

FROM SWAMP TO STRUCTURE: TOWARD A SYSTEMIC ARCHITECTURE OF LANDSCAPE, LABOR, AND MATERIAL

Josephine Beger

Faculty of Architecture & the Built Environment, Delft University of Technology

Julianalaan 134, 2628BL Delft

J.V.Beger@student.tudelft.nl

ABSTRACT

Amidst growing ecological, social and economic challenges, paludiculture – the agricultural use of wet peatland sites – is becoming an increasingly important focus in sustainable architectural production. This paper examines how swamp ecosystems can form the basis of a new regional value chain. For sustainable building materials for Berlin's construction industry. The theoretical framework is based on the SETS (social-Ecological-Technological Systems) model to reveal and utilize the complex interactions between landscape, society and built space.

KEYWORDS: Regenerative design, Paludiculture, Peatland, Biobased Material, Regional Harvest, Reciprocal Landscape

1. INTRODUCTION

What if architecture began with a plant, not a plan? What if building meant cultivation – and inhabiting meant participating? From reedbeds to rooms, this project traces the path of Paludiculture through water, craft and community. A systemic, circular approach unfolds – woven between ecology, economy and imagination.

“If ecosystems transforms, must not architecture transform with them?”

In times of ecological crisis and resource depletion, the role of architecture must be rethought: not as an endpoint of linear supply chains, but as part of a regenerative metabolism. Nearly 40 percent of the planet's Co2 emissions and over half of all waste are linked to the construction industry. (Lloyd, 2023) It extracts, consumes and discards – often disconnected from place, ecology and material origin. In response, regenerative design theory emphasises, as Cole notes in his paper: “Transitioning from green to regenerative design”:

“A key distinction of regenerative design is the recognition and emphasis on the co-evolutionary, partnered relationship between human and natural systems, underscoring the importance of project location and place. “ (Cole et al., 2013, p. 1)

Wetlands – especially rewetted peatlands – emerge in this context as critical ecological infrastructures, offering not only carbon sequestration and biodiversity, but also a new material palette for architecture.

Berlin, whose very name stems from the slavic word for “swamp”, (see appendix 1) is emblematic of this lost relationship. Centuries of drainage have severed the region from its swampland roots – causing drought, biodiversity loss and increased carbon release.

Recently, however, a shift in political priorities and environmental policy has begun to reframe this landscape – not as a burden, but as a climate asset. Germany's national Peatland Protection Strategy (2022) now commits to a large scale rewetting, aiming to restore 1,3 million hectares by 2050. The

projected costs of this transformation is €21 billion. If no action is taken, climate-related damages from drained peatlands are expected to reach €67,5 billion by 2050 (Noordt et al., 2022).

This paper explores how paludiculture – the productive use of wet peatland – can be understood not only as a climate solution, but as a systemic model for architecture: linking ecological restoration, local economies, and material innovation. Using the SETS framework (Social-Ecological- Technological-Systems), it investigates how regenerative value chains can take root in the Berlin-Brandenburg region – from landscape to construction site.

Main research question:

How can the rewetting of peatland be understood as a systemic model, linking social, ecological and technological dimensions of regional value creation- and what kind of vision does this enable?

1.1. METHODOLOGY

The primary object of this research is to understand paludiculture not only as an agricultural model but as part of a socio-ecological-technological value creation system – and to translate it into a design vision, both architecturally and territorially. Accordingly, the methodology combines qualitative, cartographic and spatial design approaches.

Literature review and theoretical framing

The research is grounded in a broad assessment of publications that explore paludiculture, regenerative value creation, SETS critical regionalism and circular models in construction. Scientific publications and reports from research institutes, policy makers, environmental specialists and planning institutions were taken into account.

Cartographic analyses and GIS data

To spatially locate relevant landscapes – in particular peatlands and wetlands in Berlin- Brandenburg – openly accessible GIS data was analyzed. These provide the basis for location analyses, ecological potentials and infrastructural connections.

Excursions & fields research

As part of several field trips, several farms with paludiculture (e.g. Brandenburg) as well as urban locations in the inner city structures (e.g. Köpenicker Straße, Berlin) were visited. Observations were made on landscape use and water management.

Qualitative Interviews

A central element was an interview with a farmer, who has successfully practiced cultivation on rewetted peatlands for years. The aim was to understand the real challenges, potentials and actors constellations along the value chain. Further informal discussions with actors from research and planning (e.g. Bauhaus earth) complement these perspectives.

Vision prototyping and SETS analysis

The collected data was analyzed using the SETS framework. This systematically presents interactions between social, ecological and technological processes, making it possible to think of regional value chains not only in technical terms, but also in terms of their social and cultural conditions.

2. THEORETICAL FRAMEWORK

2.1. PEATLANDS AS CULTURAL LANDSCAPES

Historically, swamplands in europe were considered to be unproductive and economically unviable. In the 19th and 20th centuries in particular, large areas were drained to create space for agriculture and peat extraction for fuel. (Landgraf, 2014) While these interventions increased agricultural utilisation, they also led to significant ecological damage, including loss of biodiversity, soil subsidence and increased Co2 emissions due to the oxidation of peat. (Dewitz et al., 2023)

The process of draining peatlands began during the reign of Frederik the Great. In the 18th century, a period of ‘land improvement’ (from the french ‘meliorisation’) began, involving the drainage of extensive areas to support the urban growth of Berlin and Potsda, as well as the expansion of agriculture. Cultivating potatoes in the nutrient rich soil of the drained peatlands helped to alleviate food insecurity of prussian farmers, earning Friedrich the nickname ‘Kartoffel König’ (King of Potatoes) (Landgraf, n.d.)

A second major wave of land drainage occurred around the 1960s during the GDR era. The construction of the ‘Milchader für Berlin’ canal based system enabled systematic drainage for cattle production. At that time, localised production was necessary to avoid dependence on West Germany. (Haberl & Mosebach, 2023)

It was not until the late 20th century that the negative consequences of peatland drainage were widely acknowledged and protective measures were introduced. Today, peatlands are increasingly recognised as valuable carbon sinks, water regulators and biodiversity hotspots. (Landgraf, n.d.)

In 2015, the german government introduced a programme to protect existing swamps. However, this has only been implemented in a few pioneering projects for drained peatlands and 93 percent of the regions peatlands remains drained (Haberl & Mosebach, 2023). Although they only cover eight percent of the region’s surface, they emit 7,2 million tonnes of Co2 each year, accounting for around 10 percent of the regions total annual emissions (Haberl & Mosebach, 2023) – more than the transport sector. (See appendix 2) Meanwhile, the Berlin-Brandenburg region, once dominated by wetlands, is now one of the driest in Germany. (Dorfner, n.d.)

The historic mismanagement of the peatland landscape clarifies, that future usage forms should be thought integrative, to bring together ecological, social and economical requirements.

2.2. PALUDICULTURE AS A REGENERATIVE MODEL

Paludiculture represents a regenerative form of landuse that maintains ecological functions while allowing for productive cultivation. (Närmann & Tanneberger, 2021; Nordt et al., 2024) The cultivation of wet peatlands is characterised by a gradient in which the water level determines the species of plant. In most cases, these are permanent crops. (see appendix 3) (Nordt et al., 2024) These crops can be used in various ways, for example as fuel for biogas, in the building industry, as foodcrops and as animal food. (Nordt et al., 2024)

2.3. SETS – SOCIO-ECOLOGICAL-TECHNOLOGICAL SYSTEMS THINKING

The building sector is largely dependent on linear production chains, energy intensive material production of (e.g. steel) long transportation ways and the permanent extraction of non renewable materials from the landscape. (Misselwitz & Organschi, n.d.) Additionally the delayed

implementation of key policy instruments like carbon pricing mechanism, to discourage fast demolition and to incentivise reuse. (United Nations Environment Programme, 2022)

The developments make it clear that the new models of thought and action are needed – models that recognize complex interrelationships and make them usable for design processes. SET model offer such a framework: it helps to visualise the consequences of the decisions within a broader systemic context.

The three layers (McPhearson et al., 2022) are described as:

- Social: Stakeholder, knowledge, work, participation
- Ecological: Climate, water, soil, vegetation
- Technological: machines, infrastructure, construction methods

2.4. “RECIPROCAL LANDSCAPES” (HUTTON, 2020)

Before the era of industrialization, landscape surrounding the settlements determined the material for buildings. Architecture therefore was directly linked to the ecosystem, the climate, and the provided resources. (Weiss & Egli, 1959) In “*Houses and landscapes of Switzerland*”, Richard Weiss researches this trace in the very different types of farmhouses found even in adjacent mountain valleys in Switzerland. (Weiss & Egli, 1959) (See appendix 4)

This link has long gone lost, severed by materials traveling thousands of kilometers before reaching the construction site. The result is a disconnection between architecture and its ecological context. (Buckton et al., 2023; Hutton, 2020) Jane Hutton writes in her book “*Reciprocal landscapes*”: “*Reciprocal Landscapes stems from a desire to think of construction materials not as fixed commodities or inert products, but as continuous with the landscapes they come from, and with the people that shape them.*” (Hutton, 2020 p. 5)

Today, a complete regional value chain that reconnects architecture with its landscape barely exists. Except for a few pioneering projects, most building materials are not sourced or processed locally. Industrial agriculture and global construction markets operate in linear, extractive ways. The feedback loop – from soil to structure and back – is not closed. (Hutton, 2020) As Buckton et al (2023) argue, “*material choice is not neutral – it influences spatial identity. A regenerative material palette can generate new vernaculars responsive to ecology.*” This suggests that materials are not merely functional, but cultural and ecological mediators – capable of shaping new architectural languages grounded in place.

