynamic 
shadowing and rescattering expressions at each particle 
reflection wi thout loss of generality, in contrast to the
numerically precomputed functional space expansions of
Aksenova and Khalidov (2008). In practical use, the model 
itself must be co mplemented by a local scattering function
813
that describes the gas-surface dynamics at an atomic scale 
for a perfectly smooth surface.

This paper starts with a comprehensive review of the 
various GSI phenomena relevant to orbital aerod ynamics,
existing modelling approaches and their shortcomings in
Section 2, serving as a justification for the proposed model. 
This is followed by a detailed derivation of the model itself
in Section 3 and a description of its algorithmic procedure. 
The model is verified in Section 4 for many levels of rough-
ness and various values in the parameter space of the local 
scattering function against scattering indicators produced 
by a raytracing algorithm applied to a high-detail geometry 
of a roug h surface sample. Furthermore, in the same sec-
tion, the model’s ability to accurately replicate experimen-
tal scattering data from previous studies by Erofeev et al.
(2012) and Erofeev and Nikiforov (2014) is demonstrated. 
The section concludes with an application of the model to 
replicate the aerodynamic coefficients of the Stella and 
Gridsphere spherical satellites under solar minimu m and
maximum conditions. The obtained drag coefficients as a
function of altitude are then compared with those of
Walker et al. (2014). Consequently, the paper outlines sev-
eral conclusions, an d an outlook for future work.

2. The gas-surface interaction problem and existing solution 

approaches 

2.1. The interaction of gas particle s with real surfaces

The interaction between atmospheric gas particles and 
the surfaces of RSOs involves a complex set of physical 
and chemical phenomena that affect the aerodynamic 
forces impinging on the object. At the time of writing, 
existing literature does not offer a complete overview of 
these in one publication. It is, therefore, the aim of this sec-
tion to provide the reader with a short summary of said
phenomena and explain their significance qualitatively, to
provide a justification for the choices made in the forth-
coming model methodology in Section 3. 

To determine how gas particles interact with the surface 
of an RSO, one must first understand the nature of real 
surfaces when exposed to the thermosphere environment. 
For brevity, this study shall limit itself to engineering sur-
faces, i.e. surfaces produced through manufacturing pro-
cesses typically encountered in engineering and, m ore
specifically, the space industry. Multiple studies (Shu 
et al., 2023; Gong et al., 2016; Chen et al., 2 013; Cutler
et al., 2021; Karan and Mallik, 2008) have measured the 
height profile of such surfaces, revealing a ”cascade” of fea-
tures, from large macroscopic scales (millimetres) to micro-
scopic and atomic scales (nanometres). Furthermore, 
several of these investigations (Karan and Mallik, 20 08;
Cutler et al., 2 021) analyse irregular surfaces with fractal 
characteristics, which can be attributed to the power law 
patterns observed in their power spectral densities (PSDs). 
A PSD for a standard en gineering surface is sketched in
Fig. 1. Three regions can be distinguished: a flat region
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Fig. 1. A sketch of the radially-averaged power spectral density of a 
typical engineering surface. Three regions are depicted: (left) a macro-
scopic roughness region characterised by uncorrelated features with large 
wavelengths, (centre) a microscopic fractal-like roughness region with a 
power-law behaviour defined by the Hurst exponent, (right) atomic scale
roughness defined by individual atom corrugations. The symbol R
represents the correlation length, while q is the length scale an H q is
the Hurst coefficient (Karan and Mallik, 2008). The brown dotted curve 
correspond to a surface with an inverse squared exponential autocorre-
lation function. The dashed curve corresponds to a .fractal surface.

d 
on the left (at larger scales) in which the height features are 
uncorrelated, describing the macroscopic roughness of the 
surface; a microscopic power-law region of roughness with 
a slope in the log–log spectrum plot characterised by the
Hurst exponen H q defining the fractal dimension
(Karan and Mallik, 2008); and cut-off region (right) where 
the atomic scale is reached, defined by the lattice parameter 
for crystalline surfaces. Based on this description, two 
types of roughness can be identified. The first is a ”geomet-
ric” roughness found at the macroscopic and microscopic
scales, stemming, for example, from the manufacturing
process and environmental exposure. This roughness is
shown in Fig. 2 (left) and can be seen at scales that are 
much larger than the distance between two surface atoms 
(coined the ”lattice parameter” for crystalline surfaces), 
and it is ” continuum” in nature, i.e., it can be described
by a continuous and differentiable height function

R2 R h h x y (Karan and Mallik, 2008). The 
other type of roughness represents the morphology of the 
surface at an atomic level. At these scales, most surfaces 
display a periodic pattern of atoms, called a ”lattice”. 
Forces exerted by these atoms, i.e. strong and weak inter-
actions, Coulomb (van der Waals) forces and so on, form
a potential well above the surface, displayed in Fig. 2 
(right) through the isopotential dotted lines. The shape of 
the lattice structure can disturb these lines, making them
more irregular with decreasing height (Rettner et al.,
1991) as they begin to follow the shape of the surface itself. 
Randomness in the periodic structure of the lattice can be 
produced in several ways: through imperfect ions in the
structure (i.e. dislocations and height-misplaced lattice
atoms), the vertical Maxwellian thermal motion of the lat-

t 

h 
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tice atoms (shown in Fig. 2), and the coverage with adsor-
bates (shown in dark blue in the same figure). It should be 
mention ed that most nonmetallic surfaces may not follow
the lattice structure shown in Fig. 2 (right) and can become 
highly irregular. In this case, structural corrugations 
become the dominant source of roughness, and the isopo-
tential lines follow suit. A final point to address, which 
drives the approach of gas-surface interaction modelling,
is the transition point between the geometric roughness
and the atomic-level corrugations, across all surface scales.
While many studies (Liang et al., 2018; Ret tner et al., 1991;
Karan and Mallik, 2008; Shu et al., 2023; Gong et al., 2016;
Chen et al., 2013; Cutler et al., 2021) suggest it is situated in 
the nanometre range, there is no consensus in the literature 
on a clear definition of this bounda ry. Therefore, for this
study, the inflection point between the fractal region of
the spectrum in Fig. 1 and the atomic scale region is defi ned
as this boundary.

Based on the aforementioned multiscale features of real 
surfaces, two types of GSI processes can be identified: local 
interactions, i.e. the momentum and energy exchanges
between the surface atom lattice and the incident gas mole-
cules depicted in the right part of Fig. 2, and geometric 
interactions, i.e. interactions of the gas particles with the 
geomet ric roughness of surfaces, indicated in the left panel
of Fig. 2. 

Local interactions refer to the momentum and energy 
exchanges that occur at an atomic scale between the inci-
dent gas molecules, the atom lattice that forms the surface, 
and the adsorbates that reside on it. The types of interac-
tions that can take place at this scale are extensive, and
can differ greatly with the type of gas and surface material
being employed. For simplicity, these are classified into im-

pulsive scattering and thermal desorption (Murray et al.,
2015; Murray et al., 2017). 

Impulsive scattering is characterised by a relatively short 
interaction of incident particles with the surface and is 
mainly influenced by its atomic morphology (see Fig. 2, 
right, in yellow). For non-reactive interactions, we distin-
guish between the thermal and structural regime. In the 
thermal regime, incident gas particles have low kinetic 
energy and, therefore, do not penetrate deep into the van 
der Waals potential well, as depicted in Fig. 2 (right). As 
such, they only ”see” a smooth surface, and their scattering 
behaviour is dictated only by the normal-oriented thermal 
motion of the surface atoms. This leads to partial accom-
modation of the momentum in the normal axis, and no 
accommodation in the tangential axis, resulting in a
quasi-specular reflection (Rettner et al., 1 991). In the struc-
tural regime, particles with larger kinetic energy are able to 
penetrate the potential well deep enough to be influenced 
by the surface atomic defects in addition to the atomic ther-
mal motion. As such, the dependence of the scattering 
behaviour on surface temperature is decreased compared 
to the thermal regime, and the resulting quasi-specular 
ang ular lobes get oriented to the left of the specular direc-
tion (see Fig. 3, right sub-figure, red curve). This is a pro-
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Fig. 2. On the left: a sketch of the geometrically-rough profile of a typical engineering surface, and the multi-scattering of gas particles, with arrow 
thickness representing the particle velocity magnitude. On the right: a sketch of the impulsive scattering and scattering via thermal desorption typical for
local interactions.

Fig. 3. A sketch of the angular distributions of three scattering kernels for gas-surface interaction. The Maxwell kernel (left) employs a linear combination 
of fully specular and fully diffuse reflections. The DRIA kernel (center) also assumes fully diffuse scattering and adjusts the reflected particle momentum
according to an energy accommodation coefficient. The CLL kernel (right) employs quasi-specular reflection behaviours.
duct of the expected thermal accommodation in the normal 
direction as well as a reflection in the tangential direction. 
For particles with high kinetic energy and large surface cor-
rugations, a phen omenon called rainbow scattering is
observed, where multiple quasi-specular lobular peaks are
observed to the left of the specular direction as depicted
Fig. 3 (Livadiotti et al., 2020). Finally, the reactive pro-
cesses equivalent of impulsive scattering are the Eley–
Rideal and Hot Atom reactions (Kleyn, 2003), where a 
gas-phase atom abstracts an absorbed atom from the
surface.

The thermal desorption mechanism, on the other hand, 
is defined by long surface interactions and thermal accom-
modation of the particle moment a in the tangential and
normal directions to the Maxwellian motions of the surface
atoms (see Fig. 2, right, in brown) (Murray et al., 2015;
Murray et al., 2017; Rettner et al., 1991). Depending on 
the type of potential fields that act on the gas particles,
these can be trapped on the surface through physisorption
815
or chemisorption. In the case of physisorption, gas mole-
cules may get trapped in the potential well formed by van 
der Waals forces (modelled through the Lennard-Jones 
potential) and form multiple weak absorbed layers above 
the surface. This is called non-activated trapping. If, how-
ever, gas molecules have an energy larger than a specific
activation energy of about 0.5 eV (Kleyn, 2003), they 
undergo trapping by chemisorption (modelled through 
the Morse potential), and form strong, covalent bonds with 
the surface atoms in a monolayer. The probability of a gas 
molecule getting trapped onto the surface and scattering 
through thermal desorption is defined as the sticking coef-
ficient and is a function of surface temperature and adsor-
bate coverage, as well as gas temperature and incident
kinetic energy. Different sticking coefficients are defined
depending on the adsorption type (physisorption or
chemisorption). The type of scattering based on thermal
desorption most often follows a Knudsen cosine law at
the surface temperatur S , resulting in a quasi-diffusee T
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reflection. (see Fig. 3, DRIA, black curve). However, in the 
case of physisorption, preferential desorption might occur 
for near-parallel angles, resulting in a widened quasi-
specular angular lobe. Conversely, for chemisorption, pref-
erential desorption will occur for low reflection angles, 
resulting in a narrower angular lobe. The decoupling from 
the incidence conditions happens as the result of long trap-
ping times for the gas particles. However, at high surface
temperatures and dense adsorbate coverage, gas molecules
might desorb early, before accommodating their tangential
momentum. Hence, they form a preferential scattering lobe
(as the one shown in Fig. 3, CLL, blue curve). The reactive 
interaction equivalent to thermal desorption is the Lang-
muir–Hinshelwood reaction (Kleyn, 2003).

As the reader may conclude, there is a large variety of 
local gas-surface interaction phenomena that depend on 
the environmental conditions, gas, and surface properties. 
This diversity is partly responsible for the overall complex-
ity of the gas-surface interaction problem, and the main
reason why so many models have been developed to solve
it (which shall be discussed in Section 2.2). Nevertheless, 
the types of local scattering resulting from these phenom-
ena can always be expressed as a linear combination of a
symmetric, diffuse-like reflection and a quasi-specular term
(Murray et al., 2015; Murray et al., 2017). The aforemen-
tioned sticking coefficient, defining the fraction of particles 
undergoing diffuse scattering (i.e. thermal desorption), can 
be found experimentally or through molecular dynamics 
simulations. However, even with an informed choice of 
sticking coefficient and both impulsive scattering and ther-
mal desorp tion, as observed in ground experiments, thor-
oughly modelled, one cannot reconcile the resulting
aerodynamic coefficients with those observed for satellites
in the thermosphere at high altitudes (Walker et al., 2014;
Mehta et al., 2014; Murray et al., 2017). We believe this 
is due to neglecting the other very important type of gas-
surface interactions, which result from the geometrical,
fractal-like roughness of most real surfaces.

Geometric interactions, depicted in Fig. 2 (left), consti-
tute single or multiple reflections of gas molecules, as a 
result of surface height variations that are much larger than 
its potential well depth. Therefore, such reflections may 
occur even when these molecules have completely 
”escaped” the potential well of the surface. If the surface 
geometry is very rough, these interactions can play a signif-
icant, sometimes even predominant role in influencing the 
angular scattering lobes. When combined with local i nter-
actions, they significantly enhance the total energy accom-
modation of gas particles departing from the surface. This
has been observed in several numerical Monte-Carlo stud-
ies on spherical satellites with reflecting mirror protruding
from their surfaces, where up to 8 additional particle reflec-
tions were recorded (Pilinski et al., 2011; Bowman and
Moe, 2005; Moe and Bowman, 2005). Similar to the rescat-
tering of light photons off surfaces, these effects are espe-
cially prominent on surfaces that are extremely rough
816
(e.g., due to deterioration in the space environment). Such 
surfaces include those compromised by atomic oxygen, like 
Kapton or other polyimide films, or those roughened by
the physical impact of micrometeorites (Banks et al.,
2004). Research on the scattering of hyperthermal flow 
gas against surfaces used in space engineering demonstrates 
that even minor levels of geometric rou ghness can signifi-
cantly increase the diffusiveness in the angular scattering
distribution’s lobular patterns (Erofeev et al., 2012;
Erofeev and Nikiforov, 2014; Akseno va and Khalidov,
2008). Furthermore, higher levels of geometric roughness, 
as seen on oxidised Kapton and aluminium surfaces, reveal 
backscattering as a distinct and highly impactful physical 
phenomenon at near-parallel angles. An unusual effect 
noted at normal incidence is the scattering lobe narrowing 
as surface roughness increases. These phenomena can 
noticeably increa se the drag force on space objects with
rough surfaces. In such scenarios, the scattering character-
istics become less dependent on the incoming gas’s proper-
ties and more on the geometric height profile of the surface
itself.

2.2. Existing methods for gas-surface interaction modelling

Many methodologies have been developed in the past 
century to (partially) capture the gas-surface interaction
processes outlined in Section 2.1. These can be classified 
into three categories: scattering kernels, physical models 

and molecular dynamics-informed models (Livadiotti et al.,
2020). 

