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Chapter 7
Bifurcation-Based Shimmy Analysis
of Landing Gears Using Flexible
Multibody Models

C. J. J. Beckers, A. E. Öngüt, G. Verbeek, R. H. B. Fey, Y. Lemmens
and N. van de Wouw

Abstract Shimmy oscillations are undesired vibrations in aircraft landing gears. In
this chapter, the onset of shimmy vibrations, marked by Hopf bifurcations, is investi-
gated in the parameter space of high-fidelity, flexible multibody landing gear models.
Such a bifurcation analysis is performed by combining the Virtual.LabMotionmulti-
body solver with the numerical continuation software AUTO. The resulting quasi-
2-parameter bifurcation diagrams, involving aircraft velocity and normal load, are
verified using conventional time-simulation methods and are shown to be computa-
tionallymore efficient. A sensitivity study reveals the influence of design parameters,
such as the shimmy damping coefficient, mechanical trail, and steering actuator stiff-
ness, on the occurrence of shimmy.
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7.1 Introduction

Shimmy is a self-excited lateral-yaw oscillation of landing gear wheels that can
occur during take-off, landing, or taxiing of an aircraft. In severe forms, it can cause
discomfort for the pilot/passengers or even damage the safety-critical landing gear
structure. Therefore, it is essential to assess the susceptibility of landing gears to
shimmy early in the design process, preferably through model-based analysis.

Numerical continuation methods are often employed to analyse the Hopf bifurca-
tions that mark the occurrence of shimmy in the parameter space of analytical mod-
els, such as in [7] and [13]. However, these models are often of limited complexity
and represent significant simplifications of the complex landing gear structures. In
contrast, the landing gear industry adopts time integration procedures for flexible
multibody models, which can be highly complex and often include several types of
nonlinearities and dynamic effects, such as mechanical free-play, flexible structures
with large rotations/deformations, nonlinear dampers, contacts, and tires [9]. These
multibody models form accurate representations of the actual landing gear dynam-
ics, but the simulations are computationally expensive and only result in the stability
properties of the landing gear at discrete points in the parameter space.

This study aims to bridge the gap between these analysis approaches and model
types, by analyzing the shimmy stability properties of a complex, high-fidelity, flexi-
blemultibody landing gearmodel, as shown in Fig. 7.1, using numerical continuation
software. The simulation framework developed in [11] is adapted to enable the anal-
ysis of larger, more complex models. With respect to this previous study, which
analysed multibody models with up to 9 discrete degrees of freedom (DOFs), the

Fig. 7.1 Isometric view of
the multibody landing gear
model used in this study
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y
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model in Fig. 7.1 represents both the geometry and the dynamics of a real-world
landing gear more accurately. The model is more complex, containing more bodies,
some of which are considered flexible to account for the compliance of the landing
gear structure. Modelling this compliance with flexible bodies, instead of using dis-
crete rotational DOFs with a lumped stiffness, results in more realistic motions of
the landing gear.

In this chapter, Sect. 7.2 summarizes the required preliminary theory for the
description of the flexible multibody model, which also includes tire dynamics.
In Sect. 7.3, the multibody landing gear model is explained, detailing the specific
dynamics that are modeled, after which Sect. 7.4 provides an overview of the used
simulation framework. The results of the analysis are discussed in Sect. 7.5 and
the conclusions are summarized in Sect. 7.6. This work is an extended version of a
conference paper [2], which focuses more on the applied simulation framework.

7.2 Preliminaries on Multibody Dynamics

The dynamics of a multibody system can be described by a system of differential-
algebraic equations (DAE’s) according to [6, p. 224]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
M (q) ΦT

,q(q, t)

Φ,q(q, t) 0

] [
q̈
λ

]

=
[
QA(q, q̇) + QE(q̇, q, t)

γ (q̇, q, t)

]

,

Φ,q(q, t)q̇ = − ∂Φ(q,t)

∂t ,

Φ(q, t) = 0 ,

(7.1)

whereM is the mass matrix, which is a function of the column of generalized coor-
dinates q, Φ,q is the constraint Jacobian, where ,q denotes the partial derivative with
respect to q, and Φ reflects the holonomic constraints, λ is the associated column of

Lagrangemultipliers, andQA denotes the columnof generalized applied forces.Addi-

tionally, in the Virtual.Lab Motion software [10], the column QE includes applied
forces supplied by external sources, such as an external control system. The column
γ defines the acceleration-level constraint equations, according to

Φ,q(q, t)q̈ = −
⎡

⎣
∂

(
Φ,q(q, t)q̇

)

∂q
+ 2

∂Φ,q(q, t)

∂t

⎤

⎦ q̇ − ∂2Φ(q, t)

∂t2
=: γ (q̇, q, t).

(7.2)
The second and third equalities in (7.1) represent the constraint equations on velocity
and position level, respectively.

The generalized coordinates q consist of both dependent- and independent
generalized coordinates, respectively q

D
and q

I
, which are related through the

constraint equations Φ(q, t) = 0. The multibody solver of Virtual.Lab Motion,
previously known as the DADS solver, and hereafter named the Motion solver,
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applies the so-called augmented formulation, i.e., rather than eliminating all redun-
dant equations from the system before solving, the equations of motion are inte-
grated in time with the redundant generalized coordinates and Lagrange multipli-
ers included [8, p. 118]. Before integration, the second-order differential equations
in (7.1) are transformed into a first-order form by introducing the state variable
x = [xT1 xT2 ]T := [qT q̇T ]T . The dynamics in (7.1) can now be described in terms of
the states x1, x2, λ, and χ as

⎡

⎢
⎢
⎣

I 0 0 0
0 M (x1) ΦT

,x1
(x1, t) 0

0 Φ,x1
(x1, t) 0 0

0 0 0 I

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

ẋ1
ẋ2
λ

χ̇

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

x2
QA(x1, x2) + QE(x1, x2, t)

γ (x1, x2, t)
g(x1, x2, λ, χ)

⎤

⎥
⎥
⎦ , (7.3)

which, in case of time-simulation, is integrated directly using one of the available
numerical integration schemes [6, pp. 259–276]. The additional states χ in (7.3)
represent the dynamics of the system that are not directly a part of the multibody
dynamics, e.g., the tire dynamics. The states in x corresponding to the positions and
velocities of the independent generalized coordinates are indicated as xI .

7.2.1 Including Structural Compliance

The rigid multibody model can be extended by taking the structural flexibility of
the bodies into account. A model derivation is provided below. A reference to [8,
pp. 185–221], [14], and [15] is made for the full details.

7.2.1.1 Floating Frame of Reference Formulation

The floating frame of reference formulation is used. This implies that the displace-
ments due to the elastic deformation of the flexible body are described with respect
to a body-fixed reference frame, as shown in Fig. 7.2. Figure 7.2 shows an inertial
reference frame {O1, �e1} and a flexible body B, which has a body-fixed reference
frame {B, �eB}. The body reference frame position is defined by �rB and its orientation
by a column of four Euler parameters θB, which defines the orientation of �eB with
respect to �e1.

