

Architecture-Centric Design:
Modeling and Applications to

Control Architecture Generation

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 10 oktober 2011 om 10:00 uur
door

Andrés Alberto ALVAREZ CABRERA

Diplôme D’Ingénieur, Génie Mécanique Conception,
Institut National des Sciences Appliquées de Lyon

geboren te Bogotá, Colombia

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. T. Tomiyama

Samenstelling promotiecommissie:

Rector Magnificus Voorzitter

Prof. dr. T. Tomiyama Technische Universiteit Delft, promotor

Prof. dr.ir. M.J.L. van Tooren Technische Universiteit Delft

Prof. dr.ir. F.J.A.M. van Houten Universiteit Twente

Prof. dr.ir. J.M.P. Geraedts Technische Universiteit Delft

Dr. C. Paredis Georgia Institute of Technology,
Verenigde Staten van Amerika

Dr. D.A. van Beek Technische Universiteit Eindhoven

Dr.ir. J.L. Herder Technische Universiteit Delft

Prof. dr.ir. P.P. Jonker Technische Universiteit Delft, reservelid

This research has been carried with the support of the Innovation-Oriented Research
Programme ‘Integral Product Creation and Realization (IOP IPCR)’ of the
Netherlands Ministry of Economic Affairs, Agriculture and Innovation.

ISBN: 978-90-6562-281-5

© Copyright 2011 by A.A. Alvarez Cabrera

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any other means, electronic or mechanical,
including photocopying, recording or by any other information storage and retrieval
system, without the prior permission of the author.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

To my growing family

Through our mere existence, all living
beings defy the fate of the universe,
predicted by thermodynamics to be chaos.
However, intelligent beings have further
choice, ranging from sustainably ordering
the surrounding universe (creation),
to accelerating on the road to chaos up to
the point it consumes us (destruction).

The choice is ours…

Andrés A. Alvarez Cabrera

 v

Abstract

Design activities, including control design, are becoming increasingly difficult due
to a corresponding increase in product and product development complexity. Model-
based (or driven) engineering, development and design have become common
concepts related to modern complex product development practices. However, it is
argued here that currently such approaches only remain successful within a domain-
specific context. This work has as main contributions the analysis of desirable
characteristics and a proposal for a model which can effectively support model-
based development in general (i.e., not only within specific domains), coined here as
“architecture-centric”. Another contribution of this work is an intensive review
(though hardly complete) on existing tools and methods related to the model-based
development of control architectures for complex mechatronic systems.

Synthesis, analysis, and verification of the proposals are based on the generic case of
control (architecture) design, which represents most of the relevant characteristics
and problems in current design practices for complex mechatronic products. Besides
the main contributions above, the case studies for control architecture generation
provide an overview of the control design process, as well as additional insight into
the required characteristics of the model and possible methods to effectively
implement it and use it in the context of industrial product development.

 vii

Samenvatting

Ontwerp activiteiten, inclusief regelsysteem ontwerp, worden steeds moeilijker door
toename van zowel product als product ontwikkeling complexiteit tegelijkertijd.
Model gebaseerd (of gedreven) technische ontwikkeling en ontwerp zijn
gemeengoed geworden in hedendaagse, complexe product ontwikkelingen. Er kan
echter worden gesteld dat dergelijke aanpakken slechts succesvol worden toegepast
in domein specifieke context. De voornaamste bijdragen van dit werk zijn een
analyse van de gewenste karakteristieken en een voorstel van een model dat effectief
model gebaseerde ontwikkeling ondersteund in het algemeen (d.w.z. niet slechts in
een domein specifieke context), hier “architectuur-centrisch” genoemd. Een andere
bijdrage is een uitvoerig (echter nauwelijks volledig) literatuur onderzoek naar
bestaande instrumenten en methodes op het gebied van model gebaseerde
ontwikkeling van regelsysteem architecturen van complexe mechatronische
systemen.

Synthese, analyse en verificatie van de voorstellen zijn gebaseerd op het ontwerpen
van regelsystemen(architectuur) in het generieke geval, waarin de meeste van de
relevante kenmerken en problemen van de huidige ontwerppraktijk voor complexe
mechatronische producten vertegenwoordigd zijn. Naast bovengenoemde bijdragen
geven de case studies, waarin regelsysteem architecturen zijn gegenereerd, een
overzicht van het regelsysteem ontwerpproces. Daarnaast geven de case studies
verbredende inzichten in de benodigde model eigenschappen en mogelijke methodes
voor effectieve implementatie en toepassing in een industriële productontwikkeling
context.

 ix

Preface

Here, I provide an overview of my activities during the last years, trying to give the
reader another point of view and some insight into how this document has been
conceived. The work for this thesis started with the goal of the project for which I
was hired at the Technical University of Delft as part of the project “Automatic
Control Software Generation for Mechatronic Systems”: To generate input
information for control code analysis models out of a high-level model. At that time,
the goal and the means to achieve it were mainly defined through a diagram (cf.
Figure 1) describing an overview of a design process supported by this high-level
model (i.e., the function model in the figure). My job was to develop the block
corresponding to the functional model and to provide enough input information for
the control design processes through the use of artificial intelligence techniques
(qualitative-reasoning).

Figure 1. Architecture of integration framework. White blocks represent tools to be further developed.

Dashed-line blocks correspond to existing commercial software tools. Iterations are not shown.

 x

The first period of my PhD was spent gathering and reading related material which,
to my surprise, covered a wide range of literature from fundamental design theory to
control design methods, passing by artificial intelligence techniques to automatically
transform information. After gaining some basic understanding about the models I
could use as input and the models I needed to obtain as an output, the work began by
trying to model a couple of different systems, discovering that maintaining usability
and readability of the input model and placing enough information to achieve my
goals of model generation was rooted on:

 selecting a proper group of generic modeling primitives
 providing basic modeling interface mechanisms which allowed to handle parts of

the information while maintaining its connection to other data in the model

A first set of primitives was provided by the Function-Behavior-State (FBS) model
methodology developed by Professor Tomiyama (my promoter) and his colleagues.
The first tests proceeded by modeling with tools like Visio and some SysML
modeling software. Visio allowed to quickly produce graphic models, but failed to
facilitate managing parts of the information while keeping them connected to a
single model. Thus, when I presented the Visio models to the project’s industrial
partners, the point of maintaining the information linked bellow was completely lost,
and I could make very little practical progress. SysML allowed creating very rich
models using a graphical input, but much of the modeling effort had to be spent
creating formal class representations in the different diagrams to try obtaining a
“complete” and coherent model. Thus, actually modeling any system was not easy
with any of these tools, and required an immense amount of effort.

The first experiences modeling with the available tools provided more confidence in
the modeling primitives, but made evident the need for a “tool” to better support the
modeling. Through the Graphical Modeling Framework (GMF), Eclipse provided a
fast means of describing our primitive modeling classes and implementing a basic
tool to create instances of them and actually model systems. The resulting tool was
far from perfect, but allowed to demonstrate the main points of building an
integrated information model for the generation of other models. Then, some of the
industrial partners could see more clearly the advantages of the proposed approach
and the first case studies were successfully implemented, modeling part of a system
and demonstrating how the information could be used to generate other models for
analysis and synthesis. Also, an important change to the modeling primitives was
made by recognizing the parameter as an information object that allows relating the
other primitives and building explicit descriptions of the system. The work up to this
point constitutes the first contribution of this thesis by recognizing the set of
modeling primitives and providing a research tool (not robust enough for industrial
application) which allows building models using such primitives.

Then the generation of control design models could be addressed more directly. The
first step was to identify more clearly the information which is available from the
first stages of development and which relates to control design: structural and

 xi

topological relations of parts of the system, its functions and their defining
parameters. Then, I had to select some candidate target models that could take as
input such information after some transformation, and that would help verifying that
it is indeed enough for starting to develop a controller. The transformations impose
additional constraints to the model, especially to build descriptions of the behavior.
This part forms the second contribution of this thesis, by providing some modeling
rules that allow modeling unambiguously enough information to generate the target
control design models.

Delft, June 2011 Andres Alberto Alvarez Cabrera

 xiii

Architecture-Centric Design: Modeling and Applications
to Control Architecture Generation

Abstract ...v

Samenvatting...vii

Preface ...ix

1 Introduction ..1

1.1 Structure of this thesis ..3

1.2 Information and collaboration in product development3

1.3 A generic model and the model interpretation problem4

1.4 Supporting controller design...6

Part I. Architecture-Centric Design and Supporting Modeling Language..................9

2 Challenges in Complex Product Development Processes11

2.1 Mechatronic systems and their control ...11

2.2 Challenges in mechatronic design ..13

2.3 Review of available approaches ...20

2.4 Conclusions ..29

3 Architecture-Centric Design ..31

3.1 Overview and key aspects ..32

3.2 An architecture-centric design approach ..36

3.3 The Architecture Model (AM)..44

3.4 Conclusions ..64

4 Case Studies ...65

4.1 Development case studies...65

4.2 Demonstration scenarios on architecture-centric design73

4.3 Conclusions ..84

Part II. Applications to Control Architecture Generation ...85

5 Current Control Design Practices and Architecture-Centric Control Design...87

5.1 Controller software design for mechatronic products...............................89

5.2 Proposed approach..94

5.3 Conclusions ..96

6 Regulatory control structure...97

 xiv

6.1 The controller configuration or I/O problem ..98

6.2 Parameter network ..100

6.3 Linear Structured Systems..102

6.4 Parameter classification process ...103

6.5 LSS analysis ...105

6.6 Example case study: demonstration of transformation to LSS...............107

6.7 Example case-study: Co-design using analysis results...........................116

6.8 Conclusions ..122

7 Supervisory control structure ...123

7.1 Supervisory and hybrid control methodologies123

7.2 Modeling supervisory control architecture ...129

7.3 Model transformations..137

7.4 Conclusions ..144

Discussion ...145

Conclusions...153

References...155

Index ...167

Curriculum vitae and list of publications..169

Acknowledgements...173

 1

1 Introduction

Many modern complex systems nowadays can be categorized as mechatronic, i.e.,
involving the synergic integration of mechanical, electrical, and software
subsystems. Software in such systems ranges from embedded control to user
interface and database access. Control (software) plays a fundamental role in
ensuring the correct behavior of the system. This is demonstrated by the control-
originated bugs and other failures affecting products ranging form mobile phones to
automobiles, airplanes, and rockets [86]. The origin of such failures is connected in
many cases to the design of the controller itself [162] and not to accidents or misuse.
Additionally, developing the controller is also a painstaking task, especially when
considering the complex interactions taking place in modern mechatronic products
and in their development processes.