Scattering kernel models are statistical kinetic models 
defined as boundary conditions to the Boltzmann transport 
equation in free-molecular flow. Mathematically, they 
relate the probability density function (PDF) of an incident 
gas molecule xi ti vi hitting the surface at position i 

and time with veloci ty to that of the corresponding
reflected molecule xi ti vi , leaving the surface at posi-
tion time and velocity as follows:

f i x 

ti vi 
f r 

xr, tr vr 

vr n f r xr vr tr 
vi n 0 

K xi xr ti tr vi vr 

vi n f i xi ti vi dvi vr n 0 1

where the subscripts i and r refer to the incident and 
reflected particles. The scattering kernel 

xi xr ti tr vi vr defines the mapping between 
the PDFs of incident and reflected gas particles, denoted 
by and , respectively, and is the outward pointing 
unit vector nor mal to the surface. Three mathematical con-
ditions must be satisfied by every scattering kernel: the
non-negativity condition, the normalisation condition,
and the reciprocity condition (Cercignani and Michael is,
2001). The non-negativity condition enforces a positive 
correlation between the reflected and incident gas particles’ 
PDFs (i.e. larger incident velocities lead to larger reflected
velocities):

K 

f i f r n
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K xi xr ti tr vi vr 0 2 

The normalisation condition, on the other hand, is 
rooted in the requirements of any kernel from probability 
and statistics, i.e. that the integral of probabilities for all
possible reflected gas states must be equal to one, i.e.

vr n 

K xi xr ti tr vi vr dvr 1 3 

From a physical perspective, this condition implies a bal-
ance between adsorption and desorption processes. The 
final condition of reciprocity concerns the reversibility of 
paths of the gas molecules, i.e. the incident path of a 
reflected molecule can be recovered using the kernel, given
that the direction of its reflected path is inverted while the
velocity magnitude is kept constant. Mathematically,
this is enforced by

vr 

K xi xr ti tr vi vr vi n f 0 xi ti vi T S 

K xr xi ti tr vr vi vr n f 0 xr tr vr T S

4

where is the temperature of the surface (wall), and 

f 0 x t v T S 
m 

2pkBT S 

3 
2 
exp mv2 

2kBT S 
, with v v is the

three-dimensional Maxwellian probability distribution
(Maxwell, 1879). In this expression B is the Boltzmann 
constant, m is the molecular mass of the gas. These three 
mathematical conditions are necessary, but not sufficient 
in defining a scattering kernel, and further assumptions
must be made about the gas particle behaviour to derive
one (Cercignani and Lampis, 1971). The reader should note 
that these conditions extend beyond scattering kernel-
based methods and apply to every GSI model, including 
physical and data-based ones. Failure to do so can result
in non-physical behaviour for a portion of the parameter
space (Livadiotti et al., 2020; Liang et al., 2018;
Mateljevic et al., 2009). Furthermore, general assumptions 
made in literature for most scattering kernels are that the 
collisions are instantaneous, and the path travelled by the 
particles is negligible, i.e tr an i xr. These need 
not necessarily exclude particle entrapment GSI processes 
that result in thermal desorption, as most of these occur 
on relatively small time scales (microseconds ). Another
common feature of these kernels is their reliance on one
or two nondimensional parameters describing the level of
thermal or momentum accommodation of the particles.
Historically, the first scattering kernel model was devel-
oped by Maxwell (1879), who described the behaviour of 
the reflected molecules as a linear combination of a fully 
specular reflection and a diffuse reflection, defined by one 
parameter only. This parameter is the fractio a of the 
gas molec ules that is completely accommodated to the sur-
face temperature and reflects diffusely with a cosine law,
while the remaining fraction a reflects specularly with

T S 

, k 

. ti d x 

n 

T S 

1 
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its kinetic energy unchanged. The correspondin g kernel
takes the form

KMaxwell vi vr a 
m 

2pkBT S 

3 
2 

exp 
mv2 

2kBT S 
vr n 

1 a d vi vrs 5 

where vi vrs is the Dirac delta function and is the 
specular reflected velocity defined a vrs vi 2 vi n n. 
From a physical point of view, the Maxwell kernel could
be interpreted as a simplified approach to modelling the
impulsive scattering and thermal desorption processes
mentioned in Section 2.3. The adjustable param a 
would, therefore, coincide with the sticking coefficient. 
Under this interpretation, the kernel fails to capture the 
complex dynamics of impulsive scattering occurring in 
the struc tural and thermal regimes. Another simple scatter-
ing kernel that has found great success in orbital aerody-
namics was proposed by Sentman (1961), who assumed a 
fully diffuse reflection of particles with an incomplete ther-
mal accommodation. Later on, the accommodation coeffi-
cient of this model was related to the atomic oxygen
coverage of an RSO’s surface (Moe et al., 1972; Moe
et al., 1993; Moe and Moe, 2005) and adapted into the fully 
empirical Diffuse Re-emission with Incomplete Accommo-
dation (DRIA) scattering kernel 

KDRIA vi vr 
m 

2pkBT r 

3 
2 

exp 
mv2 

2kBT r 
vr n 

T r 1 a 
vi 

2 

3RG 
aT S 6 

where the parameter T r T S 
T i T S 

is the empirically found ther-
mal (energy) accommodation coefficient. Furthermore, 
and are the reflected and incident gas temperatures, 
while R 

MG 
is the ideal gas constant normalised by the

molar mass of the gas species. The DRIA model has had
great success in orbital aerodynamics at altitudes of
approximately 200–400 km (Mehta et al., 2014; Mehta
et al., 2023; March et al., 2021) because of its one-
parameter data-fitting simplicity and diffuse re-emission 
assumption. This assumption could capture, on the one 
hand, the thermal desorption processes occurring at a 
molecular level, which is the dominant reflection mode in 
an atomic oxygen-rich environment. On the other hand,
it roughly resembles the diffusive and backscattering effects
induced by geometric roughness described in Section 2.3. 
As such, this empirically-fitted kernel can be used in 
atomic-oxygen-rich conditions to describe both the local 
and geometric interactions with fair precision. At higher 
altitudes, however, where the presence of helium increases, 
the accuracy of the mod el is slowly lost. While the Maxwell
and DRIA kernels are simple and, therefore, widely used as
boundary conditions in Direct Simulation Monte Carlo
(DSMC) simulations (Livadiotti et al., 2020), they fail to

d vrs 
s 

eter

a 

T r 

T i 

RG
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replicate the quasi-specular lobular scattering distributions 
observed in man y ground experiments on clean surfaces
(Healy, 1967; Cercignani and Lampis, 1971). For this pur -
pose, Cercignani and Lampis (1971) proposed a new scat-
tering kernel that was later improved by Lord (1995). 
Cercignani and Lampis (1971) proposed using the eigen-
function spanning a four-dimensional spac S4, defined 
by the three Cartesian components of the reflected velocity
vector and an additional fictitious angle , which still
satisfies Eqs. (2)–(4). This eigenfunction was then inte-
grated over to yield the kernel

KCLL vi vr 
1 

aN 2 rT 
exp 

aN 1 
aN 

v2 
rn 

v2 
in 

1 rT 
2 

rT 2 rT 
v2 
rt 

v2 
it 

2  1  rt 

rT 2 rT 
vrt vit 

I0 
2 1 aN 

aN 
vinvrn 7 

where is the zeroth order modified Bessel function, 
vi n n vrn vr n n vit vi vi n n, and 
vr vr n n are the normal and tangential incident 

and reflected velocity vectors, respectively, which have 
the forms 0 0 vin 

T 
vrn 0 0 vrn 

T 
vit vit1 vit2 0 T , 

and vrt1 vrt2 0 T . A very important fact that makes 
the CLL kernel specia l compared to Maxwell or DRIA is
that the adjustable parameters and T have an actual
physical meaning, describing the energy accommodation
of the gas molecules in the normal direction and the
momentum accommodation in the tangential direction,
respectively. In fact, as stated in Cercignani and Lamp is
(1971), a linear superposition of this kernel with different 
accommodation values can be used to describe any scatter-
ing shape resulting from thermal accommodation, with
Eqs. (2)–(4) still being satisfied, since the proposed eigen-
function spans 

KCLLgeneral 

N 

k 0 
ckKCLL vi vr ank rtk 

N 

k 0 
ck 1 ck 0 for all k 8 

for an arbitrary number of eigenfunctions N. This can 
physically be interpreted as fraction k accommodating 
the thermal motion of the surface atoms with different 
levels and . Through this approach, impulsive scat-
tering processes in a perfect thermal regime, as well as ther-
mal desorption process es following particle entrapment,
with complete or incomplete accommodation, can be mod-
elled through an inspired choice of the parameters and

. In fact, such an approach with only two parameter sets
has already been employed in studies by Murray et al.
(2015) and Murray et al. (2017) to model the interaction 
of OH radicals with tenuous carbon surfaces with high

e 

vr W 
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I0 
vi 
vrt 
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vin 

vrt 

aN r 

S4: 

s c 

aNk rT k 

aNk 

rT k 
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accuracy. One drawback of the CLL model, besides the fit-
ting requirement for the accommodation coefficients, is its 
limitation to thermal accommodation processes and inabil-
ity to capture impulsive scattering processes in the struc-
tural regime, i.e. due to atomic-level corrugations. While 
best-fit parameters can be found to mimic scattering 
induced by corrugations in certain scenarios, these would
lose their physical meaning and become empirical parame-
ters only, as they would no longer describe an accommoda-
tion process. A sketch of the three main scattering kernels
outlined above is given in Fig. 3, where the angular lobes 
have been scaled by the average reflected momentum of 
the gas particles. While scattering kernels display great ver-
satility, being able to capture a large degree of local inter-
actions and a specific case of geometric interaction, they 
are, in essence, incomplete models, due to the presence of
adjustable parameters that are not linked to any specific
physical property. For this reason, a different class of
physics-based GSI models have also been developed, and
are discussed next. 

Physical GSI models are complete, statistical kinetic 
models that approximate individual surface atoms with 
simple, linearly oscillating shapes surrounded by a poten-
tial well with a known depth. Inspired by the real physical
GSI phenomena outlined in Section 2.1 and still bound to 
the mathematical constraints defined for scattering kernels 
(non-negativity, normalisation, and reciprocity), current 
physical GSI models are exclusively concerned with captur-
ing impulsive scattering processes. Three popular models
are depicted in Fig. 4: the hard cube model, the soft cube 
model, and the washb oard model. The hard cube model
proposed by Goodman (1965) and refined by Logan an d
Stickney (1966), assumes a perfectly smooth surface com-
posed of cubic, ideally elastic and rigid atoms oscillating 
cording to a Maxwellian distribution with temperature 

T S . Assuming instantaneous collisions of the gas particles,
an impulsive-repulsive potential well is employed, resulting
in momentum accommodation only in the normal direction
(Livadiotti et al., 2020). The hard cube model can reason-
ably predict thermal-regime impulsive scattering but fails 
to capture the structural regime or any type of trapping
and thermal desorption. These shortcomings are addressed
by the soft cube model proposed by Logan and Keck
(1968), who assumed the atoms to be cubes connected by 
linear springs with each other. Furthermore, the 
impulsive-repulsive potential well was replaced by an expo-
nential repulsive potential and a softer, square-well attrac-
tive potential, to model particle collisions with non-
negligible collision times as well as nonactivated trapping. 
Hence, the sticking coefficient of a surface can also be esti-
mated with this model in the case of physisorption. A
shortcoming of both the hard cube and soft cube models
is the assumption of a perfectly smooth surface, which
neglects the effect of atomic corrugations. To account for
this, Tully (1990) proposed a washboard model, which 
models these corrugations with either a 2D or 3D (periodic

ac
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Fig. 4. A sketch of three different physical gas-surface interaction models. The Hard Cube model (left) assumes rigid, elastic collisions between gas and 
surface atoms, the latter oscillating in the z-axis with a Maxwellian thermal velocity. The Soft Cube model further assumes linear spring connections
between the surface atoms and non-negligible collision times. The Washboard model (right) further assigns a corrugated morphology to the surface.
suffer from the same limitations as physical GSI models
when applied to orbital aerodynamics problems.

or random) height profile, and employs either the hard 
cube or soft cube procedure to handle particle–surface col-
lisions. Several adaptations of the washboard model have
been proposed to introduce 3D randomness in corruga-
tions (Mateljevic et al., 2009) and, eventually, multiple 
scattering (Liang et al., 2018). Even with the gradual 
increase in complexity, the aforementioned models are still 
limited to capturing local interactions only with slightly 
corrugated surfaces and fail to take into account the strong
effects of the complex height profiles due to geometric
roughness, which were observed in laboratory experiments
by Erofeev (1971),Erofeev et al. (2012),  a  nd Erofeev and 
Nikiforov (2014). This is primarily due to a lack of gener-
ality in the modelling of the surface geometry, combined
with a failure to account for self-shadowing at near-
parallel angles and for the variations with penetration 
depth of the rescattering function. 

Data-informed GSI models are entirely empirical 
approximators that are trained with either experimental 
data or molecular dynamics (MD) simulation outputs 
and are tasked with the prediction of scattering profiles.
The most common training source is the latter, which is
very successful in replicating the results of ground experi-
ments on clean surfaces (Livadiotti et al., 2020). MD sim-
ulations used for gas-surface interaction capture the 
interactions between every atom in a surface sample, as 
well as those with the gas molecules, assuming various 
semi-empirical interaction potentials depending on the type 
of force being modelled (such as the Leenard-Jones or 
Morse potentials). The full spectrum of local interactions 
(reactive and nonreactive) can be described by this
approach through an informed choice of these potentials.
However, geometric interactions are impractical to model
due to the high computational load that comes with simu-
lating the full morphology of a surface from macroscopic
to atomic scales (Liang et al., 2018). As such, data-
informed models, while more accurate at an atomic level,
819
2.3. State of the art in modelling roughness effects

Looking at the vast complexity of the gas-surface inter-
action problem and the diverse range of modelling 
approaches, it is clear that no model currently exists that 
can describe the full spectrum of physical and chemical 
processes observed for all length scales. Furthermore, the 
current focus in literature is targeted towards understand-
ing and capturing the atomic and microscopic scale interac-
tions, while macroscopic effects induced by geometric
roughness are mostly ignored. As Fig. 5 shows, the most 
popular GSI models mentioned in this paper assume either 
an atomically smooth surface or only slight corrugations. 
While scattering kernels such as DRI A and CLL have been
employed in several studies to model entire satellites with
empirically-fitted parameters (March et al., 2 019; March
et al., 2021; Mehta et al., 2014), they achieved either poor 
or inconsistent accuracy.

Currently, one of the most comprehensive GSI models 
developed is the washboard model by Liang et al. (20 18), 
which explicitly captures the influence of such corrugations 
in the structural regime of impulsive scattering. Another 
empirical approach for modelling nano-scale roug hness
has been proposed by Chen et al. (20 24), who linearly super-
impose fully diffuse and quasi-specular reflections to capture 
the effects of slightly-rough surfaces. Nevertheless, accurate, 
physics-based analytical models that capture geometric 
interactions do not exist at the time of writing. Given the 
very significant roughness-indu ced effects observed by mul-
tiple studies: (Erofeev et al., 2012; Erofeev and Niki forov,
2014; Roman et al., 2023; Liu et al., 1979), which were per-
formed at incident beam energies of 1.5eV, 1.3eV, 0.4eV and 
1.0eV respectively, such an omission prompts the develop-
ment of a new scale-dependent approach to modelling par-
ticle–surface dynamics in free-molecular flow. Hence, we 
believe that a combination of models tailored to specific 
length scales rather than a single overarching one is more 
effective at capturing these dynamics while maintaining
computational efficiency. In this context, the wave
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Fig. 5. Left: The power spectral density of a general rough surface, and the scales included in each GSI model. Bottom-right: A realisation of Gaussian
geometric roughness representative of real surfaces (Shu et al., 2023; Erofeev et al., 2012). Top-right: A sketch of atomic-level corrugations on a crystal 
lattice with a different. atomic species.
scattering-based methodology proposed in this paper to 
describe geometric interactions serves as ”an envelope” for 
a local scattering model capturing the multitude of previ-
ously mentioned local interaction processes.

3. Model theory and implementation 

3.1. Wave approximation of gas particle scattering

Let P be a gas molecule travelling in vacuum with a con-
stant velocity vector Free molecular flow conditions are 
assumed (i.e. a high Knudsen numb Kn 1) and, as
such, inter-molecular interactions can safely be neglected
(Vallado, 2007). Furthermore, the effect of the electron 
orbitals on the atom nuclei is also neglected through the
Born–Oppenheimer approximation (Born and 
Oppenheimer, 1927). In this context, the molecule can be 
interpreted as a quantum particle with a known velocity 
and probabilistic position. Under the quantum mechanical 
formalism, there is a scalar wave function 

R3 R C W W x t whose squared modu lus
x t 2 defines the probability density function of the

particle’s position . This wave function satisfies the
time-dependent Schrödinger equation

v. 
er 

W 

W 
x 

ih 
W x t 

t 
h 
2m 

2 V x t W x t 9

with the Cartesian position vector x  y  z  t denot-
ing time, being the Planck constant, and m the mass of 
the particle. Since the potential field x t 0 in a vac-
uum, the above equation reduces to the wave equation,
which admits a plane wave solution of the form

x 

h 
V 

W x t W0 exp i k x xt k 
2p 
k 
k 10

where s the de Broglie wavelength of the particle, which 
is h 

mv for non-relativistic particles, and k a unit vector

k i 
k is 
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representing the direction of the plane wave. Consider now 
a solid rough surface S, with a height profile described by a 

Lipschitz-continuous scalar function n R2 R 

n n x y . Near S, the potential field x t is impossible 
to describe analytically as it is a complex superposition of
surface atom potentials. To simplify the analysis assuming
a classical mechanics regime, the surface is considered a
perfectly rigid step potential barrier:

C 
V 

V x t 
z 6 n x y 

0 otherwise 
11 

In effect, this ensures that no incoming particles can pass 
through the surface and, thus, act as their classical-
mechanics counterparts, i.e. the power of the wave function 
is z 6 n x y t 2 0 below the surface. The caveat to 
this simplification is the accompanying assumption of per-
fectly specular particle reflections of the surface, neglecting
the local interactions discussed in Section 2.3. However, 
these interactions can be easily reintroduced, which we will
demonstrate in Section 3.6. For the purposes of studying 
the averaged scattering behaviour, the time component of 
the Schrödinger equation is suppressed, leading to the par-
tial differential equation system

W 

h2 

2m 
2 W x t EW x t W z n x y t 0 12

where h2k2 

2m is the total energy of the system. The above 
boundary value problem is mathe matically equivalent to
the Helmholtz equation employed by Beckman et al.
(1987) in the scattering of horizontally-polarized electro-
magnetic waves from rough, two-dimensional surfaces. 
Hence, classic electromagnetic wave theory can be applied 
to predict the reflected wave functions of the gas particles
and, thus, position and angular PDFs assuming local spec-
ular reflections.

