<]
TUDelft

Delft University of Technology

Algebraic temporal blocking for sparse iterative solvers on multi-core CPUs

Alappat, Christie; Thies, Jonas; Hager, Georg; Fehske, Holger; Wellein, Gerhard

DOI
10.1177/10943420241283828

Publication date
2024

Document Version
Final published version

Published in
International Journal of High Performance Computing Applications

Citation (APA)

Alappat, C., Thies, J., Hager, G., Fehske, H., & Wellein, G. (2024). Algebraic temporal blocking for sparse
iterative solvers on multi-core CPUs. International Journal of High Performance Computing Applications,
39(2). https://doi.org/10.1177/10943420241283828

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1177/10943420241283828
https://doi.org/10.1177/10943420241283828

W) Check for updates

nternational Journal of

HIGH PERFORMANCE
COMPUTING APPLICATIONS

Research Paper

The International Journal of High
Performance Computing Applications

Algebraic temporal blocking for sparse 2024, Vo, 00) 121
. o . © The Author(s) 2024
iterative solvers on multi-core CPUs

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420241283828
journals.sagepub.com/home/hpc

Christie Alappat' @, Jonas Thies?, Georg Hager' ©, S Sage
Holger Fehske' and Gerhard Wellein''*?

Abstract

Sparse linear iterative solvers are essential for many large-scale simulations. Much of the runtime of these solvers is often
spent in the implicit evaluation of matrix polynomials via a sequence of sparse matrix-vector products. A variety of
approaches has been proposed to make these polynomial evaluations explicit (i.e., fix the coefficients), e.g., polynomial
preconditioners or s-step Krylov methods. Furthermore, it is nowadays a popular practice to approximate triangular solves
by a matrix polynomial to increase parallelism. Such algorithms allow to evaluate the polynomial using a so-called matrix
power kernel (MPK), which computes the product between a power of a sparse matrix A and a dense vector x, i.e., APx, or a
related operation. Recently we have shown that using the level-based formulation of sparse matrix-vector multiplications in
the Recursive Algebraic Coloring Engine (RACE) framework we can perform temporal cache blocking of MPK to increase
its performance. In this work, we demonstrate the application of this cache-blocking optimization in sparse iterative
solvers. By integrating the RACE library into the Trilinos framework, we demonstrate the speedups achieved in (pre-
conditioned) s-step GMRES, polynomial preconditioners, and algebraic multigrid (AMG). For MPK-dominated algorithms
we achieve speedups of up to 3% on modern multi-core compute nodes. For algorithms with moderate contributions from
subspace orthogonalization, the gain reduces significantly, which is often caused by the insufficient quality of the or-
thogonalization routines. Finally, we showcase the application of RACE-accelerated solvers in a real-world wind turbine
simulation (Nalu-Wind) and highlight the new opportunities and perspectives opened up by RACE as a cache-blocking
technique for MPK-enabled sparse solvers.

Keywords
Sparse matrices, iterative solvers, matrix polynomial, cache blocking, performance

l. Introduction and related work preconditioner is used, the SpMVs may also be alternated
with other operators, e.g., approximations of A~! or tri-
angular factors A~' = U~!'L~!. Preconditioning is a broad
field of research; for an overview of methods, see Wathen
(2015). For sufficiently large matrices A4, the SpMVs and
preconditioners typically dominate the runtime, and it is
known that these operations are main-memory bound for

The solution of linear systems involving large sparse matrices is

at the core of many computational workflows. Apart from

application-specific approaches like domain decomposition

methods and geometric multigrid, the most popular classes of

solvers are Krylov subspace methods (often combined with

preconditioning) or algebraic multigrid. These algorithms are

key components in open-source parallel simulation frameworks

like Trilinos, see Trilinos Project Team (2020). 'Erlangen National High Performance Computing Center, Friedrich-
Kl’leV subspace methods perform a sequence of sparse fxlex.ander-Univer.sitiit ErlangeanUrnberg, I?rlangen, Germany

matrix-vector multiplications (SpMV), vector updates _rlzztl’t\ret:hz'::;zzlled Mathematics, Delft University of Technology, Delft,

(axpy) and inner products to construct some basis of the 3Department of Computer Science, Friedrich-Alexander-Universitit

Krylov subspace Cx(4,v) = {v,A4v, A2y, ~~~,Ak_lv}, and Erlangen-Niirnberg, Erlangen, Germany

then extract an approximate solution by solving a much

smaller problem involving A4 projected onto that subspace. h)))

In general, maintaining some orthogonality property of the ghmtle Alappat, Erlangen National High Performance Computing

enter, Friedrich-Alexander-Universitit Erlangen-Niirnberg,
basis is essential for stability, which leads to other vector MartensstraBe 1, Erlangen 91058, Germany.
operations being required in between SpMVs. If a Email: christie.alappat@fau.de

Corresponding author:

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420241283828
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0003-4548-8727
https://orcid.org/0000-0002-8723-2781
mailto:christie.alappat@fau.de
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420241283828&domain=pdf&date_stamp=2024-09-25

2 The International Journal of High Performance Computing Applications 0(0)

appropriately chosen sparse data layouts and may achieve
high spatial locality when accessing the data elements of the
matrix (Kreutzer et al., 2014).

In the early days of parallel computing, s-step methods
were developed to improve data locality (i.e., reduce
communication) in Krylov methods (Erhel, 1995;
Chronopoulos and Gear, 1989; Chronopoulos, 1991;
Chronopoulos and Kim, 2020). They break up the data
dependency by first computing a sequence of SpMVs and
then using a sequence of scalar/vector operations to ap-
proximate the basis produced by, e.g., a Conjugate Gradient
(CG) or Generalized Minimum Residual (GMRES) method.
These variants have recently received attention as they may
use fast ‘kernels’ like the ‘Matrix-Power Kernel” (MPK)
and the ‘Tall-Skinny QR’ (TSQR), see Demmel et al.
(2008), Hoemmen (2010). Recent work focuses on
distributed-memory systems, i.e., reducing the number of
messages and synchronization points in MPI im-
plementations (e.g., Yamazaki et al., 2014b; Dongarra et al.,
2017; Yamazaki et al., 2017).

However, the performance potential of the MPK for modern
cache-based multicore architectures has not been exploited so
far in any solver frameworks. MPK involves the successive
application of SpMV with the same matrix and offers the
opportunity to exploit temporal locality by reusing the matrix
elements from cache instead of repeatedly loading them from
main memory. For regular stencil algorithms it is well known
how to improve temporal locality by temporal blocking (Datta,
2009); on the other hand, for irregular sparse matrices such
geometrical blocking approaches are generally not applicable.
Instead, an algebraic formulation of the problem needs to be
considered to control the data dependencies and cache-access
locality between successive SpMVs. In Alappat et al. (2023),
we have shown that this can be realized by a cache-aware
traversal of the levels obtained from a breadth-first search
(BFS) on the graph underlying the matrix. Our implementation
of the MPK achieves good scalability and high performance on
modern multicore architectures for a broad range of matrices.
Compared to state-of-the-art implementations, RACE provides
speedups in the range of 2—4 x. We refer to Alappat et al.
(2023) for an overview of related work on optimizing MPK.
Besides s-step Krylov algorithms there are other classes of
methods like polynomial preconditioning, smoothers in mul-
tigrid, Chebyshev time propagation, and power methods for
eigenvalue solvers, which may also benefit from cache
blocking of MPK.

I.1. Contributions

In this paper we address the integration of the cache-blocked
RACE MPK (Alappat, 2019) into a number of represen-
tative iterative methods and evaluate the overall perfor-
mance benefit on various solvers. The cache-blocking
strategy does not change the numerical behavior of the

methods. Thus, the purpose of this paper is not to compare
different iterative schemes or identify the most efficient
preconditioners. Instead, we focus on a broad range of
numerical algorithms including several preconditioners and
investigate the performance gains achieved through opti-
mized MPK. Our specific contributions can be summarized
as follows:

* Demonstration of the use of RACE MPK to accelerate
s-step GMRES on modern multi-core CPUs,

* incorporation of diagonal and triangular precondi-
tioners into the MPK, where the triangular solves are
approximated using Jacobi-Richardson iterations,

* application of RACE MPK to GMRES polynomial
preconditioning, demonstrating substantial perfor-
mance improvements for high matrix powers,

* introduction of strategies to accelerate algebraic mul-
tigrid (AMG) methods using RACE’s cache blocking
technique, and

» showcasing the impact of highly efficient MPK on
algorithmic choices using a case study from wind
turbine simulation (Nalu-Wind, Sprague et al., 2020).

In all cases a thorough performance analysis is conducted
and the speedup obtained by RACE for different solvers is
quantified.

1.2. Outline

Throughout the paper we use the same representative
hardware and matrices for demonstration purposes; these
are introduced in Section 2. We start by briefly recapitu-
lating the idea of cache-blocking MPK using RACE in
Section 3. Section 4 discusses the hardware-efficient inte-
gration of RACE MPK into s-step GMRES methods.
Section 5 addresses the integration of preconditioners into
the MPK for s-step GMRES methods. We choose Jacobi
and Gauss-Seidel sweeps as representative examples for
diagonal and triangular preconditioners, where the trian-
gular systems are solved approximately using Jacobi-
Richardson iterations. Further in the section we discuss
the application of RACE to advanced polynomial and AMG
preconditioners. In Section 6 we bring together the ideas
developed in the paper to accelerate the solution of a
momentum equation arising in the Nalu-Wind wind turbine
simulation. Finally, we summarize our findings in Section 7.

2. Hardware and software environment

2.1. Hardware testbed

The experiments presented in this paper were performed on
single Intel Ice Lake (ICL) and AMD Epyc Rome (ROME)
multicore processors. These processors or similar ones are

Alappat et al.

Table I. Key specification of test bed machines.

Architecture ICL ROME

Chip model Xeon Platinum 8368 AMD EPYC 7662
Microarchitecture Sunny cove Zen-2

Cores per socket 38 64

Max. SIMD width 512 bits 256 bits

LID cache capacity 38 x 48 KiB 64 x 32KiB

L2 cache capacity 38x1.25MiB 64 x5]2KiB

L3 cache capacity 57 MiB 16 x 16 MiB

L3 bandwidth 420 GB/s 2700 GB/s

Mem. Configuration 8 ch. DDR4-3200 8 ch. DDR4-3200
Mem. Bandwidth 170 GB/s 146 GB/s

used in the majority of Top500' systems today. Key features
of the chips are listed in Table 1. Both architectures im-
plement an x86 instruction set. The 10 nm ICL processor
supports the AVX-512, while the 7 nm ROME processor
supports AVX2. The systems are capable of sustaining more
than 2 GHz clock frequency and the turbo mode was active
for all our experiments. The AMD system has a higher core
count (64 per socket) compared to its Intel counterpart (38
per socket). Both systems have three levels of cache: pri-
vate, inclusive L1 and L2 caches, and shared victim L3
cache. The L3 cache on ICL is shared among all the cores
within a socket, while on ROME the L3 cache is shared
within one core complex (CCX) unit comprising four cores.
Due to ROME’s hierarchical “chiplet” design, the L3 cache
is highly scalable and it can sustain an aggregate L3 load
only bandwidth of 2700 Gbyte/s, while ICL achieves only
420 Gbyte/s. The total L3 cache size of ROME is also much
larger compared to ICL. Both systems have eight-channel
DDR memory and sustain similar memory bandwidth. Both
are configured with one ccNUMA domain per socket
configuration, i.e., Sub-NUMA Clustering (SNC) was
disabled on ICL and one NUMA node per socket (NPS1)
mode was used on ROME.

2.2. Software environment

The ICL system runs Red Hat Enterprise Linux (RHEL)
version 8.4 while ROME runs Ubuntu 20.04.4 LTS. For best
performance, the OS setting “Transparent Huge Pages”
(THP) was set to “always” on both the systems, see Alappat
et al. (2020b) for details. For compilation we used the Intel
compiler version 2021.5.0 and 19.0.5 on ICL and ROME,
respectively, at the highest optimization level —03. Machine-
specific code generation was employed via —xHOST on ICL
and -march=core-avx2 -mtune=core-avx2 on
ROME. All floating-point computations were performed in
double precision, and integers were 32 bits wide. The linear
solvers from the Trilinos framework used in this work were
adapted to use the RACE MPK. Both RACE and the modified

Table 2. Details of the benchmark matrices. See Davis and Hu
(2011) for details.

