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Te macroscopic fundamental diagram (MFD) is developed to describe trafc operations aggregated over an area. Te MFD is
defned by network trafc states as a relationship between the accumulation of vehicles and fow or speed of vehicles. Te concept
of the MFD has been applied to model trafc dynamics and to design control strategies. For various applications (e.g., routing and
departure time choices), theMFD is often assumed to be of a particular shape, consisting of two branches—a free-fow branch and
a congestion branch. However, empirical observations show some inconsistencies between the theoretical and the empirical MFD.
First, the empirical MFD only presents free-fow branch, i.e., the congestion branch is missing. Second, the MFD presents as
hysteresis loop(s). Tis paper explores these diferences, providing insights into urban network trafc dynamics. Tis work takes
the travelers’ departure time choices and user equilibrium (UE) as starting points. We consider demand to be in UE in terms of
departure time choices. Using this property of the demand profle, the paper proposes a closed-form expression for average
density and outfow. Finally, we show some insights in the urban trafc dynamics: (i) an explanation of the hysteresis phenomenon
solely from the perspective of departure time choices and UE and (ii) an explanation of why we hardly observe the MFD
congestion branch in real life even in heavily congested networks. Our study shows that, for management purposes, the missing of
congestion branch is a result of UE, rather than an indicator of congestion severity.

1. Introduction

Te macroscopic fundamental diagram (MFD)—sometimes
also referred to as network fundamental diagram (NFD)
[1]—describes a relationship between density and average
fow (or outfow) at a level of an area. Tere is an increasing
amount of evidence for the existence of MFD relationships
[2–4] from both feld data and simulation studies. Figure 1
presents an empirical MFD, which is constructed using
Google data.

Te MFD can also be used in dynamic modeling, in the
simplest case in a single-reservoir (neighborhood) frame-
work [6]. Tree key parameters for large-scale trafc fow
optimization govern the shape of the MFD, that is, an ag-
gregated network capacity, critical density, and average free-
fow speed. Teoretically, the MFD consists of two
branches—free-fow and congestion branch (see Figure 2).
In the literature, the terms “free-fow” and “congestion” are
sometimes referred to as “congestion” and “hyper-
congestion,” respectively.
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Te MFD shape is determined by the interplay of net-
work structure, control, and human behavior, both in terms
of driving (movement) as well as traveling (distribution).
Studies using empirical data [4] and simulation data [7, 8]
show that the MFD can be scattered (i.e., there is not a crisp
one-to-one relation between average density and fow). A
scattered MFD can also be a result of the so-called hysteresis
phenomenon. As argued by Knoop et al. [8], among others,
the hysteresis loop is strongly related to the spatial variance
of density in a network. Te heterogeneity in density over
space can reduce network fow considerably. Gayah and
Daganzo [9] used a two-bin model to demonstrate that
clockwise hysteresis loops—in which the average fow
during congestion build-up is higher than that during
congestion resolution over the same density path—are less
likely to occur when drivers choose their routes adaptively to
avoid congestion. Daganzo et al. [10] showed that diferent

demand loading speeds (i.e., fast and slow loading) can afect
the MFD shape. Mahmassani et al. [1] showed that a higher
demand level during the congestion peak could result in
a larger clockwise hysteresis loop. As found by Leclercq and
Paipuri [11], the MFD shape is more sensitive to the demand
profle than initially expected. In this paper, we explore
whether and how the MFD shape and the hysteresis phe-
nomenon are related to departure time choices. Our hy-
pothesis is that indeed driver adaptivity in departure time
choice (i.e., drivers choosing diferent departure time to
reduce travel delays) infuences and to a degree explains both
MFD shape and the hysteresis paths of network states. We
will elaborate on this hypothesis further below.

Te MFD has been empirically observed in several cities
over the world, such as Yokohama [3], Toulouse [4], Seoul
[12], Zürich [13], Shanghai [14], Lucerne [15], London [15],
and Amsterdam [5]. Readers are referred to the supple-
mentary information in [16] to see empirical MFDs in 41
cities worldwide. To the best of our knowledge, a complete
MFD (showing the free-fow and the congestion branch over
a full density range, see Figure 2) has only been constructed
in simulations. In most cases, an empirically observed MFD
only shows a free-fow branch [17]. Even when density has
exceeded the critical density in some observations, the as-
sociated congestion fow does not decrease considerably
compared to network capacity. Some may argue that the
MFD shape (including the hysteresis phenomenon and the
absence of highly congested trafc states in MFD) is
a consequence of spatial heterogeneity of density [8].
Leclercq et al. [18] showed that the changes of OD matrix
would result in diferent routing patterns in a reservoir,
which could afect the shape of the MFD. Leclercq and
Paipuri [11] further explained that the hysteresis pattern is
a consequence of the local congestion mechanism at internal
bottlenecks. Te answers in the literature might describe the
numerics but do not explain the (causal) mechanism behind
the dynamics of this heterogeneity. In this paper, we will
explore whether the departure time choices in trip sched-
uling decisions impact the spatial heterogeneity of density,
and if so, how they do this? Clearly, the spatial variance of
density is important, but a profound understanding of the
mechanism behind the spatial density heterogeneity is still
missing.

Except observing the MFD using empirical (or simu-
lation) data, some studies [19–22] theoretically predicted the
MFD using a method of cuts. As noted in [23, 24], the MFD
constructed by cuts is a demand-independent upper en-
velop.Te cut method could be quite useful when predicting
impacts of infrastructures and control strategies on potential
of trafc system. As found in [11], the cut method may not
give a good approximation of the MFD that could be ob-
served in a real network because the network loading process
is dynamic. Te hysteresis and the missing of congestion
branch cannot be predicted and explained by the cut
method.