3. REGIONAL VALUE CREATION THROUGH REWETTED LANDSCAPES

A regional value chain can offer resilient alternatives to global raw material markets, in order to reduce resource scarcity and avoid unstable and unjust supply chains, as well as long transportation ways. (United Nations Environment Programme, 2022) Resilient value chains promote social participation and fair structures through educational formats and regional cooperations. (Noordt et al., 2022)

3.1. CULTIVATION AND HARVESTING

Plants species suitable for rewetted fields are: reed, cattail, canary grass, and black alder tree. The regional value chain starts with the plantation. Fertilizers are not used since they are forbidden by law in water-rich areas. (Düngemittel-Verordnung DüV 20176)

The harvest is carried out mechanically, the water level determining the logistics of the harvest: fields with a water table of -20 cm or higher require external drying facilities (Nordt et al., 2024); a water table lower than -20 cm allows the biomass to remain in the fields and be dried by the sun. (S. Petri, personal communication, May 20, 2025) (see appendix 5, 6)

Wet meadows (water table -20 or lower)	Paludiculture (water level -20 or higher)
Biomass mowed and sundried in September, turned twice pressed into bales	Cattail or reed harvested in autumns and removed immediately for off site processing

Watermanagement:

For Paludiculture waterlevels must not sink lower than -20 under the floor, otherwise peat oxidation will commence (Landesumweltamt Brandenburg, 2004). Drained peatlands will always need a managed water system to secure the needed waterbalance throughout the year. (Nordt et al., 2024) The most common water management is the reuse of drainage pits for seasonal water retention, however dry springs make it difficult to sustain optimal water levels. (S. Petri, personal communication, May 20, 2025) Summer irrigation must either be covered by the overflow during winter or be added artificially, depending however on the local water withdrawal regulations. (S. Petri, personal communication, May 20, 2025)

3.2. PROCESSING AND APPLICATION

The usage possibilities can range from animal feed (pasture for buffalos), to biogas from fermentation of biomass, combustion, production of platform chemicals, carbon-based and organic substrate development for soils, healthcare-related uses, and phytomining applications. (Nordt et al., 2024) (see appendix 7)

However this paper primarily focused on the processing and application of building materials. Wetland crops have developed specific characteristics, to sustain the wet climate of swamps. (Nordt et al., 2024) Cattail for example has air pockets within the leaves that supply perfect properties for insulation, in various species we can find a *”storage of silicates (...), which have an anti-fungal and flame-resistant effect”* (Nordt et al., 2024, p. 54)

Right now there is an amount of promising product prototypes, while – on the other hand side – there is no established market for it so far. (Noordt et al., 2022) Following products can be produced: sheet, insulation material, façade panels, interior linings (Nordt et al., 2024) (see appendix 8)

While reed is just bundled up and transported to the construction site or prefabrication site, the other plants have to be further processed.

The production process typically involves the shredding or breaking down of plant fibres into a size suitable for the desired product. (Nordt et al., 2024)

Subsequently, the fibres are subjected to heatpress (in various forms) that compresses them into sheets. In certain instances, the addition of binder or adhesive substances may be necessary. (“Zelfo,” 2016)

The Panels are then left to cool, after which they are cut into the required format and transported either to a contractor, a construction market or a further prefabrication facility. (*Rohrkolben*, n.d.) a number of start-ups and companies have established production chains, including those of Zelfo, Istraw and Typha boards. (Nordt et al., 2024) (see appendix 9)

The utilisation of processed wetland biomass as a source of insulation materials signifies a promising development within the market, which is currently dominated by non-renewable alternatives. In 2019,

proportion of insulation materials derived from renewable sources in Germany was a mere 9 percent. (Nordt et al., 2024)

Bio-based wetland insulation is characterised by its natural resistance to mold (Islam & Moatazed-Keivani, 2023), a property that renders the use of chemicals unnecessary. (Rohrkolben, n.d.) This attribute contributes to the enhancement of air quality by ensuring the maintenance of clean safe air. (Islam & Moatazed-Keivani, 2023) Moreover, in Germany the annual production of non-renewable insulation materials as waste is approximately 200,000 tons, these materials are typically disposed of through landfills or incineration. (Dämmstoffe in der Kreislaufwirtschaft, 2024) Nordt et al (2024) using wetland derived materials from insulations as an alternative to rock wool or Eps foam can cut GHG emissions by up to roughly 8,5 kg CO₂ per square meter of insulated wall. (Nordt et al., 2024) (see appendix 10) For the u-values of the material refer to the appendix 11. It is evident that, due to their inherent resistance to mold, they could prove to be of significant value in the context of the renovation of existing building stock. Furthermore, their applications could extend to the design of public swimming pools or amenities in proximity to water bodies.

3.3. MATERIAL CYCLES AND FEEDBACK LOOP

Building/Material perspective:

Wetland cultivation provides valuable materials for construction of the building envelope (insulation, cladding) and the space planning. Based on the sheering layer principle those require periodic replacement in intervals of 20 years. In the case of space planning, at intervals of three years.

The materials can be easily reintegrated into the loop by reintroducing them into the processing cycle or utilising them as compost on agricultural fields. (Nordt et al., 2024) The nutrients contained within the product would be returned to the soil. (see appendix 12)

Landscape perspective (see appendix 13, 14, 15)

Through the sourcing of wetland derived materials the feedback loop of landscape is turned from a positive (increasing): drained peatlands emits CO₂, leads to the increase of the greenhouse effect, leads to more droughts and even more CO₂ emissions.

Into a negative stabilised cycle: With the rewetting of landscape the emission of CO₂ is reduced or comes to a complete stop, sometimes even starts the CO₂ sequestration ability of peat again, the wetlands cool down the climate which leads to less evaporation, the water remains in the landscape which provides better growth conditions. (Närmann & Tanneberger, 2021)

To summarize regenerated wetlands save water and creates a resilient ecosystem, that sequesters CO₂ and creates a high yield in biomass. (Nordt et al., 2024) The products derived from the biomass can be easily processed and locally applied, decreasing the carbon emission of the grey embodied energy in construction industry. (Nordt et al., 2024)

3.4. STAKEHOLDERS

The Stakeholder in the paludiculture value chain include farmers, landowners, the local population, processing companies, contractors, architects, and consumers. (Nordt et al., 2024) Early involvement of local population is crucial for scaling up the value chain. (Nordt et al., 2024) One of the most significant shift is the emergence of new job profiles, particularly the transition from conventional farming towards “Peatland Climate managers” (Nordt et al., 2024)

According to the German association of Landcare:

“Peatland climate managers are farmers who provide climate protection services by managing peatland soils. This climate protection service is provided by reducing or avoiding greenhouse gas emissions from the peat soils. This is achieved by raising the water level to slightly above the level at which peat is depleted, or by restoring or maintaining high water levels typical of a peatland.” (Nordt et al., n.d., p.19)

At present, training and knowledge sharing are often initiated by pioneering farmers involved in wetland regeneration. They offer practical courses in exchange for financial compensation. (S. Petri, personal communication, May 20, 2025)

4. SYSTEMIC ANALYSIS (APPLIED SETS THINKING)

The predicted version I analysed is based on the surface potential for Paludiculture. This approach was published by Tanneberger et al. (2021) and provides a goal scenario for the complete rewetting of peatland soils in Germany by 2050. It has now been adapted to the Berlin-Brandenburg region. However the surface numbers provided stem from the research paper: “Klimaschonende, biodiversitätsfördernde Bewirtschaftung von Niedermoorböden” published in 2021.

The strategy suggests a three-step plan for the following three decades 2020-2030. 2030-2040 and 2040-2050. (Tanneberger et al., 2021) During this time, all peatland soils (186,012 hectares) will be rewetted and the water level is increased until the surface. In the first decade, all cropland (38,385 ha)(Närmann & Tanneberger, 2021) as well as a third of the green pasture (49,048 ha) (Närmann & Tanneberger, 2021), will be rewetted. In the following two decades, the remaining two third of the green pasture will be rewetted each decade, so that by 2050, all organic soils will have been rewetted. (Tanneberger et al., 2021) (see appendix 16 and 17)

Ecological layer:

The rewetting of peatland is projected to reduce from 5.500.000 t CO2-eq. ha-1 a-1 (Landgraf, n.d.) in 2020 to reduce to 3.531.480 t CO2-Eq. ha-1 a-1 in 2030, 1.765.740 t CO2-Eq. ha-1 a-1 by 2040, and to 0 by 2050. Wetlands have been shown to lead to regional cooling of the area (Landgraf, n.d.) and to store water in their soils, increasing resilience during dry summers and helping to prevent wildfires. (*Klimamoor Brandenburg*, n.d.; Närmann & Tanneberger, 2021) They are resilient in case of flooding. In addition, rewetting facilitates new groundwater accumulation. (Närmann & Tanneberger, 2021; Nordt et al., 2024) The water flowing through wetlands is filteres by plants, resulting in runoff with lower fertiliser content, which reduces the eutrophication of surrounding bodies of water (Närmann & Tanneberger, 2021; Nordt et al., 2024). Wetland restoration significantly improves habitat availability for amphibians and wetland birds, thereby supporting local biodiversity and enabling the return of threatened species. (Nordt et al., 2024; Tanneberger et al., 2021) Due to their evaporative cooling and moisture retention effects, rewetted peatlands can positively influence adjacent ecosystems such as forests, which have experienced significant drought stress in recent years. (*Klimamoor Brandenburg*, n.d.; Nordt et al., 2024) Finally, the materials harvested from paludiculture could substantially lower the embodied grey energy of the regional construction industry.