ID Matrix name N, Np; Nnzr
| G3_circuit 1,585,478 7,660,826 4.83
2 thermal2 1,228,045 8,580,313 6.99
3 Transport 1,602,111 23,487,281 14.66
4 Fault_639 638,802 28,614,564 44.79
5 Emilia_923 923,136 41,005,206 4442
6 af_shelll0 1,508,065 52,672,325 34.93
7 ML_Geer 1,504,002 110,879,972 73.72
8 Flan_1565 1,564,794 117,406,044 75.03

Trilinos solvers are available through GitHub repositories; the
exact versions used for the experiments are available at RACE *
and Trilinos®. For BLAS computations, Intel MKL version
2022.0 (see Intel, 2022) was used on ICL. On ROME we used
MKL version 2020.0.4 unless otherwise stated. It is well
known that MKL sometimes exhibits low performance when it
detects AMD hardware. In order to make results comparable,
we overwrite the mkl serv intel cpu true symbol
with a function that always returns true.* On ROME we oc-
casionally use the AOCL BLIS library (see AMD, 2022; Van
Zee and Van de Geijn, 2015) version 3.2 as an alternative. This
is clearly indicated in the text. Thread affinity was enforced by
setting OMP_PLACES=cores and OMP_PROC BIND=-
close. The run-to-run fluctuations in the experiments were
less than 5% and therefore we do not present any error bars.

2.3. Benchmarking

For our experiments we choose matrices from two prior
publications (Loe et al., 2020; Berger-Vergiat et al., 2021) that
are relevant to our work and are also available in the Sui-
teSparse Matrix Collection by Davis and Hu (2011). We se-
lected only square matrices with a memory footprint beyond
100 MB as our optimization targets big matrices that have to
be loaded from main memory. Table 2 lists the matrices to-
gether with some relevant parameters: number of rows (V;),
number of non-zeros (Vy,), and average number of non-zeros
per row (Np). In the following discussion we refer to the
matrices by their IDs (first column of Table 2). The compressed
row storage (CRS) format was used throughout.

In all solver experiments we iterated until a convergence
threshold (|| — Ax||/||b]|<107!2) or algorithm-specific
maximum iteration count was reached. Since cache
blocking does not alter convergence properties, this is a
valid method of performance comparison.

3. Accelerating MPK using RACE

The central theme of this work revolves around speeding up
various iterative solvers by using cache-blocked MPK.

https://github.com/RRZE-HPC/RACE/tree/v0.8.0
https://github.com/christiealappatt/TrilRACE/commit/119adc404d5c5d7f965970d86ec8a91205ab247a

4 The International Journal of High Performance Computing Applications 0(0)

MPK computes the application of powers of a sparse matrix
to a dense vector. For a given sparse square matrix 4 and
input vector x, MPK computes the matrix powers 4”x up to a
maximum power of p,,, i.e., p=1,...,p,, and stores the
result into p,, vectors (v, = 4”x). Usually this is done by
performing back-to-back SpMVs as shown in Alg. 1. The
input vector x is stored in yy and each SpMV computation
promotes the power by one. Therefore, we reach 4P»x after
Pm SpMV computations.

SpMV being the central kernel in Alg. 1, it is clear that its
performance will be similar to that of SpMV. For most of the
matrices encountered in computational science and engi-
neering, the latter is limited by main memory bandwidth on
modern CPUs. In Alg. 1, if 4 is larger than any cache it will
be loaded p,, times from memory. However, since MPK
uses the same matrix A4 for every SpMV, cache blocking
of matrix accesses across successive matrix power calcu-
lations may reduce main memory traffic and thus improve
performance. This blocking is not straightforward due to
dependencies among the SpMV computations, i.e., y, =
APx = Ay,_ depends on the results of the previous y,_; =
AP~'x = Ay,_» computation; we denote this by 47~ — 4.
The dependency, however, is not necessarily an all-to-all
dependency, i.e., to calculate 4”x on a subset of rows there is
no need to finish the full 4°~!'x computation first. The
structure (or graph) of the matrix determines the depen-
dencies between successive power calculations; the RACE
library exploits it to enable cache blocking.

RACE uses a fundamental concept called /levels to
achieve cache blocking. Levels are formed by performing a
BFS traversal on the graph of the matrix, where the vertices
within each frontier of the BFS are assigned to a /evel. These
levels have the property that the neighborhood A (L(i)) of
all the vertices in a level L(i) is clearly confined to the
vertices within the previous, current, and next levels, i.e.:

N (L(i)) € {L(i — 1)UL({)UL(i + 1)}, fori>0. (1)

In terms of MPK, this means performing an 4”x com-
putation on L(7) requires the computations of 47~ !x to be
complete only on the neighboring levels A/(L(i)). Due to
the nearest-neighbor dependency of the levels, the entire
dependency structure simplifies and is similar to a one-
dimensional tri-diagonal system, the only difference being
that instead of a vertex we use a set of vertices called a level.
Therefore, with the level concept, the entire temporal cache
blocking schemes existing for the tri-diagonal system can be
applied to any general sparse matrix; see Muranushi and
Makino (2015) for an overview. RACE uses a parallelotope
tiling scheme to achieve cache blocking for MPK. In
contrast to the tri-diagonal system, the irregular structure of
sparse matrices present some performance challenges.
RACE employs various optimization strategies like grouping
of levels according to available cache size, point-to-point

synchronization, and recursion to obtain a highly efficient
implementation of MPK. More details on cache blocking via
RACE can be found in Alappat et al. (2023).

Algorithm 1 Computing AP™z using back-to-back SpMVs.
The arrays val, col, and row Ptr hold the CRS data structure
of A. The input and output vectors are stored in the y matrix.
Input:

double A.val[Ny, //store values of nonzeros in A

double A.col[Ny,] //column index of A

int A.rowPtr[Ny+1] //row pointer of A

double :: x[N,] //input vector x
Output:

double :: y[0:py,,Ny] //to store results of APz

y[0,:] = =[:] //starting vector x:
/[Perform p,,, SpMVs
forp=1:p, do
y[p,]=SpMV(A, y[p — 1,:]) /1y, = Ay,
end for

Algorithm 2 A prototype of SpMV callback function
that can be passed to RACE for cache blocking MPK
computation. The function is based on CRS data format.

function SpMYV _callback(int row_s, int row_e, int p,
arg_type kernel_args)
A = kernel_args.A
y = kernel_args.y
//Loop over rows
#pragma omp parallel for schedule(static)
for row = row_s : row_-e do
double tmp =0
int idz_start = A.rowPtr|row)
int idz_end = A.rowPtrrow + 1] — 1
/[Loop over nonzeros in row
for idx = idx_start : idr_end do
tmp += A.vallidz] * y[p — 1, A.col[idz]]
end for
y[p, row] = tmp
end for
end function

On the user side, RACE follows a two-phase approach
comprising preprocessing and execution. In the pre-
processing phase, RACE performs a BFS and uses the
information from the level structure and the cache size of the
hardware to determine an execution order that enables cache
blocking. The routine to be blocked (here SpMV) is passed
to RACE via a user-defined callback function. The callback
function takes the range of rows, the current power p, and
any input required by the kernel as arguments. In the ex-
ecution phase, RACE supplies the values to these arguments
and executes the kernel in a cache-blocked manner ac-
cording to the internally created execution order. The user
has to write a generic SpMV function computing

Alappat et al.

100
60
= - 80
=3 =%
S 40 = 60
< S 0
000009
E 20 | _o— Baseline E
Ay o 90 [F—e—e—e—o—o—o
RACE
0 0
123456810 1234632810
Power (p,,) Power (p,)
(a) ICL. (b) ROME.

Figure |. Performance as a function of maximum power p,, for
RACE and the baseline implementation of MPK. The experiment
was conducted on Flan 1565 matrix and on ICL (a) and ROME
(b). Figure reprinted from Alappat et al. (2023).

yp = Ayp,—1 on a range of rows. Algorithm 2 shows a
prototype of such a function.

In Alappat et al. (2023), we have shown that RACE’s
level-based cache blocking achieves significant performance
speedup (up to 5 %) on MPK computations. The maximum
power p,, has a substantial influence on the performance of the
cache-blocked MPK. Figure 1(a) shows the MPK perfor-
mance of the Flan 1565 matrix as a function of p,, on one
socket of ICL compared with the baseline (non-blocked)
kernel. As a baseline for comparison we also show the
performance of the naive kernel from Alg. 1. Both the RACE
and baseline variants are parallelized using OpenMP (Dagum
and Menon, 1998). At p,, = 1, both the variants are on par as
expected. As p,, increases, the RACE variant ideally needs to
load the matrix only once from the main memory and the
remaining p,, — 1 accesses can be served from the caches.
Therefore, performance increases with p,, (see Figure 1(a))
until a maximum is reached. Larger p,, has a detrimental effect
due to overhead from the blocking. Hence, for maximum
performance it is recommended to run the MPK kernel with
the optimal power value, which we denote by pgp. If the
required p,, of an application is greater than p,,; we execute
multiple MPKs with poy until p,, is reached. Of course the last
MPK computation (the “remainder loop”) might only operate
up to a p <popi. The pop: value depends on the matrix structure
and the hardware and needs to be determined once for a given
setting. Comparing Figure 1(a) and (b) demonstrates the
qualitative impact of the hardware on pgp. Due to its larger
cache and massive cache bandwidth, ROME has a higher pop:
value and achieves substantially better performance.

In the next sections we will discuss various applications
of the MPK and similar kernels in various iterative solvers.
Application-specific details and how to reformulate the
algorithms to use RACE’s cache blocking will be discussed.
Via thorough performance analysis we will observe the
speedup achieved by cache blocking and also detail some
optimization strategies.

4. s-step GMRES solver

The GMRES method developed by Saad and Schultz (1986)
is a linear solver algorithm that computes an approximation
x to the unknown solution x of the linear system of equation
Ax =b. Tt constructs x within xUK,(4,r) = {r, Ar,
A*r, ...,A”’lr}, where r = b — Ax, is the initial residual
vector, K, (4, v) is the n-th Krylov subspace with respect to
the vector v, and 4 (Vk€[0,n—1]) are the Krylov
vectors. The size n of the subspace is expanded iteratively to
improve the approximation quality of x. Algorithm 3(b)
shows the subspace generation routine of the GMRES
solver. Within each iteration, the algorithm generates a new
vector v[j + 1] by performing an SpMV operation with the
previous Krylov vector v[j]. The newly generated vector is
then orthonormalized against all previously generated
Krylov basis vectors and added to the subspace. Theoret-
ically, the procedure can be repeated until the system
converges. However, within each iteration the memory and
computational requirement grows as the subspace is ex-
panded. Therefore, the procedure is restarted every m it-
erations. The parameter m is commonly known as the restart
length of the GMRES solver. The pseudocode in Alg. 3(a)
shows the wrapper around the subspace generation routine
that restarts the GMRES solver after every m iterations.

As the result of each SpMV operation is fed to the or-
thogonalization procedure, this dependency prohibits the
idea of calling an MPK, and thus the temporal blocking
optimizations provided by RACE can not be applied to the
subspace generation as presented in Alg. 3(b). However, the
alternative s-step formulation of GMRES (see
Chronopoulos, 1991; Chronopoulos and Kim, 2020) allows
for MPK computations. The basic structure of the s-step
GMRES solver remains the same as that of the standard
GMRES solver (Alg. 3(a)). However, the Krylov subspace
generation is modified to compute blocks of s orthonormal
vectors together (see Alg. 3(c)). In the first step, the con-
struction of the Krylov vectors in Alg. 3(c) is done as a
sequence of s back-to-back SpMV operations (line 5-7),
which can be replaced by an MPK. The subsequent or-
thonormalization procedure is split into two routines:
BOrtho and TSQR. The BOrtho routine orthogonalizes the
newly generated block of vectors with the previously
generated Krylov basis vectors, and TSQR orthonormalizes
the vectors within the block. The main advantage of the
s-step variant is that it can use highly efficient BLAS kernels
in the orthogonalization routines and effectively reduce the
frequency of MPI communications in distributed MPI-
parallel setting due to the block-wise computations. This
results in a performance speedup over the standard GMRES
solver (cf. Yamazaki et al., 2014a). Such implementations
have therefore been called ‘“communication-avoiding
GMRES” (CA-GMRES) in the literature, see
Mohiyuddin et al. (2009), Hoemmen (2010).

