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Abstract

We analyze the efficiency properties of a numerical pricing method
based on Fourier-cosine expansions for early-exercise options. We focus
on variants of Schwartz’ model [20] based on a mean reverting Ornstein-
Uhlenbeck process [23], which is commonly used for modeling commodity
prices. This process however does not possess favorable properties for the
option pricing method of interest. We therefore propose an approximation
of its characteristic function, so that the Fast Fourier Transform can be
applied for highest efficiency.

1 Introduction

Computational Finance is one of those mathematical areas in which stochas-
tic modeling and numerical mathematics are closely intertwined. Efficient nu-
merical pricing methods are for example required for financial derivatives, on
stocks, interest rates, credit or commodities, all governed by stochastic differ-
ential equations. In this paper we focus on a numerical pricing technique for
commodity derivatives that can be exercised before the expiration date of the
contract.

Movements in the commodity markets expose participants to different types
of risks. An obvious way for market players to control their exposure to price
and volume fluctuations is by buying or selling derivatives written on the un-
derlying products. Bermudan but also swing options, which allow one to buy
or sell extra quantities of a commodity, are commonly sold derivatives with
early-exercise features.

Significant contributions have been made in modeling commodity processes
by Schwartz and collaborators in [17, 20, 21] where the authors used a model
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of Ornstein-Uhlenbeck type, which accounts for the mean reversion of prices,
combined with a deterministic seasonality component. Often these processes
are combined with independent jump components (this extension of the models
studied here is straightforward). In this paper we deal with the Fourier-cosine
expansion-based COS method [12, 13] for pricing early-exercise options under
the stochastic processes for commodities. In this method the transitional prob-
ability density function is approximated by a Fourier-cosine series expansion,
which has a direct relation to the analytically available conditional character-
istic function. In [13] it was shown that the COS method can price the early-
exercise and barrier options with exponential convergence under various Lévy
jump models. The computational complexity for pricing a Bermudan option
with M exercise dates was O((M −1)N log2(N)), where N denotes the number
of terms in the Fourier-cosine expansion.

In the present paper we show that this complexity cannot be easily achieved
in the case of mean reverting processes of Ornstein-Uhlenbeck (OU) type. We
therefore introduce an approximation of the original characteristic function,
so that the COS pricing algorithm remains highly efficient for early-exercise
commodity options under Ornstein-Uhlenbeck processes, but, at the same time,
the error in the option prices is controlled by means of error analysis.

The paper is organized as follows. Details of the OU processes and the COS
pricing method are presented in Section 2. In Section 3 the approximate OU
model is introduced. It is followed by a detailed error analysis in Section 4; In
Section 5 numerical results are presented. Finally conclusions are summarized
in Section 6.

2 Problem Definition

2.1 The Ornstein-Uhlenbeck Process

Stochastic processes for commodities are characterized by the properties of
mean reversion and seasonality. If for any reason the price of a certain com-
modity falls significantly due to overproduction, then market participants ex-
pect the price to rise eventually as producers decrease their supply. Moreover,
incorporation of seasonality in the model is necessary since energy consumption
(the use of electricity, for example) differs in different seasons of the year.

We first look at the OU process without seasonality. A commodity price
can be defined as the log-transformed stochastic variable Xt = log St, which
is then modeled by an Ornstein-Uhlenbeck mean reverting process. We define
this process here under a so-called equivalent martingale measure Q

dXt = κ(xQ −Xt)dt + σdW Q
t ,with X0 = x0, (1)

with a Brownian motion, W Q
t , is under measure Q and the parameters κ and σ

represent the speed of mean reversion and volatility of the underlying process,
respectively. Under this measure, the parameter xQ := x−λ with λ the market
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price of risk, and x the long-term mean value of the underlying process. In the
derivations to follow, we will just use x to denote xQ.

Xt is normally distributed, i.e.: Xt ∼ N (E(Xt), Var(Xt)), with:

E(Xt|F0) = x0e−κt + x
(
1− e−κt

)
,

Var(Xt|F0) =
σ2

2κ

(
1− e−2κt

)
.

Modeling energy prices by mean reversion is well supported by empirical
studies of the price behavior, as described in [3]. General diffusion models that
incorporate mean reversion go a long way in capturing the nature of energy
prices; notably their tendency to randomly oscillate away from, and over time
back towards, a price level determined by the cost of production. These mod-
els have gained a more wide-spread acceptance among market practitioners as
progress is made in the techniques to estimate the mean reversion level and the
mean reversion rates.

We are interested in the characteristic function, E
(
eiuXT |Ft

)
, related to

model (1). Based on [11] the characteristic function is of the form φ(u; τ) =
ex0B(u,τ)+A(u,τ) where A(u, τ) and B(u, τ) satisfy the following set of ODEs:{

B′(u, τ) = −κB, B(u, 0) = iu,
A′(u, τ) = κxB + 1

2σ2B2, A(u, 0) = 0,

and the prime ′ denotes the derivative w.r.t. τ where τ = T−t. For the solution
we find:{

B(u, τ) = iue−κτ ,
A(u, τ) = 1

4κ

(
e−2κτ − e−κτ

) (
u2σ2 + ueκτ

(
uσ2 − 4iκx

))
.

(2)

Then the characteristic function of OU process reads:

φ(u;x0) = eiux0e−κτ+A(u,τ).

2.1.1 Incorporation of Seasonality Component

More realistic stochastic processes modeling commodity prices include a sea-
sonality component.

As presented in [7, 17] we choose a commodity price process, St, written
as:

St = eg(t)+yt = G(t)eyt , with S0 = G(0), (3)

where G(t) ≡ eg(t) is a deterministic function which describes the seasonality
effect and yt is a stochastic zero-level-mean reverting process given by:

dyt = −κytdt + σdW y
t , with y0 = 0,
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with W y
t a Brownian motion, κ corresponds to the speed of mean reversion

and σ determines the volatility. By applying Itô’s lemma to Equation (3), and
adding and subtracting κg(t), we obtain the dynamics for St of the form:

dSt =
(

1
2
σ2 − κ(yt + g(t)) + κg(t) + g′(t)

)
Stdt + σStdW y

t ,

g′(t) being the derivative of g(t). This equals:

dSt =
(

1
2
σ2 − κ log St + κg(t) + g′(t)

)
Stdt + σStdW y

t .

Setting θ(t) = g(t) +
(

1
2σ2 + g′(t)

)
/κ, we arrive at the following process:

dSt = κ(θ(t)− log St)Stdt + σStdW y
t .

By taking the log-transform of the stock price, xt = log St, one recognizes the
model to be a mean reverting Hull-White model [14], i.e.:

dxt = κ
(
θ̃(t)− xt

)
dt + σdW y

t , with x0 = log S0, (4)

and θ̃(t) = θ(t) − σ2/2κ. This model is very similar to the model in [4] for
electricity prices. The OU process, xt in (4), admits the solution:

xt = x0e−κt + κ

∫ t

0
e−κ(t−s)θ̃(s)ds + σ

∫ t

0
e−κ(t−s)dW y

t ,

and is thus normally distributed, i.e., xt ∼ N (E(xt), Var(xt)), with:

E(xt|F0) = x0e−κt + κ

∫ t

0
e−κ(t−s)θ̃(s)ds,

Var(xt|F0) =
σ2

2κ

(
1− e−2κt

)
.