Aghamohammadi and Laval’s work [17] is one of few
works that discusses possible reasons for the missing of the
MFD congestion branch. As argued in [17], commuters
would shift to public transportation to avoid congestion,
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Figure 1: Macroscopic fundamental diagram constructed in
Amsterdam using Google data. Data source can be found in [5].
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Figure 2: An illustration of a theoretical MFD, consisting of free-
fow and congestion branches. In the literature, the “free-fow” and
“congestion” are sometimes referred to as “congestion” and
“hypercongestion,” respectively.
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which will eventually prevent the network from reaching
a complete gridlock. Following this line of thought, the MFD
congestion branch is a result of sufciently high demand or
large delays due to congestion conditions on roads. How-
ever, this argument does not address all questions, i.e.,
a reason for the missing of congestion branch in almost all
congested cities is still missing. In our study, we would like to
propose an additional reasoning as hypothesis: the missing
of the congestion branch is a property regardless of delays.

Te understanding of the mechanism behind the con-
gestion build-up is particularly relevant where MFD models
are used in the context of economic appraisals, for example,
in studies related to pricing.Tere are already papers linking
the MFD to economic utility models. Some researchers
present an economic model of trafc congestion that is
called the bathtub model [25–33]. A review on the bathtub
model can be found in [32, 34]. Te model analytically
derives a demand profle according to an MFD and a user
equilibrium (UE) principle. Te UE is also referred to as the
Wardrop equilibrium [35]. Te UE principle means no
driver can unilaterally reduce his/her user cost by shifting to
another departure time. Most of previous studies on the
departure time user equilibrium are based on the bottleneck
model. A comprehensive review on the bottleneck model
can be found in [36]. Since the bottleneck model is too
simple to represent an urban transportation network, the
bathtub model is applied to address the departure time user
equilibrium problem in an urban network [31, 37, 38]. Te
bathtub model shows that for diferent MFDs, there are
associated demand profles. Te bathtub model is powerful
because of its mathematical tractability and its inclusion of
the MFD congestion branch, in contrast to, e.g., the bot-
tleneck model [39]. But it has its limitations. For example, it
does not clarify a generic principle in the match between the
MFD and the demand profle, and it ignores the hysteresis.
In other words, a profound understanding of theMFD shape
and hysteresis loop from the perspective of departure time
choices is still missing. Te main objective of this paper is to
reveal the generic principle, which links the demand profles
to the MFD and the hysteresis phenomenon. Te generic
principle will provide insights into the inconsistency be-
tween the empirical and theoretical MFD. To reach the goal,
we propose an approach that, like the bathtub model, scores
well in terms of mathematical tractability, conceptual sim-
plicity, and insight, and it does this without considering any
network topology.

In this paper, routing choices (for which UE may also
apply) are not considered. Travelers optimize departure time
choices only. Consider an area as a single reservoir with
identical travelers. Te demand profle, which describes
vehicular fow into the reservoir along time, is a consequence
of departure time choices. To model the connection between
departure time choices and user costs, Vickrey [39] pos-
tulates that all travelers are identical in terms of “α − β − c”
preferences. When deciding departure time, travelers make
a trade-of between the travel cost in terms of travel delay
and the schedule costs of arriving too early or too late at
destinations so as to reach the UE. Tis indicates that the
user cost is a linear function of travel time and schedule

delays, see Section 2. Additionally, a demand curve (a re-
lationship between the equilibrium user cost and the number
of road users) may apply to determine the total number
of trips.

In this study, we would like to demonstrate that theMFD
shape of a particular network is strongly infuenced by the
departure time choices. Te model proposed here constructs
an MFD without topological information but solely with the
use of (i) time series of the number of travelers who entered
the network at a particular time and (ii) the UE assumptions
and associated “α − β − c” preferences. With these two
things, an MFD model emerges that indeed describes the
reservoir dynamics of a particular network. Figure 3 shows
the idea. Te classic approach to reconstruct an MFD is to
use trafc fow models [40, 41] to simulate trafc dynamics
in a specifc network topology.Tis approach can giveMFDs
associated with input demand profles, showing impacts of
the network topology and the demand profle. Our approach
is diferent. Although—like in the classic approach—the
demand profle is exogenous, by incorporating (an assumed)
UE principle behind the demand profle, the shape of the
MFD also naturally emerges. Our model can construct
MFDs associated with an infnite number of demand pro-
fles, which essentially creates a pool of pairs of demand
profle and its associated MFD, which all satisfy the UE
principle in departure time choices. In a specifc city, the
network topology (+ driving behavior as well as trafc rules
and control) will determine which pair of demand profle
and MFD in the pool is likely to be observed in reality.

Te reasons to take a network-free approach, instead of
using the classic simulation model, are threefold. First, in
classic simulations, it is difcult to rule out impacts of
network topology on the MFD shape. As shown in [42], the
MFD needs to be determined for each network separately
and cannot be derived from general properties. Second, it is
cumbersome to run network-based simulations in a large
network. Tird, it is difcult to reach a stable UE in de-
parture time choices in a network-based simulation. As
argued in [43], a dynamic system for the stable UE in de-
parture time choices is still missing. Recently, some dynamic
systems for the UE in departure time choices have been
proposed in [43, 44]. But these systems are only examined at
a single bottleneck. Hence, to reach the goal of this paper,
i.e., understanding the insight in the inconsistency between
the empirical and theoretical MFD from the perspective of
departure time choices, we propose the network-free
approach.