6 The International Journal of High Performance Computing Applications 0(0)

We use the s-step GMRES method as implemented in the
Belos package (Bavier et al., 2012) of the Trilinos frame-
work. Belos performs back-to-back SpMVs as shown in
Alg. 3(c) (lines 5-7) to generate the new Krylov vectors.
This part is replaced with our cache-blocked MPK from
RACE. Note that, for stability reasons, the actual im-
plementation of the s-step GMRES solver uses a Newton
basis instead of the monomial basis (Hoemmen, 2010). This
means that the MPK routine computes [v, (4 — A1),
(A4 — 220)v, (A — A31)v, ...] instead of [v,Av,A%v,43v,...],
where the A; are just constant shifts. As the shifts only
change the matrix diagonal, the RACE adaptation is
straightforward and we pass the shifted SpMV callback
function to RACE. The 4; are computed from the eigenvalue
information gathered by running a few steps of standard
GMRES in Trilinos, see Yamazaki et al. (2014a).

Figure 2 shows the performance advantage of the RACE-
accelerated s-step GMRES solver on the ICL and ROME
systems (see Sec. 2 for details). The numbers on the x-axis
represent the matrix IDs from Table 2; the matrices are
ordered by increasing size (N,,). Unless mentioned oth-
erwise, we set the cache size parameter C of RACE to
85 MB and 200 MB for ICL and ROME, respectively. The
restart length m of the solver was set to 50. Typically the step
size s of the s-step GMRES solver is kept under eight for
stability reasons, cf. Hoemmen (2010). In our experiment
we used s = 4, which limits the maximum matrix power p,,.
The numbers above bars in Figure 2 denote the optimal
power pop at which RACE executed the kernel. As this
value is the same as p,,, i.e. s, for most matrices, an increase
in s will lead to higher speedups. However, even with s = 4
we manage to achieve a significant fraction of the maximum

MPK speedup. This is in line with the discussion on
Figure 1, where we observe substantial performance gains
already at low/moderate matrix power values. On our test
matrices, RACE accelerates the MPK computation by an
average factor of 1.8x and 2.1x over the baseline method on
ICL and ROME, respectively. Note that this baseline uses
the SpMV provided by the Trilinos package but modified by
us to achieve a performance in line with the roofline model
(see the discussion in Appendix for details). Otherwise the
RACE MPK speedup would be even higher.

Of course only the MPK routine is accelerated by RACE;
the runtime of the other routines in the solver will be almost
the same for both variants. This reduces the average speedup
for the complete solver to 1.3x and 1.2x as seen in
Figure 2(a) and (b). On the other hand, the overall speedup
stems purely from the performance gain, while numerically
both s-step solver variants are identical. The reduced overall
performance impact of RACE is mainly due to the sig-
nificant cost of the orthogonalization procedure (Ortho). In
our experiments, one sweep of classical Gram-Schmidt
(CGS) was performed in the BOrtho step of the Ortho
routine (line nine in Alg. 3(c)) and tall-skinny QR de-
composition was used in the TSQR step (line 11). Both of
these routines are accounted for in the Ortho time. In order
to achieve orthogonality to machine precision, at least two
sweeps of CGS + TSQR are required (exactly two for
s = 1). However, for all examples in this paper the above
choice of one sweep proved to be sufficiently stable due to
the relatively short restart length. The cost of Ortho is es-
pecially high for matrices with low Nnzr values because
here the runtime complexity for both SpMV and Ortho
approaches O(Ng).

[l Baseline: MPK [Baseline: Ortho
5 RACE: Ortho

B RACE: MPK
1 4
g 4
-3 4 4
B Ll 4
3 i -
s 0.5 LL Ll il
=} Y Ll C
= LU L L 1L
) L Ll L L
Z L Ll C L L
L o C L L L
NN AN < N C C
INNYOANN AN NN N s
. N N
0 NN ONNNONAN SNCONNN NN
T T T T T
1 2 3 6 7 8

X Baseline: Misc
> RACE: Misc

1 ST
4
Q
= L Bt 4 M4)
= L L
o L L Lt 4
51 L] Lt
N L L CL C L
= L] Lt C C C
< 0.5 L L Ll I U L
= L L L I L L [L
= L L Lt C L L Cl L
) L L Ll c L C Ll (|
Z C L CL C C C Lt L
NN NN OSNE 1 L L Lt |
NAN NN [NN N NS T =
NN NN NN AN NN AR NN NANN
0 NAN NN SNN SN SN NN NN SANN
T T T T T T T T

Figure 2. Normalized execution time for 1000 iterations of the s-step GMRES method with (orange bars) and without (blue bars) RACE
MPK for the eight matrices (x-axis) shown in Table 2 on ICL (a) and ROME (b). The absolute execution time is normalized to the
baseline variant for each matrix separately. The stacked bar plot shows the time contributions of orthonormalization (Ortho) kernels,
SpMV kernel and other miscellaneous (Misc) routines. The numbers on top of the orange bars indicate the tuned power value po. of

RACE MPK operation.

Alappat et al.

Although RACE MPK attains higher speedup on
ROME compared to ICL, the total solver speedup on
ROME is lower than on ICL. Again the Ortho routine is
the culprit as it takes substantially longer on ROME for the
same matrices. An in-depth performance analysis revealed
that the BLAS calls associated with the Ortho routines
performed poorly on ROME (see Appendix). Overall it
could be said that the speedup of the s-step GMRES solver
achieved by cache blocking is limited by the Ortho
routines. As a result, implementing cache blocking on
Krylov methods with short recurrence such as the s-step
conjugate gradients (CG), where the Ortho cost is mini-
mal, might lead to a solver speedup that approaches the
RACE MPK speedup. However, Trilinos currently does
not have an s-step CG implementation and we would
perform this analysis in the future once the solver becomes
available.

The runtime contribution of the remaining kernels (apart
from MPK and Ortho) is minor (indicated as “Misc” in
Figure 2). Typically this contribution is slightly higher in the
RACE variant because it includes the pre-processing cost of
RACE (usually 30-50 SpMVs). However, the total number

of solver iterations is very large in most of the applications,
and the extra cost can be easily amortized.

5. Preconditioners

A GMRES solver is rarely used without a preconditioner
because its long recurrence makes it infeasible if the number
of iterations increases. Restarting, on the other hand, may
drastically increase the total number of iterations and even
cause stagnation. A preconditioner transforms the linear
system to an equivalent system by formally multiplying the
system matrix with another linear operator from the left or
right, or both. The goal of this transformation is to improve
the condition number of the overall operator, or more
specifically to decrease the number of iterations required to
solve the system by GMRES. Throughout the paper we will
apply the preconditioner from the right, but other choices
can be implemented analogously. Hence, the system Ax = b
is transformed to AP~'y = b, where y = Px is solved for x
by applying the preconditioner a final time in the end. The
preconditioner P! is chosen to be some approximation of
A~" which is cheap to construct and to apply to a vector. In

Algorithm 3 Pseudocode of the GMRES and s-step GMRES solvers. (a) shows the general algorithmic structure of the

solvers. (b) and (c) show the specialized algorithms of the
GMRES solvers, respectively.

Krylov subspace generation routine for GMRES and s-step

Input:
A, b, zg //LSE to solve Ax = b, x¢ initial guess
n, tol //n max. iterations, tol convergence tolerance

1: x = xg,iter =0

2: while iter < n and !converged do

33 r=b—Ax

v[0 : m — 1] = GenerateKrylovSubspace(A,r)

iter = iter +m

Update = with the vector from the subspace v[0 : m — 1]
that minimizes the residual

7: end while

4
5:
6

(a) (s-step) GMRES solver

function GenerateKrylovSubspace(A4,r)

1:

2 wlo)=r/|r]

33 forj=0:m—1do

4 wlj+1]=SpMV(A, v]j])

5: Orthonormalize v[j + 1] against v[0 : 5]
6 //Check for convergence

7 converged = checkConvergence(tol)
8 if converged then

9 break
10: end if
11: end for

122 returnv[0 : m — 1]

(b) subspace generation routine of GMRES solver

Output:
x //solution vector
tter //iterations to converge

function GenerateKrylovSubspace(A4,r)

1:

2 ofo] =r/||r]

33 forj=0:s:m—1do

4: //IMPK kernel

5 forp=0:1:5—1do

6: v[j +p+ 1] =SpMV(4, v[j + p))

7: end for

8: //BOrtho

9: Orthogonalize v[j + 1 : j + s] against v[0 : j]
10: /ITSQR

11: Orthonormalize vectors within v[j 4+ 1 : j + s]
12: /ICheck for convergence

13: converged = checkConvergence(tol)

14: if converged then

15: break

16: end if

17 end for

18: return v[0 : m — 1]

(c) subspace generation routine of s-step GMRES solver

8 The International Journal of High Performance Computing Applications 0(0)

practice, we then perform the operation AP~ 'v instead of the
SpMYV routine computing Av.

In case of s-step GMRES, the introduction of a pre-
conditioner requires us to compute the vectors [v, AP~ v,
(AP~ ")?v, (AP~")v, ...] instead of [v,dv,A%v,4%v,...] in
the MPK. The main challenge here is that the preconditioner
results in an additional dependency between P~! and 4, and,
using the dependency notation introduced in Section 3, we
can denote the MPK dependencies as P! 4P~ —
P'AP~' — (4P~")*.... We will show that, despite these
additional dependencies, it is possible to cache block the
preconditioned s-step GMRES using RACE and achieve
significant speedups on modern multicore CPUs.

5.1. Relaxation preconditioners

Relaxation preconditioners use iterations from a stationary
iterative splitting method. In the following we will inves-
tigate two popular choices in this category, Jacobi and
Gauss-Seidel, and demonstrate how RACE can be used to
accelerate the preconditioned s-step GMRES solvers.

5.1.1. Jacobi. The application of a Jacobi preconditioner to a
vector v follows the Jacobi iteration:

=D —D YL+ U)

Here z5*! and z¥ denote the new and old iterate of P~!v.
The matrices L and U are the strictly lower and upper
triangular part of matrix 4 and matrix D is the diagonal. In
many use cases only one Jacobi iteration is applied for the
preconditioner. If the initial guess z° is also chosen to be
zero, the entire Jacobi preconditioner simplifies to
z! = D!y, which is just a diagonal scaling of the input
vector v. Consequently this type of Jacobi preconditioner is
also commonly known as diagonal preconditioner.

An advantage of the diagonal preconditioner is that the
diagonal scaling P~! = D~! does not introduce any additional
dependency between D! and 4 and therefore AD~! can be
fused to a single kernel. Hence, the actual MPK dependency
shown in Section 5 boils down to AD~'— (4D~')* —
(AD~")*... and is analogous to the one seen for the plain MPK
routine without preconditioners in Section 3. The diagonally
preconditioned SpMV routine computing AD~'v is straight-
forward and similar to SpMV as shown in Alg. 2, except that it
requires an extra diagonal scaling along the columns. The
baseline s-step GMRES solver using a Jacobi preconditioner
calls this routine s times on the whole matrix to compute the
MPK. The RACE variant, however, blocks the matrices 4 and
D! in cache across the s iterations.” To achieve this, we pass
the diagonally scaled SpMV callback routine to RACE, which
then performs cache blocking based on the internally created
execution order, similar to the plain unpreconditioned MPK

computations seen in Section 4. Due to the similarities between
the plain MPK and the Jacobi-preconditioned MPK, the per-
formance characteristics of s-step GMRES solver remain un-
changed (compare Figures 2 and 3). In this case, too, the
RACE-accelerated solver achieves an average speedup of al-
most 1.25% (see Figure 3).

In practice, on CPUs more than one Jacobi iteration is rarely
used as a preconditioner as it requires additional SpMVs (zX #0
in (2)). In fact, performing k Jacobi iterations is equivalent to a
simple matrix polynomial preconditioner based on the Neu-
mann series (I — B) ' =Y (B* for B=—D"'(L+ V).
The cache-blocking approach in RACE MPK offers the op-
portunity to reduce the computational cost of these additional
SpMVs to the point that this approach may be competitive.
Cache-blocked polynomial preconditioners can even accelerate
a standard Krylov method, as we will show in Section 6.
Combining it with an s-step method allows to cache block for
higher powers, which may be even more efficient.

