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SUPPLEMENTAL MATERIAL

THEORETICAL MODEL

The linearized evolution equations for the intracavity field operator δâ and the mechanical

bosonic operator b̂, in the frame rotating at frequency ωL, are [1]

δ ˙̂a =

(
i∆− κ

2

)
δâ+ ig0α(b̂+ b̂†) +

√
κ δâin (1)

˙̂
b =

(
−iΩ0

m −
Γm

2

)
b̂+ ig0(α∗δâ+ αδâ†) +

√
Γm b̂th (2)

where ∆ = ωL − ωc is the detuning with respect to the cavity resonance frequency ωc, κ and Γm

are the optical and mechanical decay rates, Ω0
m is the mechanical resonance frequency, g0 is the

single-photon opto-mechanical coupling rate, and α is the intracavity mean field. The input noise

operators are characterized by the correlation functions

〈âin(t)â†in(t′)〉 = δ(t− t′) (3)

〈â†in(t)âin(t′)〉 = 0 (4)

〈b̂th(t)b̂†th(t′)〉 = (n̄th + 1) δ(t− t′) (5)

〈b̂†th(t)b̂th(t′)〉 = n̄th δ(t− t′) (6)

where n̄th is the thermal occupation number.

We now consider an input field composed of two tones, shifted by ±Ωm around ωL. Here Ωm is

the effective resonance frequency, modified by the opto-mechanical interaction, that will be defined

later in a self-consistent way. The mean value of the input field has the form

αin = αin
− e
−i(ωL−Ωm)t + αin

+ e
−i(ωL+Ωm)t . (7)

The intracavity mean field, in the rotating frame, is α = α−e
iΩmt + α+e

−iΩmt, with amplitudes

α± = αin
±

√
κin

−i(∆± Ωm) + κ/2
(8)

where κin is the input coupling rate. In the Fourier space, equation (1) can be written as

δã(Ω) =
1

−iΩ− i∆ + κ/2

{
ig0

[
α−

(
b̃(Ω + Ωm) + b̃†(Ω + Ωm)

)
+ α+

(
b̃(Ω− Ωm) + b̃†(Ω− Ωm)

)]
+
√
κ δãin(Ω)

}
(9)



where we use Õ to indicate the Fourier transformed of the operator Ô, and Õ† for the Fourier trans-

formed of Ô†. We now restrict our analysis to weak coupling, in which case the opto-mechanical

damping rate and frequency shift of the mechanical oscillator (whose expressions will be given

later) are much smaller than its resonance frequency. Therefore, in the equation (2) we just con-

sider the quasi-resonant components in the opto-mechanical coupling term g0(α∗δâ + αδâ†), and

the equation in the Fourier space can be written as (
− iΩ + iΩ0

m + Γm/2
)
b̃(Ω) =

−g2
0

[
|α−|2 b̃(Ω)

(
1

−iΩ− i∆ + iΩm + κ/2
− 1

−iΩ + i∆− iΩm + κ/2

)
+

|α+|2 b̃(Ω)

(
1

−iΩ− i∆− iΩm + κ/2
− 1

−iΩ + i∆ + iΩm + κ/2

)
+

α∗−α+ b̃†(Ω− 2Ωm)

(
1

−iΩ− i∆ + iΩm + κ/2
− 1

−iΩ + i∆ + iΩm + κ/2

)]
+ b̃in(Ω)

(10)

where

b̃in(Ω) =
√

Γm b̃th(Ω) + ig0

√
κ

[
α∗−

δãin(Ω− Ωm)

−iΩ− i∆ + iΩm + κ/2
+ α∗+

δãin(Ω + Ωm)

−iΩ− i∆− iΩm + κ/2
+

+α−
δã†in(Ω + Ωm)

−iΩ + i∆− iΩm + κ/2
+ α+

δã†in(Ω− Ωm)

−iΩ + i∆ + iΩm + κ/2

]
.

(11)

In the right hand side of Eq. (10), we notice the usual opto-mechanical effects of the two laser tones

(first two terms inside square brackets), plus their coherent common interaction, proportional to

the fields product α∗−α+, that originates the parametric squeezing. It can be directly calculated

that this parametric effect is null for ∆ = 0, i.e., when the two tones are equally shifted with

respect to the cavity resonance.

The total input noise source described by Eq. (11) includes thermal noise and back-action noise,

the latter given by the terms into square brackets.

The standard opto-mechanical interaction is parametrized by the optical damping rate Γopt,

defined as [1]

Γopt = 2g2
0 Re

[
|α−|2

(
1

−iΩ− i∆ + iΩm + κ/2
− 1

−iΩ + i∆− iΩm + κ/2

)
+

|α+|2
(

1

−iΩ− i∆− iΩm + κ/2
− 1

−iΩ + i∆ + iΩm + κ/2

)]
,

(12)

and by a frequency shift that determines the effective resonance frequency Ωm according to the

equation

Ωm = Ω0
m + g2

0 Im

[
|α−|2

(
1

−iΩ− i∆ + iΩm + κ/2
− 1

−iΩ + i∆− iΩm + κ/2

)
+

|α+|2
(

1

−iΩ− i∆− iΩm + κ/2
− 1

−iΩ + i∆ + iΩm + κ/2

)]
.