Social:

Rewetting peatlands is a matter of intergenerational social justice (Noordt et al., 2022) More than just a tool for climate repair, in drought striken Brandenburg, a rewetted landscape might a public commons, a place to cool of during the summer. It could help knit together identity, meory and community resilience. (Noordt et al., 2022) Activities like hiking, observing wildlife, or enjoying accesible

waterlandscapes help people form stronger emotional ties to restored environments, reinforcing public support for climate-resilient spaces. (McPhearson et al., 2022; Noordt et al., 2022) Over time, access to water-based recreation could extend to restored rivers (Noordt et al., 2024) such as Spree.

At the same time, paludiculture creates new economic opportunities: harvesting and monitoring require specialised skills, while decentralised processing provides employment in rural areas with weak infrastructure. (Islam & Moatazed-Keivani, 2023; Noordt et al., 2022; Noordt et al., 2024)

Technological Layer:

Innovation in water management systems – such as automated rewetting technologies and real time water level monitoring – enable the precise control necessary for peatland cultivations. GIS mapping and open-source data platforms can connect farms, processors and designer within regional networks, improving coordination and transparency. (Närmann & Tanneberger, 2021; Noordt et al., 2022) The establishment of regional processing hubs and transport logistics – potentially using waterways to move materials into urban centers like Berlin – will strengthen the supply chain (Noordt et al., 2022; Tanneberger et al., 2021) These agricultural systems also drive the development of specialised harvesting machinery and modular processing units. (e.g. mobile, on-site setups) (Noordt et al., 2022; Tanneberger et al., 2021)

The emergence of new raw material opens opportunities for innovation in machine fabrication and prefabricated building components. (Islam & Moatazed-Keivani, 2023; Tanneberger et al., 2021) Integration into the building sector will require will require testing, certification and development of hybrid construction methods that combine paludiculture-derived products with conventional materials. (Islam & Moatazed-Keivani, 2023; Noordt et al., 2022)

As Tanneberger et al write in their paper: "Towards net zero CO₂ in 2050: An emission reduction pathway for organic soils in Germany", in 2021:

"To build trust and accelerate adoption, publicly funded demonstrator buildings will be essential"

The materials need to be applied in order for them to get a chance to establish themselves in the building market. Engineered alder wood for example (*Novel Species, Novel Products*, n.d.), in particular, offers a regional available structural material that could complement or replace conventional softwoods (Tanneberger et al., 2021) Prefabricated façade insulation panels derived from wetland biomass could support the sustainable renovation of Berlin's postwar housing stock, which includes over 800,000 units built between 1949 and 1978. (Amt für Statistik Berlin-Brandenburg, 2023, Islam & Moatazed-Keivani, 2023; Noordt et al., 2022)

Implementation challenges:

Despite its potential, implementing a regional paludiculture-based value chain presents several challenges. High initial investment costs for water management infrastructure and specialised harvesting technology could prevent its application, particularly among small-scale farmers. (Noordt et al., 2022; Tanneberger et al., 2021) Without consistent certification standards and regulatory clarity, wetland derived materials face major entry barriers – despite their environmental advantages. The lack of market demand further slows down innovation and investment. (Noordt et al., 2022; Tanneberger et al., 2021) A lack of exposure to ecological land-use strategies in some regions may result in skepticism or resistance, slowing down the adoption of paludiculture. This underlines the importance of public engagement and awareness-building. (Tanneberger et al., 2021) Prolonged drought are already becoming

a reality in Brandenburg. For paludiculture to work, water needs to stay in the soil -but if rainfall fails, longterm planing is difficult. (Noordt et al., 2022; Tanneberger et al., 2021)

5. CONCLUSION

The paper shows, that a change to regenerative construction practice can actually succeed, if architecture is no longer treated as a isolated design product but as a part of a larger social ecological metabolism. Using the SETS framework enabled a multidimensional analysis that helped reveal the interlinked dynamics between architecture, landscape and materials.

The explorations with paludiculture as a regenerative use of peatlands made apparent, the the new value chains can be established, that connect ecological resilience. Local prouction and social engagement. The flora of wetlands – especially Cattail, reed, and alder tree – do not only provide ecological benfits (Tanneberger et al., 2021), but also open up new, pratical uses in sustainable construction, partical for insulation and façade systems. (Nordt et al., 2024; Tanneberger et al., 2021)

At the same time, it becomes clear: these processes are not only a matter of material logistics, but are deeply interwoven with cultural design-related dimensions – as Hutton (2020) notes, “*materials are continuous with the landscapes they come from, and with the people who shape them.*” (Hutton, 2020, p.5) this viewpoint demands that architecture should be viewed in relation to its enviroment, taking into account ecological, social and historical factors. (Hutton, 2020)

The vision for Berlin-Brandenburg till 2050 shows, that a complete rearrangement to a reagional valuechain is imaginable and possible. The basis here is provided by the transformation strategy outlined in *Peatland Strategy for Germany: Pathway for rewetting 2030 and 2050* (Närmann & Tanneberger, 2021) which presents a step-by-step plan for rewetting of all organic soilsin Germany by 2050.

Initial funding programmes and pilot projects demonstrate that the transition to regionally rooted, peatland-compatible valur chains is already underway. The National peatland Protection Strategy (2022) explicitly commits to the large-scale rewetting of peatsoils across Germany by 2050 – including their productive use trough paludiculture. In Brandenburg, the “ReReetBB” initiative is supporting thee developemnt of regional value chains for renewable building materials such as reed, with a targeted investment of €23.4 million. As the strategy states: “*The protection and restoration of peatlands is a key measure for achieving Germany’s climate goals.*” These developments make one thing clear: the socio-ecological transformation of the constrctuion sector is not merely a vision – it is achievable and already politically initiated. What remains is a fundamental question that runs through this work.

“If ecosystems transforms, must not architecture transform with them?”

This work suggestes that the answer should not be sought in abstract models, but in concrete, regional anchored action – by building with and not against the landscape. Perhaps then, as the region reclaims its relationship with water and soil, Berlin will once again live up to its name – not merely as a city in the swamp, but as a city shaped by it.

6. BIBLIOGRAPHY

Antoine, P. (1745). *Fête galante in märkischer Landschaft* [Graphic].

<https://recherche.smb.museum/detail/1866588/f%C3%A4te-galante-in-m%C3%A4rkischer-landschaft?language=de&question=m%C3%A4rkischer+sumpf&limit=15&sort=relevance&controls=none&objIdx=2>

Buckton, S. J., Fazey, I., Sharpe, B., Om, E. S., Doherty, B., Ball, P., Denby, K., Bryant, M., Lait, R., Bridle, S., Cain, M., Carmen, E., Collins, L., Nixon, N., Yap, C., Connolly, A., Fletcher, B., Frankowska, A., Gardner, G., ... Sinclair, M. (2023). The Regenerative Lens: A conceptual framework for regenerative social-ecological systems. *One Earth*, 6(7), 824–842.

<https://doi.org/10.1016/j.oneear.2023.06.006>

Cole, R. J., Oliver, A., & Robinson, J. (2013). Regenerative design, socio-ecological systems and co-evolution. *Building Research & Information*, 41(2), 237–247.

<https://doi.org/10.1080/09613218.2013.747130>

Dämmstoffe in der Kreislaufwirtschaft. (2024, June 11). <https://www.berlin.de/nachhaltige-beschaffung/umweltanforderungen/spezifische-beschaffungshinweise/daemmstoffe/>

Dewitz, I., Heinrich-Böll-Stiftung, Bund für Umwelt und Naturschutz Deutschland, & Michael Succow Stiftung zum Schutz der Natur (Eds.). (2023). *Mooratlas: Daten und Fakten zu nassen Klimaschützern: ein Kooperationsprojekt von Heinrich-Böll-Stiftung, Bund für Umwelt und Naturschutz Deutschland und der Michael Succow Stiftung, Partner im Greifswald Moor Centrum*. Heinrich-Böll-Stiftung.

Dorfner, M. (n.d.). *Klimareport Brandenburg 2024*.

Geoportal Brandenburg—Detailansichtdienst. (n.d.). Retrieved June 4, 2025, from

<https://geoportal.brandenburg.de/detailansichtdienst/render?url=https://geoportal.brandenburg.de/gs-json/xml?fileid=9fdadef8-7b69-415f-b405-afb129411de3>

Haberl, A., & Mosebach, P. (2023). *BRANDENBURGS MOORE klimafreundlich bewirtschaften—Ein Ratgeber für Anwender und Interessierte*.

Hutton, J. (2020). *Reciprocal Landscapes; Stories of Material Movements*. Taylor and Francis Group.

Islam, S., & Moatazed-Keivani, D. (2023). *Moore Zukunft des Bauens*. Material Cultures, Bauhaus Earth.

Klimamoor Brandenburg. (n.d.). Arge Klimamoor. Retrieved May 28, 2025, from
<https://www.klimamoor-brandenburg.de/>

Landesumweltamt Brandenburg. (2004). *Leitfaden zur Renaturierung von Feuchtgebieten in Brandenburg*.