5.1.2. Gauss-Seidel. The Gauss-Seidel (GS) preconditioner
is derived from the GS iteration:

(L + D) =v - U, 3)

For many linear systems, GS is considered to be superior to
Jacobi since it uses the new iterate z#! whenever available (L is
applied to z5*! in (3)). However, shared-memory parallelization
is a challenge as a thread does not know when other threads
have updated their z entries. Two well-known solutions to this
triangular solver problem are multicoloring (Evans (1984)) and
level scheduling (Anderson and Saad, 1989). Reordering via
multicoloring often degrades the data locality and the con-
vergence rate, resulting in performance loss. On the other hand,
level scheduling maintains the convergence rate but often ex-
hibits limited parallelism. Another promising solution, espe-
cially for preconditioners, is the two-stage Gauss-Seidel (GS2)
iteration, see Lanzkron et al. (1990). Here a fixed number of
Jacobi-Richardson iterations is used to solve (3). This means
that, within each iteration of GS, we have inner iterations of
Jacobi-Richardson. The benefit with this approach is that we
can solve the system using simple SpMVs and BLAS-1 op-
erations. This technique has been used to increase parallelism
for GPUs, Chow et al. (2018), Berger-Vergiat et al. (2021), but
not for cache blocking on multi-core CPUs. Of course, in
contrast to level scheduling, the system is not solved exactly
with the Jacobi-Richardson iterations; however, it was shown in
Berger-Vergiat et al. (2021) that for preconditioners, where 4~
is already approximated, this method produces similar con-
vergence rates for many matrices.

A GS2 iteration algorithm based on the non-compact form of
the GS iteration (see Berger-Vergiat et al., 2021 for details) is
shown in Alg. 4(a). As in the Jacobi case, typically only one
outer iteration (K = 1) of GS2 is employed as a preconditioner
and frequently combined with one (y = 1) ortwo (y = 2) inner

Alappat et al. 9
B Baseline: MPK+Precon Bl Baseline: Ortho > Baseline: Misc
B RACE: MPK+Precon fi RACE: Ortho 1Y RACE: Misc
| | 2
1 3 4 4 1
o o 4
£ 4 4 | E E ¢
3= 4 = L G
=} =] L L
& C U 2 L L
=05 o jEre i F 05 CEco e C
g : L L | =) . L L 1l L
L L 5] L = L L L L
o L L o L o L L L L
z | d g | BE B |~ < J { c
< ~ g | Ll C NANONNN O ASS ~
NNN NN | GRS N ~ NAN NN NN NN
NN NN NN NN [NNN NN A NN NAN
O I I I 1 I I O I 1 I 1 I I
1 2 5 6 7 8 1 2 3 4 5 6
(b) ROME

Figure 3. Time taken by baseline and RACE accelerated variant of s-step GMRES solver using Jacobi preconditioner. The stacked bar plot
displays the time contributions by orthonormalization (Ortho) kernels, SpMV kernel and other small miscellaneous (Misc) routines.

Jacobi-Richardson iterations. The cache-blocking of GS2
preconditioner with RACE is more involved than the Jacobi
counterpart. Here, the preconditioner P~ itself involves many
interdependent steps. The dependency within P~! of GS2 with
y =2 can be expressed as U — LU — L*U. Finally, when
applying the preconditioner to the matrix in the s-step GMRES
solver, there is an additional dependency P! — 4. This means
that even in a single step (s = 1) of the s-step GMRES solver
we have a dependency chain of length four. To allow for an
easy integration of RACE into the such preconditioners, we
divide each power computation into a fixed number of sub-
powers. In case of GS2 as shown above we would have four
sub-powers within a power, and the power loop in RACE will
map to the power loop along the MPK computations of the

s-step GMRES solver (e.g., line five in Alg. 3(c)). Algorithm
4(b) shows the MPK routine with the GS2 (y =2) pre-
conditioner that is passed to RACE for cache blocking. Here we
distinguish each stage of the dependency chain using the sub-
power (j in Alg. 4(b)), which goes from zero to y + 1 (three in
this case) for each power computation. The first three sub-
powers compute the application of the GS2 preconditioner on a
vector v, and the result is stored in vector z'. The last sub-power,
i.e,atj = 3 in case of Alg. 4(b), calculates Az'. Note that “sub-
power’” is just a convenient abstraction on top of the power loop
in RACE; it satisfies all the BFS level dependencies mentioned
in Section 3, ensuring that the dependencies within P! (i.e.,
U — LU — L?U) are met. Of course in this case the callback
function passed to RACE will have an extra input argument for

Algorithm 4 (a) Pseudocode of a two-stage Gauss-Seidel (GS2) iteration with ~ inner Jacobi-Richardson iterations. The
k-loop is the outer Gauss-Seidel iteration and j is the inner iteration. (b) Unrolled implementation of MPK with GS2
preconditioner (K = 1, v = 2) passed to RACE for cache blocking. The implementation takes an input vector v[p] and

performs the computation v[p + 1] = AP~ 'v[p], where P~1

is the GS2 preconditioner.

Input:
L, D,U/A=L+D+U
v[p], zo //v[p] input vector, z initial guess

K, v //K outer iterations, ~ inner iterations

1: fork=0: K —1do

2 g)=D"(v[p] - UzF)
33 forj=1:vdo

4: Qf =96 — Dingf—ﬁ
5. end for

6: //update

7. 2Rl =k 4 g,’j

8: end for

9: v[p+ 1] = A2K;
(a) GS2 pseudocode

Output:
v[p + 1] //output vector storing AP~ 1v[p]

if j == 0 then
90 =D~ (v[p] — U2")
else if j == 1 then
95 =96 — D7 Lg] 4
else if j == 2 then
97 =90 —D7'Lgj 4
J +g?
else if j == 3 then
v[p+1] = Azt
end if
(b) MPK with GS2 of v = 2

R AN A o Ay

—
=

10

The International Journal of High Performance Computing Applications 0(0)

the sub-power j, which will be imported by RACE internally
during the execution phase. The levels in RACE are still
generated from matrix 4 only, as the matrices U and L have a
subset of the sparsity pattern of 4.

In contrast to the plain unpreconditioned or Jacobi-
preconditioned s-step GMRES solver, a GS2 precondi-
tioned solver has the benefit that even with s = 1 (normal
GMRES solver) some performance advantage is possible
since we reuse the matrices within P~! and between P~! and
A. For example, with two inner iterations (y=2) a
straightforward implementation requires to load the ma-
trices A and U once and L twice. However, with the cache-
blocked variant ideally we need to load the matrix L only
once. We can further save the traffic from matrix 4 if we
perform the SpMV with a split form, i.e., A =L +D + U,
leading to reuse in matrices L and U. This optimization is
applied in our RACE implementation. For s-step GMRES
solvers with s> 1, this benefit adds to the advantage of
blocking the matrices to higher powers.

The GS2 preconditioner is implemented in the Ifpack2
package (Prokopenko et al., 2016) of Trilinos. In this
section, we use this preconditioner for the s-step GMRES
solver as a baseline for comparison. Similar to the Jacobi
preconditioner, it is common practice to choose the starting
vector z° to be zero. This allows for short-circuiting some
computations in the GS2 iteration, i.e., line two in Alg. 4(a)
simplifies to gb = D~ !v[p] and the update step (line 7) to
= g’}f . The Ifpack2 implementation currently initializes
the vector with zero by default but it does not short circuit
the computations although the Kokkos backend supports
this. This mainly results in an additional overhead of half an
SpMV (UZF). In the interest of a fair comparison we
modified the Ifpack2 code to allow for short-circuiting the
unnecessary computations as well.

Figure 4 shows the performance of the GS2-
preconditioned s-step GMRES solver with y = 1 on ICL
and ROME. On ICL, the power value at which RACE
operates is lower compared to the previously discussed

s-step solvers because each power step (p) contains multiple
sub-power computations. Thus, the effective total power to
which RACE applies cache blocking is the product of the
two power computations and the maximum performance is
achieved at lower poy (see discussion of Figure 1(a)).
However, on ROME most matrices reach the maximum
power value of four (po, = s) due to its large cache size.
Increasing the y from one to two improves the speedup
slightly from 1.22x to 1.3x on ICL (not shown in figure), as
more reuse can be applied within the inner iterations.

The results for the GS2 preconditioner demonstrate the
applicability of RACE to a wider range of preconditioners
that require chaining of multiple routines. This includes
sparse approximate inverse preconditioners where the P!
is explicitly computed and can be chained effectively with
the matrix 4 to implement the s-step GMRES solver.
Similarly, factorization-based preconditioners like ILU can be
implemented with RACE using the chaining idea and ap-
plying Jacobi-Richardson iterations to solve the triangular
systems Chow et al. (2018). In this paper we do not investigate
further on this class of preconditioners but rather demonstrate
the applicability of RACE to two different classes of pre-
conditioners which show significant performance improve-
ment even on standard (s = 1) GMRES solvers.

5.2. Polynomial preconditioners

A polynomial preconditioner has the form P~! = P(4),
where P is a polynomial. Such preconditioners have been
extensively studied in the context of Krylov-based solvers,
see Johnson et al. (1983), Saad (1987). Stability and setup
costs of polynomial preconditioners, such as extreme ei-
genvalue calculations, were major concerns for a long time.
However, many recent studies, e.g. Loe and Morgan (2022),
Ye et al. (2021), have stimulated renewed interest in these
methods. In particular, the lack of global communication in
the evaluation of the polynomial make them attractive for
large-scale computing.

1]
2 2
“E’ 2
=
B
N 0.5
=} . — LL
g LL Ll
= LL Ll
s T AN
Z LL L = L
LU [} L L U
UNNY AN ~ ~ o
Y AN\ AR AR S NN
0 I I 1 I
1 2 3 4 8
(a) ICL

1 1
1
© 4 4
L
E L 4 4
= C L 4
e L L
Q L L L
N L L CL
= 0.5 C L [
= L L CL L L L
g C L CL C L L
5 L L [L L L Li L
Z C L CL C L L Lt C
[N C [C L L Lt L
NAN NSNS ~ I AN N Lt C
NAN NN NN NN NN NN VRN ~
SNNCONNYOONNTOANNONANONNYOONNT NN
0 1 T T T T T T T
1 2 3 4 5 6 7 8
(b) ROME

Figure 4. Time taken by baseline and RACE-accelerated variant of the s-step GMRES solver using the GS2 preconditioner with one
inner Jacobi-Richardson iteration. The legend is the same as in Figure 3.

Alappat et al.

In each preconditioning step, a polynomial of degree d is
applied. The application of P~! to a vector x can be ex-
pressed as

P 'x = P(A)x = dox + MAx + dpAd*x + - + 1A%, (4)

where the {4;} are scalar coefficients that determine the type
of polynomial, with Chebyshev (Johnson et al., 1983) and
GMRES polynomials (Abdel-Rehim et al., 2014) being the
most popular ones. Here we focus on the GMRES poly-
nomial, where the scalar constants are generated by running
d iterations of a GMRES solver in a pre-processing step.

The optimal degree d for GMRES polynomial pre-
conditioners is rather high (in the range of 40—-100), thus
applying the preconditioner requires many back-to-back
SpMVs, making this operation frequently the dominant
part of the solver.® This is a very attractive scenario for the
MPK of RACE as potentially large speedups are achievable
and it directly applies to the hotspot of the solver. Thus, we
exclusively focus on accelerating the polynomial pre-
conditioner, which is called in each iteration of the GMRES
solver. In the following the parameters C and m remain
similar to the previous experiments with the s-step GMRES
solver (see Section 4). We use the Belos package of Trilinos
as the implementation baseline (see Loe et al., 2020 for
details) and choose a polynomial of degree 80.