Therefore there is a desire to support, and if possible automate, many tasks involved
in the design process of a controller. Here, design is considered as a process
containing a series of activities involving mainly analysis, synthesis and
transformations of models. This desire, or rather need, to better support design
processes has fueled the development of many tools and methodologies, from which
many successful members belong to what is called model-based/driven design/-
engineering/development approach. Though such terms represent slightly different
approaches, in this work they appear grouped and are referred from now on simply
as MBD.

The objective of this work is to contribute towards satisfying such needs. Looking at
the available solutions it is possible to learn more about how to improve supporting
design activities. A good starting survey is provided by the INCOSE [89]. MBD
proposes approaching design problems by modeling the design problem and/or
solution using an implementation-independent language that can be automatically
transformed into a formal description of the implementation. This approach offers
many advantages ([72], [73], [97]), which mainly include facilitating to ensure
consistency and completeness during design. However, on a closer look to the
available academic and practical implementations ([77], [78], [96]), MBD is mainly
used by a few of the best development companies within specific domains (e.g.,
software development) or within a specific sector (e.g., automotive), using what has
been called the domain-specific languages [77] (DSL). Modeling with DSL raises
the level of abstraction while at the same time narrows the design space [77]. As it is
currently implemented, the use of MBD delivers some its advantages within specific
domains but does not concurrently reach the design activities because the work of
stakeholders does not become truly integrated. Therefore, it is argued here that more

 2

generic languages that enable fully implementing MBD are still in their infancy.
This argument is one of the core points which justify the proposals of this thesis.

A more generic implementation of MBD requires considering the need to maintain a
connection among many design processes to achieve efficient collaboration. To this
end, the challenge of supporting (and automating) control design tasks is analyzed
from a novel viewpoint: the definition and use of a high-level model containing
generic design information from which control information can be extracted and
subsequently analyzed. When required, the results of such analysis should be fed
back to the generic model. Here this is called an ‘architecture-centric approach’ to
design of control. It must be highlighted that the goal is that such generic model
remains useful for all design stakeholders, and not to make it a domain-specific
language for control design. One contribution of this thesis lies in defining desirable
characteristics of the language used to build such generic models, while another
contribution is the proposal of a specific modeling language presenting such
characteristics.

Regarding terminology in this work, ‘design stakeholders’ (or simply stakeholders)
makes reference to the actors involved in a development process, such as designers,
engineers, managers, and even their working tools. Considering the great span of
literature related to system design and architecture, basic definitions for some
stakeholders and their roles are provided at this point with the help of Figure 2. As
shown in the figure, the stakeholders are responsible of creating and/or maintaining
system descriptions (models) at different levels of detail and use them for managing
their own efforts or the work of other stakeholders, and to deliver results from such
models to other concerning stakeholders. In practice these titles are not fixed, and
terms like system architect or system engineer are used in this thesis to refer to
stakeholders working mainly with system descriptions with small number of details
or pertaining to overviews, while terms like domain specialist or designer are used to
talk about stakeholders dealing with detailed descriptions which normally are
handled by members within a specific domain of expertise.

System architects

Domain specialists

N
u

m
be

r
of

 d
et

ai
ls

 in
 s

ys
te

m
 d

es
cr

ip
ti

on

100

101

102

103

104

105

106

Figure 2. Relation of some stakeholders to detail in system descriptions

 3

Besides the small analysis regarding the current state of MBD practices, the
previous discussion touches three different aspects which this thesis addresses:

 There is a need to improve collaboration in current development practices.
 A generic model can help improving collaboration among stakeholders.
 There is much room for improving support of controller design activities.

The next section contains an overview of the chapters in this book, followed by
other three sections which provide additional background on the three aspects
mentioned above.

1.1 Structure of this thesis

This book compiles most of the work documented by the author during the research
period to obtain his doctor degree, adding the line of thought which unites the whole
produce coherently. The rest of the book is divided into two parts: Part I is
composed of chapters 2 to 4 and explains the architecture-centric design approach
and supporting material, while Part II applies the proposals on control design,
spanning over chapters 5 through 7. Next the main topics of each chapter are
introduced, including the references to the works on which they are based.

Chapter 2 ([3], [6]) documents the initial efforts to gather information on approaches
describing “high-level” models and methods which could be used as input for
controller design support and automation, and also provides insight on the
challenges related with such approaches and their use in product development. The
core of the proposals addressing such challenges is presented in Chapter 3 ([3], [7],
[11]). Then, Chapter 4 ([4], [5], [7], [11]) presents case studies which led to the
proposed approach, followed by different case studies where the proposed approach
was used. Given the nature of the case studies, the discussions around them provide
intuitive justifications and support to the proposals, rather than statistical or
measurable usage data.

In Chapter 5 ([9], [10], [11]) the reader will find an overview of the controller
design process and a proposal for controller design based on MBD supported by the
architecture-centric approach presented in this thesis. Chapters 6 ([8], [10]) and 7 [9]
provide more detail on the transformations and tasks involved in the design proposal,
respectively for regulatory and supervisory control.

The Discussion chapter highlights the contributions of this thesis as well as the
limitations of the proposals, and presents possible future research directions. The
book ends with a Conclusions chapter.

1.2 Information and collaboration in product development

As stated by Bishop [21], in the context of mechatronic design, communication
between all the stakeholders and transparency of the design decisions in the various
domains are essential for success. In the same work, Bishop also voices the need for
models of systems that allow preserving the dominant parameters while at the same

 4

time provide an interface to the (control) design and simulation tools that engineers
use. Such needs have not been fully satisfied yet [107].

Why is it necessary to provide more support to the information exchange during
design? Is this really a problem in modern industry? Existing benchmark reports on
industrial practices ([28], [92]) partially address these questions. This section
summarizes some ideas of a recent study on information exchange through email
communications performed by Wasiak et al [188], providing an overview on the
process of information exchange during engineering product development. Email
data is the center of that work because it has been identified as one of the most
widely used information sharing tools in companies. The study categorizes the type
of topics in the exchanged information (“what”), the purpose of exchange (“why”),
and the way in which the information is conveyed (“how”). Several conclusions
giving an insight on the overall situation of design practices are presented, though
not claimed to be generalizable:

 The purpose of 70-80% of the analyzed communications is to passively distribute
information.
 Apart from the company-related communications (regarding methodologies,

customers, etc), approximately 60-70% of the analyzed emails between engineers
and engineering managers are product rather than project-related.
 Engineering design is an information intensive activity and therefore heavily

dependent on the ability of engineers to access a good amount of accurate and up-
to date information.
 There are many difficulties in searching and using data from emails (and other

textual sources).

Another important aspect related to information exchange during design, is
information reuse. Reusing information is related to finding ways to “package it” in
a container that allows storing, retrieving, and transferring the design information
efficiently.

With respect to collaboration, some goals compiled by Whitehead [190] are recalled
next: Establish scope and required capabilities, converge design towards an
architecture, manage dependencies and reduce them if possible, identify, document
and fix errors, and create organizational memory. It is possible to see that
information exchange relates to all these goals.

Considering that much design information is transferred/discussed through
(semi)informal mechanisms, it can be conclude at this point that it is poorly
documented and reuse is not formally supported.

1.3 A generic model and the model interpretation problem

The desire to have a generic model useful to all stakeholders is justified by the fact
that the mechatronic nature of a system implies that people representing different
disciplines are necessary to design such systems. Even at the early stages when the

 5

idea of a new system is just being conceived, specialists from each discipline
interact with other specialists to provide new information and refine the current
design. In current design practices, most of these interactions are carried out through
informal communication channels and, when documented, exchange the information
using either domain-specific models which are hardly understood for non-specialists
(e.g., block diagram, 3D model), or generic representations which do not facilitate
reusing the involved design information (text documents, emails, calculus sheets,
etc.). A domain-specific model (DSM) is one that is commonly used by a group of
specialists in a certain domain. A domain corresponds to a common work, scientific,
or education field, such as automotive, chemistry, or mechanical engineering.

Spring?

Spring?

Clutch?

Resistor?

Coil?

Capacitor?

Figure 3. Different interpretation of modeling objects by two different domain specialists

To further explain why correct interpretation of domain-specific models by people
outside each domain can be so difficult to achieve, the “model interpretation
problem” is introduced: Model interpretation is relative to the knowledge of the
observer! A clear and simple example is depicted in Figure 3, where three symbols
used by mechanical engineers to represent mechanisms coincide with symbols used
by electrical engineers to represent electric circuits. A less evident example can be
taken from geometric (e.g., 3D) model interpretation: where a well trained
mechanical engineer may see assembly directions, structural members, possible
manufacturing methods, and functional surfaces, a non-specialist may not identify
more than a couple of sub-systems and the rough volume of the objects if a proper
reference is provided.

The previous discussion can lead to the question: is there a modeling language that
can be interpreted independently from domain knowledge? This thesis contributes
by identifying generic language primitives that can help overcoming that challenge,
and exemplifies the use of such primitives in a prototype language: the Architecture
Model (AM). The AM language provides a shared format for the exchange of design
information. Recurring concepts in the proposal include the use of product
“functionality” to support modeling and integration of dissimilar information and
“parameters” to support information exchange. The AM has been used as
intermediate or input model in the demonstrative use cases appearing in this thesis.

 6

Following the MBD line of reasoning, the AM proposal can be considered as a DSL
corresponding to the system architecture domain. However, it is argued in this thesis
that system architecture is generic enough to be understood and modeled by all
stakeholders through their individual contributions. As the reader will see in the
description of the AM in Chapter 3, this point is justified by the definition of system
architecture model embraced in this work: system architecture is modeled by the
aggregation of views corresponding to the interests coming from different
stakeholders.

1.4 Supporting controller design

Throughout the book the case of controller design is studied often, though contents
and conclusions in Part I are generally applicable to design. In part, this is justified
because the control design case provides representative examples of many of the
characteristics and problems present in general for current design practices, as
control design process entails intensive interaction among design disciplines and is
inherently multidisciplinary [94]. The choice also seeks to address part of a current
problem in the mechatronic industry: design is not carried out in a concurrent way to
exploit the synergy among domain experts and many problems are detected late and
forcefully solved in the control software domain at an advanced development stage.
These practices compromise the quality of the resulting software and the product.
Additionally, MBD methods stimulate designers to formalize models for their
specific domains but do not help specifying a common factor among the models
which facilitates use across disciplines, besides a common product or company
ontology.

As many other design tasks, designing a controller is not straightforward and, in a
general sense, lacks much formalization before quantitative “plant” models are made
available. Also, looking at current industrial practices, some may wrongfully
conclude that controller (software) development is an almost isolated design task
corresponding to later stages of design. However, controller design is intimately
related to other design activities, mainly because of the multiple interactions that
control systems must have in order to estimate and influence the status (or state) of
the system at any given moment. The controller is another system component for
which many design tradeoffs related to other components have to be considered in
order to obtain a well integrated and synergistic system.