The contribution of elastic deformation to the position of an arbitrary point i on
the body, is given by

�ui = uTi �eB = [
u1 u2 u3

]

i

⎡

⎣
�eB1�eB2�eB3

⎤

⎦ , (7.4)
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Fig. 7.2 Deformable body
vector definitions

�e12

�e13

�e11

O1

�eB2

�eB3

�eB1

OB =: B
i

if
�rB

�ri/B

�ui�rif/B

�rif

where ui is the column with coordinates that defines �ui in the body reference frame.
The position of point i in the deformed situation, point if , with respect to the origin
of the body reference frame, is given by

�rif /B = �ri/B + �ui , (7.5)

where �ri/B is the position of point i with respect to B in the undeformed situation.
The position of point if can also be expressed with respect to the inertial reference
frame by

�rif = �rB + �ri/B + �ui
= �e1T rB + �eBT

(ri/B + ui) (7.6)

= �e1T (
rB + A1B(ri/B + ui)

) = �e1T rif ,

where A1B is the direction cosine matrix that defines the rotation from �eB to �e1,
according to

�e1 = A1B�eB . (7.7)

This matrix is a function of the four Euler parameters: A1B = A1B(θB).
The lumped mass formulation is used to describe the deformation of the flexible

body. This implies that the body is approximated by a finite number of grid points.
Themass of the body is lumped into the pointmasses of the grid points, or nodes. This
approach enables us to express the deformation of one of the points, for instance point
i, as function of a set of shape vectors ψ that describe the effect of the deformation
on the position of the selected point. Therefore, the deformation coordinates in (7.4)
can be described by

ui = Ψ iηB
, (7.8)

where Ψ i is the 3 × nη matrix containing the modal displacements of point i, and η
B

is the column containing the nη modal coordinates used to describe the deformation
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of body B. Matrix Ψ i is a row partition of the modal matrix Ψ . This modal matrix
describes the reduced elastic modes of all point on the body and is a result of modal
reduction that will be described in Sect. 7.2.1.3.

By applying (7.8), the global coordinates of point if can be expressed as

rif = rB + A1B(θB)
(
ri/B + Ψ iηB

)
. (7.9)

The global position of point if is now fully defined as function of the generalized
coordinates of the body

q
B

=
⎡

⎣
rB
θB
η
B

⎤

⎦ , (7.10)

which comprises the reference coordinates rB and θB and the modal coordinates η
B
.

It is of importance that the modal coordinates η
B
do not include the rigid body modes

of the system, because these are already described by the reference coordinates.
The velocity of point if can be derived by differentiating (7.9) with respect to time

and applying the chain rule

ṙif = ṙB + Ȧ
1B

(
ri/B + Ψ iηB

)
+ A1BΨ iη̇B

, (7.11)

where the relation ṙi/B = 0 has been used. In general, it is possible to rewrite the
central term on the right hand side of (7.11) as

Ȧ
1B

(
ri/B + Ψ iηB

)
= Ȧ

1B
rif /B = Pi θ̇B , (7.12)

where Pi = Pi(θB, ηB
) is defined as

Pi =
[

∂

∂θ1
(A1Brif /B) . . .

∂

∂θ4
(A1Brif /B)

]

, (7.13)

which is a 3 × 4 matrix. Full details on how to assemble Pi in the particular situation
that Euler parameters are used as rotational coordinates are stated in [14, p. 110].
Substituting (7.12) into (7.11) results in

ṙif = [
I Pi A1BΨ i

]

⎡

⎣
ṙB
θ̇B
η̇
B

⎤

⎦ . (7.14)
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7.2.1.2 Flexible Equations of Motion

Once the global position and velocity coordinates are known for all points in the
body, the kinetic energy of the individual points can be summed to obtain the total
kinetic energy of the body, according to

TB = 1

2

nn∑

i=1

mi

⎡

⎣
ṙB
θ̇B
η̇
B

⎤

⎦

T⎡

⎣
I Pi A1BΨ i

PT
i Pi P

T
i A

1BΨ i
sym. Ψ T

i Ψ i

⎤

⎦

⎡

⎣
ṙB
θ̇B
η̇
B

⎤

⎦

=: 1
2

⎡

⎣
ṙB
θ̇B
η̇
B

⎤

⎦

T

M B(θB, ηB
)

⎡

⎣
ṙB
θ̇B
η̇
B

⎤

⎦ , (7.15)

where nn is the total number of nodes of the body,mi are the nodal masses, andMB is
the resulting mass matrix of the body. This mass matrix is a function of the rotational
coordinates θB and the modal coordinates η

B
.

The elastic strain energy of the body can be expressed as

UB = 1

2

⎡

⎣
rB
θB
η
B

⎤

⎦

T ⎡

⎣
0 0 0
0 0 0
0 0 Kred

⎤

⎦

⎡

⎣
rB
θB
η
B

⎤

⎦ , (7.16)

where Kred = Ψ TKΨ is the modal stiffness matrix and K is the structural stiffness
matrix.

In case �Fi = FT
i �e1 is defined to be the net external force acting on node i of the

body, the virtual work of all forces acting on the body can be written as

δWB =
nn∑

i=1

FT
i δrif . (7.17)

Given the found relation for ṙif from (7.14), it can be concluded that

δrif = [
I Pi A

1BΨ i

]

⎡

⎣
δrB
δθB
δη

B

⎤

⎦ . (7.18)

Substituting (7.18) into (7.17) results the virtual work

δW = [∑nn
i=1 F

T
i

∑nn
i=1 F

T
i Pi

∑nn
i=1 F

T
i A

1BΨ i

]

⎡

⎣
δrB
δθB
δη

B

⎤

⎦

=:
[
(Qe

B
)Tr (Qe

B
)Tθ (Qe

B
)Tη

]
⎡

⎣
δrB
δθB
δη

B

⎤

⎦ =: (Qe
B
)T δq

B
,

(7.19)
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whereQe
B
is defined as the generalized forces acting on the body B for the three types

of generalized coordinates. These typically include all forces due to spring, damper,
and actuator elements.

Together with the obtained definitions for the kinetic energy TB, the elastic strain
energy UB, and the generalized applied forces Qe

B
, the use of Lagrange’s equation

results in the equations of motion of a single flexible body B, without constraint
equations [14]:

⎡

⎣
mrr mrθ mrη

mθθ mθη

sym. mηη

⎤

⎦

⎡

⎣
r̈B
θ̈B
η̈
B

⎤

⎦ +
⎡

⎣
0 0 0
0 0 0
0 0 Kred

⎤

⎦

⎡

⎣
rB
θB
η
B

⎤

⎦ =
⎡

⎣

(Qe
B
)rB

(Qe
B
)θB

(Qe
B
)ηB

⎤

⎦ +
⎡

⎣

(Qv

B
)rB

(Qv

B
)θB

(Qv

B
)ηB

⎤

⎦ ,

(7.20)
where mij with i, j,∈ θ, r, η, are submatrices of MB, Q

e
B
are the externally applied

generalized forces, and Qv

B
are the quadratic velocity vectors resulting from the dif-

ferentiation of the kinetic energy with respect to the body coordinates and with
respect to time. These describe the gyroscopic and Coriolis force components
[8, p. 221].

The equations of motion of the total system, as described by (7.1), can be obtained
by combining the equations of motion of the individual nB bodies, together with
constraint equations of the Euler parameters and the kinematic constraints between
the bodies. This system of equations can be systematically assembled from (7.20).
For a complete derivation of these equations, a reference is made to [10, 14, 15].