Landgraf, L. (n.d.). *Moorschutz in Brandenburg—Ein immer wiederkehrendes Thema*. Retrieved May 28, 2025, from

<https://lfa.brandenburg.de/lfa/de/aufgaben/boden/moorschutz/grundlagen-moorschutz/moorschutz-in-brandenburg-ein-immer-wiederkehrendes-thema/>

Landgraf, L. (2014). *Moorschutz und moorangepasste Technik – Die neue ProMoor-Richtlinie*.

Lloyd, S. (2023). *Building decarbonisation in the construction sector*.

<https://www.carbontrust.com/news-and-insights/insights/building-decarbonisation-in-the-construction-sector#:~:text=The%20built%20environment%20is%20responsible,itself%20has%20attacted%20less%20focus.>

McPhearson, T., Cook, E. M., Berbés-Blázquez, M., Cheng, C., Grimm, N. B., Andersson, E.,
Barbosa, O., Chandler, D. G., Chang, H., Chester, M. V., Childers, D. L., Elser, S. R.,
Frantzeskaki, N., Grabowski, Z., Groffman, P., Hale, R. L., Iwaniec, D. M., Kabisch, N.,
Kennedy, C., ... Troxler, T. G. (2022). A social-ecological-technological systems
framework for urban ecosystem services. *One Earth*, 5(5), 505–518.

<https://doi.org/10.1016/j.oneear.2022.04.007>

Misselwitz, P., & Organschi, A. (n.d.). *Wiederverflechtungen: Eine Charta für unsere Städte und
den Planeten Bauhaus Earth.*

Närmann, F., & Tanneberger, F. (2021). *Klimaschonende, biodiversitätsfördernde
Bewirtschaftung von Niedermoorböden* (F. Birr, M. Kaiser, M. Nerger, V. Luthardt, & J.
Zeitz, Eds.). Bundesamt für Naturschutz. <https://doi.org/10.19217/skr616>

Noordt, A., Schäfer, A., Peters, J., & Wichmann, S. (2022). *Anreize für Paludikultur zur
Umsetzung der Klimaschutzziele 2030 und 2050. Climate Change* 44/2022.

Nordt, A., Abel, S., Hirschelmann, S., Lechtape, C., & Neubert, J. (2024). *GUIDELINES FOR
IMPLEMENTATION OF PALUDICULTURE.*

Novel Species, Novel Products: (n.d.). Evolving Forests. Retrieved May 14, 2025, from
<https://www.evolvingforests.com/post/dartmoor-s-future-forests>

Petri, S. (2025, May 20). *Interview with Paludiculture Farmer* [Personal communication].

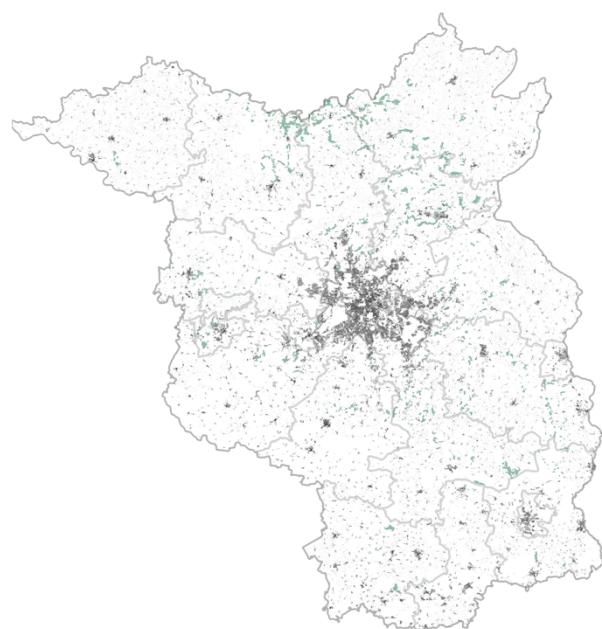
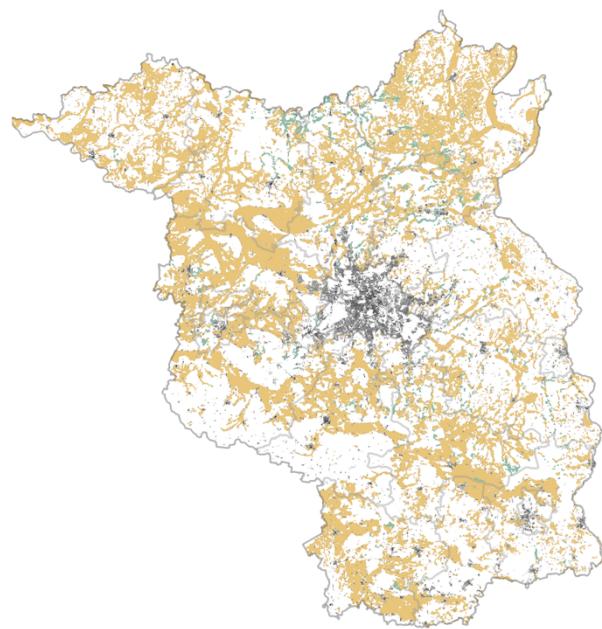
Rohrkolben. (n.d.). Fraunhofer-Institut für Bauphysik IBP. Retrieved May 18, 2025, from
<https://www.ibp.fraunhofer.de/de/presse-medien/forschung-im-fokus/rohrkolben.html>

Tanneberger, F., Abel, S., Couwenberg, J., Dahms, T., Gaudig, G., Günther, A., Kreyling, J., Peters,
J., Pongratz, J., & Joosten, H. (2021). Towards net zero CO₂ in 2050: An emission

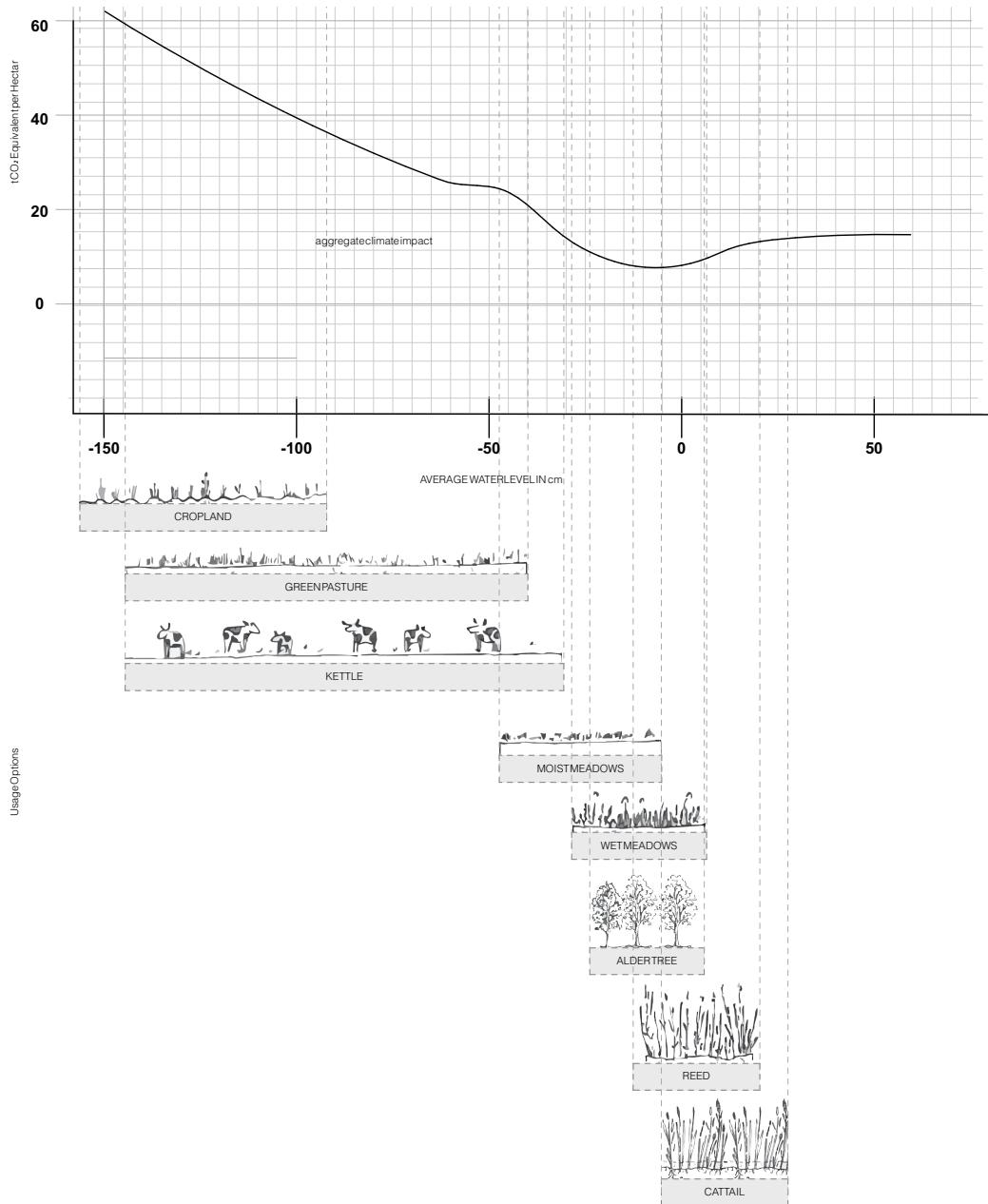
reduction pathway for organic soils in Germany. *Mires and Peat*, 27(05), 1–17.