E
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3.2. Statistical surface modelling

One of the most important aspects in solving the classi-
cal wave problem in Eq. (12) is the definition of the surface 
height profile x y . Since one is only interested in the 
averaged, macroscopic scattering off a surface, a statistical 
characterisation of the surface heights and slopes is suffi-
cient. For the sake of simplicity, the surface is assum ed
to be isotropic and homogeneous. Under these constraints,
the theory of Gaussian processes becomes a prime candi-
date approach, with the poly-Gaussian model developed
by Litvak and Malyugin (2012) being chosen as the starting 
point to characterise surfaces with arbitrary height PDF 
and autocorrelation functions. This approach was chosen 
for its ability to describe surfaces with highly non-
Gaussian PDFs, using a minimum number of adjustable 
parameters. In this section, we extend the model to enable
the characterisation of the surface slope PDF, which will
become the centre point of the self-shadowing algorithm
presented in Section 3.4. According to Litvak and 
Malyugin (2012), a surface defined as a two-dimensional 
stochas tic process is described by

n 

n x y r x y x y l x y 

P 
1 
2p 

exp 
2 

2
13

where P denotes probability, denotes the surface height 
function, and l R2 R are continuous and dif-
ferentiable functions describing the variance, mean, and 
control stochastic processes of the surface with two-point 
autocorrelation functions Cl C R 1 1 and ol-
lowing the standard normal distribution. If and were
deterministic functions, this would be reduced to a classic
non-stationary Gaussian process (MacKay, 2003). The 
novelty of Litvak’s model is the introduction of a proxy 
stochastic process R2 R with autocorrelation func-
tion R 1 1 and, through the use of isotropy, 
redefining and as nonlinear transformations c  x y 
and c  x y , thereby becoming deterministic. The choice
of this process is arbitrary and will not influence the height
PDF or correlation function R 1 1 (Litvak and 
Malyugin, 2012). Under these assumptions, the characteris-
tic function of the height profile is given by

n 
r C 

Cr f 
l r 

c 
Cc 

r l r  
l  

Cn 

vn v P n exp ivn dn P ri li P 

exp iv ri li dridli d 14

where the joint probability of and is given byri li 

P ri li P ri li c dF c 

d  r  c  ri d  l  c  li P c dc 15
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Here, c is the cumulative distribution function of nd 
x is the Dirac delta function. Substituting this expres-

sion into Eq. (14) and integrating with respect li ri, 
and eads to 

vn v d  r  c  ri d  l  c  li 

1 
2p 

exp iv ri li 
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2 
P c dc dridlid 

P c 
1 
2p 

exp iv r  c l  c  
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d dc 

P c exp ivl  c  
1 
2 
v2 r2 c dc 16 

Taking the inverse Fourier transform of the above 
expression, one can observe that the PDF of the process 
x y consists of a mixture of an infinity of Gaussian

PDFs, which is indeed independent of the control process
y :

P n F 1 vn v P c
1

2pr c
exp

n l c 2

2r2 c
dc 17

Up to this point, we have outlined the derivation in (Litvak 
and Malyugin, 2012). Now, through a similar procedure, 
we proceed to extend it to describe the slope PDF of a sur-
face, which is a heavily utilised feature in Section 3.4 to 
characterise the multi-scattering effects of gas particles off 
very rough surfaces. Switching to polar coordinates r and 

through the assumption of isotropy, wher r cosu
and r sinu, and assuming invariance in , it follows
from Eq. (13) that the slopes of rocess n, i.e. 

dn 
dr R R are given by 

n r 
dr r 
dr 

r r r 
d r 
dr 
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where dr r 
dr l dl r 

dr 
d r 
dr R R are also con-

tinuous one-dimensional processes. Introducing the same 
control process and its derivative dc 

dr R R, the 
slope process is rewritten as 

n r c r 
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dc 
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r  c  r 
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where dr 
dc an lc 

dl 
dc are deterministic nonlinear 

transf ormations of the process. To obtain the slope

PDF, the characteristic function of n defined in a similar
manner:
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vn v P ri ri li li P 

exp iv ri ri li dridridlidlid d 20

To derive the joint PDF , the relation between the 
processes nd eds to be established first. Consider that 

and are two random varia bles of the same process
with a distance of r between them. Then, it is straightfor-
ward to find

P 
a ne 

1 2 , 

lim 
r 0 

2 1 

r
21

Thus, the processes nd ave a linear relation and, since 
ollows a Gaussian dist ribution, oes, too. Hence, their

joint PDF can be written as
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where nd are the mean and covariance matrix of vec-
tor respectively (Kac, 1939), which will be derived in the 
next few steps. The mean of process s

l a R 
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where E is the expectation operator. Here, L’Hôpital’s rule 
was applied since mr 0 

2 1 
r is indeterminate as the mean

of and is zero. To obtain the covariance matrix, we
first note the relation
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and remind that proce is describe by the auto-
covariance function r with varianc 0 1. Thus, 

and have a unit varian ce and covariance C . Apply-
ing covariance propagation (Koch, 1999, Chap. 2) yiel ds
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where L’Hôpital’s rule was again applied to find the limits of 
the indeterminante forms. Assumi dC 

dr r 0 0, which 
is true for the au to-coriance function defined later on,
gives

ng 
C 
822
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Inserting and nto leads tol R i P 
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which shows that the slope and height processes are inde-
pendent of each other. The joint PDF of the processes
s r s l s , and s is given asr l  

P ri ri li li P ri ri li li c c dF c c 

d  r  c  ri d r  c  c ri 
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Substituting the two expressions above into Eq. (20) results 
in the characteristic functionIntegrating the above equa-
tion with respect to ri li, and leads tori li 
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Finally, integrating with respect to d ves the charac-
teristic function of the slope PDF:
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Taking the inverse Fourier transform of this expression, 
one observes that the PDF of the slopes is also an infinite 
mixture of Gaussian PDFs with weights dictated by the 
joint probability of nd 

P n F 1 vn v n 

P c c 
1 

2p  r2 
c c c

2 d2 C 
dr2 

r 0 

exp 
n lcc 

2 

2 r2 
c c c

2 d2 C 
dr2 

r 0 

dcdc 32 

Unlike the surface height PDF P n , the slope PDF P n is

dependent on the choice of the control process c or, more
precisely, on the PDF of its radial derivative c. ven that
Gaussian processes are defined by their height DF as well
as all of their derivatives (MacKay, 2003, p. 540), this con-
tradicts the claims of general ity for poly-Gaussian models
by Litvak and Malyugin (2012). However, in practice, this 
is a minor inconvenience, and only results in a y-axis-
centred symmetry restriction on the stochastic radial 
derivative processes l c c and rc c c with respect to 
r, provided that P is chose as symmetric around
c 0. For the p poses of this study, the c process was
osen as in (Litvak and Malyugin, 201 to follow the 

standard normal distribution 

P c 
1 
2p 

exp c2 

2 
33 

for simplicity. To further simplify the final form of the pro-
posed model, the autocorrelation functions C and Cc were 
defined as 

C r exp r2 

R2 and Cc r exp r2 

R2 34 

with the same autocorrelation length R. Then, the slope 
PDF takes the form 

P n r P c P c
1

2p r2
c c c2 2 r c

R

2

exp
n lcc

2

2 r2
c c c2 2 r c

R

2
dcdc 35

where

P c
1

2p
exp

c2

2
36

and

c a c: 

Gi 
P 

c 

c n 
ur 

ch 2) 
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P c 
R 

4p 
exp 

R2 c2 

4 
37 

To make this model suitable for practical use in direct and 
inverse GSI problems, the functions r  c  rc c l  c  lc c 
need to be defined analytically usi a compact set of
parameters. For this purpose, the same approach as in
(Litvak and Malyugin, 2012) is employed, where r  c  and 
l  c  are approximated by the physicist’s Hermite olyno-

al expansions of order N: 

r  c  
N 

k 0 
rkHk c l  c  

N 

k 0 
lkHk c 

rk 
1 

2k k p 
r  c  Hk c dc 

lk 
1 

2k k p 
l  c  Hk c dc 38 

Through this method, the function derivatives rc c and 
lc c are straightforwardly computed as 

ng 

p 
mi 
cc c 
N 

k 0 
ck 
dHk c 
dc 

N 

k 1 
ckkHk 1 c with c r l 

39 

where the constants rk and lk become the free parame-
ters of the surface del. other important function
to be defined is the height profile’s autocorrelation func-
tion Cn r , which is given in (Litvak and Malyugin, 2012) 
as: 

mo An 
Cn r 
1 
rn 

Rr r C r Rl r 40 

where Rr r and Rl r are the cross-correlation functions 
of the r and l r processes. Assuming without loss of 
genera that c 0, these two functions can be writ-
ten in terms of and lk as 

Rc r c c1 c c2 P c1 c2 r dc1dc2 

c c1 c c2 

N 

k 0 
Hk c1 Hk c2 

ck c r 

2 kk p

1

2p
exp

c21
2

c22
2

dc1dc2

N

k 0

c2kc
k
c r 2kk p with c r l 41

r 
lity l  

rk
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From Eqs. (13) and (41), it is evident that the radially aver-
aged autocorrelation function r has the form Cn 
Cn r 
1 
rn 

N 

k 0 
r2 
kC r l2 

k C
k 
c r 2

k k p 42 

with 
Fig. 6. A sketch of the coordinate system employed by the Kirchhoff
approximation (Beckman et al., 1987), together with the angles that 
describe the incident and reflected wave direction s. The incident wave is
assumed to be .in the zx plane.
rn r  c  2 l  c  2 P c dc 
N 

k 0 
r2 
k l2 

k 2
k k p 

43 

Using this expression, we derive a relation between the 
radially averaged PSD of a real surface sample and the 
poly-Gaussian autocorrelation length R of the processes. 
This is done by approximating r with a Gaussian auto-

correlation function, i.e. Cn r exp r2 

R2 
n 

with an auto-

correlation length is now linked to the length R of 
the and processes in a first-order sense. Consider-
ing Taylor approximations of r Cc r , and r with 
only the first term included, one obtains 

1 
r2 

R2 
n 

N 

k 0 
r2 
k 1 r2 

R2 l2 
k 1 r2 

R2 

k 
2k k p 

N 

k 0 
r2 
k l2 

k 2
k k p

1

N

k 0

1 k r2
k kl2

k 2kk

N

k 0

r2
k l2

k 2
kk

r2

R2
44

The relationship between R and then follows immedi-
ately as

R Rn

N

k 0

r2
k l2

k 2
kk

N

k 0

1 k r2
k kl2

k 2
kk

45

To now link the length to the recorded PSD of the sur-
face sample in question, one employs the Wiener-
Khinchin-Einstein theorem (Wiener, 1930). A procedure 
for this is further discussed in Section 3.3, and is based 
on the known fact in wave scattering theory, that in the 
close vicinity of a reference point where r 0, the autocor-
relation function of any surface resembles a Gaussian auto-
correlation function (Beckmann, 19 73). Hence, it has been 
shown in this section that by extending the poly-Gaussian
model of Litvak and Malyugin (2012), the features relevant 
to scattering off any arbitrary surface, i.e. the height and 
slope distributions, as well as two-point autocorrelation
functions can be modelled by a small set of 2 3 param-

Cn 

Rn. Rn 

r c r 
Cn C 

Rn 

Rn 

N 
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eters, namely and with 0 N and an auto-
correlation length R. In practice, however, R need not be 
selected based on the autocorrelation length of a real sur-
face, and instead can be set to the value of 1. Then, a dif-
ferent set of parameter lk 

lk 
R a rk 

rk 
R should be 

sought, which are defined as the autocorrelation-
normalised poly-Gaussian parameters and are nondimen-
sional. However, for notation simplicity, in the rest of this
study, we assume 1 and the parameters and k to
already be normalised and nondimensional.

rk lk k 

s nd 

R lk r 

3.3. Scattering solution through a modi fied kirchhoff

approximation

In Section 3.1, it was shown under certain assumptions 
that gas-surface dynamics can be reduced to a class ical
electromagnetic wave scattering problem described by the
Helmholtz Equation (12). Furthermore, the boundary of 
this problem, i.e. the height profile of the surfa ce, has been
characterised in a general form in Section 3.2. The task at 
hand is to find an expression for the power of the scattered 
wave field, assuming a normalised incident plane wave of
the form

Wi x exp iki x where ki 

2p 
k 

sin hi 0 cos hi T

46

The reflected wave will then be a function of the incidence 
angle and two reflected angles and defined as in
Fig. 6. The domain of Eq. (12) is henceforth defined as 

and the surface profile is hence denoted with the open 
boundary X . To compute this wave, the Kirchhoff
approximation introduced by Beckman et al. (1987) is 
employed. We begin this section with the derivation of this
method from (Beckman et al., 1987) for a general surface, 
and then we proceed to extend it for poly-Gaussian sur-

hi hr1 hr2 

X,
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kr. R 
B R x y 

kr i 

Fig. 7. A sketch of a plane wave reflecting off a rough surface, observed 
from a point, P, situated infinitely far away from the surface in the 
direction of Here, is the distance between the observer and point

0 is the distance between the same observer and the origin, n is the
height profile of the surface and s the reflected wave vector.
faces. According to it, the scattered field solution can be 
expressed using the Helmholtz integral as a function of
the wave function values on the surface itself, i.e.

Wr P 
1 
4p 

X 

Wr x 
G x 

nL 
G x 

Wr x 

nL 
dS 47

where 

G x 
exp ikr x 

x 
48

is the Green function of the surface boundary,

kr 2p 
mvr 
h 

49 

is the wave vector of the reflected wave, and v the veloc-
ity of the reflected particle. A detailed de rivation for
obtaining the Helmholtz integral mentioned above is given
in Appendix A. 

r is 

At the heart of the Kirchhoff approximation lies the 
assumption that the reflected wave function 

x x X, and its normal derivative on the surface 
boundary x 

L 
x X, are local ly described by the solu-

tion of a wave reflected from a smooth, infinite plane

(Beckman et al., 1987). Hence, x and are given by

Wr 
Wr 

n 

Wr nL 

W x 

Wr x 0 and Wr x 

nL 
2iWi x 

kr 
ki 
ki n L 50

respectively, where is the local surface normal, s the 
incident wave vector, and kr and ki are the 
wave numbers of the reflected and incident waves. This 
approximation is accurate when the incident wavelength 

is much smaller than the smallest surface curvature 
x y at point x  y  n x y T , i.e. k R x y . Suppose 

the wave is reflecting off a surface at a point B, and suppose
an observer is situated at an infinite distance away from
this point, in the Fraunhofer zone of diffraction, where
the reflected wave can safely be assumed a plane wave
(Beckman et al., 1987). Let be the distance from point 
B to the observer, and the distance from the origi n to
the same observer. In this situation, illustrated in Fig. 7, 
the Green function of the surface is given by

nL ki i 
kr ki 

ki 
R i 

R 
R0 

G x 
exp ikrR 

R 
exp ikrR0 ikr x 

R0 

with R R0 
k r x

kr
51

Substituting the Green function above, together with the 
smooth plane solutions into Eq. (47), results in

Wr P 
1 
4p 

X 

exp ikrR0 ikr x 

R0 

2i exp i 
kr 
ki 
ki x 

kr 
ki 
ki nL dS 

i exp ikrR0 

2pR0 
X 

exp i v x ki nL dS 52
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In the equation above, the vectors k nd v k i kr can be
deduced from Fig. 6 as 

ki ki 

sin hi 
0 

cos hi 
and v kr 

sin hi sin hr1 cos hr2 

sin hr1 sin hr2 

cos hi cos hr1 

53 

while the local surface normal vector is defined by 

nL 

n x y 
x 

n x y 
y

1

54

Here, the ector should not be confused with the incident
and reflected particle velocity vectors from Section 2.2, i.e. 

and . Making these substitutions into the previous 
equation and assuming the surface X is a rectangle with 
limits X X and Y Y centred arou 0 0 , one 
arrives at 

Wr hi hr1 hr2 

iexp ikrR0 

2pR0 
X 

X 

Y 

Y 

exp iv x 
n x y 

x 
sin hi cos hi dydx

55

Integrating the above equation by parts and ignoring the
’edge effects‘ fo X 1 a Y 1 (Beckman et al.,
1987) gives 

i a 

v v 

vi vr 

nd 

r nd
Wr hi hr1 hr2 

i exp ikrR0 

2pR0 

vx 
vz 

sin hi cos hi 

X 

X 

Y 

Y 

exp iv x dydx 56
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At this point, it is convenient to normalise the reflect ed
wave function with the wave function

Wr0 hi 
ikr exp ikrR0 XYcos hi 

pR0

57

equivalent to a specular reflection off a smooth, infinite 
plane, i.e. in the direction defined by hi and 0.hr1 hr2 

qDefining the quantity hi hr1 hr2 

Wr hi hr1 hr2 
Wr 0 hi

analo-

gously to Beckman et al. (1987) yields 

q  hi hr1 hr2 

1 
2XY cos hi 
1 cos hi cos hr1 sin hi sin hr1 cos hr2 

cos hi cos h r1
X

X

Y

Y

exp iv x dydx

58

Defining 

F k 
1 

2 cos  hi 
1 cos hi cos hr1 sin hi sin hr1 cos hr 2

cos hi cos hr1
59

and A XY 60

leads to the final expression for the normalised scattered
field:

q  hi hr1 hr2 

F k 

A 

X 

X 

Y 

Y 

exp iv x d ydx 61

Up to this point, we have closely followed the derivation
from (Beckman et al., 1987), and obtained an expression 
for the scattered wave function in the Schrödinger equa-
tion. Indeed, the quantity of interest for GSI problems is 
not this function, but the probability of a particle scattering
at a given angle. This is given by the mean scattered power
qq hi hr1 hr2
F 2

k

A2

X

X

X

X

Y

Y

Y

Y

exp i vx x2 x1 vy y2

F 2
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exp i vx x2 x1 vy y2 y1 vz l2 l