Te general line of thought in the paper is as follows. A
demand profle (i.e., departure rate as a function of time)
typically increases and then decreases as function of times. It
can hence be represented by a function which for the sake of
argument we simplify to the shape of a bell (probability
density function characterized by means and standard de-
viation). By assuming UE in terms of departure time choice,
we can reconstruct possible outfow curves. We then derive
closed-form expressions of the trafc density and outfow,
which are associated with the given demand profle. Using
the density and outfow formula, the associated MFD
emerges with the given departure time choices. Tis
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approach allows us to conduct a sensitivity analysis of the
MFD to the user cost parameters and the demand profle
characteristics (i.e., mean and standard deviation). Te
analytical analysis can help us to understand how to calibrate
parameters to give the expected MFD.

Te main contribution is to understand the MFD shape
and the mechanism behind its dependence on trafc de-
mand. Te approach is to investigate the inconsistency
between the empirical and the theoretical MFD by proposing
a network-free model. Our work shows that the hysteresis
phenomenon is inevitable. In addition, our model shows
how the density and outfow are shaped by the demand
profle, and why the commonly used “S”-shaped cumulative
departure rate curve cannot yield a congestion branch of the
MFD. Our fndings imply that the missing of congestion
branch in empirical observations is a consequence of the
user equilibrium in departure time choices, rather than an
indicator of congestion severity. For urban trafc man-
agement purposes, our fndings could beneft the evaluation
of MFD-based control applications.

Te remainder of the paper proceeds as follows. Section
2 describes the modeling approach to giving MFD from
departure time distribution. Ten, the impacts of departure
time decision-making process on the MFD are shown
qualitatively and quantitatively in Section 3 and Section 4,
respectively. We end this paper with conclusions and dis-
cussions in Section 5.

2. Traffic Dynamics as a Result of Demand
Profile and UE Assumptions

In this section, we propose close-form expressions of the
network (reservoir) density and outfow, based on demand
profles and the UE principle. We consider a city as a single
reservoir. All travelers would like to arrive at their desti-
nations at the same time, t∗. Te length of all trips is the
same, denoted as l. Te network size, L, is the total street
length in the network.

Te demand profle D depicts the cumulative curve of
departures starting from initial time t � 0. We postulate that
this demand profle is a consequence of the deterministic UE
principle for departure time choices, which means that all
travelers should have the same user cost, which consists of

a combination of travel delay (due to congestion) and
scheduled delays due to arriving too early or too late with
respect to their preferred arrival time t∗. We assume all
travelers are identical in terms of their “α − β − c” prefer-
ences, which means the cost per hour of earlier arrival than
t∗ (schedule delay early) is β and the cost per hour of later
arrival (schedule delay late) is c. Te cost per hour of travel
delay is α (which is also called the value of time throughout
this paper). Te user cost Z of every traveler is hence
expressed as

Z � Zi � α · τi + max β · t
∗

− t
a
i( 􏼁, c · t

a
i − t
∗

( 􏼁( 􏼁, (1)

where Zi, τi, and ta
i are the user cost, the travel delay, and the

arrival time of the ith traveler, respectively. Te travel delay
τi is estimated as τi � ta

i − td
i − τf where td

i and τ
f are the ith

traveler’s departure time and free-fow travel time. Note that
as consequence of the UE, the cost for all travelers is the
same, and the travel cost for the ith traveler, Zi, holds for all
travelers.

Graphically, we can show elements of the user cost as in
Figure 4. In the deterministic UE, the user cost of every trip
is the same. Tus, according to (1), the relationship between
the travel delay and the arrival time is linear, see Figure 4. As
the arrival time approaches to the preferred arrival time by
one time unit from the left (or right), the associated travel
delay will increase accordingly by β/α (or c/α respectively).

Te earliest and latest arrival time are denoted by t1 and
t2, respectively. Because the frst and the last trip travel at
free-fow speed, we can defne the starting and ending time
of the demand profle D as 0 and t2 − τf, respectively. Te
earliest arrival time is t1 � τf. Te user cost of the trip
arriving at t1 is expressed as Z � β(t∗ − τf). Tat equals the
cost of other trips arriving earlier than t∗. Tat is,
β(t∗ − τf) � α(ta

i − td
i − τf) + β(t∗ − ta

i ). Tis allows us to
express the arrival time ta

i as a function of the departure time
td
i :

t
a
i � τf

+
αt

d
i

α − β
, for t

a
i ⩽ t
∗
. (2)

Following a similar reasoning for trips arriving late, we
have β(t∗ − τf) � α(ta

i − td
i − τf) + c(ta

i − t∗). Hence, the
arrival time of trips arriving later than t∗ can be expressed as

Time

Demand

Traffic flow models

User equilibrium principle
α–β–γ
• • •

MFD

MFD

Our model

Ideally, they 
should be the 
same

Figure 3: Two independent modeling processes to describe trafc dynamics. Te MFDs given from these two modeling processes are
expected to be consistent with each other.
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t
a
i �

(β + c)t
∗

+ αt
d
i +(α − β)τf

α + c
, for t

a
i ⩾ t
∗
. (3)

We can also formulate a relation between t1 and t2, i.e.,
β(t∗ − t1) � c(t2 − t∗). Te preferred arrival time can be
derived endogenously as

t
∗

�
ct2 + βt1

β + c
where t1 � τf

. (4)