<https://doi.org/10.19189/MaP.2020.SNPG.StA.1951>

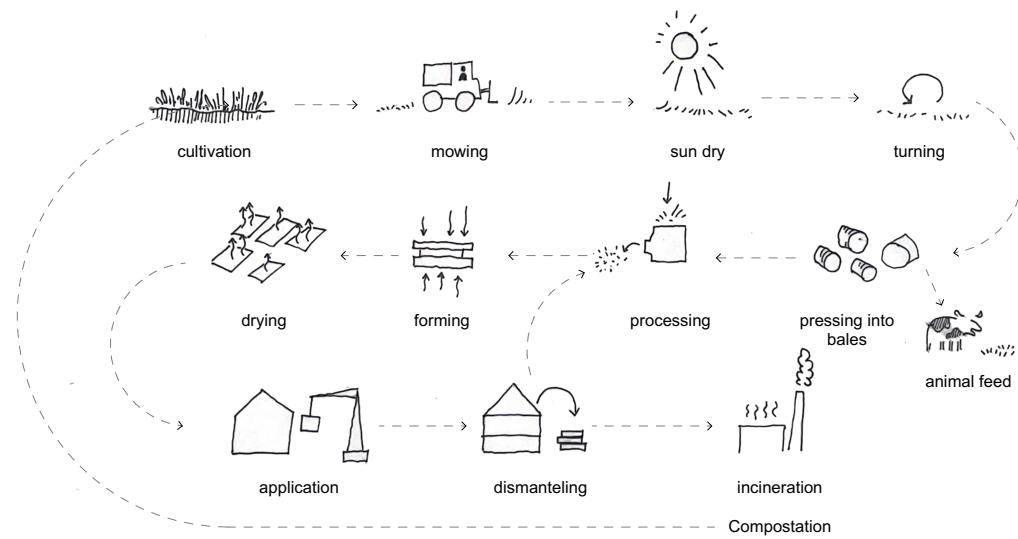
United Nations Environment Programme. (2022). *2022 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector*. United Nations Environment Programme.

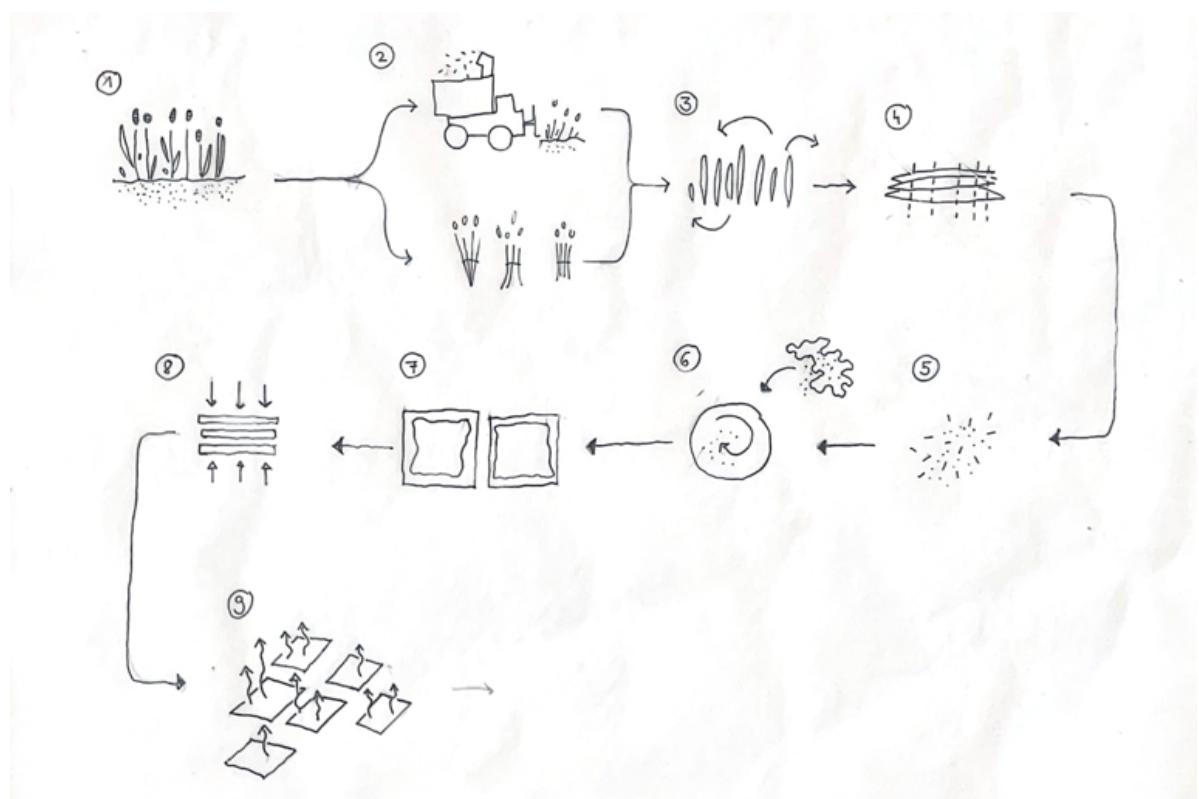


Weiss, R., & Egli, H. (1959). *Häuser und Landschaften der Schweiz*. Rentsch; WorldCat.

Zelfo. (2016, December 8). *MaterialDistrict*. <https://materialdistrict.com/material/zelfo-2/>


7. APPENDIX

Appendix 1: Fête galante in märkischer Landschaft (Festivities in Fête in the Brandenburg countryside), Antoine Pesne, 1745 (Antoine, 1745)


Appendix 2: Peatland distribution Berlin Brandenburg Yellow drained Peatland soil , green remaining peatland (*Geoportal Brandenburg - Detailansichtdienst*, n.d.)


Appendix 4 : Waterlevel and usage options, reworked graphic based on (Nordt et al., 2024)

	NATUR	WIRTSCHAFT	HAUS	UND	SIEDLUNG	LEBENSWEISE	MENSCH		
	KLIMA	(WIRTSCHAFTSART)	BAUSTOFF	BAUWEISE	HAUSFORM	HOFFORM	SIEDLUNGSFÖRDERUNG	NUHRUNG	BAUERTYP
MITTELLAND	TROCKEN	ACKERBAU	LAUBHOLZ	STEILDACH STROH STÄNDERBAU	DREISÄNENHAUS FACHWERK	EIN HOF	GESCHLOSSENE DORF DREIFELDERPFLUR	BROT	ACKERBAUER
NORDALPINES GEBIET	FEUCHT	VIEHZUCHT	NADELHOLZ	FLACHES SCHINDELDACH BLOCKBAU	REINER HOLZBAU	ALP MAIENSTÜSS	EINZELHÖFE MIT GESCHLOSSENER ODER DÖRFER MIT DURCHZUFÜHRUNG DER WIRTSCHAFTSGEBAUDE	MILCH	HIRT
INNER- UND SÜD- ALPINES GEBIET	FEUCHT	VIEHZUCHT UND ACKERBAU (WEINBAU)	HOLZ	STEILDACH PLATTENDACH HOLZ+STEINBAU STEINBAU	HOLZ+STEINBAU STEINBAU	ALP MAIENSTÜSS ACKERBAU WEINBAU MEHRHOF: STREUHOF MEHRSTÜCK- BAUERN	DÖRFER FILIALSIEDLUNGEN	BROT MILCH	MEHRSTÜCK- BAUER

Appendix n. 4 : relation from landscape to architecture (Weiss & Egli, 1959)

Appendix 5: Meadow harvest Lower than 20, Authors own image

Appendix 6: Wet harvest, authors own image

3. Utilisation of biomass from paludiculture

Tab. 3.1 Practical effectiveness (+ or++) and suitability (colour-coded) of crop and wet meadow paludicultures for various uses. Practical effectiveness: + = prototypes or test facilities or areas available, ++ = already implemented on a larger scale; suitability: green = high potential, ochre = limited potential: technical adaptation/development necessary or suitable only for niche use, no colour = unsuitable or unknown potential. This overview is based on an expert assessment and reflects the current status (as of 2022).

