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Abstract—Traceability recovery allows software engineers to
understand the interconnections among software artefacts and,
thus, it provides an important support to software maintenance
activities. In the last decade, Information Retrieval (IR) has been
widely adopted as core technology of semi-automatic tools to
extract traceability links between artefacts according to their
textual information. However, a widely known problem of IR-
based methods is that some artefacts may share more words
with non-related artefacts than with related ones.

To overcome this problem, enhancing strategies have been
proposed in literature. One of these strategies is relevance
feedback, which allows to modify the textual similarity according
to information about links classified by the users. Even though
this technique is widely used for natural language documents,
previous work has demonstrated that relevance feedback is not
always useful for software artefacts.

In this paper, we propose an adaptive version of relevance
feedback that, unlike the standard version, considers the charac-
teristics of both (i) the software artefacts and (ii) the previously
classified links for deciding whether and how to apply the
feedback. An empirical evaluation conducted on three systems
suggests that the adaptive relevance feedback outperforms both
a pure IR-based method and the standard feedback.

Index Terms—Software Traceability, Information Retrieval,
User Feedback Analysis, Empirical Software Engineering.

I. INTRODUCTION

During the software development life cycle, developers pro-
duce several software artefacts other than source code, such as
requirements, use cases, design documents, etc. These artefacts
are bound to each other (e.g., because related to the same
software modules) and, thus, during software maintenance
activities developers have to manage their interconnections
(links) [1]. Even if software engineers would benefit from
traceability management in many tasks, such as concept lo-
cation [2], requirements tracing [3], impact analysis [4] or
source code reuse [5], [4], the manual identification of links
is very expensive, error prone and infeasible especially in an
industrial context [1], [6].

For these reasons, in recent years researchers have proposed
the usage of Information Retrieval (IR) as medium to support
the traceability recovery process [5], [6], [7]. Typically, an IR
process extracts textual information from a software repository
and compares a set of source artefacts (e.g., requirements)
against another set of artefacts (e.g., source code). Pairs of
artefacts having higher textual similarity are candidates to
be true links because they share textual information. One
of the main challenges of IR-based techniques consists in

reducing the number of false positives, i.e., pairs of software
artefacts having high textual similarity but that are not related
to each other. As such, several enhancing strategies have been
proposed in literature, such as the use of smoothing filters [8],
external dictionary [9], identifier expansion techniques [10],
or augmenting textual information with structural informa-
tion [11].

Hayes at al. [3] proposed to use relevance feedback to
improve the accuracy of vector based IR methods for re-
quirement tracing by incorporating the judgments provided
by the users for already classified links. For the Vector
Space Model (VSM), this procedure is implemented using
the Standard Rocchio algorithm [12] to increase the textual
similarity between connected artefacts (correct links). Even if
some studies [3], [13] demonstrated that relevance feedback
can be helpful for requirement tracing, another work [14]
demonstrated that relevance feedback does not improve and
sometimes worsens the accuracy of an IR method when
applied to different software artefacts.

We note that the standard Rocchio algorithm [12] has
been used in previous work on traceability recovery in a
similar manner to the way it is used for traditional IR tasks,
with the assumption that software documents and natural
language documents exhibit similar properties. For example,
the Rocchio algorithm is generally used to augment the
vocabulary of the queries, that in traditional IR problems
contains only few words when compared with the size of
the documents to retrieve [12]. In the context of traceability
recovery this assumption is not true: source artefacts (queries)
can contain more words than target artefacts (documents to
retrieve). Moreover, recent research has also demonstrated
that in general software artefacts are more homogeneous and
predictable than natural language text [15], [16].

Stemming from the consideration that software documents
presents specific peculiarities with respect to natural language
documents, in this paper we introduce and propose an adaptive
version of relevance feedback to overcome the limitations
of the standard Rocchio algorithm [12] when applied to
traceability recovery. We evaluated the proposed approach in
an empirical study involving three software systems belonging
to different domains (industrial and academic projects) and de-
veloped with different programming languages. The empirical
evaluation is steered by the following research questions:

RQ1 Does the adaptive relevance feedback improve the



performances of the Vector Space Model?
RQ2 Does the adaptive relevance feedback outperform the

standard relevance feedback?
The results achieved reveal that, unlike the standard Rocchio
algorithm, the adaptive relevance feedback statistically im-
proves the performance of IR based traceability recovery.