For process xt = log St, as given by Equation (4), we find the following
ODEs for the characteristic function:{

B′(u, τ) = −κB with B(u, 0) = iu,

A′(u, τ) = κθ̃(t)B(u, τ) + 1
2B2(u, τ)σ2 with A(u, 0) = 0.

So, B(u, τ) = iue−κτ and A(u, τ) contains function θ̃(t), which is given by:

θ̃(t) = θ(t)− 1
2

σ2

κ
=

1
κ

g′(t) + g(t).

The resulting ODE for A(u, τ) admits the following solution:

A(u, τ) =
1
2
u

∫ τ

0
e−2κs

[
−uσ2 + 2ieκs (κg(s) + ∂τg(s))

]
ds,

=
1
4

1
κ

u2σ2
(
e−2κτ − 1

)
+ iu

∫ τ

0
e−κs

(
κg(s) +

∂

∂s
g(s)

)
ds.
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2.2 The Fourier-Cosine Method (COS)

The Fourier-cosine pricing method, COS [12, 13], is based on the risk-neutral
option valuation formula (discounted expected payoff approach):

v(x, t0) = e−r∆t

∫ ∞

−∞
v(y, T )f(y|x)dy, (5)

where v(x, t0) is the present option value, r the interest rate, ∆t = T − t0 and
x, y can be any monotone functions of the underlying asset at initial time t0
and the expiration date T , respectively. Function v(y, T ), which for European
option equals the payoff, is known, but the transitional density function, f(y|x),
typically is not. Based on Equation (5), we approximate the conditional den-
sity function on a truncated domain, by a truncated Fourier-cosine expansion,
which recovers the conditional density function from its characteristic func-
tion (see [12]) as follows:

f(y|x) ≈ 2
b− a

N−1∑′

k=0

Re

(
φ(

kπ

b− a
;x) exp (−i

akπ

b− a
)
)

cos (kπ
y − a

b− a
), (6)

with φ(u;x) the characteristic function of f(y|x), a, b determine the truncation
interval and Re means taking the real part of the argument. The prime at
the sum symbol indicates that the first term in the expansion is multiplied by
one-half. The appropriate size of the integration interval can be determined
with the help of the cumulants [12] 1.

Replacing f(y|x) by its approximation (6) in Equation (5) and interchang-
ing integration and summation gives the COS formula for computing the values
of European options:

v(x, t0) = e−rτ

N−1∑′

k=0

Re(φ(
kπ

b− a
;x)e−ikπ a

b−a )Vk, (7)

where τ = T − t stands for time to maturity, and

Vk =
2

b− a

∫ b

a
v(y, T ) cos (kπ

y − a

b− a
)dy,

are the Fourier-cosine coefficients of v(y, T ), available in closed form for several
payoff functions.

It was found that, with integration interval [a, b] chosen sufficiently wide,
the series truncation error dominates the overall error. For conditional den-
sity functions f(y|x) ∈ C∞((a, b) ⊂ R), the method converges exponentially;
otherwise convergence is algebraically [13].

Formula (7) also forms the basis for the pricing of Bermudan options [13].

1So that |
R

R f(y|x)dy −
R b

a
f(y|x)dy| < TOL.
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2.2.1 Pricing Bermudan Options

A Bermudan option can be exercised at pre-specified dates before maturity.
The holder receives the exercise payoff when he/she exercises the option. Let
t0 denote the initial time and {t1, · · · , tM} be the collection of all exercise dates
with ∆t := (tm − tm−1), t0 < t1 < · · · < tM = T . The pricing formula for a
Bermudan option with M exercise dates then reads, for m = M,M − 1, . . . , 2:{

c(x, tm−1) = e−r∆t
∫

R v(y, tm)f(y|x)dy,

v(x, tm−1) = max (g(x, tm−1), c(x, tm−1)) ,
(8)

followed by

v(x, t0) = e−r∆t

∫
R

v(y, t1)f(y|x)dy. (9)

Here x and y are state variables, here defined as

x := ln(S(tm−1)) and y := ln(S(tm)),

v(x, t), c(x, t) and g(x, t) are the option value, the continuation value and the
payoff at time t, respectively. For call and put options, g(x, t) ≡ v(x, T ), with

v(x, T ) = max [α(ex −K), 0], α =
{

1 for a call,
−1 for a put.

(10)

The idea of pricing Bermudan options by the COS method is to first determine
the Fourier-cosine coefficients of the option value at t1, Vk(t1), and then insert
them into (9). The derivation of an induction formula for Vk(t1) was the basis
of the work in [13]. It is briefly explained here. The continuation value in (8)
can be defined by means of the COS formula for different underlying processes:

c(x, tm−1) := e−r∆t

N−1∑′

k=0

Re
{

φ

(
kπ

b− a
;x

)
e−ikπ a

b−a

}
Vk(tm). (11)

Here the function c(x, tm−1) represents the approximation of the continuation
value.

First, the early-exercise point, x∗m, at time tm, which is the point where the
continuation value equals the payoff, i.e., c(x∗m, tm) = g(x∗m, tm), is determined
for example by Newton’s method.

Based on x∗m, we can split Vk(tm) into two parts: One on the interval [a, x∗m]
and the other on (x∗m, b], i.e.

Vk(tm) =

{
Ck(a, x∗m, tm) + Gk(x∗m, b), for a call,

Gk(a, x∗m) + Ck(x∗m, b, tm), for a put,
(12)

for m = M − 1,M − 2, · · · , 1, and

Vk(tM ) =

{
Gk(0, b), for a call

Gk(a, 0), for a put,
(13)
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whereby

Gk(x1, x2) :=
2

b− a

∫ x2

x1

g(x, tm) cos
(

kπ
x− a

b− a

)
dx. (14)

and

Ck(x1, x2, tm) :=
2

b− a

∫ x2

x1

c(x, tm) cos
(

kπ
x− a

b− a

)
dx. (15)

For k = 0, 1, · · · , N−1 and m = 1, 2, · · · ,M , Gk(x1, x2) in (14) admits analytic
solutions.

The properties a characteristic function should satisfy for the efficient com-
putation of the Ck(x1, x2, tm)-coefficients (15) can be found from the following
definition and lemma.

Definition 2.1. We write the characteristic function between two consecutive
time points as:

φ(u;x) = eiuxβφA(u, ∆t), (16)

where φA(u, ∆t) does not contain x.