Culture/Biomass	Peat moss	Sundew	Reeds	Cattail	Reed canary grass	Alder	Wet meadows
Animal-bound uses			+	+	++		++
Biogas wet fermentation			+	+	+		++
Biogas dry fermentation					+		++
Combustion	+				++	+	++
Construction and insulating materials	++		+		+	+	+
Panel material (furniture)	+		+		+	++	+
Paper, moulded parts	+		+		+		+
Platform chemicals		+	+		+		+
Organic and activated carbon		+			+		+
Substrates and soils	++		+	+			+
Medical applications		+					
Phytomining					+		+

Appendix 7: Usage options of Paludiculture material (Nordt et al., 2024)

Mixedboard strawboard
Manufactured by Strohplattenwerk Münz

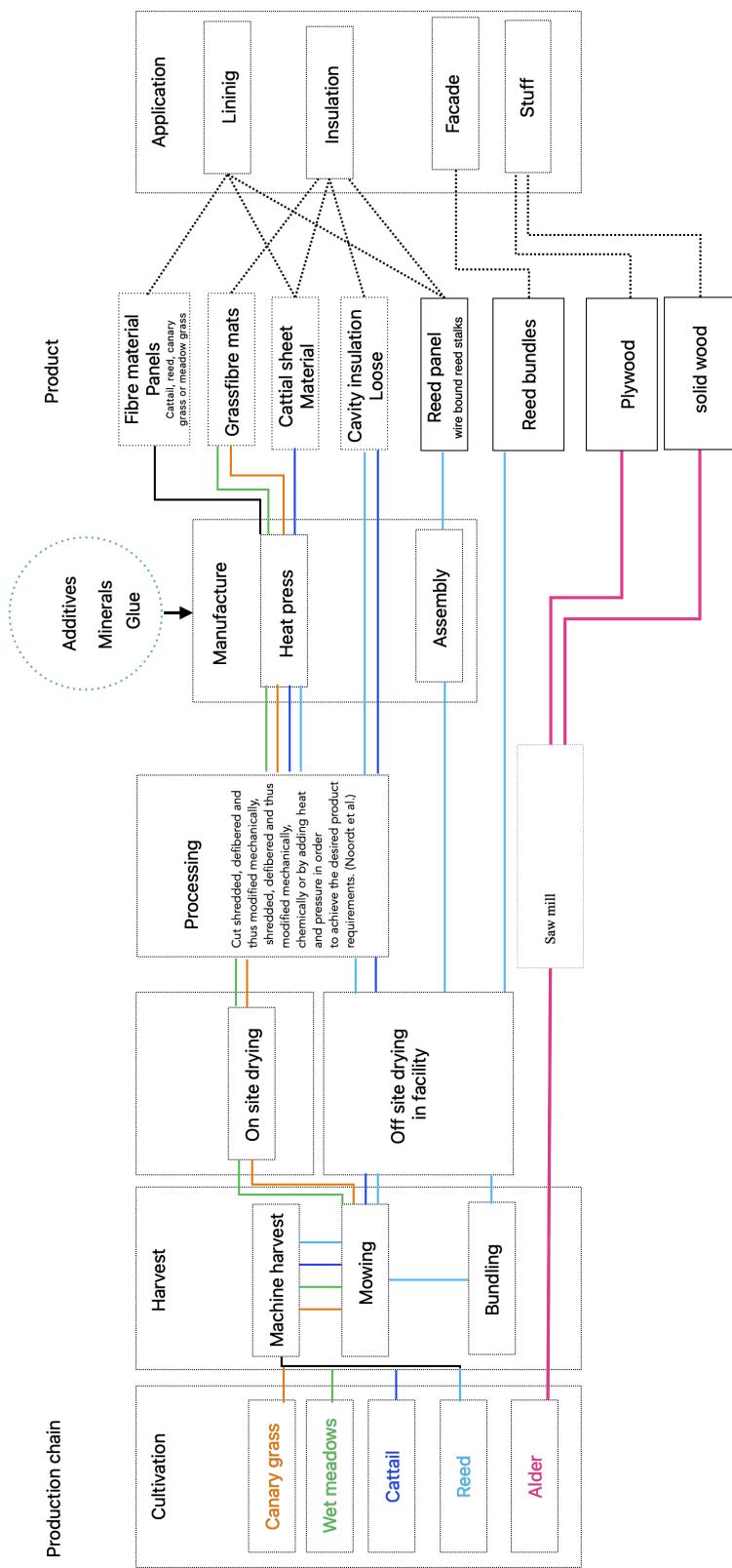
Wheatear wood panel
Manufactured by Fasol

Lithowood made from 100% wood meadow fibers
Manufactured by Zalto Technology GmbH

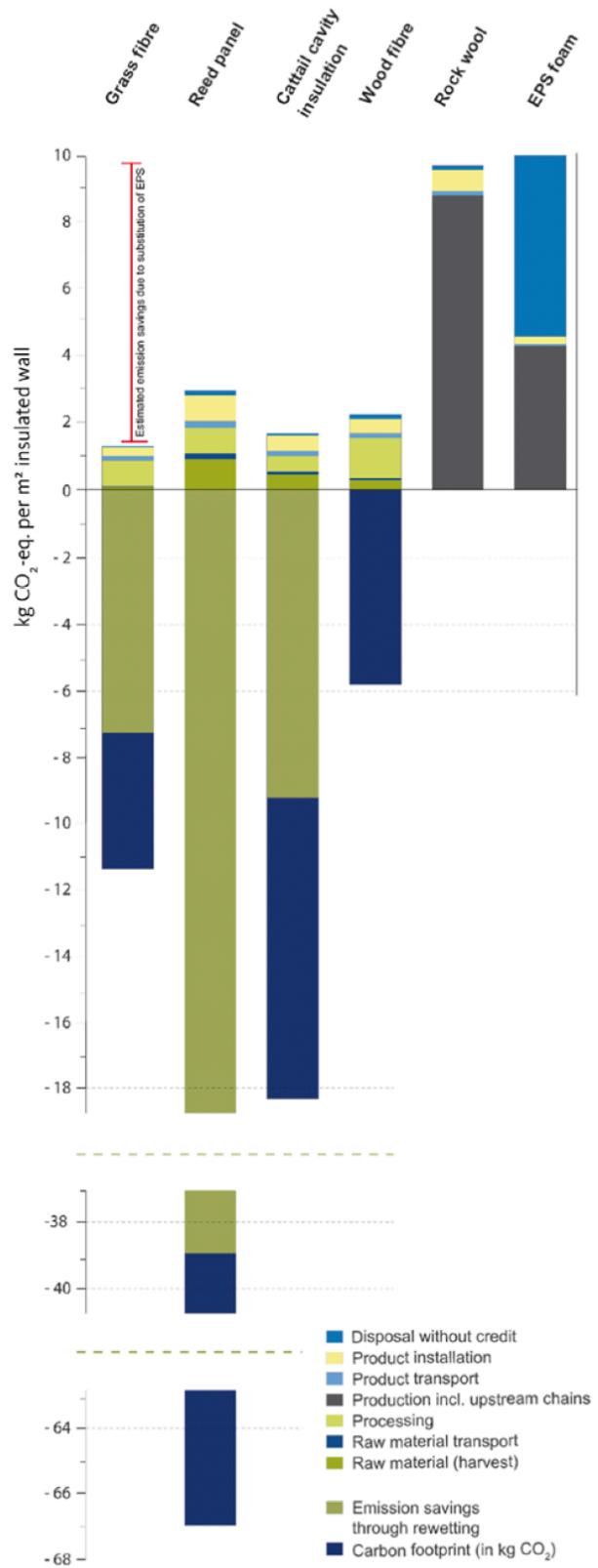
Strawboard
Manufactured by Leibniz Institut für Agrartechnik und Bodenökologie (IAB)

Igloohaus
Manufactured by Igloohaus Industrie

Alder timber
Processed and milled in Berlin



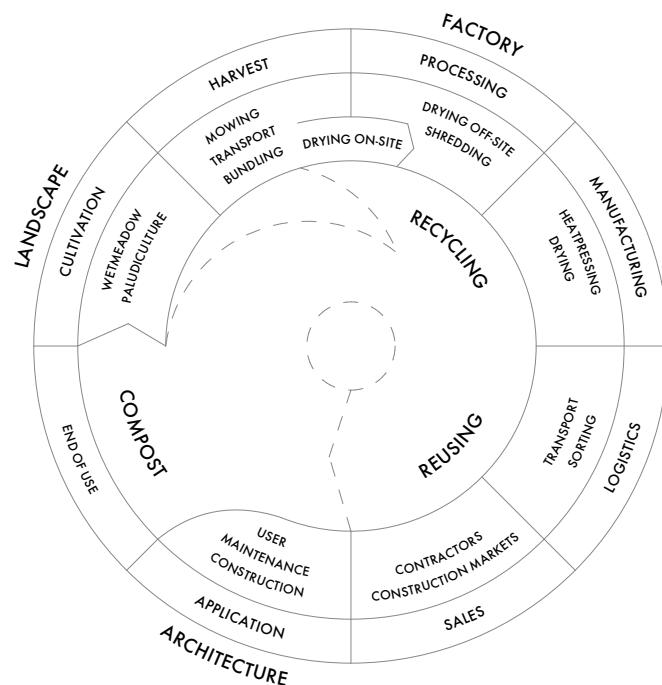
Paperback straw board
Distributed by Isnow