For the next steps, we use the relation between the total
demand and the user cost, i.e., the relationship that governs
how many travelers we can expect given a particular total
cost (as opposed to a simulation model that governs what
costs we can expect given a total demand). We will assume
a linear relationship in which the total demand, N, is a linear
function of user cost Z, for example, the one depicted in
Figure 5. Te slope θ indicates how the equilibrium user cost
afects the total user demand. Figure 5 is for illustration
purposes only, and the sign of θ depends on changes
considered. Tere might be two diferent types of changes. If
one considers an exogenous increase in demand, the total
demand and the user cost increase. If one considers an
exogenous change in network capacity, the actual cost will go
down and latent demand will increase the total demand.
Following this line of the reasoning, we will only need the
fact that they can be connected. Using the demand curve in
Figure 5 as an example, we can express the user cost as-
sociated with the demand N as

Z � θ N − N0( 􏼁, (5)

where N0 is a constant horizontal intercept.Te relationship
between the total demand and the user cost is frequently
used by economists to study the elastic demand [45]. Clearly,
the user cost in (5) should be consistent with (1), i.e.,
Z � (t∗ − τf)β. Combing (1) and (5) gives

N �
t
∗

− τf
􏼐 􏼑β

θ
+ N0.

(6)

Combining (4) and (6), we can reformulate the demand
as a function of the demand period duration t2 − t1:

N �
cβ t2 − t1( 􏼁

θ(β + c)
+ N0. (7)

We assume the demand profle D is bounded within
[0, t2 − τf]. Let us now estimate the departure function (in
this paper, we will use the trafc engineering convention of
demand representing the vehicles entering into the network
and the vehicles arriving at their destination, hence leaving
the network). We frstly consider a probability density
function of departure time, f(td) (e.g., normal distribution).
Te total demand, N, times the probability density at time td

gives the departure rates at that time, i.e., q(td). Ten, we
obtain the cumulative curve of departure rates Nd

c (td):

N
d
c t

d
􏼐 􏼑 � N · F t

d
􏼐 􏼑, (8)

where F(td) is the cumulative probability function of f(td).
Figure 6 shows how to estimate the density using the

departure and arrival cumulative curves. Te vertical dif-
ference between the cumulative departure and arrival curve
is the number of vehicles in the network. Te density at time
td, k(td), is estimated as Nd

c (td) − Na
c (td)/L. Consider a time

􏽥t
d that is implicitly defned by the time that cumulative
departure rate Nd

c (􏽥t
d
) is equal to Na

c (td), see Figure 6.
Travelers departing at time 􏽥t

d will reach their destinations at
time td. Te density will be expressed as

k t
d

􏼐 􏼑 �
N

d
c t

d
􏼐 􏼑 − N

a
c t

d
􏼐 􏼑

L

�
N

d
c t

d
􏼐 􏼑 − N

d
c

􏽥t
d

􏼐 􏼑

L

�
N

L
· F t

d
􏼐 􏼑 − F 􏽥t

d
􏼐 􏼑􏼐 􏼑,

(9)

where N � (cβ(t2 − τf))/(θ(β + c)) + N0 according to (7).
We can replace the arrival time ta and the departure time

td in (2) and (3) with t and 􏽥t, respectively. Ten, we can
express the departure time 􏽥t as a function of the arrival time
t:

0 t1 t2t*

Travel Delay

Arrival time

–

α

α

β

γ

Figure 4: Linear relationship between travel delay and arrival time
in user equilibrium.

Total demand

U
se

r c
os

t

Z

N0 N

θ

Figure 5: Demand curve. Te relation is assumed to be linear. Te
constant θ is the slope of the demand curve and shows how the
equilibrium user cost afects the user quantity demanded.
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􏽥t �
(α − β) t − τf

􏼐 􏼑

α
, for t⩽ t

∗
,

􏽥t �
(α + c)t − (β + c)t

∗
− (α − β)τf

α
, for t⩾ t

∗
.

(10)

When estimating the density at time t, we frst derive 􏽥t

using (10). According to the demand profle, we then have
the cumulative departure rate at time t and 􏽥t. Finally, the
density will be given by (9).

We are also interested in the outfow. Basically, the
outfow qout(t) is given by

qout(t) �
dN

a
c (t)

dt

�
zN

d
c (􏽥t)

z􏽥t
·
z􏽥t(t)

zt

� Nf(􏽥t) ·
d􏽥t(t)

dt
.

(11)

Te function 􏽥t(t) (i.e., (10)) does not have a derivative at
t � t∗. Because time always increases in simulations, we
estimate the derivative at time t � t∗ as the time t approaches
t∗ from the left. Substituting (10) into (11), we can have
expressions of the outfow as

qout(t) � Nf(􏽥t) · 1 −
β
α

􏼠 􏼡, for t⩽ t
∗
,

qout(t) � Nf(􏽥t) · 1 +
c

α
􏼒 􏼓, for t> t

∗
,

(12)

where N � (cβ(t2 − τf))/(θ(β + c)) + N0 and t∗ � (ct2 +

βτf)/(β + c) according to (4) and (7). Te MFD plotted
using expression (9) and (12) will be determined by a single
parameter, t2, and the demand profle distribution f. Note
that the outfow and density are formulated as functions of

time t, see (9) and (12). Te density and outfow at time t⩽t∗
form an early arrival branch in the MFD; the states at time
t> t∗ form a late-arrival branch.

