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The haptic feedback signal in haptic interfaces is usually in the form of a force on the control device. In contrast,
the “active side stick”, investigated in the 80s and 90s, uses an admittance display, whereby the position of the
device is linked to the feedback signal, and force applied on the device is used as the control signal. These de-
vices are usually tuned in a serendipitous manner. To better understand the potential and tuning rules for these
devices, tuning is investigated with a model-based approach and verified in pilot-in-the loop experiments using
various aircraft dynamics. It was found that certain gain settings offered considerable benefits in terms of track-
ing performance as well as the control effort exerted by the pilot, while taking into account the system’s stability
margins. Based on these findings, a comprehensive tuning procedure is proposed for control systems involving an
active manipulator.

I. Introduction

IN RECENT years, haptics have received an increasing amount of at-
tention to improve the performance of human controllers (hereafter

referred to as pilots) in manual control tasks. Not only can they im-
prove performance in situations that are impractical to automate (e.g.,
exploratory tasks like robotic surgery [1] [2] and remotely-controlled
exploration vehicles [3] [4]), but also form a flexible alternative in sit-
uations where the automation fails to deliver (e.g., evasive maneuvers
or aircraft landings without functioning navigational systems). In some
of these applications, the automation is able to communicate its inten-
tions back to the pilot, while still providing the pilot with the possi-
bility to override those intentions. This design philosophy is referred
to as ‘haptic shared control’ [5] [6] [7]. In the current applications of
haptic shared control for aircraft and many of the ones that have been
researched recently, the pilot’s arm is either being pushed towards a
setting that results in a trajectory that is desired by the aircraft [8], or
the arm is being pushed away from settings that produce undesirable
or dangerous flight conditions [9] [10] [11]. This is typically done
through force feedback from the manipulator or active adjustment of
the manipulator’s mechanical properties.

Whereas these designs may improve pilot performance, they fail to
create a permanent and intuitive connection between the manipulator
and the vehicle itself which, to a certain degree, means that these two
objects move as two separate entities. Such a ‘passive manipulator’
configuration can be contrasted with the example of a person driving
a car, for which the steering wheel serves two major purposes. First
and foremost, it allows the pilot to send control commands to the vehi-
cle, as is the case for the passive manipulator. Second, the position of
the steering wheel is effectively coupled to the direction in which the
car is moving, which one can feel particularly when being confronted
with strong crosswinds. In other words, using the steering wheel, the
car permanently provides the pilot with a haptic representation of the
direction in which it is turning. This results in there being a permanent,
bilateral stream of information at the steering wheel that is facilitated
with haptic cues, which is a configuration referred to as a ‘haptic ad-
mittance display’ or ‘active manipulator’ in this paper.

A key advantage of such a configuration is that it essentially dele-
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gates a portion of the control task to the neuromuscular system (NMS).
Detecting and responding to disturbances like wind using visual and
vestibular (motion) cues takes time and brainpower, while the intrin-
sic mechanical properties of the arms as well as reflex arcs allow the
pilot to respond much quicker to any disturbances presented with the
motion of the manipulator. In doing so, the cognitive burden of the
task is largely reduced to only tracking a desired target (e.g., a road
or a certain flight path), making this configuration feel more intuitive
than the passive manipulator. This is one of the key findings produced
by Fu [12], who most recently studied this configuration in the context
of flight, which was done first by Hosman and Van der Vaart [13]. By
conducting a compensatory roll task, Fu [12] showed that an active ma-
nipulator can provide significant benefits over a passive manipulator, in
terms of tracking performance as well as control effort exerted by the
pilot.

Another benefit lies in the fast and direct link that the active manip-
ulator provides between pilot and aircraft, namely that it has the poten-
tial to stretch the limit of what systems pilots can stabilize and control
manually. This could prove particularly useful in cases of extreme tur-
bulence, malfunctioning stability augmentation systems or sudden de-
terioration of an aircraft’s dynamical behavior (e.g., due to wing dam-
age or engine failure).

This paper aims to determine whether the design of flight control
systems involving a haptic admittance display can be generalized to a
set of practical guidelines. If successful, this could lay the foundation
for future research of the more realistic and complex tasks in aircraft
control. More specifically, such research could revolve around the use
of a multi-dimensional (i.e., roll-pitch) control task, adaptive aircraft
dynamics and an on-board setting, thereby fully exploring the potential
of this control configuration.

To reach this objective, the technical details of the active manip-
ulator are first introduced in Section II, along with some key findings
with regards to the working principle of this configuration. This is fol-
lowed by a definition of the top-level approach for deriving the desired
guidelines in Section III. Afterwards, Section IV introduces the model
with which predictions are made for the experiment. Based on the key
findings from Section II and the observations made from the simula-
tion results, hypotheses are defined in Section V, along with details of
the experiment and the testing conditions that are based on said hy-
potheses. Afterwards, the results of this experiment are presented and
discussed in Sections VI and VII. Using these findings, the hypotheses
are revisited in Section VIII and proposals are made for a tuning pro-
cedure of the active manipulator and for future research topics in this
area. Finally, the report is concluded in Section IX.

II. Background
To gain an understanding of how the active manipulator functions, it
makes sense to compare it to the simpler and more familiar passive
manipulator, which is done using Figs. 1 and 2 for a rolling aircraft.
For both configurations holds that for a given deflection of the control

1
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Figure 1. A schematic overview of the passive manipulator con-
figuration, where the aircraft’s control surfaces are driven by the
measured manipulator deflection (xm).

Figure 2. A schematic overview of the active manipulator, where the aircraft’s con-
trol surfaces are driven by the measured moment of force applied by the pilot (mgrip),
and where the manipulator’s position (xm) is imposed on the pilot using measure-
ments of the aircraft’s roll motion, which is transformed by Hh f b(s).

surfaces (δa), the aircraft responds with the same rolling motion (φ).
For the passive manipulator, the aircraft determines the desired deflec-
tion of the control surfaces by measuring the angular deflection of the
manipulator (xm), which can be scaled digitally by some feed-forward
gain (K f wd) to affect the overall gain of the system. Only limited by the
mass, damping and stiffness of the manipulator, the pilot is completely
in charge of placing the manipulator at a desired xm by exerting some
force on it.

For the active manipulator, consider it to be a completely rigid ob-
ject first, as its motion is constrained by an electronic servo. In this
case, the aircraft’s control surfaces are not driven by the measured po-
sition (xm). Instead, the force applied to the manipulator by the pilot
is what drives them in this configuration. As the aircraft starts to roll
due to the deflected control surfaces, measurements of the aircraft’s
motion are transformed by a chosen transfer function Hh f b(s) and fed
back to the electronic servo, which rotates the manipulator in accor-
dance with the aircraft’s motion. Since xm now forms a representation
of the aircraft’s state, this effectively creates a haptic link between pilot
and aircraft.

Fu [12] showed that the active manipulator was particularly useful
for rejecting disturbances more effectively, while there were no sig-
nificant changes found in the target tracking performance compared
to the passive manipulator. This was done by comparing the power
spectral density of the error signal e for the passive and active ma-
nipulator (see Fig. 3 for a clarification of the compensatory tracking
task at hand), which showed that the active manipulator greatly attenu-
ated signal power introduced into the system by the disturbance forcing
function ( fd).

Figure 3. Schematic diagram of the compensatory tracking task, which
shows how the highlighted disturbance rejection loop affects the CE dy-
namics effectively experienced by the pilot (modified image from Fu [12]).

Besides that, Fu reported three other key findings. First, the bene-
fits provided by the active manipulator became more pronounced as the
signal bandwidth of the forcing functions increased (in other words, as
the control task became more challenging). These benefits in terms of
tracking performance and exerted control effort were determined us-
ing the root-mean-square (RMS) value of the error signal (e) and the
grip moment (mgrip), respectively. The second finding is related to the
crossover region that McRuer et al. [14] determined for the compen-
satory roll task (ωc ≈ 4.5−7 rad/s), which in turn is related to the max-
imum frequency at which pilots can send conscious control commands

to the system. Fu [12] discovered through the feedback from partici-
pants that haptic cues beyond this frequency band were unhelpful and
merely added workload for the pilot. To combat this issue, a lag-lead
filter was designed for the haptic feedback loop to attenuate signals be-
yond this frequency band, which led to increased user comfort without
any significant change in tracking performance. Third, Fu [12] showed
that the character of Hh f b(s) has a decisive impact on the controlled
element (CE) dynamics that the pilot effectively experiences. In the
new configuration, the original CE dynamics (i.e., the aircraft dynam-
ics, represented by Hc(s) in Fig. 3) are essentially integrated into the
positioning of the manipulator. As a result, pilots get the impression
that they are controlling a system equal to Hc,e f f (s) = 1

Hh f b(s) .
The previous point highlights the design freedom that this config-

uration provides. This benefit can be combined with the findings that
were produced by McRuer [14] with regards to compensatory track-
ing tasks. Based on a wide array of experimental conditions that were
tested, McRuer concluded that pilots were most effective at control-
ling systems that have single integrator dynamics

(
i.e., Hc(s) = Kc

s

)
.

In these experiments, the adaptive nature of the pilot played a key role
in realizing very similar combined open-loop dynamics (i.e, HOL(s) =
Hp(s)Hc(s)) for different values of Kc and different signal bandwidths
for the system’s forcing functions ft and fd. Combining the pilot’s
preference to converge to the same open-loop dynamics resembling
HOL(s) = ωc

s with the argument that Hc,e f f (s) = 1
Hh f b(s) , one could ar-

gue that the preferred haptic feedback transfer function is defined as
Hh f b(s) = Kh f b s, where Kh f b =

1
ωc

. In other words, pure rate feedback
seems to be the ideal option for Hh f b(s).

III. Top-level approach
When designing a control system involving an active manipulator, nu-
merous factors need to be considered (see Figure 4 for clarification):

1. The feed-forward gain K f wd, which scales the force that is ap-
plied by the pilot before it actuates the aircraft’s control surfaces.

2. The rate feed-back gain Kh f b, which scales the magnitude of the
manipulator’s motion with respect to the measured rotation rate
of the aircraft. This gain is referred to as Kφ̇ hereafter, since we
are dealing with aircraft roll.

3. The controlled element dynamics.
4. The properties of the lag-lead filter in the haptic feedback loop

(denoted as Hlp f (s)). These have been determined by Fu [12]
experimentally by maximizing user comfort without sacrificing
performance, which is why this filter will remain unchanged in
this paper.

5. The spectral properties of the target and disturbance forcing
functions (i.e., the general mission difficulty).

6. The adaptive and complex nature of the pilot’s control behavior.

In order to generalize the design of such a control configuration, the
compensatory tracking task tested by Fu [12] is first replicated in simu-
lation, using a model that accurately describes the human elements that
facilitate the active stick’s working principle (i.e., the neuromuscular
system). The neuromuscular model developed at TU Delft (TUD) [15]
lends itself well for this purpose. The participants in Fu’s experimental
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conditions were exposed to three types of forcing functions of various
difficulties, which evoked different types of control behavior from the
pilots. By fitting the model on the experimental frequency response
functions (FRFs) generated by Fu of these conditions, three pilot set-
tings (i.e., the ‘relaxed’, ‘average’ and ‘ambitious’ pilot) are defined,
which encompass a range of possible control styles.

Second, the experiment is simulated with the roll dynamics of three
aircraft (the Boeing 747 as used by Fu [12], the Cessna Citation II as
identified by TUD at a standard altitude of 30,000 ft and an airspeed
of 121.3 m/s [16] and a linearized model of the F-16 at the same flight
condition [17]), the three pilot control styles and 186 manipulator set-
tings, which are defined by K f wd and Kφ̇. Fu already researched the
effect of forcing function signal bandwidth, which is why this degree
of freedom is not explored any further in this paper. Fu’s intermedi-
ate and high signal bandwidth forcing functions posed too much of a
challenge to participants, which made these signals unsuitable to in-
vestigate the effects of other design parameters effectively. This is why
the low signal bandwidth forcing functions were selected for modelling
and experimental purposes in this paper instead. As a result, the fac-
torial combination of three aircraft, three pilot control styles and 186
manipulator settings amounted to 1,674 simulated conditions.

Third, based on observations from these results and findings pro-
duced by McRuer [14] and Fu [12] earlier, hypotheses are stated with
regards to the optimal feed-forward and feed-back gain. Based on this,
the testing conditions are derived for another compensatory tracking
task experiment in the Human-Machine Interface (HMI-) lab at TUD.

IV. Model predictions

This section describes the model-based approach that has been used to
make predictions about the experiment that was going to be conducted.
A schematic overview of the Simulink model that replicates the exper-
iment is shown in Figure 4. Section IV A first explains how the pilot’s
control behavior has been defined. The most elaborate aspect of this
definition is summarized in the green ‘NMS model’ block, which con-
tains the neuromuscular model from De Vlugt et al. [15]. This model
was selected, as it defines the relevant neuromuscular sensors (propri-
oceptors), actuators (muscles) and linkage (neurons) as separate dy-
namical systems. Afterwards, Section IV B describes the remaining
information that was used to run the simulations, the observations of
whose output are presented in Section IV C.

A. Quantification of pilot control behavior

Whereas the NMS model from De Vlugt [15] is sufficient to define the
pilot’s reflexive and inertial responses, the cognitive process that also
drives the NMS needs a definition as well. The widely-used simpli-
fied precision model introduced by McRuer and Jex [18] represents the
pilot’s equalization of the perceived error signal (e), which enters the
pilot through a second-order 0.25 s Padé filter to account for the visual
time delay [19]. A noise term is injected at the error signal, which rep-
resents the pilot’s non-linear control behavior. Due to the fact that pure
rate feedback is employed and the pilot will thereby effectively experi-
ence single integrator CE dynamics, a first-order lag [20] shaping filter
Hs f (s) with a corner frequency of 10 rad/s [21] is used for the noise
term. The force sensors and electronic servos inside the manipulator
are assumed to be ideal and the lag-lead filter implemented by Fu [12]
to attenuate high-frequency components is represented by Hlp f (s).

Participants were subjected to sinusoidal target and disturbance
forcing functions (Equations 1 and 2, respectively) for runs that lasted
90 seconds, of which the last 81.92 seconds were used for data analy-
sis. Using these forcing functions, Fu [12] was able to experimentally
determine FRFs of the average target tracking open-loop

(
Ht,OL( jωt) =

φ( jωt)
E( jωt)

)
and closed-loop responses

(
Ht,CL( jωt) =

φ( jωt)
Ft( jωt)

)
, and the dis-

turbance rejection open-loop
(
Hd,OL( jωd) = Up( jωd )

Fd ( jωd )

)
and closed-loop

responses
(
Hd,CL( jωd) = φ( jωd )

Fd ( jωd )

)
, each containing ten data points that

all had their own standard deviation.

ft(t) =
10∑

k=1

At(k) sin
(
ωt(k)t + θt(k)

)
(1)

fd(t) =
10∑

k=1

Ad(k) sin
(
ωd(k)t + θd(k)

)
(2)

In total, sixteen coefficients were used to model the pilot’s con-
trol response: twelve for the definition of the NMS model from De
Vlugt [15] and four for the cognitive equalization of the visually per-
ceived error e. To determine three representative settings for these co-
efficients, two major steps were taken. First, six of the sixteen coef-
ficients that defined the visual response time [19], neural signal trans-
portation [22] and arm inertia [23] were fixed based on literature. Af-
terwards, the model was fitted on the experimental FRFs of the various
conditions tested by Fu [12], while taking into account realistic limits
for the remaining coefficients [24] [25] [26]. For every testing con-
dition, a sum-of-squares cost function was defined involving the 40
available data points of that condition. Before the non-linear optimiza-
tion MATLAB routine fmincon.m estimated the ten coefficients for the
different conditions, weights were applied to every data point based on
the relative size of their standard deviation.

Finally, this resulted in three pilot control styles, where the ‘ambi-
tious’ and ‘relaxed’ setting, respectively, resembled the strongest and
weakest tracking performance recorded by Fu [12], with the ‘average’
setting, as the name suggests, being approximately halfway in between
the other two. Appendix B can be consulted for a more detailed de-
scription of the model that was used and an overview is provided of all
coefficients that quantify the model for the relaxed, average and ambi-
tious pilot.

B. Quantification of hardware and simulation strategy

The roll dynamics of the aircraft are defined by the aileron-to-roll-
angle dynamics φ(s)

δa(s) and the aileron’s actuator dynamics Hact(s), as
shown in Equation 3. For the B747, the F-16 and the Cessna, this re-
sulted in the transfer functions shown in Equations 5, 7 and 9, respec-
tively. The simulated setting ranges of the manipulator were extended
up to the point where the system became unstable for nearly all air-
craft dynamics and pilot settings, which resulted in a setting range of
K f wd = [0.5, 1, ..., 10.5] and Kφ̇ = [0.075, 0.150, ..., 0.600].

Hc(s) = Hact(s) · φ(s)
δa(s)

(3)

Hc,B747 =
1

0.083s + 1
· 12s2 + 4.362s + 5.313

s4 + 2.704s3 + 1.117s2 + 1.518s
(4)

=
7.906s2 + 2.873s + 3.5

0.0547s5 + 0.8067s4 + 1.842s3 + 0.819s2 + s
(5)

Hc,F16 =
1

0.0495s + 1
· 31.12s2 + 9.354s + 92.11

s4 + 1.212s3 + 5.586s2 + 3.587s + 0.03915
(6)

=
31.12s2 + 9.354s + 92.11

0.1555s5 + 3.33s4 + 4.675s3 + 18.11s2 + 11.27s + 0.123
(7)

Hc,CC =
1

0.083s + 1
· 22.86s2 + 12.53s + 144.7

s4 + 2.535s3 + 7.019s2 + 13.87s − 0.2035
(8)

=
22.86s2 + 12.53s + 144.7

0.0830s5 + 1.21s4 + 3.118s3 + 8.17s2 + 13.86s − 0.2035
(9)

For every simulated run, the cognitive non-linearities were gener-
ated using the white noise signal fn,c, which gave the simulated perfor-
mance a stochastic nature. To generate representative results for a given
model condition, 30 runs that produced a power signal-to-noise ratio at
the perceived error e of 10, as supported by Van der El et al. [21] (with
9.95 <SNR(e)< 10.05 deemed acceptable), were averaged to produce
the simulation outputs that are summarized in Figure 5. As the pilot
can readily produce tracking errors and control forces that are equal
and of opposing signs across any given run, the RMS values of e and
mgrip are deemed the most suitable metrics to assess the pilot’s tracking
performance and exerted control effort, respectively.
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Figure 4. A schematic overview of the Simulink model that is used to simulate the experiment.

Figure 5. The simulation output of all model conditions, where the RMS of the error signal e is a measure for the tracking performance and the RMS of
mgrip is a measure for the amount of control effort exerted by the pilot. To save space but maintain a decent impression of overall performance, only the
highest and lowest values for RMS (e) and RMS (mgrip) have been indicated in the heatmaps for most aircraft. The setting that Fu [12] tested at is indicated
with a blue circle, to highlight how closely the hypothesized optimum (red diamond) was approached through trial and error in the simulator at the selected
feedback gain of Kφ̇ = 0.2857.

C. Observations

While processing the simulation output, some of the model condi-
tions in the heatmaps of Figure 5 have been blocked with two different
shades of gray. This is done for the following reasons:

• Dark gray: unstable model condition. The value for which K f wd
causes system instability reduces as the pilot becomes more ag-
gressive. Similarly, the minimum Kφ̇ required for stability in-
creases for a more aggressive control style.

• Light gray: model condition for which oscillations of extremely
high frequency and intensity occurred in the system’s signals.
For many of these conditions, the system seemed to be able
to track the target signal, however, this was realized using an
RMS (mgrip) that was in the order of 103 larger than the largest
values reported by Fu [12]. These results are clearly unrealistic
and are, therefore, omitted from the heatmaps. The manipula-
tor settings at which this oscillatory behavior occurred seemed
to be independent of the pilot’s control style, but were mostly
affected by the CE dynamics.

Looking at Figure 5, several observations can be made. First, the
value for Kφ̇ that consistently produces the best results for all aircraft

in terms of tracking performance and control effort seems to hover at
≈ 0.225. For all aircraft, a more aggressive control style does seem
to make larger values for Kφ̇ more viable in terms of tracking perfor-
mance. In terms of control effort, however, an optimum appears for
most aircraft when the pilot becomes more aggressive, which further
supports an ‘optimal’ value for Kφ̇ of ≈ 0.225. Combining this point
with the observation made about Kφ̇ for the unstable model conditions,
a human performance plateau is implied for this control configuration.

Second, for any given feedback gain, both the tracking perfor-
mance and required control effort seem to improve for an increasing
K f wd (except for the situations with ambitious control styles, where
RMS (mgrip) does increase), however, the added returns diminish as the
oscillatory zone is approached. Whereas the practical consequences of
entering this zone are unknown at this point, it is safe to assume that
these conditions will result in system instability. Approaching this zone
would thereby decrease stability margins. Selecting an ‘optimal’ K f wd
based on the model condition that resulted in the lowest RMS (mgrip)
for an ambitious control style resulted in a safety factor on K f wd of at
least 1.5 for all aircraft before the oscillatory zone was reached, which
was deemed acceptable for protecting pilots from destabilizing the sys-
tem. As a result, the supposed optimal feed-forward gains became
(K f wd)opt,B747 ≈ 3.5, (K f wd)opt,F16 ≈ 4 and (K f wd)opt,CC ≈ 2, respec-
tively.
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Third, the pilot seems to reap most (if not all) performance bene-
fits from the active stick configuration as a relaxed controller already.
Whereas there seems to be some tracking performance to be gained
from having a more ambitious control style for the relatively slow re-
sponding B747, the pilot seems to be rewarded with diminishing track-
ing performance returns as the aircraft becomes faster / more nervous.

A possible explanation as to why (Kφ̇)opt for the compensatory roll
task seems to be largely independent of the CE dynamics and the pilot’s
control style can be found in the work from McRuer [14]. McRuer re-
ported that pilots consistently adapt their control behavior Hp(s) to pro-
duce the same open-loop dynamics |HpHc| ≈ ωc

s , where the preferred
gain crossover frequency ωc was estimated to be around 4.75 rad/s for
a compensatory tracking task in this control context (i.e., a side stick in
pure lateral motion). Combining the pilot’s tendency to shape the open-
loop dynamics to become ωc

s with the idea that Hc,e f f (s) = 1
Kφ̇ s , one

could argue that for this control context (Kφ̇)opt =
1
ωc
≈ 1

4.75 = 0.2105,
which is supported by the simulation output shown in Figure 5.

Figure 6. Bode plot of the roll dynamics and the accompanying gain and
phase crossover points of the Boeing 747 (blue, circle), F-16 (red, diamond)
and Cessna Citation (yellow, square). The highlighted area represents the
crossover region related to this task (ωc ≈ 4.5 − 7 rad/s) [18]. The second-
order system approximations of |Hc | for the three aircraft are indicated with
dashed lines.

To determine why the simulations suggest a (K f wd)opt of about
3.5, 4 and 2 for the B747, the F-16 and the Cessna, respectively, a
possible explanation could once again be found in the findings from
McRuer [14]. McRuer determined that the character of the CE dynam-
ics around the crossover region play a decisive role when designing
for and assessing human performance in manual control tasks. Even
though Equations 5, 7 and 9 show that the aircraft roll dynamics are
all third-order systems, Figure 6 shows that the three aircraft dynam-
ics all resemble second-order systems in the crossover region for this
task, which means that pilots will likely compensate for controlling
a second-order system. When the s2-term in the numerator of Equa-
tions 5, 7 and 9 is divided by the s4-term in the denominator of the
same equations, the second-order systems that the respective aircraft
resemble around this frequency domain can be approximated using(
Hc(s) = Kd

s2

)
. This resulted in Kd,B747 = 9.800, Kd,F16 = 9.346 and

Kd,CC = 18.89, which produced the approximations that are shown with
dashed lines in Figure 6. The relation Kd · (K f wd)opt = C f wd could be
a possible explanation as to why (K f wd)opt,CC is about half the value
of the other two, with (K f wd)opt,B747 being only slightly smaller than
(K f wd)opt,F16.

While the rationale behind the value for C f wd is still unknown, a
global minimum does seem to form for RMS (mgrip) for all aircraft, as
the pilot’s control behavior becomes more aggressive. Based on this
argument, the simulation output would suggest that for CE dynamics
resembling 1) second-order systems inside the crossover region related
to 2) this specific control context, a value of C f wd ≈ 37 would be called
for. While these findings leave something to be desired, there is a silver
lining to be found when considering the work carried out by Fu [12].
After heuristically selecting a feedback gain (Kφ̇ = 0.2857), Fu selected
K f wd based on manual trial and error in the simulator, which resulted
in the selection of K f wd = 2.5. Looking at the bottom right matrix
in Figure 5, one can notice how closely Fu was able to approach the
simulated minimum for RMS (mgrip) given that feedback gain, with the
closest simulated feedback gain (Kφ̇ = 0.3) resulting in RMS (mgrip) =
0.0641 Nm, while (RMS (mgrip))opt = 0.0624 Nm for Kφ̇ = 0.3.

V. Method
Following the analysis from Section IV, the predicted effects of differ-
ent CE dynamics as well as the haptic admittance display feed-forward
and feed-back gains are put to the test in an experiment. First, hypothe-
ses are formalized, which form the basis of the conditions to be tested.
Afterwards, details are provided about the experiment design, along
with a description of the envisioned data analyses.