The remainder of the paper is organized as follows. Sec-
tion II provides background notions on IR-based traceability
recovery and discusses related work. Section III introduces
the proposed adaptive version of relevance feedback, while
section IV describes the design of the empirical study we have
performed to evaluate the benefits of the proposed adaptive
approach. Results are reported and discussed in Section V,
while Section VI discusses the threats to validity. Finally,
Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

This section summarises background notions about IR-
based traceability recovery and discusses related work.

A. IR-based Traceability Recovery

Information Retrieval (IR) refers to a popular family of
techniques for automatically extracting and managing textual
information from documents, e.g., web pages, books, etc. Such
techniques rely on the textual similarity among documents
to derive their interconnections with the idea that documents
sharing a large number of words (terms) have also high
probability to share the same meaning. Even though different
IR techniques exist, they follow a standard process that can be
summarised in three steps: (i) artefact-indexing, (ii) building
the term-by-document matrix, and (iii) computing the textual
similarity using a specific formula.

During the first step, a textual corpus is built by extracting
the keywords contained in the documents, removing common
words (via stop word function and/or stop word list), stemming
terms having the same root form and splitting composite
identifiers [10], [17], [18]). Then, the collected data are stored
in a m × n matrix, called the term-by-document matrix [19],
where m is the number of terms that occur within artefacts,
n is the number of artefacts, and the generic entry wi,j

measures the relevance (i.e., weight) of the ith term in the
jth document [19]. One of the most used weighting schemas
is term frequency - inverse document frequency (tf-idf ) [19],
which attributes more importance to words having a high
frequency in a document (high tf ) and that are contained in
few documents (high idf ).

Finally, starting from the term-by-document matrix, a spe-
cific algebraic formula is used to compute the textual sim-
ilarity of pairs of artifacts. The representation of the doc-
uments and the algebraic formula vary depending on the
adopted IR method. The most used IR methods are (i) the
probabilistic models [20], [21], (ii) the Vector Space Model
(VSM) [19], and (iii) its extension called Latent Semantic In-
dexing (LSI) [22]. Further works have used different methods
to recover traceability links between different types of arte-
facts [23], [24], [25], [26]. However, a recent empirical study

showed that none of these techniques statistically outperforms
the others [27]. For this reason, in this paper we consider
only the Vector Space Model (VSM) to compare the textual
similarity between different kinds of artefacts. In the VSM,
artefacts are represented as vectors of terms occurring within
artefacts in a repository, corresponding to column vectors of
the term-by-document matrix [19], while the textual similarity
among artefacts is measured as the cosine of the angle between
the corresponding vectors.

A main challenge for IR-based traceability recovery meth-
ods is that a high textual similarity represents only a proba-
bility that pairs of source-target artefacts are linked. In order
to improve the retrieval accuracy, researchers have proposed
the use of enhancing strategies. Some previous work focused
on artefact indexing [10], or proposed the usage of a new
weighting schema [28], a project glossary [29], and an external
dictionary [9]. Other works have suggested to use part-of-
speech tagger to extract critical terms [15], or using a smooth-
ing filter to automatically remove “common” words that do
not help to characterise the artefacts content [8]. A detailed
survey on IR-based techniques and enhancing strategies used
in literature can be found in recent papers [6], [7].

B. Relevance feedback

A popular method to improve the performance of IR
methods when dealing with natural language documents is
represented by relevance feedback, i.e., incorporating the
judgment provided by users to change the queries. In a
traditional IR query context, the Standard Rocchio [12] is the
classic algorithm to implement relevance feedback for VSM:
it modifies a query vector on the basis of partial knowledge
of known relevant and non-relevant documents provided by
user. More formally, let −→q be the initial query vector, Dr be
the set of known relevant documents and Dnr be the set of
known non-relevant documents. Then, the new query −−→qnew is
computed as follows:

−−→qnew = α −→q + β
1

| Dr |
∑

dj∈Dr

−→
dj − γ

1

| Dnr |
∑

dj∈Dnr

−→
dj (1)

where α, β and γ are the weights to be assigned to the
old query, relevant documents and non-relevant documents
respectively. Intuitively, in this way the document vectors from
the relevant documents are added to the initial query vector
(positive feedback) while the vectors from the non-relevant
document are subtracted (negative feedback). Previous works
have also revealed that a reasonable configuration might be
α = 1, β = 0.75 and γ = 0.25 [14], [30], i.e. relevant
documents are three times more important than irrelevant ones.