Figure 5 shows the performance benefit when using RACE
to accelerate the polynomial preconditioner in the GMRES
solver. The striking observation is that the speedup obtained by
RACE is significantly higher than previously observed with
s-step GMRES solvers. There are two reasons for this: First,
the polynomial application P~'x consumes a significant
fraction of the entire solver runtime (more than 95% for most
matrices; see Figure 5). Second, high powers in the MPK
computations (80 in our case) allow RACE to block for
higher power values and thus operate at high performance
levels. This is also the reason why most of the matrices on

ROME operates at p = 8, where eight is the highest power
value in our tuning space of p € [1 : 8]. Higher p did not prove
to be significantly faster. On ICL, the optimal power values
for RACE are lower due to the smaller cache size and
therefore most of the matrices have pop; <8. Overall, RACE
improves the MPK performance on ROME (ICL) by an
average factor of almost 3% (2%), which translates to an
average 2.7x (1.9%) speedup on the entire GMRES solver.

GMRES polynomial preconditioners can be further
combined with other preconditioners. In such scenarios, the
polynomial is formulated in terms of the combined matrix
AM~!', where M~ is another preconditioner. The appli-
cation of the preconditioner then reads:

P 'x = PAM ")x 5
= dox + I AM ™ x 4 Dy (AM Vx4 ..)
The dependencies caused by the new matrix A ~! have to
be taken into account in the cache blocking, and a similar
approach to the one described in Section 5.1 is in order. In case
of a Jacobi preconditioner, only matrix diagonal scaling is
required and we attain almost the same speedup as with plain
polynomial preconditioning as shown in Figure 5. The
speedups obtained by RACE when using the GS2 (y = 1)
preconditioner on top of the polynomial preconditioner are
shown in Figure 6. Although the computational kernels re-
main similar to the ones discussed in Section 5.1.2 above, the
speedup is much higher (1.5% and 2.1x on ICL and ROME) in
the case of polynomial preconditioners due to the two reasons
discussed in the previous paragraph.

5.3. Algebraic multigrid preconditioners

Algebraic Multigrid (AMG) preconditioners are among the
most widely used preconditioners for Krylov solvers
(Wathen, 2015). AMG preconditioners are particularly

M Baseline: MPK+Precon
B RACE: MPK+Precon

BE Baseline: Ortho
8 RACE: Ortho

>3 Baseline: Misc
13 RACE: Misc

Normalized time

i k
o SNN
T T
2 3

(@) IoL

1,
o
g
g g
]
GN) 3
'g 0.5 t i
9]
Z
N
“r [NN
0 T 1 1
1 2 3

(b) ROME

Figure 5. Time taken by the baseline and RACE-accelerated variants of the GMRES solver using a polynomial preconditioner of degree 80.

The International Journal of High Performance Computing Applications 0(0)

Normalized time

14
2
2 3 . 4
2
2 3
0.5
0 \‘\\: ‘ \\‘\
T 1 1 T 1
1 2 3 4 5 6 7 8

(a) ICL

Normalized time

1
3
2 4 4 4
0.5 N
N
NN -
0 \\‘\ - \‘\
1 2 3 4 5 6 7 8

(b) ROME

Figure 6. Time taken by baseline and RACE-accelerated variants of the GMRES solver using GS2 with one inner iteration on top of the
polynomial preconditioner of degree 80. Colors have the same meaning as in Fig. 5.

effective for solving large 3D problems. Similar to any mul-
tilevel or geometrical multigrid schemes (Brandt, 1977), the
AMG preconditioner uses a hierarchy of grids with various
refinement (discretization) levels. Inter-grid transfer operators
are used to transfer information between the grid levels. The
restriction and prolongation operators are the two inter-grid
transfer operators used to transfer information from a fine to
coarse grid and vice versa. Within each grid level a smoothing
operator is applied to reduce the error within the level. In
contrast to geometrical multigrid, AMG algebraically deter-
mines the coarse grids and the inter-grid transfer operators, both
of which are based on the matrix entries, see Falgout (2006) for
example. As AMG does not require any explicit knowledge of
the problem geometry, it is particularly useful for problems
having a complicated or even unknown geometry.

Algorithm 5 Pseudocode of a single AMG V-cycle, adapted
from Thomas et al. (2019). The letter k& denotes the grid level.

Input:
A, v //LSE to solve Az = v
max_levels //max. levels of refinement
Output:
z //solution vector

1 z=0

2: AMG(A,v,2,0)

3: function AMG(Ag,b,z.k)

4 x = SV(A,b,x) //Pre-smoothing

5. if k # max_levels — 1 then

6: rr, = b — Apx //Residual

7: rr+1 = Ry (rk) //Restriction on the residual
8: k41 =10

9: //Call AMG with next coarser matrix A1
10: AMG(Ag g1, Tht1s Cot1, b+ 1)

11: ¢ = Pyxcy+1 //Prolongation on the correction
12: x = x + ¢ //Add correction

13: T = SEOSI(A;C, b, x) //Post-smoothing

14: end if

A single iteration of AMG starts with a smoothing operation
(pre-smoothing) performed on the finest grid level with an
initial guess of zero. The residual is then calculated on the
finest level and transferred to the next coarser level using
the restriction operator. Then, smoothing is performed on
the next coarser level. The same procedure (grid transfer
to the next, coarser level and smoothing) is performed
throughout all levels in the hierarchy until the coarsest level
is reached. The linear system on the coarsest level is usually
solved by a direct solver. This solution then serves as a
correction to the next finer level and is transferred using the
prolongation operator. The smoothing operation is again
performed (post-smoothing) on the finer level using the
correction as the initial guess. The grid then transfers the
solution to next finer level and the process repeats until we
reach the finest level. Due to the manner in which the grids
are traversed, i.e., finest to coarsest and then back to finest,
this is called V-cycle AMG. Although there are many other
types of cycles, we will concentrate on the V-cycle in this
paper. When using AMG as a preconditioner, a single V-
cycle of AMG is typically used to compute P~'v. Algorithm
5 shows the corresponding high-level algorithm computing
z =P~ 'v, where P~! is an approximation to A~

For large problems, most of the solver’s runtime is spent
in the smoothing operation on the finest grid level. Typi-
cally, a few sweeps of simple iterative methods like Jacobi
or GS are used for this. As the matrix does not change
between the sweeps, RACE can cache block the matrix
entries. For example, the GS2 sweeps introduced in Section
5.1.2 can be used as a smoother and RACE can block both
for inner Jacobi-Richardson iterations within GS2 and outer
sweeps of the smoother. Figure 7(a) and (b) demonstrate the
speedup attained by RACE over the baseline method when
using AMG with the GS2 smoother (y = 1). The baseline
performs a single V-cycle of smoothed-aggregation AMG
(Mika and Vang¢k, 1992) provided by the MueLu package
(Berger-Vergiat et al., 2019) in Trilinos as the precondi-
tioner to the GMRES solver from Belos package. The pre-
smoothing employs two forward sweeps of GS2 while the

Alappat et al.

13

post-smoothing uses two backward sweeps (L and U are
exchanged in Alg. 4). The GS2 smoother baseline is pro-
vided by the Ifpack2 package. For the RACE variant we
modified the MueLu code such that the cache-blocked
variant of GS2 is used as the smoother for the finest
level. The only difference from the previous implementation
shown in Alg. 4(b) is that we do not need the computation of
Az" in the last sub-power, i.e., atj = 3 in Alg. 4(b). In case of
pre-smoothing, at the last sub-power we instead compute the
residual that is required in the next step of AMG (line six in
Alg. 5). This allows us to reuse the matrix 4; from the cache
when computing the residual. Note that this reuse is on top of
the reuse in the GS2 sweeps. As the number of sweeps in the
smoother is typically small (in the range of 1-4) we do not
tune the power value at which RACE operates but set it to
account for all the sweeps and the residual computation. The
post-smoother performance can also theoretically benefit by
fusing it to the next kernel. Post-smoothing is the last step of
AMG preconditioner; the next step of the Krylov solver (in
case of right preconditioning) involves an SpMV of the
matrix with the preconditioned vector. By integrating this
SpMYV as the last sub-power computation, the matrix can be
served from the cache. However, in the current im-
plementation we do not do this as the SpMV is performed not
by the MueLu package but by the Belos package and
therefore would involve fusing kernels from two different
packages, which is possible but requires significant changes.

From Figure 7(a) and (b) we see that the cache blocking
of the GS2 smoother by RACE achieves a moderate overall
speedup of 17% and 37% in the solver time compared to the
baseline on ICL and ROME, respectively. For the first time a
slowdown of the RACE variant is encountered: With the
thermal2 matrix (matrix ID = 2) the overall RACE
runtime is 19% and 6% higher than the baseline on ICL and
ROME, respectively. This is due to the extra cost of RACE’s
pre-processing (see miscellaneous contributions in
Figure 7), which is typically in the range of 30-50 SpMVs
(see Alappat et al., 2023 for more details). As the number of
solver iterations can be relatively small for AMG-
preconditioned solvers (28 in case of the thermal?2
matrix), this cost cannot always be amortized.

Figure 7(c) and (d) show how the number of outer
sweeps for the GS2 smoother with one and two inner it-
erations (y) influences the speedup. Increasing these pa-
rameters improves the speedup as higher effective powers in
RACE can be used. This effect is most pronounced on
ROME where we achieve 40% improvement when applying
three outer sweeps instead of a single one.

Good smoothers have the general property that they
dampen the error component orthogonal to the coarse grid
correction step, which typically means damping high-
frequency errors (Adams et al., 2003). GS-based
smoothers enjoy this property. Another very attractive

and commonly used smoother in this regard is the Che-
byshev polynomial smoother. The polynomial is tailored to
dampen the high-frequency errors and is constructed using
spectral information and Chebyshev recursion. Similar to
the polynomial preconditioners described in Section 5.2, the
Chebyshev polynomial has the property that it can be solely
implemented with MPKSs as it takes the form shown in (4).
In contrast to polynomial preconditioners, the degree d of
the polynomial smoother is typically low (less than 10).
When using Chebyshev polynomials, each smoothing step
of AMG computes the application of a Chebyshev poly-
nomial to a vector using the MPK, which is subject to cache
blocking via RACE. Note that in case of pre-smoothing we
also cache-block the residual computation similar to the
GS2 pre-smoothing seen above. As a baseline for com-
parison we use the Chebyshev smoother from the Ifpack2
package, which implements specialized (with appropriate
scales and shifts) SpMV-based MPK kernels in Kokkos;
its performance is impacted by the same dynamic
scheduling problem for larger matrices as discussed in
Section 4. Again we modified the code to always use static
scheduling in the baseline variant.

Figure 8(a) and (b) compare the solver time of baseline and
RACE variants using AMG with the Chebyshev smoother of
degree three. On average, the RACE variant achieves a
speedup of 24% and 32% on ICL and ROME, respectively.
Interestingly, the performance benefit of RACE tends to in-
crease with matrix size’, e.g., on ROME a 1.7 x speedup is
attained for the largest matrix (Flan_1565). This is mainly
due to three reasons: First, for small problems with low it-
eration counts, the Misc contribution (including RACE pre-
processing) to the runtime is significant. Second, the small test
matrices that we have considered (see Table 2) also tend to
have a low Nyzr. This makes the smoothing operation less
prominent compared to the BLAS-1 type (vector-only) op-
erations. Third, RACE cache blocking is currently only im-
plemented on the finest grid level and the share of this level in
overall AMG runtime increases as matrix size increases (see
Figure 8(c)). Another observation in line with our previous
results is the positive correlation between the polynomial
degree d and RACE’s speedup (see Figure 8(d)).

In summary, above experiments have demonstrated that
RACE provides moderate speedups on the AMG-
preconditioned GMRES solver. Two main factors that
currently prevent larger speedups on some matrices are the
large time contribution from coarser grid levels and the low
number of solver iterations.

