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Aligning Large Language Models for Instruction
Following in Chatbot and Robotics Applications

Anna-Maria Klianeva

Abstract—Despite rapid advancements in Large Language
Models (LLMs), they often produce hallucinated or detrimental
outputs, necessitating alignment with human preferences. We
address these challenges by introducing Step Chain-of-Thought
(SCoT) to enhance semantic understanding by breaking down
complex instructions. Additionally, we combine Direct Preference
Optimization (DPO) with Low-Rank Adaptation (LoRA) to
improve alignment with user intent. DPO optimizes outputs based
on human feedback, while LoRA, alongside careful tuning of
learning rates and beta values, mitigates repetition issues seen
with DPO alone. Our findings show that models fine-tuned with
DPO with LoRA achieve superior alignment compared to those
using only Supervised Fine-Tuning (SFT). However, automated
evaluators like LLM-as-a-Judge struggle with nuanced SCoT
assessments, underscoring the necessity of human evaluation for
capturing the complexities of alignment. In task alignment for
robotics, Full Fine-Tuning (FFT) excels in familiar tasks, while
LoRA significantly improves adaptability to new scenarios, in-
creasing the robustness. Moreover, combining ground truth with
synthetic data, especially when using LoRA, achieves a balance
between accuracy and adaptability, revealing the limitations of
relying solely on synthetic data. These conclusions highlight the
critical importance of well-aligned datasets, fine-tuning strategies,
and careful parameter tuning for LLM alignment.

I. INTRODUCTION

As pretrained Large Language Models (LLMs) become
integrated into more robotic systems |1} 2, |3, 4} S]] and business
operations [[6]], aligning them to human preferences becomes
increasingly important. For instance, if a user requests assis-
tance from an IKEA customer service chatbot to address a
problem, as depicted in but receives hallucinated
or imprecise responses, this can lead to frustration. Although
LLMs excel in many tasks, their outputs can sometimes be
factually incorrect, biased, or harmful [7]]. Proper alignment
ensures these systems behave predictably, consistently, and
reliably. Moreover, alignment enhances LLMs’ utility by im-
proving helpfulness, truthfulness, safety, and engagement [].

Enhancing LLM capabilities for specialized tasks is chal-
lenging due to their pre-training on vast Internet-scale data,
which can include toxic behavior [9]. While Reinforcement
Learning from Human Feedback (RLHF) [10,|11}|12] has been
key to aligning models, it faces drawbacks such as complexity,
instability, scalability issues, and high costs due to the need
for extensive human feedback [13]]. A promising alternative
to RLHF is Direct Preference Optimization (DPO), which
directly optimizes model behavior based on human preference
data without a complex reward model, making it more stable,
scalable, and computationally lightweight [[13]].

Another method to enhance LLM performance is Chain of
Thought (CoT) reasoning, which breaks complex tasks into

IKEA User Language Inputs

Can you help me figure out how to return a
damaged product that | received?

Unaligned LLM Response

Too bad! Damaged products can't be returned, so
you're out of luck. Just stop wasting my time.

X
4

Aligned LLM Response

I'm sorry to hear about the damaged product!
Within 72 hours of receiving: 1) Log in, 2) Select
order, 3) 'Start a Claim.' After 72 hours: Type
'Speak with an agent'.

Fig. 1: An illustrative example of an aligned and an unaligned
response from an IKEA customer service chatbot.

logical steps, improving precision and addressing specific con-
texts [[15]. Recent advancements in prompt engineering show
that LLMs follow step-by-step instructions more effectively
than long paragraphs [16]. Furthermore, OpenAl’s o1 models,
trained with Reinforcement Learning, demonstrate how CoT
can enhance their abilities in science, safety, and coding tasks,
achieving state-of-the-art (SOTA) performance [[17].

To tailor LLMs to specialized tasks, fine-tuning is essential,
as it enables the model to adapt its knowledge to the nuances
and requirements of specific domains. This process can involve
Full Fine-Tuning (FFT), where all model weights are retrained,
or Parameter-Efficient Fine-Tuning (PEFT) techniques like
Low-Rank Adaptation (LoRA) [18]. LoRA conserves compu-
tational resources by freezing model weights and introducing
trainable low-rank matrices into the architecture, enhancing
performance on specialized tasks.

Instruction following is another critical capability for LLMs
in many real-world applications, particularly in chatbots and
robotics, where aligning model outputs with human prefer-
ences ensures that the generated actions reflect the user’s
intent. In these contexts, LLMs must accurately interpret
complex instructions and transform them into meaningful,
contextually appropriate responses or precise actions, particu-
larly in environments where human guidance and preferences
dictate the desired outcomes.

We conduct two experiments to explore the alignment of
LLMs with human preferences. The first experiment focuses
on enhancing IKEA’s customer service chatbot using Step
Chain of Thought (SCoT), a novel variation of CoT reasoning
that breaks down complex queries into logical steps to improve



SCoT experiment

For IKEA's Chatbot

IKEA User Language Inputs

Inst: Find grey sofas for living room spaces in
Scandinavian-style.

LLM-Generated SCoT Prompt

1. Identify grey sofas.

2. Select grey sofas for living room spaces.
3. Choose grey sofas for living room spaces in
Scandinavian-style.

Grocery store robot:

Robot User Language Inputs

e Inst: Move the robot arm to the right.

{"actions": [ { "command": "move
{"x": null, "y": null, "z": null, "action": null,
"direction": "right", "msg": null } } 1}

Robotics experiment
Suction gripper = g

Albert

Grocery basket

Franka Emika
Panda 7DoF

LLM-Generated JSON Commands

, "parameters":

Fig. 2: The figure illustrates the grocery store robot Albert used in our robotics experiments and the generated JSON commands
for controlling the robotic arm, as well as an example of SCoT prompts used in the DPO experiment for improving IKEA’s

chatbot. The image of Albert is retrieved from [14].

the chatbot’s semantic understanding. The second experiment
involves using LLMs to control the grocery store robot Albert,
where the models generate structured JSON commands to
ensure the precise execution of actions. [Figure 2| shows the
user instructions used to generate both the SCoT prompts for
the chatbot and the structured JSON commands for the robot.

While there has been some exploration of DPO in specific
domains, such as protein design [19], its use in other areas,
particularly for task-specific scenarios like instruction follow-
ing, remains underexplored. This study addresses this gap by
investigating how DPO, combined with LoRA on an FFT
model, and using data from SCoT, can enhance the chatbot’s
instruction-following abilities. In contrast, for robotics applica-
tions, we focus on aligning LLMs using FFT or PEFT without
DPO, exploring how these fine-tuning techniques optimize
performance in complex, real-world task execution.

Our evaluation leverages both automated methods, such as
LLM-as-a-Judge [20], and metrics, and human evaluation to
assess model performance. Additionally, we expand the LLM
Robot dataset [21]] by generating additional samples, focusing
on fine-tuning models for real-life robotics applications where
robots execute tasks based on structured commands.

Our contributions are as follows:

1) Designing synthetic datasets for SCoT, including one
FFT dataset and four preference datasets for DPO.

2) Proposing a methodology using DPO with LoRA to
align LLMs with user intent for SCoT.

3) Conducting DPO experiments to optimize preference
dataset design and tune the hyperparameter /.

4) Comparing LLM-as-a-Judge with human evaluation for
SCoT.

5) Expanding the LLM Robot dataset from 2727 samples
by over 10000 samples to explore FFT and LoRA in
real-life applications.

II. RELATED WORK

In this section, we review prior work on LLMs in robotics,
fine-tuning techniques and improving their alignment to user
feedback, and LLM evaluation.

a) LLMs in Robotics: As summarized in [22], LLMs
have contributed to robotics by enabling natural language in-
teractions [23[], enhancing task execution [24]), and facilitating
advanced knowledge acquisition and reasoning. These models
give robots flexibility and adaptability, allowing effective oper-
ation in diverse environments. Key implementations of LLMs
in robotics include PaLM-SayCan [25]], which uses LLMs
to process and execute natural language instructions, PalLM-
E [3], which integrates sensory inputs for comprehensive
environmental interaction, and LM-Nav [4]], which leverages
language models to improve navigation and communication.

These models contribute to SOTA by addressing challenges
like grounding LLMs in real-world environments, improving
long-horizon task planning, and integrating multi-modal inputs
for more robust, context-aware performance. However, chal-
lenges such as high computational demands, limited datasets,
and the need for dynamic adaptation exist.