Note that the outfow profle is discontinuous at time t∗,
see (12). Physically, this is explained by a diference in value
between being early and being late. From the mathematics,
we can see that the late-arrival outfow (at time t> t∗) is
higher than the demand at 􏽥t by a factor 1 + c/α> 1 while the
early arrival outfow (at time t⩽ t∗) is lower than the demand
at􏽥t by a factor 1 − β/α< 1. When t � t∗, if f(t) is continuous
at time 􏽥t, one could expect a jump of outfow at time t.
Terefore, the outfow will be discontinuous at time t, and
the late-arrival outfow is higher than the early arrival one.

Let us now consider the efect of the parameters on this
property and the reason why manyMFDs shown empirically
might seem continuous. A much higher α (than β and c),
which means lower β/α and c/α, indicates that travelers
dislike traveling (and hence queuing) even more than ar-
riving early or being late, respectively. Tat is expected to be
realistic. Consider the demand f(t) is continuous along
time. According to (12), when β/α and c/α are 0 (the limit of
a very high α), the outfow will be continuous along time too.
Te low-value β/α and low-value c/α may match with an
empirical MFD that looks continuous. Relaxing the as-
sumption of a fxed desired arrival time t∗, distributed
desired arrival time might lead to a similar efect since it will
smoothen the sudden transition from being early to
being late.

3. Hysteresis Phenomenon in MFD:
Qualitative Analysis

Tis section aims at qualitatively explaining how a demand
profle determines the MFD shape. Te section provides two
main insights. It frst clarifes why and how the demand
profle gives more than one outfow values associated to the
same density (i.e., the hysteresis phenomenon). Second, it
explains from the perspective of departure time choices why
the so-called congestion branch is rarely observed with
empirical data.

Let us frst analyze the MFD shape, and to this end,
consider the density and outfow resulting from a typical
demand profle, see Figure 7. At time t, a departure rate is
denoted by qd(t). According to Section 2, the outfow at time
t, qout(t), will be determined by two components: frst, the
departure rate at time 􏽥t, qd(􏽥t); second, whether the time t is
earlier than the preferred arrival time or not. Te time 􏽥t is
estimated using (10). Te area under the demand profle
between time t and 􏽥t equals the number of vehicles in the
network at time t (i.e., k(t) · L).

Let us consider a typical demand profle, which increases
frstly and then decreases along time, see Figures 8(a) and
9(a) for illustrations. In that case, the same outfow is ob-
served at diferent time ti and tj, respectively. If ti < tj < t∗,
according to (12), the infow at 􏽥ti and 􏽥tj should be the same,
see Figure 8(a). Te corresponding densities are related to
the area of the grey shading. We use number “1” and “2” to
denote two trafc states observed at time ti and tj, re-
spectively. For this demand pattern, we also construct the
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Figure 6: Cumulative curves of departure and arrival rates.
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MFD using the method as described, which is shown in
Figure 8(b). Te MFD shows two branches: early arrival and
late-arrival branches. For the case in Figure 8(a), trafc states
“1” and “2” are on the early arrival branch. If ti < t∗ < tj (i.e.,
the case shown in Figure 9(a)), to observe the same outfow
at both ti and tj, the infow qj should be lower than qi

according to (12). Te two illustrated trafc states are
denoted by “3” and “4,” respectively.Tey are depicted in the
late-arrival branch of the MFD in Figure 9(b). Hence, for the
same outfow, the associated density could be very diferent,
which is considerably afected by the demand profle and the
preferred arrival time t∗. As shown in Figure 8, the MFD
emerges as a hysteresis loop structure—more than one
corresponding density for a fow.

Lemma 1. t>􏽥t. When t⩽t∗, the time duration between t and
􏽥t increases as time t increases; when t> t∗, the time duration
between t and 􏽥t decreases as time t increases.

Proof. According to (10), the duration t − 􏽥t can be expressed
as follows:

t − 􏽥t �
β
α

· t + 1 −
β
α

􏼠 􏼡 · τf
, for t⩽ t

∗
,

t − 􏽥t �
− ct +(β + c)t

∗
+(α − β)τf

α
, for t> t

∗
.

(13)

As time goes by, if the time t⩽ t∗, the derivative d(t −
􏽥t)/ dt � β/α> 0 shows that the time duration increases as
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Figure 8: An illustration of hysteresis phenomenon when ti and tj are both earlier than the preferred arrival time t∗. To give the same
outfow, the infow at departure time 􏽥ti and 􏽥tj is the same, see (a). Te shading illustrates density in diferent trafc states (denoted by
diferent numbers). TeMFD is given in (b). (a) Demand profle (when ti and tj are both earlier than the preferred arrival time t∗). (b) MFD
showing the corresponding trafc states 1 and 2 (when ti and tj are both earlier than the preferred arrival time t∗).
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time goes by; if the time t> t∗, d(t − 􏽥t)/ dt � − c/α< 0 means
the time duration decreases.