F 2
k

A2

X

X
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Y
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exp i vx x2 x1 vy y2 y1 vz l2 l
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of this wave function, defined by qq , wher defines 
space averaging. For a stochastic surface height profile, this
is given by

qq hi hr1 hr2 

F 2 
k 

A2 

X 

X 

X 

X 

Y 

Y 

Y 

Y 

exp i  vx x2 x1 

vy y2 y1 vz n2 n1 

dy1dy2dx1dx2 62 

where the scattered power is integrated over two arbitrary 
points x1 y1 and x2 y2 on the surface. Now, 
we make the Kirchhoff model compatible with po ly-
Gaussian surfaces by assuming the statistics o x y to be
given by Eqs. (32) and (3 5). Then, we can separate the deter-
ministic and stochastic components in the above expression. 
Keeping in mind that for a poly-Gaussian surface, the local 
mean surface height y neednot be zero, the height profile 
can be split a x y n n l x y n x y ,  where

x y is the randomly fluctuating component of the surface 
with a mean o n 0. Then, the mean scattered power 
becomes 

qq hi hr1 hr2 

F 2 
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X 

X 

X 

Y 

Y 

Y 

Y 

exp i  vx x2 x1 

vy y2 y1 

vz l2 l1 exp ivz n2 n1 

dy1dy2dx1dx2 63 

where and are the local means of the surface at points
and . Furthermore, the deterministic and stochastic

terms of the exponential have been separated. The reader
may now recognize the definition of a characteristic func-
tion in the exponential term on the right side. Hence, the
equation can be rewritten as

e 

P 1 P 2 

f n 

l x 
s n 

n 
f 

l1 l2 
P 1 P 2
y1 vz l2 l1 v vz vz r1 r2 dy1dy2dx1dx2 64

1 exp
v2z
2

r2
1 2C r1r2 r2

2 dy1dy2dx1dx2 65

1 exp
v2z
2

r2 r1
2 2r1r2 1 C dy1dy2dx1dx2 66
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where and are the local variances of the surface at 
points and 2. Continuing to a closed-form solution 
for the scattered field intensity now requires a few approx-
imations. First, the mean process x y at points and

is approximated with a Taylor series expanded around
an arbitrary reference poin P 0 x0 y0 and truncated

r1 r2 
P 1 P 

l P 1 
P 2 

t 
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x2 x 1
dr
dy y y0

y2 y1 1 C

dy1dy2dx1dx2 69
after the linear term , i.e.

l1 l0 Dl l0 
dl 
dx x x0 

x1 x0 
dl 
dy y y 0

y1 y0 67

and 
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l2 l0 Dl l0 
dl 
dx x x0 

x2 x0 
dl 
dy y y0 

y2 y0 

where s the value of the mean at point P 0 n equivalent 
linea rlisation is performed for the process, resulting in

l0 i . A 
r 

r1 r0 Dr r0 
dr 
dx x x0 

x1 x0 
dr 
dy y y 0

y1 y0 68
qq hi hr1 hr2
F 2
k
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exp i vx
dl
dx x x0
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exp v2z
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and 

r2 r0 Dr r0 
dr 
dx x x0 

x2 x0 
dr 
dy y y0 

y2 y0 

Substituting these approximations into the scatt ered inten-
sity equation and taking P 0 for convenience results inP 1 
The above equation can be simplified even further by mak-
ing a change of variables to x2 x1 and D y2 y1.
Additionally, the limits of X and Y are taken to infinity, i.e.
the surface sample is considered to have an infinite size,
which gives

Dx y 
Furthermore, the scattered field intensity is expanded into
a Gaussian mixture at point , described by the control
process nd its derivatives and

P 0 
c a cx cy :
vy
dl
dy y y0

vz Dy

r dr
dx x x0

Dx dr
dy y y0

Dy 1 C dDydDx dcdcxdcy

71
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Next, vx lccxvz and vy lccyvz are introduced 
for brevity and the autocorrelation function is approxi-
mated with a Taylor series truncated after the linear term,

i.e. 1 Dx2 Dy2
2 , leading to

R 
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Neglecting the term correlating the x-axis statistics with the
y-axis statistics, xcyDxDy, allows one to separate the x
and y integrals:

2c
xp ivxDx ivyDy
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dDydDx dcdcxdcy
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Fig. 8. A sketch of a rough surface’s self-shadowing effects on gas 
particles. The blue areas represent the shadowed parts for the first
At this point, the reader may again recognise the form of a 
Gaussian characteristic function in both the x and y inte-
grals. Thus, the integration leads to
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Eq. (79) is a significant result, as it represents a closed-form, 
analytic expression of the scattered power of the gas particle 
wave function, depending only on the incidence and reflec-
tion angles, accompanied by the poly-Gaussian surface 
parameters and k and the autocorrelation length of 
the control process After normalisation, this represents 
the angular scattering probability of a part icle, which is
the building block of the scattering kernel and iterative algo-
rithm proposed in Section 3.6. Another important aspect is 
that the equation resembles the product of two Gaussians, 
namely the PDF of the slopes in the x and y-axi P nx 

and ny . This confirms that the Kirchhoff theory reduces 
to a classical mechanics analysis when the contributions of 
x y and x y to the scattered field are linearised around 

point P . Indeed, in th e domain of geometric optics, the
scattering behaviour from rough surfaces is dictated by the
slope PDF as stated by Beckmann (197 3). 

rk l 
c. 

s, 
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l r 
0 

On a different note, one unde rlying assumption of Eq.
(79) is that only one collision with the surface takes place. 
For very rough surfaces, however, this may not be true. If 
multi-reflections are to be taken into account, the Kirchhoff 
solution has to be correlated to the previous scattering
angles, denoted by hr1old , and h d

. Employing the prop-

erties of Gaussian PDFs, this can be done approximately by

hiold 22ol 
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where subscript ’old‘ denotes quantities related to the old 
collision poin Pold with control process values of 

cxold , and 
d 
. A final aspect to address is the autocor-

relation length parameter R. In Section 3.2, a relationship 
was established through Eq. (45), between this parameter 
and the physical autocorrelation length of the surface, 
under the assumption of a Gaussian autocorrelation func-
tion. If one considers a surface sample with radius R nd a
discrete, arbitrary radially-averaged PSD, then through the
Wiener-Khinchin-Einstein theorem (Wiener, 1930), its 
autocorrelation function is given by the inverse Fourier 
transform as the cosine Fourier series 
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with Fourier coefficients and and the squared ampli-

tude A2 
n B2 

n. For small values of r, this cosine series 
can be approximated as 
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As the scattering behaviour of very rough surfaces is influ-
enced primarily by local features (i.e. small r), it has been

t 
cold cyol 
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S a 

An Bn, 
Pn
reflection.
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shown that these can always be approximated in the second 
order through a Gaussian autocorrelation function with 

n 
M 
n 0Pn 

p2n2 

R2 
S 

1 
. Hence, the adjustable parameter R

can be approximated from a real surface’s PSD as

R 

R 
M 

n 0 
Pn 

p2n2 

R2 
S 

1 

N 

k 0 
r2 
k l2 

k 2
k k 

N 

k 0 
1 k r2 

k kl2
k 2

kk
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A different approach to obtaining all adjustable parameters 
lk,  and  R simultane ously is employing multiparametric

optimisation algorithms (Litvak and Malyugin, 2012). 
rk 

3.4. Self-shadowing and multi-reflections

The previous section presented in great detail a deriva-
tion of the scattered field of the gas particle wave functions 
following one surface reflection. However, for very rough 
surfaces, multiple wave reflections are expected to occur, 
which can substantially modify the features of the reflected 
particle’s angular PDF. It is therefore of interest to quan-
tify the probability of a scattered particle to reflect again 
off of the surface, given a reflection wave vect kr and
the height and slope component values. Under the assump-
tion of isotropy, this analysis can be performed in one
dimension. Then, the particle trajectory is fully described

by the quantities n0 n0p and , with being the sur-

face slope perpendicular to the radial direction, as sketched
in Fig. 8. Several authors (Beckmann, 1965; Smit h, 1967;
Brown, 19 80) have tackled a similar problem in the context 
of electromagnetic wave scattering. For the purposes of
this paper, the method developed by Smith (1967) is 
adopted due to its accuracy and simplicity, and modified 
for poly-Gaussian surfaces. To this end, the shadowing 
function 0 0 1 , where S hr1 n0 n0 n0p r , 
is defined as the probability that a gas particle will not
collide with any part of the surface for distances shorter
than r, given its initial aforementioned parameters. Then,
the sought-for multi-reflection probability is

or 

n0 hr1 n0p 

S S 

P particle reflects again hr1 n0 n0 n0p 

lim 
r 

S hr1 n0 n0 n0p r S h r1 n0 n0 n0p 84

Following Smith (1967), this function can be developed 
into a simple ordinary differential equation by expressing 
its value at Dr in terms of its value at r:r 

S hr1 G r Dr S hr1 G r 1 g  r  Dr 85

Here, the parameters n0 and were lumped together 
into the proxy parameter G and g  Dr represents the prob-
ability that the gas particle hits the surface in the interval 

r Dr provided that it has not at distance r. Expanding
the left-hand-side term into a Taylor series truncated after

n0 n0p 
r  

r 
830
the linear term leads to a first order ordinar y differential
equation with the solution

S hr1 G r S hr1 G 0 exp 
r 

0 

g  s  ds 

h g n0 exp 
r 

0 

g  s  ds 86 

where cot hr1 and x  is the unit step function defined 
as 

h  x  
0 x 0 
1 x P 0 

87 

The function r  Dr is constructed as the conditional prob-
ability of two events. The first is that the gas particle is not 
shadowed and, therefore, is above the surface at r, i.e. 

gr n r . The other is that the gas particle is shad-
owed a r Dr, . n0 g r Dr 6 n r Dr and 
6 n r Dr . Hence, 

g  r  Dr P n0 g r Dr n r Dr g6 n r Dr n0 gr n r 

P n0 g r Dr n r Dr g6 n r Dr n0 gr n r

P n0 gr n r

88

Expanding the probabilities in the denominator and
numerator leads to

g r Dr

Dr

g

n g P n n G r
n n0 gr

dn

n0 gr

P n n G r dndn

89

It has already been shown in Section 3.2 that the PDFs of 
the height and slopes are independent variables for a Gaus-
sian surface. The same is now assumed for a poly-Gaussian 
one. It is further assumed that new collisions occur at a far

enough distance r that n nd n e independent of n nd n0
(Smith, 1967). Then, the expression reduces to 

g  r  Dr 
g 

n g P n dn 

n0 gr 

P n dn 

P n0 gr Dr 

Dr 
F n0 gr 

dF 
dn n n0 gr 

g 

n g P n dn 90 

where x  is the cumulative distribution function of the
PDF x (Brown, 1980). Substituting the above form ula
into Eq. (86) and changing integration variables from r
to eads to

g h  

g  

n0 
t i.e 

g 

a ar 0 a 

F  
P  

n l
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S hr1 n0 n0 h g n0

exp
1

g
g

n g P n dn

n0

1

F n
dF
dn

n dn 91

h g n0 exp
1

g
g

n g P n dn

1

F n0

dln F n 92

h g n0 F n0

1

g
g

n g P n dn

93

Up to this point, we have followed the derivations of the
shadowing function from (Brown, 1980). Now, we adapt 
the expression of this function for the Kirchhoff model. 
In the case of gas particle scattering, the condition that 
P n0 for the reflected particles is always satisfied, for if 

not, they would scatter through the surface, which violates
impermeability, and is physically impossible. As a result,

the g n0 term is dropped, and oses its dependence

on By inserting Eqs. (32) and (35), hr1 n0 becomes 

g 

h S l 

n0. S 
S hr1 n0 P c 
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2

1 erf
n0 l c

r c 2
dc

1
g

g

P c P c n g 1 

2p c2rc c 2 2 r c 
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2 
exp 

n gcc 
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2 c2rc c 2 2 r c 
T

2 dndcdc
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Working out the inner integral in the exponent leads 
to 
P n0new hr n0 P n 
F n0 

F n s 

1 
g P c P c D c c dcdc 

P c 
1 

r c 2p 
exp 

n0new l c 
2 

2r c 2 dc 

P c 1 
2 1 erf n0 l c 

r c 2 dc 

P c 1 
2 1 erf n0new l c 

r c 2
dc

1
g P c P c D c c dcdc

97
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S hr1 n0 P c 
1 
2 

1 erf n0 l c 

r c 2 
dc 

1 
g P c P c D c c dcdc 

where D c c 

w c c 

2p 
exp 

g lcc 
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2w c c 2 
1 
2 

g lcc erfc 
g lcc 

w c c 2 

and w c c 2 2
r c
T

2

rc c 2c2 95

The above equation represents the desired analytical 
expression of the probability of a particle colliding with 
the surface, given an initial reflection angle and height 

We now derive, from this shadowing function, another 
important quantity to the development of a multi-reflection 
GSI algorithm, namely the probability of a gas particle hit-
ting the surface at heigh n, given its initial conditions
described by G. This probability is immediately found as

hr1 

n0. 

t 

P n0new hr n0 S hr n0 r P n 96
Expanding the expression o S hr n0 r using Eq. (91)
results in

f
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which is the final form of that probability. A final 
expression needed for the Kirchhoff model is the probability 
of a particle hitting the surface at a given heigh on its
initial reflection, given the incidence angl i, which is is
given by

t n 0
e h 
P n0 hi 
S hi n0 

S hi 
P n0 

1 
S hi 

P c 
1 
2 

1 erf 
n0 l  c  

r  c  2 
dc 

1 
g 

P c P c D c c dcdc 

P c 
1 

r  c  2p 
exp 

n l  c  2 

2r  c  2
dc with S hi S hi n0 P n0 dn0 98
Following the theoretical framework developed in Sec-
tion 3.4, we now return to Eq. (80) and re-examine the poly-
Gaussian mixture defined by the processes y and x y
through the lens of shadowing and multi-reflection phenom-

ena. Specifically, we define the new joint PDF c cx cy hi ,
which describes the ”apparent” mixture observed by the
incoming gas particles, given the angle of incidence

3.5. Poly-Gaussian mixture self-shadowing

c x c 

P 

hi: 
P c cx cy hi P particle hits surface at c cx cy 

S hi n nx 
ni nL 
nL nG 

P n nx ny c cx cy dnxdnydn P c P cx P cy 
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g 
cos hi arctan nx 
cos arctan nx 

F n 
1 
g 
g 

s g P s ds 

P n c P nx c cx dnxdn P c P cx P cy

99
where s the incident unit vector, n 0 0 1 T is the glo-
bal surfa ce-normal vector an nL is the local surface-

ni i G 

d 
P c cx cy hi F l D DF l D 1P l n l P n c d

P c P cx P cy

F l D

g
cos hi arctan nx

cos arctan nx
P ny c cx

832
normal vector. Furthermore, in the above equation, the

y-axis invariance of the shadow function hi n nx was

employed. To simplify it further, the height-dependent

S 
term F n 
1 
g 
g 

s g P s ds 

is expanded in a Taylor series around 
the local mean c and truncated after the linear term, i.e.l  

F n D F l D DF l D 1 P l n l 100
where D 1
g

g

s g P s ds. Substituting this approxima-

tion into Eq. (99) gives
n
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cos hi arctan nx
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101
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where hi l  c  H c cx hi denotes the poly-Gaussian mix-
ture shadowing term as a function of the processes c d c 
and the incidence angle It modifies the poly-Gaussian 
mixture probability c P cx P cy such that shadowing

effects and multiple reflections are accounted for. Hence,
the general Kirchhoff solution in Eq. (80) is adapted to 
include this modification as follows:

S 
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2 1
2
r2
cc

2
y

dcdcxdcy
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3.6. Iterative algorithm and Gaus sian simplification

At a top level, the GSI model proposed in this paper 
should have the capacity to be written in the general scat-
tering kernel form outlined in Eq. (1), to represent a 
boundary condition to the Boltzmann transport equation 
describing free-molecular flow. The underlying probability 
of the reflected velocity vr should capture multiple pos-
sible geometrical reflections and local interaction phenom-
ena into one overarching expression between the incident
and reflected velocities. The necessary components for such
an expression have already been derived in Sections 3.2, 