7.2.1.3 Modal Reduction: Craig-Bampton

As described in Sect. 7.2.1.1, a modal representation of each flexible body is required
to incorporate its non-rigid body dynamics in the equations of motion of the multi-
body system. By introducing modal deformation coordinates η instead of nodal
displacements and rotations u in (7.8), the total number of generalized coordinates q
required to describe the dynamics can be reduced. The challenge arises to select a set
of modes that in a linear combination can accurately represent the local deformations
of the body.

An often used reduction method is the one developed by Craig and Bampton [1].
Assuming that a lumped mass finite-element model and mesh are defined for the
flexible body, the dynamic response of the undamped flexible body can be described
by the differential equations

Mü(t) + Ku(t) = F(t) , (7.21)

where M and K are respectively the (nu × nu) mass and stiffness matrices, F is the
(nu × 1) column of applied loads, and u is a (nu × 1) column with nu displacement
DOFs of the model.
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In the applied Craig-Bampton method, the DOFs u are separated in nbo boundary,
or interface, DOFs ub and nin internal DOFs ui:

u =
[
ub
ui

]

. (7.22)

The boundary DOFs are defined to be the DOFs that are connected to other bodies
in the multibody simulation through joint or force elements.

Static constraint modes are used to exactly represent the static deformation of the
body due to force elements and joint reaction forces at the boundary DOFs. After
partitioning (7.21) according to (7.22), resulting in

[
Mbb M bi
M ib M ii

] [
üb
üi

]

+
[
Kbb Kbi
Kib Kii

] [
ub
ui

]

=
[
Fb
Fi

]

, (7.23)

the internal DOFs can be expressed as function of the boundary DOFs according to

ui = −K−1
ii Kibub . (7.24)

The static deformations, expressed as us, due to loads on the boundary DOFs can
now be expressed in terms of the boundary DOFs ub only

us =
[
ub
ui

]

=
[
I bb
T ib

]

ub = Tnbub ; T ib = −K−1
ii Kib , (7.25)

where I bb represents the (nbo × nbo) unitymatrix. The nbo columns of Tnb are referred
to as the static constraint modes.

The static constraint modes are supplemented with fixed-interface normal modes.
These modes are the eigenmodes as calculated from the undamped, free-vibrating
body with all boundary DOFs constrained and can be obtained by solving the eigen-
value problem

[
−ω2

j M ii + Kii

]
ψ̂

j
= 0 , j = 1, 2, . . . , nin (7.26)

where the resulting nin angular eigenfrequencies and fixed-interface normal modes
are stored in the matrices

Ω ii =

⎡

⎢
⎢
⎢
⎣

ω1

ω2

. . .

ωnin

⎤

⎥
⎥
⎥
⎦

, Ψ ii =
[
ψ̂

1
ψ̂

2
ψ̂

3
. . . ψ̂

nin

]
. (7.27)

In order to sufficiently reduce the number of coordinates describing the deformation
of the body, usually a limited set of normal modes ψ̂

j
is taken into account. The
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matrix containing the selected kept fixed-interface normal modes is indicated with
Ψ ik . This subset of nk kept normal modes is used to define the dynamic part of the
deformation according to

ud =
[
ub
ui

]

=
[
Obk
Ψ ik

]

ζ
k

, (7.28)

whereObk is the (nbo × nk ) zero-matrix, corresponding to the fixed boundary DOFs,
and ζ

k
are the modal coordinates corresponding to the kept fixed-interface normal

modes.
Combining the static constraint modes and the kept fixed-interface normal modes,

the deformation of the body is approximated by

u = us + ud =
[
I bb
T ib

]

ub +
[
Obk
Ψ ik

]

ζ
k

=
[
I bb Obk
T ib Ψ ik

] [
ub
ζ
k

]

= Ψ CBηCB
, (7.29)

where η
CB

= [uTb ζ T
k
]T and Ψ CB is the Craig-Bampton reduction matrix. In order to

obtain a significant reduction it is required that nbo + nk � nu. By substituting (7.29)
in (7.21) and premultiplying with Ψ T

CB, the equations of motion can be reduced to

MCBη̈(t) + KCBη(t) = FCB(t) , (7.30)

where MCB = Ψ T
CBMΨ CB, K

CB = Ψ T
CBKΨ CB, and FCB = Ψ T

CBF .
The eigenmodes of (7.30) are orthogonalized with respect toMCB andKCB before

integrating them in the equations of motion of the multibody system [10]. This both
improves the numerical performance of multibody solver and enables the identifica-
tion of possible rigid body modes, which are to be excluded from the set of modal
coordinates, since the rigid body motion in the multibody formulation is already
defined by the reference coordinates rB and θB.

In order to obtain the orthogonalizedmode set, the generalized eigenvalue problem

[−ω̂2
j M

CB + KCB]ξ
j
= 0, j = 1, 2, . . . , (nbo + nk) , (7.31)

is solved, where ω̂j are the undamped angular eigenfrequencies and ξ
j
the corre-

sponding eigenvectors. The eigenvectors are gathered in the columns of the matrix

Ξ =
[
Ξ rb Ξ fl

]
, (7.32)

which is partitioned in possible rigid bodymodesΞ rb and the flexiblemodesΞ fl . The
rigid body modes are identified by their eigenfrequencies ω̂j being (almost) zero. To
avoid a redundant description of the rigid body modes in the multibody formulation,
the set Ξ rb is not used. The modes Ξ fl linearly transform the modes Ψ CB into the
new, orthogonalized mode set

Ψ = Ψ CBΞ fl , (7.33)
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which is used in the multibody formulation and couples the final generalized DOFs
η to the original set of physical DOFs u according to

u = Ψ η . (7.34)

The final reduced version of (7.21) becomes

Ψ TMΨ η̈ + Ψ TKΨ η̇ = Ψ TF , (7.35)

where Ψ TKΨ = Kred is the reduced stiffness matrix and Ψ TMΨ = mηη is the com-
ponent of the mass matrix corresponding to the modal coordinates in (7.20).

7.2.2 Tire Dynamics

Tire dynamics form an essential part in accurately describing the wheel shimmy
phenomenon. A tire model, featured in the Virtual.Lab software [10], describes the
dynamics between the tire body and the runway. Based on the position and velocity
of the tire with respect to the runway, the resulting normal force Fn, lateral force Fy,
longitudinal force Fx, and self-aligning moment around the vertical axisMz from the
road to the tire are determined.

Of these forces, Fy andMz have the largest influence on the shimmy oscillations,
because the oscillations are characterized most by lateral and yaw motion of the tire.
The lateral force Fy is a function of the side slip angle α. This angle is defined as the
acute angle between the longitudinal tire direction, associated with a longitudinal
velocity vector �Vx, and the velocity vector �VBP of the bottom point of the tire. These
vectors are visualised in Fig. 7.3a. The side slip angle is calculated as

(a) (b)

Fig. 7.3 a Top view of a tire with velocity and side slip angle definitions. b Tire lateral force as
function of the side slip angle [10]
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α = tan−1

(
| �Vy,BP|
| �Vx|

)

. (7.36)

The instantaneous lateral force Fy is defined as a third-order polynomial function
of α for 0 < α < 2.5μFnC

−1
Fα [10], as shown in Fig. 7.3b. The boundary conditions

of Fy(α) are defined as

Fy(0) = 0; dFy

dα
(0) = CFα; Fy(2.5μFnC

−1
Fα ) = μFn; dFy

dα
(2.5μFnC

−1
Fα ) = 0 ,

(7.37)
where CFα is a user-supplied constant indicating the cornering stiffness of the tire
and μ is the static friction coefficient between the tire and the road. For small slip
angles, this cornering stiffness dictates the lateral force characteristic of the tire. For
larger slip angles, the force Fy reaches a maximum of μFn and stays constant for
α > 2.5μFnC

−1
Fα .