It must be highlighted that, though “controller design” covers a very wide spectrum
of methods, design stages, and applications, in this book the term is primarily
intended to represent controller software architecture design unless specified
otherwise. Thus, there is almost no material in this thesis which specifically
addresses topics like development of other software (e.g., user interface), analog
control, control tuning, control type selection, etc.

 7

By applying the proposed architecture-centric approach, results from the second part
of this thesis demonstrate how to empower the control engineer with a model that
can:

 Facilitate him gathering the information from multiple sources to do his job.
 Allow exposing his concerns so he can influence designs to be performed by

experts of other disciplines.

From a more technical point of view, Part II deals with analyzing the controller
design process regarding two of its main tasks: regulation and supervision.
Regulation refers to the task of maintaining parts of the system under specific
reference conditions, also understood as modes or states. In turn, these conditions
can be characterized by the values of representative variables or parameters, which
are used to define the reference and to assess system performance. Supervision
refers to the task of switching among the different modes to ensure that a process
runs as designed.

PART I. ARCHITECTURE-CENTRIC DESIGN AND
SUPPORTING MODELING LANGUAGE

 11

2 Challenges in Complex Product Development
Processes

This chapter defines and explores key aspects of complex product development.
More specifically contains an analysis of the development of mechatronic systems,
which involve an increased complexity due to the need to tightly and synergistically
integrate their components, as well as the people who design them ([126], [172],
[187]). Therefore, such integration needs to extend to the development processes.
This leads to find a series of challenges in current product development practices
and in how MBD is used. Analysis of the challenges sheds some light on how to
support development processes through a full implementation of a MBD
development approach. The challenges share common grounds regarding
information integration and sharing. After revising current attempts to address the
pinpointed challenges, it is mainly concluded that:

 Methods based on higher abstraction levels play an important role, but that their
implementation is an issue.
 Multidisciplinary design optimization and verification of both hardware and

software require suitable modeling paradigms and tool support.

With these findings in mind, the ground is set to propose the outline of an integrated
design support framework for mechatronic systems later in Chapter 3.

The first section presents an overview of design practices for mechatronic systems.
Then, the challenges related to many pervasive problems in current development
practices are presented in Section 2.2, followed by a review of approaches that seek
overcoming those challenges in Section 2.3. The chapter finalizes with some
conclusions.

2.1 Mechatronic systems and their control

First, it is convenient to establish some common ground about mechatronic systems,
mentioning some distinctive aspects and problems related to their design and control.

A definition for mechatronic systems that shares some of the most common aspects
from the different definitions that can be found in literature ([13], [17], [54], [197],
[202]) is: A mechatronic system is one that contains a synergic integration of
applied principles from mechanics, electronics, and information technology,
considering the driving phenomena, requirements, and constraints. Usually the
electronic and software parts of the system are responsible of the information
handling and the control of the system.

12

2.1.1 Particularities in the design of mechatronic systems

With the previous definition in mind it can be said that, ideally, when designing a
mechatronic system the possible interactions among disciplines must be considered
at all stages. This allows obtaining a design that integrates synergistically the
involved domains and subsystems. In fact, the concept of mechatronics shares much
with the concurrent engineering approach of product development ([30], [74], [151]).

Nowadays, there are still situations where the design of mechatronic systems is
carried in an independent manner for each involved domain ([105], [198]), at best,
only maintaining in common the requirements specified at the conceptual stage.
Then the resulting parts are assembled forming a consistent unit. Some times it is
wrongfully assumed that the design is integral or concurrent because design
activities are performed parallelly in time. Though this is a valid design approach, it
is worth mentioning some related problems:

 Separate subsystems are designed considering only the intended interfacing
between them, thus neglecting other unintended forms of interaction. Unintended
interactions are hard to detect when viewing a problem from the point of view of a
single domain.
 As the full set of relevant forms in which subsystems interact may not be

identified, subsystem changes considered independent might lead to malfunction
of the system as a whole because their impact is not appropriately evaluated.
 True global performance of the system cannot be properly optimized because it is

not considered when performing a separate design for each domain.
 Because the designers cannot keep track of the needs of other designers, it is

common to search solutions within the primary domain in use when problems
arise in the middle of the design of one of the subsystems. In that way, better
solutions that may come from other domains are disregarded.
 Design of the controller does not receive enough attention in the conceptual

stages, leaving the solution of problems that presumably can be handled by the
controller for later design stages. This can increase the number of design iterations
and the development time.

Complexity also plays a role in difficulting an integrated and coordinated
development process because it makes it more difficult to understand. There are
several reasons that explain complexity in this context ([13], [17], [54], [197]):

 The multidisciplinary nature of mechatronic systems requires careful
consideration of interactions coming from integrating subsystems.
 The modern tendency to seek flexibility (as multiple function achievement and as

adaptability) in mechatronic products. A flexible mechatronic product is more
complex than one that performs less functions or that only works in a very
restricted environment.
 The sheer “size” of the mechatronic product design. Even mechatronic products

that do not contain many mechanical components possess some form of

 13

interfacing (system and user interfacing) and control that requires detailed models
and specifications for software and electronics.

2.1.2 Highlights about controller design in mechatronic systems

Control constitutes a significant part of the design of mechatronic systems ([13],
[17]). A proper choice of the control architecture (cf. Chapter 5) in a system is not
only critical to guarantee that the necessary system variables are controlled [197],
but also effectively influences the development efficiency and the performance of
the mechatronic system.

As mentioned before, quite often the controller design is not considered carefully in
the conceptual stage of product development. An example of this is given in [198],
where the authors comment on the consequences of disregarding controller design in
the conceptual phase: “The common approach for the machine tool design would (…)
come up with a very stiff structure, and then move on ahead for a prototype machine
tool manufacturing for servo tuning. This process can be very expensive when the
servo controller does not match well with the prototype system. It gets even worse
when developing high precision machine systems.” This is a clear example of how
the solution space can be restricted to one domain. In the example, the problem was
considered to be solved with the mechanical design, and only tests on the prototype
showed that the conceived controller could not perform properly in this design when
the problem could not be managed by the controller alone. If considered from the
beginning, in numerous cases the controller can compensate imperfections of
subsystems from other domains, thus allowing to decrease manufacturing costs [13],
including those of prototyping.

2.2 Challenges in mechatronic design

Both academic and industrial sources have reported on challenges related to the
design and development of mechatronic systems, such as:

 Exchange of design models and data ([147], [187]).
 Cooperative work and communication among the design engineers ([28], [111],

[131], [147], [187]).
 Multidisciplinary modeling ([31], [55], [118], [131], [191]).
 Simultaneous consideration of designs from different disciplines ([28], [31], [55],

[92], [191]).
 Early testing and verification ([28], [31], [55], [131]).
 Persistence of a sequential design process ([111], [187], [191]).
 Lack of tools and methods supporting multidisciplinary design ([28], [92], [187],

[191]).
 Support of the design of control software ([28], [118], [172]).

Examining these challenges, three core issues can be identified, which influence
many of the problems in the development of mechatronic systems. These challenges

14

relate to design integration, design verification, and generation of control software.
In the next subsections, these will be discussed in more detail.

2.2.1 Design integration

Figure 4 depicts a representation of the current mechatronic design process, where
spaces represent common gaps between the different design phases and the tools
used in the design. Design teams are often composed separately according to their
area of expertise and often work at different locations. The integration phase is
postponed until the moment when physical prototypes are available. These points
are elaborated in Section 2.3.

Physical
prototypes / tests

Prototyping

Product
definition

Conceptual
design

Documents.
Requirement tools.

Single domain tools
/ verification

Mechanical
design

Electronic
design

Control software
design

Systems
integration

Design phase GapsUsed tools

Figure 4. Common current design practice phases and tools

Integration has been directly identified as an important research direction and a key
element in the design of mechatronic systems by industry [131] and by authors like
Craig [55], Schöner [147], and Wikander [191]. Tomizuka [172] and Wang et al.
[187] identify the importance of aspects closely related to integration, such as
cooperative work of designers, data sharing, knowledge management, design project
management, and simultaneous design in different domains (e.g., design of the
control algorithm and of the system to be controlled). A recent report on industrial
practices [28] shows that the leading mechatronic product manufacturers opt for
integration oriented towards management of specialist designers and tools that
support such an approach, rather than using tools that encompass all detailed design
aspects. The desired tools, as identified by these manufacturers, should handle
information at the system level and track requirements and design changes to
efficiently support integration of design activities, thus approaching MBD. Apart
from the need for tools, it is also necessary to consider the design methods these
tools support.

Appropriate methods and tools to support design integration are required, both in the
conceptual phase as well as in the detailed design phase, as has been identified by
academia [187] and by the engineering community ([111], [131], [148]). The role of
the human actors is also important, as communication of ideas and information

 15

between designers from different domains is necessary ([28], [55]). These three
factors (i.e., methods, tools, and human role) will be discussed in the next
subsections.

2.2.1.1 Design methods

Despite many research contributions aimed at providing a theoretical framework for
the design process, this goal has not been achieved yet [22]. As depicted in Figure 4,
design activities might be separated in the sense that parts of the design might
depend on data provided by other parts (e.g., the design of a controller may require
knowledge of certain physical characteristics of the system). Traditional methods in
engineering design broadly exhibit either a sequential or a concurrent flow of
activities.

As reported by Wang et al. [187], sequential design has proven to be unsuitable
because of its lack of flexibility, which increases design cost and development time.
This perception is supported by engineers in industry [111]. Rzevski [143]
recommends stepping out of the conventional end-to-end (i.e., sequential) design
process in favor of a concurrent approach to deal with design of mechatronic
systems.

The core of traditional concurrent engineering approaches (see e.g., [151]) is to
consider all phases of the life cycle of the product as early as possible in the design
in order to deal with issues related to later life-cycle phases, such as production and
disposal [108]. But even traditional concurrent approaches have proven to be limited
when dealing with complex design situations, in the sense that strong
interdependencies might have unpredicted effects on the overall performance [191].
As mentioned by Wikander et al. [191] and Rzevski [143], a typical approach for the
design of mechatronic systems is to build the system by assembling single-domain
subsystems and by paying special attention to the design of interfaces among them.
Wikander et al. remark that such traditional methods can merely achieve a sound
integration of the components (i.e., “something that works”), but not a synergetic
integration. Therefore, research on mechatronics should also focus on the
interactions of the different engineering disciplines [191] rather than only on the
interactions between the subsystems that are being designed.

Dealing concurrently with the interactions of designers and of their designs is of
paramount importance for the early detection of problems in product development.