Substituting (4) for t∗ in (13), we can see when t> t∗,
t − 􏽥t � c/α(t2 − t) + τf. Because t⩽ t2 and α, c> 0, we can
derive that t − 􏽥t> τf > 0. Hence, we can conclude that the
time used to estimate the outfow (i.e., 􏽥t) is always in the left
of time t, that is, t>􏽥t. □

Consider a trafc state transition along congestion
branch, i.e., as time goes on, the density increases while the
outfow decreases. According to (12), if qout(t) decreases,
then accordingly f(􏽥t) should decrease. Te expected re-
alistic demand profle is “S”-shaped (i.e., demand increases
and then decreases along time). So, we can conclude that if
the outfow decreases as time goes on, the departure time t

and the corresponding arrival time 􏽥t both should have
passed the time when demand reaches its peak (i.e., on the
right-hand decreasing branch of the demand profle). As
shown in Figure 9(a), the density corresponds to the shaded
area below the right-hand demand branch. As time passes,
the shaded area moves to the right (the left-hand tail of the
shaded will disappear, and new shaded area will be added at
the right-hand side). If tj > t∗ (see state 4 in Figure 9(a)), the
temporal duration of the shaded (or called “shading width”)
decreases as tj increases, see Lemma 1 and (13). Given the S-
shaped demand cumulative curve, the shaded area will
decrease along time when tj > t∗. Tat is, in the trafc state
transition along the late-arrival branch, when the outfow
decreases, the density will decrease. Tat is inconsistent with
the trafc state transition along the congestion branch.

Hence, if a congestion branch existed, it should be on the
early arrival branch. Consider the trafc state transition
along the congestion branch from low density to high
density (e.g., state 2 in Figure 8(a)). On the early arrival
branch, when time increases by ∆t, 􏽥tj will accordingly

increase by (1 − β/α)∆t, see (13). Only if the area in time
duration [􏽥tj,􏽥tj + (1 − β/α)∆t] is smaller than the area in
time duration [tj, tj + ∆t], the density increases along time.
As such, to observe an increasing density when outfow
decreases, β/α is required to be close to 1 (minimizing the
disappeared shaded area). However, as argued in Section 2,
β/α (lower than 1) is more reasonable (because many
travelers prefer departing earlier or later to avoid trafc
congestion in real life). Hence, it is rare to observe the
congestion branch. When the outfow is very low, the as-
sociated density will be small. Tat also explains why we will
observe hysteresis loops rather than a complete concave
MFD. Numerical examples are given in Figures 8 and 9. As
the density increases along time, the outfow would increase;
when the density decreases, the outfow would decrease as
well. Hence, there is no congestion branch in the MFD
shown in Figures 8 and 9.

4. Numerical Illustration of MFD
Associated with Demand Profile

In this section, we show the phenomena presented in pre-
vious sections numerically. Te numerical case study has
three purposes: (i) numerically depicting the MFD; (ii)
testing whether we can observe the hysteresis phenomenon
and the congestion branch; and (iii) evaluating sensitivity of
the MFD to diferent input parameters.

We will hence do the numerical implementation for
a variety of demand profles to test the sensitivity of theMFD
shape to the demand. According to Section 2, the MFD
shape is determined by the probability density function of
the departure time, the latest arrival time t2 (or the rush hour
duration), and user cost parameters α, β, and c. We describe
the setup of the numerical experiment in Section 4. Te
illustration results are presented in Section 4.
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Figure 9: An illustration of hysteresis phenomenon when ti and tj are earlier and later than the preferred arrival time t∗, respectively. Given
the same outfow, the associated densities can be diferent because of the demand profle shape. Te shading illustrates density in diferent
trafc states (denoted by diferent numbers). (a) Demand profle (when ti and tj are earlier and later than the preferred arrival time t∗,
respectively). (b) MFD showing the corresponding trafc states 3 and 4 (when ti and tj are earlier and later than the preferred arrival time t∗,
respectively).
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4.1. Setup. Tis section describes the numerical case study
setup. Te demand profle describes the departure rate
during the rush hour (from 0 to t2 − τf). We can have
F(0) � 0 and F(t2 − τf) � 1.When formulating the demand
profle, we frst assume a normal distribution fN(t) char-
acterized by mean μ and standard deviation σ. Te proba-
bility density function of departure time during the rush
hour is estimated as f(t) � fN(t)/[FN(t2 − τf) − FN(0)]. If
t2 is fxed, the mean value and standard deviation of f

should increase/decrease as μ and σ increase/decrease. Te
total road length in the network is L � 500 km. Trip length l

is 2 km. Time is discretized into several steps of 1min. We
estimate the density and outfow every time step.

We design a reference scenario where the parameter
values in the user cost function are given as follows: α � 10,
β � 0.61, and c � 2.4.Te ratio of these parameters is loosely
based on [46]. For the demand curve, θ � − 50 and
N0 � 200, 000 veh. To fx demand, we initially choose a rush-
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Figure 10: Sensitivity analysis of the MFD to the parameters α, β, and c. Te demand profle is shown in (a). Te MFDs are given in the
remaining three subfgures. (a) Demand profle that follows a normal distribution with mean μ � 240 and standard deviation σ � 70. (b)
Sensitivity of the MFD to the parameter α. β � 0.61 and c � 2.4. (c) Sensitivity of the MFD to the parameter β. α � 10 and c � 2.4. (d)
Sensitivity of the MFD to the parameter c. α � 10 and β � 0.61.
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Figure 11: Continued.
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Figure 11: Sensitivity analysis of the MFD to demand profles. Te demand profles are given in the left-hand column, i.e., (a), (c), and (e).
Te associated MFDs are given in the right-hand column i.e., (b), (d), and (f). (a) Demand profle that follows a normal distribution with
mean μ � 0.8∗ (t2 − τf) and standard deviation σ � 70. (b) Sensitivity of the MFD to the parameter t2. Te hysteresis loops are coun-
terclockwise. (c) Demand profle that follows a normal distribution with standard deviation σ � 70 and diferent μ values. (d) Sensitivity of
the MFD to the parameter μ. σ � 70. (e) Demand profle that follows a normal distribution with mean μ � 240 and diferent σ values.
(f ) Sensitivity of the MFD to the parameter σ. μ � 240.
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hour duration of 5 hours, and further μ � 150 and σ � 70.
Variations thereof will also be considered.