Hayes at al. [3] adopted the same strategy for IR-based re-
quirement tracing. They proposed an interactive link recovery
process with multiple steps: at each iteration, a tool returns
the top links in the ranked list using a fixed cut point. The
software engineer classifies these links either as actual links
or as false positives, thus providing feedback to the tool. The
source artefact is re-weighted, the ranked list is recomputed.
The process is repeated for some iterations [3], [13] or until all



links are retrieved [14]. In the preliminary study [3], relevance
feedback were used to enhance VSM when retrieving links
among high-level and low-level requirements and also using
the standard Rocchio only for few iterations. The empirical
results showed that relevance feedback can help in improving
the performances of VSM. A further work [13] also reached
similar conclusions but highlighted that relevance feedback
can improve both in precision and recall only for the first few
iterations. It is important to note that both [3] and [13] only
investigated the usage of relevance feedback in the context of
requirements tracing. However, when the goal is to retrieve
all the links among different categories of software artefacts
(such as use cases, UML diagrams, etc.), relevance feedback
does not improve and sometimes worsens the performance of
an IR method [14]. Moreover, their performance varies over
different software datasets and over different recall thresholds
for the same dataset [14].

In this paper we introduce and propose an adaptive version
of the relevance feedback that considers the characteristics
of both (i) the software artefacts and (ii) the labeled data
(information about classified links) for deciding whether and
how to apply the relevance feedback.

III. PUTTING THE USER INTO THE LOOP: AN ADAPTIVE
APPROACH

According to Manning at al. [31], the success of relevance
feedback depends on a number of assumptions. Firstly, the
standard Rocchio is used for queries with few words when
compared to the size of the documents to retrieve. Indeed,
Equation 1 tends to increase the size of the queries by adding
terms contained in the relevant documents since β > γ [30],
[31]. Secondly, relevance feedback requires relevant docu-
ments to be similar to each other [31], i.e., they should
cluster in the vector space (cluster hypothesis). The approach
does not work very well if the relevant documents (software
artefacts) form a multimodal class, i.e., several clusters of
documents within the vector space [31]. This happens when
there is a mismatch between the query’s vocabulary versus the
documents’ vocabulary [31].

In this paper we note that both assumptions reported above
are not true in the context of traceability recovery. Indeed,
some source artefacts (used as “queries”) may contain more
terms than target artefacts and, thus, the relevance feedback
should not be applied unconditionally to the source artefacts
as done in previous works [3], [13], [14]. Moreover, the cluster
hypothesis does not hold, because, as reported in related
literature (e.g., [17], [18]), source and target artefacts use
different vocabularies, e.g., requirements use problem-domain
terms, whereas the source code uses synonyms, abbreviations
or technology-domain terms. Therefore, we conjecture that a
proper application of relevance feedback to software artefacts
has to consider these aspects.

Specifically, given a pair of source and target artefacts
(s, t) classified by the user, we propose to apply the standard
Rocchio to the artefact containing the lower number of unique
terms, i.e., to the shortest (less verbose) artefact between s

Algorithm 1 Adaptive Relevance Feedback (ARF)
1: List← initial ranked list of candidate links
2: Classified ← ∅ // set of classified links
3: for each artefact i do
4: TPi ← ∅ // initialize the set of True Positive for i
5: FPi ← ∅ // initialize the set of False Positive for i
6: end for
7: while not (stopping criterion) do
8: Get the link (s, t) on top of List
9: The user classifies (s, t).

10: Classified ← Classified
⋃
{(s, t)}

11: if (s, t) is correct then
12: TPs ← TPs

⋃
{t}

13: TPt ← TPt
⋃
{s}

14: else
15: FPs ← FPs

⋃
{t}

16: FPt ← FPt
⋃
{s}

17: end if
18: Let Vs be the set of terms in s
19: Let Vt be the set of terms in t
20: if |Vs| 6 |Vt| and |TPs| > |FPs| then
21: apply the standard Rocchio to s
22: else
23: if |Vt| < |Vs| and |TPt| > |FPt| then
24: apply the standard Rocchio to t
25: end if
26: end if
27: Recompute the ranked List of links
28: List← List− Classified
29: end while