A. Hypotheses

Based on the findings presented in Section II and at the end of Section
IV, we expect that for a compensatory tracking task in a given control
context (in this case defined as a side stick in lateral motion):

1. (Kφ̇)opt is the inverse of ωc, where HOL(s) = ωc
s are the open-

loop dynamics to which pilots prefer to converge in a passive
manipulator configuration. As a result, (Kφ̇)opt is hypothesized
to be constant for a given control context.

2. (K f wd)opt is inversely proportional to Kd, where Hd(s) = Kd
sX

approximates the CE dynamics as a simple X-th order system
around the crossover region related to this control context.

3. (K f wd)opt can be determined using the simulated global mini-
mum that forms for RMS (mgrip) as pilots adopt a more ambi-
tious control style.

B. Experiment design

1 Apparatus: A target-following and disturbance-rejection compen-
satory tracking task highly similar to the one conducted by Fu [12] was
tested in the HMI-lab at TU Delft. This was done using the hardware
that is shown in Figures 7 and 8. Participants were tasked with min-
imizing the error angle e of the aircraft on the digital flight display,
which effectively meant keeping the aircraft level with the virtual hori-
zon. The error e came to be as a result of the difference between the
target forcing function ft and the current aircraft roll angle φ, while be-
ing perturbed by another forcing function fd that represents turbulence.
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The properties of these sinusoidal forcing functions, whose definitions
are presented in Equations 1 and 2, are shown in Table 1. To main-
tain coherency with the work carried out before, these properties are
identical to those of the low bandwidth signal tested by Fu [12].

Figure 7. The manipulator and liquid crystal display (LCD) screen that
were used for the experiment [12].

Figure 8. The simplified artificial horizon that participants saw on the LCD
screen, which includes a clarification of e for the reader (modified image
from Fu [12]).

Table 1. Properties of the target and disturbance forcing functions

ft fd

k Period ωt,
rad/s

At,
rad

φt,
rad Period ωd,

rad/s
Ad,
rad

φd,
rad

1 5 0.3835 0.1864 1.7411 6 0.4602 0.0242 1.2829
2 11 0.8437 0.0910 5.4434 13 0.9971 0.0102 0.9194
3 21 1.6107 0.0277 3.3194 23 1.7641 0.0097 1.8334
4 37 2.8379 0.0094 3.8945 38 2.9146 0.0084 2.5865
5 51 3.9117 0.0056 1.2212 53 4.0650 0.0090 1.5750
6 71 5.4456 0.0039 4.3954 73 5.5990 0.0120 3.7298
7 101 7.7466 0.0033 3.0397 103 7.9000 0.0215 1.5056
8 137 10.5078 0.0032 0.0160 139 10.6612 0.0413 3.1201
9 191 14.6495 0.0031 5.4767 194 14.8796 0.0934 1.0491
10 224 17.1806 0.0031 3.4525 227 17.4107 0.1407 4.8887

2 Independent variables: The experiment has three independent
variables that are all tested at two levels: K f wd, Kφ̇ and the CE dy-
namics. For the two aircraft that are tested, the values for K f wd and Kφ̇

are based on what is deemed optimal by the hypotheses, and double of
that value. Table 2 provides an overview of the six conditions that are
tested by all participants. It should be noted that four additional condi-
tions (indicated in yellow) were all intended to be tested by a subgroup
of the participants. The findings with regards to these extra conditions
are discussed in Section VII, after the findings of the first six are pre-
sented in Section VI.

Furthermore, Table 2 emphasizes that (Kφ̇)opt is hypothesized to
be constant and equal to 0.2105, as the control context is identical for
both aircraft. As for the selection of the two aircraft, Section IV sug-
gests that (K f wd)opt is quite similar for the B747 and the F-16, which is

why one of these two was deemed the most suitable candidate to dis-
regard. The B747 made it through the aircraft selection, as it increases
the coherency between this paper and the results generated earlier by
Fu [12], which was done solely with said aircraft. As mentioned in
Section IV, the optimal feed-forward gains that correspond with these
aircraft are (K f wd)opt,B747 = 3.5 and (K f wd)opt,CC = 2.

Table 2. All conditions that were tested before and during the experiment.
Besides the six conditions that were tested by all participants, the four in-
dicated in yellow were each intended to be tested by a subgroup of the par-
ticipants only (see Section VII for more information).

K f wd
Aircraft Kφ̇ (K f wd)opt 2 · (K f wd)opt 3 · (K f wd)opt

(Kφ̇)opt(= 0.2105) 1 2 7B747 2 · (Kφ̇)opt(= 0.4210) 3 9

(Kφ̇)opt(= 0.2105) 4 5 8Cessna
Citation 2 · (Kφ̇)opt(= 0.4210) 6 10

3 Procedure: Twelve student volunteers, whose experience ranged
from video games to glider pilot licenses, performed the six conditions
shown in Table 2. For one half of the participants, the conditions of
the B747 were first tested in a random order and for the other half
the ones of the Cessna Citation, such that the twelve unique sequences
resulting from this were all tested by one person. Afterwards, each
participant would test the yellow condition that was assigned to them
randomly. The document that was used to brief participants can be
found in Appendix C.

Identical to the way the previous experiment was conducted and
the current one was modeled, participants conducted runs of 90 sec-
onds for every condition, of which the last 81.92 seconds was used for
analysis to negate any transient effects from the signal ramp-up. Par-
ticipants were tasked with minimizing the RMS (e), which was read
out to them after every run to keep them involved and motivated. For
every condition, runs of 90 seconds were added until the tracking per-
formance stabilized for five consecutive runs, leading to an average of
eight runs per condition. Consequently, the measurements of only the
last five runs for every condition were used for the final analysis.

C. Data analysis
During the experiment, measurements of the aircraft’s roll angle (φ),
the forcing functions ( ft and fd) as well as the force exerted by the pilot
on the manipulator (mmeas) were recorded at a sampling frequency of
100 Hz. Using these measurements, as well as two signals that were
derived from this (e = ft − φ and up = K f wd · mmeas), various analyses
were conducted.

1 Time domain: the overall performance of the participants is as-
sessed in terms of 1) one’s ability to track the target and 2) the amount
of effort it took. The tracking performance is assessed by calculating
RMS (e) and the exerted control effort is quantified using RMS (mmeas).

2 Frequency domain: the use of multisine forcing functions allows
for the identification of the participant’s frequency responses to ft and
fd at the frequencies jωt and jωd, respectively. This results in FRFs
for the target tracking open-loop

(
HtOL( jωt) =

φ( jωt)
E( jωt)

)
and closed-loop

response
(
HtCL( jωt) =

φ( jωt)
Ft( jωt)

)
, as well as the disturbance rejection

open-loop response
(
HdOL( jωd) = Up( jωd )

U( jωd )

)
. As is argued by Fu [12]

and supported by Figure 4, the CE dynamics are by default present in
the numerator of the disturbance rejection closed-loop response, which
does not make it straightforward to interpret the impact of fd on φ.
Therefore, the following adjustment is made:

|HdCL( jωd)| =
∣∣∣∣∣
φ( jωd)
Fd( jωd)

/Hc( jωd)
∣∣∣∣∣ (10)

∠HdCL( jωd) = ∠ φ( jωd)
Fd( jωd)

− ∠Hc( jωd) (11)

The RMS -values as well as the crossover characteristics that re-
sult from the Fourier analysis are tested for normality using the Kol-
mogorov - Smirnov (K-S) test, after which all variables that passed
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Figure 9. All FRFs related to Conditions 2 (blue circle) and 5 (red triangle). All values are reported as mean ± std. deviation.

Figure 10. The RMS values of the tracking error e and the grip moment mgrip for all B747 (blue, left) and Cessna Citation (red, right) conditions.

the test are subjected to two different two-way analyses of variance
(ANOVAs): one investigating the variable pair (CE dynamics / K f wd)
and the other the pair (CE dynamics/Kφ̇). Whenever a variable can-
not be considered as normally distributed for at least one of the tested
conditions, a Friedman’s ANOVA is conducted and a Wilcoxon signed-
rank test is used to check for significant differences between the rele-
vant conditions. Furthermore, it should be noted that all these variables
have been corrected for between-subject variability.

VI. Experiment results
Figure 9 shows all FRFs related to Conditions 2 and 5, such that the
reader can get a general impression of the pilot’s control behavior. Ap-
pendix D can be consulted to get a complete overview, as it compares
the FRFs of all conditions in all possible combinations that can be of
interest. The values that represent the overall performance, target track-
ing crossover characteristics and disturbance rejection crossover char-
acteristics for Conditions 1 to 6 are shown in Figures 10, 11 and 12,
respectively.

All variables were found to be normally distributed, except for
RMS (mgrip) and ωc,d. These variables produced a significant K-S test
for one and three of the six testing conditions, respectively. This is
why their effects are not presented among the ANOVA significance
tests from Table 3, but are presented separately using non-parametric
tests in Table 4 instead.

A. Tracking error and exerted control effort
When looking at Figure 10 and Tables 3 and 4, several things stand out.
One of the strongest main effects here is related to the conditions with
a double K f wd, which resulted in a significantly lower RMS (e) than
their single K f wd counterparts. To a lesser extent, RMS (e) also reduced
significantly by flying the slower / more stable B747, and for the condi-
tions that used a double Kφ̇ as opposed to their single Kφ̇ counterparts.

Regarding the exerted control effort, the Wilcoxon signed-rank
tests following the significant Friedman ANOVA in Table 4 show
that having a faster / more nervous aircraft significantly increased the
amount of control effort exerted by the pilot. Furthermore, a double
Kφ̇ also resulted in a significantly higher exerted control effort. Inter-
estingly, the exerted control effort significantly reduced to an equally
great extent for the conditions with a double K f wd.

Summarizing the findings with respect to the time-domain per-
formance metrics, it seems that faster / more nervous CE dynamics
reduce the pilot’s tracking performance while also making the task
more demanding. A double feed-back gain improves tracking per-
formance somewhat, however it comes at a clear cost in terms of in-
creased control effort / reduced user comfort, which was supported by
participants consistently referring to Conditions 3 and 6 as more ‘dif-
ficult’,‘jerky’,‘erratic’ and ‘hectic’. A double feed-forward gain, on
the other hand, seems to provide significant benefits, both in terms of
tracking performance and exerted control effort.
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Table 3. Significance tests for the ANOVAs conducted for the time domain metrics and the target tracking and disturbance rejection crossover characteristics

A/C type K f wd Kφ̇ A/C type * K f wd A/C type * Kφ̇

Tracking performance RMS (e) F value F(1,11)
8.775

F(1,11)
28.202

F(1,11)
8.465

F(1,11)
0.794

F(1,11)
0.091

Significance p < 0.05 p < 0.01 p < 0.05 p > 0.05 p > 0.05

Target tracking
crossover characteristics

ωc,t
F value F(1,11)

0.028
F(1,11)
10.520

F(1,11)
0.102

F(1,11)
0.000

F(1,11)
1.992

Significance p > 0.05 p < 0.01 p > 0.05 p > 0.05 p > 0.05

φm,t
F value F(1,11)

2.740
F(1,11)
0.107

F(1,11)
6.218

F(1,11)
1.605

F(1,11)
8.395

Significance p > 0.05 p > 0.05 p > 0.05a p > 0.05 p < 0.05

Disturbance rejection
crossover characteristics φm,d

F value F(1,11)
7.994

F(1,11)
16.946

F(1,11)
51.595

F(1,11)
1.018

F(1,11)
3.204

Significance p < 0.05 p < 0.01 p < 0.01 p > 0.05 p > 0.05

a This significance value changed from p < 0.05 to p > 0.05 after a Bonferroni correction had been applied.

Figure 11. The target tracking gain crossover frequency ωc,t and phase margin φm,t for all B747 (blue, left) and Cessna Citation (red, right) conditions.

Figure 12. The disturbance rejection gain crossover frequency ωc,d and phase margin φm,d for all B747 (blue, left) and Cessna Citation (red, right) conditions

B. Target tracking crossover characteristics

As for the target tracking crossover characteristics shown in Figure 11,
there are fewer identified effects. The strongest effect to be noted here
is the significant increase ofωc,t as a result of having a double K f wd. For
the phase margin φm,t, only a significant interaction was found between
the aircraft type and Kφ̇. Upon closer inspection using paired-sample
T-tests, it was concluded that no significant main effect was found for
the CE dynamics nor Kφ̇ with respect to φm,t (see Table 5).

To summarize, the target tracking crossover characteristics remain
largely unaffected by variations in the CE dynamics and Kφ̇, however, a
double K f wd does significantly increase ωc,t. Furthermore, there seems
to be an interaction between the CE dynamics and Kφ̇, which implies
that the faster / more nervous the CE dynamics become, the more dis-
advantageous having a single Kφ̇ is for the phase margin φm,t. Besides
that, no main effects are found for φm,t.

C. Disturbance rejection crossover characteristics

When comparing the vertical axes of Figures 11 and 12, it becomes
apparent that the different testing conditions resulted in a much greater
variation in the pilot’s ability to reject disturbances as opposed to the
ability to track the target signal. For ωc,d, two main effects are identi-
fied. As can be seen in Table 4, ωc,d increases significantly for a double
K f wd as well as a double Kφ̇. The CE dynamics, on the other hand, seem
to have no significant effect on this parameter. For φm,d, no significant
interactions are found. However, a double K f wd, a double Kφ̇ and faster
/ more nervous CE dynamics all significantly increase φm,d.

To summarize, the disturbance rejection phase margin φm,d in-
creases for faster / more nervous CE dynamics. But more importantly,
doubling either K f wd or Kφ̇ significantly increases ωc,d and φm,t, which
is a finding that seems counter-intuitive. This remarkable result can be
explained by the working principle of the active manipulator. As can
be seen in Figure 4, the pilot’s control response (up) to disturbances
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incurred on the aircraft ( fd) is the result of 1) a relatively slow, cogni-
tive response and 2) a neuromuscular response that is comprised of a)
a fast, reflexive response and b) an instantaneous response, thanks to
the intrinsic mechanical properties of the arm. For disturbances below
the crossover region, pilots are able to register and respond adequately
to what they feel and will therefore take conscious actions. As a result,
the cognitive contribution to the rejection of disturbances imposes its
relatively large time delay on the FRF. This is supported by the distur-
bance rejection open-loop phase plots of Conditions 2 and 3 shown in
Figure 13, which reports mean phase angles of ≈ −140◦ to −160◦ up to
the crossover region related to this task.

Table 4. Friedman’s ANOVA and the following Wilcoxon’s signed-rank
tests for the non-normally distributed variables RMS (mgrip) and ωc,d . The
independent variables that had a significant effect on their dependent vari-
able across all comparisons are indicated in bold.

Dep. var.
with

Friedman
statistic

Indep.
var.

Co.
pair Mdn 1 Mdn 2 z p

RMS (mgrip),
χ2(5) =
45.619,

p < 0.01

A/C
type

1-4 0.04239 0.04906 -3.059 p < 0.01
2-5 0.03986 0.04506 -2.589 p < 0.01
3-6 0.04503 0.05645 -3.059 p < 0.01

Kfwd
1-2 0.04239 0.03986 -2.197 p = 0.028
4-5 0.04906 0.04506 -2.510 p = 0.012

Kφ̇
1-3 0.04239 0.05645 -2.275 p = 0.023
4-6 0.04906 0.05645 -2.981 p < 0.01

ωc,d,
χ2(5) =
29.333,

p < 0.01

A/C
type

1-4 6.695 6.873 -1.647 p = 0.099
2-5 8.056 8.283 -1.098 p = 0.272
3-6 7.459 8.274 - 1.961 p = 0.050

Kfwd
1-2 6.695 8.056 -2.197 p = 0.028
4-5 6.873 8.283 -2.981 p < 0.01

Kφ̇
1-3 6.695 7.459 -2.824 p < 0.01
4-6 6.873 8.274 -2.903 p < 0.01

Table 5. The paired-samples T-tests that show that neither the aircraft type
nor Kφ̇ is a main effect for φm,t . The 2-tailed p-values are reported after
having applied a Bonferroni correction for the comparisons.

Paired differences

Isolated
effect

Co.
pair

95% CI
Mean σ Lower Upper t(11) p (2-tailed)

A/C
type

1-4 3.321 3.645 1.005 5.637 3.156 < 0.05
3-6 0.5292 4.975 -2.632 3.690 0.368 > 0.05

Kφ̇
1-3 -0.8802 3.239 -2.938 1.178 -0.941 > 0.05
4-6 -3.672 3.883 -6.139 -1.205 -3.276 < 0.05

Continuing with Figure 13, a transition can be observed around
the crossover region inside the phase plot, as the pilot’s inability to
consciously respond to faster disturbances gradually delegates a larger
portion of the disturbance rejection task to the much faster NMS, ef-
fectively increasing φm,d. Finally, for frequency components well past
the crossover region (ω > 10 rad/s), the role of the cognitive response
seems to have been eliminated entirely from the disturbance rejection
task. An increase in either K f wd or Kφ̇ encourages a more aggressive re-
sponse to the injected disturbances, which interestingly seems to make
the pilot delegate a larger portion of the disturbance rejection task to the
faster NMS, thereby increasing both ωc,d and φm,d. Judging from the di-
vergent verbal feedback that participants gave regarding user comfort
for conditions 2/5 and 3/6, it seems that one can use the neuromuscular
potential to reject disturbances more effectively either subconsciously
or forcibly, by increasing K f wd or Kφ̇, respectively.

Given the idea that the NMS seems to play a dominant role for

rejecting disturbances beyond a certain frequency (in other words,
HdOL(s) ≈ Hc(s)Kφ̇Hlp f (s)HNMS ,xm (s)K f wd beyond that frequency), an-
other observation could be made when comparing the Condition pairs
2/3 and 5/6. As can be seen in Figure 13, the FRFs for the conditions
of double K f wd and double Kφ̇ seem to converge beyond the crossover
region. This supports the notion that the NMS can be modelled accu-
rately as a linear system, or at the very least that the neuromuscular
response to xm can be modelled as such.

Based on the same idea, it also becomes straightforward to explain
why the disturbance rejection open-loop phase plots for the Cessna Ci-
tation in and beyond the crossover region have a minor, but consistently
larger value than their B747 counterparts (see Figure 9). Faster CE
dynamics effectively form a smaller time delay between the moment
some turbulence fd is applied and the moment the NMS can respond to
it through the haptic cues presented by xm, thereby increasing φm,d.

Figure 13. Disturbance rejection open-loop FRF of conditions 2 (red tri-
angle) and 3 (blue circle), reported as mean ± std. deviation. The average
∠HtOL of condition 3 has been plotted in dashed blue as well, to highlight
how ∠HdOL follows a trajectory in and beyond the highlighted crossover
region that is different from the phase plot related to the conventional com-
pensatory tracking task that relies purely on a cognitive (visual) response
from the pilot.

VII. Additional experimental findings
Based on the observations from Section VI, increasing K f wd and Kφ̇

seems to provide significant performance gains (with the exception of
a higher Kφ̇ increasing exerted control effort), without sacrificing any-
thing in terms of stability margins. This poses the obvious question:
how far can these settings be pushed for performance gains?

To shed light on this question, it is worth mentioning that four addi-
tional settings were intended to be tested at the time that the conducted
experiment was being prepared (see Table 2). Each participant would
try to complete one of these four conditions in the same way as the pre-
vious six conditions, at the very end of their session. In doing so, some
additional insights could be generated regarding the consequences of
setting the gains at values that correspond with the light gray condi-
tions shown and explained in Figure 5 and Section III, respectively.

A. Initial tests

After running initial tests, it became evident that Conditions 9 and 10
(i.e., the setting of

(
2 · (K f wd)opt, 2 · (Kφ̇)opt

)
for the B747 and the Cessna

Citation, respectively) resulted in an unworkable situation. While the
control task itself did not seem impossible at these settings, the side
stick would very easily start to resonate in the user’s fist, causing the
servos that drive the manipulator to shut down out of self-protection.

The aforementioned Conditions 9 and 10 were located well inside
the light gray oscillatory domains from Figure 5, however the same
could not be said about Conditions 7 and 8. For both the B747 and
the Cessna, this setting of

(
3 · (K f wd)opt, 1 · (Kφ̇)opt

)
was near or at the

transition point to the oscillatory domain. While some stick vibrations
were registered, these two conditions were deemed suitable to be tested
by six of the twelve participants each.
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Figure 14. Boxplots that characterize pilot performance for the B747 Conditions 1, 2 and 7 (blue) and the Cessna Citation conditions 4, 5 and 8 (red).

B. Experimental data from participants

For the B747, all six participants successfully completed the condition
with a triple K f wd. Moderate vibrations were registered during a single
run of one participant, while another participant reported to feel mi-
nor vibrations in the stick. For the Cessna, the condition was aborted
for two out of six participants, due to the same, excessive vibrations
that were experienced while trying out Conditions 9 and 10. The re-
maining four participants successfully finished the triple K f wd condi-
tion, of which two did so while having endured considerable vibrations
throughout many of the runs. Consequently, the experimental output
of Conditions 7 and 8 that is shown in Figures 14 and 15 is generated
from six and four samples, respectively, as opposed to the others that
were derived from all twelve participants.

As can be seen in Figure 14, the trends that were identified in Sec-
tion VI are largely continued here, particularly for the B747. For this
aircraft, the triple K f wd provides a moderate increase to ωc,t while φm,t
remains largely unaffected. Furthermore, ωc,d and φm,d continue to in-
crease as as we move from the case of double K f wd to triple K f wd. Ev-
idently, RMS (mgrip) was greatly affected for the triple K f wd condition
of the Cessna due to the present stick vibrations. At the same time, the
trends for the crossover characteristics of the Cessna seem to flatten out
somewhat as we move from the case of double K f wd to triple K f wd.

Whereas the metrics from Figure 14 suggest that the pilot’s perfor-
mance is equally good or considerably better in every regard when we
move from the case of double K f wd to triple K f wd for the B747, they fail
to provide any information about the looming instability of the stick.
However, the disturbance rejection FRFs of Conditions 1/2/7 and 4/5/8
do provide a possible indication for the stick instability that seems to be
the limiting factor of this control configuration. When looking at Fig-
ure 15, the area of interest is that of |HdOL(s)|well beyond the crossover
region (ω > ≈ 10 rad/s). To reiterate the information shown in Figure 4,
this transfer function describes how the disturbance rejection loop be-
haves, by calculating the pilot’s control response up (which is formed
by a cognitive and neuromuscular response) to a disturbance signal in-
troduced at u.

As was discussed in Section VI, pilots lack the ability to respond
consciously to signals well beyond the crossover region. Looking at

Figure 4, one can imagine how a value for |HdOL(s)| that is greater than
0 dB in a frequency band where the cognitive feed-back loop is elim-
inated could lead to indefinite amplification of disturbance signals in
the neuromuscular feed-back loop. Pilots can mitigate this problem
by relaxing their grip and reducing the level of muscle co-contraction,
effectively maximizing their neuromuscular admittance. The conse-
quence of such an action is demonstrated with the difference between
|Hd,OL,B747| and |Hd,OL,CC | beyond the crossover region in Figure 15. A
clear trend is visible in the shape of |Hd,OL,B747| where participants were
virtually unaffected by stick vibrations, while |Hd,OL,CC | shows a clear
regression back towards the disturbance rejection response of the dou-
ble K f wd condition to combat the stick vibrations.

Evidently, there is a limit to the extent with which pilots can relax
their arm. If K f wd, Kφ̇ or likely a product of the two is increased suf-
ficiently (as supported by the similarities between Conditions 2 and 3
for |HdOL(s)| for ω > 4.5 rad/s in Figure 13), this could mean that the
NMS can no longer prevent the high-frequency disturbances from am-
plifying indefinitely. This lines up with the observations made during
the experiment, as participants who were forced to abort their runs due
to excessive vibrations did not seem to struggle with the control task at
hand, but were rather surprised about the stick’s sudden failure instead.

Summarizing these findings, it seems that the neuromuscular re-
sponse plays a decisive role in determining how far the active manipu-
lator’s settings can be pushed for performance gains. Another question
that could be asked at this point is: why did the triple K f wd condi-
tion for the Cessna Citation result in considerable vibrations, while the
triple K f wd condition for the B747 narrowly seemed to avoid them? A
possible explanation can be found when combining two earlier find-
ings:

1. The values found for Kd,B747 (= 9.800) and Kd,CC (= 18.89) at
the end of Section IV, which approximate the CE dynamics of
the respective aircraft in the crossover region as Hc(s) = Kd

s2 .

2. One of the observations made in Figure 13, which discusses the
similarity of Hd,OL(s) beyond the crossover region for the condi-
tions with a double K f wd and a double Kφ̇.
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Figure 15. Open- and closed-loop disturbance rejection FRFs for the B747 Conditions 1, 2 and 7 (left) and the Cessna Citation Conditions 4, 5 and 8 (right),
all reported as mean ± std. deviation. The cases of single, double and triple K f wd are indicated in blue circles, red triangles and black squares, respectively.

Whereas the relation Kd ·(K f wd)opt = C f wd was already suggested in
Section IV, it seems that the combined open-loop gain of the hardware
(i.e., the relation Kd · K f wd · Kφ̇ = C) can be a possible indicator of the
system’s stability margin with respect to the stick vibrations. Filling in
this equation for the tested conditions gives:

• Conditions 1-6: 7.220 < C < 15.90. No issues observed with
regards to stick vibrations.

• Condition 7: C = 21.66. The earliest signs of stick vibrations
started to appear for a few participants.

• Condition 8: C = 23.86. Considerable to severe vibrations were
experienced by the majority of the participants.

• Conditions 9 and 10: C = 28.88,C = 31.81. Unworkable set-
tings with regards to stick vibrations.