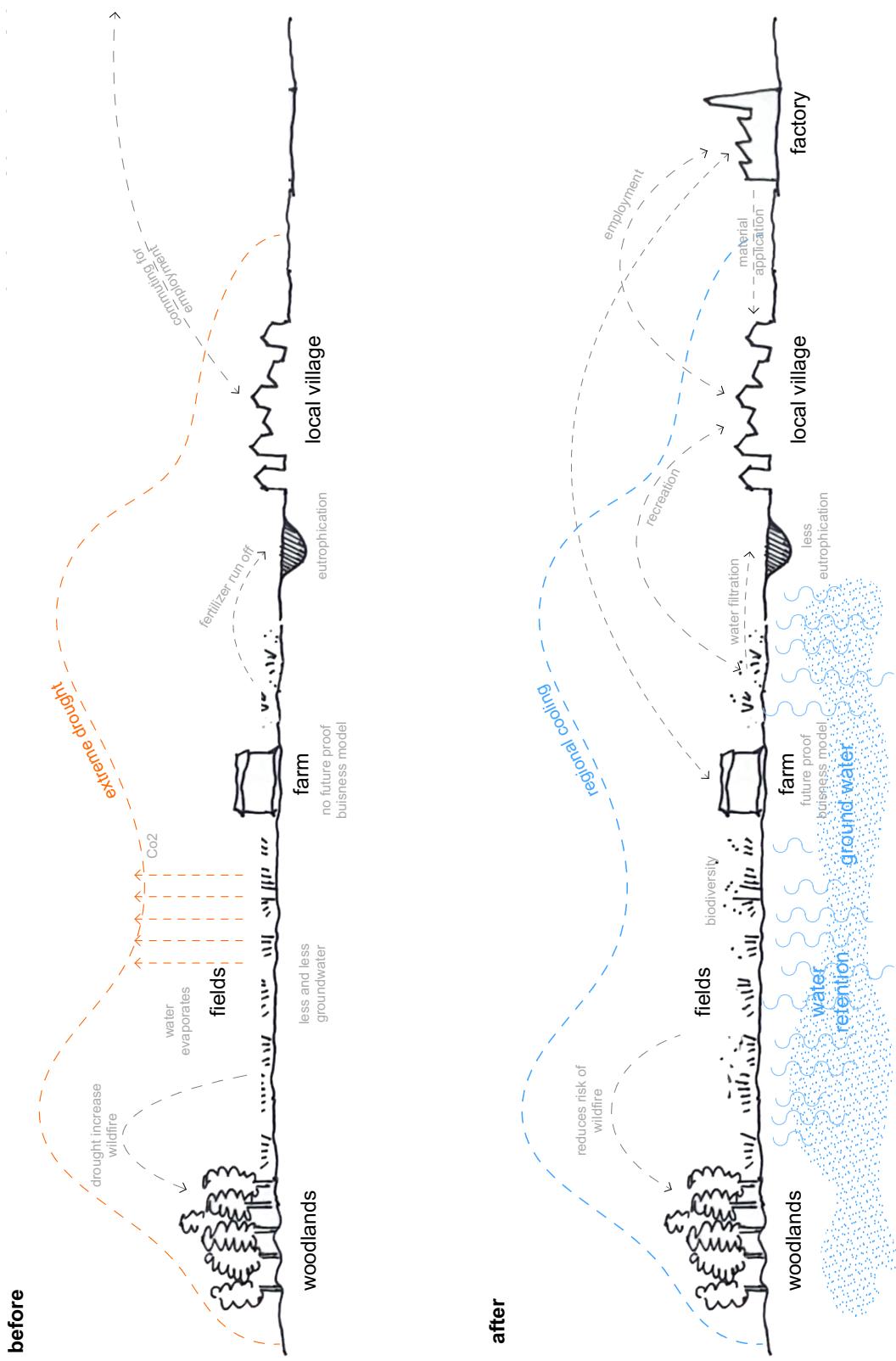
Processed meadow grass insulation
Manufactured by Brottmeth

Appendix 8: Construction Products (Islam & Moatazed-Keivani, 2023)

Appendix 9: Production chain (authors own image)



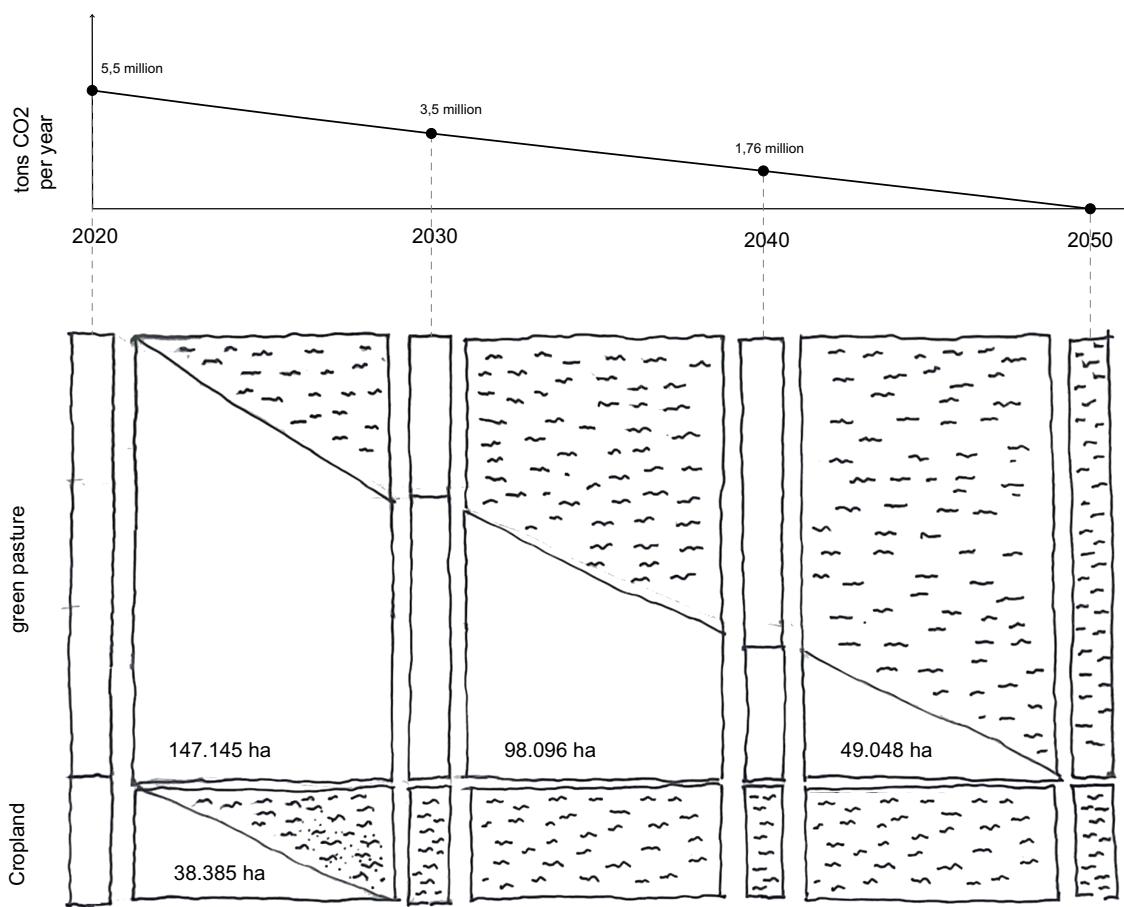
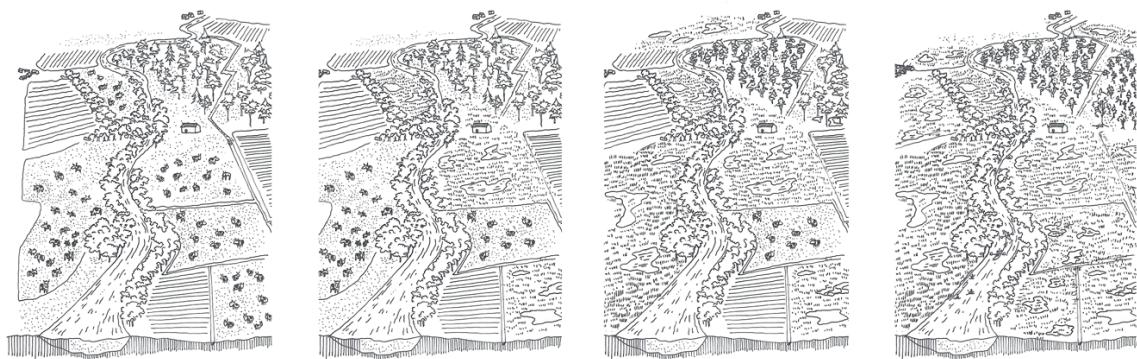
Appendix 10: Comparison of Co2 emissions of insulation materials (Nordt et al., 2024)