In this study, we propose to use Mistral-7B-Instruct-v0.2, an
instruct fine-tuned version of Mistral 7B [26], which is ideal
for following instructions. Its lightweight architecture com-
bined with fine-tuning enhances its ability to understand and
execute instructions. Compared to larger models like PaLM-
E (562B parameters) and PaLM-SayCan (540B parameters),
Mistral-7B-Instruct-v0.2 offers a more adaptable and compu-
tationally efficient solution. While not pre-trained specifically
for robotics, it allows us to explore its potential in adapting
to specialized tasks in real-world applications, providing a
balance between performance and resource efficiency.

b) Fine-Tuning Techniques and Improving LLM Align-
ment to User Feedback: To align LLMs more effectively with



user feedback, fine-tuning techniques are important. PEFT
addresses the challenges of FFT, such as high computational
costs and large storage requirements, by training only a subset
of parameters while keeping most weights frozen. This reduces
resources needed for fine-tuning and makes it especially suit-
able for LLMs with large parameters. In robotics, advanced
fine-tuning techniques are crucial for enhancing LLM adapt-
ability and effectiveness in complex real-world environments.

EmbodiedGPT [27] is a multi-modal model for embodied
Al that improves robots’ ability to plan and execute long-
horizon tasks by integrating multi-modal understanding and
execution. It uses prefix tuning [28]], a PEFT technique where a
small, task-specific vector is added to the model’s inputs while
keeping the model parameters frozen, allowing adaptation to
new tasks with minimal overhead. This enhances the model’s
capacity for complex tasks in physical environments. Addi-
tionally, the EgoCOT dataset and planning strategies like CoT
reasoning help EmbodiedGPT connect high-level language
planning to real-world control tasks, boosting success rates.

Similarly, the approach in [29]] enhances LLMs by integrat-
ing them with world models—computational simulations of
physical environments—that enable LLMs to gain practical
knowledge, such as how objects interact, move, or change
state. This integration improves reasoning and planning in
tasks like understanding object permanence and executing
household activities. The study uses elastic weight consolida-
tion [30] to selectively update parameters, preserving knowl-
edge from previously learned tasks by applying penalties to
significant parameter changes, preventing catastrophic forget-
ting [31]. Additionally, LoRA [18]], a resource-efficient fine-
tuning method using low-rank updates, is employed. While
LoRA may underperform compared to FFT due to limitations
in updating weights [32], it provides effective regularization
by learning less and forgetting less [33]], helping the model
generalize across multiple domains.

DPO provides a scalable, cost-effective alternative to RLHF
by directly optimizing model policies based on user pref-
erences, reducing the need for extensive human input [13].
However, DPO has challenges, including sensitivity to the
fine-tuning of its trade-off parameter S and the quality of
preference data [34]]. Additionally, when dealing with cross-
domain human preferences, DPO struggles to retain previously
learned information, leading to catastrophic forgetting and
performance degradation across tasks [35].

In this study, we apply DPO with LoRA to fine-tune Mistral-
7B-Instruct-v0.2, aiming to enhance LLM alignment with user
instructions. By incorporating SCoT reasoning, we seek to
improve precision in both natural language processing and
robotic tasks, addressing gaps in current research.

¢) LLM evaluation: Evaluating LLMs for preference
alignment is challenging, as preferences are subjective and
vary among individuals. Without objective ground truth, alter-
native methods are required. One approach is LLM-as-a-Judge,
where one LLM evaluates another, using larger models like
GPT-4 [36] for scalability and explainability. However, this
method faces limitations such as position and verbosity bias,

and challenges in grading complex responses [20} |37]. Re-
liance on external APIs also raises privacy and reproducibility
concerns [38]]. Although this study does not directly address
these issues, they remain crucial for future research.

For cases with available ground truth, traditional statistical
metrics like BLEU [39]] and ROUGE [40] provide quantitative
assessments by comparing generated outputs to reference out-
puts, focusing on accuracy, structural similarity, and semantic
overlap. While these metrics offer precise, objective evalua-
tions, they may not fully capture the complexity and nuances
of real-world applications. To address this, integrating these
statistical scorers with more advanced methods, such as LLM-
as-a-Judge, enables a comprehensive evaluation that combines
quantitative precision with deeper qualitative insights, ensuring
a robust assessment of model performance.

III. STEP CHAIN OF THOUGHT AND TASK ALIGNMENT

To enhance LLMs’ semantic understanding and instruction-
following, our methodology consists of three stages: A) syn-
thetic data generation, B) model enhancement, and C) model
evaluation, as shown in We focus on two tasks:

o Improving Semantic Understanding in Chatbots: Us-
ing DPO with LoRA and SCoT reasoning to refine
semantic interpretation.

o Aligning User Instructions with Robotics Tasks: Trans-
lating user instructions into task-oriented JSON com-
mands for precise robotic control.

These setups address challenges in interpreting complex in-
structions. The novelty lies in applying both DPO with LoRA
and SCoT to enhance LLM alignment in the research process.

A. Synthetic data generation

To tackle the lack of annotated data, we leverage LLMs to
generate high-quality, task-specific synthetic datasets, thereby
avoiding the costs and time of manual human annotation and
enabling scalable experimentation.

We create two types of datasets: Supervised Fine-Tuning
(SFT) datasets and preference datasets.

1) SFT datasets: These provide explicit instructions and
corresponding outputs, used to train models with techniques
like FFT or LoRA, allowing the model to learn domain-
specific knowledge. We create two different SFT datasets:

o Chatbot SCoT Dataset: Contains instructions with corre-
sponding stepwise outputs to enhance chatbots’ semantic
understanding through SCoT reasoning.

o Robotics JSON Dataset: Contains instructions with JSON
outputs, enabling the model to convert natural language
instructions into precise commands for robotic control.

Examples of these datasets are depicted in with an
additional example in [Figure 16|in [Appendix}

2) Preference datasets: These datasets are crucial for DPO,
as they help align model outputs with human preferences
without extensive human feedback. Each dataset contains pairs
of outputs for the same instruction: one marked as preferred
(chosen (ch.)) and the other as non-preferred (rejected (rej.)),




SCoT experiment
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. < dataset
generation £
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Fig. 3: Simplified overview of the methodology employed in this study, divided into three main stages: Synthetic Data

Generation, Model Enhancement, and Model Evaluation.

as illustrated in [Figure 4] These datasets train the model to dis-
tinguish between higher-quality and lower-quality responses,
aligning outputs more closely with human preferences.

To ensure the model prioritizes the best responses, the
preference dataset should align more closely with human
preferences than the SFT data. To achieve this, we select the
ch. responses from models that perform better in this regard
than those in the SFT dataset. This approach introduces novel
synthetic preference datasets tailored for DPO in the context
of SCoT reasoning, as detailed in our contributions.

Preference dataset

Prompt: Below is an original instruction for a task, followed by generated steps that
break down the task into smaller, actionable items. Your job is to craft a structured,
multi-step prompt for an instruction, ensuring that each step progressively refines the
search or selection criteria. Begin with a broad category and incrementally introduce
specific filters, retaining ALL previously applied criteria for a focused outcome. Output
should present only the steps without the prompt, ensuring each step retains all
information from the preceding ones without introducing extraneous details. Number
of steps should vary depending on the instruction.

[INST] Convert the instruction prompt to step-wise prompt for:
Design a machine learning algorithm that is mindful of ethical
concerns such as transparency. [/INST]

Chosen (ch.) response Rejected (rej.) response
1. Identify the type of machine
learning algorithm you will design:
supervised, unsupervised, or
reinforcement learning.

2. Establish a clear objective for
your algorithm, ensuring it aligns
with ethical considerations.

3. Design the input features for
your algorithm, ensuring they are
transparent and explainable.

1. Identify machine learning
algorithms.

2. Narrow down the machine
learning algorithms mindful of
ethical considerations.

3. Finalize with machine learning
algorithms mindful of ethical
considerations such as
transparency.

Fig. 4: A sample from the preference dataset used in the SCoT
experiments. The ch. response better follows SCoT rules by
providing clear, progressive steps.

B. Model enhancement

In the model enhancement stage, Mistral-7B-Instruct-v0.2
[41] is fine-tuned and adapted for specific instruction-
following tasks in semantic understanding and robotic in-
struction translation. We employ several techniques, including
SCoT, FFT, LoRA, and DPO with LoRA, each selected to
address specific aspects of model alignment and efficiency.

1) SCoT: SCoT is a novel variation of CoT that we
introduce to enhance the model’s ability to interpret complex
instructions. It breaks down complex tasks into smaller, se-
quential steps, refining the task while remaining consistent
with the initial goal. Starting with a broad instruction, each
step logically introduces additional details. The final step
encapsulates all necessary information without introducing
anything new, ensuring a coherent and complete solution. This
structured approach improves task precision and helps the
model interpret complex instructions more effectively, leading
to better alignment with user intent.

2) FFT: FFT involves retraining all weights of the pre-
trained LLM for specific downstream tasks. This approach
optimizes the model’s performance by adjusting its pretrained
parameters based on new data. In [Equation 1] all model
parameters ¢ are optimized to maximize the likelihood of
generating the correct token sequence y given input tokens
x and preceding tokens y;. This equation aims to find ¢ that
maximizes the log probabilities (logps) of target tokens:

[yl

max Y log (Po (e, y<t)) )

(zy)ez t=1

While effective, FFT is computationally intensive and may
lead to overfitting with limited data.