2.2.1.2 Design tools

Recent reports on industrial practices confirm the use of different tools to manage
design data, and state that the lack of tools that allow integration and shared use of
such data is one of the main challenges in mechatronic product development ([28],
[92]). As illustrated in Figure 4, a current tendency is that designers from different
design domains rely on specialized tools. Similar to Wang et al. [187], a tool is

16

considered as domain-specific if it supports the design in a single domain, e.g.,
SolidWorks supports mechanical design and OrCad supports electrical design.
Furthermore, there are not many specialized tools that support the first stages of
design and that also extend efficiently to the subsequent stages, although this limited
reach is probably due to misuse of the existing tools. Examples of such tools are
requirement management tools like Rational DOORS, and the tools which support
approaches to capture requirements like Quality Function Deployment (QFD) [135]
or Integration DEFinition for function modeling (IDEF0) [120].

Mono-domain tools perform well within their own domains, but their specialization
often makes it difficult to consider information from other domains. The tools used
in the control design domain in general prove to be more flexible as they use
mathematical models as modeling primitives, e.g., in the form of block diagrams or
bond graphs [95]. Additional insights on tool integration can be found in the works
of Cutkosky et al. [56] and Dolk et al. [63]. The varied nature of the different design
tools interferes with a direct integration (i.e., direct mapping of the modeled objects)
using a single tool or design environment. Examples that illustrate such variety are:

 In mechanical design, dimensions, shapes, and materials that correspond to the
physical objects are the main interest. Thus, representing abstract concepts and
grouping parts according to other criteria than physical proximity become
problematic.
 In the design of controllers, the physical system, also referred as the plant, is often

abstracted to a black box model. From such point of view it is difficult to find the
explicit connection between the behavior and its physical causes.
 Electronics deals with the physical implementation of the control. The software

packages for electronic design support predictions of behavior and execution time
through logical and physical simulations.
 Electric engineering commonly designs “bridge” objects from electronic and

mechanical domains, and tools related to it focus on the connectivity of
components and the communication among them.
 Requirement management and capture tools focus on representing textual

requirements information. The link to other design domains is mainly made
through document referring, and it is the job of the user to (informally) connect
such documents with the current design data.

Realizing that most of the design activity in industry is performed using separate
modeling tools, one aim is to produce a framework for containing a complete model
of the system and provide a mechanism of information exchange between modeling
tools ([167], [170]). The authors of [62] comment that: “Another area of integration
that is becoming increasingly important (…) for all applications is software
integration. The ability to link word processors, spreadsheets, databases, and
graphics packages in a seamless fashion enhances the feasibility of modeling
environments which can support paradigm integration.” In this way, designers can
continue using the available specialized modeling tools (which are highly efficient

 17

in their own areas), but at the same time will have the support of a framework to aid
them to gather updated information on other systems, export updated data from their
work, and view the existing design at different levels of detail [56]. It must also be
considered that normally, detailed information is understood properly just by the
experts on a specific field, and that simulating a model that contains such detailed
information requires large amounts of computational power.

Figure 5. Mathematic (a) and graphic (b) models of an electric circuit

(example taken from http://www.math.ucdavis.edu)

Challenges on tool integration are thus strongly related to the models the tools allow
to build them (see Section 1.3). Models are crucial to support, communicate, and
document the design activities. Model types and modeling tools used in design are
mainly idiosyncratic (e.g., Figure 5), and depend on the desired aspects of the
system to be represented (or simulated) and the level of detail to be specified. Other
source of complexity that complicates modeling is the interaction of phenomena
from different domains in the system. The existence of these interactions forces the
designers to “couple” models made in tools that, frequently and in the first place,
may not be designed to be compatible with each other. As a result, the coupling is
performed, so to say, “manually” by the designers. The aforementioned problems
associated with complex systems reduce the efficiency of classical models in terms
of implementation feasibility and undermine one of the main goals of models: assist
humans to understand the knowledge contained in the models. Other models and
tools are necessary to overcome these limitations and obtain models that support
effectively an integrated design approach.

2.2.1.3 Human factors

In part, the integration problem can be traced back to the early phases of design of a
system in which its architecture is defined. In the conceptual design phase, the
designers choose the solution principles, decomposition, interfaces, and design
process planning that will guide the detailed design phases and the way in which

18

designers will cooperate [143]. The selection of an architecture influences the choice
of detailed solutions and the integration of those solutions in a rather straightforward
manner; e.g., actuating an axis of a machine tool with a linear motor or with a
precision ball screw completely changes the configuration of the machine at both the
hardware and the software level, and therefore, different groups of specialists will
need to interact in each case.

Human communication and cooperation are additional factors that affect design
integration. One issue is to communicate the goals and requirements of the design
and how they relate to the chosen solution, and to assign responsibilities for such
requirements. In order to enable monitoring the requirements throughout the design
process it must be possible to decompose the requirements and to make budgets of
resources for them, down to the interfaces of the individual designers. Another issue
is to inform the designers on how their part of the solution in the design affects other
parts. Individual designers make choices that can inadvertently affect the system as a
whole. The design should therefore be tested for consistency and validity throughout
the design process.

Both issues strongly relate to the fact that there are currently few methods and tools
that support systems engineering and architecting activities and that capture the
information produced in these activities in order to facilitate the exchange of
information between designers.

2.2.2 Lack of interdisciplinary verification

Verification is a necessary activity for quality assurance in wich it is evaluated
wether the developed product complies with the desired specifications defined at the
first stages of design (not to be confused with validation, which relates more to
capturing the right requirements). The four classical verification methods are
demonstration, test, inspection, and analysis [108]. Of these, the first three require
physical prototypes to be developed, while the latter is based on a (usually
mathematical) representation of the system, also known as a model. Developing
appropriate models for analysis and a platform to verify various aspects of the
system, including control software, represents a challenge. In practice, specific
models are developed to perform tests at different stages of the design. Due to the
use of domain-specific modeling tools, such models usually correspond to a specific
point of view on the system, like either the electrical or mechanical aspects, or
continuous dynamics and discrete, sequential behavior [92]. With the expected
synergetic effects that characterize mechatronic systems, these separate views
cannot capture the overall system behavior. Even more, the analysis of changing
operation modes, defined in terms of state machines, requires reconfigurable multi-
domain models, which are often not supported.

Schemes of co-simulation and model sharing incorporate data generated in other
domain-specific analysis tools into control design models, for example, as
implemented in the de-facto industry standard [137] Matlab/Simulink. However,

 19

often these dynamic models can be considered as an input/output box in the form of
a transfer function, and the explicit relation with the original design input is lost. On
the other hand, control and hardware co-simulations also require coordination
among different specialists, and as discussed in Section 2.2.1.3, many challenges
remain in that area.

For these reasons, verification and testing of control software still relies heavily on
the use of hardware prototypes or breadboards, requiring considerable investment in
terms of time and money [92]. In a way, complete system prototypes allow a
concurrent, multidisciplinary verification that can reduce overall development time.
On the other hand, besides their cost, the use of prototypes becomes less viable as
their detailed design has to be relatively well specified for their construction. An
approach typically used in the aerospace industry is the ‘Iron Bird’ concept, in
which a combination of part of the final hardware and software is used to test and
verify the behavior of on-board systems, such as the electrical and hydraulic
actuation devices. In this way, system verification does not require building a fully
operational system, but it still requires significant investment and the detailing of
portions of the design.

2.2.3 Lack of automation in control software design

In practice, the control system development effort is around 20% to 40% of the total
software development effort [83] . Modern Computer Aided Control System Design
and Computer Aided Control Engineering tools (CACE is used to refer in general to
both) such as Matlab/Simulink or dSPACE, and software development tools such as
Rational Rose provide means to translate control algorithms, in the form of block
diagrams and state transition diagrams, to machine-executable code. These code
generators eradicate human coding errors, increase reliability and reusability, and
reduce development time and effort. Nonetheless, a major part of the control system
design is spent obtaining “working” formal models like block diagrams and the
values for the parameters that configure each block. The aforementioned tools only
help to transform those formal descriptions into control code.

Generating code from a model (e.g., a block diagram or a description in the Unified
Modeling Language (UML) [124]) of the structure and logic of the software system
is part of what is known as MBD for software. Only some of the top-level
companies that design mechatronic systems take this approach and it is not a
common practice [28]. In such cases, the primitives used for building such models
usually represent objects clearly defined for certain specialists. To obtain a more
transparent model that aids integration, it is desirable that the objects used in the
model are familiar to the parties involved in the control design, which transcend the
control engineers.

To arrive at a formal description that can be transformed into code, the designer
must define a control structure (I/O groups) and strategy (controller type), and think
about the implementation of functions for the measurement and filtering of system

20

signals and for the application of the control outputs to the system (cf. Chapter 5).
Once the structure and strategy are chosen, design rules and optimization routines
can be applied to determine the controller parameters, provided that the
requirements are given in a suitable form. Often, however, these requirements have
to be derived by the experts first, as system requirements specifications are not
defined in control terms from the beginning. There is still much to be gained by
supporting and automating the control design tasks in the early stages of design.
These topics are also treated with more dept in Chapter 5.

2.3 Review of available approaches

Both academia and industry have come up with methods and tools to deal with the
challenges identified above. This section discusses a selection of these methods and
tools, grouping them in the same way as in the previous section.

2.3.1 Design integration

2.3.1.1 Design methods

Various methods consider the modeling of functions, requirements, and other
information that is usually defined at the conceptual stage of the design.
Documenting such information helps the designer to maintain an overview of the
system and to keep track of the evolution of the design. Multiple authors have
proposed models that contain functional descriptions of systems, like Function-
Behavior-State (FBS) [176], Functional Representation [41], Schemebuilder [29],
and MACE [87], to guide and improve choices made in the first phases of product
design. These models represent knowledge about the functions of the system,
complemented with information about how the function is accomplished and which
objects, both hardware and software, are involved. For example, some functional
modeling approaches complement this information with qualitative (e.g., Qualitative
Process Theory and Qualitative SIMulator [18]) or quantitative (e.g., differential
equations, bond graphs) data. Example applications are mentioned by Erden et al.
[65]. The FBS methodology has been implemented in the software framework KIEF
[171] to integrate tools from various domains and to facilitate the transfer of
information, as will be discussed in Section 2.3.1.2. Other approaches use functional
flow and block diagrams, and they model functions as transformation stages of
matter, energy, or information ([67], [120], [126], [154], [196]). The IDEF0 method
[120] offers a formalization for functional flow diagrams and various IDEF
languages [98] model details of the system that could be connected more directly
than the functions to other domain-specific models, but they do not provide a clear
connection between the different IDEF models. The functions and key drivers
method (FunKey) [24] proposes allocating budgets of resources to the functions of a
system. In this way, FunKey pursues its goal of documenting the architecting
process and of providing a means to compare product architectures.