P 
833
3.3, 3.4, where a modified poly-Gaussian surface model 
was used to derive the angular scattering probability 
q hi hr1 hr2 through the Kirchhoff approximation 

under the assumption of local specular reflection and, then,
a probability of self-shadowin S hr1 n0 was included.
Based on these components, the kernel for one reflection is

q 

g 

KK vi vr 

vi nL 0 

KL viL vrL 
vrL 
vr 

P nL vi rk lk R 
nL 

vrL 
dnL 
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where the subscript K stands for Kirchhoff, and
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Here, a change of variable was performed in the Kirchhoff
solution from Eq. (80), from incidence and reflection angles 
to the local surface normal vector However, the reflec-
tion angles and 

s 
do not describe the final reflected 

particle direction, and instead represent the direction said 
particle would take assuming local specular reflections, 
i.e. KL viL vrL 

vrL 
vr 

1. Furthermo KL vi L vrL
denotes the local scattering kernel with the velociti viL
and in the local reference frame. Analogously, the ker-
nel for any additional reflection is defined by

nL. 
hr1s hr2 

re, 
es 

vrL
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where the subscript CK stands for correlated Kirchhoff and
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P nL vi nLold 
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Using the two expressions above for the uncorrelated and
correlated Kirchhoff kernels together with hr1 n0 , one
can define the multi-reflection

S 
KMR vi vr S vr n0 KK vi vr 1 S vr n0 
c 1 

vr1 c 
nG 0 

KCK vi vr1 

c 1 

k 1 
1 S vrk n0 KCK vrk vrk 1 

S vrc n0 KCK vrc vr dvr1 dvrc
vrc
vr

dn0 113
where the subscript MR stands for multi-reflection. The
formula above describes the complete kernel proposed in
this paper, and is prohibitively complex to express in a
closed-form. It serves no purpose beyond being a starting
point to a formal mathematical proof for the three required
properties of scattering kernels: non-negativity, normalisa-
tion, and reciprocity. Thankfully, the first two can be
inferred from the expressions for KK vi vr
KCK vi vr , and viL vrL . Reciprocity, on the other
hand, is less straightforward to infer based solely on the
form of these expressions. Nevertheless, for the practical
purpose of sampling velocities with this kernel, the iterative
approach illustrated in Fig. 9 is much simpler than using
Eq. (113) directly. In this approach, several non-standard
PDFs need to be sampled, i.e. KK vi vr rk lk R
KCK vi vr viold vrold rk lk R KL vi vrL P n0 hi and

n0new n0old hr1 . While samplin KL viL vrL can be

KL 

P 
L 

g 
834
decomposed into the sampling of a series of Gaussian 
and uniform PDF s through the graphical method outlined
in (Padilla and Boyd, 2007), the remaining PDFs require a 
more involved approach. For this, the Metropolis–Hast-
ings algorithm as given in (Metropolis et al., 1953) was 
employed, due to its computational efficiency. Another
advantage of using this method is its laxity on the normal-
isation condition, as PDFs sampled with it need not be nor-
malised. The iterative algorithm in Fig. 9 begins by
sampling the initial height where a gas particle approaching
from incidence angle s likely to collide with the surface
based on the PDF n0 hi . Next, the initial scattering
angles and , which arise from the surface roughness,
are determined through sampling the Kirchhoff kernel

vi vr . From these angles, a local surface normal is
computed and, after transforming from global to local sur-
face frame, the local scattering kerne L vi vr is also
sampled to obtain the reflected particle’s velocity relative
to this normal. After transforming this velocity back to

the global surface frame, where 001 T , the rescatter-
ing PDF is sampled throug hr1 n0 . If a rescattering

occurs, a new height is sampled through n0new hr1 n0old
and the process repeats with another Kirchhoff sampling,
this time using the kern KCK . Otherwise, the current
reflected velocity r and number of collisions N are
returned. This simple algorithm samples the kern KMK

hi i 
P 

hr1 hr2 

KK 

l K 

nG 

h S 
P 

el 
v 

el
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Fig. 9. A flowchart of the proposed GSI model iterative process of accounting for multiple reflections.

835
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in Eq. (113) while also simulating the 3D trajectory of a gas 
particle and the number of collisions with the surface. It 
can further be used to infer the reciprocity of the proposed 
Kirchhoff model. Since roughness-based scattering mecha-
nisms do not alter the magnitudes of reflected gas particle 
velocities, they should not affect an incident flux following
the surface’s equilibrium velocity distribution. Neverthe-
less, the conformity of the proposed Kirchhoff model with
the reciprocity property of scattering kernels is explored in
detail in Appendix C.

While the derivations behind the method may seem 
involved, the proposed GSI model still requires only 
between 1 and 4 coefficients and l nd the autocorrela-
tion length R to describe the geometric scattering off of 
almost any surface. Special attention should be given to 
the case of a surface with a purely Gaussian height PDF,
which has the same form as Eq. (32), with the exception
that c and l c become constants. In this situation,
the model greatly simplifies, with the Kirchhoff solution
and shadowing PDFs become
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where only one model parameter is required to describe 
the scattering kernel R, namely the roughness parame-
ter Furthermore, it can be easily shown that Rn. 
Such a simplification is particularly attractive if one seeks 
to solve the inverse GSI problem, i.e. estimate this
parameter based on in-orbit acceleration data through
a procedure similar to that of March et al. (2021). There-
fore, Section 4 investigates the discrepancy in the scatter-
ing indicators caused by the Gaussian surface 
assumption and its effec t on the drag coefficien D of
a given satellite geometry.

KM 
r 
R. R 

t C 

3.7. Model limitations and range of validity

Several assumptions and simplifications were made in 
the development of the GSI kernel in Eq. (113), some of 
which have important implications that could limit the 
range of applicability. By far, the most important one
is the analogy between gas particles and waves, which
holds if the trajectories of the former remain undisturbed
836
until contact with the surface is achieved. This imposes a 
lower limit on the roughness scales where the model is 
applicable. These scales, defined by their minimum radius 
of curvat ure must be much larger than the depth of
the potential well that characterises the surface, i.e.

W, as described in Section 2.2. Interactions occur-
ring due to roughness at smaller scales, e.g. atomic cor-
rugations, should be considered ”local ” and accounted
for through a model such as the Washboard model of
Liang et al. (2018). 

R, 
W 

R 

Another limiting assumption of the model comes from 
the derivation of the Kirchhoff approximation, which 
assumes the scattered wave field at the surface boundary
to resemble that of an infinitely-flat and smooth plane
(cf. Section 2.3). Beckman et al. (1987) claim this hypothe-
sis is valid if the wavelength of the incident particle is much 
lower than the smallest radius of curvature on the surface,

i.eR, 

4p R cos m ki with m ] ki n L 115

If one now considers the largest wavelength encountered 
abundently in the atmosphere, given by the Helium atom 
with molar mass He = 4g mol−1 , and assumes a represen-
tative velocity of 7000m s−1 , then this wavelength is 
approximately = 0.14A. Even for a grazing incidence 
angle of 85°, this wavelength is approximately 20 times 
smaller than the lattice parameter of an iron crystal, which

is = 2.85A. As such, this assumption is valid for almost
all angles, gasses and materials encountered in GSI prob-
lems, i.e. it does not limit the model’s applicability.

M 

ki 

a 

A third, very important shortcoming of the Kirchhoff 
model comes from the assumption of inverse-squared 
exponential autocorrelation functions for r and r .
This limits the PSD of a surface generated with this model
to the form

Cc C 

PSD m F C  r  m exp r2 

R2 2pimr dr 

R p exp p 2R2m2 116

where r  stands for either r or r . This equation 
exhibits a different behaviour compared to the typical frac-
tal surface model used in many studies (Karan and Mallik
(2008, 2021 )), which is characterised by the Hurst coeffi-
cient H  q  . Consequently, the poly-Gaussian surface 
approach may mis represent the larger length scales of the
surface, as illustrated in Fig. 1. Therefore, careful selection 
of the length-scale range is necessary for experimental fit-
ting to 3D surface data. However, this is usually not a con-
cern, as demonstrated in Eq. (83) by the 

S 
factor, which 

shows that the highest frequency components of the PSD
(and thus the smallest length scales) predominantly influ-
ence the autocorrelation length R. In other words, surface
roughness is largely determined by smaller length scales.

C Cc C 

p2n2 

R2
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Table 1 
Input parameters for the Gaussian model analysis.

Parameter Name Value Unit Parameter Name Value Unit 

vi 7000 [m/s] r R 0.2, 0.4, 0.8 [–] 
MHe 4 [g/mol] hi 15, 45, 75 [ ] 
Nparticles 100000 [–] CLL, aN 0.0, 1.0 [–] 
T S 300 [K] CLL, rT 0.0, 1.0 [–] 

Fig. 10. On the left: illustrations of three Gaussian surface samples with roughness values of 0.2, 0.4 and 0.8. On the right: the height ( nd slope (
PDFs of these surfaces.

n) a n) 

 

A final limitation to the kernel stems from the poly-
Gaussian surface model itself. It was proven in Section 3.2 
that the slope PDF n of the surface depends on the 
control process x y , which is a free parameter of the 
model. Since this PDF is directly linked to the scattering 
behaviour, the choice of may significantly limit the range 
of slope statistics that can be captured. In particular, if c 
the standard Gaussian process, and its derivative c also a 
Gaussian process, then this imposes a symmetry constraint 
around zero on the quantities c c and c c, which, in
turn, imposes a symmetry constraint on the entire slope

PDF n . In fact, any symmetrical proces results in

the same limitation. This, in turn, excludes any anisotropic
surfaces from being modelled, such as those analysed by
Shoda et al. (2022), exhibiting a ”saw-tooth pattern”.  To
circumvent this, the Gaussian processes of the model would 
have to be generalized in terms of a ”global orientation 
angle ” parameter, and a different choice of would have
to be made as well, at the expense of analytical simplicity.

P 

c 

c 
is 

is 

rc lc 

P s c 

c 
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4. Results and discussion 

4.1. Model verification with ray tracing simulations

To verify the mathematical accuracy of the Kirchh off
model described in Section 3, an extensive series of tests 
was performed using an alternative benchmark method 
across a portion of the parameter space likely to be encoun-
tered in the thermosphere environment. For benchmark-
ing, we employed a Test Particle Monte Carlo (TPMC) 
approach, where incident particles with a given velocity 
vector scatter from a rectangular geometry sample of a
surface defined by N 2 normalised coefficient k and

k 0 N , using a local kernel K vi vr . The CLL ker-
nel, as described by Lord (1995), was chosen for modelling 
the local interactions due to its ability to empirically repli-
cate the quasi-specular behaviour observed in many exper-
imental scattering results from atomi cally smooth or
”clean” surfaces, where impulsive scattering is the domi-
nant interaction mechanism (Xu et al., 2023; Murray

vi 
2 s l 

rk L
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Fig. 11. The YZ-plane marginal angular PDFs of Helium gas particles with different incidence angles, scattering from Gaussian surfaces with different 
levels of roughness. The model-generated results are shown in solid lines, while the TPMC simulation results are given in dotted lines. The incident
direction is depicted with a black arrow.
et al., 2015; Murray et al., 2017). The software implement-
ing the TPMC algorithm used in this study, named
”GSI_ToolBox,” has been published under the Apache
838
2.0 license on the 4TU.ResearchData repository (Anton 
et al., 20 25). As an indication of computational perfor-
mance, for a reference number of 1,000 particles, each
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TPMC simulation run discussed in this section took an 
average of 370 CPU seconds, while sampling the proposed 
model took only 20 CPU seconds. However, these values 
can vary widely based on the type of roughness and the 
chosen resolution for the surface sample geometry. A 
slightly rough surface requires less geometric resolution,
which shortens the TPMC runtime. Conversely, simulating
a very rough material, such as eroded Kapton, substan-
tially increases the required CPU time of such simulations.
The new model sampling time, on the other hand, remains
relatively constant.

The first set of verification tests focused on the Gaussian 
version of the Kirchhoff model as given in Eq. (114). For 
this analysis, the varied parameters included the surface 
roughness parameter R, the normal energy accommoda-
tion coefficient the tangential momentum accommoda-
tion coefficient of the local CLL kernel, and the angle of 
incidence hi. Their tested ranges are

0 1 0 0 0 1 0 0 0 1 0 , and 75 , respectively. Sev-
eral representative cases from this analysis are presented in
this section, with the model input parameters provided in
Table 1. Since it is impossible to present all analysed cases, 
only the extreme cases of the CLL kernel parameter space 
are presented, as they show the most diverging behaviour 
between the Kirchhoff model and the TPMC simulations. 
Furthermore, the incidence angle i 15 hi 45 and 

75 are chosen to represent most flow-facing surfaces 
of satellites in the thermosphere. In a similar manner, three
surfaces with roughness parameters of

R 0 2 r R 0 4 and R 0 8 were selected, as they
succinctly capture the effect of geometric roughness on
the scattering behaviour. Renders of the rectangular geom-
etry samples for these roughness parameters are shown in
Fig. 10 on the left1 . On the right side of the same figure, 
the height and slope PDFs of these surfaces are plotted. 
These were normalised on the horizontal axis with the
autocorrelation lengths of the surfaces.

r 
aN , 
rT 

0 0  

s h 
hi 

r r 

Angular scattering plots were generated for each of the 
test cases outlined above using a number of particles of

articles 100000 in the TPMC simulations. Fig. 11 shows 
the marginals of the 3D angular scatteri ng PDF onto the
YZ plane (cf. Fig. 6 for the definition of the YZ plane). 
Overall, good agreement is observed between the Kirchhoff 
model and TPMC angular PDFs across all considered test 
cases. An increase in accuracy can be noticed for increasing 
incidence angles across all CLL parameter combinations. 
This is expected because of the assumption of indepen-
dence between the pairs n0 and in Eq. (90). If a par-
ticle has a higher initial incidence angle, it is likely to travel 
further in the horizontal direction after its first reflection, 
making that assumption more valid for higher incidence
angles. A particle under normal incidence, however, is
more likely to remain in close vicinity to its original scatter-
ing point as it ”penetrates” the surface deeper, hence result-
ing in an underestimation of the shadowing probability

hr1 n0 . A second important feature visible in Fig. 11 is 

Np 

n0 n n 

S 
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the larger discrepancy of test cases with zero tangential 
momentum accommodation, i.e. 0 0 and high normal 
energy accommodation, i.e aN 1. This may also be 
explained through the assumption of independence in Eq. 
(90). In this scenario, a particle incident to a surface at a 
high speed loses most of its normal momentum, but pre-
serves its tangential component, resulting in a reflection 
direction that is almost tangent to the local surface plane.
As a result, if the particle originally hits a ”valley” of the
surface, it is bound to experience a second collision close
to its original one, which goes against the assumption of
independence. Such a discrepancy is most evident for the
case where 15 aN 1 0 rT 0 0 in Fig. 11. The 
reader should note that the YZ marginals shown in the 
aforementioned figure represent only part of the picture.
Similar scatter plots for the XY marginals are presented
and discussed in Appendix B. 

rT 

. 

hi 

From a phenomenological perspective, increasing the 
roughness parameter introduces considerable backscatter-
ing across all CLL parameter combinations, which aligns 
with experimental observations of noble gas scattering
from various rough surfaces (Erofeev et al., 2012;
Erofeev and Nikiforov, 2014; Shoda et al., 2022;
Ozhgibesov et al., 2013; Liao et al., 2018; Liu et al.,
1979). Furthermore, this is also empirically inferred in
Bernstein and Pilinski (2022) and Bernstein (2023) under 
orbital conditions, where a diffuse scattering component 
was employed to capture such effects. This corroboration 
supports the view that backscattering is indeed prevalent 
in the orbital regime, highlighting both the success of the 
DRIA model and the ways in which they may be incom-
plete in fully describing the underlying physics. It is impor-
tant not to confuse backscattering with the ”rainbow
scattering” effect discussed by Livadiotti et al. (2020) and 
observed in experiments such as those by Pollak an d
Tatchen (2009), which results from the sinusoidal nature 
of the ”apparent” atomic surface due to the lattice struc-
ture of most metals. Another noticeable effect of geometric 
roughness is the broadening of the quasi-specular scatter-
ing lobes across all varied parameters, leading to a more
diffuse scattering for rougher surfaces. This effect has been
observed in numerous ground-based experiments, such as
those by Comsa et al. (1980) and Sazhin et al. (2001), which 
recorded global tangential momentum accommodation 
coefficients close to unity for many metal surfaces, includ-
ing titanium and silver, under noble gas scattering. In the 
absence of adsorbate contamination, this behaviour can 
be attributed to geometric imperfections in the test sam-
ples. To better understand both of the aforementioned
roughness-induced mechanisms, one should study the
statistics of the reflected gas particle velocity vectors per
normal/tangential component. For the sake of brevity,
such PDFs are provided in Fig. 12 only for an incidence 
angle of 45 . Analysing the effect of roughness on 
these PDFs per component reveals a significantly stronger
diffusive effect in the tangential direction compared to the

hi
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Fig. 12. The YZ-plane marginal normal and tangential velocity PDFs of helium gas particles with an incidence angle of hi , scattering from Gaussian 
surfaces with different levels of roughness. The model-generated results are shown in solid lines, while the TPMC simulation results are given in dotted
lines.