In reality, the lateral force does not act exactly on the bottom point of the tire, but
rather just behind it. Therefore, the self-aligning moment is introduced and defined
by

Mz = −rpFy , (7.38)

where rp is the pneumatic trail, which is assumed to be constant.

7.2.2.1 Relaxation Behavior

The response of the lateral force to side slip is not instantaneous. There is a phase
lag between the side slip angle α and the developed lateral force Fy. This relaxation
behavior of the tire is characterised by the relaxation length σ . This is the distance a
tire has to roll in order to generate 63% of the steady-state lateral force, assuming α

is constant.
In this particular tire model, the relaxation behavior of the tire is modeled by

introducing a relaxation time tσ for the lateral force and self-aligning moment:

˙̃Fy = 1

tσ

(
Fy − F̃y

)
,

˙̃Mz = 1

tσ

(
Mz − M̃z

)
, (7.39)

where the relaxation time is derived from the relaxation length according to

tσ = σ

| �Vx|
. (7.40)

In (7.39), F̃y and M̃z are the lateral force and self-aligning moment that include the
relaxation behavior. The two differential equations in (7.39) are added to the system
of DAE that are analysed by the Motion solver. Therefore, F̃y and M̃z appear as
additional states χ in (7.3).
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Before the calculated forces and moments (Fn, Fx, F̃y, and M̃z) are applied to
the tire body in the multibody system, the friction limit is taken into account. This
implies that the vector sum of the lateral and longitudinal forces is reduced in case
it exceeds the maximum friction force generated by the tire, according to

√

F2
x + F̃2

y ≤ μFn . (7.41)

7.3 Multibody Model of a Nose Landing Gear

A dedicated multibody model is created to conduct a shimmy study. This model
is referred to as the ‘bifurcation study model’, or simply the ‘study model’. The
functionalities of a parameterized CADmodel of a landing gear, supplied by Fokker
LG, are employed to generate the CAD geometry of the multibody study model.
The study model contains many of the complexities that are normally present in
multibody landing gear models used in the landing gear industry.

7.3.1 Landing Gear Model for Bifurcation Study

A side view of the studymodel is shown in Fig. 7.4. The figure shows the landing gear
structure, the runway, and the airframe. Global coordinate directions are included
in all figures. Standard aircraft industry coordinate definitions are used, with the x-
axis directed rearward in the longitudinal direction and the z-axis directed vertically
upwards.

The airframe, which is represented by dashed lines, is a rigid frame representing
the fuselage of the aircraft to which the landing gear is attached. It has a mass that
induces the nominal vertical force on the landing gear structure. The airframe is
constrained to move only vertically with respect to the fixed global axis system, so

Fig. 7.4 Side view of the
study model

runway

airframe

xy

z

landing gear

aircraft center of gravity
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Fig. 7.5 Isometric view of
the rear side of the study
model, including the names
of the individual bodies

housing

cylinder

piston
tire

torque links

lower dragbrace

upper dragbrace

airframe

runway

axle

z

y
x

cylinder

the landing gear can drop down onto the runway. The runway is moved backwards
relative to the landing gear to simulate a forward motion of the aircraft.

A more detailed, isometric view of the landing gear is shown in Fig. 7.5. All
bodies are colored separately and their names are indicated using labels. Again, the
airframe is represented by dashed lines. Connected to the airframe are the housing
and the upper drag brace. The two are connected through the lower drag brace.
These three rigid bodies are constrained such that these cannot move with respect to
the airframe or to each other. Therefore, the airframe, upper- and lower drag brace,
and the housing move as one rigid body. The bodies are constrained in a statically
determined way, as to not introduce any redundant constraints.

The housing takes up a cylindrical part named the cylinder. Between these two
bodies, only rotation about their co-axial axis is allowed. During taxiing, this DOF
enables the steering of the nose landing gear. During landing or take off, the steering
actuator is turned off. In that case, hydraulic shimmy damping is supplied to this
DOF by the same actuator. A quadratic damping curve is used to model the hydraulic
damping. The used nonlinear relation for the damping moment is displayed in Fig.
7.6a, and is similar to the characteristics of a shimmy damper used in the industry.
In case the steering actuator is turned on, linear rotational stiffness and damping are
applied on this DOF instead.

The piston can move axially with respect to the cylinder, as well as rotate about
their co-axial axis. In reality, this motion is enabled by two bearings that guide the
sliding and rotatingmotion of the pistonwith respect to the cylinder. In themultibody
model, flexible-point-curve-joint constraints [10] are used to simulate these bearings
and constrain the two flexible bodies together. This particular landing gear has an
asymmetric piston, with a half-forked design, see Fig. 7.5. The piston also forms
the bottom of the shock absorber. A vertical shock absorber force acts between the
cylinder and the piston. The static shock absorber force is modeled by a non-linear,
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Fig. 7.6 a Nonlinear damping moment curve of the shimmy damper. b Nonlinear shock absorber
force

progressive spring, closely resembling the static shock absorber forces as experienced
in industry models. The force is detailed as a function of shock absorber stroke in
Fig. 7.6b.

The torque links are two bars that are hinged together. These restrict the rotation
of the piston relative to the cylinder, without constraining the shock absorber stroke.
Therefore, the torque links determine to a large extent the yaw-stiffness of the landing
gear structure. The design of the two torque links is identical.

A rigid axle connects the tire to the piston. The tire is simulated by a rigid body,
which is only used to characterize the tire mass and rotational inertia. The forces
exerted on the tire by the runway are calculated using the tire model described in
Sect. 7.2.2. This model is featured in the Virtual.Lab Motion software and is also
used in the landing gear industry.

7.3.1.1 Structural Flexibility—Modal Reduction

For the bodies described in Sect. 7.3.1, the structural compliance of the cylinder, the
piston, and the two torque links is taken into account. By default, the Virtual.Lab
software only supports Component Mode Synthesis (CMS) as a method to model the
flexibility of bodies. Therefore, Craig-Bampton mode sets are used. To this end, a
finite element mesh is created for each body, and the interface DOFs are determined,
based on the joints and actuators attached to each body. According to the theory
described in Sect. 7.2.1.3, static constraintmodes are determined for each body, along
withfixed-interface normalmodes.Material properties of steel are used for all flexible
bodies, with a mass density of 7860kg/m3, a Young’s modulus of 2 × 1011 N/m2,
and a Poisson ratio of 0.226.