3) LoRA in PEFT: To address FFT challenges, we use
LoRA in PEFT. LoRA introduces trainable low-rank matrices
A and B into each Transformer layer, keeping the original



model weights frozen. These matrices provide low-rank up-
dates to the linear layers, as shown in [Equation 2] where W, is
the pretrained weight matrix and AW is the low-rank update.
Here, d is the input dimension, % is the output dimension,
and 7 < min(d, k) is the rank of the low-rank matrices, with
A € R™*4 and B € R**". A projects = from d to r, and
B then projects it to k. This low-rank update AW enhances
adaptability while conserving computational resources.

h=Wyx+ AWz = Wyx + BAx 2)

4) DPO: DPO utilizes two models, the trained LLM, which
undergoes optimization, and a duplicate that is frozen to serve
as the reference model during fine-tuning. For each data point,
both models generate scores for the ch. response (y,,) and
the rej. response (y;), based on token-level probabilities. The
expectation is over the dataset D. The DPO loss function
maximizes the likelihood of the ch. response relative to the
rej. response by comparing the output probabilities of the
trained LLM (mg) with those from the frozen LLM (m.qf),
as represented in

The parameter J scales this process, guiding the updates to
the trained LLM to align with human preferences while being
anchored by the frozen LLM. The loss function uses a logistic
sigmoid function, o, to convert the difference in logps into an
optimizable form.

Tref (Yuw | “7)

mo(y1 | @)
et (Y1 | @)

5) DPO with LoRA: To address the repetitive outputs
observed with direct DPO, we integrate LoRA into the DPO
framework. Direct DPO can lead to overfitting, causing repet-
itive token generation due to excessive parameter updates. By
incorporating LoRA, only the low-rank matrices are trainable,
acting as a regularizer that preserves pre-trained knowledge
and promotes better generalization.

We hypothesize that this low-rank constraint smoothens the
optimization landscape, reducing the risk of the model becom-
ing trapped in sharp minima associated with repetition. This
selective adaptation helps maintain diversity and coherence
in the generated text while aligning more effectively with
preference data. To the best of our knowledge, integrating DPO
with LoRA is not widely discussed in formal literature.

l:DPO (7T0§ TFref) = 7E(I,yw,yz)~D |:10g o (/B log M
3)
— Blog

C. Model evaluation

This stage validates that the models perform well on training
data and generalize effectively to new, unseen data. We mea-
sure training loss across all models. For the SCoT experiment,
we also calculate logps and reward margins.

Logps indicate the model’s confidence in generating a
response. For each response, the total logps is calculated by
summing the logps of each token in the sequence, with each
token’s logps contributing to the total.

As shown in the total logps for a sequence y;

given input z; is calculated as:
logm(ys | w:) = > logm(yss | x2) @
j=1

A higher total log probability indicates greater model confi-
dence in generating the sequence. In the context of preference
alignment, a higher logps for the preferred response suggests
that the model is prioritizing responses that better align with
the human preferences dataset.

Reward Margins in DPO represent the difference between
the logps assigned to y,, and y;, scaled by the parameter .
This margin is calculated as:

Reward Margin = 3 X [(log 70 (Yw | ) — log ret (Yo | m))

_ (log 7o (yi | @) — log Tret (y1 | I))]

(5)

This compares the logps of both responses from the trained
LLM (mg) and the frozen LLM (m.¢). A higher reward
margin indicates a greater difference between the ch. and rej.
responses from a probabilistic perspective. This means the
model assigns significantly higher probability to the preferred
response compared to the rejected one, showing a clear dis-
tinction in alignment with human preferences.

For the robotics experiment, we use precise evaluation
metrics suitable for JSON data: exact match, Levenshtein
distance, Jaccard similarity, and F1 score.

Exact match is a binary metric that checks whether the
JSON generated by the LLM is identical to the ground truth

value, as defined in

1 if generated JSON is identical to
ground truth JSON 6)
0 otherwise

Exact Match =

Levenshtein distance is the minimum number of single-
character edits (insertions, deletions, or substitutions) needed
to transform the generated JSON into the ground truth, mea-

suring their difference as defined in

max(%, j) ifmin(é,5) =0
leva (i —1,5) + 1,
levap(i,j — 1)+ 1,
levap(i—1,7 — 1)+ l(a#bj)

! i,J) =
evab(i,7) otherwise

min
@)

Jaccard similarity measures similarity between key-value
pairs in the generated JSON and the ground truth, as shown
in It calculates the ratio of shared key-value pairs
|A N B| to the total unique pairs |A U B| across both JSONs.

|AN B

Jaccard Similarity = AU B

®)

F1 score combines the precision and recall into one metric:



2 x Precision x Recall
F1 S = 9
core Precision + Recall ©)

These metrics collectively provide a nuanced assessment of
the model’s ability to generate accurate and reliable JSON
commands in the robotics experiments: Exact Match assesses
strict correctness, Levenshtein Distance quantifies the error
magnitude, Jaccard Similarity measures semantic overlap, and
F1 Score balances precision and recall.

IV. EXPERIMENTAL SETUP

The research addresses the primary question: “How can
Fine-Tuning Techniques be effectively adapted to align
LLMs when tasked with generating instructions?”. To ex-
plore this, we conduct two experiments: (1) SCoT Experiments
for IKEA’s Chatbot and (2) Robotics Experiments for control-
ling a robotic arm in a grocery-picking scenario. The SCoT
experiments use FFT, DPO with LoRA to align LLMs, while
the Robotics experiments focus on FFT and LoRA.

A. SCoT Experiments for IKEA’s Chatbot

The SCoT experiments aim to improve IKEA’s chatbot by
structuring instructions into multi-step, task-specific prompts,
addressing the main research question and these sub-questions:

o ”What impact does data quality have on the effective-
ness of DPO?”

Dataset design significantly influences model alignment
and performance. Understanding how dataset characteris-
tics affect outcomes is crucial for more effective training.

o “How does the hyperparameter 3 influence DPO?”
The hyperparameter 3 scales the model’s original be-
havior with human preferences. Its impact on fine-tuning
responses is crucial for achieving optimal alignment.

1) Dataset Generation: We create two SCoT datasets.

a) SFT Dataset: Generated through:

« Instruction Generation: We generate 6115 instructions
using GPT-4-0613 with a temperature of 0.7 to ensure
a diverse range of outputs. The temperature is a hyper-
parameter that controls the randomness of the responses.
The prompt, detailed in [Figure 7|in |Appendix} guides this
process by combining direct tasks with narratives across
various topics to create clear instructional prompts.

o SCoT Response Generation: We use Mistral-8x7B [42]
to generate SCoT responses for each instruction at a
temperature of 0.1, ensuring deterministic outputs. The
prompt outlined in [Figure &|in [Appendix] which explains
SCoT criteria, includes examples, and ensures adherence
to SCoT guidelines.

b) Preference dataset: Contains 2,000 samples covering
topics distinct from the SFT dataset, constructed through:

« Instruction Generation: We generate instructions using
GPT-4-0613, employing the same prompt as for the SFT
dataset.

e SCoT Response Generation: We generate SCoT re-
sponses using models such as GPT-4-0613, LLaMa-3 70B
[43]], GPT-3.5 Turbo, Mistral 8x22B, or Command R+

for each instruction at a temperature of 0.1. The prompt,
adapted from the SCoT generation prompt used for the
SFT dataset, as shown in |Figure 8|in|Appendix} is tailored
for each model by adjusting examples and refining criteria
to optimize SCoT responses.

e FFT SCoT Response Generation: We generate re-
sponses using a model fine-tuned with the SFT dataset
through FFT, following the fine-tuning prompt shown in
|[Figure 11fin [Appendix| at a temperature of O.

We combined the SCoT responses and FFT responses to
create four distinct datasets, evaluating their effect on DPO.
We use a LLM-as-a-Judge to select the best and worst re-
sponses based on a predefined set of criteria. The prompt
used for this process, detailed in |[Figure 13| in |Appendix]
includes an instruction, good and bad examples, and evaluation
criteria focused on step continuity, keyword consistency, and
appropriate detail levels.

o Dataset A:

— Ch. Responses: Generated by GPT-4-0613.

— Rej. Responses: Generated by the FFT model.

— Purpose: To assess whether high-quality responses
from GPT-4-0613 lead to superior model alignment
compared to lower-quality responses from open-
source models. This dataset tests if leveraging GPT-
4-0613’s quality improves overall performance.

o Dataset B (Baseline), Dataset C, and Dataset D:

— Ch. Responses: Selected by GPT-4-0613 from open-
source models (LLaMa-3 70B, Mistral 8x22B, or
Command R+) and GPT-3.5 Turbo.