4.2. Results. In this section, given demand profles, we
generate associated MFDs using our model. We depict
MFDs that match with diferent input parameters (t2, μ, σ, α,
β, and c) and demand profles.

4.3. Overall Shape. First, we analyze the overall shape. We
see that the MFD consists of two branches: early arrival and
late-arrival branch. In Figures 10 and 11, none of the
depicted MFDs show a congested branch (i.e., decreasing
outfow with increasing density). Both the early arrival
branch and late-arrival branch form hysteresis loops. Te
MFDs are discontinuous as expected because the outfow is
not continuous along time at time t∗. Tis is in line with the
theory developed in the previous section. We fnd as well, as
also depicted in Figure 10(b), that the MFD seems more and
more ”continuous” or connected as α goes up.

Note here that the MFDs generated in Figures 10 and 11
are indeed diferent from empirical and theoretical ones in
the literature.Te reason could be that the demand profle in
the numerical case study is given exogenously following
a shape of the normal distribution for simplicity. Despite the
diference between the generated MFD in our model and the
empirical ones, we would like to highlight a fnding that the
congestion branch cannot be observed, regardless of de-
mand profles. In fact, several diferent types of distributions
(e.g., bimodal distribution) were attempted, but the con-
gestion branch still cannot be reproduced, see Figure 12. It
means that the hysteresis is a result of UE in departure time
choices.

Furthermore, note that all MFDs in Figure 10(b) reveal
counterclockwise hysteresis loops. Te average speed is
a weighted ratio between outfow and density by l/L. Fig-
ure 10(b) shows that the speed of early arrivals increases as α

raises. Early arrival travelers tend to spend less time on
roads. On the contrary, the increasing β decreases the speed
of early arrivals, see Figure 10(c). Te late-arrival outfow
function is independent of β. So, late-arrival branches in
Figure 10(c) overlap with each other, shown as one concave
curve at the top. Figure 10(d) shows how theMFD varies as c

increases. When c � 0.4, the MFD is shown as a quite
continuous counterclockwise loop. When c increases, the
early and late-arrival branches are more separated.

4.4. Efects ofDemandProfle. Let us now focus on the efects
of the demand profle on the MFD. Te demand profle is
characterized by three parameters, i.e., t2, μ, and σ. We
varied all three, and the resulting MFDs are shown in
Figure 11. Below, we will comment on each of the
parameters.

(i) In the simulations, the MFD associated with
a higher t2 (i.e., a longer rush hour duration) has
lower capacity and slower speed. Diferent latest
arrival time t2 means diferent rush hour time
duration. Te corresponding MFDs are given in
Figure 11(b), shown as counterclockwise hysteresis
loops. In our numerical simulations, the demand
profle is defned by normal distribution parameters,
i.e., μ � 0.8(t2 − τf) and σ � 70. Te mean value of
the departure time is always at 80% of the rush hour
duration.We simulate rush hours 3 h, 4 h, and 5 h. A
longer rush hour means the probability density
f(td) at time td would be lower.Te demand at time
td would be lower, see Figure 11(a). Note here that
by carefully choosing a positive θ, the total demand
could increase with an increasing rush hour dura-
tion.Ten, the impacts of the rush hour on theMFD
could difer.

(ii) A higher mean value μ (i.e., the demand peak
happens later) gives a higher late-arrival branch.
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Figure 12: Diferent types of distributions were attempted, but the congestion branch still cannot be reproduced.Te bimodal distribution is
used to formulate the demand in (a) and (c). (a) One example of a bimodal demand profle. (b) Hysteresis in MFD, emerging from the
demand profle in (a). (c) Te other example of a bimodal demand profle. (d) Hysteresis in MFD, emerging from the demand profle in (c).
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Note here that the mean value of the departure time
is μ/A where A � FN(t2 − τf) − FN(0) is a constant.
A lower μ means most of the travelers would like to
depart earlier. Hence, the late-arrival MFD branch
will be lower as μ decreases. In numerical studies,
the rush hour time duration is 5 hours, and the
standard deviation σ � 70. Te demand profles
associated with diferent mean value μ are shown in
Figure 11(c). Te associated MFDs are shown in
Figure 11(d). Te hysteresis loops for μ � 120 and
μ � 150 are clockwise. When the mean μ � 180, we
can see a fgure-of-eight hysteresis loop. As μ in-
creases up to 240, the hysteresis loop will be
counterclockwise (see squares in Figure 11(f )).

(iii) Additionally, a higher standard deviation σ (i.e., the
demand is more evenly distributed over the rush
hour duration) corresponds to a lower MFD ca-
pacity and a smaller critical density. Te standard
deviation of the departure time should be σ/A. A
lower σ means the demand is more aggregated to
a peak-hour instant (e.g., because the network has
a higher capacity to evacuate a larger number of
vehicles). A trafc demand would be more evenly
distributed as σ goes up. Figure 11(e) shows demand
profles with diferent σ values. Accordingly, the
associated MFDs are given in Figure 11(f ).

5. Conclusions

Tis paper explores the shape of the MFD and explains the
shapes as found in empirical works by a theoretical ap-
proach. We are particularly interested in the mechanism
behind (1) the missing of the congestion branch and (2) the
hysteresis. In this paper, the terminology “congestion” is
used to describe theMFD branch where the fow decreases as
the density increases. Te other MFD branch in which fow
increases as the density increases is called the free-fow
branch. In the literature, the terms “free-fow” and “con-
gestion” are sometimes referred to as “congestion” and
“hypercongestion,” respectively.