45 
normal direction. This is particularly evident in the cases of
rT 0 0 0 0 and aN rT 1 0 0 0 , where the

mean of the tangential velocity PDF shifts sharply to the
aN 
840
left and develops a negative velocity tail. Conversely, a
much smaller, opposite effect is observed in the normal
direction, where for N rT 1 0 0 0 the mean of thea
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Fig. 13. The variation of the global normal and tangential momentum accommodation coefficients with respect to the incidence angle for a Gaussian 
surface with a roughness level of 0 4. The extremes of the local CLL kernel parameter space rT ) are plotted.r R (aN 
PDFs shifts toward higher velocity values when the surface
is rougher. This is likely due to surface shadowing effects,
which focus the reflected particle stream upward, resulting
in less ”global” normal momentum accommodation. The

rT 0 0 0 0 case is particularly interesting. In this
scenario, with no local accommodation, the scattered gas
particles retain their incident velocity magnitude. However,
as roughness increases, the tangential velocity PDF shifts
its mean towards 0, whereas the normal velocity is hardly
affected. This means that the reflection changes from spec-
ular to diffuse as the roughness increases. This behaviour
closely resembles the DRIA model with an accommodation
coefficient of 0 0. In the case of complete local accom-
modation, i.e. rT 1 0 1 0 , the effects of roughness
are negligible for both velocity components. Since the local
accommodation already results in a diffuse reflection, it
cannot get more diffuse due to roughness. Instead, only a
minor backscattering effect is observed. If the full local
accommodation is the result of atomic-level corrugations
on the surface, this invariance to geometric roughness sup-

aN 

a 
aN 
Table 2 
Input parameters for the poly-Gaussian model analysis.

Parameter Name Value Unit P

vi 7000 [m/s] l
MHe 4 [g/mol] r
Nparticles 100000 [-] h
N 40 [-] C
T S 300 [K] C
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ports Eq. (83), which predicts that the larger wavelength 
components of a surface profile have a much smaller 
impact on scattering behaviour compared to the smaller 
wavelength components. If, however, this accommodation 
is the result of the chemisoprtion processes typic ally
encountered in atomic oxygen scattering, this may also
explain why the DRIA model has seen such wide success
in modelling satellite aerodynamics at lower altitudes, as
portrayed in Walker et al. (2014); Mehta et al. (2014);
Walker et al. (2014); Pilinski et al. (2013); Pilinski et al.
(2010), where atomic oxygen is the prevalent atomic
species.

A more detailed analysis of the global momentum 
accommodation coefficient behaviour for the Gaussian
Kirchhoff model is shown in Fig. 13, where the variation 
of these coefficients with respect to the incidence angle 
is presented for the extreme values of the local CLL param-
eters and (cf. Table 1 and a roughness parameter of 

R 0 4. One key observation from these plots is that the
global normal momentum accommodation coefficient

hi 

aN rT 

r

arameter Name Value Unit 

 c 0 8 erf 2c [–] 
 c 0 1 0 8 1 erf 2c [–] 

i 15, 45, 75 [ ] 
LL, aN 0.0, 1.0 [–] 
LL, rT 0.0, 1.0 [–] 
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decreases with increasing incidence angle, regardless of the 
local CLL parameters. This effect is most pronounced for 
cases with zero local accommoda n aN 0 0 and 

0 0) and is minimized with complete local accommo-
dation 1 0 and 1 0), as expected. Similar trends
have been reported in various experimental studies, such
as Knechtel and Pitts (1973), who investigated the accom-
modation behaviour of nitrogen ions on techn ical-quality
satellite surfaces, as well as Cook et al. (1994) ,Cook and
Hoffbauer (1997), and Cook and Hoffbauer (1998), who 
conducted similar experiments for Kapton. Most notably,
Cook et al. (1994) observed negative momentum accom-
modation coefficients for a O2 surface, typical for a solar 
panel, which aligns with the behaviour of the Kirchhoff
model shown in Fig. 13. On the other hand, the tangential 
momentum accommodation coefficient appears to remain 
relatively constant with varying incidence angle, with slight 
decreases seen the aN rT 0 0 0 0 and

rT 1 0 0 0 cases. This trend somewhat agrees with
the experiments by Knechtel and Pitts (1973), although not 
enough angles were analysed in that study. Similarly, the
results from Cook et al. (1994) match the Kirchhoff model 
in magnitude, though not in trend, as their study shows a 
slight increase in the tangential momentum accommoda-
tion coefficient with incidence angle. This discrepancy
could potentially be explained by differences in roughness
values between the experimental surface samples and the
model.

tio 
rT 

aN rT 

Si 

in 
aN 

The second and final set of verification tests focused on 
the poly-Gaussian versi on of the Kirchhoff model, as out-
lined in Eq. 109, Eq. (113), and Fig. 9. This set of tests is 
very similar to those conducted for the Gaussian version, 
where the local CLL parameters, and , and the inci-
dence angle are varied within the same ranges. The key
difference is that the surface roughness of a non-Gaussian
surface is described by the functions c and c instead

aN rT 

hi 

l r  
Fig. 14. On the left: illustrations of a Non-Gaussian surface sample. O
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of the roughness parameter R. These functions have the 
same meaning as in Section 3, i.e. they define the local 
mean and variance as a functi on of the control process

y . They are provided in Table 2 along with the other 
analysis inputs and chosen display cases. T l c and
c functions defined in Table 2 were chosen to replicate 

a typical metallic surface, like polished aluminium. Such 
a surface exhibits regions of imper fections, as well as
smooth areas, in a distinctly non-Gaussian way, as seen
in Mwema et al. (2018). To merge these two regions in a 
controllable way, the error function f c c is employed 
in both transformations, where c dicta tes the rate of tran-
sition. A render of the generated sample geometry for this
surface is shown Fig. 14 on the left. On the right of the 
same figure, the height and slope PDFs of this surface 
are given. Indeed, both of these resemble mixtures of two
different Gaussians corresponding to the smooth and
rough areas.

r 

c x 
he 

r  

er 

Fig. 15 depicts the YZ-plane marginal angular PDFs of 
the Kirchhoff model and TPMC code. Much like the Gaus-
sian version of the model, the poly-Gaussian version is 
overall in good agreement with the TPMC simulations. 
The highest discr epancies are again observed when

1 0 and 0 0, and they appear to increase with
incidence angle. This is also visible in the velocity PDFs
shown in Fig. 16, particularly for the global normal 
momentum accommodation. In this instance, however, 
the root cause is twofold. On top of the independence 
assumption between 0 n0 and n in the derivation 
of the shadowing functio S h r1 n0 , the poly-Gaussian
model employs the additional assumption that the height
and slope PDFs are globally independent processes (see
Section 3.4). Although this was proven mathe matically in
Section 3.2 for the case of Gaussian surfaces, it may be a 
poor approximation for non-Gaussian ones. Indeed, if

aN rT 

n n 

n

n the right: the h ht (n) and pe (n) PDFs of the same surface.eig slo 
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Fig. 15. The YZ-plane marginal angular PDFs of helium gas particles with different incidence angles, scattering from a Non-Gaussian surface. The model-
generated results are shown as solid lines while the TPMC simulation results are given as dotted lines. The incident direction is depicted with a black
arrow.

843
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Fig. 16. The YZ-plane marginal normal and tangential velocity PDFs of helium gas particles with an incidence angle of hi 5 , scattering from a Non-
Gaussian surface. The model-generated results are shown in solid lines, while the TPMC simulation results are given in dotted lines.

4 
the variance proces r  c  has a low global magnitude 
compared to the mean pro s l  c  , i.e. r  c  2 

l  c 2 for R, then the statistics of both and are

correlated to the value of

s 
ces 

c n n 

c. 
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The best agreement with the TPMC results is again 
observed for the N rT 0 0 1 0 case. This is because 
full tangential momentum accommodation for particles 
with a high incident kinetic energy results in reflections that
are almost perpendicular to the local surface plane, hence

a
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Fig. 17. The variation of the global normal and tangential momentum accommodation coefficients with respect to the incidence angle, for a Non-
Gaussian surface. The extremes of the CLL kernel parameter space rT are plotted.aN 

Fig. 18. The global momentum relative error between the poly-Gaussian Kirchhoff model and the TPMC simulation results as a function of the local CLL
kernel parameters and for a given non-Gaussian surface and an incidence angle of 45 .aN rT , hi 
increasing the distance, on average, with the next collision 
point. Similar error behaviours between the Kirchhoff
model and the TPMC simulations are observed in Figs. 16 
and 17.  In  Fig. 16, the normal and tangential velocity 
PDFs for all combinat ions of local parameters and an inci-
845
dence angle of 45 are shown. Much like for the Gaus-
sian tests, the Kirchhoff model in the case of 

rT 1 0 0 0 displays noticeably more normal 
accommodation than the TPMC simulation, while the

rT 0 0 1 0 case shows the best agreement between

hi 

aN 

aN
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the two methods. This is portrayed even more clearly 
through the momentum accommodation variation plots
in Fig. 17.

To study this error behaviour in more detail, a relative 
error map between Kirchhoff model and the TPMC simu-
lations has been generated and is illustrated in Fig. 18 for 
all possible CLL parameters and a fixed incidence angle 
of 45 . Two relative momentum errors are plotted in
the figure, for the x and z axes, which are defined as

hi 

Ex 
pKx pT x 

pT 
Ez 

pKz pT z 

pT 
with 

pK vrK viK and pT vrT vi T 117

where and denote the velocity and mass-normalised 
momentum vectors, while the indic K T denote the 
Kirchhoff and TPMC produced datasets, and the indices 
i and r den ote incident and reflected quantities. The poly-
Gaussian Kirchhoff formulation with the example non-
Gaussian surface given in Table 2 has been chosen for this 
analysis, as it appears to be a ”worst case”, exhibiting the 
highest disagreement out of all the rough surfaces analysed 
in this study. The global normal momentum plot on the left 
exhibits the expected rise in relative error for lower val-
ues, with an error maximum of 7% at the corner of the 
parameter spac aN rT 1 0 0 0 . The tangential 
momentum error, on the other hand, exhibits its highest 
error for N rT 0 0 0 0 , of around 3%. Assuming
the TPMC simulations are ”the ground truth”, the error
plots suggest that the Kirchhoff model is very accurate
for very rough surfaces under the condition that

0 5, as a relative error below 1% is expected in the
aerodynamic coefficients in this region. Thus, provided that
the assumptions in Section 3.7 are valid and that CLL 
accurately describes local interactions, if the in-orbit 
roughness of a surface is known and 0 5, the Kirch-
hoff model is expected to provide far more accurate aerody-
namic c oefficients than empirically tuned DRIA and CLL
models, which have an accuracy ranging from several per-
cent to a few tens of percent according to Bernstein and 
Pilinski (2022),Mehta et al. (2023), and Siemes et al.
(2024). If, however, the in-orbit roughness is unknown or 

0 5, the Kirchhoff model’s parameters could still be 
empirically tuned based on in-orbit data to increase the
model’s accuracy. It should be noted that the region of

v p 

es 

rT 

e 

a 

rT 

rT 

rT 
Table 3 
Poly-Gaussian input parameters for the Kapton experiment comparison.

Parameter Name Value Unit Pa

vi 2500 [m/s] Sm
MAr 39.84 [g/mol] Sm
Nparticles 1000000 [–] R
N 40 [–] R
T S 300 [K] hi
f physisorption 0.45 [-] CL
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model validity within the CLL parameter spac aN rT 

is expected to increase for less rough surfaces. This is anal-
ysed in Appendix B. 

e 

Phenomenologically, the poly-Gaussian surface’s scat-
tering lobes in Fig. 15 display much more intricate beha-
viour compared to their Gaussian counterparts. For most 
combinations of local parameters, such as 

rT 0 0 0 0 and rT 0 0 1 0 , the scattering 
lobe appears as a superposition of two quasi-specular lobes 
with different peaks. This can be attributed to the nature of 
the example poly-Gaussian surface, which, as previously 
mentioned, features smooth regions at a positive local
mean height that abruptly transition to smooth regions at
a different, negative local mean height. This relief creates
distinct areas with either very small or very large slopes
— in effect, a superposition of smooth and rough surfaces.

aN aN 

aIn the specific case of N rT 0 0 0 0 at incidence 
angles of 15 an hi 45 , the angular scattering 
PDFs show a diffuse component superimposed on a
quasi-specular component. This behaviour aligns closely
with nanoscale roughness theory from Chen et al. (2024)
and Barker and Auerbach (1984) and mirrors the scattering 
lobes experimentally observed by Erofeev et al. (2012) and 
Shoda et al. (2022). The implication is that the attempts at 
modelling roughness mentioned in Section 2.3 indirectly 
assume the specific kind of surface described above, but 
do not take into account the effects of shadowing and mul-
tiple reflections, i.e. the interference between the smooth 
and rough patches of surface. This latter effect is already 
obvious from the case with local specular reflect ion, i.e.

0 0 and 0 0, where the smooth patches of the
surface are occluded for 75 , and most particles only
”see” the high-slope regions, resulting in a high degree of
backscattering.

hi d 

aN rT 

hi 

Where the current model diverges from the others avail-
able in literature is for e aN rT 1 0 0 0 case. 
Indeed, the increased likelihood of multiple reflections 
induced by this local parameter combination results in a
diffuse peak with a preferential direction toward 0 .
Looking in Fig. 16 at the normal and tangential velocity 
PDFs for 45 , one can observe a more pronounced 
roughness effect compared to the same PDFs for a Gaus-
sian surface in Fig. 12. A clear distinction between the for-
ward scattering and backscattering peaks in the tangential

th 

s h 

hi
rameter Name Value Unit 

ooth l  c 0 0 [–] 
ooth r  c 0 3 0 3  1 erf 2c 2 [–] 

ough l  c 4erf 2c 1 [–] 
ough r  c 0 2 0 3  1 erf 2c 1 [–] 

0, 60 [ ] 
L, aN rT 0.6, 0.2 [–] 
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velocity component is particularly noticeable in the 
rT 0 0 1 0 case. This separation is less evident in 

the normal direction, but even here, the accommodation 
is higher compared to the roughest surface in the Gaussian
verification tests. When examining the momentum accom-
modation behaviour in both the normal and tangential
directions for the poly-Gaussian case in Fig. 17, the tangen-
tial behaviour is especially distinct comp ared to the Gaus-
sian model in Fig. 13. First, the poly-Gaussian case shows a 
consistently higher level of tangential accommodation 
across all tested local parame ter combinations. This is con-
sistent with the experimental findings of Liu et al. (1979), 
who observed T 1 for all incidence angles. Second, 
unlike the Gaussian case, the global tangential accommo-
dation coefficient increases with the incidence angle h This 
trend is particularly noticeable in the N rT 0 0 0 0
and N rT 1 0 0 0 cases and aligns closely with the
experimental results of Knechtel and Pitts (1973) and 
Cook et al. (1994). This suggests that the surfaces tested 
in those experiments likely resembled a poly-Gaussian sur-
face similar to the one analysed here, i.e. a combination of
smooth regions and defect-filled areas, rather than a purely
Gaussian surface.

aN 

r 

i. 
a 

a 
Fig. 19. Illustrations of non-Gaussian surfaces resembling atomic oxygen-ero
Kirchhoff model.

Fig. 20. The height nd slope PDFs of non-Gaussian surfaces resembl
generated with the Kirchhoff model.

(n) a (n) 
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4.2. Consistency analysis with experimental results

To further validate the proposed Kirchhoff model’s abil-
ity to capture roughness effects, it was used to replicate a
series of experimental results presented by Erofeev et al.
(2012), who examined gas scattering from rough surfaces. 
More specifically, they present two sets experiments: one 
analysing the angular scattering PDFs of argon atoms 
from a smooth Kapton surface and another analysing the 
same PDFs from a Kapton surface subjected to 2.5 h of
atomic oxygen erosion, both performed at incidence angles
of 0 and 60 . The detector was placed in the YZ
plane as described by Fig. 6 at angle steps o Dhr1 10 
while the out-of-plane angle was kept at 0 . Kapton 
is commonly found on the outer surfaces of satellites an d
can develop significant roughness after extended exposure
to the atomic oxygen-rich environment of the thermo-
sphere (Banks et al., 2004), which makes it a prime candi-
date for a validity analysis of the model proposed in this 
paper. The underlying procedure of this analysis was to 
fit the GSI parameters of the Kirchhoff model to the exper-
imentally obtained smooth surfaces’ angular PDFs from
Erofeev et al. (2012) through a trial and error process,

hi hi 
f 

hr2
ded Kapton (left) and pristine Kapton (right), both generated with the

ing atomic oxygen-eroded Kapton (left) and pristine Kapton (right), both
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Fig. 21. A comparison between the argon-Kapton scattering results from Erofeev et al. (2012) and the poly-Gaussian Kirchhoff model applied with the 
two previously-generated surfaces, for incidence angles of h 0 and h 60 . The experimental results are shown as scatter plots while the model results
are shown as continuous lines. The incident direction is denoted wit.h a black arrow.

i i 
and then recover the oxidised Kapton PDFs by only alter-
ing the and parameters, which control the roughness
of the surface. The CLL kernel as given in Lord (1995) was 
again used to describe the local scattering dynamics in an 
empirical way, due to its versatility in replicating many dif-
ferent quasi-specular behaviours. On top of this, a certain
fraction of gas particles hysisorption is assumed to undergo

physisorption locally, based on the findings of Chen et al.
(2013, 2023). This was modelled at a local level as in
(Bernstein and Pilinski, 2022), by linearly superimposing 
two CLL kernels: one with quasi-specular parameters, 
and one with fully diffuse parameters. A full list of the
input parameters for the conducted simulations is given
in Table 3. In this table, the incident velocity magnitude 

, the gas molar ma MG, the surface temperature
and the incidence angle i are taken from Erofeev 

et al. (2012). The local CLL paramete aN rT and the 
physisorption fraction hysisorption are found through the 
aforementioned trial and error process. The poly-
Gaussian transformations c and r c for the smooth

lk rk 

f p 

vi ss 
T S , s h 

rs 
f p 

l  
Table 4 
Input parameters for the flat plate angle of attack (AOA) analysis.