VIII. Discussion
Based on the findings presented in Sections VI and VII, we can re-
flect on the hypotheses from Section V, propose a tuning procedure
and make suggestions for future research.

A. Reflection on hypotheses

Hypothesis 1 stated that (Kφ̇)opt is constant for a given control context,
as it would be based on the open-loop dynamics to which pilots prefer
to converge for that control context. The experimental data from Sec-
tion VI support this hypothesis, as the condition with a double Kφ̇ for
both aircraft resulted in significantly more exerted control effort, which
was confirmed by participants consistently referring to these conditions
as the least comfortable.

Hypothesis 2 stated that (K f wd)opt is inversely proportional to Kd,
where HOL(s) = Kd

sX approximates the CE dynamics as a simple X-th
order system in the crossover region related to this control context. As
such, a certain interaction between the aircraft type and (K f wd)opt was
inferred when quantifying the testing conditions from Table 2. The fact

that no statistically significant interactions were found between the air-
craft type and K f wd (as can be seen in Table 3) supports the idea that the
right interaction was inferred between said variables when defining the
testing conditions. It should be noted that the validity of this hypothesis
is supported within the scope of this paper, which has only tested CE
dynamics that resemble second-order dynamics in the crossover region.

Hypothesis 3 stated that for a given control context, the value for
(K f wd)opt can be determined using the simulated global minimum that
forms for RMS (mgrip) as pilots adopt a more ambitious control style.
This hypothesis proved to be incorrect, as participants consistently per-
formed better with reduced effort for situations where a double K f wd
was applied. While the premise with which (K f wd)opt was selected may
have been invalid in the first place, the model’s inability to point us to
the right (K f wd)opt has a variety of possible causes as well:

1. The parameters that define the NMS model from De Vlugt [15]
(i.e., mechanical properties, proprioceptor gains and neural acti-
vation / transportation dynamics) need to be identified for a spe-
cific control context. The collective work of several researchers
has enabled the quantification of this NMS model for a side
stick in lateral motion, however the need for multiple sources
increases the probability that some coefficients are defined inac-
curately.

2. The components inside the NMS model are all defined as lin-
ear mass-spring-damper systems, whose gains were scaled up
or down linearly as the pilot was simulated to have a more am-
bitious control style. This approach may have proven ineffective
for predicting the actual neuromuscular response.

3. The pilot’s cognitive equalization of the visually perceived error
e was modelled using a simple PID-controller, which may have
rendered the model ineffective at predicting pilot performance
accurately as well.
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While Hypothesis 3 provided an argument for a possible value of
(K f wd)opt, it would have called for a very cumbersome and impractical
design procedure if its validity was supported by the data. Fortunately,
the observations described in Section VII and illustrated in Figure 15
suggest that there may be a tangible and practical indicator in |HdOL(s)|
for the maximum value that can be set for K f wd, which enables design-
ers of such a system to select (K f wd)opt in a way that acceptable stability
/ safety margins are achieved.

Despite the fact that the model did not live up to its full potential,
it was reasonably well able to predict the settings at which the stick
started to produce vibrations that could not be controlled. As explained
in Section IV, it produced realizations for these conditions that seemed
to be stable in terms of tracking performance at first sight, albeit that
they were realized with control signals of extremely high frequency
and intensity.

B. Proposed tuning procedure

After reflecting on the stated hypotheses, the following tuning proce-
dure is proposed for control systems involving an active manipulator:

1. For a given control context, determine (Kφ̇)opt first:

(a) Perform a single integrator CE dynamics (Hc(s) = Kc
s )

compensatory tracking task with a passive manipulator,
similar to McRuer’s experiment [14].

(b) Determine the average crossover frequency ωc to which
pilots prefer to converge for various values of Kc. While
McRuer showed that ωc varied relatively little for differ-
ent forcing function signal bandwidths [14], one could test
for this parameter as well to gain additional confidence in
the value found for ωc.

(c) Calculate (Kφ̇)opt =
1
ωc

.

2. Then, for a given control context and some CE dynamics:

(a) Determine (K f wd)opt heuristically through trial and error
in the simulator. (K f wd)opt is found once the desired maxi-
mum value for |HdOL(s)| is achieved in the frequency band
well beyond the crossover region.

(b) From this value, (K f wd)opt can be inferred for other CE dy-
namics that are of comparable character in the crossover
region of said control context.

An important caveat to add to Step 2a of the procedure is that
|HdOL(s)| (and thereby the system’s stability / safety margin) seems to
be quite heavily dependent on the control style of the pilot. This pro-
vides designers of such a system with a challenge that is threefold:

1. The accurate quantification of a pilot’s control intensity. The
most straightforward solution for this challenge seems to be the
use of measurements that record the clamping force that a pilot
exerts on the manipulator, as this metric can be related directly
to the pilot’s neuromuscular admittance [27].

2. The decision which pilot (i.e., which neuromuscular response)
should be considered the benchmark. This challenge can be
overcome by performing measurements of neuromuscular ad-
mittance for the control context at hand, amongst a pool of pi-
lots that are deemed fit for the task. Based on this, a pilot who
can achieve a low (if not the lowest) neuromuscular admittance
can be selected to act as the benchmark.

3. The formulation of appropriate stability / safety margins us-
ing the quantification that the designer has defined at point 1.
For the suggestion mentioned at point 1, this could for instance
translate to the requirement that “|HdOL(s)| shall be no larger
than -3 dB well beyond the crossover region, given that max-
imum clamping force is applied by the pilot”, where a repre-
sentative pilot has been selected methodically through a process
like the one described in point 2.

C. Recommendations

Based on the findings from this paper, numerous recommendations can
be made for future research in the field of active manipulators. First
off, a fixed-base simulator was used in this paper to gather insights,
meaning this situation is most comparable to that of a pilot remotely
controlling a drone from the ground. When the pilot is on board the
aircraft that he or she controls, the motion of the vehicle can cause the
pilot to provide involuntary control commands to the manipulator, a
process that is also known as biodynamic feedthrough [28]. After a
feasibility study has been conducted for the active manipulator config-
uration in an on-board setting, the proposed tuning procedure could be
put to the test in such a context as well.

Furthermore, the requirement that “|HdOL(s)| shall be no larger than
-3dB well beyond the crossover region” which was introduced at the
end of Section VIII B calls for further clarification. As |HdOL(s)| de-
creases inside and beyond the crossover region, the “well beyond” in
this sentence needs to be defined more accurately, as it currently does
not provide a conclusive answer as to what exactly is deemed accept-
able.

Regarding the degrees of freedom within the design of the active
manipulator, several topics can be investigated. Firstly, the hypothe-
sized main predictor for (Kφ̇)opt, namely the control context (which in
our case was defined as a side stick in lateral motion) should be put
to the test. This can be done either using a pitch(/roll) tracking task
or using a different manipulator, such as a yoke or a steering wheel.
Secondly, while it is hypothesized that (K f wd)opt and (Kφ̇)opt are not
dependent on each other, this can be put to the test in a future experi-
ment as well. Thirdly, the validity of Hypothesis 2 can be tested for CE
dynamics that resemble first- or third-order systems in the crossover re-
gion of a given control context. If valid at all, one could also determine
in what way (if any) C f wd would change as the conventional, effectively
experienced system order is altered.

Another factor that could be considered in future research is the
effect of slower actuator dynamics on the control response of the pi-
lot. The servo used for this experiment had a bandwidth of around
40 Hz (ω ≈ 250 rad/s), which is a frequency around fourteen times
higher than that of the fastest component in the used forcing functions
(ωd [10] = 17.4107 rad/s). While it is expected that a servo bandwidth
of less than five times the highest forcing function frequency compo-
nent will result in a noticeable drop of ∠HdOL(s) in the high frequency
band, it is unknown whether such a loss in phase will result in reduced
user comfort or instability of the disturbance rejection loop.

Besides these recommendations that are directly applicable to the
functioning of the active manipulator, more research can also be done
with respect to the interrelation between the pilot’s response to the vi-
sually perceived error (He(s)) and the haptic cues (Hx(s)). In previous
research, these control responses have been defined as separate dynam-
ical systems [12]. While this is convenient from a system identification
perspective, it does not readily provide insights about the intertwined
nature of the two, as the adaptive NMS facilitates both responses si-
multaneously. Other research has identified the NMS using a model
that incorporates this intertwined nature, however the cognitive com-
mand signal (usup in Figure 4) had to be assumed to be zero in order for
this identification to work [26]. If a pilot’s supraspinal signal usup were
to be measured in a future experiment, then the NMS model from De
Vlugt [15] could successfully be identified during a control task like
the one described in this paper.

Furthermore, while it is expected that the interrelated clamping
force and neuromuscular admittance play an important role in shap-
ing the dynamic behavior of the NMS, it would also be interesting to
see how the relative contribution of proprioceptive feedback (i.e., re-
flexes) to the NMS’s dynamic behavior would change as pilots adapt
their control style. This would require measurements of not only usup,
but also of the neural signal that actuates the relevant muscles in the
arm.

IX. Conclusion
This paper continued research into the concept of the active manipula-
tor which, due to the coupling between the manipulator’s angular de-
flection and the measured roll rate of the aircraft, permanently provides
the pilot with a haptic representation of the aircraft’s motion. Since
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previous research has already shown that a control system involving an
active manipulator can provide significant benefits over a conventional
control configuration, the primary objective of this paper was to deter-
mine whether the tuning procedure of such a configuration could be
generalized to a set of guidelines. Based on a literature study, it was
concluded that haptic cues in the form of pure rate feed-back are desir-
able, effectively reducing the gains to be tuned to a single feed-forward
and a single feed-back gain. An experiment was conducted to inves-
tigate the impact of these variables on the pilot’s control behavior, as
well as the impact that different aircraft dynamics may have had on the
gain settings that produced the most potent results. Based on the out-
put from the experiment, a tuning procedure is proposed that aims to
assist designers of future control systems involving an active manipu-
lator with finding the optimal feed-forward and feed-back gain for their
system.

References
[1] Lanfranco, A. R., Castellanos, A. E., Desai, J. P., and Meyers, W. C.,

“Robotic Surgery: A Current Perspective,” Annals of Surgery, Vol. 239, 1
2004, pp. 14–21.

[2] Rassi, I. E. and Rassi, J. M. E., “A Review of Haptic Feedback in Tele-
operated Robotic Surgery,” Journal of Medical Engineering and Technol-
ogy, Vol. 44, 7 2020, pp. 247–254.

[3] Schmidt, G. R., Landis, G. A., and Oleson, S. R., “HERRO Missions to
Mars and Venus using Telerobotic Surface Exploration from Orbit,” NASA
Glenn Research Center, 2012.

[4] Yoerger, D. R. and Slotine, J.-J. E., “Supervisory Control Architecture for
Underwater Teleoperation,” Proceedings. 1987 IEEE International Con-
ference on Robotics and Automation, 1987.

[5] Steele, M. and Gillespie, R. B., “Shared Control between Human and Ma-
chine: Using a Haptic Steering Wheel to Aid in Land Vehicle Guidance,”
Proceedings of the Human Factors and Ergonomics Society Annual Meet-
ing, Vol. 45, 10 2001, pp. 1671–1675.

[6] Griffiths, P. G. and Gillespie, R. B., “Sharing Control between Humans
and Automation using Haptic Interface: Primary and Secondary Task Per-
formance Benefits,” Human Factors, Vol. 47, 2005, pp. 574–590.

[7] Abbink, D. A., Mulder, M., and Boer, E. R., “Haptic Shared Control:
Smoothly Shifting Control Authority?” Cognition, Technology and Work,
Vol. 14, 3 2012, pp. 19–28.

[8] Beeftink, D. G., Borst, C., van Baelen, D., van Paassen, M. M., and
Mulder, M., “Haptic Support for Aircraft Approaches with a Perspective
Flight-Path Display,” Institute of Electrical and Electronics Engineers Inc.,
7 2018, pp. 3016–3021.

[9] van Baelen, D., Ellerbroek, J., van Paassen, M. M., and Mulder, M., “De-
sign of a Haptic Feedback System for Flight Envelope Protection,” Journal
of Guidance, Control, and Dynamics, Vol. 43, 2020, pp. 700–714.

[10] Smisek, J., Sunil, E., van Paassen, M. M., Abbink, D. A., and Mulder,
M., “Neuromuscular-System-Based Tuning of a Haptic Shared Control
Interface for UAV Teleoperation,” IEEE Transactions on Human-Machine
Systems, Vol. 47, 8 2017, pp. 449–461.

[11] Alaimo, S. M., Pollini, L., Bresciani, J. P., and Bülthoff, H. H., “Evalua-
tion of Direct and Indirect Haptic Aiding in an Obstacle Avoidance Task
for Tele-operated Systems,” Vol. 44, IFAC Secretariat, 2011, pp. 6472–
6477.

[12] Fu, W., van Paassen, M. M., and Mulder, M., “Developing Active Ma-
nipulators in Aircraft Flight Control,” Journal of Guidance, Control, and
Dynamics, Vol. 42, No. 8, 8 2019, pp. 1755–1767.

[13] Hosman, R. J. A. W. and van der Vaart, J. C., “Active and Passive Side
Stick Controllers: Tracking Task Performance and Pilot Control Behav-
ior,” AGARD Conference Proceedings No. 425: The Man-Machine Inter-
face in Tactical Aircraft Design and Combat Automation, 1987.

[14] McRuer, D. T., Graham, D., Krendel, E., and Reisener(Jr.), W., “Human
Pilot Dynamics in Compensatory Systems. Theory, Models, and Exper-
iments with Controlled Element and Forcing Function Variations. Tech-
nical Report AFFDL-TR-65-15,” Tech. rep., Air Force Flight Dynamics
Laboratory, 1965.

[15] de Vlugt, E., Schouten, A. C., and van der Helm, F. C. T., “Quantifica-
tion of Intrinsic and Reflexive Properties during Multijoint Arm Posture,”
Journal of Neuroscience Methods, Vol. 155, No. 2, 9 2006, pp. 328–349.

[16] Mulder, J. A., van der Vaart, J. C., van Staveren, W. H. J. J., Chu, Q. P.,
and Mulder, M., “Aircraft Responses to Atmospheric Turbulence Lecture
Notes AE4304,” TU Delft, 2016.

[17] Russell, R. S., “Non-linear F-16 Simulation using Simulink and Matlab,”
University of Minnesota, 2003.

[18] McRuer, D. T. and Jex, H. R., “A Review of Quasi-Linear Pilot Mod-
els,” IEEE Transactions on Human Factors in Electronics, Vol. 8, 1967,
pp. 231–249.

[19] Jain, A., Bansal, R., Kumar, A., and Singh, K., “A Comparative Study of
Visual and Auditory Reaction Times on the Basis of Gender and Physical
Activity Levels of Medical First Year Students,” International Journal of
Applied and Basic Medical Research, Vol. 5, 2015, pp. 124.

[20] Levison, W. H. and Kleinman, D. L., “A Model for Human Controller
Remnant,” IEEE Transactions on Man-Machine Systems, Vol. 10, 1969.

[21] van der El, K., Pool, D. M., and Mulder, M., “Analysis of Human Remnant
in Pursuit and Preview Tracking Tasks,” IFAC-PapersOnLine, Vol. 52,
2019, pp. 145–150.

[22] Schouten, A. C., “Proprioceptive Reflexes and Neurological Disorders,”
PhD thesis. Delft University of Technology, 2004.

[23] Lasschuit, J., “Modeling the Neuromuscular System Dynamics for Haptic
Interface Design; Identification of the NMS in multiple directions,” 2007.

[24] van Paassen, M. M., van der Vaart, J. C., and Mulder, J. A., “Model of the
Neuromuscular Dynamics of the Human Pilot’s Arm,” Journal of Aircraft,
Vol. 41, No. 6, 11 2004, pp. 1482–1490.

[25] Lam, T. M., “Haptic Interface for UAV Teleoperation,” PhD thesis. Delft
University of Technology, 2009.

[26] Bhoelai, A. K., van Paassen, M. M., Abbink, D. A., and Mulder, M.,
“Design of Test Signals for Identification of Neuromuscular Admittance,”
IFAC-PapersOnLine, Vol. 49, 2016, pp. 266–271.

[27] Pronker, A. J., Abbink, D. A., van Paassen, M. M., and Mulder, M., “Es-
timating an LPV Model of Driver Neuromuscular Admittance using Grip
Force as Scheduling Variable,” IEEE Transactions on Human-Machine
Systems, Vol. 50, 10 2020, pp. 454–464.

[28] Venrooij, J., Abbink, D. A., Mulder, M., van Paassen, M. M., Mulder, M.,
van Der Helm, F. C. T., and Bulthoff, H. H., “A Biodynamic Feedthrough
Model Based on Neuromuscular Principles,” IEEE Transactions on Cy-
bernetics, Vol. 44, 2014, pp. 1141–1154.





II
Preliminary thesis (previously graded

under AE4020)

17





1
Introduction

With the improvements made in automation, many tasks that relied heavily on manual labor several
decades ago (e.g., production / assembly tasks and warehouse logistics) are now carried out by ma-
chines. There are, however, still many tasks for which the performance or reliability of automation
is (perceived to be) inadequate for what is at stake (e.g., the safety of human passengers). In many
of these situations, the human controller (HC) no longer contributes through continuous manual
efforts, but acts as a supervisor to the automation instead.

While this often results in stable system performance with less human labor required, it may
come at the cost of situational awareness. This became one of the possible causes for the 1963 BAC
One-Eleven test crash, where all seven of the test flight crew lost their lives as a result of entering
an unrecoverable stall condition [2]. This triggered the development of the stick shaker [3], which
warns the pilot of an impending stall condition through vibrations in the control column, effectively
reproducing the stick vibrations that occur as a result of the aerodynamic buffeting in mechanically
controlled aircraft.

In many control tasks, HCs make use of the visual, auditory and vestibular (motion) cues that
they receive to determine the best course of action. Haptic cues, like the ones generated by the stick
shaker, come through the sensation of touch in the skin as well as the sensation of force and motion
in muscles and joints. By supplying haptic feedback to the HC, an additional display is essentially
created between the HC and the environment, which improves the involvement of the HC with the
task at hand.

While haptic cues can be helpful to the HC’s performance as a supervisor (as is the case for
the occasional warnings from the stick shaker), continuous haptic feedback also has the potential
to improve the HC’s performance during manual control tasks. As such, haptic cues can not only
improve performance in situations that are impractical to automate (e.g, exploratory tasks), but also
form a flexible alternative in situations where the automation fails to deliver (e.g, evasive maneuvers
or aircraft landings without functioning navigational systems). Concrete examples of systems that
already incorporate haptic cues in manual control tasks range from remotely-controlled exploration
vehicles [4] [5] to robotic surgery [6] [7] and exoskeletons [8]. In some of these applications, the
automation is able to communicate its intentions back to the HC, while still providing the HC with
the possibility to override those intentions. This design philosophy is referred to as ’haptic shared
control’, and it has become a concept of interest approximately two decades ago [9] [10] [11].

Virtually all research about haptic shared control in the context of flight has been explored using
a manipulator (i.e., the control column, side stick, or ’stick’) like the ones that are currently installed
in fly-by-wire (FBW) aircraft. Such a configuration translates the measurement of the stick’s po-
sition into a deflection of the aircraft’s control surfaces. This stick position comes to be through
two factors: 1) the force applied to the stick by the HC and 2) the mechanical properties of the stick.
Haptic shared control relies on the ability of the HC to feel the cues provided by the automation, and
possibly override them. As a result, this means that haptic feedback in such a ’passive stick’ config-
uration can only come through the aforementioned two terms, that is through force feedback or
active adjustment of the stick’s mechanical properties [12] [13].
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Fu et al. [14] have recently explored haptic shared control in the context of flight, using a funda-
mentally different approach that was introduced by Hosman et al. [15] and is referred to as the ’ac-
tive stick’ throughout this thesis. In this configuration, there is a direct and permanent link between
the position of the manipulator and the motion of the aircraft itself. The resulting user experience
is comparable to that of vehicles that HCs are most familiar with (e.g., cars and bicycles), where the
steering device shoots sideways when being confronted with crosswinds. To realize this experience
in an aircraft, the stick position is no longer what drives the control surfaces, and it is no longer di-
rectly the result of the applied force and the stick’s mechanical properties. Instead, the force applied
on the stick by the operator is now what drives the aircraft’s control surfaces, which in turn rotate
the aircraft. This motion is then measured and fed back to servo motors that impose the position of
the stick on the HC. To summarize the working principle of the active stick: force is what drives the
aircraft and the haptic cues come to the HC in the form of position feedback.

Fu has demonstrated that the active stick with its position feedback can provide significant ben-
efits to the HC in terms of tracking performance and exerted control effort. Whereas the target
signal tracking performance for the active and passive stick was comparable, the active stick proved
to be especially helpful for rejecting disturbances acting on the aircraft, such as turbulence, more
effectively. During Fu’s experiment, the HC was seated in fixed-base simulation environment, which
means that this scenario is most comparable to that of an aircraft or drone whose motion is being
controlled remotely from the ground.

This thesis aims to expand upon the idea of the active stick, by determining whether the design
of such a ’full’ haptic link between the aircraft and the stick can be generalized to a set of practical
guidelines. Figure 1.1 provides a graphical representation of the approach envisioned to reach this
objective. In general, this approach can be summarized as:

1. Study the experimental setting and findings produced by Fu [14] regarding the active stick and
its performance relative to the conventional passive stick.

2. Study the neuromuscular system, which plays a key role in the effectiveness of the active stick.
3. Reproduce the experimental setting in a model, which incorporates a detailed description of

the neuromuscular system.
4. Determine three reasonable HC settings (the ’relaxed’, ’average’ and ’tense’ controller), by fit-

ting the model on the existing experimental frequency response plots generated by Fu [14]
and taking into account the simulated time-domain performance.

5. Simulate a variety of active stick settings for the relaxed, average and tense controller, using
the previously tested Boeing 747 roll dynamics as well as ones from the Cessna 500 Citation
and the F-16.

6. Use the simulation output to identify trends and dependencies in active stick settings that
lead to a strong performance.

7. Propose an active stick tuning procedure, derive the testing conditions from said procedure
and generate performance predictions using the model.

8. Test the conditions and make observations about participants’ control behavior using time-
and frequency-domain analyses.

9. Provide design recommendations for future control systems involving an active stick, as well
as recommendations for future experiments to be conducted to further progress the active
stick’s development.
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The structure of the report has been defined to suit this approach. First, Chapter 2 introduces the
fundamental concepts inherently related to the control task at hand (i.e., items 1 and 2). This in-
cludes manual control theory, a review of haptics in aircraft control and an introduction to the con-
cept of the active manipulator. It also includes a review of the experiment conducted by Fu [14], as
this information is needed for the data fitting procedure that is conducted at the start of Chapter 4.
After all relevant subjects have been introduced, Chapter 3 covers item 3, by going into detail about
the information that is used to model the human response for this task accurately.

Chapter 4 forms the foundation of the innovation made by this thesis, by summarizing the find-
ings that are facilitated with the model from Chapter 3. As mentioned above, the model is first used
to determine three reasonable HC settings, by fitting the model on the frequency-domain data that
has been generated for the various conditions tested by Fu [16] (item 4). Afterwards, a wide variety
of conditions is simulated, which involves a factorial combination of the three HC settings, three
different aircraft roll dynamics and 168 active stick settings (item 5). The simulation output of these
conditions is used to identify trends in performance, which are combined with the existing theory
on manual control presented by McRuer [1] to propose a tuning procedure for the active stick (item
6). Based on the proposed tuning procedure, the testing conditions for this thesis are determined
and performance predictions are generated using the model (item 7). Chapter 5 builds on top of
this information, by providing an overview of the variables that will be measured during and de-
rived from the experiment (item 8). Finally, the report is concluded in Chapter 6.

Figure 1.1: A basic framework of the approach envisioned for this thesis.





2
Understanding the problem

The starting point for any research project is to identify the context that clarifies the topic and the
work that has been done, and that facilitates a focused plan for the scientific progress to be made in
this thesis and hereafter. To start off, Section 2.1 provides a brief review of the fundamental informa-
tion related to manual control theory. This is followed by Section 2.2, which summarizes the current
lines of development regarding haptics in aircraft control and classifies them in two different ways.
Section 2.3 then introduces the object of interest for this study (i.e, the active stick) and emphasizes
what makes this concept unique over the conventional passive stick.

Section 2.4 introduces the neuromuscular system, which plays an instrumental role in receiving
haptic cues and executing physical commands.The information from these sections is all that is
needed to explain the control task at hand, which is done in Section 2.5. As is mentioned in Chapter
1, this section also summarizes the experimental findings of Fu [14], as this information is needed to
understand the model fitting procedure from Chapter 4 as well as the reasoning towards the testing
strategy laid out in this thesis. Finally, Section 2.6 states the objective of this thesis and illustrates
how the envisioned outcome may open the door to various lines of research.

2.1. A review of manual control
Whenever a human plays a role in a control task, his/her contribution can be of mainly two different
natures:

1. Supervisory control. This type of behavior revolves around monitoring control tasks that are
automated, with the intention of intervening only when the automation does not produce the
expected system behavior. A common example of this type of control is found in the cockpit,
where pilots spend the majority of their long-haul flights monitoring the actions carried out
by the autopilot and flight management systems.

2. Manual control. Whenever a control task is continuously dependent on the input provided
by a human controller (HC), this is considered a manual control task. Examples that quickly
come to mind involve personal transportation, e.g., keeping one’s car or bicycle in the right
lane. In aeronautics, take-off and landing procedures are often done by hand.