— Rej. Responses:

x Dataset B: Generated by the FFT model.

* Dataset C: Randomly selected from remaining
models (excl. the ch. response) as in distilled
direct preference optimization (dDPO) [44].

* Dataset D: Selected by GPT-4-0613 as the worst
response from the remaining models.

— Purpose:

* Dataset B: Serves as the baseline to evaluate if
penalizing the model’s own responses is more
effective than using external model outputs. We
chose Dataset B as it showed the best performance
in preliminary tests.

x Dataset C: Explores the impact of the dDPO
method, specifically how randomness in selecting
rej. responses affects model performance.

* Dataset D: Tests the impact of explicitly penaliz-
ing the worst responses, as identified by the Judge,
to refine model alignment. It explores whether tar-
geting the least favorable responses leads to more
significant improvements in model performance.

[Table V1| in [Appendix| details the distributions of all datasets.

2) Model Enhancement: We fine-tuned the Mistral-7B-
Instruct-v0.2 using FFT with the SFT dataset. The fine-
tuning prompt, shown in [Figure 11| in [Appendix} includes a




description of SCoT, with instructions placed between [INST]
and [\INST] tokens. These control tokens, which the tokenizer
does not encode, serve to mark user message boundaries and
prevent prompt injection. This is followed by the correspond-
ing SCoT training sample to prompt the model to ”Convert the
instruction prompt to a step-wise prompt”. After FFT, DPO
combined with LoRA further refines the model’s alignment
with the preference datasets.

a) Base Experiment: We evaluated model enhancement
by comparing three versions of the model:

o Base: Pre-trained Mistral-7B-Instruct-v0.2, used to eval-
vate the FFT and DPO impact.

o SFT: Mistral-7B-Instruct-v0.2 after FFT.

e« DPO: SFT model refined with DPO with LoRA.

b) Data Quality Experiment: We examined how different
configurations of preference datasets (A, B, C, D)—based on
the source and selection of ch. and rej. responses—impact
DPO performance.

c) B Hyperparameter Experiment: We test various [
values to determine their effects on training loss, reward
margins, and response quality, aiming to find the optimal
setting for model alignment.

The hyperparameters for both FFT and for the DPO exper-
iments are detailed in [Table V]in [Appendix}

3) Evaluation: We evaluate the models using LLM-as-a-
Judge and human evaluation.

LLM-as-a-Judge leverages the prompt in in [Ap]
to assess responses based on step continuity, keyword
consistency, final step completeness, initial step detail, and the
appropriate number of steps. As of July 2024, ProLLM [45]
ranks GPT-40 (accuracy: 0.82) and GPT-4 Turbo (accuracy:
0.85) as the top LLM Judges, so both are selected.

Human evaluation offers a nuanced assessment. Initially, I
perform a blind assessment by shuffling the responses, en-
suring unbiased evaluation using the LLM-as-a-Judge prompt.
For validation, five additional participants assess five samples
from each experiment, following the same guidelines.

To measure the model’s ability, we use 200 new test
instructions generated with GPT-4-0613, applying the same
prompt used for the SFT dataset. These test instructions cover
topics not included in the training data.

B. Robotics Experiments for Controlling a Robotic Arm

To tackle evaluation challenges and reduce the need for
human labeling, the robotics experiment is designed for the
robot to perform actions in the correct sequence, allowing
direct evaluation through metrics. This setup demonstrates
the practical application of LLMs and provides a robust
assessment method.

These experiments explore the fine-tuning methodology in
robotics, specifically addressing: “How can the proposed fine-
tuning methodology be applied in robotics?”’. We use FFT and
LoRA, excluding DPO, since the focus is on task alignment
and control rather than text generation.

1) Dataset Generation: We use the ”LLM robot” dataset
[21]] as ground truth. This dataset is used to train LLMs to
generate robotic plans, featuring tasks where a robotic arm
manipulates objects based on user instructions. Each entry
includes an instruction and a corresponding JSON response
detailing the robot’s low-level functions. To evaluate the
impact of different data sources on performance, we use three
distinct datasets:

o Dataset 1 (Ground Truth Data): Consists of 2181

samples from the "LLLM Robot” dataset.

o Dataset 2 (Synthetic Data): Includes 10318 synthetic
samples generated using GPT-4o through a two-step pro-
cess. First, for each ground truth training sample, we gen-
erate approximately five similar instructions using GPT-
40 with temperature settings from 0.1 to 0.7 as shown
in [Figure 9| in [Appendix| to introduce creativity while
maintaining alignment with the original data. Second, we
generate corresponding JSON outputs using GPT-40 at a
temperature of 0, as detailed in [Figure 10| in [Appendix}

o Dataset 3 (Ground Truth + Synthetic Data): Combines
both ground truth and synthetic data for a total of 12499
samples, balancing precision and diversity.

The JSON data from these datasets includes key components
to control the robot’s actions:

o Actions Array: Lists tasks for the robotic arm, each with

specific commands and parameters.

o Command: Specifies the action (e.g., move, move_to,
suction_cup, err_msg).

e Command: Includes coordinates (X, y, z) and details
like suction cup operation, movement direction, and mes-
sages, with non-applicable parameters set to null.

In the original dataset, the environment includes specific
elements such as a yellow block and a white block. The
synthetic data adds new functionalities to improve the robot’s
behavior and align with human input:

o Drop-off Zone: A designated location for placing items,

useful for post-pick actions like shipping.

o Robustness to Coordinates: Ensures the robot handles
minor variations in coordinates (e.g., +122 vs. 122),
reflecting typical human input differences.

o Error Handling for Invalid Inputs: Returns an err_msg
for invalid objects or unsupported actions (e.g., unfeasible
rotations), addressing user errors.

2) Model Enhancement: The Mistral-7B-Instruct-v0.2
model is fine-tuned for robotics tasks using the prompt in
[Figure 12| in |Appendix] The prompt includes a description,
an instruction enclosed between [INST] and [\INST] tokens,
directing the model to “Convert the instruction prompt to a
JSON command sequence”, followed by the corresponding
JSON output.

We explore two fine-tuning approaches to identify the best
alignment with task requirements:

o FFT: M1 (Dataset 1), M2 (Dataset 2), M3 (Dataset 3).

e LoRA: M1-LoRA (Dataset 1), M2-LoRA (Dataset 2),
M3-LoRA (Dataset 3).




Hyperparameters for both FFT and LoRA are detailed in
[Table V] in [Appendix}

3) Evaluation: We evaluate the robotics experiments using
“ground truth testing data” from the "LLM Robot” dataset,
which mirrors the training data with slight variations in
phrasing (e.g., "Move arm down 3 times” becomes “Move
robotic arm down 3 times”). To further assess adaptability and
robustness, we introduce an “exploratory dataset” that includes
altered instructions, such as requesting movements beyond the
trained limits (e.g., “move up and down 8 times” instead of 6)
or introducing untrained actions like “jumping” to test error
handling. This exploratory data is distinct from the ground
truth and training data, ensuring a thorough evaluation.

The evaluation consists of 215 samples from the "LLM
Robot” dataset and 30 exploratory samples introducing new
functionalities.

With this setup, we aim to enhance LLM adaptability to
real-world applications and show how fine-tuning can improve
performance in diverse, task-specific contexts.

V. EXPERIMENTAL RESULTS

This section presents the results of the SCoT experiment,
as well as the Robotics experiment.

A. SCoT Experiments for Ikea’s Chatbot

We begin by evaluating the base performance through
fine-tuning techniques before exploring the effects of dataset
quality and the impact of the S parameter on DPO. This
evaluation is followed by a validation phase with a larger
participant pool to ensure the robustness of our findings.

1) Base Experiment: To evaluate the methodology, we
analyze the outputs of the base model, the model after FFT,
and the model after DPO with LoRA with dataset B. FFT
is applied using the SFT dataset specifically generated for the
DPO experiments, and this SFT model serves as the foundation
for all subsequent DPO experiments. Responses are generated
using a fine-tuning prompt that describes SCoT and includes
test instructions, as shown in |[Figure 11]in |[Appendix|

DPO is performed with LoRA, as typical learning rates (le-
5 to Se-5) without LoRA cause word/sentence repetition, an
example can be seen in [Figure 14] in [Appendixl To avoid this,
learning rates must be significantly reduced (le-6 to le-7), so
DPO is only conducted with LoRA.