By (16), we distinguish two types of stochastic processes based on their
characteristic functions. In the first type β = 1, which contains the exponential
Lévy processes, for which the characteristic function can be written in the form
φ(u;x) = eiuxφA(u, ∆t). Examples for these processes are Geometric Brownian
Motion, jump-diffusion processes of Kou [15] or Merton [19], or infinite activity
Lévy processes [9], like Variance-Gamma (VG) [18], Normal Inverse Gaussian
(NIG) [1] or CGMY [5].

For the second type of processes, φ(u;x) cannot be written as a product
of eiux and a function which does not contain x. A first example is the OU
mean reverting process, where β = e−κ∆t and φA(u, ∆t) = exp (A(u, ∆t)) with
A(u, ∆t) defined in (2).

In the lemma to follow we will see that a process with a characteristic
function of the first type is beneficial for pricing Bermudan options by the COS
method as the Fast Fourier Transform can be applied.

Lemma 2.1 (Efficient Computation). The terms Ck(x1, x2, tm) can be com-
puted in O(N log2 N) operations, if the stochastic process for the underlying is
governed by the general characteristic function (16) with parameter β = 1.

Proof. At time tm, m = 1, 2, · · · ,M , from Equations (7) and (8) we obtain an
approximation for c(x, tm), the continuation value at tm, which is inserted into
(15). Interchanging summation and integration gives the following coefficients,
Ck(x1, x2, tm):

Ck(x1, x2, tm) := e−r∆t

N−1∑′

j=0

Re

(
φA

(
jπ

b− a
,∆t

)
Vj(tm+1) ·Hk,j(x1, x2)

)
,

(17)
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where φA(u, τ) comes from the general expression for the characteristic func-
tion (16). To get Ck(x1, x2, tm), the following integrals need to be computed:

Hk,j(x1, x2) =
2

b− a

∫ x2

x1

eijπ βx−a
b−a cos(kπ

x− a

b− a
)dx,

with β defined in (16).
From basic calculus, we can split Hk,j(x1, x2) into two parts as

Hk,j(x1, x2) = − i

π
(Hs

k,j(x1, x2) + Hc
k,j(x1, x2)),

where

Hc
k,j(x1, x2) =



(x2 − x1)πi
b− a

, if k = j = 0,

1

(jβ + k)

[
exp

(
((jβ + k)x2 − (j + k)a)πi

b− a

)
−

exp
(

((jβ + k)x1 − (j + k)a)πi
b− a

)]
, otherwise.

(18)
and

Hs
k,j(x1, x2) =



(x2 − x1)πi
b− a

, if k = j = 0,

1

(jβ − k)

[
exp

(
((jβ − k)x2 − (j − k)a)πi

b− a

)
−

exp
(

((jβ − k)x1 − (j − k)a)πi
b− a

)]
, otherwise.

(19)
Then to determine the value of Ck(x1, x2, tm), we have to compute:

Ck(x1, x2, tm) =
−ie−r∆t

π

N−1∑′

j=0

Re(φA(
jπ

b− a
)Vj(tm+1) · (20)

(Hc
k,j(x1, x2) + Hs

k,j(x1, x2))), (21)

Matrices Hs := {Hs
k,j(x1, x2)}N−1

k,j=0 and Hc := {Hc
k,j(x1, x2)}N−1

k,j=0 have
a Toeplitz or Hankel structure, respectively, if and only if for all k, j, x1, x2,
Hs

k,j(x1, x2) = Hs
k+1,j+1(x1, x2), and Hc

k,j(x1, x2) = Hc
k+1,j−1(x1, x2), which is

for β ≡ 1. Then, the Fast Fourier Transform can be applied directly for highly
efficient matrix-vector multiplication [13], and the resulting computational com-
plexity for Ck(x1, x2, tm) is O(N log2 N).

We obtain however terms of the form jβ− k, jβ + k in the matrix elements
in (18) and (19), where β = e−κ∆t for the OU process, instead of terms with
j − k, j + k, for the Lévy jump processes in [13]. Terms with β not being an
integer hamper an efficient computation of the matrix-vector products, leading
to computations of O(N2) complexity. In the next section we will therefore
introduce an approximate OU model so that the efficient pricing technique with
FFT can be applied.
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3 An Approximate OU Model

In this section we introduce an approximation for the characteristic function of
the OU processes from Section 2, so that the performance of the COS method
for Bermudan options should improve in terms of computational complexity.
The aim is to make use of the FFT algorithm as much as possible with the
modified characteristic function. Without loss of generality, we will focus on
Bermudan put options here.

The original characteristic functions of the OU processes with and without
seasonality can be written as:

φou(u, x) = eiuxeA(u,∆t)−iux(1−e−κ∆t) =: eiuxφ(u, x). (22)

Here φ(u, x) = φA(u, ∆t)e−iux(1−e−κ∆t) with φA(u, ∆t) defined in (16). Without
seasonality we have:

A(u, ∆t) =
1
4κ

(e−2κ∆t − e−κ∆t)(u2σ2 + ueκ∆t(uσ2 − 4iκx̄)),

and with seasonality:

A(u, ∆t) =
1
4κ

u2σ2(e−2κ∆t − 1) + iu

∫ T

t
e−κ(T−s)(κg(s) +

∂

∂s
g(s))ds.

We approximate φ(u, x) in (22) by another function, which does not contain x.
The characteristic function is then of the form (16) with β = 1, so that the Fast
Fourier Transform can be used in the computation of Ck(x1, x2, tm). At each
time step, tm, function φ(u, xtm) is here approximated by

φ(u, xtm) ≈ φ(u, E(xtm |F0)). (23)

The approximate characteristic function, denoted by φapp, then reads:

φapp(u, x) = eiuxφ(u, E(x|F0)). (24)

This approximation may not be accurate for all model parameters when
pricing Bermudan options. Comparison of the original characteristic func-
tion (22) with this approximation (24) gives us that

φapp(u, x) = φou(u, x)eiuε1 , (25)

where ε1 reads
ε1 = (x− E(x))(1− e−κ∆t). (26)

Based on (25) the approximation proposed may only be considered accurate
for sets of model parameters for which ε1 in (26) is less than a prescribed
tolerance level. This tolerance level is defined so that the Bermudan option
prices resulting from the approximate characteristic function at each time step
are accurate up to a basis point compared to the option prices obtained by the
original characteristic function of the OU process.

The tolerance level for ε1, as well as the requirements model parameters
should satisfy so that the approximate characteristic function (24) is accurate
and thus the Fast Fourier Transform can be used at each time step, are deter-
mined by an error analysis in the next section.
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4 Error analysis

Our aim is to keep the error, defined as the difference between Bermudan option
values calculated with the original characteristic function and those obtained
with xt approximated by E(xt) in φ(u, xt) in (22), less than a basis point, which
is 1/100-th of a percentage point. Here we discuss how the error in the option
value can be controlled and the basis point precision can be achieved.

We first introduce the following notation:

� εc(x, t) is the error in the continuation value c(x, t) at time t.

� εx(t) is the error in early–exercise point x∗ at time t.

� εV (t) is the error in Vk at time t, i.e. the error in the Fourier-cosine
coefficients of option value v(x, t).