and t. Secondly, since the cluster hypothesis does not hold,
clusters of related and non-related artefacts are not sharply
distinct and, thus, the standard Rocchio is not able to properly
move the query toward the related documents and far away
from the non-related ones [19], [31]. In this scenario, the
standard Rocchio has to rely on a set of labeled data (already
classified links) containing more relevant artefacts (positive
feedback) than non-relevant ones (negative feedback) [19],
[31]. Indeed, while positive feedback can help to move the
query in the direction of relevant artefacts, negative feedback
moves the query far away from non-relevant documents but
not necessarily closer to the more relevant ones. Hence, we
propose to apply the relevance feedback if and only if the
number of correct links (i.e., the number of related artefacts)
is greater or equals to the number of false positives (i.e., the
number of non related artefacts) already classified by the user
for the shortest artefact between s and t (i.e., positive feedback
is greater than negative feedback).

In summary, in this paper we propose an adaptive rele-
vance feedback that considers the verbosity of the software
artefacts and the number of already classified correct links
and false positives for deciding whether and how to apply the
relevance feedback. For completeness, Algorithm 1 reports the
pseudo-code of the proposed adaptive relevance feedback. The
algorithm starts with the generation of the list of candidate
links ordered in descending order of textual similarity (List),
obtained by applying all the steps reported in Section II-A
and using VSM as IR method. In lines 2-6 the Algorithm
initialises sets used to keep track of the classification made
by the user. Specifically, Classified denotes the set of already
classified links. TPi represents the set of artefacts j such that
link (i, j) or (j, i) has been classified by the user as true links,
and FPi is the set of artefacts j such that link (i, j) or (j, i)



TABLE I
CHARACTERISTICS OF THE SOFTWARE REPOSITORIES USED IN THE CASE

STUDY.

System Artifact LangageKind N. Total N.

Easy-Clinic

Use Cases (UC) 30

160 ItalianUML Interaction Diagram (ID) 20
Test Cases (TC) 63
Code Classes (CC) 47

i-Trust Use Cases (UC) 33 80 EnglishJSP 47

Modis High Level Requirements (HLR) 19 68 EnglishLow Level Requirements (LLR) 49

has been classified as false positive by the user. Then, the loop
between lines 7-29 describes the adaptive relevance feedback.
At each iteration, the user classifies the first candidate link
(s, t) on top of the ranked list and she judges it as correct
link or as false positive (lines 8-9) in Algorithm 1. Then, t
is stored as true link or false positive for s according to the
judgement provided by the user (lines 11-17). Thus, the if
condition in lines 20-21 verifies whether the source artefact s
should be modified using the standard Rocchio. This happens
if and only if s contains a lower number of unique terms
than t, and if the amount of available positive feedback is
greater than the amount of negative feedback, i.e., the number
of true links for s is greater than its number of false positive
(|TPs| > |FPs|). If the previous condition is not verified,
the if condition in lines 23-25 checks whether the standard
Rocchio can be applied to the target artefact t. In the end,
the ranked List is recomputed and the links already classified
are removed from it (lines 27-28 in Algorithm 1). Finally, the
loop is repeated until the user stops the retrieval process.

IV. EMPIRICAL STUDY DESIGN

This section describes the design of the empirical study that
we conducted in order to evaluate the accuracy of the proposed
adaptive relevance feedback for IR/based traceability recov-
ery. The context of the study is represented by repositories
of different software artefacts extracted from three software
projects: Easy-Clinic, i-Trust and Modis. Easy-Clinic1 is a
software system developed by Master’s students at the Univer-
sity of Salerno. i-Trust is a medical application used as a class
project for Software Engineering courses at the North Carolina
State University2, while MODIS1 is the open source Moderate
Resolution Imaging Spectroradiometer (MODIS) developed by
NASA. Table I reports the main characteristics as well as
the number of different kinds of artifacts contained in these
repositories. Each repository also contains the traceability
matrix built and validated by the application developers. We
consider such a matrix as the “oracle” to evaluate the accuracy
of the different experimented traceability recovery methods.

We investigated the following two research questions:
RQ1 Does the adaptive relevance feedback improve the

performances of the Vector Space Model?

1http://www.coest.org/index.php/resources/dat-sets
2http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=tracing

TABLE II
TRACING ACTIVITIES PERFORMED ON THE OBJECT REPOSITORIES.

Repository Tracing # Correct Description
Activities Links

Easy-Clinic
A1 83 Tracing UC onto CC
A2 69 Tracing ID onto CC
A3 200 Tracing TC onto CC

i-Trust A4 58 Tracing UC onto JSP
Modis A5 26 Tracing HLR onto LLR

RQ2 Does the adaptive relevance feedback outperform the
standard relevance feedback?