To reach the goal, a network-free approach is taken. We
consider a large-area urban trafc network as one reservoir.
Te demand is described as departure rates along time,
regardless of OD spatial distribution (or OD structure). In
the trip scheduling decisions, departure time choices are
assumed to be in line with the deterministic user equilibrium
(UE) principle. Tis implies that the cost of all users is the
same. Te user trip cost is calculated with linear terms for
travel time and early and late arrivals, using the conventional
“α − β − c” approach. Via a demand curve, we show the
relation between the user cost and total demand. Based on
these considerations, we formulate the density and outfow
expressions along time. Te MFD is given as a relation
between the density and the outfow.Te model proposed in
this paper shows a correlation between the demand profle
and the MFD.

Our main conclusion is that the hysteresis phenomenon
and the missing of the congestion branch are consequences
of the UE in departure time choices. Tis explains why we

can observe congestion branch in simulations when not
considering UE in departure time choices, while in empirical
observations, we can only see the hysteresis phenomenon.
Tis conclusion also implies that in real life, travelers are
quite rational when making trip decisions, consistent with
the classic UE theory and the stability in trafc congestion
patterns [43, 44]. Note here that this conclusion is diferent
from ideas on the conditions for an MFD, namely, that the
states in an MFD are stationary. Tis demand-dependent
MFD defnition is consistent with recent literature [11, 24].

To the best of the authors’ knowledge, it is the frst time
to show that the missing of congestion branch is a result of
the UE, rather than an indicator of congestion severity. Te
missing of congestion branch in MFD has already been
demonstrated in quite a lot of empirical observations. Some
may argue that the MFD with free-fow branch only (i.e.,
without the congestion branch) means the city is not
oversaturated. As discussed in Section 1, a demand that is
not sufciently high was still considered as a possible reason
for the missing of congestion branch. Following that ar-
gument, the delay might be still too small to present the
congestion branch. But in real life, in a congested city, it is
not so convincing to argue that the demand is not sufciently
high. Our study proposes an alternative reason, i.e., the
missing of congestion branch is a property regardless of
delays.

Some may argue that our research links the demand and
the rush hour duration. Te congestion cannot be presented
because of a long rush hour duration, during which the
network is flled and emptied. However, we would argue
that, as shown in Figure 4, the maximum, average, and total
delays would also increase as the rush hour duration in-
creases. Consider a rather high demand (compared to the
network capacity). Tis high demand would result in a very
long rush hour duration. It is necessary to remark here that
the delays in the city would also be rather large; otherwise,
the rush hour duration would not be so long. Hence, the
large delays which in fact indicate the congestion severity
cannot be visualized as a congestion state in the MFD. Tat
is, as the UE is applicable, the congestion branch ofMFDwill
not be observed regardless of delays, total number of
commuters, and the congestion severity.

Previous research has already noticed that the spatial
density heterogeneity can afect the MFD but did not explain
why this would happen. It can be argued that the spatial
density heterogeneity is a result of travel behavior, such as
departure time choices. Te demand pattern, as a result of
departure time choices, determines the queue dynamics
(e.g., shock wave propagation and queue length) and hence
an uneven spatial density distribution. Our work explains
how the departure time choices shape the MFD, which also
shed light on how the demand profle determines the spatial
density heterogeneity.

Tis research is conducted in a one-reservoir framework.
Te possible complex OD matrix is aggregated as one de-
mand profle. Tat means, in the proposed network-free
approach, all travelers are considered as a single group. Tis
one-reservoir modeling framework, focusing on aggregate
behavior and ignoring details, is consistent with the existing
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MFD-based parsimonious modeling principles. We realize
that the aggregatemodeling principle may underestimate the
impacts of heterogeneity (e.g., in trip distance) on trafc
dynamics. As argued in [18], the OD matrix could con-
siderably afect the macroscopic trafc dynamics in a given
network. However, we would argue that by ruling out the
heterogeneity and isolating the UE in departure time
choices, this paper can clearly present the impacts of UE in
departure time choices on the MFD shape. As concluded in
this paper, excluding the impacts of heterogeneity, the UE in
departure time choices could explain the missing of the
congestion branch. Tat is very important for urban trafc
management.

In this research, the desired arrival time is the same for
all travelers. Compared to a heterogeneous desired arrival
time case, the uniform desired arrival time assumption
maximizes the total travel time (and delays) in the network.
Te uniform desired arrival time assumption in this paper
indicates that, even with the maximized total travel time, the
MFD does not show a congestion branch.

As the next steps in this research, we envisage using this
modeling approach for trip scheduling with stochastic UE
principle and heterogeneity in value of time α. It is also
important to conduct real-world testing and calibrations to
validate our network-free analysis. In the future, our ap-
proach can also be extended to study how the heterogeneity
(preferably based on data) of preferred arrival time in-
fuences trafc dynamics (e.g., spatial density heterogeneity).
Tese future extensions will extend the current principles
into a more realistic model, showing the abilities and lim-
itations of our current analysis. For trafc management, our
work possibly can contribute to better assessing MFD-based
control applications (e.g., perimeter control).
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[15] L. Ambühl, A. Loder, M. C. J. Bliemer, M. Menendez, and
K.W. Axhausen, “Introducing a re-samplingmethodology for
the estimation of empirical macroscopic fundamental dia-
grams,” Transportation Research Record, vol. 2672, no. 20,
pp. 239–248, 2018.
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