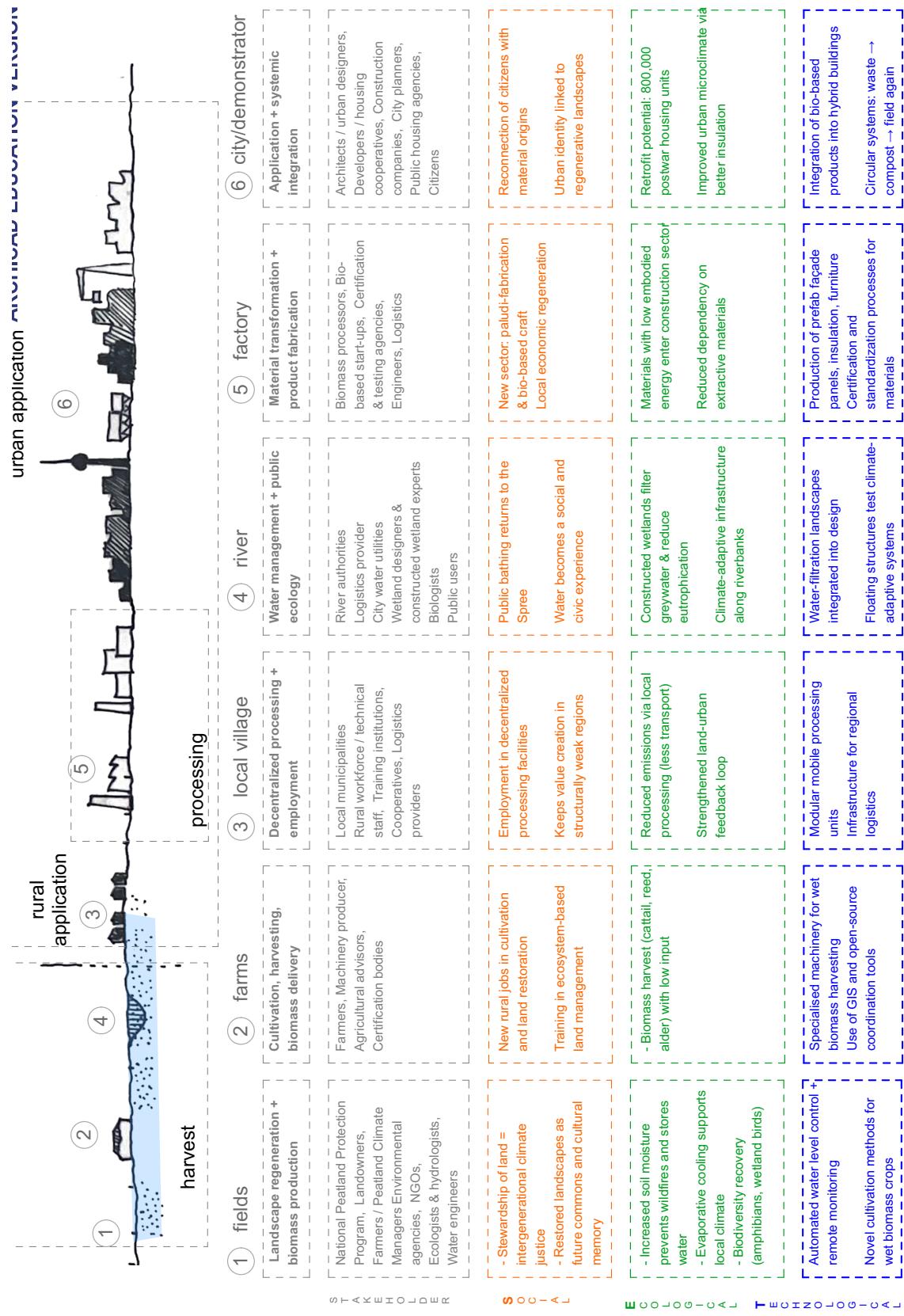

Tab. 3.5: Characteristic values of various insulation materials (prototypes and products) made from or with raw materials derived from paludiculture (Source: GMC 2022b: Steckbriefe „Produkte aus Paludikultur“ (Profiles “Products from paludiculture”))

Product	Application	Thermal conductivity [W/(m*K)]	Bulk density [kg/m ³]
Reed panel	Interior insulation, interior fittings	0,065	145
	Plaster base	0,059	190–220
	Interior/exterior/roof insulation	0,061	155
	Insulation/sound/plaster base board	0,055	
TyphaBoard cattail plate	Interior/roof/sound insulation	0,040	
		0,048–0,060	
Cavity insulation	Insulation	0,040	80–90
Insulation mats	Grass: Interior/exterior/roof insulation	0,041	40
Foam boards	Insulation material	0,037–0,040	65–97

Appendix 11: Characteristic Values of Insulation materials (Islam & Moatazed-Keivani, 2023)

Appendix 12: Value chain Panel to End of Life (authors own image)



Appendix 13: landscape perspective (authors own image)


Appendix n. 14: future landscape authors own image

Appendix n.15: present day landscape authors own image

Appendix 16: Adapted Graphic 2030-2040-2050 rewetting of Cropland and Green pasture
 (Tanneberger et al., 2021)

Appendix 17 : Vision 2020-2050 SET frame work

Appendix 18:

Interview transcript 21.05.2025

Josephine: Hallo Herr Petri, danke, dass Sie sich Zeit nehmen. Ich studiere Architektur und schreibe meine Masterarbeit zum Thema „Regionale Wertschöpfungskette Paludikultur in Berlin-Brandenburg“. Dabei bin ich auf Ihren Betrieb gestoßen, weil Sie einer der Pioniere sind, die das bereits umsetzen. Ich würde Ihnen gerne ein paar Fragen stellen, um einen praktischen Einblick zu bekommen – ist das okay?

Herr Petri: Ja, das ist in Ordnung.

Josephine: Super, vielen Dank. Vielleicht zunächst: Ist Ihr Hof schon lange in Familienbesitz?

Herr Petri: Ja, meine Eltern haben den Hof übernommen – das ist jetzt schon eine ganze Weile her, Mitte der 80er Jahre.

Josephine: Und wie lange bewirtschaften Sie wiedervernässte Flächen?

Herr Petri: Die ersten Flächen wurden Mitte der 80er Jahre wiedervernässt, vor allem im Rahmen des Naturschutzes. Richtig los ging es dann ab 2015 – seitdem betreiben wir das intensiver.

Josephine: Inwiefern merken Sie die Trockenheit der letzten Jahre?

Herr Petri: Die Trockenheit ist definitiv ein Thema. Besonders die Jahre 2008, 2009 und 2020 waren sehr trocken. In den Jahren danach hat sich das etwas erholt, aber dieses Jahr ist es wieder extrem. Was wir jedes Jahr merken, sind diese Frühjahrstrockenheiten – März, April, Mai ist es oft sehr warm und trocken. Dadurch verschiebt sich die Vegetation. Letztes Jahr sind viele Pflanzen vier Wochen früher in die Blüte gegangen, was dann wiederum zu Biomasseverlust führt.

Josephine: Wie hoch ist der Wasserstand aktuell auf Ihren Flächen?

Herr Petri: Das ist sehr unterschiedlich – wir haben Flächen mit 1–2 cm Wasser über der Grasnarbe, aber auch Flächen, bei denen der Wasserspiegel 20–30 cm darunter liegt. Das hängt stark vom Standort ab.

Josephine: Und wie läuft die Bewässerung? Haben Sie eine künstliche Steuerung?

Herr Petri: Wir bewässern nicht aktiv, sondern arbeiten mit Stauanlagen. Wir nutzen alte Entwässerungsgräben, in denen wir das Wasser zurückhalten. Oberflächen- und Regenwasser wird gestaut, sodass es nicht abfließen kann.

Josephine: Und wie wirkt sich diese Bewirtschaftung auf die Biodiversität aus?

Herr Petri: Sehr positiv. Wir haben eine hohe Insektenvielfalt, auch seltene Pflanzenarten, die auf der Roten Liste stehen. Vor allem bei Schmetterlingen und Pflanzenarten ist das gut sichtbar.

Josephine: Wie oft ernten Sie denn?

Herr Petri: Meist einmal im Jahr, maximal zweimal – je nach Nachfrage. Die Biomasse wird als Heu geerntet: gemäht, gewendet, getrocknet und dann zu Rundballen gepresst.

Josephine: Verarbeiten Sie die Biomasse auch selbst weiter?

Herr Petri: Teilweise. Hauptsächlich nutzen wir sie als Futtermittel, aber wir haben auch schon viele Experimente im Bereich Baustoffe gemacht: OSB-Platten, Dämmstoffe, Einblasdämmung, sogar Papier. Das alles in Zusammenarbeit mit dem Leibniz-Institut ATB.

Josephine: Was sind dabei die größten Herausforderungen?

Herr Petri: Der Markt fehlt. Es gibt keine standardisierten Produkte und keine Zulassungen für viele dieser Materialien. Auch geeignete Maschinen fehlen oft. Und ohne großes Interesse von Firmen und entsprechender Förderung (mind. 60–80 %), passiert da wenig. Die Herstellung ist außerdem noch relativ teuer – Paludi-Biomasse ist derzeit teurer als Holz.

Josephine: Und wie ist die Lage aktuell – gibt es Fortschritte?

Herr Petri: Wir sind Teil der „Allianz der Pioniere“ und arbeiten in Expertengruppen z. B. zu Bau- und Dämmstoffen. Es gibt erste Partnerschaften, wie mit der Otto Group, die 10 % Paludi-Biomasse in ihre Kartonagen mischt. Aber wirtschaftlich tragfähig ist das noch nicht breit aufgestellt.

Josephine: Mussten Sie auf dem Hof viel umstellen für die Paludikultur?

Herr Petri: Nein, nicht wirklich. Wir machen reine Nasswiesenwirtschaft, ohne spezielle Kulturen wie Rohrkolben. Das heißt, wir mussten keine großen Umstellungen machen, außer im Denken: andere Schnittzeitpunkte, kein Düngen, etc.

Josephine: Unterstützen Sie auch andere Landwirte bei der Umstellung?

Herr Petri: Ja, wir versuchen Fragen zu klären und Hilfestellung zu geben. Es werden mehr, die sich dafür interessieren. Aber viele fragen auch: „Was mache ich mit der Biomasse, wenn ich keine Milchkühe mehr habe?“ Die wirtschaftliche Perspektive fehlt vielerorts noch.

Josephine: Haben Sie Kontakt mit der Baubranche?

Herr Petri: Ja, durch die Allianz der Pioniere und die Expert Circles arbeiten wir eng mit Bauunternehmen zusammen. Ich bin Sprecher der Arbeitsgruppe „Biomassebereitstellung“ – wir stimmen dort Anforderungen zwischen Landwirtschaft und Industrie ab.

Josephine: Das ist super spannend. Vielen, vielen Dank, Herr Petri! Wäre es okay, wenn ich Teile des Interviews in meiner Arbeit verwende?

Herr Petri: Ja, sehr gerne. Ich würde mich freuen, wenn ich am Ende auch einen Einblick in Ihre Arbeit bekomme.

Josephine: Natürlich – ich schicke Ihnen dann gerne die fertige Version per E-Mail. Vielen Dank und einen schönen Tag noch!