6. Case study: Momentum equation in the
Nalu-Wind solver

To demonstrate a practical use case of RACE’s cache-
blocking technique we consider the dominant sparse

The International Journal of High Performance Computing Applications 0(0)

14
[l Baseline: AMG [l Baseline: SpMV
B RACE: AMG # RACE: SpMV
o 14
£
b
=) | N
Z. NN
NN SN
NN SNN L
W N R "
O \‘\ N ‘\ : ‘. ‘Ll : . ‘L s
1 2 3 4 5 6 7 8
(a) ICL, 2 outer sweeps
1.6
ey =1
g |-
8 14
o
2 |
&
§ 1.2
z :7'4\\l
1
1 2 3
outer sweeps
(c) ICL, avg. speedup

Bl Baseline: Ortho ~: Baseline: Misc
£ RACE: Ortho 31 RACE: Misc
o 14
=
b
8
S | ~
Z RSN
NNN NN
NN NN LL
NN NANN '~
0 \\‘\ \‘\\ \\‘\‘ ‘I ‘L ‘ L [} L
1 2 3 4 5 6 7 8
(b) ROME, 2 outer sweeps
1.6
o
S
8 1.4
o
z L
=
5 1.2
z
1
1 2 3
outer sweeps
(d) ROME, avg. speedup

Figure 7. (a), (b) Comparison of time taken by the baseline and the RACE-accelerated variant of the GMRES solver preconditioned by
the algebraic multigrid preconditioner using the GS2 smoother with one inner iteration (y = |) and two outer sweeps. (c), (d)
Improvement in speedup (averaged across the eight benchmark matrices) as the number of outer sweeps is increased on ICL and ROME.

linear system of equations (LSE) in the Nalu-Wind simu-
lation code (Sprague et al. (2020)). The LSE arises when
solving the unsteady compressible Navier-Stokes equations
for the velocities in the simulation of wind turbines. Spe-
cifically, we focus on the case of a large-eddy simulation of
two aligned wind turbines under uniform flow, where the
turbine blades are modeled using the actuator line model
(example 1.3.4 in Nalu-Wind documentation®). We use a
mesh with 256 x 256 horizontal cells and 64 layers, which
translates to a momentum matrix with 12 million rows and
almost 300 million nonzeros. In this scenario the numerical
behavior of the linear systems is very similar between time
steps after a short start-up phase. The purpose of this case
study is not to claim or find an optimal solver but to
demonstrate that cache blocking techniques should be taken
into account when selecting and tuning linear solvers for
best time to solution.

This application employs an established approach in
computational fluid dynamics (CFD), where the model state
is propagated forward in time using an ODE (ordinary
differential equation) time-stepping method, and discretized
PDEs (partial differential equations) in space are solved in

each time step for momentum and conservation, which leads
to the sparse linear systems. Nalu-Wind uses the Trilinos
library for solving these time-consuming sparse linear
systems. While the time-integration scheme is implicit and
thus unconditionally stable, a small time step is used to
cover the relevant physical scales as wind turbines rotate at
high velocities. Consequently, the LSE arising from the
PDEs is diagonally dominant and GMRES converges
quickly: For the matrix studied here, the default method
(GMRES with GS preconditioning) achieves a residual
norm of 10~'2 in 13 iterations. This results in a total runtime
of 1.83 s on ROME. We will use this a baseline for com-
parison when investigating cache blocking in combination
with different preconditioning strategies.

Due to the small number of iterations, s-step GMRES is
unsuitable as it needs a few steps of standard GMRES to
calculate the Newton shifts (see Section 4). However, using
a polynomial preconditioner instead of GS may enable
accelerating the polynomial application using RACE (see
Section 5.2). Figure 9(a) compares the time required to
solve the LSE with and without RACE for different
polynomial degrees. The polynomial preconditioner was

https://nalu-wind.readthedocs.io/_/downloads/en/latest/pdf/

Alappat et al.

1 -
Q
£
b
Q
N
s 0.5 [L
£ Nl -
o ~ : [}
z NN NN
AR NN NG
NANN NN AN L
AR NN ANNG [L L L1 [
0 T T T T T T T
1 2 3 4 5 6 7 8
(a) ICL, degree 3
1
[=]
.S
31
s
(3]
g2 o5 -
s
2 —o—ICL
—s=— ROME

1 2 3 4 5 6 7 8
Matrix

(c) time contribution of level 0

1 -
Q
£
b
8
= — [
g 0.5 N C
o CNNT ~
Z RN]
NN NN ~
NN NN N
NN NAN AR L [N} [
0 T T T T T T
1 2 3 4 5 6 7 8
(b) ROME, degree 3
1.6
[=%
S
8 14 -
o
2 |
&
§ 1.2
< |
1
2 3 4
Polynomial degree
(d) avg. speedup

Figure 8. (a), (b) Comparison of time taken by the baseline and the RACE-accelerated variant of the GMRES solver preconditioned by
algebraic multigrid using Chebyshev smoothers of degree three (same legend as in Fig. 7). (c) Fraction of AMG runtime spent on the
finest level (i.e., level 0) for the different matrices. (d) Average speedup of the solver as a function of Chebyshev polynomial degree.

3 4 5 6 7 8
Polynomial degree

(a) Time

I Total time I Solve time] Total time w RACE

Solve time w RACE
5 45
>
10 30 =
o 177
o B [
~ N>
5| - 15 é
—=— #SpMVs | 2
—e— Iter
o--"F=——""- 0
3 4 5 6 7 8
Polynomial degree
(b) lterations

Figure 9. (a) Time required to solve the momentum equation using different degrees of the polynomial + Jacobi preconditioner with
and without RACE on ROME. (b) Number of solver iterations and the effective number of SpMVs performed.

combined with Jacobi in this case as this proved to be most
effective. Clearly the time to solution can be reduced by
increasing the polynomial degree (blue lines in Figure 9(a)).
This is correlated with a decrease in the number of iterations
(see Figure 9(b)), which has two positive effects: First, the

total number of SpMVs, the product of iterations and
polynomial degree, goes down up to a certain point (red line
in Figure 9(b)). Second, the number of orthogonalization
steps decreases. The combination of theses effects leads to
the decrease in solver time as the polynomial degree

16 The International Journal of High Performance Computing Applications 0(0)

3
- 2
:; \-/.—.\./.\'/.
E |
& 1 ;\\“‘—7—‘,;\%\% . __e—2
0
1 2 3 4 5 6 7 8
Sweeps
(a) Time

30 30

20 20

10 \\ 110

Iter
#effective SpMVs

Polynomial degree

(b) lterations

Figure 10. (2) Time required to solve the momentum equation using multiple sweeps of the Jacobi preconditioner with and without
RACE on ROME. (b) Number of solver iterations and effective number of SpMVs performed. The same legends as in Figure 9 apply

here.

Table 3. Overview of the effectiveness of different preconditioners on the momentum equation in Nalu-Wind. The rows show the
number of solver iterations, the effective number of SpMV-like operations, pure solve time, and the total time including the setup cost for

the preconditioner.

Preconditioner None Jacobi GS Poly, d =5 RACE + poly,d =5 Jacobi, d =5 RACE + Jacobi, d =5
Iter 43 24 13 6 6 5 5

#Eff. SpMVs 43 24 26 30 30 25 25

Solve time (s) 3.72 1.73 1.73 1.76 I.16 1.29 0.60

Time (s) 3.83 1.83 1.83 2.24 1.64 1.40 0.70

increases up to seven. However, the total time, which in-
cludes solver and setup time, is lowest at degree five be-
cause the setup cost, which primarily includes d SpMVs
where d is the polynomial degree, increases linearly with the
degree. Nevertheless, the default Trilinos implementation of
the polynomial preconditioner (without RACE) achieves a
minimum runtime (at d = 5) of 2.24s, which is approxi-
mately 20% slower than the above specified baseline
(GMRES and GS preconditioner). This picture changes if
the polynomial preconditioner uses RACE’s cache blocking
(orange lines in Figure 9(a)). Time to solution reduces to
1.68 s, which is a 9% improvement over the baseline. Again,
the main reason for the limited speedup is the relatively high
setup cost of the polynomial preconditioner, which incurs a
huge overhead for the small number of iterations at hand. We
may conclude that any sophisticated preconditioner with high
setup cost would not be effective in this context because the
setup has to be repeated in every time step due to the updated
momentum matrix. On the other hand, the RACE setup cost of
30-50 SpM Vs for creating the graph traversal scheme may be
neglected in applications where the matrix sparsity pattern
stays constant for all time steps, as then the RACE setup is
done only once for the entire simulation.

Given these observations, a viable strategy may be in-
creasing the sweeps of basic relaxation preconditioners,

which have negligible setup cost. Figure 10(a) shows the
benefit of increasing the number of Jacobi sweeps in the
standard GMRES preconditioner. In this case the number of
iterations also decreases linearly while the SpMV counts
remain almost constant up to a certain sweep count (see
Figure 10(b)). Remember that the cost of every Jacobi
sweep is similar to an SpMV (see (2)). Although the number
of SpMVs remains the same, we reduce the orthogonali-
zation cost in GMRES, which effectively reduces the solver
time (blue lines). In this case, Jacobi with five sweeps
converges in 1.4s, achieving a speedup of 1.3x over the
baseline. Multiple sweeps of Jacobi imply that the same
SpMV-like operator is applied back-to-back, which can be
accelerated via RACE. This further reduces the time to
solution to 0.7 s, which is an additional improvement of a
factor of two. Table 3 summarizes the results, showing that a
total speedup of 2.6x over the default solver is possible.

This study does not make any claims on the optimality of
the chosen preconditioners but demonstrates the runtime
impact of RACE’s cache-blocking technique. The above
findings indicate that RACE may be particularly useful
in situations where the sparsity pattern of matrix is constant
(over a long time), but the values of matrix elements change
too frequently to afford the cost of computing a strong
preconditioner repeatedly.

Alappat et al.

7. Conclusion and outlook

In this article, we demonstrated that the node-level per-
formance of various sparse iterative solvers can be boosted
by performing temporal cache blocking using the Recursive
Algebraic Coloring Engine (RACE). The key is to identify
steps in the solver and/or preconditioner which can be (re)
formulated into matrix polynomials and then replace the
related back-to-back sparse matrix-vector operations with
RACE’s cache-blocked matrix powers kernel.

First we investigated s-step GMRES as a method repre-
sentative of the broad class of s-step Krylov methods. Their
basic structure allows to easily benefit from cache-blocked
MPKs. The raw performance improvement of the MPK can
be utilized in parts of these solvers, leading to speedups up to
1.5% for the full solver. For short-recurrence Krylov methods
like conjugate gradients (CG), where the orthogonalization cost
is low, the overall improvement may be substantially higher.
Second, we showed how to apply cache blocking when
combining the s-step method with preconditioners. Here we
addressed the additional problem of calculating polynomials on
parts of the sparse matrix, e.g., the triangular factors of the
matrix. Using a two-stage Gauss-Seidel preconditioner, we
further illustrated that cache blocking can be performed across
multiple chained operators. Third, the challenges and benefits of
using RACE in the context of polynomial and algebraic mul-
tigrid preconditioners were evaluated. These preconditioners are
suitable even for standard Krylov methods, which broadens the
scope of our work. Fourth, we showed that a thorough per-
formance analysis is required to perform fair comparisons with
baseline implementations. Performance problems in the baseline
libraries have been identified (e.g., a scheduling issue in Trilinos
SpMV Kemels) and fixed, if possible. Furthermore we showed
that the efficiency of cache blocking can be improved by
combining it with inter-kernel optimizations (e.g., fusing the
pre-smoother with the residual computation of AMG). Finally,
using a case study from wind turbine simulation we illustrated
the potential impact of our approach on a real-world application.

RACE’s optimizations can be applied to accelerate a
variety of other applications like eigenvalue solvers, Che-
byshev time propagation, and exponential time integration.
In the future we plan to extend this work to multi-node
distributed systems and GPUs.

Acknowledgements

The authors would like to thank NHR@KIT for providing access
to the HoreKa supercomputer (ICL system), which is funded by the
Ministry of Science, Research and the Arts Baden-Wiirttemberg
and by the Federal Ministry of Education and Research.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was partially supported by NHR@FAU, which is funded by
the State of Bavaria and by the Federal Ministry of Education and
Research and Ministry of Science, Research and the Arts Baden-
Wiirttemberg.

ORCID iDs

Christie Alappat @ https://orcid.org/0000-0003-4548-8727

Georg Hager @ https://orcid.org/0000-0002-8723-2781

Notes

1. Top 500 list: https://top500.org/lists/top500/2022/06/

2. Exact version of RACE used for experiments: https://github.
com/RRZE-HPC/RACE/tree/v0.8.0

3. Modified Trilinos repository used for experiments: https://
github.com/christiealappatt/ TrilRACE/commit/119adc404d5c¢5d7
965970d86ec8a91205ab247a

4. See https://doc.zih.tu-dresden.de/jobs/ and /resources/rome/ /
nodes/for details on running Intel MKL code on AMD
processors.