Due to the various joints and force-elements connected to the flexible bodies,
53 static constraint modes are required to represent the static stiffness of the four
flexible bodies: 10 for each torque link, 18 for the piston, and 15 for the cylinder. In
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order to reduce the model complexity sufficiently to stay within the limitations of the
simulation framework, no normalmodes are included in themode sets for the flexible
bodies: i.e., nk = 0, in (7.28). Therefore, the total number of modal coordinates nη

is given by the number of static constraint modes minus the 4 × 6 rigid body modes.
This results in 29 modal coordinates.

In order to verify whether the applied reduction has a significant effect on the
dynamics of the system, the reduced study model is compared to an unreduced
model. As use of CMS is required, a model with larger Craig-Bampton mode sets
is assumed to approximate the unreduced model sufficiently accurately. For this
‘unreduced’ model, Craig-Bampton mode sets with nk = 10 kept fixed-interface
normal modes per flexible body are used.

The eigenfrequencies and dimensionless damping ratios of the two linearized
landing gear models are compared. A simulation is performed on each of the mod-
els, where the landing gear is suspended stationary in the air, without tire-road con-
tact. The shock absorber stroke is fixed at 5 in., which is midway between fully
compressed and fully extended. By computing the linearized system matrix in this
equilibrium situation, the eigenmodes, eigenfrequencies, and dimensionless damping
ratios can be determined. The latter two quantities are calculated from the eigenvalues
of the system λi, according to ωu,i = √

Re(λi)2 + Im(λi)2, where ωu,i indicates the
ith undamped angular eigenfrequency, and ζi = −Re(λi)

ωu,i
, where ζi is the correspond-

ing dimensionless damping ratio. Even though the multibody system is generally
viscously damped, the dimensionless damping ratios (which in principle only can
be used in the proportionally damped case) characterize the damping of the modes,
assuming these are only weakly damped. The lowest six eigenfrequencies of both
models, including damping factors, are listed in Table 7.1. Visualisations of these
eigenmodes are shown in Fig. 7.7a, b.

The results show that there are 2 rigid body modes present in the model, if there
is no tire road contact. These are the unobstructed rotation of the tire body and the
yaw motion of the entire ‘tire-axle-piston-torque links-cylinder’ sub-structure with
respect to the housing. The latter is caused by the steering DOF between the cylinder

Table 7.1 The lowest six eigenfrequencies and the corresponding damping factors of the unreduced
study model and the reduced study model

Mode shape Unreduced study model Reduced study model

ωu (Hz) ζ (–) ωu (Hz) ζ (–)

Rigid body wheel 0.01 0.03

Rigid body yaw 0.02 0.03

Longitudinal bending 43.0 0.037 46.5 0.034

Lateral bending 47.0 0.038 47.0 0.038

Yaw, torsional 95.8 0.10 95.8 0.10

Lateral bending (2nd) 179.2 0.059 178.8 0.061

. . . >300 . . . >300 . . .
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Fig. 7.7 a Visualisation of the first lateral bending mode of the study model. b Visualisation of the
first torsional mode of the study model

and the housing, because the steering actuator, when turned off, does not include any
stiffness.

The two most relevant eigenmodes for the shimmy phenomenon are the first lat-
eral bending mode and the first torsional mode. The results show that these remain
virtually unchanged by the modal reduction. There is a notable difference in the
eigenfrequency of the longitudinal bending mode: roughly 8% between the reduced
and the unreduced model. However, in a single-wheeled landing gear, such as pre-
sented here, the longitudinal structural dynamics have a relatively small effect on
shimmy. Therefore, it can be concluded that the applied modal reduction is suffi-
ciently accurate for the purpose of a shimmy analysis.

7.3.1.2 Model Dimension of the Study Model

The totalmultibodymodel contains 16bodies. These also includeweightless dummy-
bodies that do not affect the dynamics and aremostly used formodeling convenience.
The rigid body motion of all the bodies is described by 7 × 16 = 112 generalized
coordinates. Furthermore, the structural flexibility of four of the bodies is described
by 29 modal coordinates in total, as described in Sect. 7.3.1.1. Each of the two
flexible-point-curve-joints introduces 1 dependent generalized coordinate. Lastly,
for the Motion solver, torsional springs introduce additional redundant generalized
coordinates, which represent the rotational displacement of the respective spring.
There are 3 of these torsional springs present in the model, bringing the total count
to 146 generalized coordinates in q.

Together with the 16 Euler parameter constraints, the joints and drivers in the
model introduce a total of 114 constraint equations. By subtracting this number
from the total number of generalized coordinates, the total number of independent
generalized coordinates can be determined, which is 32. Therefore, the total first



278 C. J. J. Beckers et al.

Fig. 7.8 Calculation
resulting in the number of
independent states in the
first-order equation of
motion (7.3) for the study
model

Bodies 16× 7 =

Modal coordinates 4 + 4 + 12 + 9 =

112

29

flex-point-curve-joints 2× 1 = 2

Torsional springs 3× 1 = 3 +

Generalized coordinates in q 146

Euler parameter constraints 16× 1 = 16

Joint/driver constraints 98 −
Indep. generalized coord. q

I
32 ×2

Indep. states xI 64
Tire states χ 2 +

Independent states in (3) 66

order representation of the equations of motion, as described by (7.3), contains 66
independent states, as there are also two tire states χ added, as described in Sect.
7.2.2.1. This calculation is summarized in Fig. 7.8.

7.3.2 Comparison to an Industry Model

The study model, as presented above, is based on the nose landing gear of a typical
fighter aircraft. In order to verify if the dynamic behavior of the study model is
indeed realistic for such a landing gear, it is compared to the dynamic behavior of
the original multibody model made by Fokker Landing Gear, which represents a
nose landing gear of a typical fighter aircraft. The latter model is referred to as the
‘industry model’.

7.3.2.1 The Industry Model

Before the two models are compared, the industry model is simplified to a certain
extent, to ensure that both models include the same dynamic effects. This implies
that the following features are removed from the industry model before analysis:

• The airframe stiffness is normally taken into account in Fokker models. For
purposes of this study, the airframe stiffness is removed from the industry model
and the assumption is made that the airframe is completely rigid.

• Standard multibody models from Fokker include free-play. This can for instance
be lateral free-play between the landing gear structure and the airframe, as well as
free-play in the torque links, which affects the yaw motion of the tire. These types
of free-play can result in small-amplitude limit cycle oscillations of the landing
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gear at all forward velocities. These are too small to be considered as shimmy,
but are periodic solutions of the system nonetheless. Even though continuation of
periodic solutions is possible using AUTO, it is computationally more expensive
than continuation of (quasi-)static solutions and is not considered here. Therefore,
the free-play is not taken into consideration and is removed from the industry
model. All the connections that are originally governed by free-play are considered
close fits.

• In the original Fokker model, the rotational friction of the bearings between the
piston and the cylinder is taken into account. In the industry model discussed
here, all friction is neglected. In a shimmy analysis, friction tends to hide shimmy
behavior, as it dissipates energy from the system. Therefore, neglecting friction
can be considered to be a worst-case assumption with respect to the emergence of
shimmy.

These simplifications imply that the dynamic behavior of the model indicated here
as ‘industry model’ will be slightly different from those used in reality. However, the
main effects that influence shimmy behavior, such as the tire dynamics and viscous
shimmy damper properties, remain unchanged.