Depending on the control task at hand, the HC’s contribution may either be of one type, or some
combination of the two. This thesis focuses solely on the second type: manual control. Generally
speaking, manual control tasks involve HCs following a moving target (also known as a target forcing
function) using the system that they are controlling, while being exposed to disturbances from the
environment. Depending on the way that information about the task is presented to the HC, a
manual control task can be classified in three different ways:

1. Preview tracking task. A manual control task can be considered a ’preview tracking task’,
whenever the HC is able to perceive how the target of said task will move in the (near) future.
This type of control task is the most common in the physical world, as HCs are typically able to
anticipate the way their target moves (ranging from winding roads to flying tennis balls). The
way information about the future is processed internally and included in the current control
behavior makes this the most complex type of control task to analyze and make predictions
about.
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2. Pursuit tracking task. During this type of control task, HCs attempt to follow a moving tar-
get without knowing anything about its future movements. The HC does so by continuously
comparing the target and the system’s current state, and providing a corrective action to the
system as a result of that comparison.

3. Compensatory tracking task. This is the type of control task that is tested in this thesis.
McRuer et al. have laid the groundwork for manual control with their research on compen-
satory tracking tasks in the 1960s [1]. This control task is essentially a pursuit tracking task,
but the comparison between the target and the system’s current state is no longer to be inter-
preted by the HC. Instead, the system error e is the only parameter which the HC can directly
perceive and act upon (see Figure 2.1). While this type of control task is the least resemblant
of common control tasks that HCs perform every day, its simplicity allows for the identifica-
tion of the most basic component of the human response in a given control system. Using the
knowledge about this basic response, the effects of internal processing of current and future
information can be determined in the more complex pursuit and preview tracking tasks.

Figure 2.1: A basic representation of the conventional compensatory tracking task, in the context of flight.

Based on the information presented to the HC, he or she decides what action to take. This decision
is translated from an electrical signal from the brain to the contraction of certain muscles. The
collection of body parts responsible for facilitating this process is called the neuromuscular system,
whose significance will be elaborated upon in Section 2.4.

Figure 2.1 shows how the neuromuscular system produces a force (here defined as mg r i p ) on
the manipulator. In the conventional manipulator design (referred to as the ’passive stick’ in this
thesis) that is used in virtually all academic research and FBW aircraft, this force, combined with the
mechanical properties of the stick, result in a certain stick position xm . The measured value of xm is
then fed to the aircraft to realize certain control surface deflections, which in turn affect the motion
of the aircraft that is represented through its output y .

This basic example calls for a couple of nuances, which are already presented in Figure 2.1.
Firstly, it is normal for control tasks to be subjected to some disturbing force, which in our situation
comes in the form of turbulence. The disturbance is represented by the forcing function fd and is
typically introduced at the input of the controlled element (or ’plant’). This means that the signal
which actually drives the system is the sum of the HC’s explicit input and some disturbance signal
that the HC cannot observe nor control directly, in other words u = up + fd .

Secondly, the HC does not only make use of the perceived error e when deciding what to do. In
practice, this error e is used internally to determine which stick position xm would be ideal right
now, and a comparison between said position and the current xm results in the intended muscle
force mg r i p . Thirdly, the system may provide feedback to the HC in an additional way for the sit-
uation of on-board control. Besides the various types of cues that are mentioned in Chapter 1, the
motion of the aircraft may also have a direct, involuntary impact on the force that the HC applies
on the manipulator. This effect is called biodynamic feedthrough [12] and can lead to pilot-induced
oscillations (PIOs) in extreme situations.
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2.2. A review of haptics in aircraft control
Most modern FBW aircraft have incorporated haptic feedback in their manipulators in what can
be considered a rather ’supervisory’ fashion. As was already mentioned in Chapter 1, the oldest
example of this the stick shaker [3], which only activates whenever an aircraft is approaching a stall
condition. A similar but physically more disruptive implementation that was developed around
the same time was the stick pusher; an electromechanical device that pushed the stick forwards
whenever an aircraft approached stall [17]. After the first applications of haptics were implemented,
a lack of computational power and efficient actuator designs caused the development of haptics to
stagnate. Technological advancements reinvigorated the interest for haptics in the 1990s and caused
a steadily increasing amount of publications ever since.

Research papers published about haptics in aircraft control may be classified in two ways:

1. Remote control versus on-board control
2. Haptic cue philosophy: interpreted (objective-oriented) versus observed (vehicle-oriented)

Until now, the remotely-controlled aircraft received the majority of attention for research regarding
haptics [18] [19]. The case of on-board control of aircraft and helicopters, on the other hand, has
received less attention, although numerous examples exist [20] [21]. As mentioned in Section 2.1,
an effect that does come into play during on-board control is biodynamic feedthrough [22]. To
prevent haptic cues from facilitating any PIOs, the interaction between said cues and biodynamic
feedthrough ought to be understood before they can be recommended for practical use.

Regardless of the distinction made at point 1, the vast majority of research papers published on
this topic involve haptic cues, which are generated as a result of the automation’s interpretation of
what ought to be done next by the HC. The most popular example for this is collision avoidance,
where the automation directly [18] [23] or indirectly [24] [25] pushes the HC away from simulated
obstacles using force feedback from the manipulator. Another example which contains a compa-
rable level of interpretation by the automation involves haptic cues, which are generated using the
highway-in-the-sky concept [26] [27]. Here, the automation generates haptic cues that push the
aircraft towards the right trajectory, which reduces the HC’s tendency to stare down at the flight dis-
play, where this three-dimensional, transparent tunnel is presented. A different approach is taken
more recently by D’Intino et al. in the context of a helicopter [20]. In this approach, the automation
combines the HC’s input with a probabilistic model to estimate the HC’s intended trajectory, and
provides a corrective force to the manipulator that ought to steer the helicopter towards that path.

Whereas the aforementioned (objective-oriented) approaches may prove useful in various situ-
ations, the reliance on accurately defined boundary conditions may render some of them of limited
use outside nominal or standard operations. A vehicle-oriented approach operates differently, in
the sense that the automation sends no corrective forces based on a mission that it either estimates
in real-time or has defined beforehand. Instead, a vehicle-oriented approach bases its haptic cues
on measurements of the aircraft state. The most ’interpreted’ variant that can be discussed here re-
volves around flight envelope protection. This approach, as introduced by Ellerbroek et al., involves
the automation actively shifting the stick’s neutral point and its mechanical stiffness based on the
aircraft’s current position inside the flight envelope [12]. More recently, Van Baelen et al. have stud-
ied more extensively how such haptic feedback is best designed, by analyzing it for the hazardous
flight conditions that occur during a windshear or icing event [13].

A slightly older, vehicle-oriented method presented by Alaimo et al. aimed to increase the HC’s
situational awareness, by simulating a ’mechanically steered’ feel on the stick for a remotely con-
trolled aircraft [28]. This was achieved using force feedback and an adaptive manipulator stiffness.
An interesting comment is made by Alaimo about this in a later paper [24]: "Although the haptic
force was not designed in order to help the pilot to reject the wind gust, and, to certain extent, even
disturbed him, it successfully increased the pilot situational awareness in terms of external distur-
bances since mean performance was improved with respect to the case of no haptic aiding" (p.6474).
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2.3. The active stick
More recently, Fu et al. [14] took a fundamentally different vehicle-oriented approach to haptic
feedback, which included experimental findings that are interesting to compare with the quote from
the previous section. As opposed to the passive manipulator design introduced in Section 2.1, Fu
extended the ’active’ manipulator approach, based on the work of Hosman and Van der Vaart [15]
and Hosman et al. [29].

Figures 2.2a and 2.2b illustrate the difference between these approaches graphically. For the
active stick, the force applied to the manipulator by the HC is what commands the control surfaces,
and the stick’s position is imposed on the HC using servo motors, based on measurements of the
aircraft state. In doing so, a full haptic link is established between the motion of the aircraft and
the motion of its manipulator. In line with Alaimo’s comment of earlier, Fu showed that such a
full haptic link can be beneficial to the HC, especially for rejecting disturbances more easily and
effectively.

On top of that, participants of Fu’s experiment experienced a similar discomfort while using the
active stick. This discomfort became more pronounced when the bandwidth of the forcing func-
tions was increased. As the disturbance acting on the aircraft became more aggressive, the aircraft’s
motion (and thus the manipulator’s motion) became more aggressive as well. Once the manipula-
tor moved around faster than the HC could consciously move around his/her arm (in other words,
the manipulator’s motion bandwidth stretched beyond the HC’s crossover region), the haptic cues
caused involuntary arm movements that were deemed unhelpful and merely added workload. To
address this issue, Fu applied a low-pass filter to the haptic cues, which improved the user comfort
while sacrificing little to none of the tracking performance.

(a)

(b)

Figure 2.2: The passive and active stick models as presented by Fu [14]. (a) Schematic diagram of the passive stick model,
where the stick deflection is directly the result of force applied to the manipulator. (b) Schematic diagram of the active stick

model, where the stick deflection is imposed on the human controller using measured system behavior.
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2.4. The neuromuscular system and its adaptive nature
The human response can be summarized as the collection of internal processes responsible for
receiving information, processing information and executing control commands. What lies at the
core of these processes is the neuromuscular system (NMS). It facilitates the two types of control
behavior that together amount to the total force exerted on the stick (mg r i p ): cognitive and reflexive.

Cognitive behavior is produced as result of the various cues that are processed in the brain into
conscious commands, which are then executed by the NMS. Reflexive behavior, on the other hand,
occurs as a result of haptic sensor feedback without conscious involvement of the brain. In this
situation, the haptic sensory output is sent to the relevant muscles directly through the spinal cord,
which can serve as a defense mechanism against imminent harm (e.g., overstretching a muscle or
burning a finger). Figure 2.3 provides a schematic overview of the NMS architecture in the context
of the well-known knee jerk reflex.

Until now, it may seem like HCs have no control over the reflexive behavior that the NMS pro-
duces, however this is not the case. The sensors and muscles that may produce reflexive behavior
are also inherently part of the cognitive control loop, which means that HCs are able to ’tune’ these
components in various ways based on the instructions that they are following. For the case of the
active stick, this means that a perturbation in the stick’s position xm can lead to a range of reaction
forces mg r i p from the arm. The ratio of imposed displacement to resulting reaction force ( xm

mg r i p
),

also known as the admittance, is a useful relationship to quantify the HC’s sensitivity to haptic per-
turbations. As the name suggests, a high admittance allows for much displacement with relatively
little force to resist that motion, while a low admittance provides much resistance force to allow little
displacement. Whereas the admittance may vary considerably depending on the task at hand, three
basic control objectives have been defined that aim to determine its most extreme values [30]:

1. The position task (PT). During this task, the HC is instructed to keep the manipulator in a
given position, actively rejecting any haptic disturbances that may occur.

2. The relax task (RT). As the name suggests, the HC is instructed to relax the arm and let haptic
disturbances freely change the motion of the manipulator and the arm.

3. The force task (FT). During this task, the HC is instructed to keep mg r i p constant. In practice,
this means that the HC is actively giving way to any haptic disturbance that may be produced
by the manipulator.

2.5. The experimental setting and previous findings
This section summarizes the experimental setting that was used by Fu [14] and will be used for this
thesis, as well as the test scenarios and findings produced by Fu earlier. Participants are seated
in the human-machine interface (HMI-) lab, a fixed-base simulator environment at the Technical
University Delft (TU Delft). Figure 2.4 shows the hardware that is used for carrying out the task: an
18-inch liquid crystal display (LCD) screen and a two-axis hydraulically-driven manipulator.

The participants are tasked with a one-dimensional control task, where they only have to control
the aircraft’s roll angle φ. For this reason, the servo motor responsible for the manipulator’s pitch
motion is constrained in the neutral position. Every test run lasts 90 seconds, of which the last 81.92
seconds are used for data analysis.

2.5.1. Forcing function design and controlled element dynamics
A target ( ft ) and disturbance ( fd ) forcing function are both defined as the sum of ten sinusoids (see
Equations 2.1 and 2.2). Fu [14] intended to make these forcing functions of equal difficulty in two
ways. On the one hand, Fu paired the signals’ sinusoid frequency components (ωt (k) and ωd (k)) as
much as possible, as can be seen in Tables 2.2 and 2.3. This is reflected more clearly in the number
of periods that these sinusoids fit inside the measurement time of 81.92 seconds. On the other hand,
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Figure 2.3: A schematic representation of the neuromuscular system. Image extracted from:
http://www.corpshumain.ca/Touche.php

the amplitude of the sinusoids (At (k) and Ad (k)) are all determined using the shaping filter shown
in Equation 2.3 (where K f f = 0.2 and ζ f f = 0.7). In doing so, both forcing functions were essentially
defined in terms of roll angles φt and φd .

For the experiment at hand, a direct expression for both the roll angle φ and the roll rate φ̇ are
desired. The latter term can be obtained directly from the CE dynamics Hc if the disturbance signal
is not injected after said dynamics, but before them (in line with Figures 2.1, 2.2a and 2.2b). To do
so, fd needs to be scaled by 1

|Hc | , as is shown in Figure 2.5. Finally, the sinusoid phase angles θt (k)
and θd (k) from Equations 2.1 and 2.2 are randomized for every test run to prevent participants from
recognizing any patterns in the signals.

ft (t ) =
10∑

k=1
At (k)sin

(
ωt (k)t +θt (k)

)
(2.1)

fd (t ) =
10∑

k=1
Ad (k)sin

(
ωd (k)t +θd (k)

)
(2.2)

H f f (s) = K f f ·
(1/ω2

f f ,L)s2 + (2 ·ζ f f /ω f f ,L)s +1

(1/ω2
f f ,l )s2 + (2 ·ζ f f /ω f f ,l )s +1

(2.3)
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Figure 2.4: The LCD screen and manipulator used in the experiment [14].

Figure 2.5: Prefiltering of the disturbance forcing function fd [14].

Three variants of ft and fd were created and tested by Fu [14], by varying the shaping filter’s corner
frequencies as shown in Table 2.1. This resulted in the forcing function properties shown in Tables
2.2 and 2.3. The highlighted signals defined by the intermediate filter bandwidth are the ones that
will be used in all test scenarios of the upcoming experiment that is explained in greater detail in
Chapter 5. The CE dynamics used by Fu [14] were Boeing 747 roll dynamics, whose open-loop gain
and roll subsidence mode have been adjusted to make the aircraft easier to control. Equation 2.4
shows this result, where the leftmost component of the transfer function represents the fast actuator
dynamics and Kc,B747 =−3.5.

Hc,B747(s) = 1

0.083s +1
·Kc,B747 · 2.259s2 +0.821s +1

s(0.4s +1)(1.647s2 +0.336s +1)

= 1

0.083s +1
· −12s2 −4.362s −5.313

s4 +2.704s3 +1.117s2 +1.518s

= −7.906s2 −2.873s −3.5

0.05468s2 +0.8067s4 +1.842s3 +0.819s2 + s

(2.4)

Table 2.1: The forming filter properties that define the three forcing function variants used by Fu [14].

Bandwidth ω f f ,l [rad/s] ω f f ,L [rad/s]

BW1 0.60 4.80
BW2 1.00 8.00
BW3 1.65 13.2
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Table 2.2: The properties of the three target forcing functions tested by Fu [14]. The signal in bold is the one that will be
used in the upcoming experiment.

At [rad]
k Period ωt [rad/s] BW1 BW2 BW3

1 5 0.3835 0.1864 0.1984 0.1999
2 11 0.8437 0.0910 0.1645 0.1944
3 21 1.6107 0.0277 0.0724 0.1462
4 37 2.8379 0.0094 0.0248 0.0645
5 51 3.9117 0.0056 0.0134 0.0352
6 71 5.4456 0.0039 0.0074 0.0185
7 101 7.7406 0.0033 0.0045 0.0095
8 137 10.5078 0.0032 0.0036 0.0058
9 191 14.6495 0.0031 0.0032 0.0040

10 224 17.1806 0.0031 0.0032 0.0036

Table 2.3: The properties of the three disturbance forcing functions tested by Fu [14]. The signal in bold is the one that will
be used in the upcoming experiment.

Ad [rad]
k Period ωd [rad/s] BW1 BW2 BW3

1 6 0.4602 0.0242 0.0273 0.0278
2 13 0.9971 0.0102 0.0213 0.0281
3 23 1.7641 0.0097 0.0258 0.0557
4 38 2.9146 0.0084 0.0220 0.0574
5 53 4.0650 0.0090 0.0209 0.0551
6 73 5.5990 0.0120 0.0221 0.0550
7 103 7.9000 0.0215 0.0289 0.0599
8 139 10.6612 0.0413 0.0462 0.0736
9 194 14.8796 0.0934 0.0964 0.1173

10 227 17.4107 0.1407 0.1430 0.1606

2.5.2. Sign conventions
Figures 2.6a and 2.6b introduce the sign conventions related to the experimental setting. On the left,
a closeup of the manipulator is presented. In line with the standard convention for aircraft control,
the counterclockwise motion of the manipulator is defined as the positive direction. Such a positive
deflection then results in a negative aircraft roll rate (i.e., a rolling motion towards the left), which
explains the ’−’ sign of the open-loop gain Kc,B747 that is introduced in Section 2.5.1.

The right image presents the artificial horizon that participants will see on the LCD screen. The
tracking error e (= ft −φ) represents the amount of roll that needs to be carried out to reach the
desired position, in other words when e = +20°, the aircraft needs to roll 20° to the right. Linking
that back to the previous point, this means that a positive tracking error e will induce a negative
moment force / stick deflection. It is worth mentioning that this convention conflicts with the one
used by Fu [14], which translates a positive stick input to a positive roll rate. As a result, the values
used by Fu for Kc and the haptic feedback gain are multiplied by −1.

For the sake of convenience, the forces produced by the arm (mr es) and exerted on the stick
(mg r i p ) are expressed in moments around the rotation axis of the stick, which lies approximately 90
mm below the central gripping point of the HC’s hand. The small difference between the displace-
ment of the stick (xm) and the local displacement of the arm (xar m) is bridged by a spring-damper
system that represents the skin dynamics. Sections 3.1 to 3.3 will go into more detail about how the
skin dynamics and others that impact the arm’s motion are defined.
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(a) A closeup of the stick used in the experiment.
(b) The artificial horizon used in the experiment.

Figure 2.6: The sign conventions used in this thesis (modified images from [14]).

2.5.3. Previous experimental findings
As mentioned in Section 2.5.1, Fu [14] exposed twelve participants to three forcing function variants,
whose spectral properties are summarized in Tables 2.2 and 2.3. These forcing functions were tested
for the passive stick and for one setting of the active stick. All test runs were conducted using the
B747 roll dynamics shown in Equation 2.4, which resulted in a total of six testing conditions.

Fu found out that the full haptic link provides significant benefits to the HC, both in terms of
tracking performance and required control effort. These benefits, which become more pronounced
for increasingly difficult (i.e., larger bandwidth) forcing functions, can primarily be accredited to a
more effective rejection of disturbances. This can be explained by the fact that a direct link between
the dynamics of the manipulator and the aircraft removes the need for processing visual, aural and
vestibular cues to identify and react to the disturbances that act upon the system. Instead, the dis-
turbance rejection task is now effectively delegated to the neuromuscular system, which has an
instant response to the disturbance through the intrinsic mechanical properties of the arm, and a
reflexive response (demonstrated in Figure 2.3) that is much quicker than its cognitive counterpart.

As mentioned in Section 2.3, Fu also found out that the haptic cues from the active stick were
only helpful up to the HC’s crossover region (ωc ≈ 5 rad/s). Haptic cues of higher frequencies caused
involuntary arm movements that were considered intrusive, adding to the physical workload. This
is why the low-pass filter shown in Equation 2.5 (with ωlpf,l = 5 rad/s, ωlpf,L = 8 rad/s and ζlpf = 0.7)
was applied. As expected by Fu [14], this increased user comfort with no significant change in target
tracking performance.

Hlpf(s) =
ω2

lpf,l

ω2
lpf,L

·
s2 +2ζlpf ·ωlpf,L +ω2

lpf,L

s2 +2ζlpf ·ωlpf,l +ω2
lpf,l

(2.5)

Besides the fact that reflexive behavior and intrinsic mechanical properties can respond more quickly
to disturbances than cognitive behavior, the direct link between the dynamics of the manipulator
and the aircraft has a defining impact on the system dynamics that the HC effectively experiences.
This is illustrated in Figure 2.7. Whereas this thesis takes into account the intertwined nature of
He (the response to the visually perceived error) and Hx (the predominantly NMS response to the
haptically presented aircraft roll motion), the figure demonstrates clearly how a manipulator whose
position is linked to the aircraft’s roll rate results in an HC effectively experiencing single integrator
dynamics when moving the stick around.

Similarly, a manipulator whose position would be linked to the aircraft’s roll acceleration would
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result in the HC effectively experiencing double integrator dynamics. Moreover, it is worth empha-
sizing that the relationship between a manipulator’s position and the vehicle’s response (i.e., Φ(s)

Xm (s)
in our situation) is ultimately what defines the HC’s conscious impression of the system, regardless
of whether that may be the handlebars on a bicycle, the steering wheel in a car or on a ship, or the
control column on a flight deck.

To summarize the point made above: the innovative concept of position feedback presented
by Fu [14] allows one to transform the CE dynamics effectively experienced by the HC

( Φ(s)
Xm (s)

)
into

1
Hh f b (s) , given that Xm (s)

U (s) = Hh f b(s)Hc (s). This enables one to tailor the HC’s control experience to the

HC’s preferred control task, in accordance with the verbal adjustment rules postulated by McRuer
and Jex [31].

Figure 2.7: A visual explanation of how the identity of the active stick’s haptic feedback (i.e., a pure rate feedback Km s in
this case) dictates the CE dynamics that the human controller effectively experiences [14].

2.6. Thesis objective and academic roadmap
This thesis aims to further progress the development of a full haptic link in the context of aircraft
control, by reproducing the results generated by Fu [14] and testing various new scenarios involving
different aircraft dynamics and haptic feedback settings. Figure 2.8 shows how achieving this result
may open the door to:

1. The generalization of a full haptic link for two-dimensional compensatory tracking tasks,
thereby incorporating the HC’s full range of arm movement with the corresponding neuro-
muscular characteristics,

2. The feasibility study of a full haptic link in an on-board setting, thereby incorporating the
effects of biodynamic feedthrough, and

3. The design of a full haptic link in a dynamical system (both on-board and remotely controlled)
whose properties change over time, which can be the result of changing flight conditions or
system failures.
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Figure 2.8: A graphical representation of the scientific contribution of this thesis, as well as two possible lines of
development that may follow after.





3
Quantifying cognitive and reflexive control

behavior
For many control tasks that involve a human controller, the human contribution is modelled in
a rather basic fashion. This often means that the collection of internal processes responsible for
receiving information, processing information and executing commands are all lumped together
in a single, simple transfer function. Besides that, it is uncommon that the occurrence of reflexive
behavior is discussed or modelled for a given control task. Since the concept of the full haptic link
relies on reflexive behavior for reduced tracking errors and control effort, it makes sense to gain a
more profound understanding of said behavior, and how it is related to its cognitive counterpart.

Section 2.4 has provided an introduction to the neuromuscular system, which plays a central
role in realizing both types of control behavior. Section 3.1 continues this story by introducing the
TU Delft neuromuscular model, which incorporates the various sensors, actuators and links that
form the neuromuscular system at a component level. Afterwards, Section 3.2 provides an approxi-
mation of the HC’s cognitive response, along with an estimation of the nonlinear behavior that HCs
may exhibit. Finally, Section 3.3 unifies the information from Sections 3.1 and 3.2 into an ’active
stick’ model, which will be used for the performance analyses and predictions in Chapter 4.

3.1. Modelling the neuromuscular system
As was mentioned in Section 2.4, the neuromuscular system is composed of the sensors, links and
actuators that allow for the coordination of body parts. Previous biophysical research that has been
carried out at TU Delft resulted in the proposal of a neuromuscular model that incorporates the
dynamics of these sensors, links and actuators separately, in the context of a pilot controlling the
manipulator on a flight deck [32]. This model translates the current position of the hand and the
supraspinal, conscious reference signal emitted by the brain’s motor cortex into a moment force
exerted by the hand. De Vlugt et al. combined this model with the findings regarding skin dynamics
from Van Paassen [33], which resulted in a neuromuscular model that translates the manipulator’s
position and the supraspinal reference signal into a moment force exerted on the manipulator [34].

Figure 3.1 provides an illustration of this model. To be able to identify the neuromuscular pa-
rameters that form this model, De Vlugt introduced a known disturbance force F on the passive
stick Hst and participants were instructed to hold the stick in a certain position (i.e., the position
task, where usup was assumed to be zero).

3.1.1. Muscle spindles
Muscle spindles are proprioceptive sensory receptors (proprioceptors) located in the belly of mus-
cles. These ’position sensors’ provide information to the central nervous system (CNS) about the
muscle stretch and muscle stretch rate, which is used during postural control and facilitates reflex-
ive behavior that prevents muscle overstretching [35]. Its behavior can be approximated using the
transfer function:

Hms(s) = (Kp +Kv s)e−Tms s , (3.1)

where Tms represents the neural transport delay for muscle spindle feedback [36].

35
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Figure 3.1: The TU Delft neuromuscular model, which includes the red boundary conditions used by De Vlugt et al. [34] to
identify the neuromuscular characteristics.