Parameter Name Value Unit Para

vi 7000 [m/s] r R
MAO 15.999 [g/mol] AOA
Nparticles 100000 [-] AOA
T S 400 K DRI
T 200 K CLL
Sref 1.0 m2 CLL
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and rough Kapton surfaces were chosen to visually repli-
cate electron microscope pictures from Erofeev et al.
(2012) and Banks et al. (2004). These functions were para-
metrised using Hermite polynomial exp ansions with

40 coefficients and r Fig. 19 shows renders of gen-
erated surface geometries representing eroded (left) and 
smooth (right) Kapton, using these coefficients. Further-
more, in Fig. 20, the corresponding height and slope PDFs 
for both of these surfaces are plotted. Finally, Fig. 21 
shows recorded and modelled YZ plane cross-sections of 
the angular scattering PDFs for all experiments. The reader 
should not confuse the model-generated curves with the
YZ plane marginal PDFs in Section 4.1. Instead of being 
integrated over the full range of 360 , these plots 
are generated by integrating only over an assumed detector
angular width of r2 1 .

N lk k. 

hr2 0 

Dh 
It is clear from the aforementioned height and slope 

PDFs on the left of Fig. 2 0 that the rough, carpet-like Kap-
ton surface exhibits a distinctly non-Gaussian probability 
distribution for both the height and slope profiles. Largely
meter Name Value Unit 

0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 [–] 
 range [-90, 90] [ ] 
 step 5 [ ] 
A a 0.85 [–] 
, aN 0.6 [–] 
, rT 0.2 [–] 
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driven by the c  transformation, the surface consists of a 
smooth plane component centred around R 4, along 
with a region of ”spikes” visible in the height PDF through 
the large tail extending from R 4  to  R 4. As a 
result, the expected scattering behaviour of this surface at 
an incidence angle of 0 features a quasi-specular lobe
directed upwards, caused by the smooth regions, superim-
posed on a diffuse lobe biased toward 0 , due to the
pronounced shadowing effects from the spikes. This is pre-
cisely what is observed in Fig. 21 (left), both in the exper-
imental data and in the model’s predictions. For the 
smooth Kapton surface, where the spikes are absent, the 
diffuse lobe is primarily caused by minor rough imperfec-
tions, the high CLL normal energy accommodation coeffi-
cient of 0 6, and gas particle physisorption.

l  
n 

n n 

hi 

hr1 

aN 
hiWhen the incidence angle is increased to 60 , the 

shadowing effects dominate the scattering behaviour, as 
they fully occlude the smooth areas in the rough Kapton 
surface. Hence, a large degree of ba ckscattering is
expected as a result of the sides of the spikes being
exposed to the incident gas flow. This is, again, exactly
what is observed in Fig. 21 (right) in both the model 
PDFs and the experimental scatter plot. In contrast, 
the smooth Kapton surface exhibits very little shadowing
and, due to the low level of tangential accommodation of
Fig. 22. The variation of the drag (left) and lift (right) coefficients of a flat 
roughness levels. For comparison, the same variation produced with the DRIA

849
0 2, develops a significant quasi-specular lobe in the 
specular direction. The small imperfections in the sur-
face, together with the rate of physisorption, contribute
to the small diffuse lobe, superimposed over the quasi-
specular one.

rT 

4.3. Model application to simple shapes

The final analysis conducted in this study revolves 
around the applicability and accuracy of the proposed 
Kirchhoff model in computing aerodynamic coefficients. 
For this purpose, two simple shapes were considered: a 
flat plate and a sphere. The flat plate was chosen as a 
study case because it constitutes the building block in 
calculating the aerodynamic behaviour of any convex 
satellite shape in free-molecular flow conditions, due to 
the linearity of the problem at hand. The sphere, on 
the other hand, was chosen due to the abundance o f fit-
ted aerodynamic data available in literature for spherical
satellites at high altitudes (e.g., Pardini et al., 20 06;
Pardini et al., 2010; Pilinski et al., 2013). This allows 
for further validation of the model in the main atmo-
spheric region of interest for this study, i.e. altitudes 
above 400 km. Besides this, a sphere is invariant to its 
attitude, assuming uniform surface properties, which
plate with respect to the angle of attack for different levels of Gaussian
model and an accommodation coefficient of a 85 (thick dashed line).0 
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Table 5 
Input parameters for the flat plate local accommodation coefficient analysis.

Parameter Name Value Unit Parameter Name Value Unit 

vi 7000 [m/s] r R 0.0, 1.0, 2.0 [–] 
MAO 15.999 [g/mol] AOA 0, 30, 60 [ ] 
Nparticles 100000 [–] aN range [0.0, 1.0] [–] 
T S 400 [K] rT range [0.0, 1.0] [–] 
T 200 [K] aN step 0.05 [–] 
Sref 1.0 [m2 ] rT step 0.05 [–] 
greatly simplifies calculations. All investigations in this 
section have been conducted using the CLL kernel as
given by Lord (1995) to describe the local GSI.

The investigation of the flat plate’s aerodynamic beha-
viour consists of two analyses where different parameter 
sets are varied: the angle of attack (AOA), which coincides 
with the incidence angle for this shape, and the local
kernel parameters and . Both analyses are restricted
to the Gaussian formulation of the Kirchhoff model for
the sake of simplicity. Table 4 gives an overview of all 
the simulation inputs required for the first analysis. Local 
CLL parameters N rT 0 6 0 2 were chosen because
they are realistic for a typical satellite surface according
to Goodman (1965) as well as the analysis con ducted in
Section 4.2. Roughness parameters up to R 2 0 were 
considered, as we expect most satellites to have a roughness 
lower than that. Finally, an incident velocity magnitude 

vi = 7000 m/s and a surface temperature of 400 K 
were chosen to replicate the thermosphere environment,
while the atmospheric temperature was set to a lower
value of 200 K to obtain a high-altitude speed ratio value
of 15, calculated by

hi 
aN rT 

a 

r 

vi 

T 

s 

s 
vi 
2RT 
MAO 
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where is the gas constant. In this analysis, the molar 
mass of atomic oxygen, AO is considered since this spe-
cies still represents an important pa rt of the atmospheric
composition at altitudes where the Swarm, GRACE and
GRACE-FO satellites are found.

R 
M 

The resulting variation in the lift and drag coefficient 
with respect to the AOA for the flat plate are given in
Fig. 22. Similar curves are plotted for the DRIA model
of Sentman (1961), with an energy accommodation coef-
ficient of 0 85, for the sake of comparison. The value
of this coefficient was chosen based on the conclusions of
March et al. (2021), who found this as the best-fit value 
for the aerodynamic modelling of the Swarm satellites, 
with the self-consistency of neutral density datasets as 
a metric. Studying the plots, it is clear that the Kirchhoff
model is approaching DRIA as the roughness parameter

R is increased. This indicates that the kernel proposed

a 

r 
850
by Sentman (1961) empirically captures the effects of 
geometric roughness and may provide a physical expla-
nation for the wide success it has achieved in satellite 
aerodynamic modelling. Of course, these conclusions 
may only be drawn under the assumption that most 
satellite surfaces in LEO exhibit a noticeable level of 
geometric roughness. This is further studied in the next 
analysis focusing on spherical satellites. Looking at the 
drag coefficient plot in particular (on the left), roughness 
appears to produce a ”flattening” of the CLL kernel fea-
tures, i.e. a decrease in drag for low incidence angles, 
and also a noticeable increase for the high incidence
ones. It it likely that for even higher levels of roughness
than those plotted, these features will get stronger than
what is observed in the DRIA dashed curve. A similar
effect is observed for the lift coefficient (on the right),
where an overall decrease of the lift coefficient is
observed. These changes in aerodynamics directly corre-
late to the GSI phenomena described in Sections 4.1 
and 4.2, i.e. a widening of the quasi-specular lobes and 
backscat tering at near-parallel incidence angles.

The second flat plate analysis investigates the behaviour 
of the drag coefficient as the local kernel parameters a nd 

are varied at different levels of roughness. The simula-
tion inputs for this are given in Table 5. Most simulation 
inputs are the same as in the previous analysis with a few 
exceptions. The angles of attack 30 ,  and were cho-
sen to provide a comprehensive picture of changes for 
most satellite surface orientations. It was also chosen to 
fix one CLL parameter while the other one is varied, for 
the sake of clarity and because no deviating behaviours 
were observed in a similar analysis where both were varied. 
It should be noted that the tangential coefficient r s fixed
to a value of 0, whereas the normal coefficient a fixed to
a value of 1. This was done in the interest of physical accu-
racy, as it is unphysical for a gas particle to accommodate
its tangential momentum more than its normal momentum
through thermal mechanisms alone (Goodman, 1965; 
Logan and Stickney, 1966; Loga n and Keck, 1968;
Rettner et al., 1991). 

N a 
rT 

0 60  
CD 

T i 
N is 

CD N TThe resulting variations of with respect to a and r
are shown in Fig. 23. As a first observation about the vari-
ation with respect to shown on the left, the drag coeffi-aN



S.-V. Anton et al. Advances in Space Research 76 (2025) 811–864

Fig. 23. The variation of the drag coefficient of a flat plate with respect to the CLL parameters a d r r different levels of Gaussian roughness and
incidence angles.

N an T , fo

851
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Table 6 
Input parameters for the sphere - altitude aerodynamic analysis.

Parameter Name Value Unit Parameter Name Value Unit 

KDRIA 3 106 [Pa−1 ] bCLL 5.45 [–] 
KCLL 5 106 [Pa−1 ] cCLL 0.52 [–] 
KK 3 106 [Pa−1 ] dCLL 3.4 [–] 
BDRIA 13.8 [Pa] MS 26.982 [g/mol] 
BCLL 22.0 [Pa] T S 300 [K] 
BK 13.8 [Pa] F10.7 Min 60 [–] 
NDRIA 3 1010 [–] F10.7 Max 145 [–] 
NCLL 1014 [–] Kirchhoff Model Gaussian [–] 
NK 3 1010 [–] Speed ratio range [2.0, 10.0] [–] 
nCLL 30 [-] r R range [0.2, 1.0] [–] 

Fig. 24. A comparison between the drag coefficient of a sphere computed with the closed forms of the DRIA and CLL kernels as given by Walker et al.
(2014), those generated with the Gaussian Kirchhoff model for different levels of roughness, and fitted drag coefficients of the Stella and Gridsphere
spherical satellites reported by Pardini et al. (2006, 2010).  A  Langmuir isotherm was used to compute the variation.s with altitude.CD 
cient appears to ”lose” sensitivity to the local normal 
energy accommodation coefficient as the roughness param-
eter is increased, for all incidence angles. This is expected
852
based on the multiple collisions a gas particle is likely to 
undertake as this parameter is raised. As each collision 
accommodates the momentum of the particle more, this
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has an additive effect that becomes more dependent on the 
surface roughness than the local scattering laws. Another 
important observation is that the drag coefficient appears 
to increase with roughness for near-parallel angles of
attack. This is, of course, due to the backscattering phe-
nomenon that was observed in previous analyses for high
incidence angles.

C rTIn the variations of D with respect to shown on the 
right, an opposite trend emerges between the smooth sur-
faces and those with a non-zero roughness parameter. The 
smooth surfaces show a linear increase in C as r ncreases, 
while the rougher surfaces start with a high and quickly 
converge to the same value as the smooth cases at 

1 0. This can, again, be attributed to backscattering ,
which affects the reflected gas particle directions in a similar
way to tangential accommodation but without altering their
velocity magnitudes. This results in a substantial increase in
the drag coefficient, as more momentum is transferred to the
surface, especially when 0 0. As increases, particles

D T i 
CD 

rT 

rT rT 
Fig. 25. A comparison between the drag coefficient of a sphere computed with
(2014), those generated with the Gaussian Kirchhoff model for different leve
spherical satellites reported by Pardini et al. (2006, 2010).  A  Temkin isotherm

853
thermally accommodate to the surface more rapidly and 
reflect with an overall lower velocity magnitude, leading to 
a reduction in drag. Furthermore, as the incidence angle 
increa ses, the difference in between a smooth and rough
surface a T 0 0 also grows, as more backscattering
occurs.

CD 

t r 

For a final investigation, the Kirchhoff model was used 
to study the effects of surface roughness on in the alti-
tude range of 200–1000 km for a spherical satellite, and
compare the resulting with DRIA and CLL. It is known
from previous studies such as Walker et al. (2014) ,Mehta
et al. (2014), Pilinski et al. (2013),Walker et al. (2014) that 
most GSI models not only diverge from each other, but 
also (partially) disagree with observations above an alti-
tude of 400 km. It was observed that satellites with the 
same spherical shape exhibit vastly differe CD values
while orbiting at similar altitudes during comparable solar
conditions, for example Stella and Gridsphere. It was con-
cluded by Walker et al. (2014) that this is likely due to dif-

CD 

CD 

nt
the closed forms of the DRIA and CLL kernels as given by Walker et al.
ls of roughness, and fitted drag coefficients of the Stella and Gridsphere
 was used to compute the variation.s with altitude.CD 
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ferent material properties of these two satellites, such as 
surface roughness. With that in mind, the Gaussian Kirch-
hoff model is incorpo rated into the Semi-Empirical Surface
Accommodation Model (SESAM) methodology developed
by Pilinski et al. (2013) to hopefully explain these discrep-
ancies. SESAM empirically links the aerodynamic coeffi-
cients of an RSO to atmospheric properties derived from 
the NRLMSISE-00 atmospheric model for a given orbital 
position and time. It does so by assuming that a fraction H
of satellite surfaces in the thermosphere is covered by
atomic oxygen (AO). As stated in Pilinski et al. (2013), 
gas particles reflect diffusely off an AO-covered surface,
leading to an updated value of

CD 1 H CDs HCDads 119 

where s is the drag coefficient as a result of a clean sur-
face, while ds is that from the AO-covered parts, which is 
computed according to the assumption of full thermal 
accommodation using DRIA. To adapt this equation in 
the context of the Kirchhoff model, the AO coverage mech-
anism is assumed to happen locally, resulting in 

CD 1 H CDLs 
HCDLads 

120 

where Ls 
is the drag coefficient of a rou gh, locally clean

surface, while Lads
is the drag coefficient of a rough sur-

face with complete local thermal accommodation as a
result of AO coverage. SESAM further links the fraction

to the partial pressure of AO at a given point in orbit
through an adsorption equilibrium isotherm. Pilinski 
et al. (2013) specifically proposes the Langmuir isotherm 
for this purpose for its simplicity, while Walker et al.
(2014) additionally employ the Temkin and Freundlich iso-
therms. These isotherms are defined by 

HLangmuir 
KPO 

1 KPO 
HTemkin 

1 
B 
ln N PO

and HFreundlich AP f
O 121

where O is given by Pilinski et al. (2013) as 
nAOT R 

MAO 
and the constant K B N A, an f are 

empirical fitting parameters. The Freundlich isotherm is
excluded from this analysis because its purpose in Walker 
et al. (2014) was to loosely model roughness in an empirical 
way. All the parameters necessa ry for the final investiga-
tion are given in Table 6. The Langmuir and Temkin 
parameters for the Kirchhoff model were not fitted to aero-
dynamic sphere data as done by Walker et al. (2014), for 
the sake of simplicity. Instead, the DRIA parameters from 
the same study are applied to the Kirchhoff model for both 
the Lang muir and Temkin isotherms, as an approximation,
based on the similarities between DRIA and Kirchhoff
observed in Fig. 22. The isotherm parameters for the 
dependence of the DRI A and CLL on altitude are also
taken from Walker et al. (2014). The solar maximum and 
minimum F10.7 values were chosen based on the opera-
tional periods of both Stella and Gridsphere. Additionally,