Even though the industry model is simplified to some extent, it still exceeds the
study model in terms of complexity. In this case, the industry model contains 26
bodies, of which 6 bodies are flexible. This results in an industry model having more
than 400 independent states in the first-order form of the equations of motion. As a
model of this size still imposes computational challenges for the current bifurcation
analysis framework, the study model, with 66 independent states, is used to conduct
the bifurcation analysis.

7.3.2.2 Structural Compliance Comparison

Since both models now contain the same dynamic effects, a comparison is pursued.
The comparison focuses on the dynamic properties of the landing gear structure,
because these are influenced most by the geometry of the bodies, which is slightly
different for both models.

The static stiffness is determined by performing time-simulations of both models
where a unit force/moment is applied to the axle, in a situation where the airframe
is fixed in space while there is no tire-road contact. For this particular analysis,
the rotation between the piston and the cylinder is suppressed. The resulting lateral
stiffness and yaw stiffness of the landing gear are shown in Fig. 7.9a and Fig. 7.9b,
respectively. These are known to have the largest influence on the shimmy behavior
compared to stiffnesses in other directions.

Figure 7.9a, b show the stiffness as function of the shock absorber stroke, where
0 in. corresponds to a fully extended shock absorber and 10 in. to a fully compressed
shock absorber. In bothmodels, the stiffness increaseswith increasing shock absorber
stroke. In the lateral direction, as seen in Fig. 7.9a, this increase can partially be
explained by the fact that the arm at which the lateral force acts on the structure
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Fig. 7.9 a Lateral stiffness of the landing gear structure of the study model, compared to the
industry model. b Yaw stiffness of the landing gear structure of the study model, compared to the
industry model

is a function of the shock absorber stroke. Secondly, a larger part of the piston is
inserted in the cylinder if the shock absorber is compressed, thereby also increasing
the lateral stiffness. In the yaw direction, shown in Fig. 7.9b, the stiffness is affected
the most by the relative angle of the two torque links, which directly depends on the
shock absorber stroke. This greatly effects the yaw stiffness.

When comparing the structural stiffness of the two models, it can be seen that
both models are in agreement, even though the study model contains less flexible
components. It can thus be concluded that the four flexible components of the study
model approximate the compliance of much larger industry model accurately.

7.3.2.3 Eigenvalue Analysis

The study model and the industry model are also compared by analyzing eigenfre-
quencies and modal damping factors of the linearized systems. The same method as
described in Sect. 7.3.1.1 is employed: the system is linearized around a static equi-
librium situation, where there is no tire-road contact. The relevant resulting eigen-
frequencies, and modal damping factors of the two models are shown in Table 7.2.

The results show that the eigenfrequencies of both models are largely in accor-
dance. Most relevant are the eigenfrequencies of the lateral bending mode and the
torsional mode in the yaw direction. The lateral bending eigenfrequency compares
well, as there is only 2% difference between the eigenfrequencies. The difference
between the eigenfrequencies in the yaw direction is with 12% slightly larger. This
might be caused by a different mass distribution between the two models.

Furthermore, the damping factors of the lateral and longitudinal modes differ by
roughly one order of magnitude between the models. This might be a consequence
of the additional flexible bodies in the industry model. The damping factor in yaw-
direction is in accordance.
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Table 7.2 Relevant Eigenfrequencies and damping factors of the study model and the industry
model

Mode shape Study model Industry model

ωu (Hz) ζ (–) ωu (Hz) ζ (–)

Longitudinal bending 46.5 0.034 47.6 0.0025

Lateral bending 47.0 0.038 46.1 0.0035

Yaw, torsional 95.8 0.10 109.4 0.099

7.4 Continuation Analysis of a Multibody System

A recently developed simulation framework by Tartaruga et al. [11] is adapted to
perform 1-parameter bifurcation analyses on the study model as described in Sect.
7.3.1. The continuation software AUTO [5] is coupled to the Virtual.Lab Motion
multibody solver through MATLAB. A custom version of the Motion solver is used
that includes a MATLAB interface. This interface makes all the states x of the first-
order equations of motion, (7.3), and the bifurcation parameters of a model available
in the MATLAB-workspace.

The bifurcation analysis has to be started from a (quasi-)static stable equilibrium
solution of the system. This solution is obtained by integrating the equations of
motion, (7.3), in time, from an initial configuration, until the transient dynamics
have damped out and the time derivatives of all states are below a small tolerance
value. The solution is then assumed to be close enough to the final (quasi-)static
solution and the values of all the independent states are stored for use in the next step
of the analysis.

From this initial solution, the challenge is to find subsequent (quasi-)static solu-
tions for varying values of the bifurcation parameter. For this, theDynamical Systems
Toolbox (DST) is employed [3]. The DST is an open source MATLAB-toolbox that
encapsulates all the functionalities of the bifurcation software AUTO. The original
FORTRAN-code of AUTO is integrated in the toolbox via ‘MATLAB-executable’-
files, or MEX-files. The toolbox is normally used to compute branches of solutions
of analytical nonlinear systems by evaluating the time derivatives of the states as
function of the states and a bifurcation parameter p, according to

ẏ = f
(
y, p

)
. (7.42)

By coupling the DST to the Motion solver and performing a co-simulation, one can
impose that y = {xI , χ}, and the multibody system can be evaluated by the DST
using the same techniques. This co-simulation workflow is visualised in Fig. 7.10.

Figure 7.10 shows that, given a viable set of inputs {xI , χ, p}, the Motion solver
is able to algebraically solve the first-order equations of motion, (7.3), which results
in the time derivatives of the states: ẋI and χ̇ . These are used by the DST, and the
underlying AUTO software, to identify (quasi-)static solutions, stability properties
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Fig. 7.10 Schematic of the
coupling between the
dynamical systems toolbox
(DST) and the motion solver
through MATLAB Solve equations of motion

Return:
- time derivatives
of independent states
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- independent states
- bifurcation parameter

Identify:
- (quasi-)static solutions
- stability properties
- bifurcations

DST/AUTO Motion solver

MATLAB

values

ẋI , χ̇

xI , χ, p

and bifurcation points. This is an iterative process, where the DST constantly updates
and applies perturbations the states of the model.

During this continuation analysis, the stability properties of the solutions are
determined by analyzing the eigenvalues of the system Jacobian around the solution,
which is determined through a finite-difference method. These eigenvalues are also
used to detect possible Hopf bifurcations, which are defined by a complex conjugate
pair of eigenvalues transversely crossing the imaginary axis [12, pp. 200–201]. By
monitoring the number of eigenvalues of the Jacobian in the left-half complex plane
together with the real part of the eigenvalue closest to the imaginary axis [4], the
AUTO software can detect and locate Hopf bifurcations.

The operation of the simulation framework is discussed in more detail in [2].
Furthermore, as described in [11], this simulation framework also allows for the
continuation of periodic solutions of small multibody systems. However, because
this requires increasing computational effort for larger models, these type of analyses
are not considered here.

7.5 Landing Gear Shimmy Analysis Using Bifurcation
Methods

The simulation framework presented in Sect. 7.4 is used to analyse the possible
occurrence of shimmy in the flexible landing gear multibody model presented in
Sect. 7.3. The relevant (and safety critical) case of a leaking shimmy damper is
considered. To emulate the loss of damping in the shimmy damper, the damping
moment curve, applied by the hydraulic shimmy damper and shown in Fig. 7.6a, is
reduced by a factor ddamper . Initially ddamper is chosen to be 0.03. This corresponds
to a damping moment of only 3% of the original value. As will be shown, this will
lead to shimmy within the operational parameter space.