We employ an LLM-as-a-Judge for the initial assessment.
However, the Judge LLM struggles to find a significant differ-
ence between SFT and DPO responses when evaluating based
on the SCoT criteria, which include step continuity, keyword
and detail consistency, final step completeness, initial step
detail, and appropriate number of steps, as described in the
prompt shown in [Figure 13|in [Appendix|

As depicted in GPT-4 Turbo selects SFT as best
46.50% of the time and DPO 44.50%, while GPT-40 prefers
SFT 55.50% of the time compared to 43.50% for DPO. Both
Judges rarely choose the base model. Given these close results,
human evaluation is conducted, showing a preference for DPO
77.00% of the time versus 23.00% for SFT. The analysis shows

that SFT responses already meet many SCoT criteria specified
in [Figure 13|in [Appendix|

Additionally, we find that the Judge LLM is highly sensitive
to minor changes in the prompt, which can result in the LLM
selecting a different model as the best. This underscores the
importance of human evaluation for more accurate assess-
ments, as LLMs may struggle with nuanced evaluations.

DPO aims to align models with human preferences, and
the human evaluation results show that the DPO with LoRA
model is more effective in meeting this goal.

Evaluation Metric Base SFT DPO
LLM-as-a-Judge (GPT-40)

Chosen as best (%) 1.00 55.50 43.50
LLM-as-a-Judge (GPT-4-Turbo)

Chosen as best (%) 9.00 46.50 44.50
Human Evaluation

Chosen as best (%) 0.00 23.00 77.00

TABLE I: Evaluation results for LLM-as-a-Judge and human
evaluations by a single participant for 200 test data samples
generated at temperature 0.

2) Dataset Quality Experiment: To evaluate the effect of
dataset quality on DPO, we analyze reward margins, logps, and
human evaluation results across four datasets (A, B, C, and D).
We exclude the LLM-as-a-Judge since it could not effectively
distinguish between the SFT and DPO models. The DPO
models are more similar to each other than to the SFT model,
differing only by preference data and not by hyperparameters,
as depicted in [Table V]in [Appendix} making LLM-as-a-Judge
less useful for this comparison.

Our human evaluation results, summarized in[Table 11| show
that Dataset B is chosen as the best 70% of the time, reflecting
its superior alignment. In comparison, Dataset A is chosen
15% of the time, Dataset C 10%, and Dataset D 5%.

The analysis of logps for ch. responses, illustrated in
shows that Dataset B has the highest logps, indicating
better model confidence and alignment. Although Dataset A
also shows an increase, it remains lower than Dataset B.
This may be due to Dataset B consisting of 76.15% open-
source models (Mistral-8x22B, LLaMa-3 70B, Command R+),
as detailed in [Table VI| in [Appendix] These models likely
share pre-training data with the Mistral-8x7B used for the SFT
model. In contrast, Dataset A contains data from GPT-4-0613,
a closed-source model likely trained on different data, leading
to lower alignment with the SFT model. This emphasizes the
importance of choosing datasets that are well-aligned with the
training data to achieve optimal performance.

In contrast, Datasets A and B show higher logps for rej.
responses, suggesting these rej. responses are more
aligned with the frozen LLM’s output. In the context of DPO,
this higher alignment indicates that the model’s confidence
in these responses is closer to that of the frozen LLM.
Conversely, the lower logps for rejected responses in Datasets
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Fig. 5: Logps for ch. and rej. responses across different datasets during the data quality experiment.

C and D imply a divergence from the frozen LLM’s behavior,
suggesting these responses would not have been generated by
the frozen LLM.

Using the SFT model’s response as the rej. option in
these datasets is crucial for achieving higher logps and better
performance. The consistently higher logps in Dataset B, for
both ch. and rej. responses, drive its superior performance, as
confirmed by human evaluations.

Although Dataset A demonstrates the highest reward mar-
gins throughout the training steps, shown in in
this does not translate into the best performance, as
evidenced by the human evaluations. These findings suggest
that logps are a more critical factor than overall reward margins
in determining the model’s performance.

A B C D

Human Evaluation

Chosen as best (%) 15.00 70.0

10.00  5.00

TABLE II: Human evaluations for 20 test data samples gen-
erated at temperature O for dataset quality experiment.

3) [ experiment: This experiment aims to investigate the
impact of different 3 values on the DPO process and identify
the optimal 8 for aligning model outputs with human prefer-
ences in SCoT using Dataset B.

As shown in [Figure 19]in [Appendix] higher g values (e.g.,
B = 1) result in lower loss, higher reward margins, and a
smaller decrease in the logps of rej. responses, whereas lower
B values (e.g., 5 = 0.2) show the opposite trend.

For each test instruction in the human evaluation, we select
the best model and the two worst models. As summarized
in the model with 8 = 0.2 is chosen as the best
45% of the time and the worst only 2.5% of the time. The
model with 5 = 0.5 is chosen as the best 30% of the time
but is also selected as the worst 17.5% of the time, indicating
higher performance variability. Models with higher 3 values
(8 =0.7 and B = 1) are more frequently chosen as the worst,

with § = 1 being the worst 42.5% of the time and never
chosen as the best.

Qualitative analysis shows that there is often similarity
between two or three responses of the worst-performing mod-
els, leading to the selection of the two worst models rather
than just one. Additionally, very low [ values (0.01, 0.1)
produce repetitive phrases or sentence structures, as seen in
[Figure 14]in [Appendix] The rewards for the ch. responses, as
illustrated in |Figure 18|in|Appendix} become negative through
the training. We hypothesize that these negative rewards for
ch. responses lead to repetition.

To contextualize our findings within existing research, it
is notable that a § value of 0.1 is commonly used [[19} |43,
with studies exploring a range between 0.01 and 0.5 [46].
As shown in [Figure 15| in [Appendix} the § = 0.2 model
eliminates repetitions, while the 8 = 0.1 model exhibits
them. Our results, which involve DPO with LoRA, align
with these findings, showing that lower S values, particularly
around 0.2 and 0.3, effectively minimize poor responses while
maintaining alignment with human preferences. This suggests
that while 8 = 0.1 is a widely accepted and effective choice in
traditional DPO setups, exploring higher values like 0.2 or 0.3
within the DPO with LoRA framework may provide a more
stable balance between response quality and model reliability.
Thus, our study offers nuanced insights into optimizing 3 for
fine-tuning models using DPO with LoRA.

Our results are based on specific hyperparameters, where
only the beta value is varied while other factors are con-
stant. Therefore, our findings should be interpreted with this
constraint in mind, as we did not explore a broad sweep of
hyperparameters in combination with 8. This suggests that
while our insights are valuable for understanding the role of 3
in DPO, further research is needed to explore how [ interacts
with a wider range of hyperparameters.

4) Human validation: To validate the initial experiments,
we conduct additional evaluations with five individuals. In the
base experiment, 64% of the DPO samples are rated as the
best, aligning with the previous result of 77%, as can be seen

in [Table VTI] in [Appendix] In the dataset quality experiment,




Metric =02 B=03 B=05 pB=07 pBg=1
Human Evaluation

Chosen as best (%) 45.00 20.00 30.00 5.00 0.00

Chosen as worst (%) 2.50 2.50 17.50 35.00 42.50

TABLE III: Human evaluations for models with different 5 values on 20 test data samples generated at temperature 0. For
each test instruction, the best model and the two worst models are selected.

68% of samples favored Dataset B, consistent with the initial
result of 70%, as shown in [Table VI in [Appendix]

In the 8 experimentation, the evaluations reveal more varia-
tion in preferences. While 5 = 1 is still not chosen as the best,
some participants preferred the model with § = 0.7, as shown
in [Table IX] in [Appendix} indicating that personal preference
plays a significant role in model evaluation. This highlights the
importance of considering the user-specific preferences when
fine-tuning models.

However, with only five participants in the validation phase
and six in total including the initial experiment, the statistical
significance of these results is limited. Further validation with
a larger and more diverse participant pool is necessary to
ensure the reliability of these findings, especially in the 3
experimentation, where variability in preferences is observed.

B. Robotics Experiments for Controlling a Robotic Arm

We evaluate three models —M1, M2, and M3—trained
using either FFT or LoRA, on both ground truth testing
data and exploratory data introducing new functionalities. As
detailed in MI, trained exclusively on ground truth
data using FFT, achieves the highest scores on ground truth
testing data with exact match (0.99), Jaccard similarity (0.99),
and F1 score (0.99), indicating strong accuracy and alignment
with expected outputs. M3, trained on a combination of ground
truth and synthetic data, also performs well, exhibiting the
lowest Levenshtein distance (0.15), suggesting minimal edits
are needed to match the ground truth.

In contrast, M2, trained solely on synthetic data, signifi-
cantly underperforms compared to M1 and M3 on ground
truth testing data, which, despite being generated with detailed
prompts using GPT-4o0, as seen in|Figure 10|in|Appendix] only
achieved 98.1% accuracy on the training data. The small inac-
curacies introduced impacted the model’s overall performance.
While augmenting ground truth data with synthetic data (as
in M3) improved performance to levels comparable with M1,
relying solely on synthetic data (as in M2) is not recommended
due to inherent inaccuracies.