3.1.2. Golgi tendon organs
As the name suggests, the Golgi tendon organs (GTOs) are proprioceptors located on the tendons of
muscles. These ’force sensors’ provide information to the CNS about the force exerted by a muscle,
which assists with postural control and provides reflexive feedback that prevents excessive muscle
contraction. Analogous to the muscle spindle dynamics from Equation 3.1, the behavior of GTOs
can be approximated by a gain and a neural transport delay (see Equation 3.2);

Hg to(s) = K f e−Tg to s (3.2)

3.1.3. Intrinsic arm properties
The motion of an arm holding on to a side stick is determined by the resultant force acting upon the
arm, combined with the inertial properties of the arm. As the side stick only moves laterally in the
presented task, the motion of the arm can be approximated by a rotation of the lower arm around a
vertical axis located at the elbow [37]. This allows us to represent the physical properties of the arm
as a rotational inertia (Iar m), combined with effective rotational spring (Ki ) and damper (Bi ) terms.
In line with this assumption, it makes sense to express any forces produced by, or imposed on the
arm as moments around this rotational axis.

While it is apparent that the rotational inertia term is defined by the collective body mass of the
right arm, the effective spring and damper properties are defined by two other factors. On the one
hand, the combination of connective tissues surrounding the fascicles and tendons provide spring
and damper properties at all times. On the other hand, the level of muscle cocontraction may also
impact the effective spring and damper properties of the arm. This occurs when the agonist and
antagonist muscle around a joint are contracted with equal force, i.e., the muscle pair is ’tensed up’
by the human controller.

Moreover, the arm is rotated by the sum of moments produced inside the arm minus the external
moment induced on the arm by the side stick. In other words:

xar m = mr es Har m(s) = (mmus −mg r i p )
( 1

Iar m s2

)
, (3.3)

where:
mmus = mr e f l −mi = mr e f l − (Ki +Bi s)xar m (3.4)

3.1.4. Muscle activation
Muscle activation encompasses the transition from signals generated in motor neurons to the pro-
duction of muscle force mmus , the term in Equation 3.4 that still lacks explanation. The activation
of the motor neurons occurs at the spinal cord as the sum of proprioceptive sensor feedback and
conscious, supraspinal control originating from the motor cortex (see Equation 3.1.4). This neural
signal causes the myofibrils in muscle fibers to contract [38], which effectively exerts a force on the
skeleton. According to De Vlugt, this behavior can be estimated accurately by means of a second-
order system, which results in Equation 3.5 [39];
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mr e f l = utot Hact (s) = utot

( 1
1

ω2
act

s2 +2 bact
ωact

s +1

)
, (3.5)

where:
utot = usup −ums −ug to (3.6)

3.1.5. Skin dynamics
The transition from arm motion to a moment exerted on the manipulator occurs in the skin of the
hand. While the relative motion between the hand and the side stick is small, Van Paassen [33]
suggests that the moment exerted on the manipulator can be expressed by this relative motion,
combined with a spring-damper model of the interface (i.e., the skin);

mg r i p = (xar m −xm)Hski n(s) = (xar m −xm)(Kski n +Bski n s) (3.7)

3.2. Modelling cognitive and nonlinear behavior
The model presented in Figure 3.1 provides a detailed description of how manipulator movements
induce reflexive grip force and how cognitive commands are translated into grip force. To fully
describe the HC’s control behavior, a description is needed for how the cognitive, supraspinal target
signal usup comes to be. This cognitive signal is the result of the HC visually perceiving the current
tracking error, and determining where the manipulator should move next.

Since this thesis focuses on the interaction between the active stick and reflexive control behav-
ior, the cognitive equalization of the perceived tracking error e is approximated by the widely-used
simplified precision model introduced by McRuer and Jex [31]. The visual perception delay Tvi sual

is estimated to be 0.25 seconds [40]. The analytical expression for this delay is approximated by a
second-order 0.25 s Padé filter:

Hvi sual (s) = e−Tvi sual s ≈ s2 −24s +192

s2 +24s +192
(3.8)

The HC’s behavior is now fully described, albeit with merely linear approximations for all the com-
ponents/processes involved. Many of the simple descriptions of HCs add a remnant (i.e., colored
noise) to the HC’s control output, to account for any nonlinear behavior that may occur.

Figure 3.1 shows how the human response is modelled in a more nuanced way than simply one
transfer function, which is why it makes sense to give the sources of nonlinear behavior a similar
treatment. The sources of nonlinear behavior are identified and individually assessed as follows:

1. Sensors providing nonlinear or noisy feedback signals. Various sources approximate the
proprioceptors in experimental settings comparable to the one at hand as linear sensors with-
out any noise term [33] [39] [41], which is why the same approach is taken in this report.

2. Nonlinear equalization of the perceived tracking error e. This phenomenon was already
studied over 50 years ago by Levison [42], who found out that the spectral shape of the noise
signal injected at the perceived error e depends on the system dynamics that the HC is try-
ing to control (i.e., the controlled element or CE dynamics). In general, this noise term can
be considered as colored noise, i.e., white noise that is sent through a shaping filter. Lev-
ison concluded that CE dynamics resembling K , K

s and K
s2 resulted in white, first-order lag

and integrator-shaped forming filters, respectively. These findings are supported by recent re-
search conducted by Van der El [43], who also managed to quantify the parameters that define
these forming filters for the fundamental compensatory, pursuit and preview tracking tasks.
This includes the following two findings: 1) the noise term for single and double integrator CE
dynamics can both be modelled as a first order lag, with corner frequencies ωc,n, K

s
= 10 rad/s

and ωc,n, K
s2
= 0.1 rad/s, respectively and 2) the noise injected at the error has approximately
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10% of the power of the perceived error signal, in other words the local signal-to-noise ratio

(SNR)
σ2

e

σ2
n,c

≈ 10 [43].

To determine what values properly represent the HC’s cognitive nonlinear behavior, one
needs to consider the effective CE dynamics that the HC experiences and responds to. In the
situation of the passive stick this is simply the aircraft roll dynamics Hc which, as can be seen
in Equation 2.4, are a second order system. The effective CE dynamics experienced by the HC
with the active stick and its roll rate feedback, on the other hand, are a first order system, as is
explained in Section 2.5.3 and Figure 2.7. This means that the cognitive noise for the passive
and active stick are best estimated by white noise that is filtered by a first order lag with corner
frequencies

(
ωc,n

)
pas = 0.1 rad/s and

(
ωc,n

)
act = 10 rad/s, respectively. Equation 3.9 shows the

probability density function (PDF) related to every discrete variable of the noise term in the
simulations, where Wn represents the cognitive noise intensity. Furthermore, Equation 3.10
provides the definition of the shaping filter supported by Levison [42] and Van der El [43].

f fn [k](x) =
√

Wn ·N (0,1) (3.9)

Hn(s) = 1
1

ωc,n
s +1

(3.10)

3. Inaccuracies in the execution of a commanded grip force (i.e., motor noise). Kleinman
argued that motor noise can be modelled as Gaussian white noise [44]. Hamilton [45] has
quantified the presence of such motor noise as a function of both the mean torque and the
amount of motor units present in a muscle (i.e., muscle strength). In the simulations, a dis-
tinction is made between a typical ’weak’ and ’strong’ muscle, whose maximum voluntary
torques (MVTs) are 1.79 Nm and 6.79 Nm, respectively. Assuming that the lower arm purely
rotates around the elbow and that there is a distance of 0.30 m between the elbow and the
side stick, it is safe to conclude that the ensemble of muscles that generates the sideways
motion of the stick can be considered as ’strong’ (as it would require a sideways force of
> (6.79/0.30)/9.81 = 23 N at the side stick, which is easily attainable for the average per-
son). This means that the black graph from Figure 3.2a is most helpful to get an impres-
sion of the motor noise intensity. The largest average torque estimated in Fu’s experimen-
tal runs with a 95% confidence interval was around 0.29 Nm, which occurred for the passive
stick at the third signal bandwidth (see Figure 3.2b). Such a force would correspond with

100 · (0.29/0.090)/6.79 = 48% MVT. This results in a local SNR of
σ2

mg r i p

σ2
n,m

≈ 1
0.4/100 = 250. From

this it is evident that motor noise has a marginal impact in this situation, which is why it can
be omitted from the model.

4. Operator-centered variables presented by McRuer and Jex [31] that affect the HC’s mental
and / or physical state (e.g., being fatigued, stressed, distracted or unmotivated). These un-
desirable, non-stationary phenomena are inherently difficult to quantify in a model, which is
why this will not be done. Instead, the experiment will be designed such that these phenom-
ena will have a minimal chance of impacting the experimental outcome.

3.3. Unification of the theory to model the experiment
The information presented in Sections 3.1, 3.2 and Figure 2.2 was combined to form the active stick
model, the schematics of which are demonstrated in Figure 3.3c. This model is used to make obser-
vations about the control behavior exhibited by participants from Fu’s experiment [14] in Chapter
4, and will play a central role in generating predictions for the new scenarios that are to be tested for
the active stick. Figures 3.3a and 3.3b show the schematics of the passive stick and force stick, re-
spectively, as a final demonstration to clarify what the fundamental configurations have in common
and what sets them apart.
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(a) Simulation of muscle torque standard deviation (i.e., square root
of motor noise intensity) as a function of % mean voluntary torque

for a weak (gray) and strong (black) muscle [45]. For the experiment
at hand, a worst-case scenario noise standard deviation of 0.4% MVT

has been identified and indicated in red.

(b) The RMS(mg r i p ) values reported with a 95% confidence interval
by Fu [14].

What the configurations have in common are the stimuli on which the HC’s behavior is based:
the visually perceived error e for the cognitive response, and the conscious command signal usup

and stick position xm for the neuromuscular response. What sets them apart is the way xm is related
to the rest of the control system. As explained in Section 2.1, the passive manipulator moves to a cer-
tain position xm , based on the force the HC applies on the manipulator and the stick’s mechanical
properties. In this situation, the value measured for xm is what drives the aircraft’s control surfaces.
The active stick operates in a fundamentally different way, as is explained in Section 2.3. In this case,
the force that the HC applies on the manipulator is what drives the aircraft’s control surfaces and xm

is imposed on the HC using servo motors, that base said stick position on the motion of the aircraft.
Finally, Figure 3.3b shows the schematics of the configuration that bridges the conceptual gap

between the other two: the force stick. Like the active stick, it involves a manipulator which trans-
lates the applied force to a control signal, however its position remains fixed in the neutral position
(in other words, it functions as an active stick where Kφ̇ = 0).
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(a)

(b)

(c)

Figure 3.3: A schematic representation of the (a) passive (b) force and (c) active stick model, where the green ’NMS model’
block acts as a small substitute for Figure 3.1. The force stick model bridges the conceptual gap between the passive and

active stick that were introduced in Sections 2.1 and 2.3, respectively, but the active stick model is the one that will be
focused on for the remainder of this thesis.



4
Applying the model and devising a test

strategy
With the model of Chapter 3 in place, a wide array of testing conditions can be simulated and ul-
timately a proposal can be made for the tuning procedure of the active stick. To reach that point,
however, a grounded argument needs to be made for the value of all the parameters that define the
model and the observations leading up to the proposed tuning procedure and testing conditions.
Figure 4.1 provides an overview of how the sections of this chapter have been organized to suit this
approach, from the analytical derivation of the active stick model’s top level transfer functions to
the analysis of the simulation output and, finally, the proposed tuning procedure and testing con-
ditions.

Figure 4.1: An overview of the workflow and the way content is organized in Chapter 4.

4.1. Preparation of the data fitting algorithm
The Delft neuromuscular model that is presented in Section 3.1 is characterized by the twelve pa-
rameters shown in Equations 3.1 to 3.7. Combined with the four parameters that characterize the
HC’s cognitive response (Pe , Ie , De and Tvi sual ), this brings the total number of HC parameters
to sixteen. This number, combined with the adaptive nature for which HCs are known, makes the
quantification of a reasonable relaxed, average and tense human controller setting particularly chal-
lenging when it comes to simulating testing conditions. Luckily, the experimental data generated
by Fu [14] provides us the opportunity to estimate said parameters, by fitting the active stick model
on the existing Bode plots that represent the HC’s open- and closed-loop responses for tracking the

41
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target signal ft (i.e., Ht ,OL(s) = Φ(s)
E(s) and Ht ,C L(s) = Φ(s)

Ft (s) ) and rejecting the disturbance signal fd (i.e.,

Hd ,OL(s) = Up (s)
Fd (s) and Hd ,C L(s) = Φ(s)

Fd (s) ).
Before any data fitting can take place, however, the transfer functions of the open- and closed-

loop target tracking and disturbance rejection response need to be derived from the model first.
Section 4.1.1 merely shows the outcome of this process, but the full derivation can be found in Ap-
pendix A. This also includes a derivation and verification of the passive stick model transfer func-
tions which, although not of direct value to this thesis, had been made at an earlier stage in the
project and could potentially serve future research. Once the analytical expressions are derived and
verified, the algorithm that estimates the HC parameters using said expressions can be explained,
which is done in Section 4.1.2.

4.1.1. Analytical derivation and verification of model transfer functions
Upon closer inspection of the active stick model shown in Figure 3.3c, the open- and closed-loop
target tracking responses have been determined analytically. Given that Hski n = H1, Iar m = H2, Hi =
H3, Hms = H4, Hg to = H5 and Hact = H6 and that:

Q = Hl p f Hh f b

Γ= 1+H1H2

∆= Hvi sual

(
Pe + Ie

s
+De s

)
Θ= 1+H6H5

Λ= H6H4H2 +H3H2

The open- and closed-loop target tracking responses are defined as:

Φ(s)

E(s)
= Hc K f wd H1H2H6∆

(Γ+H1QHc K f wd )(Θ+Λ)−H1H2Λ
(4.1)

Φ(s)

Ft (s)
= Hc K f wd H1H2H6∆

(Γ+H1QHc K f wd )(Θ+Λ)−H1H2Λ+Hc K f wd H1H2H6∆
(4.2)

The open- and closed-loop disturbance rejection responses are defined as:

Up (s)

Fd (s)
= H1Hc K f wd

Γ

(
H1H2Q − H2H6∆Γ+ΛH1H2Q

ΓΘ+Λ −QΓ

)
(4.3)

Φ(s)

Fd (s)
= Γ

Γ−H1Hc K f wd

(
H1H2Q − H2 H6∆Γ+ΛH1 H2Q

ΓΘ+Λ −QΓ
) (4.4)

To verify these transfer functions, they have been plotted with the Bode plots that were generated
from the models directly using the Model Linearizer toolbox in Simulink. As can be seen in Fig-
ures 4.2a and 4.2b, the resulting plots from the two methods coincide, which provides the needed
confidence about the correctness of the analytical expressions.

4.1.2. The data fitting algorithm
In summary, the algorithm Datafitter.m makes use of the MATLAB routine fmincon.m, which op-
timizes the sum of squares cost value C that is calculated during every iteration by activeStickCost-
func.m. It operates as follows:
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1. Import active stick model constants.
2. Define the vector to be optimized: v⃗ = [Pe , Ie ,De ,Kski n ,Bski n ,Ki ,Bi ,Kp ,Kv ,K f ].
3. Apply boundary conditions to the elements of x⃗.
4. Generate an initial guess for v⃗ ⇒ v⃗0, where every element of x⃗0 is randomly selected from a

uniform distribution spanning from the lower to the upper bound of all respective variables.
5. Fmincon.m(activeStickCostfunc.m, v⃗0, BCs of v⃗). With every v⃗ tested by fmincon.m, active-

StickCostfunc.m:

(a) Calculates the resulting Ht ,OL(s), Ht ,C L(s), Hd ,OL(s) and Hd ,C L(s), using the analytical
expressions shown in Section 4.1.1.

(b) Calculates the phasors of these transfer functions at the frequencies tested by Fu [14]
(see Tables 2.2 and 2.3).

(c) Imports the experimental frequency response data generated by Fu [14]. This includes
information about the mean value of all data points, as well as their standard deviation.

(d) Calculates the phasor belonging to every data point’s mean value (−→xµ), as well as the
one belonging to every data point’s +1σ value (i.e., −−−→x+1σ). Then, the difference vector−→xµ−−−−→x+1σ is calculated, which is clarified visually in Figure 4.3.

(e) Calculates the average difference vector norm ||−→xµ−−−−→x+1σ|| for every Bode plot (i.e., target
OL, target CL, disturbance OL and disturbance CL) separately, as well as the standard
deviation belonging to those data sets.

(f) Assigns a weight to every data point, which is based on the relative size of every ||−→xµ−−−−→x+1σ|| in a given data set and the standard deviation of said data set. In other words:
the more uncertain a data point is compared to the other points in that Bode plot from
Fu (e.g., the second point in the OL target tracking Bode plot), the lower the priority
becomes for the data fitter algorithm to fit the model on that Bode plot at that specific
frequency.

When ||−→xµ−−−−→x+1σ|| of a certain data point is perfectly average compared to the other
nine points in that Bode plot, its weight will be 1. When ||−→xµ−−−−→x+1σ|| is oneσ greater than
the average of that set (i.e., a relatively inaccurate point), its weight will be 0.5. When
||−→xµ−−−−→x+1σ|| is one σ smaller than the average of that set (i.e. a relatively accurate point),
its weight will be 2. To summarize algebraically, suppose for a data point in a given Bode
plot that:

||−−−−−−−→xdi f f (N )|| = ||−−−−→xµ(N )−−−−−−−→
x+1σ(N )|| (4.5)

Then the average size and standard deviation of the difference vector for a given Bode
plot can be formulated as:

µ||−−−→xdi f f || =
10∑

N=1

||−−−−−−−→xdi f f (N )||
10

(4.6)

σ||−−−→xdi f f || =

√√√√√∑∣∣∣||−−−→xdi f f ||−µ||−−−→xdi f f ||
∣∣∣ 2

10

(4.7)

For the ten data points in that Bode plot then holds that:

W (N ) = 2
−Z||−−−−−→xdi f f ||(N )

, (4.8)

where:

Z||−−−→xdi f f ||(N ) =
||−−−−→xµ(N )−−−−−−−→

x+1σ(N )||−µ||−−−→xdi f f ||
σ||−−−→xdi f f ||

(4.9)
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As is clear from the explanation as well as the equations, the weights for every data point
remain constant, regardless of what v⃗ is currently being tested by fmincon.m.

(g) Calculates the difference vector between the phasors generated at step (b) and the mean
phasors derived from Fu’s experimental data at step (d). The norm of all separate differ-
ence vectors is squared, multiplied by their corresponding W (N ) and added up to form
the total cost C that effectively forms the least squares sum that is being optimized by
fmincon.m.

4.2. Quantification of human control behavior
As is shown in Figure 4.1, the determination of three reasonable HC settings required a methodical
approach that involved several steps. First off, the parameters for which relatively consistent val-
ues are reported in literature are assumed to be constant (Iar m and visual response time Tvi sual ).
This also includes the parameters that characterize the neural signal activation (ωact and bact ) and
neural transport delay (Tms and Tg to), as researched by Schouten [32]. Effectively, this reduced the
number of free HC parameters from sixteen to ten.

Table 4.1 provides an overview of the boundary conditions that were in place at the start of this
procedure, as well as the sources on which they were based. It should be noted that at this point,
the direct relationship between Kp , Kv and K f for the fundamental position, force and relax task
(and any task in between) as proposed by Bhoelai [46] was still respected. Whereas this relationship
also extended to Ki , the large difference in values reported for this parameter by Bhoelai [46] and
Lasschuit [47] are the reason why Ki was set as an independent variable.

Table 4.1: The quantified human controller parameters after iteration 0.

Category Parameter Symbol Value Unit Source

Stiffness Kski n [165,400] [Nm/rad]
Paassen [37],
Lam [48]

Skin dynamics
Damping Bski n [0.5,5] [Nms/rad] Lasschuit [47]
Inertia Iar m 0.01 [Nms2/rad] Lasschuit [47]
Damping Bi [0.05,1] [Nms/rad] Lasschuit [47]Intrinsic arm

dynamics
Stiffness Ki [3,11] [Nm/rad]

Lasschuit [47],
Bhoelai [46]

Muscle stretch Kp

PT: 9,
RT: 10−10,
FT: -6

[Nm/rad] Bhoelai [46]

Muscle stretch rate Kv

PT: 2,
RT: 10−10,
FT: 3

[Nms/rad] Bhoelai [46]

Muscle spindle
dynamics

Neural transport delay Tms 0.025 [s] Schouten [32]

Muscle force K f

PT: -1.5,
RT: 10−10,
FT: 1.5

[-] Bhoelai [46]Golgi tendon organ
dynamics

Neural transport delay Tg to 0.025 [s] Schouten [32]
Corner frequency ωact 13.823 [rad/s] Schouten [32]Neuromuscular

activation dynamics Damping bact 0.7071 [-] Schouten [32]
Proportional gain Pe [-15,0] [-]
Integrator gain Ie [-15,0] [-]
Differentiator gain De [-15,0] [-]

Estimated
per runCognitive response

Visual response time Tvi sual 0.25 [s] Jain [40]
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4.2.1. Reduction of upper and lower bounds on remaining parameters
After running the data fitting algorithm presented in Section 4.1.2 in combination with the exper-
imental data for all three bandwidths tested by Fu [14], the following initial observations could be
made:

• The skin stiffness Kski n was reported earlier at large, yet varying values [37] [48]. The fre-
quency response plots show, however, that its exact value is inconsequential for the HC’s
control behavior and performance in the frequency band that the HC is exposed to in the
experiment at hand. This is why Kski n is assumed to be 165 Nm/rad, as reported by Lam [48].

• The skin damping Bski n was reported by Lasschuit [47] with relatively large uncertainty ear-
lier. Whereas the cost value C seemed to be insensitive to changes in Bski n at some settings
(particularly when Ki ≤ 4), it could sometimes make the difference for closed-loop stability of
the system and was maximized in the majority of the scenarios. This is why Bski n is assumed
to be 5 Nms/rad, which is at the higher end of the estimates reported by Lasschuit [47].

• The intrinsic arm damping Bi is consistently minimized, as it has a great impact on the fit
quality of the disturbance rejection FRF in particular. This is why it is set at 0.05 Nms/rad,
which is at the lower end of the estimates reported by Lasschuit [47].

• The values reported for the intrinsic arm stiffness Ki by Lasschuit [47] greatly improve the
quality of the fit compared to the values reported by Bhoelai [46], which is why the upper
and lower limits for Ki are narrowed down in accordance with Lasschuit’s measurements (3 <
Ki < 11 becomes 3 < Ki < 6.5 [Nm/rad]). By adhering to Lasschuit’s values for Ki , the validity
of the refined proprioceptor gain limits reported by Bhoelai [46] is jeopardized. This is why
the dependencies between Ki , Kp , Kv and K f are removed, and the proprioceptor upper and
lower gain limits are relaxed to the absolute limits determined by Bhoelai at an earlier stage.

• Closed-loop stability of the system seems to depend on |Pe | being smaller or equal to ≈ 4. This
threshold seems to decrease mildly for increasing intrinsic arm stiffness Ki .

• Crossover characteristics as well as time-domain performance seem to drop in accuracy con-
siderably when |Pe | < 1.

With this information, the amount of free variables in the pilot model is reduced to seven: the in-
trinsic arm stiffness Ki , the proprioceptor gains Kp , Kv and K f , and the cognitive response charac-
terized by Pe , Ie and De . Table 4.2 summarizes how the parameter bounds have changed.

4.2.2. Identification of relations between human controller parameters
With the reduced parameters bounds, two sets of scenarios were tested for the intermediate and
large bandwidth tested by Fu [14]: 1) Ki = 4, Pe = −1,−1.5, ...,−4 and 2) Pe = −3, Ki = 3,3.5, ...,6.5.
These scenarios were tested for the situations of P-, PD- and PID-control, to assess the impact and
relevance of De and Ie with respect to the quality of the fit. The outcome of these tests is summarized
in Tables 4.3 and 4.4.

Since the combination of Ki = 4 and Pe = −4 resulted in either a marginally stable or unsta-
ble system in all scenarios, its distorted results have been omitted from Table 4.3. Also, Figure 4.4
demonstrates how certain tested settings resulted in one disturbance rejection gain crossover point,
whereas others resulted in multiple ones. For these situations, the point with the minimal stability
margin has been recorded as a second crossover point, of which the most extreme values made it to
Tables 4.3 and 4.4.
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Table 4.2: The quantified human controller parameters after iteration 1.

Category Parameter Symbol Value Unit Source

Stiffness Kski n 165 [Nm/rad] Lam [48]
Skin dynamics

Damping Bski n 5 [Nms/rad] Lasschuit [47]
Inertia Iar m 0.01 [Nms2/rad] Lasschuit [47]
Damping Bi 0.05 [Nms/rad] Lasschuit [47]

Intrinsic arm
dynamics

Stiffness Ki [3,6.5] [Nm/rad] Lasschuit [47]
Muscle stretch Kp [-30,30] [Nm/rad] Bhoelai [46]
Muscle stretch rate Kv [-5,10] [Nms/rad] Bhoelai [46]

Muscle spindle
dynamics

Neural transport delay Tms 0.025 [s] Schouten [32]
Muscle force K f [-20,20] [-] Bhoelai [46]Golgi tendon organ

dynamics Neural transport delay Tg to 0.025 [s] Schouten [32]
Corner frequency ωact 13.823 [rad/s] Schouten [32]Neuromuscular

activation dynamics Damping bact 0.7071 [-] Schouten [32]
Proportional gain Pe [-5,0] [-]
Integrator gain Ie [-5,0] [-]
Differentiator gain De [-5,0] [-]

Estimated
per runCognitive response

Visual response time Tvi sual 0.25 [s] Jain [40]
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Figure 4.2: Verification of the analytical descriptions for the active stick model, for the open- and closed-loop (a) target
tracking and (b) disturbance rejection response.
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Figure 4.3: A demonstration of how a difference vector is calculated for every experimental frequency response data point
generated by Fu [14]. In this example, data point six of ten from the open-loop disturbance rejection Bode plot of Fu’s

intermediate bandwidth (BW2) is selected.