 21

The implementation of these methods is a challenge. As in the case of other theories
related with design, either the approaches are not implemented in a tool, or the
developed tools are not part of common industrial practice [22]. Furthermore,
functional descriptions are mainly used to aid the designer in the identification of
related information, but not to classify or identify such information with the help of
an automated system. This stems from the fact that these abstract representations
have proven to be hard to formalize, and recent experiments [2] indicate that even
people have trouble using them in practice. Another important factor is that there is
not even a consensus for definitions and formalisms in the field of design research
([2], [22]). Additionally, requirements information is not included in most of these
methods. An exception is FunKey, which mainly focuses on the system budgeting
aspect. In particular, QFD specializes in capturing user requirements and connecting
them to characteristics of the system that can be used to measure the fulfillment of
those requirements.

Muller has proposed the Customer objectives, Application, Functional, Conceptual,
Realization model (CAFCR) to decompose the product architecture into the five
views its name indicates [117]. This allows for independently capturing the needs of
the customer, the functions the product performs, and the design of the product from
the conceptual and realization standpoints. Its main purpose is to provide
mechanisms to keep track of stakeholder concerns, like safety, usability or
performance, in order to maintain integrated goals throughout the whole design
process. The work of Muller mentions which relevant information should be
considered to obtain a proper description of the architecture of a product, and
suggests methods to capture such information. However, these methods are not
strongly linked to each other. The large variety and number of methods mentioned in
CAFCR brings more flexibility, but leaves to the systems architect or designer the,
sometimes difficult, task of choosing the most appropriate out of all the presented
methods.

The V-model [153] sets a general flow for the development process of a product. It
indicates that each stage of the product definition should be used to systematically
test the implementation as subsystems are integrated to arrive to the final product.
Different stages of development and testing are defined depending on the source, but
in general, requirements analysis, architecting, detailed design, and the
corresponding verification/validation stages are defined. The model provides a
structured base for the development process, but it is very general, and does not
provide details for its implementation; there are no tools to fully support it, and
companies have to carefully develop a (normally DSL-based) framework of tools to
model each definition phase and to put the test phases into practice. Though not
explicitly specified in the V-model references, analysis methods (cf. Section 2.2) are
crucial to support the definition stages and to obtain correct models that can be used
for verification. At this point it is worth mentioning that many other models with
similar scope exist and that discussing the advantages of each of them is not within

22

the scope of this work. As an example it is possible to refer to the spiral model [23],
which has similar goals as the V-model, but which considers several iterations using
prototypes to verify the design at one stage and to produce a base for the next one.

The axiomatic design method, presented by Suh [155] states that functional
independence of the system’s constituents leads to an optimal design. To attain this,
the method provides guidelines, namely, the axioms of independence and
information, to compare and evaluate early design choices. Suh and other authors
also report that the method has been applied successfully in multiple situations [155].
A crucial point from the axiomatic design method is the importance of linking high-
level information (functional requirements) to implementation specific information
(design parameters). On the other hand, modern mechatronic products implement an
increasing number of functionalities while maintaining constraints on space and
costs, and thus, a tight integration of the subsystems is desirable, which makes it
harder to obtain functional independence. This relates to the tradeofs between
considering modular or integrated architectures [175].

Capturing and integration of information is important to deal with the challenges
discussed here. The Knowledge and Information Management project [113] has
proposed principles that describe the characteristics of engineering information that
should be captured and kept for reuse.

This section has shown how several methods deal with one or more aspects related
to integration, but there are implementation issues and gaps exist between early
design phases and the detailed design phases.

2.3.1.2 Tool integration

According to Citherlet [47], there are four different approaches to multidisciplinary
tool integration: stand-alone, interoperable, coupled or linked, and integrated
programs. The first one is the least desirable, as the tools are unrelated and
communication is not possible. Interoperable programs provide means to exchange
or share models. Towards these goals, additional frameworks have been developed
to streamline or automate the model exchange. This second approach will be treated
in more detail later on in this section. Coupled or linked tools can communicate at
run-time. Due to the flexibility of their modeling primitives (cf. Section 2.2.1.2)
some tools used in the control design domain have taken the second or third
approach. Finally, integrated programs facilitate work in different domains within a
single tool. Vendors, especially those of mechanics CAD tools, have used this
approach integrating tools from other domains into their software suites. As an
example, CATIA V4 also supports electronics, systems and control modeling, and
incorporates embedded control code generation for the latter. Though the existing
coupled and integrated programs provide a way of predicting the behavior of a
system, they specialize in running models used in detail design and lack a direct
connection with information from earlier phases of the design process (e.g., goals,
functions). Efforts to incorporate such information are being made in newer versions.

 23

Within the interoperable integration approaches, the pluggable metamodel
mechanism implemented in KIEF [199] and the framework of the Virtual Reality
Ship (VRS) systems project [185] can be mentioned. The VRS project reference
indicates that several tools used in the European ship building industry, including a
physical testing platform, have been integrated, but unfortunately no details of how
this is done could be extracted from the available material.

The core of KIEF is a knowledge base in which objects from different modeling
tools are mapped to each other using “physical phenomena” as connecting points
([171], [200]), in what is known as the process-centered approach [65]. This
knowledge base also contains information about modeling tools to support their
integration into the framework. A metamodel of the system is built according to the
ontology underlying the knowledge base and KIEF manages the data transfer and
consistency between the domain specific modelers. An ontology can be defined as a
formal representation of a set of concepts within a domain and the relationships
between those concepts, and as such can define a language for communication
between domains.

The software suite CORE [183] offers integration through a model-based systems
engineering approach. The tool allows making models to capture requirements,
modeling function decomposition and flows, and mapping them to models of system
components and their interfaces. It implements a concurrent design process called
‘the onion model’ [43] to validate the product definition stages subsequently within
its models. For comparison, it is highlighted that such a tool can support a good
portion of the ‘left arm’ of product specification of the V-model (see Section
2.3.1.1), but lacks a direct link to the models and tools used in the detailed design
and the subsequent testing phases (verification). Nonetheless, the models provided
by this tool can be related manually by the designer, outside the CORE tool, at the
level of components.

Although the approach in the CORE and KIEF methods is different, both rely on a
product model based on components to integrate multiple views on the system. The
models from the CORE tool can also be manually integrated to other design
information at the component level. This originates in the fact that most parameters
and data are directly related to these components. The object-oriented properties
ensure that components sharing parameters or data can be easily grouped into a new
composite component. The component-oriented approach may be intuitive and fast
at the moment of building models, but each modeling object can only be used in a
specific situation. For example, a “gear pair” component used in a transmission must
be defined in a completely different way than a gear pair used to grind material. A
process-oriented approach can help to deal with these kinds of situations, by
separating behavior and modeling primitives. The metamodel in KIEF uses such an
approach, relating all concepts of the system through their attributes to phenomena
and laws, giving more applicability to each modeling object (cf. Figure 6).

24

Figure 6. Metamodel mechanism in KIEF [28]

A component-oriented approach that also corresponds to interoperable integration is
proposed by Peak et al. ([129], [130]). A framework based on the Systems Modeling
Language (SysML) [123] is used to integrate information from different tools (e.g.,
CATIA, Ansys, Matlab/Simulink). Using a combination of SysML and the
Composable Object (COB) [128] paradigm it is shown how to represent knowledge
about a system and to link such knowledge to tools that can use it to build other
models. COBs combine the structural and behavioral descriptions of a system. In
this object-oriented approach the models can be built in such a way that they are
both human- and machine-readable. COBs also form a basis for the integration of
different views on a system, as shown by Peak [129].

In support of multidisciplinary design and optimization a framework called a Design
and Engineering Engine (DEE) has been developed by La Rocca [102]. Relying on a
knowledge-based engineering platform, a DEE is a domain-independent tool
suitable for the design of a variety of systems from multiple domains. The core of a
DEE is the ‘Multi-Model Generator’ (MMG), which is responsible for the
instantiation of a product model built from a set of parametric, object-oriented
modeling primitives. Furthermore, the MMG processes the product model to
generate input for domain specific analysis tools, which are responsible for the
evaluation of one or several aspects of the design. In this way, aspects such as
aerodynamic performance and structural stiffness can be analyzed, all based on the
same product model. Data sharing between the various tools is enabled by using an
agent-based network [20].

 25

Recent interviews with mechatronic product development companies [92] reveal a
problem with the fact that different disciplines use separated design tools and data,
which hampers communication among them. The same interviews show that better
results can be achieved when using specialist engineers working in well-coordinated
groups rather than mixed groups with cross-disciplinary managers. Based on this, it
is possible to conclude that a promising approach is to provide different modeling
environments tailored to each domain, while integration is handled at the “back
side” of the tools as a communication support mechanism. The next section treats
efforts to overcome the communication issue in more detail.

2.3.1.3 Human factors

As argued in Section 2.2.1.3, it is important to consider human factors involved in
the design if one wants to achieve an integrated design approach. The
communication between the stakeholders is of special interest. Tomizuka [172]
mentions that effective communication with others is a necessary requirement for
the engineering practice, even more when considering that nowadays engineers must
work in teams in design mechatronic systems. Industry also recognizes the
importance of the communication among engineers ([111], [131]).

Pahl et al. [126] identify communication and exchange of information between
designers as one of the fundamental aspects of their systematic design approach that
relates to division of work and collaboration. They mention methods like
brainstorming and group evaluation to support the information exchange activities.
As Pahl et al. comment, these methods are especially helpful for the search of
solutions in the conceptual phase, and thus are focused towards that end in their
work. Unfortunately, such methods seem less appropriate for being extended to later
stages of design, because they have been conceived to deal with less detailed
information than the one required for such design phases.

Although the importance of communication among engineers and information
exchange has been widely recognized, to the best knowledge of the author, there are
no tools supporting the design activity while extensively considering these aspects,
e.g., integrating the individual work of the engineers using their own tools together
with an overview of the system and its goals.

2.3.2 Lack of interdisciplinary verification

As discussed in Section 2.2, in practice the use of domain-specific modeling tools
limits the design and the verification to a specific point of view on the system.
Finite-element models are used to verify strength and stiffness of the mechanical
design, CACE tools are used to develop and verify controllers, and data is
transferred from one tool/domain to the other when required. Following an analysis
method for verification plays an essential role in early multidisciplinary verification
of the design; the onion model discussed in Section 2.3.1.2 is an example of this.
Often, real multidisciplinary verification can only take place at late stages in the

26

design process, when hardware prototypes are available. In relation to controller
design, the use of hardware-in-the-loop and rapid control prototyping relies on these
hardware prototypes. Though this is common practice, the reliance on prototypes
makes this approach less suitable in a concurrent design environment. A goal of this
review is to find alternatives to the use of physical prototypes, also to avoid the other
disadvantages presented in Section 2.2.

The multi-domain dynamics models used in control design are often transfer
functions, modeled with block diagrams in tools as Matlab/Simulink. Two other
types of simulation models can be identified for this purpose: models of the first
type are based on 'physical modeling' methods, which rely on differential equations
and energy flows to describe the behavior of systems; models of the second type are
based on geometric modeling, either in combination with finite-element meshes and
solvers, or with multi-body dynamics solvers.