We focus here on the error in Bermudan option values resulting from our ap-
proximate characteristic function. For convergence analysis of the COS pricing
method we refer the reader to [12] and [13].

4.1 The first step in the backward recursion

The first step in the backward recursion is from tM ≡ T to tM−1. The error
in the characteristic function, due to the approximation, gives an error in the
continuation value, c(x, tM−1), as well as a shift in the early-exercise point,
x∗tM−1

. These errors contribute to εV (tM−1), the error in Vk(tM−1).
The connection between the error in the continuation value and the error

in the characteristic function is presented in the following lemma.

Lemma 4.1. The error in continuation value reads

εc(x, tM−1) = c(x + eκ∆tε1, tM−1)− c(x, tM−1), (27)

with ε1 defined in (26).

Proof. Applying (22) and (25) gives us:

φapp(u, x) = exp(iuxe−κ∆t + A(u) + iue−κ∆t(eκ∆tε1))
= exp(iu(x + eκ∆tε1)e−κ∆t + A(u))
= φou(u, x + eκ∆tε1). (28)

By substituting (28) in the COS pricing formula (7), we obtain:

ĉ(x, tM−1) = c(x + eκ∆tε1, tM−1),

which results in:

εc(x, tM−1) = c(x + eκ∆tε1, tM−1)− c(x, tM−1).
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Then we have the next corollary.

Corollary 4.1. For put options, if ε1 > 0, then εc(x, tM−1) < 0 ∀x, and
subsequently εx(tM−1) > 0, and vice versa if ε1 < 0.

Proof. The continuation value, c(x, t), is a decreasing function for put options.
This implies that, for ε1 > 0,

εc(x, tM−1) := c(x + eκ∆tε1, tM−1)− c(x, tM−1) < 0.

In this case, we have that at the early-exercise point related to the original
characteristic function, x∗tM−1

:

ĉ(x∗tM−1
, tM−1) < c(x∗tM−1

, tM−1) = g(x∗tM−1
, tM−1).

So, the continuation value is smaller than the payoff. Therefore, the approxi-
mate early–exercise point is larger than the original x∗tM−1

and thus εx(tM−1) >
0.

For ε1 < 0,∀x, the proof that for εc(x, tM−1) > 0 ∀x, and that εx(tM−1) < 0
goes similarly.

The upper bounds of |εc(x, tM−1)| and |εx(tM−1)| are found in the next
lemma.

Lemma 4.2. ∀x in the range of integration [a, b], ∀t, we have that

|c(x + eκ∆tε1, t)− c(x, t)| ≤ eaeκ∆t|ε1| =: ε̂c, (29)

which implies:
|εc(x, tM−1)| ≤ ε̂c, ∀x ∈ [a, b]. (30)

Error |εx(tM−1)| can furthermore be bounded in terms of ε̂c.

Proof. Application of Lagrange’s mean value theorem, gives∣∣∣c(x + eκ∆tε1, t)− c(x, t)
∣∣∣ = eκ∆t

∣∣∣ε1∣∣∣∣∣∣∂c(x, t)
∂x

|x=δ0

∣∣∣, (31)

where δ0 ∈ (x, x + eκ∆tε1). The function ∂c(x, t)/∂x is a non–positive and
non–decreasing2 function in x for Bermudan put options, which goes to zero as
x →∞. Therefore, we have

max
x∈[a,b]

∣∣∣∂c(x, t)
∂x

∣∣∣ =
∣∣∣∂c(x, t)

∂x
|x=a

∣∣∣. (32)

We denote this derivative of the continuation value at a by c′(a, t), and:

|c(x + eκ∆tε1, t)− c(x, t)| ≤ eκ∆t|ε1||c′(a, t)|. (33)
2It is non–decreasing is because the payoff of a put option is convex, which implies that the

gamma, ∂c2(x, t)/∂x2, is non–negative indicating a non-decreasing first derivative ∂c(x, t)/∂x.
This holds for a long position in the option.
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At each time step we have that |c′(x, t)| ≤ |g′(x, t)| for x ≤ x∗ ≤ log(K),
(x∗ being the early–exercise point related to the original OU process which
should not excess log(K) for a put option on a log–scale). So, if x∗ > a,
|c′(a, t)| ≤ |g′(a, t)| ≤ ea. The second inequality follows from |g′(x, t)| ≤ ex, as
g′(x, t) = −ex for x ≤ log(K) and g′(x, t) = 0 otherwise for a put option. For
deep out–of–the money options for which x∗ ≤ a, we find

|c′(a, t)| ≤ |c′(x∗, t)| ≤ |g′(x∗, t)| ≤ ex∗ ≤ ea. (34)

Summarizing, we find for all cases:

|c′(a, t)| ≤ ea. (35)

Substitution of (35) in (33) gives us that for ∀x ∈ [a, b] and for ∀t,

|c(x + eκ∆tε1, t)− c(x, t)| ≤ eaeκ∆t|ε1| =: ε̂c,

which implies |εc(x, tM−1)| ≤ ε̂c. Now we look at the error in the early–exercise
point at tM−1. Assume points x∗tM−1

and x∗tM−1
+εx(tM−1) are the early–exercise

points obtained from the original and the approximate characteristic functions,
respectively. It follows that

c(x∗tM−1
, tM−1) = g(x∗tM−1

, tM−1),
ĉ(x∗tM−1

+ εx(tM−1), tM−1) = g(x∗tM−1
+ εx(tM−1), tM−1).

Therefore

g(x∗tM−1
+ εx(tM−1), tM−1)− c(x∗tM−1

+ εx(tM−1), tM−1)
= ĉ(x∗tM−1

+ εx(tM−1), tM−1)− c(x∗tM−1
+ εx(tM−1), tM−1)

=: εc(x∗tM−1
+ εx(tM−1), tM−1).

We introduce a new function f(x, t) := g(x, t)− c(x, t), so that we have

f(x∗tM−1
, tM−1) = 0,

f(x∗tM−1
+ εx(tM−1), tM−1) = εc(x∗tM−1

+ εx(tM−1), tM−1).

Application of (30) gives:

|f(x∗tM−1
+ εx(tM−1), tM−1) − f(x∗tM−1

, tM−1)|
= |εc(x∗tM−1

+ εx(tM−1), tM−1)| ≤ ε̂c. (36)

Using Lagrange’s mean value theorem for (36) gives us

|εx(tM−1)||f ′(δ, tM−1)| ≤ ε̂c,

for some δ ∈ (x∗tM−1
, x∗tM−1

+ εx(tM−1)).
The fact that there is one early–exercise point for plain Bermudan put

options implies that

|f(x∗tM−1
+ εx(tM−1), tM−1)− f(x∗tM−1

, tM−1)| > 0.

12



If there is an error in the early–exercise point, i.e. if εx(tM−1) 6= 0, we have
that |f ′(δ, tM−1)| > 0, so that

|εx(tM−1)| ≤
ε̂c

|f ′(δ, tM−1)|
(37)

Hence |εx(tM−1)| is bounded in terms of ε̂c. If ε̂c tends to zero, then |εx(tM−1)|
also tends to zero.