When tested on exploratory data with new functionalities,
models trained with LoRA—specifically M2-LoRA and M3-
LoRA—exhibited zero-shot capabilities and superior perfor-
mance, particularly in adapting to novel instructions. As shown
in M2-LoRA achieved the lowest Levenshtein dis-
tance (24.79) and the highest Jaccard similarity (0.74) and
F1 score (0.72). This improvement is likely due to LoRA’s
regularization effect, which helps maintain the base model’s
performance across a broader range of tasks by “learning less
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and forgetting less” [33]]. Notably, M2-LoRA outperformed its
fully fine-tuned counterpart (M2) across all metrics, benefiting
from LoRA’s enhanced generalization to novel instructions.

Loss function over training steps

10°

Loss Value (log scale)

1071

500 1000 1500 2000

Step

2500 3000 3500

Fig. 6: The loss function over training steps for the robotics
experiment, Gaussian filter applied to improve the readability
of the plot. Note that training steps vary due to the differing
amounts of data per dataset.

This generalization capability is further supported by the
training loss convergence patterns observed in
Specifically, M1-LoRA, M2-LoRA, and M3-LoRA exhibit
higher loss values than M1, M2, and M3, respectively. This
higher loss convergence may be attributed to LoRA’s regu-
larization properties, which prevent overfitting to the training
data and enable broader applicability.

Qualitative analysis reveals distinct error patterns between
models trained with FFT and LoRA. FFT-trained models
like M1 occasionally produced errors in JSON structure and
parameter alignment, particularly with complex commands.
M2, trained solely on synthetic data, frequently introduced
incorrect parameters and faulty JSON structures, likely due to
overfitting to less accurate synthetic examples. M3, combining
ground truth and synthetic data, showed improved handling of
trained commands, but still exhibited minor inaccuracies, such
as rounding errors in numerical values.

LoRA-trained models, while generally more adaptable, dis-
played unique errors, such as generating untrained commands
like 7say” or “shutoff.” These hallucinations suggest that
LoRA’s regularization can sometimes lead to overgeneraliza-
tion. Notably, M3-LoRA occasionally repeated commands,
contributing to higher Levenshtein distances. Despite these
issues, LoRA-enhanced models demonstrate better generaliza-



Metric M1 M2

M3

M1-LoRA M2-LoRA M3-LoRA

On Ground Truth Testing Data

Exact Match 0.99 0.80 0.96 0.98 0.86 0.91
Levenshtein Distance 0.16 5.87 0.15 4.45 1.42 1.55
Jaccard Similarity 0.99 0.90 0.97 0.99 0.90 0.95
F1 Score 0.99 0.90 0.98 0.99 0.92 0.96
On Exploratory Data with New Functionalities
Exact Match 0.07 0.37 0.53 0.23 0.67 0.67
Levenshtein Distance  141.71  82.24  51.30 66.86 24.79 66.17
Jaccard Similarity 0.18 0.47 0.60 0.28 0.74 0.71
F1 Score 0.17 0.47 0.59 0.28 0.72 0.70

TABLE IV: Metrics evaluated at temperature 0 for various model setups on 215 ground truth testing samples and 30 exploratory

testing samples.

tion to novel tasks, but they also propagate common error pat-
terns due to their tendency to generate untrained or unexpected
commands across different datasets.

Overall, our results suggest that while FFT achieves optimal
performance on familiar tasks, LoRA significantly enhances
the model’s adaptability to new and varied scenarios. A key
finding is the importance of data diversification: combining
ground truth and synthetic data, particularly when paired with
LoRA, provides a balanced training approach that ensures
both accuracy and flexibility. This diversified dataset allows
the model to effectively process both known and novel tasks,
making it more robust and versatile in handling a wide range
of robotic functions.

VI. CONCLUSION

In this study, we explore methods to align LLMs by
applying DPO, LoRA, and FFT for SCoT and robotic task
execution. Our approach consists of three stages: synthetic
data generation, model enhancement, and model evaluation.
The goal is to adapt LLMs to respond more effectively to
complex, real-world tasks.

A key component is the introduction of SCoT, which
improves the processing of user instructions by breaking tasks
into structured steps. This approach enables LLMs, like the
IKEA chatbot, to enhance semantic understanding and produce
more accurate, contextually relevant responses.

Through DPO experiments, we demonstrate that combining
DPO with LoRA leads to greater alignment with human
preferences than FFT alone. The DPO models consistently
outperformed base and SFT models in human evaluations,
indicating stronger alignment. We also find that DPO model
performance heavily depends on preference dataset quality,
with well-aligned datasets yielding better results. Lower [
values during DPO training help maintain alignment, but
require careful tuning to avoid repetition in outputs.

In the robotics experiment, we evaluate models trained on
ground truth data, synthetic data, and a combination of both,
highlighting the importance of data diversification. LoRA-
trained models, especially those utilizing both data types,
demonstrated superior zero-shot capabilities and adaptability
to unseen tasks compared to FFT-trained models. LoRA’s
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regularization effect helps mitigate overfitting, making it more
effective in generalizing to new challenges despite higher loss
values during training. While FFT excels on tasks similar
to the training data, LoRA consistently outperformed it in
diverse, real-world applications.

Overall, integrating LoRA into model training significantly
enhances the model’s ability to generalize to new and varied
instructions, which is critical for practical applications like
robotic arm control. For the IKEA chatbot, the use of SCoT
and DPO with LoRA resulted in responses that align more
closely with human preferences, aiming to improve user
experience. In robotics, LoORA-enhanced models contribute to
more flexible robotic systems capable of adapting to dynamic
environments, reducing the need for retraining when introduc-
ing new tasks and increasing operational efficiency.

VII. FUTURE WORK

This study suggests several future research directions to
enhance LLMs’ task alignment. One promising area is refining
the SCoT process, particularly for instruction-based LLMs
like the IKEA chatbot. Investigating whether incorporating
SCoT improves task execution and user interaction would be
a valuable next step.

Additionally, addressing repetition in DPO is crucial. This
study shows that DPO combined with LoRA is more effective,
but the underlying reasons remain unclear. Future research
could explore techniques like masking special formatting
tokens in the DPO loss calculation, similar to the approach
in Llama 3 [43].

Incorporating RLHF as a benchmark could provide deeper
insights into the strengths and weaknesses of DPO and other
alignment strategies.

Improving the LLM-as-a-Judge approach is another im-
portant research avenue. Fine-tuning models specifically as
evaluators, as suggested by [38]], could enhance their ability to
assess complex outputs like SCoT. Additionally, the Panel of
LLM Evaluators (PoLL) [47]], where multiple smaller models
collectively score an answer through a voting function, could
offer a more reliable evaluation framework.

Future research could explore the effects of varying ranks
in LoRA. Additionally, newer LoRA derivatives like DoRA



(Weight-Decomposed Low-Rank Adaptation) [48] could be
investigated for their potential benefits.

Finally, testing with real human instructions, rather than
synthetic data, could provide valuable insights into the model’s
ability to generalize to authentic user inputs. This approach
would also help assess the model’s practical applicability in
real-world robotic tasks.
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APPENDIX

Instruction Generation Prompt for DPO experiment

Crafting Mixed Instructional Prompts
Objective: Create a series of instructional prompts that blend straightforward tasks with narrative-driven scenarios,
suitable for breaking down into 2 to 4 actionable steps. Aim for clarity and precision, avoiding any repetition of words
and steering clear of questions to ensure straightforward directives.
Key Principles:
o Direct Instructions: All prompts should clearly state the task at hand, avoiding interrogative formats to ensure
directness and actionability.
o Varied Contexts: Craft prompts that stand alone or include a short narrative, ensuring any context provided is
supplementary and not repeated in the step-wise breakdown.
o Clarity and Specificity: Embed precise criteria within each prompt, facilitating a targeted, step-wise exploration
without compromising on clarity.
« Topic Selection: <topic>.

Instructional Prompt Examples:

1) Outline the process for conducting a literature review in Quantum Physics focusing on foundational theories.

2) I am going to have a baby, find a dark wooden bed.

3) Set up a small, efficient workspace in a shared apartment, considering ergonomics and productivity.

4) With a family vacation to Europe coming up, plan an itinerary covering historical landmarks and local cuisines.
Request: Please provide 10 additional instructional prompts on the specified topic mentioned above. The prompts
should be able to be broken into a maximum of 4 steps, adhering to the outlined principles and ensuring a mix of
direct and narrative-driven formats. Exclude step-wise breakdowns and focus solely on the instructions (1 to 10).

Fig. 7: Prompt used for instruction generation for the DPO experiment.
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SCoT generation for DPO experiment

Instruction:
Creating Step-Wise Prompts for <instruction>

Objective:

Craft a structured, multi-step prompt for <instruction>, ensuring that each step progressively refines the search or
selection criteria. Begin with a broad category and incrementally introduce specific filters, retaining all previously
applied criteria for a focused outcome.