A 1-parameter bifurcation analysis is performed on the landing gear model. The
relative velocity of the runway with respect to the landing gear V is chosen to be the
primary bifurcation parameter as the velocity has a large influence on the occurrence
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of shimmy and it can vary significantly during landing and take-off events. The result
of this 1-parameter bifurcation analysis is shown in Fig. 7.11. Solid lines indicate
(quasi-)static stable solutions, while dashed lines indicate (quasi-)static unstable
solutions.

The figure shows the bifurcation diagram as function of the velocity, at a constant
vertical force Fz. The vertical force is normalized at 20kN. The continuation analysis
is started at a velocity of V = 1m/s. This (quasi-)static starting solution, which is
determined using conventional time simulation, ismarkedwith ‘EP’. From this point,
the (quasi-)static solution is continued for increasing velocities up to 80m/s, where
the end point of the branch is marked by ‘UZ’. This is the maximum landing/take-off
velocity for this type of landing gear. Along the solution branch, two supercritical
Hopf bifurcations are encountered at 5.8 and 75m/s, both marked by ‘HB’. These
indicate the edges of a domain where the stationary (quasi-)static solution becomes
unstable and a coexisting stable oscillatory solution emerges. This is the velocity
range where the landing gear model shows shimmy.

The eigenvalues of the system Jacobian are presented in Fig. 7.12 as function of
the landing gear velocity V . The results show that as the velocity V changes, the
system dynamics, and thus the eigenvalues of the linearized system, change. One
pair of complex conjugate eigenvalues can be observed crossing the imaginary axis
to the right-half complex plain and back again. These two crossings represent the
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Fig. 7.13 The equilibrium solution at the Hopf bifurcation of V = 5.8m/s (center) and the visual-
isation of the eigenmode corresponding to the critical eigenvalue pair (left and right)

Hopf-bifuractions at V = 5.8m/s and V = 75m/s, respectively, and are marked by
larger dots in the figure.

The eigenvectors of the linearized system corresponding to the critical eigenvalue
pair can be visualized. The center figure of Fig. 7.13 shows the equilibrium solution
of the system at the Hopf bifurcation of V = 5.8m/s. Adding or subtracting the real
part of the critical eigenvector, which is dominant compared to the negligibly small
imaginary part, to this equilibrium solution results in the visualisations shown on
the left and right side of Fig. 7.13, respectively. These figures therefore indicate the
shape of the landing gear corresponding to the initial oscillation that originates from
the Hopf bifurcation. Figure 7.13 shows that the discrete steering DOF, where the
shimmy damper acts, is dominant in the oscillating motion. Furthermore, the lateral
bending of the piston also plays a significant role.

The (quasi-)static equilibrium solutions of the branch can further be analysed as
a function of the bifurcation parameter V . Figure 7.14a, b show the yaw angle and
lateral position of the tire as a function of the runway velocity, respectively. The tire
has a static yaw angle deflection to the right, due to the asymmetric design of the
piston. This static yaw angle is smaller at higher velocities. Figure 7.14b shows that
the tire has a small, roughly constant lateral deflection, enabled by the compliance
of the flexible piston. The unstable (quasi-)static solutions shown here cannot be
determined using time simulation, as these will diverge to a co-existing limit cycle
oscillation.
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Fig. 7.14 a The tire yaw angle of the equilibrium solutions, as function of the bifurcation parameter
V atFz(norm.) = 1. Solid lines are stable solutions,while dashed lines are unstable.bThe tire lateral
position of the equilibrium solutions, as function of the bifurcation parameter V at Fz(norm.) = 1.
Solid lines are stable solutions, while dashed lines are unstable

7.5.1 Quasi-2-Parameter Bifurcation Diagrams

The 1-parameter bifurcation analysis can be repeated for different values of the
normal force on the landing gear Fz. By doing so, the stability of the landing gear
is evaluated in the 2-parameter space (V,Fz). The results of this quasi-2-parameter
bifurcation study are visualized in Fig. 7.15a. Individual 1-parameter bifurcation
analyses show the stability of the equilibrium solutions at constant values for Fz.
By connecting the Hopf bifurcation points for multiple values of Fz, the stability
boundary in the 2-parameter plane can be visualised, as indicated by the black line
in Fig. 7.15b. In this figure, the unstable parameter domain is shaded.

The results of the bifurcation analysis are verified through a comparisonwith stan-
dard time simulations of the same multibody model. An aircraft landing is simulated
by gradually lowering the landing gear on the moving runway under the influence of
gravity and the applied vertical force Fz . After the transient behavior has dampened
out, the stability properties of the steady-state solution of the model are assessed.
This process is repeated for various parameters V and Fz. The results are shown in
Fig. 7.15b with black letters, indicating a stable (quasi-)static solution with ‘s’ and
an unstable solution with ‘u’. In case of the marker ‘m’, the solution is considered
to be marginally stable, as small limit cycle oscillations were found that may only
damp out for very long simulation times.

The comparison with 30 of these conventional time-simulations, as displayed in
Fig. 7.15b, reveals that the two methods are in accordance. Furthermore, for the
results shown here, both methods require a similar amount of computational time.
However, the grid of found solutions in the (V,Fz)-parameter space of the bifurcation
analysis is much denser and even reveals the exact location of 20 Hopf points on
the stability boundary. Achieving the same kind of accuracy with the conventional
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Fig. 7.15 a Results of multiple 1-parameter bifurcation analyses, where ‘HB’ indicates the super-
critical Hopf bifurcations. Solid lines indicate locally stable solutions, while dashed lines mark local
instability of the (quasi-)static solutions. b The same stability boundary as in Fig. 7.15a is indicated
by a black line and the results of 30 time-domain simulations are indicated by markers: ‘s’ is stable,
‘u’ is unstable, and ‘m’ is marginally stable. The unstable domain is colored gray

time-simulationmethodwould require amultiplication of the performed simulations,
and thus of the computational time needed.

When studying the shape of the unstable domain as displayed in Fig. 7.15b, it
can be recognized that the range of unstable velocities is smaller at lower vertical
loads. The results in Sect. 7.3.2.2 already showed that the lateral and yaw stiffness
of the landing gear structure are significantly lower in this region, because the shock
absorber is extended. Additionally, tire dynamics will be affected by the decreased
vertical force, lowering the ability of the tire to generate lateral force, resulting in
less shimmy. Probably, both these effects are responsible for the variation in shimmy
behavior as function of the vertical load.

7.5.2 Sensitivity Studies

Using the bifurcation analysis framework, sensitivity studies are performed on the
study model. Several design parameters, that are known to have a large influence on
the shimmy behavior of the landing gear, are varied and their influence is quantified
by generating new quasi-2-parameter bifurcation diagrams, with Fz and V as the
bifurcation parameters. Design parameters of interest are the previously discussed
reduction factor for the shimmy damper ddamper , themechanical trail, and the steering
stiffness.
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Fig. 7.16 a Unstable domain in the (V,Fz)-parameter space for ddamper = 0.04. The unstable
domain is colored gray. b Unstable domain in the (V,Fz)-parameter space for ddamper = 0.02. The
unstable domain is colored gray

7.5.2.1 Shimmy Damping Sensitivity Study

The effects of changing the reduction factor ddamper of the shimmy damper moment
curve are investigated first. The stability boundary is determined using the bifurcation
analysis framework, for various values of ddamper . The landing gear is found to be
stable over the entire considered parameter space, in case ddamper = 1. From there on,
the damping factor is gradually decreased to determine how much shimmy damper
malfunction is required for the landing gear stability to be severely compromised.