At the other time points, m = 0, . . . ,M − 2, the upper bound for the
shift in the early–exercise point can also be determined in terms of the error
in the continuation value. However, unlike time step tM−1, the error in the
continuation value is not only related to the approximate characteristic function,
but also to the error in Vk(t),

Vk(t) :=
∫ b

a
max(c(x, t), g(x, t)) cos(kπ

x− a

b− a
)dx.

We first have a look at the error in Vk(tM−1) from (12) in the following lemma.
We will need the results in the lemma to derive upper bounds in the lemmas
to follow.

Lemma 4.3. For εx(tM−1) > 0, two points, δ1 ∈ (x∗tM−1
+ εx(tM−1), b) and

δ2 ∈ (x∗tM−1
, x∗tM−1

+ εx(tM−1)) exist, so that

εV (tM−1) = εc(δ1, tM−1)Ik(x∗tM−1
+ εx(tM−1), b) + (38)

(g(δ2, tM−1)− c(δ2, tM−1))Ik(x∗tM−1
, x∗tM−1

+ εx(tM−1))

where

Ik(x1, x2) =
2

b− a

∫ x2

x1

cos(kπ
x− a

b− a
)dx, (39)

can be viewed as the (analytically available) Fourier-cosine coefficient of an
option with value:

vI(x, x1, x2) =
{

1 if x ∈ [x1, x2],
0 otherwise.

(40)

Moreover, we have that |εc(δ1, tM−1)| ≤ ε̂c, and

|g(δ2, tM−1)− c(δ2, tM−1)| ≤ ε̂c. (41)

Proof. Here we assume that both early–exercise points, for the original and
approximate OU processes, lie in the integration range. If either x∗ or x∗ + εx

lies outside range [a, b], it is set equal to the nearest boundary point. Vk can
thus be split as in (12) depending on the early–exercise point.

Let us first analyze the case of a positive error, εx(tM−1), in the early–
exercise point at tM−1. Between x∗tM−1

+ εx(tM−1) and b, for the original and
the approximate OU processes, we use the continuation value. The error in

13



Vk(tM−1) in this interval originates from the error in the continuation value,
εc(x, tM−1). This error, which is denoted by εV1(tM−1), reads:

εV1(tM−1) =
2

b− a

∫ b

x∗tM−1
+εx(tM−1)

εc(x, tM−1) cos(kπ
x− a

b− a
)dx.

By application of the first mean value theorem for integration, there exists a
δ1 ∈ (x∗tM−1

+ εx(tM−1), b), so that

εV1(tM−1) =
2εc(δ1, tM−1)

b− a

∫ b

x∗tM−1
+εx(tM−1)

cos(kπ
x− a

b− a
)dx

= εc(δ1, tM−1)Ik(x∗tM−1
+ εx(tM−1), b), (42)

with Ik from (39). From (30) we have that |εc(δ1, tM−1)| ≤ ε̂c.

Between a and x∗tM−1
, for both the original and approximate OU processes,

we take the payoff function which for a put option reads g(x, t) = max(K−ex, 0).
There is no error in the payoff function, hence no error in Vk(tM−1) along this
part of the x–axis.

Between x∗tM−1
and x∗tM−1

+ εx(tM−1), with the original OU process we use
continuation value, c(x, tM−1). However, due to the shift in the early–exercise
point we have the payoff g(x, tM−1) instead when using the approximate OU
process. This leads to an error in Vk(tM−1), denoted by εV2(tM−1), which reads:

εV2(tM−1) =
2

b− a

∫ x∗tM−1
+εx(tM−1)

x∗tM−1

(g(x, tM−1)− c(x, tM−1)) cos(kπ
x− a

b− a
)dx.

By application again of the first mean value theorem for integration, there exists
a δ2 ∈ (x∗tM−1

, x∗tM−1
+ εx(tM−1)), so that

εV2(tM−1) = (g(δ2, tM−1)− c(δ2, tM−1)) ·
2

b− a

∫ x∗tM−1
+εx(tM−1)

x∗tM−1

cos(kπ
x− a

b− a
)dx

= (g(δ2, tM−1)− c(δ2, tM−1))Ik(x∗tM−1
, x∗tM−1

+ εx(tM−1)). (43)

For a put option, ∀t, for all x > x∗t , c(x, t)− g(x, t) > 0, and function c(x, t)−
g(x, t) is non–decreasing 3 between x∗t and x∗t + εx(t). This implies:

|g(δ2, tM−1) − c(δ2, tM−1)| = c(δ2, tM−1)− g(δ2, tM−1)
≤ c(x∗tM−1

+ εx(tM−1), tM−1)− g(x∗tM−1
+ εx(tM−1), tM−1)

= |εc(x∗tM−1
+ εx(tM−1), tM−1)| ≤ ε̂c.

The last step is from (30).

3For put options in log-scale when x ≤ 0, function c(x, t)−g(x, t) is non–decreasing and for
x ≥ 0, c(x, t) − g(x, t) is non–increasing. For a put option early–exercise points are negative.
Therefore, between the two early–exercise points, x∗t and x∗t + εx(t), c(x, t) − g(x, t) is non–
decreasing.
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Adding up (42) and (43) gives

εV (tM−1) = εV1(tM−1) + εV2(tM−1)
= εc(δ1, tM−1)Ik(x∗tM−1

+ εx(tM−1), b) +
(g(δ2, tM−1)− c(δ2, tM−1))Ik(x∗tM−1

, x∗tM−1
+ εx(tM−1))

Remark 4.1. The case when εx(tM−1) < 0 goes similarly. It can then be proved
that points δ1 ∈ (x∗tM−1

, b) and δ2 ∈ (x∗tM−1
+ εx(tM−1), x∗tM−1

) exist, so that

εV (tM−1) = εc(δ1, tM−1)Ik(x∗tM−1
, b) + (44)

(ĉ(δ2, tM−1)− g(δ2, tM−1))Ik(x∗tM−1
+ εx(tM−1), x∗tM−1

).

Moreover, |εc(δ1, tM−1)| ≤ ε̂c, and |ĉ(δ2, tM−1)− g(δ2, tM−1)| ≤ ε̂c.

4.2 Steps in the backward recursion

We analyze the case t = tM−2 in the following lemma.

Lemma 4.4. For ∀x ∈ [a, b], |εc(x, tM−2)| ≤ ε̂c(1 + e−r∆t).