Figure 4.4: Bode plot of the PD and PID open-loop disturbance rejection FRFs summarized in Table 4.4, which demonstrates the presence of multiple gain crossover points at many of the
tested settings. For these situations, the most extreme minimal stability margins have been recorded as the second crossover point in Tables 4.3 and 4.4.
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P-control vs. PD-control vs. PID-control
• P-control results in a time-domain tracking performance most comparable to the one re-

ported by Fu [14] (RMS(e)Fu ≈ 5.42°, 4.97 < RMS(e) < 5.51). The simulated control effort,
however, is the furthest off (RMS(mg r i p )Fu ≈ 0.156 Nm, 0.0456 < RMS(mg r i p ) < 0.0540).

• The introduction of De increases the quality of the fit by a respectable amount (119 <C < 143
becomes 77 <C < 92). The vast majority of this improvement occurs at the closed-loop target
tracking response (50 <C (tC L) < 73 becomes 5.2 <C (tC L) < 7.2), along with an improvement
of the closed-loop disturbance rejection fit that was already solid (3.9 <C (dC L) < 7.9 becomes
1.3 <C (dC L) < 3.0).

• Interestingly, the crossover characteristics for both target tracking and disturbance rejection
improve greatly when De is added, despite the apparent lack of improvement in C (tOL) and
C (dOL).

• The addition of the integrator Ie considerably increases the quality of the fit (77 < C < 92
becomes 13 < C < 20). The vast majority of the improvement in this case occurs for both
open-loop responses (49 < C (tOL) < 53 becomes 1.8 < C (tOL) < 3.1 and 18 < C (dOL) < 29
becomes 6.9 <C (dOL) < 13).

• Time- and frequency domain performance remain nearly unchanged when comparing PD-
and PID-control, with the exception of a minor increase in RMS(mg r i p ) (0.0613 < RMS(mg r i p ) <
0.108 becomes 0.0680 < RMS(mg r i p ) < 0.139). Still, all of the tested settings consistently re-
sult in too strong of a tracking performance, whereas the required control effort is consistently
too low compared to the experimental data.

Constant Ki with varying Pe

Within the different control regimes (P-, PD- and PID-control), highly similar performance could
be obtained (for the frequency-domain in particular) for a constant Ki and varying Pe . To demon-
strate this, Figure 4.5 contains the highly similar Bode plots determined for the PID-control regime,
besides from which time-domain performance variations can be summarized as 4.14° < RMS(e) <
4.44°; 0.0596 Nm < RMS(mg r i p ) < 0.139 Nm. To achieve these similar results, the following rela-
tions between neuromuscular parameters were observed:

• Both for PD- and PID-control, De scales approximately proportional to
p

Pe .

• For PID-control, Ie scales proportional to Pe .

• For all control regimes, a more aggressive cognitive response (i.e., larger values for |Pe |, |Ie |
and |De |) resulted in greater values for the muscle spindle gains Kp and Kv . This means that
the muscle spindles are set to be more excitatory, which in turn means that both cognitive
commands and disturbances from the stick are attenuated more actively by the NMS.

• For all control regimes, a more aggressive cognitive response (i.e., larger values for |Pe |, |Ie |
and |De |) resulted in greater values for the Golgi tendon organ gain K f . This means that the
golgi tendon organs are set to be more inhibitory, which in turn means that cognitive com-
mands are attenuated more actively by the NMS, but disturbances from the stick are admitted
more easily.

Constant Pe with varying Ki

As was the case in the previous section, highly similar performance could be obtained for a constant
Pe and a varying Ki within the different control regimes. The variation in time-domain performance
can be summarized as 4.06° < RMS(e) < 4.29°; 0.0941 Nm< RMS(mg r i p ) < 0.110 Nm and Figure 4.9



(a) The open-loop target tracking frequency responses. (b) The open-loop disturbance rejection frequency responses.

Figure 4.5: Bode plots of all the dynamic systems that the data fitting algorithm converged to, when fitting the model on Fu’s intermediate bandwidth data with Pe = [−3.5,−1] and Ki = 4.
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demonstrates the similarity between the resulting open-loop Bode plots. To achieve the similar
results, the following relations between neuromuscular parameters were observed here:

• The combination of a relatively large Pe (≥ 3) and Ki (≥ 4) gives too much disturbance rejec-
tion open-loop gain in the high frequencies (8 <ω< 25 rad/s).

• RMS(e) remains comparable, however the RMS(mg r i p ) increases notably for a higher Ki .

• |De | increases slightly for increasing Ki , which may act as a slight compensation for the re-
duced neuromuscular amplification through additional cognitive amplification.

• In the case of PID-control, Ie remains nearly unaffected by Ki .

• Muscle spindle gains reduce for higher Ki , thereby becoming more inhibitive. This increases
NMS signal amplification through the muscle spindle feedback loop to compensate for the
intrinsic arm feedback loop, which has become more excitatory due to the larger Ki .

• Interestingly, GTO gains remain unaffected by changes in Ki .

Table 4.3: An overview of the upper and lower limits reached while fitting the model on the existing experimental data for
Ki = 4 Nm/rad and Pe =−1,−1.5,−2, ...,−3.5 for Fu’s intermediate bandwidth.

Ki = 4 Nm/rad, Pe =−1,−1.5, ...,−3.5Data Fu
BW2 [14] P-control PD-control PID-control

C(tOL) [39, 48] [49, 53] [1.8, 3.1]
C(tCL) [51, 73] [5.7, 6.1] [1.2, 2.4]

C(dOL) [18, 23] [20, 24] [8.0, 9.2]
Separate

costs
C(dCL) [4.4, 7.9] [1.6, 2.6] [1.0, 1.8]

Total cost C [121, 143] [81, 82] [13.9, 14.4]
ωc,t [rad/s] 2.49 [2.05, 2.18] [2.48, 2.57] [2.50, 2.57]
φm,t [deg] 42.8 [33.1, 41.3] [41.4, 43.7] [43.9, 45.6]

RMS(e) [deg] 5.42 [4.97, 5.51] [4.10, 4.17] [4.14, 4.32]
RMS(mg r i p ) [Nm] 0.156 [0.0456, 0.0540] [0.0613, 0.108] [0.0680, 0.139]

ωc,d [rad/s] 5.16 [4.33, 12.4]
1) [4.65, 5.00],
2) [10.1, 18.4]

1) [4.88, 5.13],
2) [10.5, 17.3]

φm,d [deg] -128.9 [-61.3, -103]
1) [-103, -118]

2) [-51.8, -74.6]
1) [-113, -123],
2) [-49.9, -65.8]

Findings summarized
Moreover, similar performance can be obtained when a more aggressive cognitive response (larger
|Pe |) is coupled with more inhibitive muscle spindles (Kp and Kv decrease in value) and more in-
hibitive Golgi tendon organs (K f increases). Such inhibitive settings make the NMS more com-
pliant, but also attenuate cognitive commands. This makes sense when considering the various
extreme tasks (PT, RT, and FT), as an HC always needs to find a balance in the intensity of the con-
trol behavior. Being able to move the stick around aggressively comes at the cost of experiencing
disturbance more aggressively as well.

4.2.3. Definition of three human controller settings
Figures 4.6 and 4.7 show the linear relations through which highly similar performance was ob-
tained. These linear relations have been approximated (as shown in Table 4.5), after which the
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Table 4.4: An overview of the upper and lower limits reached while fitting the model on the existing experimental data for
Pe =−3 and Ki = 3,3.5, ...,6.5 Nm/rad for Fu’s intermediate bandwidth. Only one gain crossover point existed for some of
the open-loop disturbance FRFs, hence the ’N.A.’ entries as an extremity of the second crossover points (see Figure 4.4 for

visual clarification).

Pe =−3, Ki = 3,3.5, ...,6.5 Nm /radData Fu
BW2 [14] P-control PD-control PID-control

C(tOL) [44, 48] [52.5, 53.0] [2.4, 3.1]
C(tCL) [50, 65] [5.2, 7.2] [2.2, 2.5]

C(dOL) [16, 24] [18, 29] [6.9, 13]
Separate

costs
C(dCL) [3.9, 7.8] [1.3, 3.0] [0.8, 2.0]

Total cost C [119, 141] [77, 92] [13, 20]
ωc,t [rad/s] 2.49 [2.13, 2.17] [2.56, 2.57] [2.55, 2.58]
φm,t [deg] 42.8 [36.9, 41.6] [42.9, 43.6] [45.3, 45.3]

RMS(e) [deg] 5.42 [4.97, 5.29] [4.02, 4.16] [4.06, 4.29]
RMS(mg r i p ) [Nm] 0.156 [0.0502, 0.0533] [0.0874, 0.0976] [0.0941, 0.111]

ωc,d [rad/s] 5.16
1) [4.40, 5.00],
2) [N.A., 21.1]

1) [4.57, 4.73],
2) [N.A., 15.3]

1) [4.80, 4.94],
2) [N.A., 14.7]

φm,d [deg] -128.9
1) [-66, -101],
2) [N.A., -117]

1) [-109, -119],
2) [N.A., -62.3]

1) [-116, -124],
2) [N.A., -56.2]
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(a) (b)

(c) (d)

(e) (f )

Figure 4.6: An overview of all the possible proprioceptor gains that realized a target tracking crossover frequency of
ωc,t ≈ 1.7 rad/s (circles) and ωc,t ≈ 2.5 rad/s (triangles).
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(a) (b)

(c) (d)

Figure 4.7: An overview of all the possible cognitive response gains that realized a target tracking crossover frequency of
ωc,t ≈ 1.7 rad/s (circles) and ωc,t ≈ 2.5 rad/s (triangles).
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Table 4.5: A summary of the relations shown in Figures 4.6 and 4.7, the approximations that were used and the ’average
controller’ setting that was derived from the approximation of the other two settings.

HC
setting

Pe Ki Linear regression R2 Approximation

Free 4 Kp =−1.8388Pe −4.081 0.9997 Kp ≈−1.85Pe −4
-3 Free Kp =−0.8616Ki +4.9124 0.9999 Kp ≈−0.86Ki +5

Relaxed
(ωc,t ≈
1.7 rad/s) Free Free

Kp ≈≈≈−−−1.85Pe −−−0.86Ki

−−−0.55
Free 4 Kp =−1.0485Pe −4.0654 0.9999 Kp ≈−1.05Pe −4
-3 Free Kp =−1.009Pe +3.1212 1 Kp ≈−1.01Ki +3.1

Tense
(ωc,t ≈
2.5 rad/s) Free Free Kp ≈≈≈−−−1.05Pe −−−1.01Ki

Kp

Average
(ωc,t ≈
2.0 rad/s)

Free Free
Kp ≈≈≈−−−1.45Pe −−−0.94Ki

−−−0.28

Free 4 Kv =−0.1739Pe −0.2848 0.9976 Kv ≈−0.17Pe −0.25
-3 Free Kv =−0.1081Ki +0.6657 0.9999 Kv ≈−0.11Ki +0.67

Relaxed
(ωc,t ≈
1.7 rad/s) Free Free Kv ≈≈≈−−−0.17Pe −−−0.11Ki +++0.2

Free 4 Kv =−0.1951Pe −0.2134 0.9999 Kv ≈−0.2Pe −0.25
-3 Free Kv =−0.0892Ki +0.7279 1 Kv ≈−0.09Ki +0.75

Tense
(ωc,t ≈
2.5 rad/s) Free Free Kv ≈≈≈−−−0.2Pe −−−0.09Ki +++0.15

Kv

Average
(ωc,t ≈
2.0 rad/s)

Free Free
Kv ≈≈≈−−−0.185Pe −−−0.1Ki

+++0.175

Free 4 K f =−1.215Pe −1.0468 1 K f ≈−1.2Pe −1
-3 Free K f =−0.0118Ki +2.6474 0.9939 K f ≈ 2.6

Relaxed
(ωc,t ≈
1.7 rad/s) Free Free K f ≈≈≈−−−1.2Pe −−−1

Free 4 K f =−0.9994Pe −1.0259 1 K f ≈−Pe −1
-3 Free K f = 0.0046Ki +1.995 0.9769 K f ≈ 2

Tense
(ωc,t ≈
2.5 rad/s) Free Free K f ≈≈≈−−−Pe −−−1

K f

Average
(ωc,t ≈
2.0 rad/s)

Free Free K f ≈≈≈−−−1.1Pe −−−1

Free 4 Ie = 0.2253Pe +0.0107 1 Ie ≈ 0.23Pe

-3 Free Ie =−0.0089Ki −0.6298 0.9985 Ie ≈−0.69
Relaxed
(ωc,t ≈
1.7 rad/s) Free Free Ie ≈≈≈ 0.23Pe

Free 4 Ie = 0.1305Pe +0.0044 0.9998 Ie ≈ 0.13Pe

-3 Free Ie =−0.0067Ki −0.3595 1 Ie ≈−0.39
Tense
(ωc,t ≈
2.5 rad/s) Free Free Ie ≈≈≈ 0.13Pe

Ie

Average
(ωc,t ≈
2.0 rad/s)

Free Free Ie ≈≈≈ 0.18Pe

Free 4 De =−0.0101Pe −0.115 0.4301 De ≈−0.1
-3 Free De = 0.0293Ki −0.1923 0.9977 De ≈ 0.029Ki −0.2

Relaxed
(ωc,t ≈
1.7 rad/s) Free Free De ≈≈≈ 0.029Ki −−−0.2

Free 4 De = 0.1103Pe −0.1729 0.9816 De ≈ 0.1Pe −0.2
-3 Free De =−0.036Ki −0.3537 1 De ≈−0.036Ki −0.35

Tense
(ωc,t ≈
2.5 rad/s) Free Free De ≈≈≈ 0.1Pe −−−0.036Ki −−−0.05

De

Average
(ωc,t ≈
2.0 rad/s)

Free Free
De ≈≈≈ 0.05Pe −−−0.0035Ki

−−−0.125
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(a) (b)

(c) (d)

(e)

Figure 4.8: A graphical representation of all the bold functions from Table 4.5, where the blue, green and red planes
correspond with the relaxed, average and tense controller, respectively. It should be noted that Figures 4.8d and 4.8e are

rotated by 90 degrees with respect to the other plots, such that visibility of the planes is improved.



(a) The open-loop target tracking frequency responses. (b) The open-loop disturbance rejection frequency responses.

Figure 4.9: Bode plots of all the dynamic systems that the data fitting algorithm converged to, when fitting the model on Fu’s intermediate bandwidth data with Pe =−3 and
Ki = [3,3.5, ...,6.5].
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degrees of freedom Pe and Ki were combined to form two-dimensional functions for all HC pa-
rameters. Considering the participants in the experiment conducted by Fu [14] were able to achieve
anωc,t ranging from approximately 1.8 to 2.5 rad/s, these functions were considered suitable candi-
dates for the ’relaxed’ and ’tense’ controller settings. As the name suggests, the ’average’ controller
setting was determined, by taking the average of the tense and relaxed functions. While it was ex-
pected to result in a target tracking gain crossover frequency of 2.1 rad/s, an ωc,t of 2.00−2.05 rad/s
was achieved instead. Despite the minor difference in expected outcome, the result was still deemed
suitable as an ’average’ controller setting. Figure 4.8 provides a 3D representation of the functions
indicated in bold in Table 4.5.

The final step in determining three reasonable HC settings involved the selection of the two
variables that are considered the ’scheduling’ variables: the proportional gain Pe that represents the
intensity of the cognitive response and the intrinsic arm stiffness Ki , which is related to the amount
of muscle co-contraction that the HC applies in his/her arm to reduce admittance. To determine
these values, two assumptions were made:

1. An aggressive cognitive response (i.e., large |Pe |) is coupled with a high level of muscle co-
contraction (i.e., large Ki ).

2. The participants in the experiment conducted by Fu [14] exhibited a broad range of control
behavior to realize their performance across the various scenarios. In other words, this means
two things: 1) it is assumed that for the three HC settings, Ki varies across the range recorded
by Lasschuit [47] and 2) Pe varies across the range that resulted in system stability and a rep-
resentative time-domain performance in the simulations.

This resulted in the distinctive settings summarized in Table 4.6, of which the open-loop responses
have been plotted in Figure 4.10.

Table 4.6: The distinctive parameters for the relaxed, average and tense controller. The specific crossover characteristics
belong to the scenario of the Boeing 747 roll dynamics, where K f wd = 2.5 and Kφ̇ =−0.2857.

HC parameter Relaxed Average Tense

Pe -1 -2 -3
Ie -0.23 -0.36 -0.39
De -0.113 -0.241 -0.566
Ki 3 4.5 6
Kp -1.28 -1.61 -2.91
Kv 0.04 0.095 0.21
K f 0.2 1.2 2

ωc,t [rad/s] 1.69 2.00 2.55
φm,t [°] 49.5 50.1 43.7

ωc,d [rad/s] 5.50 4.90
1) 4.75,
2) 10.9

φm,d [°] -100 -106
1) -112,
2) -28.6



(a) The open-loop target tracking frequency responses. (b) The open-loop disturbance rejection frequency responses.

Figure 4.10: A Bode plot of the relaxed (blue), average (red) and tense (yellow) controller for the open-loop (a) target tracking and (b) disturbance rejection response for the Boeing 747,
where K f wd = 2.5 and Kφ̇ =−0.2857.
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4.3. Quantification of aircraft dynamics and active stick settings
To determine whether there is any relation between the best active stick settings and the controlled
element dynamics, the roll dynamics of three aircraft were tested in simulation:

1. The adjusted Boeing 747 dynamics that were also tested by Fu [14],

2. The Cessna 500 Citation roll dynamics, as identified by the faculty of Aerospace Engineering
at TU Delft at 30000 ft altitude and a velocity of 398 ft/s (V = 121.3 m/s, M = 0.4) [49], and

3. The F-16 roll dynamics, which were linearized at the same flight condition using the ’low fi-
delity’ model programmed by Russell [50], which is based on the work of Stevens and Lewis
[51].

The adjusted Boeing 747 roll dynamics have already been introduced in Equation 2.4, but are re-
peated here for the sake of clarity:

Hc,B747(s) = Hac,B747(s) · ΦB747(s)

∆a,B747(s)

= 1

0.083s +1
·Kc,B747 · 2.259s2 +0.821s +1

s(0.4s +1)(1.647s2 +0.336s +1)

= 1

0.083s +1
· −12s2 −4.362s −5.313

s4 +2.704s3 +1.117s2 +1.518s

= −7.906s2 −2.873s −3.5

0.05468s5 +0.8067s4 +1.842s3 +0.819s2 + s

For the Cessna 500 Citation in the presented flight condition, it was determined that:

W = 4bµb(K 2
X K 2

Z −K 2
X Z )

V
= 4 ·13.36 ·32(0.013 ·0.037−0.0022)

121.3
= 0.0067 (4.10)

With this lemma, the state-space system representing the aircraft’s asymmetric response for the
presented flight condition was identified to be:
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(4.11)

Assuming the Cessna’s actuator dynamics to be the same as the Boeing 747, this resulted in the
following roll dynamics:



62 4. Applying the model and devising a test strategy

Hc,CC (s) = Hac,CC (s) · ΦCC (s)

∆a,CC (s)

= 1

0.083s +1
·Kc,CC · 0.1211s2 +0.08795s +1

(68.49s −1) · (0.1580s2 +0.05309s +1) · (0.4525s +1)

= 1

0.083s +1
· −23.58s2 −17.13s −194.9

s4 +2.535s3 +7.019s2 +13.87s −0.2035

= −23.58s2 −17.13s −194.9

0.083s5 +1.21s4 +3.118s3 +8.17s2 +13.86s −0.2035

(4.12)

For the F-16, the program made by Russell [50] was used to linearize the F-16’s dynamics around
the same flight condition as the Cessna Citation, which was verified to be inside the F-16’s flight
envelope. Reducing the produced 18-state system for the rolling motion that is being tested in this
thesis gives the following:


β̇

φ̇
ṗb
2V
ṙ b
2V

=


−0.09576 0.07853 0.2376 −0.9685

0 0 1 0.2438
−13.75 0 −0.9537 0.5489
2.111 0 −0.02454 −0.1622


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β
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pb
2V
r b
2V

+


8.162 ·10−5

0
−0.1705

−0.009847

δα (4.13)

With the F-16’s actuator dynamics that were found to be Hact ,F 16(s) = 1
0.0495s+1 and a conversion

from radians to degrees, this resulted in:

Hc,F 16(s) = Hac,F 16(s) · ΦF 16(s)

∆a,F 16(s)

= 1

0.0495s +1
·Kc,F 16 · 0.3394s2 +0.1018s +1

(90.09s +1)(1.481s +1)(0.1915s2 +0.1007s +1)
· 180

π

= 1

0.0495s +1
· −31.12s2 −9.354s −92.11

3.142s4 +3.807s3 +17.55s2 +11.27s +0.123

= −31.12s2 −9.354s −92.11

0.1555s5 +3.33s4 +4.675s3 +18.11s2 +11.27s +0.123

(4.14)

Figure 4.11 and Table 4.7 show how these CE dynamics compare. What made these CE dynam-
ics particularly interesting to compare are their different crossover frequencies and phase margins,
while the Bode plots of the B747 and F-16 are strikingly similar in the human crossover region that
is known for this compensatory roll task (5-8 rad/s) [1].

Table 4.7: The crossover characteristics of the controlled element dynamics shown in Figure 4.11.

Aircraft
Gain crossover
frequency ωc [rad/s]

Phase margin
φm [°]

Boeing 747 3.03 22.3
F16 3.51 9.35
Cessna Citation 4.10 -2.36

These aircraft dynamics were simulated with a variety of active stick settings, which are charac-
terized by the feedforward gain K f wd and the roll rate feedback gain Kφ̇. The setting ranges were
extended up to the point where the system became unstable for nearly all aircraft dynamics and HC
settings, which resulted in a setting range of K f wd = [0.5,1, ...,10.5] and Kφ̇ = [−0.075,−0.150, ...,−0.600].
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Figure 4.11: The controlled element dynamics that are simulated in this thesis: the Boeing 747 (blue), the F-16 (red) and
the Cessna 500 Citation (yellow).

4.4. Simulation output and observations
The factorial combination of the three HC settings, three aircraft and 186 active stick settings pre-
sented in Sections 4.2.3 and 4.3 amounted to a total of 1674 model conditions that were simulated
with the model. These conditions were all simulated with identical forcing functions that were
based on the intermediate signal bandwidth tested by Fu [14]. The exact amplitudes and phase
angles of the forcing functions are shown in Tables 4.8 and 4.9.

Due to the stochastic nature of the cognitive noise term that is present in the model (see Section
3.2 for more information), the output of the simulation is stochastic as well. To ensure a representa-
tive simulation output, the SNR of 0.10 at the error signal e (as suggested by Van der El [43]) played
a decisive role. The output of a simulation run at any given condition was only accepted whenever
the aforementioned SNR fell between 0.0995 and 0.1005. Whenever a run was rejected, the cognitive
noise intensity Wn was adjusted by few %, depending on the magnitude of the deviation. For every
model condition, the output of 30 accepted runs was averaged to determine the values presented in
Figures 4.14, 4.15 and 4.16.

When looking at the tables, some model conditions have been blocked out with three different
shades of gray. This is done for the following reasons:

• Dark gray: system instability. Whenever MATLAB detected an unstable system, the model
condition was skipped. For all aircraft, this occurred for feedback gains that were too gentle
(|Kφ̇| < 0.075) and this limit moved up towards |Kφ̇| ≈ 0.15 as the HC became more aggressive.
For the slower F-16 and B747, a low feed-forward gain does seem to reduce the minimum |Kφ̇|
required for stability, although the model conditions at this edge of the stable region do result
in relatively poor performance.
Besides that, there is an apparent limit for K f wd , past which system instability occurs. This
limit seems to depend on two factors. For all aircraft, it is clear that a more ambitious HC
setting reduces the value for K f wd at which the system becomes unstable. Besides that, the
limit for K f wd also seems to depend on the CE dynamics. Whereas the F-16 only seems to be
slightly more restrictive in this regard compared to the Boeing 747, it is evident that the more
nervous dynamics of the Cessna Citation prove to be much more restrictive.
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• Light gray: systems that appeared stable in terms of target tracking, but were realized with
control signals that were of extremely high frequency and intensity (see Figures 4.13a and
4.13b for clarification). Some of these model conditions produced an RMS(e) that seemed
representative, however their RMS(mg r i p ) of 102 −103 Nm was a clear indication that these
results were not physically possible, given the standard RMS(mg r i p ) range for this task of
0− 0.3 Nm. It is interesting to see that the CE dynamics seem to play a decisive role in the
active stick settings where such behavior occurs, whereas the HC’s control behavior seems
to have no impact on this at all. What these conditions will produce in practice, however,
remains uncertain for now.

• Gray: model conditions at the edge of system stability that produced unrealistically strong
performance. On some rare occasions, model conditions that bordered the areas deemed
unstable due to their gentle feedback gains produced RMS(e)’s and RMS(mg r i p )’s that were
both 3-10 times stronger than the most potent active stick settings of that aircraft / HC set-
ting matrix. While the plausibility of such performance is questionable in itself, tuning one’s
system to such a precarious setting seems unwise or downright irresponsible regardless.