Results show that even for a reduction factor of ddamper = 0.05 this landing gear
is stable over the entire considered (V,Fz)-space. However, when the damping coef-
ficient of the shimmy damper is reduced further, to ddamper = 0.04, there emerges an
unstable domain for higher vertical loads, as shown in Fig. 7.16a. Further reduction
of the damping properties to ddamper = 0.03, leads to the increase of the size of this
unstable domain, as was already shown in Fig. 7.15b. Eventually, when the shimmy
damper force is reduced to only 2% of its original value, almost all equilibrium solu-
tions in the operational parameter space are unstable, as is displayed in Fig. 7.16b.
In this situation, the shimmy damper is no longer strong enough to prevent shimmy
oscillations.

From these results, it can be concluded that the shimmy damper has a significant
effect on the stability of the landing gear. Proper damping in the yaw direction is
essential to prevent shimmy. Furthermore, it is shown that only after severe failure,
i.e., leakage, of the shimmy damper, below ddamper = 0.05, will shimmy occur within
the operational parameter space.
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Fig. 7.17 a Schematic side view of the bottom part of the nose landing gear, showing the definitions
for caster angle, rake, and mechanical trail. b Stability boundary for two different rake values. The
solid line is 0mm rake, while dotted line is 15mm rake. ddamper = 0.03 in both situations

7.5.2.2 Mechanical Trail Sensitivity Study

Other design parameters that are at the disposal of the landing gear designer, and that
can change the shimmy characteristics of a landing gear, are the rake and the caster
angle. As indicated in Fig. 7.17a, the rake is defined to be the offset of the wheel
center with respect to the steering axis. Both the rake and the caster angle influence
the mechanical trail, which is the distance between the point where the steering axis
meets the road and the tire-road contact point, and is known to have a large effect on
shimmy behavior.

The study model, as analysed so far and as shown in Fig. 7.5, has a rake of 0mm.
This implies that the piston fork is straight. Together with the caster angle of 17◦,
this results in a mechanical trail of 67mm. The bifurcation analysis is repeated with
an identical landing gear study model, except for the fact that a rake of 15mm is
implemented, by curving the piston fork forward. This changes both the flexible
piston stiffness slightly and results in a reduced mechanical trail of 52mm.

A bifurcation analysis is performed on the model with a rake of 15mm and the
results are compared to those of the 0mm rake model, which were already shown
in Fig. 7.15b. Both results are combined in Fig. 7.17b. In this figure, the unstable
domain of the 0mm rake model is indicated by the shaded surface and the stability
boundary of the 15mm-rake model is indicated by the dotted line.

The results show that, with respect to the original stability domain, the model with
an increased rake has an unstable domain that is roughly the same size. However,
the unstable domain shifts to slightly lower velocities.
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Fig. 7.18 Unstable domain,
in gray, of a landing gear
with the steering actuator
enabled
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7.5.2.3 Steering Actuator Enabled

In all the analysed situations above, the steering actuator of the landing gear is
assumed to be off, as it would be during landing or take-off. In the next situation,
the steering actuator is assumed to be on, as it would be during a taxi event at low
velocities. In that case, the actuator can be modeled as a linear rotational spring-
damper with stiffness 104 Nm/rad and damping 5 × 103 Nm s/rad. Opposed to the
passive shimmy damping results discussed above, the functionality of the steering
actuator has not been reduced, i.e., the actuator is assumed to be fully operational. For
this situation, the results of a quasi-2-parameter bifurcation analysis are displayed in
Fig. 7.18.

The results show that, even with a fully operational steering actuator, the landing
gear shows shimmy. The shape of the unstable domain is drastically different from
the parabola-like shape encountered in the previous bifurcation analysis results. In
this case, the landing gear only experiences shimmy at higher velocities and lower
vertical loads. At a normalized vertical force of 0.4, shimmy already starts to occur at
a velocity of 25m/s. However, this will probably not result in any practical problems,
because aircraft velocities during taxiing are on average 10m/s. Time simulations
show that, also in this case, where the dynamics are significantly altered with respect
to a situation with a disengaged steering actuator, the critical oscillation starts as a
yaw oscillation of the landing gear.

7.6 Conclusions

In this chapter, first a complex, high-fidelity, flexible multibody model of a typical
industrial nose landing gear is presented. The model contains many of the mod-
eling elements normally encountered in multibody models used in industry, such
as complex tire dynamics, complex geometry, non-linear spring/damper elements,
and flexible bodies. Reduced Craig-Bampton mode sets are used to approximate
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flexible body dynamics. The model is shown to be comparable to a multibody land-
ing gear model used in industry, but with significantly less degrees of freedom,
thereby opening possibilities for a bifurcation-based shimmy analysis.

A recently developed simulation framework, that combines AUTO and the Vir-
tual.Lab Motion solver through use of a custom interface with MATLAB, is adapted
to perform bifurcation analyses on the landing gear study model. The framework
enables the continuation of a branch of (quasi)-static solutions of the multibody
model, as function of the horizontal velocity V . By repeating the analysis and vary-
ing a second parameter, the vertical normal force Fz, quasi-2-parameter bifurcation
diagrams are created.

The practically relevant and safety-critical case of a leaking shimmy damper is
considered. The unstable domain, as revealed by a quasi-2-parameter bifurcation
analysis, is verified using 30 conventional time simulations. Time-domain steady-
state response results are shown to be in accordance with the obtained bifurcation
diagram. It is thus shown that it is possible to use the bifurcation analysis framework
to analyse the shimmy behavior of complex, high-fidelity multibody models.

A comparison of the computation time reveals that the bifurcation analysis gives a
far more detailed view of the stability properties of the model at comparable compu-
tational costs, as 20 exact points of the stability boundary are determined. Trying to
capture the stability boundary with a comparable accuracy using time-domain sim-
ulations would be much more computationally expensive and would be prohibitive
in sensitivity studies needed in the context of landing gear design.

Such sensitivity studies are performed to investigate the influence of several design
parameters on the bifurcation boundary in the (V,Fz)-parameter space. It is shown
that only after severe reduction of the shimmy damper functionality, to less than
5% of its original value, the landing gear will show shimmy within the operational
parameter space. Shimmy ismore present at higher vertical loads and expands quickly
in the (V,Fz)-parameter space if the shimmy damper coefficient is reduced further,
indicating the importance of proper shimmy damper operation. Secondly, it is shown
that for a model with a decreased mechanical trail, the unstable domain shifts to
slightly lower velocities, while its shape and size in the parameter space remain
roughly the same. Lastly, in a situation where the steering actuator of the landing
gear is turned on, as it would be during taxiing, the additional stiffness in yaw
direction leads to drastically different shimmy behavior, mainly present at higher
velocities and lower vertical loads.
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