Proof. At t = tM−2 we have

|εc(x, tM−2)| := |ĉ(x, tM−2)− c(x, tM−2)|

= |e−r∆t

N−1∑′

k=0

Re(φapp(
kπ

b− a
;x)e−ikπ a

b−a )(Vk(tM−1) + εV (tM−1))

− e−r∆t

N−1∑′

k=0

Re(φou(
kπ

b− a
;x)e−ikπ a

b−a )Vk(tM−1)| (45)

Application of (28) gives:

|εc(x, tM−2)| ≤ |e−r∆t

N−1∑′

k=0

Re(φapp(
kπ

b− a
;x)e−ikπ a

b−a )εV (tM−1)|

+ |e−r∆t

N−1∑′

k=0

Re(φou(
kπ

b− a
;x + eκ∆tε1)e

−ikπ a
b−a )Vk(tM−1)

− e−r∆t

N−1∑′

k=0

Re(φou(
kπ

b− a
;x)e−ikπ a

b−a )Vk(tM−1)|

≤ |e−r∆t

N−1∑′

k=0

Re(φapp(
kπ

b− a
;x)e−ikπ a

b−a )εV (tM−1)|+ ε̂c. (46)

The last step is from (29).
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By application of Lemma 4.3, Equation (41) we have that, for εx(tM−1) > 0,

|e−r∆t

N−1∑′

k=0

Re(φapp(
kπ

b− a
;x)e−ikπ a

b−a )εV (tM−1)|

≤ |εc(δ1, tM−1)| · |e−r∆t

N−1∑′

k=0

Re(φapp(
kπ

b− a
;x)e−ikπ a

b−a )Ik(x∗tM−1
+ εx(tM−1), b)|

+ |g(δ2, tM−1)− c(δ2, tM−1)| ·

|e−r∆t

N−1∑′

k=0

Re(φapp(
kπ

b− a
;x)e−ikπ a

b−a )Ik(x∗tM−1
, x∗tM−1

+ εx(tM−1))|

≤ ε̂ce
−r∆t

N−1∑′

k=0

Re(φapp(
kπ

b− a
;x)e−ikπ a

b−a )(Ik(x∗tM−1
+ εx(tM−1), b) +

Ik(x∗tM−1
, x∗tM−1

+ εx(tM−1)))

= ε̂cvI(x + eκ∆tε1, x
∗
tM−1

, b), (47)

where we have used the fact that option values, represented by the cosine series
with Ik(·, ·), are positive. From (40) we have

vI(x + eκ∆tε1, x
∗
tM−1

, b) = e−r∆t

∫
R

f(y|x + eκ∆tε1)I(y)dy

≤ e−r∆t

∫
R

f(y|x + eκ∆tε1)dy = e−r∆t. (48)

Substitution of (48) in (47) gives us

|e−r∆t

N−1∑′

k=0

Re(φapp(
kπ

b− a
;x)e−ikπ a

b−a )εV (tM−1)| ≤ ε̂ce
−r∆t (49)

By using (49) in (46), we obtain

|εc(x, tM−2)| ≤ ε̂c + ε̂ce
−r∆t = ε̂c(1 + e−r∆t).

When εx(tM−1) < 0 it follows similarly, from (46) and Remark 4.1, that

|εc(x, tM−2)| ≤ ε̂c + |e−r∆t

N−1∑′

k=0

Re(φapp(
kπ

b− a
;x)e−ikπ a

b−a )εV (tM−1)|

≤ ε̂c + |εc(δ1, tM−1)| · |vI(x + eκ∆tε1, x
∗
tM−1

, b)|+

|ĉ(δ2, tM−1)− g(δ2, tM−1)| · |vI(x + eκ∆tε1, x
∗
tM−1

+ εx(tM−1), x∗tM−1
)|

≤ ε̂c(1 + e−r∆t). (50)

The relations in (30) and Lemma 4.4 serve as the first steps in a math-
ematical induction proof to find an upper bound for εc(t0), the error in the
Bermudan option price at t0, as follows:
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Theorem 4.1. For ∀ x ∈ [a, b], j ∈ {1, . . . ,M − 1}, we assume that

εc(x, tM−j) ≤ ε̂c

j∑
l=1

e−r(l−1)∆t. (51)

Then, it follows that, ∀x,

εc(x, tM−(j+1)) ≤ ε̂c

j+1∑
l=1

e−r(l−1)∆t. (52)

Proof. At tM−(j+1), we have

|εc(x, tM−(j+1))| = |ĉ(x, tM−(j+1))− c(x, tM−(j+1))|

= |e−r∆t

N−1∑′

k=0

Re(φapp(
kπ

b− a
;x)e−ikπ a

b−a )(Vk(tM−j) + εV (tM−j))

− e−r∆t

N−1∑′

k=0

Re(φou(
kπ

b− a
;x)e−ikπ a

b−a )Vk(tM−j)|

≤ |e−r∆t

N−1∑′

k=0

Re(φapp(
kπ

b− a
;x)e−ikπ a

b−a )εV (tM−j)|+ ε̂c, (53)

where the last step follows from (29).

With arguments as in Lemma 4.3 and its proof, we have that for εx(tM−j) >
0, values δ1 ∈ (x∗tM−j

+ εx(tM−j), b) and δ2 ∈ (x∗tM−j
, x∗tM−j

+ εx(tM−j)) exist,
so that,

εV (tM−j) = εc(δ1, tM−j)Ik(x∗tM−j
+ εx(tM−j), b)

+ (g(δ2, tM−j)− c(δ2, tM−j))Ik(x∗tM−j
, x∗tM−j

+ εx(tM−j)).

With the induction assumptions:

|εc(δ1, tM−j)| ≤ ε̂c

j∑
l=1

e−r(l−1)∆t, (54)

and

|g(δ2, tM−j)− c(δ2, tM−j)| ≤ |εc(x∗tM−j
+ εx(tM−j), tM−j)| ≤ ε̂c

j∑
l=1

e−r(l−1)∆t,

(55)

and by similar arguments as in Lemma 4.4 and its proof, we have that for
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positive errors in the early–exercise point at tM−j ,

|e−r∆t

N−1∑′

k=0

Re(φapp(
kπ

b− a
;x)e−ikπ a

b−a )εV (tM−j)|

≤ ε̂c

j∑
l=1

e−r(l−1)∆tvI(x + eκ∆tε1,min(x∗tM−j
, x∗tM−j

+ εx(tM−j)), b)

≤ ε̂c

j∑
l=1

e−r(l−1)∆te−r∆t = ε̂c

j+1∑
l=2

e−r(l−1)∆t. (56)

Therefore, we find that, for ∀x ∈ [a, b]:

|εc(x, tM−(j+1))| ≤ ε̂c

j+1∑
l=2

e−r(l−1)∆t + ε̂c = ε̂c

j+1∑
l=1

e−r(l−1)∆t. (57)

Remark 4.2. When εx(tM−j) < 0, the proof goes similarly, and we can find
that δ1 ∈ (x∗tM−j

, b) and δ2 ∈ (x∗tM−j
+ εx(tM−j), x∗tM−j

) exist, so that

εV (tM−j) = εc(δ1, tM−j)Ik(x∗tM−j
, b)

+ (ĉ(δ2, tM−j)− g(δ2, tM−j))Ik(x∗tM−j
+ εx(tM−j), x∗tM−j

).