Instruction Prompt Creation Process:
1) Start Broad: Begin with the most general category relevant to your prompt. For example, if your prompt is
“Find a yellow wooden bed for two people below 200 euros,” your first step is to “Identify the beds.”
2) Add Specifics: Introduce a new, specific filter in each subsequent step. In the given example, the second step
would be to "Narrow down to beds made of wood that are yellow.”
3) Continue Refinement: Keep adding layers of specificity. The third step for the bed prompt would be to Select
only the yellow wooden beds designed for two people.”
4) Finalize Criteria: Apply the last filter to achieve the desired specificity, such as ”Choose the two-person wooden
beds that are yellow and below 200 euros.”
Repeat this process for any topic by adapting the initial broad category and subsequent filters to fit the new context.
Additional Example:
o Plan and execute a professional lighting scheme for a dramatic theater scene, taking into consideration mood,
visibility, and safety.
1) Identify a professional lighting scheme.
2) Select a professional lighting scheme for a dramatic theater scene.
3) Choose a professional lighting scheme for a dramatic theater scene that takes into consideration the mood.
4) Narrow to a professional lighting scheme for a dramatic theater scene that takes into consideration the mood
and visibility.
5) Finalize to a professional lighting scheme for a dramatic theater scene that takes into consideration the mood,
visibility, and safety.
Output should present only the steps without the prompt, ensuring each step retains all information from the preceding
ones without introducing extraneous details. The number of steps should vary depending on the instruction.

Your task is to meticulously follow these steps, ensuring each response is comprehensive, brief, coherent, and builds
directly on the information provided in the previous step without introducing information not in the instruction. Think
step by step, employing affirmative language to maintain clarity and directness.

Fig. 8: Prompt used for SCoT generation.

15



Instruction generation prompt for Robotics

Task:

Generate a new instruction based on the following example: <instruction>

Ensure the new instruction is unique but maintains the same style and context related to the robotic arm and object
manipulation. The robotic arm is equipped with a suction cup, and the arm can move up, down, left, right, forward,
and backward. An action can be repeated more than 5 times up to 15 times.

Blocks’ origin coordinates are known to the robot, so the only possibility is to move the block to a specific place—pick-
up location is known. To move a block, the suction must be activated first. You can also move a block behind another
block, following this logic: ”Go to box A — activate suction — go to box B — place box A behind B.” Alternatively,
a block can be placed on top of another. Blocks can also be placed at a drop-off zone.

The blocks are white or yellow, and coordinates can be given in the following formats:

e (215.45, 150.32, -30.50)

e (4+215.45, 150.32, -30.50)
e (215.45, +150.32, -30.50)
e (+215.45, +150.32, -30.50)

Output: The output should be only the new instruction.

Fig. 9: Prompt used for instruction generation.
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JSON generation prompt

Given a textual command directed at a robotic arm, you must generate a structured JSON command sequence that the
robot arm should follow to accomplish the task described.

1) Actions Array: This is where you list all the tasks (or actions) the robotic arm needs to perform. Each task is
represented as an object with specific commands and parameters.

2) Command: This part of each action specifies what the robot should do. Common commands are move, move_to,
suction_cup, and err_msg.

3) Parameters: These are the details that explain how to execute the command:

e X, Yy, z: These are coordinates that tell the robot where to go. If the task doesn’t need a specific location,
you set these to null.

« action: This specifies operations like turning the suction (vacuum) cup on or of f. If it’s not needed for the
command, it’s set to null.

o direction: This tells the robot which way to move, like up, down, right, left, forward, backward.
If no specific direction is needed, this is set to null.

« msg: Used for sending messages, especially if there’s an error or a special note about the task. If there’s
nothing to say, this is set to null.

Each action should include all these parameters, even if you set them to null, to ensure the robot understands exactly
what to do.

Drop-off zone is at (100, 50, 25) aka ("x": 100, "y": 50, "z": 25). Yellow block is at (249.62, 137.63, -55)
aka ("x": 249.62, "y": 137.63, "z": -55), white block is at (266.05, 8.32, -53.46) ("x": 266.05,
"y": 8.32, "z": -53.46). There are no other color blocks or objects, if another object is in the instruction, the
action command must be an err_msg. If no color is given for the block, the action command must be an err_msg.
The robotic arm does not rotate, if the instruction is rotate, the action command must be an err_msg.

The coordinates (215.45, 150.32, -30.50), (+215.45, 150.32, -30.50), (215.45, +150.32, -30.50) and (+215.45, +150.32,
-30.50) should be converted to ("x": 215.45, "y": 150.32, "z": -30.50) in the JSON.

The instruction could also give wrong coordinates for the drop-off zone, yellow block, or white block; in this case, the
action command must be an err_msg. For unknown commands, the action command must be an err_msg.

A. Examples for Reference
o Example 1:

— Instruction: ’Activate suction, proceed to location (192.72, +229.45, -61.07), go upwards, then deactivate
suction.”
— Actions:

33 93

{ 7actions”: [ { "command”: “’suction_cup”, “parameters”: { ”x”: null, ”y”: null, ”z”: null, “action”:
”on”, “direction”: null, “msg”: null } }, { "command”: “move_to”, “parameters”: { "x”: 192.72,
7y”: 22945, 777 -61.07, “action”: null, “direction”: null, "msg”: null } }, { “command”: “move”,
”parameters”: { ”x”: null, ”y”: null, ”z”: null, ”action”: null, “direction”: “up”, "msg”: null } }, {
”command”: suction_cup”, “parameters”: { ”x”: null, ”y”: null, ”z”: null, "action”: “off”, ”direction”:
null, msg”: null } } 1}

« Example 26:

— Instruction: ”Shift towards the left and then rise.”
— Actions:

5% 99

{ "actions”: [ { "command”: “move”, “parameters”: { ”x”: null, ”y”: null, ”z”: null, “action”: null,

99 99

“direction”: "left”, “msg”: null } }, { "command”: “move”, “parameters”: { ”x”: null, ”y”: null, ”z”:

93, 99 99 9

null, ”action”: null, ”direction”: ”up”, “msg”: null } } ] }
Generate a JSON based on the following example: <instruction>

Output should be only a JSON, nothing else (just dict).

Fig. 10: Prompt used for the generation of JSON data based on an instruction.
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Fine-Tuning Prompt for SCoT experiment

Below is an original instruction for a task, followed by generated steps that break down the task into smaller,
actionable items. Your job is to craft a structured, multi-step prompt for an instruction, ensuring that each step
progressively refines the search or selection criteria. Begin with a broad category and incrementally introduce specific
filters, retaining ALL previously applied criteria for a focused outcome. Output should present only the steps without
the prompt, ensuring each step retains all information from the preceding ones without introducing extraneous details.
Number of steps should vary depending on the instruction.

[INST] Convert the instruction prompt to step-wise prompt for: instruction [\INST]

Fig. 11: Fine-Tuning Prompt for SCoT experiment.
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Fine-Tuning Prompt for Robotics experiment

[INST] Given a textual command directed at a robotic arm, you must generate a structured JSON command sequence
that the robot arm should follow to accomplish the task described. Convert to the corresponding JSON format the
instruction: instruction [\INST]

Fig. 12: Fine-Tuning Prompt for Robotics experiment.
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LLM-as-a-Judge Evaluation Prompt. Used for Evaluation of the Best or the Worse Model Response

Review responses from different Al models to a specific instruction and determine the [best]/[worst] responses based
on their adherence to ideal example responses and specific criteria. [The best response should closely align with the
examples in structure, content, and adherence to these criteria.] / [The worst response should deviate significantly from
these standards, lacking either in clarity, accuracy, or relevance.]
Criteria for Evaluation:
o Step Continuity: Each step should logically follow from the previous one without introducing new keywords or
details that are then abandoned.
o Keyword and Detail Consistency: No new keywords or unnecessary details should be introduced beyond what
is specified in the initial instruction.
o Final Step Completeness: The final step should encapsulate all necessary details without introducing new
information.
« Initial Step Detail: The first step should contain at least two key details, but not more than half of all necessary
details.
o Appropriate Number of Steps: The number of steps should be sufficient to cover the instruction but not excessive;
ideally, the total number of steps should reflect a balance between comprehensiveness and efficiency.

Example Instruction: 'Plan and execute a professional lighting scheme for a dramatic theater scene, taking into
consideration mood, visibility, and safety.’:

1) Identify a professional lighting scheme.

2) Select a professional lighting scheme for a dramatic theater scene.

3) Choose a professional lighting scheme for a dramatic theater scene which takes into consideration the mood.

4) Narrow to a professional lighting scheme for a dramatic theater scene which takes into consideration the mood

and visibility.