Therefore, we analyse and compare the performances of a
traceability recovery process based on Vector Space Model
(VSM) when instantiated with the following variants: (i)
Adaptive feedback: the relevance feedback scheme proposed in
section III; (ii) No feedback: a traditional traceability recovery
process is instantiated without using any relevance feedback;
(iii) Standard feedback: it is the traditional relevance feedback
scheme based on the Standard Rocchio and used in previous
work [3], [14].

We have used the tf-idf weight model, porter stemmer
and a common stop word list, which in addition to standard
Italian and English stop words included (i) programming
language (C/Java) keywords, (ii) recurring words in document
templates (e.g., use case, requirement, or test case template).
To enrich the generalisability of our results we carry out five
different traceability recovery activities, three on Easy-Clinic
and one on the other repositories (see Table II). To evaluate
the different traceability recovery methods, we first compare
the accuracy of the different treatments at each point of the
ranked list using two widely used IR metrics, namely recall
and precision:

recall =
|corr ∩ retr|
|corr|

% precision =
|corr ∩ retr|
|retr|

%

where corr and retr represent the set of correct links and the
set of links retrieved by the tool respectively.

To provide statistical support for our findings we also use
statistical tests to verify whether the number of false positives
retrieved by VSM with adaptive relevance feedback is signifi-
cantly lower than the number of false positives retrieved when
using the standard Rocchio or without using any relevance
feedback scheme. Since the number of correct links is the same
when comparing different methods on the same traceability
recovery activity (i.e., the data is paired), we use the one-
tailed Wilcoxon Rank Sum test [32] with a p-value threshold of
α = 5%. We also estimate the magnitude of the improvement
in terms of false positives reduction when using the adaptive
approach using the Cliff’s Delta (d) [33], a non-parametric
effect size measure for ordinal data whose score ranges in the
interval [−1; 1]. It is equal to +1 when all values of one group
are higher than the values of the other group and −1 when
the reverse is true. Two overlapping distributions would have a
Cliff’s Delta equal to zero. The effect size is considered small
for 0.148 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474 and
large for |d| ≥ 0.474 [33].



TABLE III
IMPROVEMENT OF PRECISION AND FALSE POSITIVES REDUCTION ACHIEVED BY THE ADAPTIVE FEEDBACK AT DIFFERENT LEVELS OF RECALL.

System Traced artifacts Rec 20% Rec 40% Rec 60% Rec 80% Rec 100%
Prec FP Prec FP Prec FP Prec FP Prec FP

EasyClinic
UC→CC +3.71% -14% +2.94% -11% +10.10% -33% +20.53% -58% +3.08% -27%
ID→CC - - +5.68% -25% +11.47% -42% +10.67% -35% -0.51% +7%
TC→CC +39.13% -88% +47.27% -90% +58.84% -94% +59.03% -94% +6.23% -30%

i-Trust UC→JSP - - +13.27% -41% +9.07% -35% -0.07% +1% +0.18% -3%
Modis HLR→LLR - - +14.20% -45% +29.71% -77% +10.34% -47% +2.06% -25%

TABLE IV
IMPROVEMENT OF PRECISION AND FALSE POSITIVES REDUCTION ACHIEVED BY THE STANDARD ROCCHIO AT DIFFERENT LEVELS OF RECALL.

System Traced artifacts Rec 20% Rec 40% Rec 60% Rec 80% Rec 100%
Prec FP Prec FP Prec FP Prec FP Prec FP

EasyClinic
UC→CC -3.29% +14% -13.05% +69% -6.44% +30% -2.99% +16% -0.87% +11%
ID→CC -15.69% +133% -4.88% +25% -12.46% +67% -11.08% +59% +10.43% -61%
TC→CC +7.75% -27% +5.28% -20% +5.68% -23% -6.53% +43% -2.81% +21%

i-Trust UC→JSP -40.00% +100% +13.27% -41% +18.38% -56% -3.38% +41% -2.74% +72%
Modis HLR→LLR -16.67% +100% +14.20% -45% +11.59% -50% +9.09% -43% +1.61% -21%
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(a) Easy-Clinic: tracing UC onto CC
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(b) Easy-Clinic: tracing ID onto CC
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(c) Easy-Clinic: tracing TC onto CC
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(d) i-Trust: tracing UC onto JSP
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(e) Modis: tracing HLR onto LLR

Fig. 1. Precision-Recall curves for the different datasets.