With the induction assumptions,

|εc(δ1, tM−j)| ≤ ε̂c

j∑
l=1

e−r(l−1)∆t,

and

|ĉ(δ2, tM−j)− g(δ2, tM−j)| ≤ |εc(x∗tM−j
, tM−j)| ≤ ε̂c

j∑
l=1

e−r(l−1)∆t

we can then also prove the inequalities (56) and (57) to hold.

It follows directly from (30), Lemma 4.4 and Lemma 4.1 that at t0, for any
x, the error in the Bermudan option price satisfies:

|εc(x, t0)| ≤ ε̂c

M∑
l=1

e−r(l−1)∆t = ε̂c
1− e−rT

1− e−r∆t
= |ε1|eκ∆tea 1− e−rT

1− e−r∆t
.

To obtain accuracy up to one basis point4 for Bermudan options, with the
approximate OU process, we prescribe that for all x

|εc(x, t0)| < 4 · 10−5,

4To ensure the basis point precision the error in the option price should be less than 10−4.
We also consider the influence of rounding up errors, and set therefore 4 · 10−5 here.
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which is equivalent to

|ε1| < e−κ∆te−a 1− e−r∆t

1− e−rT
· 4 · 10−5.

Therefore, the approximate characteristic function (24) and thus the Fast Fourier
Transform can be applied for pricing Bermudan options, if

|ε1| := |x− E(x)|(1− e−κ∆t) < e−κ∆te−a 1− e−r∆t

1− e−rT
· 4 · 10−5 =: TOL. (58)

Finally, we need an approximation for |ε1| in practice. Note that

0 ≤ (E|(x− E(x))|)2 ≤ E|x− E(x)|2 = Var(x) ≤ σ2

2κ
.

So,
E(|x− E(x)|) ≤ σ√

2κ
. (59)

In our implementation we use the upper bound of this expected value to esti-
mate |ε1| and apply the Fast Fourier Transform with the approximate charac-
teristic function if σ√

2κ
(1− e−κ∆t) is below the tolerance level defined by (58).

5 Numerical Results

The FFT can be applied in the parameter range for which

ε̂1 :=
σ√
2κ

(1− e−κ∆t) < TOL,

with tolerance level TOL defined in (58). In the so-called “non–FFT range”,
where ε̂1 > TOL, we use the characteristic function of the original OU process
to ensure accurate Bermudan option prices.

Figure 1 compares the FFT ranges with a fixed ∆t, but with different
maturities, T . With ∆t fixed, ε̂1 remains the same for the same κ and σ for all
maturities. However, as T increases, the tolerance level (58) decreases so that
we find a tighter criterion regarding the use of the FFT.

As σ (y–axis in Figure 1) increases to certain values, we cannot employ the
approximate OU model anymore, as ε̂1 increases, resulting in a large error in
the Bermudan option price.

An increase in parameter κ (x–axis in Figure 1) also leads to a decrease
of the size of the FFT range, see Figure 1, due to an increase in the value of
ε̂1 and a reduction in the tolerance level (58), see Figure 2, where ε̂1 − TOL is
plotted as a function of κ.

Figure 3 then presents the FFT and non–FFT ranges, with M = 5 and
M = 50 for T = 1.

As parameter M , the number of exercise dates, increases, the range in which
the FFT can be applied expands. However, the influence of M on the error and
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(a) T = 1, M = 10 (b) T = 2, M = 20

Figure 1: FFT and non–FFT parameter ranges for different maturities, with
∆t = 0.1.

Figure 2: Value of ε̂1 − TOL over κ, with T = 1,M = 10, σ = 0.8.

(a) M = 5 (b) M = 50

Figure 3: FFT and non–FFT parameter ranges for different numbers of early–
exercise dates, with T = 1.

the tolerance level (58) is different for small and large model parameters. This is
illustrated in Figure 4. For small κ and σ (example in Figure 4a), ε̂1−TOL is an
increasing function of M , whereas for large model parameters (see Figure 4b),
ε̂1 − TOL decreases as M increases.

This can be detailed by the derivative of ε̂1 − TOL over M (in Figure 5).
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(a) κ = 0.5, σ = 0.3 (b) κ = 2.5, σ = 0.75

Figure 4: Value of ε̂1 − TOL over M , with (a) small value of κ and σ and (b)
large value of κ and σ.

In both cases, the quantity goes to zero as M increases, which implies that
function ε̂1 − TOL converges. For small parameters, ε̂1 − TOL converges fast,
so that these sets fall in the FFT range (see Figure 3). On the other hand,
as Figure 5b shows, with large model parameters, ε̂1 − TOL > 0 when M is
small. For large parameter values, the approximate model can thus be used
for large values of M . This insight is particularly helpful for parameter sets at
boundary of the FFT and non–FFT ranges which will be illustrated in the next
subsection.

(a) κ = 0.5, σ = 0.3 (b) κ = 2.5, σ = 0.75

Figure 5: Derivative of ε̂1 − TOL with respective to M .

In our next tests we randomly choose different model parameters and check
whether the numerical experiments are in accordance with our error analysis.
The range of parameters is κ ∈ [0.5, 2.5], σ ∈ [0.2, 0.8], M ∈ {5, , . . . , 20}, T ∈
[1, 2], and we use seasonality function G(t) = a1 +a2 sin(a3t) with a1 = 3, 5, 10,
a2 ∈ [0.5, 2] and a3 ∈ [0.5, 2]. Figure 6a presents results for the OU process
without seasonality, whereas Figure 6b shows results for the approximate OU
process with seasonality. The x–axes in the figures represent the logarithms of
the error in the Bermudan option price.

In these numerical simulations we only consider the continuation values for
the Bermudan options, as there is no error in the payoff function g(x, t) neither
in its Fourier-cosine coefficients Gk. For all parameter sets considered, the error
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is of order 10−4 or less, which implies that our approximation is accurate up to
one basis point.

(a) Without Seasonality (b) With Seasonality

Figure 6: Simulation result for OU processes: (a) without seasonality and (b)
with seasonality.

5.1 CPU Time and Accuracy

We perform some more experiments checking the validity of the error analysis.

We first consider the OU process without seasonality and choose the fol-
lowing four sets of model parameters for the numerical examples and set T = 1
and M = 10, 20, 50:

1. κ = 0.301, σ = 0.334. This parameter set originates from commodity
price calibration in [10].

2. κ = 1, σ = 0.5. This parameter set lies “in the FFT range” for M =
10, 20, 50, as in Figure 3.

3. κ = 2, σ = 0.7. This parameter set is at the boundary of the FFT range
(but still inside the FFT range) for M = 10, 20, 50, see Figure 3.

4. κ = 2.5, σ = 1. This parameter set lies outside the FFT parameter range
for M = 10, 20, 50, see Figure 3.

For each parameter set, the CPU time, in seconds, as well as the error are
recorded. We set N = 512 for which we are sure that convergence is achieved
in space when M = 20 and M = 50.