(13)
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The total damping rate is Γeff = Γm + Γopt. Its expression coincides with that given in the main

text if we define the total opto-mechanical coupling strength g2 = g2
0

(
|α−|2 + |α+|2

)
, the ratio

between intracavity powers εc = |α−|2/(|α−|2 + |α+|2), and using the quasi-resonant frequency

condition Ω ' Ωm. With the same condition, Eq. (10) simplifies to

(
− iΩ + iΩm + Γeff/2

)
b̃(Ω) = − Γpar

2
eiφ b̃†(Ω− 2Ωm) + b̃in(Ω) (14)

where

Γpar =
4g2

0|α+||α−|∆
∆2 + κ2/4

(15)

and φ = π/2+arg[α∗−α+]. Using the notation defined above, the expression for Γpar coincides with

Eq. (4) of the main text. Moving to the frame rotating at Ωm by means of the transformation

b̂R = b̂ eiΩmt b̂†R = b̂†e−iΩmt (16)

and, for Fourier transformed operators,

b̃R(Ω) = b̃ (Ω + Ωm) b̃†R(Ω) = b̃†(Ω− Ωm) (17)

and defining the frequency with respect to the mechanical resonance ω = Ω − Ωm, Eq. (14) and

its Hermitian conjugate can be written in the form of the system of coupled linear equations−iω + Γeff
2

Γpar

2 eiφ

Γpar

2 e−iφ −iω + Γeff
2

b̃R
b̃†R

 =

b̃in
b̃†in

 . (18)

The determinant of the system matrix is

D =

(
− iω +

Γ+

2

)(
− iω +

Γ−
2

)
(19)

where

Γ± = Γeff ± Γpar (20)

and the solutions of the system can be written as

b̃R =
1

D

[(
− iω +

Γeff

2

)
b̃in −

Γpar

2
eiφ b̃†in

]
(21)

b̃†R =
1

D

[(
− iω +

Γeff

2

)
b̃†in −

Γpar

2
e−iφ b̃in

]
. (22)
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The correlation functions for the input noise source of Eq. (11) are obtained from Eqs. (3)-(6) by

considering that 〈Ô(t)Ô†(t′)〉 = c δ(t− t′) implies 〈Õ(Ω)Õ†(Ω′)〉 = 2πc δ(Ω + Ω′):

1

2π
〈b̃in(−Ω)b̃†in(Ω)〉 = Γm(n̄th + 1) +A+ (23)

1

2π
〈b̃†in(−Ω)b̃in(Ω)〉 = Γm n̄th +A− (24)

1

2π

〈
b̃in(−Ω)b̃in(Ω)

〉
=

1

2π

〈
b̃†in(−Ω)b̃†in(Ω)

〉∗
= −g2

0κ
α∗−α+

∆2 + κ2/4
(25)

where the Stokes and anti-Stokes rates due to the two tones are [1]

A+ = g2
0κ

[
|α−|2

∆2 + κ2/4
+

|α+|2

(∆ + 2Ωm)2 + κ2/4

]
(26)

A− = g2
0κ

[
|α−|2

(∆− 2Ωm)2 + κ2/4
+

|α+|2

∆2 + κ2/4

]
(27)

and it can be verified that Γopt = A− −A+.

The spectra of the Stokes and anti-Stokes motional sidebands are finally calculated from Eqs.

(21)-(22) using the correlation functions given above, and are respectively

S
b̂†Rb̂
†
R

=
1

2π
〈b̃R(−ω)b̃†R(ω)〉 =

Γeff

2

[
1 + n̄− s/2
ω2 + Γ2

−/4
+

1 + n̄+ s/2

ω2 + Γ2
+/4

]
(28)

Sb̂Rb̂R =
1

2π
〈b̃†R(−ω)b̃R(ω)〉 =

Γeff

2

[
n̄+ s/2

ω2 + Γ2
−/4

+
n̄− s/2
ω2 + Γ2

+/4

]
(29)

as in Eqs. (5)-(6) of the main text, where we have dropped the subscript R to simplify the notation,

and form the integrals over ω of the different Lorentzian components we can derive the Eqs. (1)-

(2) of the main text. The squeezing parameter is s = Γpar/Γeff and the oscillator effective phonon

number in the absence of parametric effect is

n̄ =
Γm n̄th + Γopt n̄BA

Γeff
(30)

with n̄BA = A+/Γopt.

A quadrature Xθ of the oscillator is defined as Xθ = (eiθ b̂R + e−iθ b̂†R)/2. The quadrature

operator can be calculated in the Fourier space from Eqs. (21)-(22), obtaining

X̃θ =
1

2D

[
eiθ b̃in

(
−iω +

Γeff

2
− Γpar

2
e−i(2θ+φ)

)
+ e−iθ b̃†in

(
−iω +

Γeff

2
− Γpar

2
ei(2θ+φ)

)]
. (31)

Minimal and maximal fluctuations characterize the quadratures defined respectively by 2θ+φ = 0

and 2θ+φ = π. These quadratures are defined in the main text as Y ≡ X−φ/2 and X ≡ X−φ/2+π/2.

Their operators are

Y =
e−iφ/2 b̃in + eiφ/2 b̃†in

2
(
−iω + Γ+

2

) X =
i
(
e−iφ/2 b̃in − eiφ/2 b̃†in

)
2
(
−iω + Γ−

2

) (32)
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and the associated spectra are

SY Y =
Γeff(2n̄+ 1)

4
(
ω2 +

Γ2
+

4

) SXX =
Γeff(2n̄+ 1)

4
(
ω2 +

Γ2
−
4

) . (33)

The integrals of the spectra give the variances σ2
Y = σ2

0/(1 + s) and σ2
X = σ2

0/(1 − s) with σ2
0 =

(2n̄+ 1)/4.

[1] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).

5