CD 

CDa 

CD 

CD 

H 

P 
PO s d 

CD 
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1 MR

all atmospheric properties were averaged over all latitudes, 
i.e. from 0 to , and over time from January 1st 1995 
to January 1st 2001, while the longitude was kept constant
at To compute the drag coefficient for the DRIA kernel,
the closed-form expression
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from Walker et al. (2014) was used, where s is the speed 
ratio, is the molar mass of the atmospheric gas is 
the thermal energy accommodation coefficient, an is 
approximated as the satellite velocity, i.e. thermospheric 
win ds are neglected. The accommodation coefficien a is

given by Sentman (196 1) a 2 4MR 

1 MR 
2,  whe  MR 

MG 
MS 

. 
Here, G is the molar mass of the incoming gas species 
while MS is the molar mass of the surface material. To 
compute th e drag coefficient of the CLL kernel, the
expression
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from Walker et al. (2014) was used. To generate the C s a 
function of altitude using this kernel, the approach of
Walker et al. (2014) is employed, i.e. the tangential momen-
tum accommodation coefficient s set to 1.0 and the nor-
mal energy accommodation coefficient is given as 

max 0 5 2a 1 . The Kirchhoff model aerodynamics 
are calculated using a different approach because it does 
not have a closed-form solution for any geometry. To com-
pute its drag coefficient , look-up tables were generated 
for the full parameter space of local accommodation coef-
ficients and as wel l as speed ratios between 2.0 and
10.0. These were then linearly interpolated using a regular
grid interpolator to approximate the coefficient for any set
of input parameters. Furthermore, for physical accuracy,
the local tangential accommodation coefficie rT was
assumed to be zero, based on Goodman (1965),Lo gan
and Stickney (1966), and Logan and Keck (1968).  As  a
result, the normal energy accommodation coefficient is 
set to a 2 4MR

2 following Sentman (1961). 
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CDK 

aN rT , 

nt 
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CDThe drag coefficient was calculated as a function of 
the altitude for all there GSI mod els and the Langmuir
and Temkin isotherms, as presented in Figs. 24 and 25. 
Additionally, the figures show observed sphere aerody-
namic coefficients for altitudes up to 500 km, sourced from
Pardini et al. (2010), as well as the estimations for the 
Stella and Gridsphere satellites, sourced from Pardini 
et al. (2006). For the Kirchhoff model, two curves were gen-

CD
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erated in each figure, corresponding to roughness parame-
ters of R 0 55 and R 0 85, which were optimised 
to fit the observations of the two high-altitude spheri cal
satellites alongside the low-altitude data. Differences
between the current DRIA and CLL curves and those
presented by Walker et al. (2014) may be attributed to 
the simplifications made to their methodology, i.e. different 
solar maximum and minimum F10.7 values, the use of lat-
itude and time averaging instead of orbit propagation from 
two-line elements (TLEs), and the investigation of slightly 
different time frames. Both figures suggest that geometric 
roughness has little effect on the value of the drag coeffi-
cient at altitudes below 400 km, whereas it plays a signifi-
cant role at higher altitudes, where local quasi-specu lar
behaviour is expected in the helium-rich parts of the ther-
mosphere. In these regions, it appears that a higher surface
roughness results in substantially larger aerodynamic drag
for spherical satellites. This, however, may not hold true
for other satellite shapes, as different drag effects were
observed for low and high incidence angles in Fig. 23. 
Comparing the two drag coefficients of the Kirchhoff 
model with the Stella and Gridsphere data points, it 
appears that Stella is best modelled by a roughness param-
eter o r R 0 55 while Gridsphere corresponds to 

R 0 85. This makes physical sense because Stella’s alu-
minium surface is equipped with 60 laser retroreflectors,
which can safely be assumed to have a roughness parame-
ter close to zero, covering about a third of its surface. Grid-
sphere, on the other hand, has a plain aluminium surface
(Pardini et al., 2006), suggesting that its surface-averaged 
roughness parameter is likely higher than Stella’s. Compar-
ing the figures between themselves, it appears that the 
choice of isotherm does not significantly change the effect 
of geometric roughness on the drag coefficient. Neverthe-
less, the based on the Temkin isotherm shows far less
variation, which could be a result of either better modelling
of the underlying adsorption physics, or simply a result of
fitting a more complex model to the available data, as dis-
cussed by Walker et al. (2014). A final observation may 
now be made about the validity of the assum ption that

1, which is employed in many studies such as
Walker et al. (2014),Mehta et al. (2014),  and Walker 
et al. (2014). Given the results in Section 4.1 and the appar-
ent convergence of the Kirchhoff model’s to that of the 
CLL model for increasing levels of roughness, as portrayed
in Figs. 24 and 25, we propose geometric roughness in the 
material surface samples as the root cause behind the high

values recorded by Liu et al. (1979) for small incidence 
angles. We do this, under the subtlety that for higher inci-
dence angles, different studies such as Murray et al. (2015,
2017) observe a far more quasi-specular behaviour, which 
contradicts the 1 assumption. Nevertheless, for many 
geometries, ram surfaces weigh in much more in the com-
putation of than angled ones, making this effect negligi-
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ble. This suggests that the methodology proposed by
Walker et al. (2014) for implementing the CLL kernel 
can be regarded as an early empirical attempt at capturing 
the effects of roughness. Consequently, it supports the new
Kirchhoff model presented in this study, which captures
these effects with greater accuracy and more control.

5. Conclusions 

This study brought attention to a crucial yet under-
explored aspect of GSI in free molecular flow conditions, 
namely the scattering of gas particles due to the geometric 
surface roughness, which may arise from the macroscopic 
imperfections of real surfaces. It then introduced a new gen-
eralized model based on the Kirchhoff wave scattering the-
ory, which accurately captures these scattering effects and 
outlined a method for integrating them with other GSI 
occurring at smaller scales. Consequently, the study pre-
sented an extensive verification of this new model against a
series of TPMC simulations and, then, applied it to repro-
duce experimental scattering results as well as compute aero-
dynamic coefficients for simple shapes, focusing on the
variation with altitude in the thermosphere environment.

The key innovation of the proposed model is its physics-
based utilization of the wave-particle duality of rarefied gas 
particles, allowing for the application of the Kirchhoff 
approximation. This resulted in an analytic, closed-form 
expression for the reflected particle velocity PDF after a 
single reflection. Another novel aspect is the use of poly-
Gaussian processes to statistically describe rough surfaces, 
offering a reduced-order, generalized framework for mod-
elling any surface morphology under the assumption of iso-
tropy. To robustly model high-roughness phenomena such
as multiple particle reflections and surface shadowing, a
simple, iterative algorithm was developed, making use of
the one-reflection Kirchhoff scattering kernel alongside an
analytic expression for the probability of rescattering.

With an overall excellent agreement between the pro-
posed model and the TPMC simulations for both Gaussian 
and poly-Gaussian surfaces, significant relative errors of up 
to 7% were observed when gas particles locally accommo-
date their normal velocity component only. This is partic-
ularly important given that, in the impulsive scattering 
regime, most gas particles do not undergo tangential 
momentum accommodation. By far, the most likely culprit 
for these differences is the shadow ing functio hr1 n0 ,
which makes two assumptions of statistical independence:
one between consecutive collision points and another
between the height and slope PDFs of the surface. Thank-
fully, it is straightforward to mitigate this issue and avoid
both assumptions either through Rice series expansion
methods (Aksenova and Khalidov, 2008) or a numerical 
treatment of hr1 n0 at the cost of minor rise in compu-
tational complexity. Nevertheless, this mitigation is likely

n S 
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not needed for most satellite surfaces because their rough-
ness is expected to be well below the level that resulted in 
the aforementioned error figure. To our knowledge, the 
only process by which such high roughness levels are 
attainable is an erosion of the exposed satellite surface, 
e.g. the oxidation of Kapton film. In such cases, the model 
should not be directly applied based on ground measure-
ments of surface roughness. Instead, it should be
”corrected” through an optimisation procedure of the sur-
face roughness parameters using in situ acceleration data at
multiple angles of attack, under similar atmospheric condi-
tions. As a matter of fact, this method is the default used
for empirical kernels such as DRIA and CLL.

Consequently, the success of the model in replicating 
both experimental gas scattering results as well as in-orbit 
aerodynamic coefficient trends reinforces our belief that 
surface roughness as a crucial element of GSI has so far 
been mostly disregarded in existing scientific literature. It 
further strengthens our suspicion that most objects in 
LEO exhibit a level of roughness high enough to alter their 
aerodynamic behaviour from what is expected based on 
ground experiments. These beliefs are first confirmed 
through the model’s ability to capture particle backscatter-
ing and its dominance at near-parallel incidence angles, a 
phenomenon which has been independently observed in 
many experimental studies but was never explained in a 
comprehensive manner. An immediate conclusion based 
on this finding is that most RSOs with angled, flow-
exposed surfaces should exhibit a larger-than-expected drag 
coefficient in the helium-rich region of the thermosphere,
where quasi-specular reflections are expected. This is
exactly what was observed after using the model to investi-
gate the altitude-dependence of the drag coefficient for
spherical satellites with different roughness parameters.
On top of this, the similarity in behaviour observed between
this model and the DRIA kernel for high levels of roughness
finally provides a physical explanation for the success of the
latter in the same helium-rich regions where CLL was
expected to be more accurate based on knowledge about
the local interactions from many ground experiments.

Future work will focus on employing both the Gaussian 
and poly-Gaussian implementations of the Kirchhoff 
model in modelling the aerodynamics of the Swarm, 
GRACE and GRACE-FO satellites, with the hope that 
this will result in more consistent neutral density and 
cross-wind datasets. To reduce the number of parameters 
to be fitted, the local interaction kernel parameters shall 
be fitted using a physics-based approa ch similar to
SESAM. Besides this, additional research will be con-
ducted into improving the accuracy of the model in its crit-
ical test cases, by implementing more accurate shadowing
functions. The possibility of extending it for anisotropic
surfaces shall also be investigated.
856
Declaration of Competing Interest 

The authors declare that they have no known competing 
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements 

Funding for this work was provided by the Dutch 
Research Coun cil (NWO), through Grant No. ENW.
GO.001.008.

Appendix A. Helmholtz integral derivation 

Consider the classic wave equation defined through Eq.

(12) on a closed domain X R3 , bounded by a surface 
The purpose of this section is to find a relationship between 
the scattered wave field x at an arbitrary point X, 
as a function of the values of the same scattered field on the
boundary X. A similar derivation to the one presented
here is given in Beckman et al. (1987). This situation is 
sketched in Fig. 26. For this, the Green functi on of the
closed surface is introduced as

X. 
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where 2p mvr 
h is the wave vector of the reflected wave. It 

can be easily sho wn th G x satisfies the Helmholtz
equation

kr 
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2 G x k2 
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for R, where R is an arbitrary positive number defin-
ing the radius of a sphere enclosed in This is, of course, 
to avoid the singularity in x at x 0. Applying the
Divergence Theorem on the quantity W x G x , one
obtains

x 

X. 
G 

X 

W x G x dV 

X 
W x G x ndS 126 

where here is the normal to the volume’s surfa X.
Working out the equation above yields
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X

One can immediately notice the symmetry in the left-hand 
side of the exp ression above, and infer the same equality
for and switching places:W G 
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Combining the two equation above leads to the final form
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As both x and x satisfy the Helmholtz equation in 
the volume between and the sphere with radius R and 
volume , one can make the following substitution after
connecting the two enclosing surface X an XS with
an infinitesimally thin tube, i.e.
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Substituting the expression for x into the surface inte-
gral of the spherical surface yields
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where x R. Making R 0 enables the use of the Mean
Value theorem, which results in 
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Finally, substituting this result back into Eq. (130) and 
acknowledging that the left-hand-side is zero resu inlts 
the final form of the Helmholtz integral for volume X: 
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X,Fig. 26. A sketch of a volume bounded by a closed 
surface . A point P is shown inside this volume, at the 
centre of a sphere with radius R. The sphere surface and

are connected through a cylindrical channel.

X 
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Appendix B. Additional results 

This section presents the angular scattering marginal 
PDFs in the XY plane for both the Gaussian and poly-
Gaussian versions of the Kirchhoff model, in alignment
with the analysis detailed in Section 4.1. These PDFs were 
generated to assess the model’s capability in capturing out-
of-plane scattering as a result of surface morphology. Visu-
als of these are given in Fig. 27 and Fig. 28. Additionally, a 
relative error contour plot comparing the Kirchhoff and
TPMC results for the Gaussian analysis is provided in
Fig. 29. All three analyses use the same simulation param-
eters, as specified in Tables 1 and 2. 

Upon examining Figs. 27 and 28, an overall excellent 
agreement is observed between the Kirchhoff PDFs and 
the TPMC results for both the Gaussian and poly-
Gaussian analyses, further confirming the conclusions of
Section 4.1. Qualitatively, this agreement surpasses even 
that of the YZ-plane PDFs presented in Figs. 11 and 15, 
suggesting that the Kirchhoff model can very accurately 
capture out-of-plane scattering behaviour. The largest dis-
crepancies occur in the poly-Gaussian test case for 

rT 1 0 0 0 , similar to the previous analysis. 
Specifically, at 0 , the PDFs exhibit a local peak that 
is overestimated by the Kirchhoff model, representing the 
amount of particles scattering in-plane. Based on this and 
previous results, it appears that increasing roughness
results in larger errors. However, as Fig. 29 suggests, this
is not always the case. In this figure, the relative error
between the Kirchhoff model and the TPMC results is plot-
ted for a Gaussian surface as a function of the incidence
angle and the roughness paramete r R, for different

aN 
hr2 
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Fig. 27. The XY-plane marginal angular PDFs of Helium gas particles with different incidence angles, scattering from 
Gaussian surfaces with different levels of roughness. The model-generated results are shown in solid lines, while the TPMC
simulation results are given in dotted lines. The incident direction is depicted with a black arrow.
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Fig. 28. The XY-plane marginal angular PDFs of Helium gas particles with different incidence angles, scattering from a
Non-Gaussian surface. The model-generated results are shown in solid lines, while the TPMC simulation results are given
in dotted lines. The incident direction is depicted with a black arrow.
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Appendix C. Numerical reciprocity study This section presents a numerical study where the reciprocity of the poly-
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Fig. 29. The momentum relative error between the Gaussian Kirchhoff model and the TPMC simulation results is shown as 
a function of the incidence angle and the roughness parameter R, for four combinations of local CLL parameters.hi r 

Gaussian Kirchhoff model is analysed for several equilibrium temperatures. To check this kernel property, scattering sim-
ulations were run with an initial equilibrium velocity PDF given by

f 0 vi 
MHe 

2pRT S 

3 
2 

4pv2 
i exp 

MHev2 
i 

2RT S
134

Following this, the reflected velocity PDF for each simulation was compared against the initial one. An overview of the 
parameters used in these simulations is given in Table 7. Subsequently, the results of the simulations are plotted in Fig. 30.

The figure on the left shows that, for all surface temperatures considered, the incident and reflected velocity PDFs agree 
closely under thermal equilibrium. This suggests that the proposed poly-Gaussian Kirchhoff model adheres to reciprocity. 
Additionally, as shown in the right-hand plot, each simulation yields a substantial number of macroscopic reflections, indi-
cating that all algorithmic steps in Fig. 9 likewise maintain reciprocity. However, while these results strongly support the 
model’s reciprocity, they do not constitute a formal proof. A complete mathematical verification remains a subject for
future work.
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Table 7: Input parameters for the reciprocity analysis.

Parameter Name Value Unit Parameter Name Value Unit 

MHe 4 [g/mol] l  c 2 0 erf 2c 2 [-] 
Nparticles 50000 [-] r  c 0 4 [-] 
N 40 [-] CLL, aN 0.8 [-] 
T S 300, 600, 900 [K] CLL, rT 0.2 [-] 

Fig. 30. On the left: the equilibrium incident and reflected velocity PDFs at surface temperatures of 300K, 600K and 900K, 
assuming CLL as a local kernel. On the right: the distribution of particles undergoing multiple macroscopic reflections as a
result of geometric roughness, for the same surface temperatures.
combinations of local parameters. From the four plots, it 
seems that the error behaviour of the model is highly 
dependent on the choice of local kernel parameters. Never-
theless, a global trend is observed: the relative error 
increases with incidence angle for higher roughness levels. 
That being said, even the largest observed errors do not 
exceed 2%, underscoring the accuracy and applicability of 
the model for Gaussian surfaces. From a phenomenologi-
cal perspective, all the XY-plane PDFs in Figs. 27 and 28 
display significant backscattering. While in the Gaussian
test cases increasing the roughness parameter induces an
out-of-plane scattering behaviour similar to DRIA, the
poly-Gaussian test case exhibits a more complex beha-
viour. In particular, the cases w aN rT 0 0 0 0
and rT 1 0 0 0 show the superposition behaviour
discussed in Section 4.1, as they display distinct diffuse and
quasi-specular lobes.

ith 
aN 
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