The numerical results are listed in Table 1, where CPU time 1 and CPU
time 2 are the run-times of the Bermudan COS method with the original and
the approximate OU model, respectively 5. Moreover, the log10(error) quantity
in the table represents the logarithm of the absolute error in the Bermudan
option price from the approximate model.

5The FFT is used with the approximate OU model.
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Parameter Set 1 Set 2 Set 3 Set 4
M = 10 log10(error) -10.7784 -7.3434 -4.9392 -2.3424

CPU time 1 15.2889 15.2108 15.2691 16.9608
CPU time 2 0.0063 0.0064 0.0065 0.0064

M = 20 log10(error) -10.9893 -7.0835 -4.4139 -1.9757
CPU time 1 31.8807 32.2614 32.3253 35.6780
CPU time 2 0.0120 0.0122 0.0124 0.0124

M = 50 log10(error) -11.2600 -6.9289 -4.1043 -1.7612
CPU time 1 81.9564 82.8565 91.6191 91.6244
CPU time 2 0.0287 0.0296 0.0301 0.0300

Table 1: CPU time and error for the two OU processes and different model
parameters.

In Table 1 it is shown that for all parameter sets in the FFT range (sets 1
to 3), we can confirm the basis point precision. Moreover, the CPU time drops
from seconds to milli–seconds if the FFT can be applied. As κ and σ increase
(from sets 1 to 4), the error increases and the size of the FFT range reduces.
This agrees with our analysis. For parameter set 4, for instance, only the use
of the original characteristic function ensures the basis point precision.

5.1.1 Probability Density Function of ε1

In this subsection we take a closer look at the error in the characteristic function,
ε1:

φapp(u, x) = φou(u, x)eiuε1 . (60)

We have already seen that ε1 := (x − E(x))(1 − e−κ∆t). It is a normally dis-
tributed process, with E(ε1) = 0 and Var(ε1) = σ2

2κ (1 − e−2κt)(1 − e−κ∆t),
because the OU process is also normally distributed.

Larger values of parameter t will give rise to larger variance in ε1, with
fixed value for ∆t. Therefore we analyze here the error ε1 at time point T −∆t,
which gives us the largest variance in the backward recursion. The probability
density functions for ε1 with T = 1 and T = 2 are shown in Figures 7 and 8,
respectively. We have chosen the parameter sets used earlier, i.e., parameter
set 1 with κ = 0.301 and σ = 0.334 (well in the FFT range) and set 3 with
κ = 2 and σ = 0.7 (at the boundary of the FFT range) with T = 1. For T = 2
we used σ = 0.4 in set 3, so that this set also falls in the FFT range for this
test.

For the OU processes with and without seasonality, when model parameters
are fixed, the density function of ε1 is essentially the same (with the same
variance).

From these figures we see that with T fixed, larger values for M result in
smaller errors in ε1. Moreover, small values for κ and σ also bring smaller errors
in characteristic function, compared to the larger model parameters.
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(a) κ = 0.301, σ = 0.334 (b) κ = 2, σ = 0.7

Figure 7: Probability density function of ε1 with T = 1.

(a) κ = 0.301, σ = 0.334 (b) κ = 2, σ = 0.4

Figure 8: Probability density function of ε1 with T = 2.

5.1.2 Early-Exercise Points

In this subsection we compare the early–exercise points obtained from the orig-
inal and approximate characteristic functions, φou(u, x) and φapp(u, x), respec-
tively. We present early–exercise point x∗t=∆t, i.e. the value at the last time
step of the backward recursion, with T = 1 and M = 10, 20, 50.

We use here parameter set 1 (κ = 0.301, σ = 0.334) and parameter set 3
(κ = 2, σ = 0.7, at the boundary of the FFT parameter range).

The results are shown in Table 2.

In Table 2 we see an increasing error in the early–exercise point, especially
for parameters near the boundary of the range of κ- and σ-values for which the
FFT can still be applied. With small parameter values for κ and σ, the error
is relatively small (0.08 in Table 2).

Obviously, the Bermudan option prices with the approximate process are
much more accurate than the values of the corresponding early-exercise points.
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M 10 20 50
Set 1, φou(u, x) 3.1438 3.1489 3.1516
Set 1, φapp(u, x) 3.1277 3.0742 3.0836
Set 3, φou(u, x) 3.3039 3.2822 3.2684
Set 3, φapp(u, x) 2.8212 2.8271 2.8084

Table 2: Early–exercise points at t = ∆t for Bermudan put options; parameter
sets 1 and 3, T = 1, different values for M (no seasonality).

This can be understood from Equation (37) in our error analysis. There the
error in the continuation value is divided by a small number (as f ′(x, t) is
defined as the derivative of the difference of the continuation value and the
payoff), resulting in a bigger error in εx, which is the error in the early-exercise
points.

5.1.3 Seasonality Experiment

Now we end with some test cases with seasonality. Our aim is to show that the
approximation works well for different seasonality functions. Two seasonality
functions are used:

1. Seasonality Function 1: G(t) = 5 + sin(t),

2. Seasonality Function 2: G(t) = 3 + 4 cos(0.25t).

We check two parameter sets at the boundary of the FFT range, see Figure 1
and Figure 3.

1. Parameter Set 1: κ = 1.5, σ = 0.8, T = 1.

2. Parameter Set 2: κ = 0.85, σ = 0.7, T = 2.

CPU time as well as the log–absolute error in the option price from our ap-
proximate model for different M are presented in Table 3. For these parameter
sets at boundary, we cannot achieve basis point precision for small values of M .
However, the error drops below the tolerance level as M increases, which is in
accordance with our analysis.

6 Conclusion

In this paper, we derive a characteristic function for an approximation of the
well-known OU process. This approximation enables us to apply the Fast
Fourier Transform when pricing Bermudan options by means of the COS method.
The approximate process may be employed if the error generated by the approx-
imation is less than a prescribed tolerance level. We would like to ensure that
the Bermudan option prices are accurate up to a basis point. This tolerance
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Sea.Fun. Parameter Set 1 Set 1 Set 2 Set 2
M = 10 M = 50 M = 20 M = 40

1 log10(error) -3.2217 -4.0466 -3.6035 -4.1734
CPU time 1 15.7927 84.6543 33.1099 69.5744
CPU time 2 0.0230 0.0769 0.0457 0.0702

2 log10(error) -3.5567 -4.4686 -3.4631 -4.1343
CPU time 1 15.5535 84.7788 34.7118 74.6010
CPU time 2 0.0232 0.0774 0.0454 0.0690

Table 3: CPU time and error with parameter set at boundary of FFT and
non–FFT ranges.

level is determined by a detailed error analysis. In various numerical experi-
ments it is demonstrated that the characteristic function for the approximate
process, in combination with the tolerance level, predicts well for which model
parameter ranges, numbers of early–exercise dates and seasonality functions the
FFT can be safely applied. For the model parameter sets for which the error is
below the tolerance level and our approximation can thus be applied, we have
reduced the computational time for pricing of Bermudan options under the OU
process from seconds to milliseconds.
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