Besides the observations with regards to system stability, the following points can be made with
regards to the simulated HC performance:

1. As Figures 4.14, 4.15 and 4.16 suggest, the value for Kφ̇ that produces the best results in terms
of tracking performance and control effort seems to be virtually independent of the pilot set-
ting and CE dynamics, hovering at a value of ≈−0.225.

2. For K f wd , an optimal value seems to become more pronounced for all aircraft as the pilot
becomes more aggressive. These values are very similar for the Boeing 747 and F-16 (≈ 3.5
and ≈ 4, respectively), whereas the optimal value for the Cessna Citation is approximately
half of that (≈ 2).

3. As was stated by Fu [14], the introduction of the haptic roll rate feedback made the system
feel sluggish, an undesirable feature for which the feed-forward gain could compensate. The
simulation output supports this finding, as model conditions where K f wd ≤ 1 consistently
result in poor performance, both in terms of target tracking and required control effort. For
the more nervous Cessna Citation dynamics, a sluggish feed-forward gain of K f wd = 0.5 even
resulted in system instability for the model conditions where |Kφ̇| ≤ 0.3.

4. The increasing minimum required value for |Kφ̇| for increasing pilot aggressiveness, com-
bined with observation 1, implies a human performance plateau for the active stick configu-
ration.

5. Figure 4.12 and Table 4.10 show the best recorded settings for all HC setting / aircraft matrices.
What can be noted from Figures 4.14, 4.15 and 4.16 is that these settings are mostly achieved
near the edge of the oscillatory region, except for the cases where the pilot acts as an aggressive
controller. In those situations, the minimal value for mg r i p served as the basis on which the
’best recorded’ setting was determined.

6. For any given feedback gain, pilot performance seems to increase for an increasing K f wd (ex-
cept for the situations with aggressive pilot settings) , however the added returns diminish as
the oscillatory zone is approached. Whereas the practical consequences of entering this zone
are unknown at this point, it is safest to assume for now that these conditions will result in
system instability. Approaching this zone would thereby decrease stability margins. Select-
ing an ’optimal’ K f wd based on the model condition that resulted in the lowest RMS(mg r i p )
for an aggressive pilot setting resulted in a safety factor on K f wd of at least 1.5 for all aircraft
before the oscillatory zone was reached, which was deemed acceptable.

7. As Figure 4.12 and the colors from Figures 4.14, 4.15 and 4.16 suggest, the pilot seems to reap
most (if not all) performance benefits from the active stick configuration as a relaxed con-
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troller already. Whereas there seems to be some tracking performance to be gained from be-
ing a more aggressive pilot for the relatively slow Boeing 747, the pilot seems to be simply
better off by being less aggressive when controlling the more nervous Cessna Citation.

Table 4.8: The target forcing function that is used in the
simulations.

ft

k Period ωt [rad/s] At [rad] θt [rad/s]
1 5 0.3835 0.1984 2.3319
2 11 0.8437 0.1645 5.5352
3 21 1.6107 0.0724 0.6807
4 37 2.8379 0.0248 5.8910
5 51 3.9117 0.0134 3.2216
6 71 5.4456 0.0074 0.9325
7 101 7.7406 0.0045 5.6708
8 137 10.5078 0.0036 1.1480
9 191 14.6495 0.0032 4.4054

10 224 17.1806 0.0032 4.0862

Table 4.9: The disturbance forcing function that is used in the
simulations.

fd

k Period ωd [rad/s] Ad [rad] θd [rad/s]
1 6 0.4602 0.0273 5.1081
2 13 0.9971 0.0213 4.1567
3 23 1.7641 0.0258 3.8964
4 38 2.9146 0.0220 1.1398
5 53 4.0650 0.0209 3.2806
6 73 5.5990 0.0221 3.5648
7 103 7.9000 0.0289 1.8805
8 139 10.6612 0.0462 1.6206
9 194 14.8796 0.0964 2.2507

10 227 17.4107 0.1430 4.3722

Table 4.10: The best recorded settings for all aircraft, for all three pilot settings.

1. Relaxed controller 2. Average controller 3. Tense controller

Aircraft RMS(e) [°]
RMS(mg r i p )
[Nm]

RMS(e)[°]
RMS(mg r i p )
[Nm]

RMS(e)[°]
RMS(mg r i p )
[Nm]

B747 4.30 0.0261 3.77 0.0311 3.66 0.0985
F-16 4.67 0.0277 4.25 0.0360 4.18 0.105

CC 4.46 0.0303 3.87 0.0407 4.06 0.123

(a) (b)

Figure 4.12: The (a) RMS(e) and (b) RMS(mg r i p ) values from Table 4.10 plotted in a graph, to emphasize the highly
similar performance that can be achieved for the Boeing 747, the F-16 and the Cessna Citation.
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(a)

(b)

Figure 4.13: A clarification of what (a) a regular, stable model condition and (b) a light gray, oscillatory model condition
produced as simulation output. Here, the blue and red graph represent the target forcing function ft and aircraft roll angle

φ, respectively, and the yellow graph shows the mg r i p that realized this response.



Figure 4.14: Simulation output for the Boeing 747.



Figure 4.15: Simulation output for the F-16.



Figure 4.16: Simulation output for the Cessna 500 Citation.
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4.5. Reflection on existing manual control theory
When reflecting upon the observations from Section 4.4 (in particular the ones that hint at some
optimal value for Kφ̇ and K f wd ), a combination of the existing findings from Fu [14] and the funda-
mental manual control theory postulated by McRuer [1] could provide an explanation why certain
trends in the simulation output occur. One of the most interesting questions to ask is: why does
(Kφ̇)opt remain nearly unchanged for different CE dynamics and pilot settings?

To answer this question, we can consider two points. The first point is related to the adaptive
nature as well as the preferences of the HC, which have been recorded through the extensive set
of experimental conditions tested by McRuer for a compensatory tracking task [1]. What makes
McRuer’s findings particularly valuable for this thesis is that they involve a control setting identical
to the one tested in this thesis, which is defined by the pure lateral motion of a side stick (as sup-
ported by the comparison of Figure 4.17 with Figures 2.4 and 2.6a). As is stated by McRuer, HCs
perform best when the CE dynamics for a compensatory tracking task resemble single integrator
dynamics in the human crossover region. Besides that, McRuer has shown that for CE dynamics of
a given form, such as Hc (s) = Kc

s , HCs compensate through their own behavior (Yp ) for any varia-
tion in Kc , effectively converging to the same preferred open-loop dynamics |Yp Hc |. There seemed
to be only a slight variation in the preferred |Yp Hc | based on the forcing function bandwidth, which
is shown in Figure 4.18a. With the HC effectively producing single integrator open-loop dynamics
in the human crossover region, the transfer function approximating these dynamics

(ωc
s , see Figure

4.18a
)

can be defined based on theωc values highlighted in Figure 4.18b, for which McRuer reported
an average value of ωc = 4.75 rad/s [1].

Figure 4.17: The control setting used by McRuer [1].
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(a) Bode plots of the averaged open-loop describing functions, where

the CE dynamics Yc (s) are equal to Kc
s , for forcing functions having

different signal bandwidths ωi (Figure 48 from [1]). The resulting
|Yp Yc | can be approximated by ωc

s .

(b) A table showing the crossover characteristics for the various CE
dynamics (Yc ) that were tested (Table 8 from [1]). The highlighted

row belongs to the single integrator CE dynamics Bode plots that are
shown in Figure 4.18a.

Figure 4.18

The second point is related to the working principle behind the active stick, which is illustrated
in Figure 2.7. As is stated by Fu [14], the nature of the active stick’s haptic feedback has a decisive
impact on the CE dynamics that the HC effectively experiences when holding the stick, in that the
effective CE dynamics are defined as the inverse of the haptic feedback transfer function. In essence,
this provides a great amount of design freedom for control configurations involving the active stick.

Combining the active stick’s ability to shape the effectively experienced CE dynamics and McRuer’s
findings regarding the HC’s preference for single integrator CE dynamics in the human crossover
region, this suggests that haptic feedback involving a single differentiator (i.e., rate feedback) is de-
sirable. In Figure 2.7, ’Km s ’ represents the rate feedback that is employed in this thesis as Kφ̇, which

results in single integrator dynamics effectively being experienced by the HC (i.e. Hc,e f f = 1
Kφ̇s ).

On top of this, one could argue that the open-loop dynamics that the HC prefers to converge
to for a given control setting

(ωc
s

)
would imply that the optimal haptic rate feedback gain for said

setting is the inverse of ωc , which in our case means that:

|(Kφ̇)opt | = 1

ωc
≈ 1

4.75
= 0.2105 (4.15)

Due to the sign convention related to aircraft roll dynamics, it would mean for this thesis that (Kφ̇)opt

would equal -0.2105. The simulation output shown in Figures 4.14, 4.15 and 4.16 does seem to sup-
port this suggestion, as the closest simulated feedback of Kφ̇ =−0.225 provides the most promising
results across the board. The different values reported for ωc in Figure 4.18b for various forcing
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function bandwidths (which can be related to the general difficulty of the mission) would suggest
a slight variation in (Kφ̇)opt . This ranges from about (Kφ̇)opt = 0.20 for high bandwidth (difficult)
forcing functions to (Kφ̇)opt = 0.22 for low bandwidth (easy) forcing functions, however the differ-
ence between these values seems to be small enough to neglect this dependency. Therefore, for the
practical design of a control system involving an active stick configuration, it is proposed that:

Hypothesis 1: The optimal haptic rate feedback gain is primarily a function of the
control setting, and should thereby be constant for a given control setting.

Whereas the simulations clearly point towards a certain feedback setting as the most suitable, the
same cannot be said for the feed-forward gain K f wd . As is stated in observation 6 from Section 4.4,
the simulation output suggests on various occasions that the most promising model conditions are
located at the edge of the oscillatory zone. This seems like an unnecessarily risky choice, considering
the practical consequences of entering this zone are unknown at this point, combined with the
reduced added returns that are obtained when approaching this zone. Selecting (K f wd )opt based on
the minimal RMS(mg r i p ) required from an aggressive pilot therefore seems like the most sensible
option at this point, considering a pronounced optimum does seem to form in RMS(mg r i p ) for all
aircraft as the pilot becomes more aggressive.

To determine why the simulations suggest a (K f wd )opt of about 3.5, 4 and 2 for the Boeing 747,
the F-16 and the Cessna Citation, respectively, a possible explanation could once again be found in
the findings from McRuer [1]. McRuer determined that the character of the CE dynamics inside the
human crossover region play a decisive role when designing for and assessing human performance
in manual control tasks. This human crossover region is related to the maximum speed at which
HCs are able to consciously exert control commands on the manipulator, which means that this
frequency band may depend on the body parts involved in the control task as well as the trajectory
along which said body parts have to move (hence, the control setting). McRuer [1] found out that
the human crossover region for the compensatory roll task involving a side stick (identical to the
setting used in this thesis) stretched from approximately 5 to 8 rad/s.

Even though Equations 2.4, 4.12 and 4.14 show that the combined actuator / aircraft roll dy-
namics form third-order systems, the three aircraft all resemble second-order systems in the hu-
man crossover region for this task, which means that HCs will likely have the impression that they
are controlling a second-order system. Figure 4.20 shows the Bode plots of the three aircraft once
again, but now combined with the second-order transfer functions

(
Hc (s) = Kd

s2

)
that approximate

the aircraft dynamics in this region, where Kd for all aircraft was calculated by dividing the highest-
order numerator term from Equations 2.4, 4.14 and 4.12 by the second-highest-order denomina-
tor term. As Kd ,B747 = 9.800, Kd ,F 16 = 9.345 and Kd ,CC = 19.49, the relation Kd · (K f wd )opt = C f wd

could be a possible explanation as to why (K f wd )opt ,CC is about half the value of the other two, with
(K f wd )opt ,B747 being only slightly smaller than (K f wd )opt ,F 16.

Whereas the rationale behind the value for C f wd is still unknown, the simulation output sug-
gests that for CE dynamics resembling 1) second-order systems inside the crossover region related to
2) this specific control setting, a value of C ≈ 37 would be called for. To formalize this suggestion for
the active stick’s tuning procedure in a way that stays within the scope of what will be experimented
with in this thesis, it is proposed that:
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Hypothesis 2: The optimal haptic feed-forward gain is inversely proportional to the

gain Kd that is used in the basic transfer function
(
Hc (s) = Kd

s2

)
that approximates the

controlled element dynamics in the human crossover region for the compensatory roll task
involving a side stick.

While the findings regarding (K f wd )opt leave something to be desired, there is a silver lining to be
found when considering the work carried out by Fu [14]. After selecting a certain feedback gain
(|Kφ̇| = 0.2857), Fu selected K f wd based on manual trial and error in the simulator, which resulted
in the selection of K f wd = 2.5. Figure 4.19 supports that the modeled ’aggressive’ pilot is best able
to replicate the HC’s performance from the experiment for the forcing function signal bandwidth
that is used in this thesis. Looking at the rightmost matrices in Figure 4.14, one can notice how
closely Fu was able to approach the simulated optimum for RMS(mg r i p ) given that feedback gain,
with the closest simulated feedback gain (Kφ̇ = −0.3) resulting in RMS(mg r i p ) = 0.110 Nm, while
(RMS(mg r i p ))opt = 0.108 Nm for Kφ̇ =−0.3.

Figure 4.19: The average target tracking crossover frequencies achieved by participants in the experiment conducted by Fu
[14]. The highlighted data point is most relevant, as the intermediate bandwidth forcing functions (see Tables 2.2 and 2.3)

are used in this thesis as well.

4.6. Proposal of active stick tuning procedure
Based on the findings stated in Section 4.5, the following tuning procedure is proposed for control
systems involving an active stick configuration:

1. For a given control setting, determine (Kφ̇)opt first:

• Perform a single integrator CE dynamics
(
Hc (s) = Kc

s

)
compensatory tracking task with a

passive stick, similar to the experiment conducted by McRuer [1] in the 1960s.

• Determine the average gain crossover frequency ωc to which HCs prefer to converge for
various values of Kc .

• Calculate (Kφ̇)opt = 1
ωc

.

2. Then, for a given control setting with some CE dynamics:

• Determine (K f wd )opt through manual trial and error in the simulator.

• From this, (K f wd )opt can be inferred for other CE dynamics that are of comparable char-
acter in the human crossover region of said control setting.



Figure 4.20: The CE dynamics shown earlier in Figure 4.11, combined with the second-order transfer functions that approximate the three aircraft in the human crossover region
(indicated in red).
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4.7. Testing conditions and performance predictions
In order to gain as much information as possible about the validity of the tuning procedure pro-
posed in Section 4.6, there are three parameters that will be varied during the upcoming experi-
ment: the active stick settings K f wd and Kφ̇, as well as the CE dynamics. As Fu [14] stated earlier,
about 15-20 minutes of simulator time was required per testing condition per participant to gener-
ate consistent data. To keep the required amount of simulator time within reasonable bounds and
to make sure that participants will not suffer from loss of concentration and/or motivation, it was
therefore decided that a maximum of 6-8 conditions would be tested per participant. This resulted
in the testing conditions shown in Table 4.11, where all participants will be exposed to the six green
conditions and to one of the four yellow experimental conditions.

Table 4.11: The conditions to be tested in the experiment. The six green scenarios will be tested by all participants, whereas
every participant will only test one of the four yellow experimental conditions.

K f wd

Aircraft Kφ̇ (K f wd )opt 2 · (K f wd )opt 3 · (K f wd )opt

(Kφ̇)opt (=−0.2105) 1 2 7
B747

2 · (Kφ̇)opt (=−0.4210) 3 8

(Kφ̇)opt (=−0.2105) 4 5 9Cessna
Citation 2 · (Kφ̇)opt (=−0.4210) 6 10

Testing conditions rationale
As this thesis is focused on finding an approach for determining the most promising settings for
K f wd and Kφ̇, it means that testing all three simulated aircraft is simply not feasible. The simulated
Boeing 747 and F-16 resulted in similar HC performance and called for nearly the same active stick
settings based on the proposed tuning procedure, which is why one of them is the most suitable
candidate to be left out. To increase consistency with the data generated by Fu [14] earlier using the
Boeing 747, said aircraft made it through the selection together with the Cessna Citation.

Naturally, both aircraft will be tested with the active stick settings that are deemed optimal based
on the information presented in Sections 4.4, 4.5 and 4.6, which corresponds with conditions 1 and
4. The feedback gain related to these scenarios is identical, in line with the first hypothesis that is
stated in Section 4.5. The feed-forward gains, on the other hand, are different per aircraft (K f wd =
3.5 for the Boeing 747 and K f wd = 2 for the Cessna Citation), in line with the second hypothesis
stated in Section 4.5 and the observations made in Section 4.4. Besides that, alternative active stick
settings are tested to validate the performance trends that are visible in the simulation output. These
include a feed-forward gain that is double the optimal value (conditions 2 and 5) and a feedback
gain that is double the optimal value (conditions 3 and 6).

The oscillatory behavior that occurred for the light gray model conditions introduced in Figures
4.14, 4.15 and 4.16 of Section 4.4 raises questions about what happens for these hardware settings
in practice. To gain a better understanding of this, four more ’exotic’ settings involving a higher
collective open-loop gain are being tested as well, albeit with only a quarter of the participants each.
For the first exotic conditions, the feed-forward gain is three times the optimal value (conditions 7
and 9). For the second exotic conditions, both the feed-forward and feedback gain are double their
optimal value (conditions 8 and 10). To maximize our understanding of what happens inside the
oscillatory zone, the first exotic conditions have been defined such that they are just barely within
said zone, whereas the second exotic conditions are located well within it. Figure 4.21 provides
a visual representation of where these testing conditions are located inside the simulation output
matrices shown earlier in Figures 4.14 and 4.16.
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(a) (b)

Figure 4.21: An illustration of where inside the oscillatory zone of the simulation output the ’exotic’ testing conditions are
located for (a) the Boeing 747 and (b) the Cessna Citation.

Performance predictions
To predict the performance of the HC for the various testing conditions, assumptions need to be
made first regarding the aggressiveness of the HC’s control behavior. Based on the experimental re-
sults shown in Figure 4.19, it is deemed reasonable that the HCs will act most like the modeled ’tense’
pilot for the testing conditions that have an optimal feed-forward and feedback gain (conditions 1
and 2). For the conditions that have a somewhat larger collective open-loop gain (conditions 3 to
6), the HC is assumed to behave like the average controller. For the more exotic testing conditions
that have an even larger open-loop gain (conditions 7 to 10), the relaxed pilot setting is deemed the
most reasonable, as the simulation output suggests that these conditions in particular are prone to
system instability. Performance predictions for all testing conditions with their respective HC set-
tings have been generated in the same way that data was generated for the model conditions, as
explained at the start of Section 4.4. This resulted in the performance predictions shown in Figure
4.22. Looking at the figure, several things can be noticed:

• Among the testing conditions where an average pilot setting is employed (conditions 2, 3, 5
and 6), the conditions involving the supposed (Kφ̇)opt seem to outperform the settings in-
volving the supposed (K f wd )opt greatly, which is also supported by the previous simulation
output from Section 4.4.

• When the HC becomes more aggressive, the performance changes differently depending the
the CE dynamics. For the slower Boeing 747, there still seems to be a bit of tracking perfor-
mance to be gained (which can be seen by comparing point 2 and 1), however the HC actually
seems to be worse off in this regard for the more nervous Cessna Citation, not to mention the
extra effort that is required to control both aircraft.
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• As mentioned before in observation 6 from Section 4.4, active stick settings involving a higher
K f wd combined with more relaxed pilot control behavior do seem to provide superior overall
performance (which is supported by comparing conditions 1 and 4 with conditions 2 and 5),
however this assessment does not assign any value to the stability margins of the resulting
system. Poorly trained pilots who control the aircraft too aggressively should to a reasonable
extent be protected from destabilizing the system, which is why a comparison of conditions 1,
2 & 7 and 4, 5 & 9 will hopefully provide valuable insight as to what value for K f wd is preferred.

Figure 4.22: A prediction of the HC’s performance for testing conditions 1 to 6, which are introduced in Table 4.11.

Reflection on the possible extent to which the proposed tuning procedure is validated
with the presented experiment
The primary objective of this thesis is to determine design guidelines for the active stick configura-
tion. Considering this concept relies heavily on the HC’s reflexive response, this was done by fitting
the existing experimental data on a model that contains a detailed description of the NMS, com-
bined with a relatively simple representation of the HC’s cognitive response as a PID-block, as the
latter is less critical for the active stick’s working principle. The simulation output that came as a
result of this, combined with the existing findings about the active stick and the available crossover
theory from McRuer [1], does provide clues for active stick design guidelines, however there are nu-
merous experimental dimensions that need to be checked or accounted for, before a strong case for
these guidelines can be made. If the experimental results turn out as expected, it would provide a
respectable amount of support for the proposed tuning procedure, as it would indicate (Kφ̇)opt ’s in-
dependence of Hc as well as the pilot’s control behavior (whose supposed dependency seems small
enough to be neglected, as stated in Section 4.5). It would also provide more insight as to what the
optimal setting for K f wd is, which does seem to be affected by both the CE dynamics and the HC’s
control behavior.

A follow-up experiment which is omitted in this thesis (due to the added amount of work) is one
where a different control setting is tested (i.e., the same side stick, but in pure pitch motion). If the
preferredωc is found for that setting for single integrator CE dynamics and the corresponding Kφ̇ as
proposed in this thesis (= 1/ωc ) provides the best results, that would add considerable credibility to
the tuning procedure introduced in Section 4.6. This could then be expanded to a roll-pitch com-
pensatory tracking task (in accordance with the roadmap laid out in Figure 2.8), to check whether
the best settings for the separate DOFs are also the best ones for the 2-DOF control task.





5
Experiment design

Throughout the previous chapters, many aspects of the upcoming experiment have already been
revealed. Section 5.1 serves as a summary that revisits all relevant aspects that define the experiment
through references to previous sections, and provides additional information where necessary. This
is followed by Section 5.2, which revolves around the envisioned data analysis that will take place
after the experiment.

5.1. Summary of the experimental setting
The upcoming experiment is defined by the following elements:

• Experimental hardware. Section 2.5 summarizes the experimental setting that was used by
Fu [14] and will be used for this thesis, as well as the test scenarios and findings produced by
Fu earlier. Participants are seated in the HMI-lab, a fixed-base simulator environment at the
TU Delft. Figure 2.4 shows the hardware that is used for carrying out the task: an 18-inch LCD
screen and a two-axis hydraulically-driven manipulator.

• Control task. The participants are tasked with a one-dimensional control task, where they
only have to control the aircraft’s roll angle φ. For this reason, the servo motor responsible
for the manipulator’s pitch motion is constrained in the neutral position. Participants need
to keep the aircraft level with the horizon, which they do based on the artificial that is shown
to them on the LCD screen. As Figure 2.6b shows, participants can only base their cognitive
response on the perceived error angle e, which means that this can be classified as a compen-
satory tracking task, like the one shown in Figure 2.1.

• Controlled element dynamics. The participants will control two different sets of aircraft dy-
namics: the adjusted Boeing 747 dynamics that were used by Fu [14] earlier (see Equation 2.4)
and those of the Cessna Citation, whose dynamics were identified by the TU Delft at 30000 ft
standard altitude and a velocity of 398 ft/s (V = 121.3 m/s, M = 0.4) [49]. Section 4.3 describes
how the stability and control derivatives have been translated into the final transfer function
shown in Equation 4.12.

• Forcing functions. The target and disturbance forcing functions ft and fd are both the sum of
ten sinusoids, whose amplitudes and frequency components are shown in Tables 4.8 and 4.9,
respectively. To prevent the participants from recognizing any patterns in the signal (thereby
to a certain degree turning the compensatory tracking task into a preview tracking task, see
Section 2.1), the phase angles of all sinusoid components are randomized for every test run.

• Testing programme. Table 4.11 shows the six testing conditions that will be tested by all par-
ticipants, after which every participant will test one of the four exotic conditions. Every test
run lasts 90 seconds, of which the last 81.92 seconds are used for data analysis. It is expected
that the same amount of test runs per participant per condition is needed to generate con-
sistent data, as was the case for Fu [14] (8-10 runs). Considering sufficient time for breaks
between test runs and the possibility of the exotic condition being outright unstable, the av-
erage simulator time required for every participant is estimated to be ≈ 2.5 hours. Given that
six conditions are to be tested thoroughly, a participant count of twelve is desired, such that a
Latin square can be filled by the participants effectively.
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5.2. Envisioned data analysis
The signals that will be measured during the experiment are:

• The tracking error e
• The grip force applied to the manipulator mg r i p

After the experiment, the root-mean-square (RMS) of both variables will be determined for every
participant in every condition, by taking the average of the measured RMS-values over five consec-
utive runs. The tracking error will undergo a frequency-domain analysis, which will produce a:

• Target tracking frequency response function (FRF), which in turn produces a target tracking
gain crossover frequency and phase margin as well.

• Disturbance rejection FRF, which in turn produces a disturbance rejection gain crossover fre-
quency and phase margin as well.

For the Bode plots also holds that the plots from five consecutive runs will be averaged to determine
the final plots belonging to a given participant for a given condition. For every testing condition,
these data of all twelve participants will be combined to determine a grand mean and standard
deviation for every data point in every Bode plot. As such, the Bode plots will be used to compare
HC performance for the various testing conditions in the frequency-domain.

For the crossover characteristics, the averaged values for every participant in every condition
will be collected to determine the grand mean of these parameters for every condition. Assuming
that the data is normally distributed due to the number of participants involved, a 95% confidence
interval will be reported that is based on ±1.96σ of the respective data sets.