5. Note that the D~! matrix has only one entry per row and is
therefore stored as a vector.

6. Note that the high computational cost of the preconditioner is
often amortized by a decrease in the total number of iterations,
making the preconditioner effective.

7. Matrices are ordered according to increasing size; see Table 2.

8. Nalu-Wind documentation release 1.2.0: https://nalu-wind.
readthedocs.io/_/downloads/en/latest/pdf/)

9. AOCL-BLIS was compiled with gcc v10.2.0 as the library did
not support our de facto Intel compiler.

References

Abdel-Rehim AM, Morgan RB and Wilcox W (2014) Improved
seed methods for symmetric positive definite linear equations
with multiple right-hand sides. Numerical Linear Algebra
with Applications 21(3): 453-471. DOI: 10.1002/nla.1892.

Adams M, Brezina M, Hu J, et al. (2003) Parallel multigrid
smoothing: polynomial versus Gauss—Seidel. Journal of
Computational Physics 188(2): 593-610. DOI: 10.1016/
S0021-9991(03)00194-3.

Alappat C (2019) Recursive algebraic coloring engine library.
Auvailable at: https://github.com/RRZE-HPC/RACE.

Alappat C, Basermann A, Bishop AR, et al. (2020a) A recursive
algebraic coloring technique for hardware-efficient sym-
metric sparse matrix-vector multiplication. ACM Trans.
Parallel Comput 7(3): 1-37. DOI: 10.1145/3399732.

Alappat CL, Hofmann J, Hager G, et al. (2020b) Understanding
HPC benchmark performance on intel broadwell and cascade
lake processors. In: Sadayappan P, Chamberlain BL,
Juckeland G, et al. (eds) High Performance Computing.

https://orcid.org/0000-0003-4548-8727
https://orcid.org/0000-0003-4548-8727
https://orcid.org/0000-0002-8723-2781
https://orcid.org/0000-0002-8723-2781
https://top500.org/lists/top500/2022/06/
https://github.com/RRZE-HPC/RACE/tree/v0.8.0
https://github.com/RRZE-HPC/RACE/tree/v0.8.0
https://github.com/christiealappatt/TrilRACE/commit/119adc404d5c5d7f965970d86ec8a91205ab247a
https://github.com/christiealappatt/TrilRACE/commit/119adc404d5c5d7f965970d86ec8a91205ab247a
https://github.com/christiealappatt/TrilRACE/commit/119adc404d5c5d7f965970d86ec8a91205ab247a
https://doc.zih.tu-dresden.de/jobs/TNQDotTNQ/and/TNQDotTNQ/resources/rome/TNQDotTNQ/nodes/
https://doc.zih.tu-dresden.de/jobs/TNQDotTNQ/and/TNQDotTNQ/resources/rome/TNQDotTNQ/nodes/
https://nalu-wind.readthedocs.io//TNQDotTNQ//downloads/en/latest/pdf/
https://nalu-wind.readthedocs.io//TNQDotTNQ//downloads/en/latest/pdf/
https://doi.org/10.1002/nla.1892
https://doi.org/10.1016/S0021-9991(03)00194-3
https://doi.org/10.1016/S0021-9991(03)00194-3
https://github.com/RRZE-HPC/RACE
https://doi.org/10.1145/3399732

18 The International Journal of High Performance Computing Applications 0(0)

Cham: Springer International Publishing, 412-433. DOI: 10.
1007/978-3-030-50743-5/_/21.

Alappat C, Hager G, Schenk O, et al. (2023) Level-based blocking
for sparse matrices: sparse matrix-power-vector multiplica-
tion. /IEEE Transactions on Parallel & Distributed Systems
34(2): 581-597. DOI: 10.1109/TPDS.2022.3223512.

AMD (2022) AOCL-BLIS. Available at: https://developer.amd.
com/amd-aocl/blas-library/.

Anderson E and Saad Y (1989) Solving sparse triangular linear
systems on parallel computers. Int. J. High Speed Comput
1(1): 73-95. DOI: 10.1142/S0129053389000056.

Bavier E, Hoemmen M, Rajamanickam S, et al. (2012) Amesos2 and
Belos: direct and iterative solvers for large sparse linear systems.
Sci. Program 20: 241-255. DOI: 10.3233/SPR-2012-0352.

Berger-Vergiat L, Glusa CA, Hu JJ, et al. (2019) MueLu Users
Guide. Albuquerque, NM: Sandia National Laboratories.
Technical Report SAND2019-0537.

Berger-Vergiat L, Kelley B, Rajamanickam S, et al. (2021) Tivo-
stage Gauss-Seidel preconditioners and smoothers for Krylov
solvers on a GPU cluster. Available at: https://doi.org/10.
48550/arXiv.2104.01196.

Brandt A (1977) Multi-level adaptive solutions to boundary-value
problems. Mathematics of Computation 31(138): 333-390.
DOI: 10.2307/2006422.

Chow E, Anzt H, Scott J, et al. (2018) Using Jacobi iterations and
blocking for solving sparse triangular systems in incomplete
factorization preconditioning. Journal of Parallel and Dis-
tributed Computing 119: 219-230. DOI: 10.1016/j.jpdc.
2018.04.017.

Chronopoulos AT (1991) s-step iterative methods for (non)sym-
metric (in)definite linear systems. SIAM Journal on Nu-
merical Analysis 28(6): 1776—1789. DOI: 10.1137/0728088.

Chronopoulos A and Gear C (1989) s-step iterative methods for
symmetric linear systems. Journal of Computational and
Applied Mathematics 25(2): 153-168. DOI: 10.1016/0377-
0427(89)90045-9.

Chronopoulos AT and Kim SK (2020) s-step Orthomin and
GMRES implemented on parallel computers. Available at:
https://doi.org/10.48550/arXiv.2001.04886.

Dagum L and Menon R (1998) OpenMP: an industry-standard API
for shared-memory programming. /[EEE Comput. Sci. Eng
5(1): 46-55. DOI: 10.1109/99.660313.

Datta K (2009) Auto-Tuning Stencil Codes for Cache-Based
Multicore Platforms. PhD Thesis, USA.

Davis TA and Hu Y (2011) The university of Florida sparse matrix
collection. ACM Trans. Math. Softw 38(1): 1:1-25. Available
at: https://suitesparse-collection-website.herokuapp.com

Demmel J, Hoemmen M, Mohiyuddin M, et al. (2008) Avoiding
communication in sparse matrix computations 2008 IEEE
International Symposium on Parallel and Distributed Pro-
cessing, 1-12. DOI: 10.1109/IPDPS.2008.4536305.

Dongarra J, Tomov S, Luszczek P, et al. (2017) With ex-
treme computing, the rules have changed. Computing in

Science Engineering 19(3): 52-62. DOI: 10.1109/MCSE.
2017.48.

Erhel J (1995) A parallel GMRES version for general sparse
matrices. Electronic Transactions on Numerical Analysis 3:
160-176.

Evans D (1984) Parallel S.O.R. iterative methods. Parallel
Computing 1(1): 3-18. DOIL: 10.1016/S0167-8191(84)
90380-6.

Falgout R (2006) An introduction to algebraic multigrid. Com-
puting in Science & Engineering 8(6): 24-33. DOI: 10.1109/
MCSE.2006.105.

Hoemmen M (2010) Communication-Avoiding Krylov Subspace
Methods. PhD Thesis. USA, AAI3413388.

Intel (2022) Intel math kernel library. Available at: https://www.
intel.com/content/www/us/en/developer/tools/oneapi/
onemkl.html.

Johnson OG, Micchelli CA and Paul G (1983) Polynomial pre-
conditioners for conjugate gradient calculations. SIAM
Journal on Numerical Analysis 20(2): 362-376. DOI: 10.
1137/0720025.

Kreutzer M, Hager G, Wellein G, et al. (2014) A unified sparse
matrix data format for efficient general sparse matrix-vector
multiplication on modern processors with wide SIMD units.
SIAM Journal on Scientific Computing 36(5): C401-C423.
DOI: 10.1137/130930352.

Lanzkron PJ, Rose DJ and Szyld DB (1990) Convergence of
nested classical iterative methods for linear systems. Nu-
merische Mathematik 58(1): 685-702. DOI. 10.1007/
BF01385649.

Loe JA and Morgan RB (2022) Toward efficient polynomial
preconditioning for GMRES. Numerical Linear Algebra with
Applications 29(4): e2427. DOI: 10.1002/nla.2427.

Loe JA, Thornquist HK and Boman EG (2020) Polynomial pre-
conditioned GMRES in trilinos: practical considerations for
high-performance computing. Proceedings of the 2020 SIAM
Conference on Parallel Processing for Scientific Computing.
DOI: 10.1137/1.9781611976137 4.

Mika S and Vanék P (1992) Acceleration of convergence of a two-
level algebraic algorithm by aggregation in smoothing pro-
cess. Applications of Mathematics 37(5): 343-356, Available
at: https://eudml.org/doc/15720

Mohiyuddin M, Hoemmen M, Demmel J, et al. (2009) Minimizing
communication in sparse matrix solvers Proceedings of the
Conference on High Performance Computing Networking,
Storage and Analysis, SC '09. New York, NY, USA: Asso-
ciation for Computing Machinery. DOI: 10.1145/1654059.
1654096.

Muranushi T and Makino J (2015) Optimal temporal blocking for
stencil computation. Procedia Computer Science 51:
1303-1312. DOI: 10.1016/j.procs.2015.05.315.

Olivier SL, Ellingwood ND, Berry J, et al. (2021) Performance
portability of an SpMV kernel across scientific computing
and data science applications 2021 IEEE High Performance

https://doi.org/10.1007/978-3-030-50743-5/_/21
https://doi.org/10.1007/978-3-030-50743-5/_/21
https://doi.org/10.1109/TPDS.2022.3223512
https://developer.amd.com/amd-aocl/blas-library/
https://developer.amd.com/amd-aocl/blas-library/
https://doi.org/10.1142/S0129053389000056
https://doi.org/10.3233/SPR-2012-0352
https://doi.org/10.48550/arXiv.2104.01196
https://doi.org/10.48550/arXiv.2104.01196
https://doi.org/10.2307/2006422
https://doi.org/10.1016/j.jpdc.2018.04.017
https://doi.org/10.1016/j.jpdc.2018.04.017
https://doi.org/10.1137/0728088
https://doi.org/10.1016/0377-0427(89)90045-9
https://doi.org/10.1016/0377-0427(89)90045-9
https://doi.org/10.48550/arXiv.2001.04886
https://doi.org/10.1109/99.660313
https://suitesparse-collection-website.herokuapp.com
https://doi.org/10.1109/IPDPS.2008.4536305
https://doi.org/10.1109/MCSE.2017.48
https://doi.org/10.1109/MCSE.2017.48
https://doi.org/10.1016/S0167-8191(84)90380-6
https://doi.org/10.1016/S0167-8191(84)90380-6
https://doi.org/10.1109/MCSE.2006.105
https://doi.org/10.1109/MCSE.2006.105
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://doi.org/10.1137/0720025
https://doi.org/10.1137/0720025
https://doi.org/10.1137/130930352
https://doi.org/10.1007/BF01385649
https://doi.org/10.1007/BF01385649
https://doi.org/10.1002/nla.2427
https://doi.org/10.1137/1.9781611976137.4
https://eudml.org/doc/15720
https://doi.org/10.1145/1654059.1654096
https://doi.org/10.1145/1654059.1654096
https://doi.org/10.1016/j.procs.2015.05.315

Alappat et al.

Extreme Computing Conference (HPEC), 1-8. DOI: 10.1109/
HPEC49654.2021.9622869.

Prokopenko A, Siefert CM, Hu JJ, et al. (2016) Ifpack2 User's
Guide 1.0. Technical Report SAND2016-5338. Albuquerque,
NM: Sandia National Labs.

Rajamanickam S, Acer S, Berger-Vergiat L, et al. (2021) Kokkos
kernels: performance portable sparse/dense linear algebra and
graph kernels. Available at: https://doi.org/10.48550/ARXIV.
2103.11991.