A drawback of the use of controller design tools to integrate multi-domain effects in
system design is that the user often focuses on the design of the controller for the
given model of the system. The ‘black-box’ nature of the plant models used supports
that statement. In order to shift from controller design to system design, physical
modeling languages like bond graphs [18], Modelica [165], and SimScape [164]
provide the user with graphical modeling elements representing physical
components from various domains, such as electrical motors, resistors, and
mechanical gears. The obtained system of differential equations is subsequently
solved by the supporting tool. These tools often also allow for the modeling of
signals and discrete events ([53], [64]). Due to the port-based approach, simplified
models which are used early on in the design process can be replaced with more
detailed models as the design matures, though restrictions arise from the nature and
number of ports.

The bond graph language from Karnopp et al. [95] has been promoted for the
modeling of mechatronic systems by authors like Van Amerongen ([12], [13]). The
bond graph tool 20-sim consists of a block modeler, a set of control analysis
methods, and a basic 3D modeler which can be used to link the block diagram
representation to a mechanical model. Ferretti et al. [69] state that mutual interaction
between domains, modular and object-oriented modeling, and reuse of modeling
components using libraries and customization are required for a modeling and
simulation tool for mechatronic systems. Their conclusion is that the combination of
the Modelica language and the tool Dymola satisfies most of these requirements.
There are various similar modeling and simulation tools available, both commercial
and academic. These tools include gPROMS [134], SABER [156], HyBrSim [115],
and Smile [160].

A disadvantage of these multi-physics modeling tools is that the model is based on
assumptions about the expected behavior, such that a significant (multi-domain)
experience is required to know which assumptions are valid. For example, thermal
effects can have a considerable influence on electronic components, but the designer

 27

needs to know the relative position of the heat source and the electronics to decide
whether or not to take this into account. The use of first-principle based simulations,
i.e., using finite-element analysis, is a way to (partially) circumvent this.

Simulation based on finite-element methods relies on 2D/3D CAD models. Various
commercial CAD tools are available nowadays, and their use is a well-established
industrial practice. Vendors of these tools often provide additional tool suites for
finite-element analysis, covering domains such as mechanics and thermodynamics.
Specialized multi-physics simulation tools, e.g., COMSOL, allow for simultaneous
analysis of phenomena from different domains. To prevent consistency problems,
often the geometry models developed in dedicated CAD tools are imported in the
specialized tools, instead of being developed only for this purpose [92].

Results from these various analysis tools can subsequently be used in models that
are used in the controller design, albeit via manual data transfer. The direct use of
finite-elements tools in combination with controller design tools for verification
purposes is computer-intensive and time-consuming, but might, however, in the long
term be faster and cheaper than physical prototype-based testing.

To prevent the manual transfer of data, Voskuijl [184] has used a combination of a
Simulink-based aircraft dynamics model and computational fluid dynamics analysis
for the design and optimization of a blended-wing body aircraft. Albeit custom-
developed, it shows that domain-specific analysis can be integrated in a multi-
domain analysis and optimization tool. The DEE concept discussed in Section
2.3.1.2 applies a similar approach, in which multidisciplinary analysis, optimization,
and verification are supported by an integration framework.

With respect to the verification of discrete, event-driven control algorithms, there
are various methods available, depending on the formalism in which the algorithm is
defined. These methods are used for checking the existence of dead-lock situations,
unreachable states and transitions that do not occur, among others. For realistic
model-based verification, the model of the system should reflect the changes in
operation mode, e.g., by reconfiguring the active actuators. More details are
discussed in Chapter 7. Also see MULTIFORM in the next section.

2.3.3 Lack of automation in control design

It must be stressed that in this work the automation of control software design covers
more than just the generation of control code out of a detailed control software
model, and extends to obtaining such model (cf. Section 2.2.3). There are various
commercial code generators available, both for Matlab/Simulink-like environments
and UML-based modeling tools. The Gene-Auto project has developed methods for
automatic model transformations, focusing on a “correct by construction” approach
[173], such that the code can be implemented on critical embedded systems in the
aerospace and automotive industry. By verifying the code generator itself, it can be
used without the need to verify the generated code. To integrate design formalisms

28

for continuous and discrete-event control, an integrated design notation is used in
both the PiCSi [92] and the Flexicon project [166]. Projects like MULTIFORM
[118] have also started providing capabilities of interoperation with different formal
descriptions and some supervisory control synthesis methods. UML [124] is used as
a common language, into which both Simulink models and Sequential Flow Charts
are transformed. From the combined control system, platform-independent Java
code can be generated. Again, the use of proven, domain-specific tools and methods
in combination with a translation to an integrated model is preferred above a new
and integrated "do it all" language. In contrast to this, the application of DSM
languages to raise the level of abstraction of control software design relies on
specific modeling elements. It removes the need to map elements to domain-
independent languages as UML before code generation can be applied and as such
decreases development time [96]. For DSM to work, however, the language and
code generation tools have to be developed by one or more domain experts.

In terms of automation of the control design much can be gained in the early phase
when requirements are translated into control structure and logic. Message Sequence
Charts and UML sequence diagrams can be used to specify required behavior, but
these specifications are considered to have a weak expressiveness [81]. Instead, Live
Sequence Charts have more expressive power. By formalizing communication
between actors over a timeline, live sequence charts provide means to automatically
derive control software logic and structure from them, e.g., in the form of UML. As
discussed in Section 2.2.3, the generation of code from the latter description is
possible, but not widely applied yet.

To get from requirements to control software, a method based on Requirements-
Based Programming is proposed by Rash et al. [138]. This method should increase
development productivity and the quality of the generated code by automatically
performing verification of the software, which is supported by an approach that
ensures that the application can be fully traced back to the initial requirements of the
system. A more direct link between (functional) requirements and software has been
achieved by the use of the Functional Block computer-aided design environment
[68]. The prototype tool can be used to design and analyze reusable high-level
control software components and to generate run-time code for distributed control
systems. The applicability of such a direct approach, where functions and software
code are directly linked, to continuous feedback control software is however not
straightforward, because of the strong dependency on the system properties.

Another approach that starts from high level specifications is presented by Sakao et
al [144]. The input specifications are modeled in FBS [176] using qualitative
descriptions. Qualitative reasoning techniques are used to derive a sequence of
activations from the actuators, and quantitative information can be added to the
resulting sequence. The method is only implemented for a specific case, but a patent
[177] shows aspects of the control sequence derivation that could be used in generic
cases.

 29

Partial automation of the control development process can be obtained by
instantiating pieces of pre-developed control code from databases linked to specific
system components, e.g., sensors or actuators. For example, this approach has been
implemented on a large scale by a company specialized in handling and transport
systems of goods [193]. In that company, around 80% of all the PLC controller code
in a system can be generated from component descriptions and associated code
elements. These code elements, stored in company-specific libraries, contain
routines to execute most of the low-level tasks for each type of component; e.g.,
start up, shut down, and emergency handling sequences for an electric motor.
Service functions and irregular situations have to be predicted by the engineers and
programmed manually. Integrating generated code with manually written or existing
library code reduces part of the advantages of automatic code generation in this case.

2.4 Conclusions

Development of mechatronic products brings new challenges for design because
modern mechatronic systems tend to be complex by nature. The design of such
systems requires the participation of experts from several domains that cooperate to
solve problems from the point of view of their specialties. Appropriate modeling and
design support tools are essential to deal with system complexity, and one
alternative for support is to accomplish modeling tool integration.

The design of integrated mechatronic systems requires a paradigm shift towards
concurrency and integration of design teams and work, paying special attention to
the early phases of design. To obtain tighter integration, the design of mechatronic
systems demands a holistic approach that considers interactions and interrelations
among design domains. Tools to support such an approach are necessary and, at the
moment, scarce. The use of domain-specific design methods and tools to develop an
integrated, multidisciplinary system has inherent drawbacks, related to multi-domain
modeling and the communication between designers and tools.

The identified challenges relate to the integration of tools, models, and human actors
in the design process, the lack of multidisciplinary verification, and the lack of
automation in control software development. The review shows that current methods
and tools attacking these challenges focus on specific points and that developed
implementations are rather scarce. Model and data sharing is a key issue to progress
towards an overall solution. Furthermore, formalization of concepts like architecture,
function descriptions, and requirements needs to be addressed to address their
representation.

Regarding the efforts to overcome the identified challenges, industry tends to focus
on tool-level integration, while academia focuses on underlying integration methods.
Methods proposed by academia seem hard to implement due to the abstract system
descriptions, but have a promising future. Also, proposals based on high level
representations (e.g., descriptions using functions) have an intrinsic potential to

30

manage model complexity and to support simple and efficient descriptions of system
behavior.

 31

3 Architecture-Centric Design

This chapter presents the proposals to address the challenges presented in Chapter 2:
an architecture-centric approach for design and the Architecture Model (AM)
language and tool implementation which support it. This proposal is also
accompanied by a method which helps creating an AM with the required
characteristics, where high-level information (i.e., functions) provides a backbone
for navigation and overview of design information, while parametric information
provides a means to integrate detailed design data. It will also be discussed how
these proposals contribute to achieve true MBD implementations.

As seen in Chapter 2, many problems originate at the conceptual design phase, e.g.,
conceptual solutions from different disciplines are not shared/understood because of
lack of flexible shared models, and tools and methods to support conceptual design
and information exchange at that level are rather scarce and still have to overcome
important shortcomings like the dissociation of information from different sources.
Then, what can be done to step towards cooperation and concurrency in design? The
hypothesis handled in this work is that representing design information lies at the
bottom of such issues, and that using the system architecture is a key stepping stone
for developing a common representation for the stakeholders. This hypothesis also
responds to the needs rising from the mechatronic industry ([28], [169]), more
specifically because of the predominance of (bulky and unstructured) textual
information and of models which are not easy to understand and transfer outside
their domain or specialty. Once a usable common representation is available,
integration can be supported effectively and the design processes can be improved.
In this context, integration in product development can be paralleled to achieving a
knowledge intensive design environment [168], which aims to allow the flexible
exchange and generation of knowledge. The language and tool implementations
presented here and the case studies discussed in the next chapter are used to gather
evidence that can help supporting these hypotheses.

As discussed in Chapter 2, the “V” development cycle [153] (depicted in Figure 7)
and other similar methods are intended to guide the design process systematically,
but not many tools support directly their usage. The proposal in this chapter aims to
use the system architecture to support such guiding methods by providing:

 A base to document the decomposition phase.
 A formalization to capture design interfaces necessary for the integration phase

and its analysis, including feedback of information and iterations.
 A mechanism to trace the effects of requirements on the designed

implementations, and vice versa for verification.

32

Figure 7. “V” development cycle. Verification follows the dashed lines.