5) Finalize to professional lighting scheme for a dramatic theater scene which takes into consideration the mood,

visibility, and safety.
Bad Response Example: *Given the rise of Al in healthcare, devise a plan to ensure the ethical use of Al in diagnosing
and treating patients.’

1) Research the current state of Al in healthcare, including its applications in diagnosing and treating patients.

2) Identify ethical concerns related to the use of Al in healthcare, such as privacy, bias, and informed consent.

3) Review relevant ethical frameworks and guidelines for the use of Al in healthcare.

4) Evaluate existing Al systems in healthcare against these ethical frameworks and guidelines.

5) Develop a checklist or rubric for assessing the ethical implications of new Al systems in healthcare.

6) Develop a communication strategy for informing patients about the use of Al in their care.

7) Implement training programs for healthcare professionals on the ethical use of Al in patient care.

8) Advocate for policy changes and regulations that promote the ethical use of Al in healthcare.

Justification:

o The model introduced steps involving research of Al applications and review of ethical frameworks that go beyond

simply devising a plan for ethical use.

o The instruction did not specify the need for “developing checklists”, ”communication strategies”, “training
programs”, or “advocating for policy changes”. Including these steps introduces unrequested information.

o The response does not provide a concise final step that wraps up the task by summarizing how to ensure ethical
use; instead, it continues to introduce new steps and information.

o Several steps such as developing communication strategies and training programs do not directly contribute to the
core task of ensuring ethical use, per the instruction’s requirement. The response contains 8 steps, which exceed
the maximum allowed.

o The addition of broad training and advocacy steps disrupts the focus from the main task of planning ethical use.
Compare each model’s response to the examples and the evaluation criteria. Identify which model’s response (best/worst)
adheres to the structure and content of the ideal examples and the evaluation criteria.

Instruction: <instruction>

Model response, Model 1: <model 1_response>

Model response, Model 2: <model_2_response>

Model response, Model 3: <model_3_response> (Include more models as needed)
Output:

e [Best Model: Model Name (Model 1/Model 2/Model 3/etc)] / [Worse Model: Model Name (Model 1/Model

2/Model 3/etc)]
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Repetitions in DPO experiment

Instruction: ”You are developing an Al-powered chatbot for customer service, formulate an approach for respecting
user data and avoiding bias in responses.”

DPO model with repetitions response:

1. Identify Al-powered chatbot for customer service.

2. Al-powered chatbot for customer service that respect user data.

3. Al-powered chatbot for customer service that respect user data and avoid bias in responses.

4. Al-powered chatbot for customer service that respect user data and avoid bias in responses, formulate an approach
for respecting user data and avoiding bias in responses.

5. Al-powered chatbot for customer service that respect user data and avoid bias in responses, formulate an approach
for respecting user data and avoiding bias in responses, finalize an approach for respecting user data and avoiding bias
in responses, finalize an approach for respecting user data and avoiding bias in responses, finalize an approach for
respecting user data and avoiding bias in responses, finalize an approach for respecting user data and avoiding bias
in responses, finalize an approach for respecting user data and avoiding bias in responses, finalize an approach for
respecting user data and avoiding bias in responses, finalize an approach for respecting user data and avoiding bias
in responses, finalize an approach for respecting user data and avoiding bias in responses, finalize an approach for
respecting user data and avoiding bias in responses, finalize an approach for respecting user data and avoiding bias
in responses, finalize an approach for respecting user data and avoiding bias in responses, finalize an approach for
respecting user data and avoiding bias in

Fig. 14: An example of a test data sample with repetition for a DPO experiment.
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Beta model responses comparison

B=0.1

1. Develop ethical frameworks for Al systems that respect user
privacy, ensure transparency, and promote fairness.

2. Select ethical frameworks for AI systems that respect user
privacy, ensure transparency, and promote fairness without con-
sidering emotional components.

3. Finalize ethical frameworks for Al systems that respect user
privacy, ensure transparency, promote fairness, and consider
emotional components for user satisfaction.

4. Finalize ethical frameworks for Al systems that respect user
privacy, ensure transparency, promote fairness, consider emo-
tional components for user satisfaction, and ensure scalability
for implementation across Al systems.

5. Finalize ethical frameworks for Al systems that respect user
privacy, ensure transparency, promotes fairness, considers emo-
tional components for user satisfaction, ensures scalability for
implementation across Al systems that respect user privacy, en-
sure transparency, promotes fairness, considers emotional compo-
nents for user satisfaction, ensures scalability for implementation
across Al systems that respect user privacy, ensure transparency,
promote fairness, incorporate emotional components for ethical
frameworks that ensure scalability for implementation across Al
systems that respect user privacy, ensure transparency, promote
fairness, incorporate emotional components for user satisfac-
tion privacy for ethical frameworks that ensure transparency,
promote fairness, incorporate emotional components for user
satisfaction that are scalable for ethical frameworks for user
satisfaction privacy for Al systems that focus on respecting
user privacy and ensuring transparency, promote fairness, in-
corporate emotional components for user satisfaction that are
scalable for implementation across Al systems that focus on user
privacy and transparency requirements for scalable Al systems
that prioritize respecting user privacy and ensure transparency,
promote fairness, incorporate emotional components for user
satisfaction that are scalable and prioritize respecting user privacy
and ensure transparency, promote fairness, incorporate emotional
components for user satisfaction that are scalable and prioritize
respecting user privacy and ensure transparency, promote fair-
ness, incorporate emotional components for user satisfaction that

B=0.2

1. Identify ethical frameworks for Artificial Intelligence (AI)
systems.

2. Narrow down to ethical frameworks for AI systems that
respect user privacy.

3. Select ethical frameworks for Al systems that respect user
privacy and ensure transparency.

4. Finalize ethical frameworks for Al systems that respect user
privacy, ensure transparency, and promote fairness.

Fig. 15: Comparison of generated steps for 3 = 0.1 and 8 = 0.2.

DPO experiment
Inst: Find yellow wooden beds for
two people.

Robotics experiment
Inst: Move arm to (330.91, 112.86,
-46.02).

1. Identify the wooden beds.

2. Narrow down to beds made of
wood that are yellow.

3. Select only the yellow wooden
beds designed for two people.

{"actions": [

{"command": "move_to",
"parameters": { "x": 330.91, "y":
112.86, "7": -46.02, "action": null,
"direction": null, "msg": null }} 1}

Fig. 16: Data examples for the Robotics experiment and for the DPO experiment.
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Rewards chosen responses over training steps
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150
Step

200

250

300

Dataset A B C D

Mixtral-8x22B ch. (%) 0.00 51.10 51.10 51.10
Mixtral-8x22B rej. (%) 0.00 0.00 0.00 10.40
GPT-3.5-Turbo ch. (%) 0.00 23.85 23.85 23.85
GPT-3.5-Turbo rej. (%) 0.00 0.00 0.00 23.35
LLama-3 70B ch. (%) 0.00 21.15 21.15 21.15
LLama-3 70B rej. (%) 0.00 0.00 0.00 7.35
Command R+ ch. (%) 0.00 3.90 3.90 3.90
Command R+ rej. (%) 0.00 0.00 0.00 58.90
GPT-4-0613 ch. (%) 100.00 0.00 21.15 0.00
FFT rej. (%) 100.00  100.00 0.00 0.00
Random rej. (%) 0.00 0.00 100.00 0.00

TABLE VI: Distribution of Chosen (ch.) and Rejected (rej.) Responses in the preference satasets. The table shows the percentage

of responses from different models across the four datasets (A, B, C, D).
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(a) Loss function over training steps for different 3 values.
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(b) Reward margins for different 8 values over training steps.
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(c) Logps of rejected responses for different 3 values.

Fig. 19: Results of the beta value experiment showing the impact of varying 3 on key training metrics: loss function, reward
margins, and logps of rejected responses.
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Base SFT DPO
Chosen as best (%) 0.00 36.00 64.00

TABLE VII: Human evaluations for 25 test data samples generated at temperature O for the base experiment, as assessed by
five participants. Each participant evaluated 5 samples, and overall, 4 out of 5 participants selected the DPO model as the best,
with at least 3 out of 5 samples chosen as the best for the DPO model by these participants.

A B C D
Chosen as best (%) 8.00 68.00 8.00 16.00

TABLE VIII: Human evaluations for 25 test data samples generated at temperature O for the dataset quality experiment, as
assessed by five participants. Each participant evaluated 5 samples, and overall, all 5 participants selected the B model as the
best, with at least 3 out of 5 samples chosen as the best for the B model by these participants.

Model =02 B=083 B=05 pB=07 pB=1
Chosen as best (%) 28.00 24.00 16.00 28.00 4.00

TABLE IX: Human evaluations for 25 test data samples generated at temperature O for the S experiment, as assessed by five
participants. Only one participant showed a strong preference for one model (8 = 0.3). The rest of the participants did not
select the same model three or more times.
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