Saad Y (1987) Least squares polynomials in the complex plane and
their use for solving nonsymmetric linear systems. SIAM
Journal on Numerical Analysis 24(1): 155-169. DOI: 10.
1137/0724013.

Saad Y and Schultz MH (1986) GMRES: a generalized minimal
residual algorithm for solving nonsymmetric linear systems.
SIAM Journal on Scientific and Statistical Computing 7(3):
856-869. DOI: 10.1137/0907058.

Sprague MA, Ananthan S, Vijayakumar G, et al. (2020) ExaWind:
amultifidelity modeling and simulation environment for wind
energy. Journal of Physics: Conference Series 1452(1):
012071. DOI: 10.1088/1742-6596/1452/1/012071.

Thomas SJ, Ananthan S, Yellapantula S, et al. (2019) A com-
parison of classical and aggregation-based algebraic multigrid
preconditioners for high-fidelity simulation of wind turbine
incompressible flows. SIAM Journal on Scientific Computing
41(5): S196-S219. DOIL: 10.1137/18M1179018.

Trilinos Project Team T (2020) The trilinos project website.
Available at: https://trilinos.github.io.

Van Zee FG and van de Geijn RA (2015) BLIS: a framework for
rapidly instantiating BLAS functionality. ACM Transactions
on Mathematical Software 41(3): 14:1-33. Available at:
https://doi.acm.org/10.1145/2764454

Wathen AJ (2015) Preconditioning. Acta Numerica 24: 329-376.
DOI: 10.1017/S0962492915000021.

Yamazaki I, Anzt H, Tomov S, et al. (2014a) Improving the
performance of CA-GMRES on multicores with multiple
GPUs 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, 382-391. DOIL: 10.1109/IPDPS.
2014.48.

Yamazaki I, Rajamanickam S, Boman EG, et al. (2014b) Domain
decomposition preconditioners for communication-avoiding
Krylov methods on a hybrid CPU/GPU cluster SC ’14:
Proceedings of the International Conference for High Per-

Jormance Computing, Networking, Storage and Analysis,
933-944. DOI: 10.1109/SC.2014.81.

Yamazaki I, Hoemmen M, Luszczek P, et al. (2017) Improving
performance of GMRES by reducing communication and
pipelining global collectives 2017 IEEE International Par-
allel and Distributed Processing Symposium Workshops
(IPDPSW), 1118-1127. DOI: 10.1109/IPDPSW.2017.65.

Ye X, XiYand Saad Y (2021) Proxy-GMRES: preconditioning via
GMRES in polynomial space. SIAM Journal on Matrix
Analysis and Applications 42(3): 1248-1267. DOI: 10.1137/
20M1342562.

Author biographies

Christie Alappat received his master’s degree with honors
from the Bavarian Graduate School of Computational
Engineering, Friedrich-Alexander-Universitdt Erlangen-
Niirnberg. He is in the final stages of completing his
doctoral studies under the guidance of Prof. Gerhard
Wellein. His research interests include performance engi-
neering, sparse matrix and graph algorithms, iterative linear
solvers, and eigenvalue computation. He is the author of the
RACE open-source software framework, which is used to
accelerate challenging computations in sparse linear algebra
on modern compute devices. He has won numerous awards
including ACM Student Research Competition 2019 and
SIAM Activity Group on Supercomputing (SIAG/SC) Best
Paper Prize in 2024.

Jonas Thies received a bachelor’s degree in computational
engineering from FAU (2003), a master’s degree in sci-
entific computing from KTH Stockholm (2006), and a Ph.D.
in applied mathematics from the University of Groningen
(2010). He then spent 2 years as a postdoc at the Center for
Interdisciplinary Mathematics in Uppsala. He worked at the
German Aerospace Center in Cologne, where he led a
research group on parallel numerics (2013-21). Since 2022,
Dr. Theis has been an assistant professor in high-
performance computing at the Delft Institute of Applied
Mathematics, and the scientific advisor for users of the Delft
University of Technology High Performance Computing
Center.

Georg Hager holds a PhD and a Habilitation degree in
Computational Physics from the University of Greifswald.
He leads the Training & Support Division at Erlangen
National High Performance Computing Center (NHR@
FAU) and is an associate lecturer at the Institute of Physics
at the University of Greifswald. Recent research includes
architecture-specific optimization strategies for current
microprocessors, performance engineering of scientific
codes on chip and system levels, and the analytic perfor-
mance modeling of large-scale parallel codes. Georg Hager
has authored and co-authored more than 100 peer-reviewed
publications and was instrumental in developing and re-
fining the Execution-Cache-Memory (ECM) performance
model and energy consumption models for multicore
processors. In 2018, he won the “ISC Gauss Award” (to-
gether with Johannes Hofmann and Dietmar Fey) for a
paper on accurate performance and power modeling. He
received the “2011 Informatics Europe Curriculum Best
Practices Award” (together with Jan Treibig and Gerhard
Wellein) for outstanding contributions to teaching in
computer science. His textbook “Introduction to High
Performance Computing for Scientists and Engineers” is
recommended or required reading in many HPC-related
lectures and courses worldwide. Together with colleagues

https://doi.org/10.1109/HPEC49654.2021.9622869
https://doi.org/10.1109/HPEC49654.2021.9622869
https://doi.org/10.48550/ARXIV.2103.11991
https://doi.org/10.48550/ARXIV.2103.11991
https://doi.org/10.1137/0724013
https://doi.org/10.1137/0724013
https://doi.org/10.1137/0907058
https://doi.org/10.1088/1742-6596/1452/1/012071
https://doi.org/10.1137/18M1179018
https://trilinos.github.io
https://doi.acm.org/10.1145/2764454
https://doi.org/10.1017/S0962492915000021
https://doi.org/10.1109/IPDPS.2014.48
https://doi.org/10.1109/IPDPS.2014.48
https://doi.org/10.1109/SC.2014.81
https://doi.org/10.1109/IPDPSW.2017.65
https://doi.org/10.1137/20M1342562
https://doi.org/10.1137/20M1342562

20 The International Journal of High Performance Computing Applications 0(0)

from FAU, HLRS Stuttgart, and TU Wien he develops and
conducts successful international tutorials on node-level
performance engineering and hybrid programming.

Holger Fehske received a Ph.D. in physics from the Uni-
versity of Leipzig, and a Habilitation degree and Venia
Legendi in theoretical physics from the University of
Bayreuth. In 2002, he became a full professor at the Uni-
versity of Greifswald. He currently holds the chair for
complex quantum systems and works in the fields of solid-
state theory, quantum statistical physics, light-matter
interaction, quantum informatics, plasma physics, and
computational physics. Dr. Fehske is a longstanding
member of the steering committee of the High-Performance
Computing Center Stuttgart and the Erlangen National
High-Performance Computing Center.

Gerhard Wellein is a Professor for High Performance
Computing at the Department for Computer Science of the
Friedrich-Alexander-Universitat Erlangen-Niirmberg (FAU)
and holds a PhD in theoretical physics from the University
of Bayreuth. From 2015 to 2017 he was also a guest lecturer
at the Faculty of Informatics at Universita della Svizzera
italiana (USI) Lugano. Since 2021 he is the director of the
Erlangen National Center for High Performance Computing
(NHR@FAU). He is a member of the board of directors of
the German NHR-Alliance which coordinates the national
HPC Tier-2 infrastructures at German universities. He has
been serving for many years as the deputy speaker of the
Bavarian HPC competence network KONWIHR. As a
member of the scientific steering committees of the Leibniz
Supercomputing Centre (LRZ) and the Gauss-Centre for
Supercomputing (GCS) he is organizing and surveying the
compute time application process for national HPC re-
sources. Gerhard Wellein has more than 20 years of ex-
perience in teaching HPC techniques to students and
scientists. He has contributed to numerous tutorials on node-
level performance engineering in the past decade and re-
ceived the “2011 Informatics Europe Curriculum Best
Practices Award” (together with Jan Treibig and Georg
Hager) for outstanding teaching contributions. His research
interests focus on performance modeling and performance
engineering, architecture-specific code optimization, novel
parallelization approaches and hardware-efficient building
blocks for sparse linear algebra and stencil solvers. He has
been conducting and leading numerous national and in-
ternational HPC research projects and has authored or co-
authored more than 100 peer-reviewed publications.

Appendix
Performance of SpMV routine in Trilinos

Trilinos uses the Kokkos Kernels package for SpMV,
which has been shown to achieve good performance on a

wide range of architectures, see Olivier et al. (2021) and
Rajamanickam et al. (2021). However, initial tests with
some of our matrices showed inferior SpMV performance.
For example, the performance on the Transport matrix
was well below the Roofline prediction of 24 and 21 Gflop/s
(see Alappat et al., 2020a for derivation of the performance
model) on ICL and ROME, respectively (see Figure 11(a)).
A closer investigation revealed that Trilinos (tested until
version 13.4.1) by default calls a dynamically scheduled
version of SpMV for matrices with N,,, > 107. Especially on
ROME, the overhead associated with dynamic scheduling
was too high, leading to inferior performance on our
benchmark matrices. Therefore we manually modified the
routine to always call a statically scheduled version of
SpMV from the Kokkos Kernels. This led to a huge per-
formance improvement and we ended up close to the
memory-bound roofline model prediction (see Figure 11(a)).
Note that on ROME the performance slightly exceeds the
limit; this is because of a residual caching effect from
ROME’s large L3 cache, cf. Alappat et al. (2023).

Performance of Ortho routines in Trilinos

The Ortho routines in the s-step GMRES solver use tall-
skinny DGEMM and TRSM computations, for which Trilinos
employs BLAS libraries. Figure 11(b) reports the perfor-
mance of the Ortho routine with the Intel MKL and AMD
AOCL-BLIS BLAS libraries, respectively. On ICL, MKL
achieves near-optimal performance of 190 orthogonaliza-
tion steps per second (equivalent to 170 Gflop/s) as pre-
dicted by the roofline model. One would expect ROME to
match this level due to its practically identical bandwidth
and floating-point performance. However, the MKL version

I ICL
I ROME
2 20 = 100
& £
o= j=}
5 10 T 50
~ ~
0 0
default static MKL BLIS* BLIS
(a) SpMV (b) Ortho

Figure I 1. (a) Performance of the SpMV kernel in Gflop/s with
the Transport matrix with default and static scheduling. Bars
with blue and green colors show the result on ICL and ROME,
respectively. (b) Performance of orthogonalization routine (in
number of routines executed per second) with MKL and BLIS
libraries. BLIS* represents the BLIS routine called with default
setting, while the other one uses an optimized thread
parallelization setting.

Alappat et al.

21

has 4.8x lower performance on ROME compared to
ICL despite the use of the LD _PRELOAD trick mentioned
in Section 2. Performance did not improve with the
AOCL-BLIS library’ with default configuration (BLIS*
in Figure 11(b)). However, changing the OpenMP loop
used for parallelism via an environment variable
(BLIS_JC_NT = 64)yielded a 1.5 x speedup compared to
MKL. Thus, we used the AOCL-BLIS library for our runs
on ROME with the s-step GMRES solver. The attained

performance of Ortho is still far from optimal but it is
challenging to do further optimizations from the user level
as the solver requires BLAS computations with various
matrix shapes, and tuning environment variables globally
will not fix the issue in all cases. We expect that the per-
formance of the AOCL-BLIS library will improve in the
future for tall-skinny matrices, leading to a performance
boost for both the baseline and RACE-accelerated variants
on AMD multi-core processors.

	Algebraic temporal blocking for sparse iterative solvers on multi-core CPUs
	1. Introduction and related work
	1.1. Contributions
	1.2. Outline

	2. Hardware and software environment
	2.1. Hardware testbed
	2.2. Software environment
	2.3. Benchmarking

	3. Accelerating MPK using RACE
	4. s-step GMRES solver
	5. Preconditioners
	5.1. Relaxation preconditioners
	5.1.1. Jacobi
	5.1.2. Gauss-Seidel

	5.2. Polynomial preconditioners
	5.3. Algebraic multigrid preconditioners

	6. Case study: Momentum equation in the Nalu-Wind solver
	7. Conclusion and outlook
	Acknowledgements
	Declaration of conflicting interests
	Funding
	ORCID iDs
	Notes
	References
	Author biographies
	Appendix
	Performance of SpMV routine in Trilinos
	Performance of Ortho routines in Trilinos