Thus, in the case of supporting the “V” development, the model of the architecture
can support a process of integration following the horizontal lines in Figure 7
propagating decisions from left to right, in addition to providing a base document to
verifying correctness. An implicit premise behind the use of architectural
descriptions here is that the use of “high-level” descriptions can improve
multidisciplinary communication and integration. In an intuitive sense, this premise
is supported by the fact that high-level design decisions need to be documented with
high-level descriptions.

After this introduction, the chapter is structured as follows: Section 3.1 contains a
discussion introducing the seminal ideas behind our proposal to support the product
development processes. Then, Section 3.2 exposes the core concepts of the
architecture-centric design approach. The AM language and modeling tool are
presented in Section 3.3 as a possible implementation behind an architecture-centric
design approach. The chapter ends with some conclusions in Section 3.4.

3.1 Overview and key aspects

A first concept is that the proposal contemplates an integration framework to support
design (as defined in Chapter 1). It aims at supporting the communication among
developers and model transformations between tools, similar to the architecture
framework described by Browning in [34]. As depicted in Figure 8, a high-level
model is meant as a backbone to navigate, give an overview, and classify detailed
design information (i.e., managing correspondence), by capturing functions,
requirements, and the architecture of the system. In this aspect, the proposal follows
the line of reasoning of the methods presented in Section 2.3.1.1, additionally
aiming towards integration. The basic hypothesis for the use of functions as
integration elements is that from the functional point of view it is possible to
describe a system at different levels of detail, focusing on the points of interest to the
user while maintaining coherence of the model. The importance of modeling
functions for machine and process design was already recognized in works of
Rodenacker [142] and Pahl and Beitz [126]. In those references, design is seen as a

 33

process of transformation and mapping of information from abstract concepts (i.e.,
functions and requirements) to concrete descriptions of physical systems, that later
will allow manufacturing a system. McDonough states that design is the first signal
of human intention [112], and it is argued here that functionality can be used to
express that intention. Thus, design cannot be done without the existence of these
abstract concepts that specify what the system is expected to do. Careful
documentation and modeling of the functional description is then as necessary as it
is for any other information related to the design.

Figure 8. Diagram for proposed approach

Two main reasons explain why the framework is not meant as a single tool in which
all design information can be performed. First, the design information of an entire
system is too large and complex. On the one hand, creating a model that contains
design information with the necessary detail would increase the model size, and
create an access bottleneck [56]. On the other hand, providing the operations to
model and handle the different kinds of detailed design data in a single tool
constitutes another barrier. Second, existing tools are designed and optimized for
specific domains, and the designers are proficient with these tools. In practice, each
designer is responsible for creating and maintaining the models related to her or his
discipline [34].

Besides high-level information, a model of the system requires detailed information
at the different stages of design. The lower part of Figure 8 represents the set of
stages of the design process. In each stage, the current state of the design is
represented by a set of models (“Design x” groups in Figure 8, e.g., 3D CAD model,
block diagrams). Each of these models can correspond to single or multiple domains
and to different levels of detail. To form a consistent design at a certain stage, the
models must correspond to each other by sharing certain parameters and their values.
For example, at some point in time the control engineer requires the mass of a part

34

in order to simulate a simple dynamic model attached to a controller model. At that
point, the mass of the part can correspond to a precise value calculated from a
geometric model or to an estimated value laying in a database corresponding to a
parts list. An approach that shares several of these aspects can be found in the PACT
project [56]. In this respect, an important difference of both proposals lies in the fact
that in PACT there is no central shared model, and instead it creates the impression
of a shared design model through interactions of agents and facilitators [56].

Information needs to be exchanged between different domain specific design tools
in order to integrate the different design activities and to automate analysis,
synthesis, and model transformation. An information manager should provide means
to navigate, visualize, and ensure consistency of the system model and the
associated modeling data. This also includes allowing to form different views which
capture and trace the concerns and requirements of stakeholders ([88], [116]).
System-level requirements must be decomposed or budgeted and tracked back to the
various subsystems and the different domain specific design processes. The main
ideas for extracting control related information were also outlined in the original
proposal in [6], and the resulting proposal is presented in the second part of this
thesis.

Apart from this overview, this section addresses more specifically the relation of the
proposal to the topics of model integration (as part of design integration) and
functional modeling.

3.1.1 Requisites for model integration

An integrated modeling paradigm that gives the designers a proper view of the
system as a whole in several levels of abstraction, and that keeps track of the current
state of design is fundamental to attain an integrated design that can cope with the
problems brought by complexity [3]. To establish some common grounds for the
integration of models, literature proposes some basic requirements which are shared
by the current proposal:

 It is necessary to separate the modeler from the solver in order to deal with the
definitional integration (i.e. of the models) and the procedural integration (i.e.
integration of the solvers) processes separately [63].
 Definitional integration becomes possible as models can be represented in a

common language. A conversion of external models to a common language is
necessary [63].
 Procedural integration may be more suitable for situations where the models and

their associated solvers are of diverse nature [63].
 It is necessary to detect correspondence of variables between models. This seeks

to minimize necessary human intervention in the detailed levels of the model
integration process. Typing schemes offer an alternative to aid in this process [63].
 Graphical user interfaces and views are crucial to provide model integration

support [63].

 35

 One shared database that contains all the data of the integrated models quickly
becomes a bottleneck [56].
 Modularity, from the point of view of reusability, and the use of model libraries

helps to speed up the modeling and verification processes [76].

3.1.2 Function modeling

To give a better idea about the high level model used in the proposed approach, next,
a brief description of function modeling is given. Different authors have proposed
models, like Function-Behavior-State (FBS) ([167], [170]), Functional
Representation (FR) ([40], [41]), Schemebuilder [29], and MACE [87], which
incorporate explicit knowledge about functions of systems and devices. For a
complete review on functional modeling please refer to [65]. Though the proposals
differ in several important aspects, some common points are maintained:

 It is agreed that for modeling purposes the description of a function incorporates
the intention of the designer or the given use of a device. Therefore, the definition
of a function is independent of the means used to attain it.
 The state of the system is described in terms of the values (qualitative or

quantitative) of its state variables. A variable is linked to an object that makes part
of a structural description of the system.
 A sequence of state transitions for the system constitutes the explanation of how

the function is achieved. In the FBS references this is known as behavior.

These models are not exclusively meant to represent functional, “simplified,”
knowledge about the system. Thus, the definition of a function is completed with
information about how the function is accomplished and which objects (including
hardware, software, and knowledge objects) are involved in this process. Most of
these modeling approaches define part of this knowledge based on developments
such as Forbus’ QPT, de Kleer and Brown’s qualitative reasoning theories, Kuipers’
QSIM (see [18] for an introduction to concepts of qualitative reasoning), and Bond
Graph [95] representation theory. The complete structure can be used in applications
such as those mentioned in [65].

Use of functional models can be advantageous for several reasons. First, they
provide a way of representing the intention of the designers of the system, both for
design and for use. Secondly, but not less important, functions can represent a
system at several levels of detail, which allows to change the level of abstraction in
which the model is seen while preserving, what could be called, the consistency of
the model (i.e., the model can still represent the whole system while showing more
detail where required). Additionally, functions can model indistinctively hardware,
software, and systems from different domains. In a sense, functional models get very
close to implicitly represent the architecture of a system.

36

3.2 An architecture-centric design approach

The architecture-centric approach presented here refers to the refined proposal
derived from the core ideas from the previous section and the experiences
implementing and using high-level models for supporting design activities (see
Section 4.1). It is no surprise that the term “architecture-centric” has been used
already to describe similar approaches. The concept of using product architecture as
a base for development has been used in the software domain for several years now
(cf. [26], [103]) to gain advantages such as improving clarity in decompositions of
complex systems and allow reuse of design knowledge. In spite of their validity, it is
evident that the focus on software on such references entails proposals with a
predominant role of software architecture and a heavy use of concepts and tools
specific to the software domain.

This section starts analyzing the role of product architecture according to literature
under the general context of product development, and then highlighting goals
which align to the key aspects presented in Section 3.1. Pursuing these goals and
supporting reaching them is what defines the proposed architecture-centric design
approach. Then, Section 3.2.2 provides a clear definition of a model of the
architecture and the characteristics it should have in order to effectively support an
architecture-centric approach to design, which addresses complexity in design.
Discussions regarding the nature of the architecture (e.g., whether it should be
modular [66] or integrated) do not fall within the scope of this proposal because, as a
matter of fact, the proposed approach can be implemented regardless of the specific
“type” of architecture of the product and the chosen development process (e.g., the
“V” or spiral development processes discussed in Chapter 2).

Developed
automated

tools

Integrated Model

M
u

lt
id

is
ci

p
lin

ar
y

in
fo

.

Design
methods

Manual
work

Architecture
design

Design
problem
/ R. spec.Ite

ra
te

 Developed
based on

Transform

DATA
exchange

Figure 9. Elements in a product development process following an architecture-centric design approach

 37

Figure 9 contains a schema which generalizes the elements in the workflow of a
development processes following an architecture-centric approach. The arrows
depict processes of exchange and transformations among blocks depicting sources of
information and work. An integrated model representing the architecture covers also
the specification of the problem. Such model is developed from multidisciplinary
information, including the one related to design methods from different domains.
Part of the design methods can be embedded in automated, domain-specific, tools
which can exchange shared data with the integrated model.

3.2.1 The role of product architecture

Product development is the subject of many scientific publications as the review
material of Krishnan et al [101] and Brown et al [33] demonstrate. Part of this
research stream mentions the role of product architecture in product development
explicitly (Ulrich [174], Ulrich et al [175]) or implicitly (cf. Pahl et al [126]) and its
impact on a variety of aspects (e.g., Sosa et al [152]) such as project management,
product innovation, manufacturability, evolvability, etc. However, most of the work
centers on describing how the architecture should be (or its “types”), rather than
addressing how to practically capture such architecture knowledge, model it, and
directly use it to support the product development process. The work of Buede [36]
gets close to such a practical view but (is the opinion of the author that), like many
systems engineering authors, centers on the role of the system engineer or architect,
and does not propose a direct involvement of other stakeholders (e.g., designers,
engineers, managers, and their working tools) in the development and use of
architecture-level knowledge and models.

The choice of product architecture affects how the product can be updated, its
variety and performance, and has implications for manufacturing and product
development management (cf. Ulrich and Eppinger [175]). Focusing on
development management, dividing the system in different modules and parts not
only affects how the development teams will be formed to design those parts, but
also relates to the interactions between such teams and the planning activities. Ulrich
[174] elaborates on this point specifying management differences for modular and
integrated architectures. In the case of mechatronic systems, where several domains
should be integrated to attain increased or new functionality [126], it results even
more useful if the product architecture clearly marks the purpose of any
development activity in order to help coordinating the work of stakeholders. In
practice, interfaces are not always well known and most products are not modular; a
certain level of integration is necessary and supporting integration remains important.
Therefore, performance goals and constant communication among stakeholders
must be supported to manage the “widespread propagation of changes” [174].