V. EMPIRICAL STUDY RESULTS

Table III reports the improvements of precision and the re-
duction of retrieved false positives achieved using the proposed
adaptive feedback over VSM at different levels of recall. A
preliminary analysis shows that the adaptive feedback always
achieved better recovery accuracy than that obtained without
using any relevance feedback schema. In several cases for a
recall level smaller than 80%, the adaptive feedback allows
to achieve an improvement of precision ranging between
10% and 59% and a considerable reduction of retrieved false
positives ranging between 8% and 94%. From the perspective
of a software engineer that has to inspect the ranked list
of candidate traceability links, such a result represents a
substantial improvement in terms of false positive reduction.
For example, using the adaptive feedback to trace test cases
onto code classes in Easy-Clinic, it is possible to trace 102
correct links (about 50% of recall) discarding only 18 false
positives (i.e. about 85% of precision). With the standard VSM

model (without feedback) the software engineer should discard
208 false positive (i.e. 190 further false positives) for achieving
the same level of recall. This result is impressive when
comparing with the empirical results achieved by previous
work [8] where improving the recovery accuracy when tracing
test cases onto code classes turned out to be very difficult
with other enhancing strategies. A less evident improvement
is achieved for a recall percentile of 100%. In this case, the
improvement is lower than 7% in terms of precision and lower
than 30% in terms of false positives. The only exception to
the rule is represented by Easy-Clinic when tracing UML
diagrams onto code classes. This result confirms that, when
the goal is to recover all correct links, there is an upper
bound for performance improvements that is very difficult to
overcome [14].

Table IV reports the differences in terms of precision
and retrieved false positives achieved by VSM when using
iteratively the standard Rocchio [14] and without the adaptive



TABLE V
RESULTS OF THE WILCOXON TESTS.

Comparison A1 A2 A3 A4 A5

Stand. Feedback Vs. No Feedback 1 1 0.95 0.95 <0.01
Adapt. Feedback Vs. No Feedback <0.01 <0.01 <0.01 0.22 <0.01
Adapt. Feedback Vs. St. Feedback <0.01 <0.01 <0.01 <0.01 0.32

TABLE VI
RESULTS OF CLIFF’S d EFFECT SIZE.

Comparison A1 A2 A3 A4 A5

Stand. Feedback Vs. No Feedback -0.48 -0.13 -0.25 -0.21 0.75 (L)
Adapt. Feedback Vs. No Feedback 0.50 (L) 0.48 (L) 0.80 (L) 0.02 0.70 (L)
Adapt. Feedback Vs. St. Feedback 0.27 (L) 0.24 (S) 0.65 (L) 0.3 (S) 0.29 (S)

scheme proposed in this paper. The results show that the
standard feedback improves the performance of VSM for
MODIS (i.e., when tracing high-level requirements onto low-
level requirements) when the recall is greater than 20%. This
finding confirms the empirical results achieved by previous
works [3], [13] where the application of standard feedback
turned out to be effective for requirement tracing. However,
when the goal is to retrieve traceability links among other
kinds of artefact the application of the standard feedback
sometimes improves and sometimes worsens the performance
of VSM at different levels of recall as previously reported
in [14]. Indeed, for the other datasets we can observe how the
Rocchio algorithm achieves a variation of precision ranging
between -40% and +18% and a variation of retrieved false
positive ranging between -27% and +133%.

From the comparison of the results reported in Tables III
and IV we notice that, unlike the standard feedback, the
proposed adaptive relevance feedback allows to improve the
performances of VSM not only for requirements but also for
other software artefacts. This is confirmed by the graphical
comparison reported in Figure 1, which plots the precision-
recall graphs for VSM (no feedback), VSM with adaptive
relevance feedback (adaptive feedback) and VSM with stan-
dard Rocchio (standard feedback). The improvement gained
by the adaptive feedback is particularly evident for Easy-
Clinic, while for MODIS and i-Trust there is more interleaving
between the two feedback strategies. In particular, for i-Trust
the adaptive feedback is substantially better than the standard
feedback only for recall lower than 50%, while for MODIS
the two corresponding precision-recall curves are very similar.
To provide a deeper analysis, Table V shows the p-values of
the Wilcoxon test (using Holm’s correction) while Table VI
illustrates Cliff’s d values for all pairwise comparisons. Values
for which the Wilcoxon test indicated a significant difference
are shown in bold face. It can be noted that in 4 out of 5 cases
the adaptive feedback provides a significant false positives
reduction (p-values < 0.05) with a large effect size. The only
exception to the rule is represented by the traceability activity
A4, i.e. when tracing use cases onto jsp files for i-Trust (in
this case there is no statistical difference between the two
treatments adaptive feedback and no feedback). In only 1 out
of 5 cases, the standard feedback (i.e., Rocchio algorithm)