To determine whether the active stick settings and the used aircraft dynamics have a significant
impact on the HC’s tracking performance (which can be related to RMS(e), ωc and φm) and on the
physical workload (i.e., RMS(mg r i p )), the data of all participants will be subjected to a three-way
repeated-measures analysis of variance (ANOVA). Mauchly’s test will first be used to check whether
the assumption of sphericity among the data is violated. If a significance value of < 0.05 is reported
for any of the parameters that is varied (i.e., the aircraft, K f wd or Kφ̇), their corresponding DOF-
value (which are all equal to: 2 setting levels - 1 = 1) needs to be scaled either using the relatively
conservative Greenhouse-Geisser correction or the Huynh-Feldt correction [52]. Afterwards, the
(potentially corrected) F-ratios will tell whether any of the involved parameters has a significant
impact on the experimental outcome and whether there are any significant interactions between
said parameters.

Finally, a very short questionnaire may quantify the participant’s subjective response as to how
they experienced controlling the different aircraft at different settings in terms of difficulty and user
comfort.



6
Conclusion

This report contains a research proposal for the determination of design guidelines for the ’ac-
tive stick’ configuration that has been introduced by Hosman [15] and was further studied by Fu
[14] more recently. The proposed tuning procedure, on which the presented testing conditions are
based, was determined through several steps that can best be summarized as:

1. A literature review, most notably of the active stick’s working principle as expanded upon by
Fu [14], the concepts inherently related to said principle (i.e., the neuromuscular system) and
the control task at hand.

2. The construction of a Simulink model that replicates the experiment that was conducted by
Fu [14], and which will be conducted in this thesis. The majority of attention in terms of
modelling detail is paid to the neuromuscular system, as this system plays a pivotal role in the
active stick’s working principle. To facilitate this, the Delft neuromuscular model as presented
by De Vlugt [34] forms the core element of the Simulink model.

3. The estimation of the eighteen coefficients that define the pilot’s control behavior in the model,
by fitting the Simulink model on the existing experimental data generated by Fu[14]. The dif-
ferent forcing function bandwidths tested by Fu allowed for the estimation of three different
pilot settings, to account for the fact that pilots may exert a wide range of control behavior
due to their adaptive nature.

4. The identification of trends in performance, by simulating 186 different active stick settings
for three different aircraft (the Boeing 747 as used by Fu [14], the F-16 fighter jet and the
Cessna 500 Citation) with the three pilot settings that were determined previously.

5. The reflection on existing manual control theory as well as the findings produced by Fu [14],
which provided a possible explanation for the performance trends and formed the basis on
which the proposed tuning procedure was formed.
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A
Analytical transfer function derivations

This appendix contains the analytical derivations for the passive and active stick models presented
in Figures 3.3a and 3.3c, which have been repeated here respectively for convenience. The deriva-
tions largely revolve around the TU Delft neuromuscular model introduced in Figure 3.1, which has
been repeated here as well.

(a) The passive stick model (Figure 3.3a).

(b) The active stick model (Figure 3.3c).

(c) The TU Delft neuromuscular model (Figure3.1).
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90 A. Analytical transfer function derivations

For all derivations holds that Hski n = H1, Iar m = H2, Hi = H3, Hms = H4, Hg to = H5 and Hact = H6,
which means that:

mg r i p = H1(xar m −xm)

xar m = H2(mmus −mg r i p )

mi = H3xar m

ums = H4xar m

ug to = H5mmus

mr e f l = H6(usup −ums −ug to)

For the sake of brevity and clarity, some recurring sets of variables have been defined as:

Q = Hl p f Hh f b

Γ= 1+H1H2

∆= Hvi sual

(
Pe + Ie

s
+De s

)
Θ= 1+H6H5

Λ= H6H4H2 +H3H2

Target tracking
What set the two models apart are the relations that define the output φ and stick position xm :

φact = Hc K f wd mg r i p

xmact = Hl p f Hh f bφact

φpas = Hc xmpas

xmpas = Hst mg r i p

Active stick open-loop
Using the above information, the following derivations can be made for the active stick:

mg r i p = H1(xar m −xm)

= H1

(
H2(mmus −mg r i p )−Hl p f Hh f bφact

)
= H1

(
H2(mmus −mg r i p )−Qφact

)
⇒ mg r i p (1+H1H2 +H1QHc K f wd ) = mg r i p (Γ+H1QHc K f wd )

= H1H2mmus [1]

mmus = H6usup −H6H4xar m −H6H5mmus −H3xar m

= H6usup −H6H4H2(mmus −mg r i p )−H6H5mmus

−H3H2(mmus −mg r i p )

⇒ mmus(1+H6H5 +H6H4H2 +H3H2) = H6usup + (H6H4H2 +H3H2)mg r i p

⇒ mmus(Λ+Θ) = H6usup +Λmg r i p

⇒ mmus =
H6usup +Λmg r i p

Θ+Λ [2]
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Substituting relation [2] into [1] gives:

mg r i p (Γ+H1QHc K f wd ) = H1H2H6usup +H1H2Λmg r i p

Θ+Λ
⇒ mg r i p

(
Γ+H1QHc K f wd − H1H2Λ

Θ+Λ
)
= H1H2H6

Θ+Λ usup

⇒ mg r i p

usup
= H1H2H6

(Γ+H1QHc K f wd )(Θ+Λ)−H1H2Λ
[3]

Consequently, the active stick open-loop target tracking transfer function becomes:

Φact (s)

Eact (s)
= Hc K f wd H1H2H6∆

(Γ+H1QHc K f wd )(Θ+Λ)−H1H2Λ

Passive stick open-loop
For the passive stick, relation [1] needs to be changed to:

mg r i p = H1

(
H2(mmus −mg r i p )−Hst mg r i p

)
⇒ mg r i p (Γ+H1Hst ) = H1H2mmus

Relation [2] remains unchanged, which means that [3] only needs a minor modification:

⇒ mg r i p

(
Γ+H1Hst − H1H2Λ

Θ+Λ
)
= H1H2H6

Θ+Λ usup

⇒ mg r i p

usup
= H1H2H6

(Γ+H1Hst )(Θ+Λ)−H1H2Λ

Consequently, the passive stick open-loop target tracking transfer function becomes:

Φpas(s)

Epas(s)
= Hc Hst H1H2H6∆

(Γ+H1Hst )(Θ+Λ)−H1H2Λ

Closed-loop

Since the loop is closed with unity feedback for both the active and passive stick, and HOL = A
B , this

means that HC L =
A
B

1+ A
B

= A
B+A . Therefore, the active and passive stick closed-loop target tracking

responses become:

Φact (s)

Ft (s)
= Hc K f wd H1H2H6∆

(Γ+H1QHc K f wd )(Θ+Λ)−H1H2Λ+Hc K f wd H1H2H6∆

Φpas(s)

Ft (s)
= Hc Hst H1H2H6∆

(Γ+H1Hst )(Θ+Λ)−H1H2Λ+Hc Hst H1H2H6∆
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Disturbance rejection
The open-loop disturbance rejection transfer function is defined as Hd ,OL(s) = Up (s)

Fd (s) . It is important
to note that for the passive stick uppas = xm , whereas for the active stick upact = K f wd mg r i p . As the
system is being cut at a different location compared to the open-loop target tracking response, these
relations now apply:

xmact =QHc fd

usup =−∆Hc fd

Active stick open-loop
For the active stick, the open-loop disturbance rejection derivation is as follows:

mg r i p = H1(xar m −xm)

xar m = H2(mmus −mg r i p )

= H2

(
mmus −H1(xar m −xm)

)
⇒ Γ · xar m = H2mmus +H1H2QHc fd

⇒ xar m = H2

Γ
mmus + H1H2QHc

Γ
fd [4]

mmus = H6(usup −H4xar m −H5mmus)−H3xar m

⇒Θ ·mmus = H6usup − (H6H4 +H3)xar m [5]

Substituting relation [4] into [5] gives:

Θ ·mmus = −H6∆Hc fd − (H6H4 +H3)
( H2

Γ
mmus + H1H2QHc

Γ
fd

)
= −H6∆Hc fd − Λ

Γ
mmus − ΛH1QHc

Γ
fd

⇒
(
Θ+ Λ

Γ

)
mmus = −

(
H6∆Hc + ΛH1QHc

Γ

)
fd

⇒ mmus =
−

(
H6∆Hc + ΛH1QHc

Γ

)
Θ+ Λ

Γ

fd [6]

Substituting [6] back into [4] yields:

xar m = − H2

Γ

(
(H6∆Hc + ΛH1QHc

Γ )

Θ+ Λ
Γ

)
fd + H1H2QHc

Γ
fd

= −
(

H2Hc
(
H6∆+ ΛH1Q

Γ

)
ΘΓ+Λ

)
fd + H1H2QHc

Γ
fd

mg r i p = H1(xar m −xm)

⇒ mg r i p = −
(

H1H2Hc
(
H6∆+ ΛH1Q

Γ

)
ΘΓ+Λ

)
fd + H1H1H2QHc

Γ
fd −H1QHc fd
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Rearranging the terms, this becomes:

mg r i p

fd
= H1Hc

(
H1H2Q

Γ
−

( H2H6∆+ ΛH1 H2Q
Γ

ΓΘ+Λ
)
−Q

)
⇒ Upact (s)

Fd (s)
= H1Hc K f wd

(
H1H2Q

Γ
−

( H2H6∆+ ΛH1 H2Q
Γ

ΓΘ+Λ
)
−Q

)

= H1Hc K f wd

Γ

(
H1H2Q − H2H6∆Γ+ΛH1H2Q

ΓΘ+Λ −QΓ

)

Passive stick open-loop
For the passive stick, the open-loop disturbance rejection response is essentially identical to the
open-loop target tracking response, but it is flipped by 180 degrees. Figure A.2 shows how both
transfer functions are the product of the same elements, with the exception of the ’−1’ multiplica-
tion that only occurs for the disturbance rejection, due to the compensator located at the very left
of Figure 3.3a.

(a)

(b)

Figure A.2: A simplified block diagram of the passive stick a) target tracking and b) disturbance rejection open-loop
response, that aims to highlight their similarity.

This leads to a passive stick open-loop disturbance rejection response of:

Uppas (s)

Fd (s)
= −Hc Hst H1H2H6∆

(Γ+H1Hst )(Θ+Λ)−H1H2Λ

Closed-loop
The closed-loop disturbance rejection transfer function is defined as the system’s response in terms
of roll angleφ to a disturbance that is introduced after the controlled element dynamics. Regardless
of the fact that in this thesis the disturbance signal is introduced before the CE dynamics (as can
be seen in Figures 3.3a and 3.3c), the closed-loop disturbance rejection responses can be derived
from their open-loop counterparts in a straightforward manner. Considering the point above, the
fact that there is a summation point and not a compensator at the location where fd is introduced
into the system (in other words, the closed-loop system has a positive feedback loop) and the fact
that there is unity feedback in the outer loop, the closed-loop disturbance rejection response can be
summarized as:



94 A. Analytical transfer function derivations

HdC L (s) = 1

1−HdOL (s)

This means that the active and passive stick closed-loop disturbance rejection response can be de-
fined as:

Φact (s)

Fd (s)
= 1

1− H1 Hc K f wd

Γ

(
H1H2Q − H2 H6∆Γ+ΛH1 H2Q

ΓΘ+Λ −QΓ
)

= Γ

Γ−H1Hc K f wd

(
H1H2Q − H2 H6∆Γ+ΛH1 H2Q

ΓΘ+Λ −QΓ
)

Φpas(s)

Fd (s)
= 1

1− −Hc Hst H1 H2 H6∆
(Γ+H1 Hst )(Θ+Λ)−H1 H2Λ

= (Γ+H1Hst )(Θ+Λ)−H1H2Λ

(Γ+H1Hst )(Θ+Λ)−H1H2Λ+Hc Hst H1H2H6∆

Whereas the verification of these analytical expressions has already been shown in Figures 4.2a and
4.2b for the active stick, the graphs that verify the passive stick expressions are shown down below.
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Figure A.3: Verification of the analytical descriptions for the passive stick model, for the open- and closed-loop (a) target
tracking and (b) disturbance rejection response.
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B
Clarification of the pilot model

This appendix provides a more detailed overview of the pilot model that has been used for all simu-
lations. A schematic of the model is presented in Figure B.1, and the values associated to all model
coefficients are shown in Table B.1.

Before this model was fitted on the experimental frequency response functions produced by Fu,
some of the coefficients were first fixed as constants based on literature (iteration 0). After testing
an array of different boundary conditions for the FRFs available for the low, medium and high signal
bandwidth test runs conducted by Fu, observations were made with regards of the quality of the fit
(iteration 1). As a result, more coefficients were set as constants. Furthermore, the linear depen-
dencies that were first present between Kp , Kv and K f were removed, as this greatly increased the
quality of the fit. At the same time, the more conservative upper and lower bounds of said variables
according to Bhoelai [46] were selected, although this ended up having almost no effect on the gain
settings that were finally selected.

In case the full explanation is desired behind the definition of the data fitting algorithm and the
reasoning towards the values presented in Table B.1, the reader is referred to Sections 4.1 and 4.2 in
the preliminary thesis, respectively.

Figure B.1: A more detailed overview of the pilot model that is used in the simulations.
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98 B. Clarification of the pilot model

Table B.1: An overview of the pilot coefficients that were defined as constants (green), and the remaining ones that were
estimated for each pilot control style.

Iteration Pilot control style

Category Parameter Symbol 0 1 Rlx. Avg. Amb. Unit

Skin dynamics
(Hski n)

Stiffness Kski n [165, 400] 165 [Nm / rad]
Damping Bski n [0.5, 5] 5 [Nms / rad]

Arm dynamics
(Har m)

Inertia Iar m 0.01 0.01 [Nms2 / rad]

Damping Bi [0.05, 1] 0.05 [Nms / rad]Other intrinsic
arm dynamics (Hi ) Stiffness Ki [3, 11] [3, 6.5] 3 4.5 6 [Nm / rad]

Muscle stretch Kp [-6, 9] [-30, 30] -1.28 -1.61 -2.91 [Nm / rad]
Muscle stretch
rate

Kv [0, 3] [-5, 10] 0.04 0.095 0.21 [Nms / rad]
Muscle spindle
dynamics (Hms) Neural transport

delay
Tms 0.025 0.025 [s]

Muscle force K f [-1.5, 1.5] [-20, 20] 0.2 1.2 2 [-]
Golgi tendon organ
dynamics (Hg to)

Neural transport
delay

Tg to 0.025 0.025 [s]

Corner frequency ωact 13.823 13.823 [rad / s]NM activation
dynamics (Hact ) Damping bact 0.7071 0.7071 [-]

Proportional gain Pe [-15, 0] [-5, 0] -1 -2 -3 [-]
Integrator gain Ie [-15, 0] [-5, 0] -0.23 -0.36 -0.39 [-]
Differentiator
gain

De [-15, 0] [-5, 0] -0.113 -0.241 -0.566 [-]Cognitive
response

Visual response
time

Tvi sual 0.25 0.25 [s]



C
Participant briefing

This document provides an overview of the experiment that is going to be conducted as part of an
MSc thesis at the Technical University Delft. Section C.1 provides some context and introduces the
objective of this thesis. Section C.2 describes the experiment that every participant will partake in,
along with the accompanying risks stated in Section C.3. Section C.4 presents the general experi-
ment planning for a given participant.

C.1. Context of the experiment and research objective
To understand what this research is about, one can think of the example of a person driving a car or
riding a bicycle. In such a situation, the steering device serves two major purposes:

1. It allows the ‘pilot’ to send control commands to the vehicle (Pilot wants to turn left → Pilot
rotates steering device to the left → Vehicle turns left).

2. It allows the vehicle to tell the pilot in which direction it is moving (A wind gust pushes the
vehicle rightwards → As a result, the steering device rotates to the right → The pilot feels his
/ her arms being moved right and can react to it). Cues like these revolve around the sense
of touch in the skin and the sense of force and displacement in joints and muscles, and are
known as haptic cues.

To put it differently; in the case of cars and bicycles, the position of the steering device and the
motion of the vehicle are effectively coupled. Such a configuration has proven to be effective for
rejecting disturbances like wind, as it allows one to respond much more quickly using the intrinsic
mechanical properties of the arms (as well as their reflexive behavior), rather than a situation where
one must rely on eyesight alone to detect any disturbances and respond with an arm command
accordingly.

In current aircraft control, only elementary forms of haptic feedback exist. The most well-known
example of this is the stick shaker, which warns the pilot of an impending stall condition using vi-
brations from the stick. In this project, however, a haptic configuration comparable to that of the car
and bicycle is tested. In this case, the lateral position of the stick is coupled to the aircraft’s roll rate.
Previous research has shown that such a configuration provides significant benefits in the context
of aircraft control as well, and it has the potential to considerably stretch the limit of what systems
pilots can stabilize / control manually (e.g; cases of extreme turbulence, an intrinsically unstable
fighter jet whose stability augmentation systems malfunctions or an aircraft whose dynamic behav-
ior suddenly deteriorates due to wing / engine damage). This project aims to determine a compre-
hensive set of guidelines to design / tune a control system involving such a haptic link between the
pilot and the aircraft.

C.2. The experiment
A basic tracking task is going to be carried out by twelve participants. Figure C.1a shows the hard-
ware that participants will use in the fixed-base simulator: the digital flight display and the side
stick. Figure C.1b shows what participants will see on the digital flight display: the current attitude
of the aircraft. Participants are tasked with keeping their aircraft level with the horizon. The chal-
lenge comes from the two forcing functions that drive the system. Firstly, a relatively slow signal
is included, such that you are essentially dealing with a moving target. Secondly, a relatively fast
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100 C. Participant briefing

(a) The hardware that will be used in the experiment.

(b) The artificial horizon that participants will
see on the digital flight display.

Figure C.1: A visual summary of the experimental setting.

signal is included to simulate turbulence. The task involves only one degree of freedom, namely the
aircraft roll angle. For this reason, the side stick’s pitch angle is constrained in the neutral position.

To derive a set of design guidelines for such a configuration, three degrees of freedom will be
tested: the aircraft dynamics (Boeing 747 vs. Cessna Citation) as well as the feed-forward and feed-
back gains related to the ‘active’ side stick. Three stick settings will be tested for each aircraft, result-
ing in a total of six conditions for which the results will be reported in the thesis. The performance
of all participants is quantified using measurements of the force applied on the stick, the stick de-
flection, the aircraft roll angle and the target / disturbance forcing functions that drive the system.

C.3. Risks
Due to the nature of the experiment, there are very few risks for the participants involved. As the
digital measurements will only be labelled using participant numbers, the only personal informa-
tion that is stored is the participant’s name on the signed informed consent form. This information
is only stored physically by the responsible researcher of this project, Dr. ir. René van Paassen (up to
five years after project completion). Besides the risks regarding privacy, there are virtually no risks
related to psychological or physiological well-being, as the control task imposes little strain on the
user. If anything, boredom is likely the biggest risk involved in the experiment.

C.4. Planning
The performance of participants will be assessed using runs of 90 seconds. For every condition,
there are an estimated 8-10 runs required to get consistent data (the last five runs are averaged for
every condition), which results in an estimated 15-20 minutes needed per condition. Every partici-
pant will test the first six conditions about which will be reported. Additionally, each participant will
try one of the two to four ’exotic’ settings that are pushing the limits in terms of stability margins at
the end of their session, such that some additional insight can be acquired by the research group for
this control configuration. In total, the experiment is expected to take approximately 3 hours per
participant, see Figure C.2.

Figure C.2: General planning of the experiment for a given participant.



D
All experimental frequency response

functions
This appendix provides an overview of the frequency response functions of all testing conditions
in different comparisons. Figs. D.1 and D.2 compare the B747’s and Cessna’s FRFs at the tested
feed-forward gain settings. Figs. D.3 and D.4 do the same for the tested feed-back settings for the
B747 and the Cessna, respectively. Finally, Figs. D.5 and D.6 compare the conditions of double feed-
forward and double feed-back gains for the B747 and the Cessna, respectively.
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102 D. All experimental frequency response functions

Figure D.1: The frequency response functions of conditions 1 (blue circle), 2 (red triangle) and 7 (black square), which
respectively represent the cases of single, double and triple K f wd for the Boeing 747. All values are reported as mean ± std.

deviation.

Figure D.2: The frequency response functions of conditions 4 (blue circle), 5 (red triangle) and 8 (black square), which
respectively represent the cases of single, double and triple K f wd for the Cessna Citation II. All values are reported as mean

± std. deviation.
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Figure D.3: The frequency response functions of conditions 1 (blue circle) and 3 (red triangle), which respectively represent
the cases of single and double Kφ̇ for the Boeing 747. All values are reported as mean ± std. deviation.

Figure D.4: The frequency response functions of conditions 1 (blue circle) and 3 (red triangle), which respectively represent
the cases of single and double Kφ̇ for the Cessna Citation II. All values are reported as mean ± std. deviation.
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Figure D.5: The frequency response functions of conditions 2 (blue) and 3 (red), which respectively represent the cases of
double K f wd and double Kφ̇ for the Boeing 747. All values are reported as mean ± std. deviation.

Figure D.6: The frequency response functions of conditions 2 (blue) and 3 (red), which respectively represent the cases of
double K f wd and double Kφ̇ for the Cessna Citation II. All values are reported as mean ± std. deviation.



E
Instructions for the project’s code

This section provides a comprehensive overview of the bundle of files that was used to estimate
the neuromuscular parameters, simulate the experiment, store the experimental data and process
/ plot said experimental data. Instructions are provided whenever a script provides the user with
easy ways to adjust parameters to his/her liking. For all MATLAB files holds that the adjustable pa-
rameters have been collected in a clearly indicated ’user input zone’ at the top of the file to improve
the ease of use.

Neuromuscular parameter estimation files
The script Datafitter_active_V3.m estimates the neuromuscular parameters based on the FRFs pro-
duced by Fu [14] for the low, medium or high forcing function signal bandwidth, by minimizing
the cost function ActiveStickCostfunc_V3.m using the MATLAB routine fmincon.m. The user input
zone in this file allows for the selection of upper and lower limits for ten neuromuscular parame-
ters, which can also be constrained at a fixed value here. The file Datafitter_constants.m defines the
remaining variables which are considered constants in the data fitting procedure, and which can
be adjusted as well. Datafitter_Active_V3.m calls upon various functions and MATLAB workspaces
which contain no information that should be altered.

The outcome of a wide array of tested constraint sets has been stored in ’NMS_Parameter_...
...Estimation_Overview.xlsx’. The Excel file ’NMS_Gains_Trend_Identification.xlsx’ continues the
analysis and identifies the linear combinations between certain NMS coefficients that produce equally
low cost values for ActiveStickCostfunc_V3.m. The MATLAB file Planes_plotted.m plots these trends
in three-dimensional planes. Going back to ’NMS_Parameter_Estimation_Overview.xlsx’, the gains
that were finally selected for the relaxed, average and ambitious pilot are shown in rows 96, 99 and
102, respectively.

Simulation / experiment baseline files
The file CE_dynamics.m generates the transfer functions and a Bode plot of the aircraft dynamics
that were used for the simulations as well as the experiment. It also contains the most important
note with regards to the difference in sign conventions between the preliminary thesis / simulation
code and the final paper:

Note how the transfer functions that were determined for the F-16 and the Cessna have strictly neg-
ative numerator components. This is in line with the sign convention in aircraft control: positive
lateral stick displacement (leftwards) results in a negative roll rate. This does come across as con-
fusing for the average reader with respect to the system’s stability, as the pilot’s equalization gains
of an error signal in a tracking task are typically positive (whereas they ought to be negative in our
case). You can either have:

• Controlled element dynamics with negative numerator components, a haptic feedback gain
that is negative and pilot equalization (PID) gains that are all negative. This is the notation that
complies with the standard sign convention, and it is the way in which it has been simulated
in MATLAB and reported in the preliminary thesis.
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• Controlled element dynamics with positive numerator components, a haptic feedback gain
that is positive and pilot equalization (PID) gains that are all positive. This is by far a less
confusing notation for the average reader and values are therefore reported as such by Fu [14]
and by me in the paper.

The file Simulation_signals.m defines the time vector and forcing functions that were used for
the simulations as well as the experiment in the HMI-lab.

Simulation files
The file Joystick_Models.slx is the Simulink model that forms the core of all simulation work. It con-
tains a model for both the active and passive manipulator configuration.

The MATLAB script Iterative_Performance_Estimation.m allows the user to test an array of feed-
forward and feed-back gains for all three aircraft, with a ‘relaxed’, ‘average’ or ‘ambitious’ pilot con-
trol style. This is done by averaging the results of ‘N_iterations’ (30) samples that had a proper
signal-to-noise ratio for the cognitive nonlinearities injected at the perceived error signal e, in line
with the findings produced by Levison [42] and Van der El [43].

The file Joystick_Models_SingleRunInitialization.m allows the user to run the Simulink model
a single time using one aircraft, one feed-forward gain, one feed-back gain and one pilot control
style. With this script, the Simulink model does not model any cognitive nonlinearities, as the noise
intensity needs to be determined iteratively and depends on the selected hardware settings. Fur-
thermore, an overview of the simulated time-domain metrics for the low and medium bandwidth
forcing functions can be found in ’SimulationResults_Timedomain_Low/MedBW.xlsx’.

Experimental data processing files
The file ExperimentalResults_DataImport.m imports the raw experimental data which is stored in
a separate folder. The output of this script has been stored in a MATLAB workspace, which Experi-
mentalResults_ProcessingAndPlots.m uses to process and plot all the results shown in the paper.
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