is able to statistically improve the recovery accuracy of a
standard traceability activity (i.e. no feedback). Finally, the
adaptive feedback statistically outperforms (in terms of false
positives reduction) the standard feedback in 4 out of 5 cases.
Such a scenario is confirmed by analysing the effect size: it is
large in 2 out of 5 cases and small in the remaining 3 cases.

VI. THREATS TO VALIDITY

This section discusses the threats that can affect the validity
of our empirical study. For what concerns the construct
validity, we used two widely adopted metrics, i.e. precision
and recall, as well as the number of false positives for
measuring the performance of VSM and its improvement when
applying two different feedback strategies. Another important
threat regards the accuracy of the oracle (traceability matrix)
used to evaluate the results of all traceability activities. We
used original traceability matrices provided by the software
developers to mitigate such a threat.

For what concerns internal validity, there are several factors
that can affect our results: (i) the language used to write
the software artefacts, (ii) the kind of the artefacts, and (iii)
the pre-processing used during the artefacts indexing. We
have mitigated the former threat by selecting three software
projects, one written in Italian and two written in English, that
contain different kinds of software artefacts. The empirical
results revealed that the adaptive relevance feedback improves
the accuracy of VSM independently of the artefact’s language
and the kind of the artefacts to be traced. About the latter
threat, we have mitigated it by showing that the adaptive
feedback obtains a significant improvement when the corpus
is pruned by stop word list, stemmer and the tf-idf weighting
schema.

About the conclusion validity we support our empirical
findings by using a proper statistical test, i.e the Wilcoxon
non-parametric test, and a non-parametric effect size measure
(Cliff’s Delta) to provide a practical measurement of the
magnitude of improvements. Beforehand, we verified the non-
normality nature of the distributions using Shapiro’s normality
test. Since multiple tests were performed on the same data sets,
we use the Holm’s correction to correct p-values.

Potential threats to external validity can be related to the
generalisation of our findings. With the aim of making our
results as generalisable as possible, we have considered two
academic (EasyClinic, i-Trust), and one industrial (Modis)
projects. In addition, all repositories have previously been used
by other authors to evaluate IR methods and other enhancing
strategies [3], [8], [9], [15], [23], [25], [34].

VII. CONCLUSION

In this paper we propose adaptive relevance feedback to
improve the performances of IR-based traceability recovery
methods [5]. Relevance feedback has been previously pro-
posed in literature [3], [13], [14], but these studies have
reported contrasting results, showing that relevance feedback
does not always improve the accuracy of IR methods, such as
VSM, when applied to software artefacts [14]. In this paper



we introduce an adaptive version of relevance feedback built
upon the consideration that software artefacts do not share
the same properties of natural language documents, on which
the standard feedback relies. The results of the empirical
study we conducted on three software systems libraries can
be summarised as follows:

RQ1 Does the adaptive relevance feedback improve the
performances of the Vector Space Model? The pro-
posed adaptive relevance feedback allows to gain
an improvement of precision ranging between 10%
and 59% with a considerable reduction of retrieved
false positive raging between 8% and 95%. These
improvements are completely independent from the
artefact’s language and the kind of software artefacts
to be traced.

RQ2 Does the adaptive relevance feedback outperform the
standard relevance feedback? The adaptive feedback
yielded strong, statistically significant improvements
with respect to the standard feedback, which provides
benefits only for requirement tracing. Specifically,
the precision was significantly higher in 100% of
cases where the goal was to retrieve links among
high level software artefacts and source code files.

Future work will be devoted to corroborating the empirical
findings reported in this paper by replicating the study over a
larger number of software projects. We also plan to investigate
the benefits that the proposed adaptive feedback might provide
for other IR-methods, such as Latent Semantic Indexing (LSI),
or in combination with other enhancing strategies, such as
combining textual and structural information [11].
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