When does product complexity justify the need to support development through
explicit guidance from the architecture? As pointed out by Ridley [141], no single
person knows how to design from scratch a computer mouse, and no one can even

38

make a simple pencil by himself because making these products requires the
knowledge of many people. Architecture may have little use for development of
simple products. However, it can be necessary to achieve efficiency when the
knowledge of many people has to be used together to design a product, as it is the
case in mechatronic product development. In this context the following goals of a
product architecture model within an architecture-centric approach to design can be
stated, i.e., in which product architecture provides the guidelines for all development
activities:

 Provide overview: “Big picture” and “mental model”
 Support integration: Link information necessary for design
 Provide traceability: Allow finding the where/who/when/why for design

decisions.

A more comprehensive list of goal uses for architectural models can be found in [88].
The goals above are stated in addition to other goals that can be found in literature
referring to the architecture, and mainly concern how the architectural representation
contributes arriving to an agreement among the stakeholders, i.e., a consensus. In
many cases stakeholders may think that consensus has been achieved, but there is a
high risk that no real consensus exists when unambiguous, readable, and well
indexed documentation is not available. It is important to clarify that, as stated in
previous sections, integration implies linking information from different sources and
the tools for analysis, and not joining or merging the sources of information or
analysis tools into a single design model or tool.

A
rc

h
ite

ct
ur

e
 M

od
el

R
e

q
u

ir
e

m
en

ts
/

F
u

n
ct

io
n

s

B
e

h
av

io
r

/
S

tr
u

c
tu

re
 Mappings

Proposal for support:Current situation:

Figure 10. Representation of product complexity (left, adapted from [117] and [44]) and areas which need

support for an architecture-centric approach to design (right)

To support these goals of an architecture-centric approach to design, the model
which represents the architecture must possess certain characteristics. These are
discussed in dept in Section 3.2.2.1; however, first there is place for defining in
more detail what is meant by a “model of the architecture” and how such model is
used in current practice. The left side of Figure 10 depicts product information at
different levels as a pyramid, with an internal line following related concepts. The

 39

cloud in the middle of the pyramid represents a lack of traceability at certain levels.
An architecture-centric approach to design requires addressing those missing
connections. In this section it is proposed how to tackle this by using a model of the
architecture containing the information depicted at the right side of the Figure 10.

3.2.2 Modeling and capturing product architecture

Before addressing how to model and capture the product architecture, it is necessary
to define what is meant by architecture and its representation. According to [88] (see
Figure 11), the system architecture embeds the fundamental organization of a system
embodied in its components, their relationships to each other, and to the
environment, and the principles guiding its design and evolution.

This work adheres to the generic definition of product architecture representation
from the ISO/IEC 42010 standard [88], corresponding to an aggregation of models
organized by several views, as shown in the encircled area of Figure 11. The views
correspond to concerns coming from the product development stakeholders
(engineers, designers, architects, users, etc.). Consequently, these views must refer
to the objects in the domain-specific models that the stakeholders use for
development and design. However, here it is considered that these views must
clearly relate to each other (possibly by a central model) and be represented in a
language clear to all stakeholders. These requirements intend to deal with the model
interpretation problem described in Chapter 1. Considering this definition, it is
possible to discuss how models of the architecture are usually developed and utilized.

Figure 11. Conceptual model of an architectural description, adapted from [88]

3.2.2.1 Architecture models in current practice

The product architecture can be captured in many ways, which gather information
from sources as requirements specifications, models describing the product

40

interfaces and structure, relations to functional architectures, etc. These documents
and models are available in many cases, but they can be rarely put together to get a
comprehensive overview of the architecture.

It can be observed that in practice the model objects specific to most domains are
hard to use as a support to communicate with other domains because of their variety,
and in spite of their widespread use. For example, block diagrams are used
extensively by developers in the control domain. Many engineers are acquainted
with such diagrams, as they are introduced to most engineers during their education,
but people from other disciplines and backgrounds can have a hard time following
(or even misinterpret) an explanation supported by a block diagram. Authors like
Jobling [94] have questioned the appropriateness of block diagrams to express other
concepts than the signal flows and transformations these diagrams were created to
represent, especially during conceptual design. Reflecting this feature, sometimes
“conceptual block diagrams” are used in earlier phases of design with a broader user
composition. A similar example for the case of bond graphs can be seen in the
“word bond graphs” [95]. Yet another example can be found in the SysML which,
despite its formal specification [123], still seems to require additional explanations
giving a clearer purpose to its modeling constructs in works like the ones of
Friedenthal et al [72] and Welkiens [189]. All these cases of models, which
currently support most MBD approaches, provide evidence that MBD still is
supported mainly by DSM as stated in Chapter 1.

In practice, text documents (e.g., reports, memos, emails) are used to support
communication among stakeholders from different domains during product
development ([25], [188]). These documents hold a significant amount of
knowledge conveying different types of information concerning: the context of the
discussion, the involved objects and their relations, the performed functions and
purpose, the performance characteristics, and the correspondence between objects
and functionality. The following example of a textual description illustrates these
points: The paper path transports the paper through the different processes required
for printing a page using pinches. First, the paper is taken from the input trays and
placed at the entrance of the paper path. Then, the paper is transported through
different units that perform the steps of the process to print one side (of the paper).
Lastly, the paper can be taken to the exit of the printing engine, flipped or not, or it
can be flipped and taken to print the second side.

Even assuming this information is complete and unambiguous, the text description
mixes the “different types” of information (also see [188]), making it more difficult
to understand than when information is properly identified or separated. In other
words, useful descriptions include information from different sources and different
characteristics. Just gathering the common information in its original format (i.e.,
domain-specific models) for a discussion is not enough because, without a clear
association among the domain-specific concepts, it would require that each
stakeholder understands the specific language of every other involved stakeholder.

 41

Besides the text-document-based approach above, other approaches have been used
to support modeling and using the product architecture. Some of those approaches
have been tested in industrial settings but in spite of this remain marginally known
and used in practice. A thorough revision and analysis of the available methods falls
out of the scope of this chapter (cf. Chapter 2). Nonetheless, a brief comment on the
current use of such approaches can be added by referring to a series of tests
performed by Borches in a recent work [25], which presents characteristics of five
different models used to represent parts of the architecture of a complex mechatronic
product developed in a company. The study includes informal approaches without
defined formal representations as well as approaches that use formal models such as
SysML or design-structure matrices (matrix representation of different system
relations). Though interpretation of those results can vary and its source seems to
have a strong preference for models that do not use a specific software
implementation or language, some conclusions regarding current use of such models
in industry are drawn here, complementing the conclusions in Chapter 2:

 Most stakeholders find functional and physical views useful
 Simple languages promote communication but in exchange for model size and

content detail
 Information visualization creates conflicts among model size, capturing the

overview, and providing enough detail
 Complex languages/tools increase unacceptably the work load of stakeholders.
 Increased work overhead reduces model update and feedback
 Stating the source of information helps increasing trust in it

Additionally, it is concluded here that the use of models of the architecture in
practice is low because stakeholders do not find an immediate practical use for them
which justifies investing additional work for their creation. As discussed in Chapter
2, the existing (and rather scarce) tool support does not improve model intelligibility
and accessibility enough to decrease the net required design effort. The panorama
for current product development practices has been depicted in Figure 12. The left
side contains the pyramid introduced in Figure 10. The right side depicts a
generalization of current development processes, following the same conventions as
in Figure 9, in which information and work from different domains have a weak
connection with the architecture of the system. The correspondence of information
in both ends of the figure is marked by dashed regions and arrows, showing overlaps
and missing correspondence between available sources on the right and traceability
on the left.

42

System
architecture

Design
problem
/ R. spec.

C
h

o
o

se

Developed
tools

Manual
work

Design (domain “n”)

M
u

lt
id

is
ci

p
lin

ar
y

in
fo

rm
at

io
n

It
e

ra
te

Design
methods

Figure 12. Representation of product complexity (left, adapted from [44] and [117]) and relation to

elements of current development practices (right)

3.2.3 Desirable characteristics of a model of the architecture

This section presents and discusses desirable characteristics of product architecture
models to support architecture-centric design. The purpose is not describing in detail
a specific language, nor comparing particular languages or methods with respect to
the desirable characteristics described here. The characteristics are derived from the
reviews and experiences documented in this thesis, from which it is possible to
identify the need for a language which:

 Supports communication independent of stakeholder’s background, which
requires ‘simple’ modeling objects. Also, graphical representations are of great
value for this purpose ([36], [63]).
 Enables relating any domain-specific data to a common model, so the data can be

shared along with the part of the context (i.e., relations within and out of the
domain) contributed by each stakeholder. This means that the model should allow
automatically recalling the context of every object so there is no need to copy it
every time a description is made.
 Allows representing the different types of information introduced in the previous

section 3.2.2.1.
 Permits promptly identifying what each kind of information is, and what it relates

to.
 Facilitates identifying completeness of the information.

It is preferred that the model has a computer-readable format, because computers
allow fast, precise, and safe data transfer, as well as reducing the effort to replicate
and modify information. Moreover, many domain-specific tools process digital data,
and the data can be automatically formatted (i.e., transformed) if the source and
destination languages are know.

 43

For the proposal, the “views” concept introduced in Figure 11 is abstracted as
identifying groups of objects. Since the objects must be structured somehow to form
a single model, relations among the objects become necessary. Though in principle
all groups are equally important, certain generic groups that can be used to support
almost every discussion between stakeholders and that work as a backbone for
navigation and indexing of the model have been identified. Based on the desired
characteristics and the different types of information, it is possible to recognize the
need for four different generic groups of objects, which work as views of the
architectural description in Figure 11. The first three groups represent information
that is used by almost every stakeholder (i.e., not domain-specific), while the fourth
group provides a generic set with which it is possible to capture other particular
(domain-specific) groups that the stakeholders may require.

 A first group representing all the desired or intended specifications of the product.
This includes the functionality and requirements that the product must fulfill.
There must also be a mechanism to express required behavior. This may include a
hierarchical function decomposition that reflects design choices, as well as
ordering of functions, because performing functionality in different order can lead
to different products.
 A second group representing the actual (software and hardware) components of

the system and the relations/interfaces among them. Objects in this group fulfill
and implement the desired characteristics represented in the first group.
 A third group representing formalizations, such as mathematic relations, of the

phenomena that direct the behavior of the system as represented in the second
group.
 A fourth group of mappings linking elements from the three groups above to the

domain-specific information structures/models that the stakeholders use within
their particular domains. Mappings to the first group explain the purpose of the
linked models. Mappings to the second and third groups indicate which objects
and behaviors are (partially) represented in the specific model. This group should
allow representing the global structure of the linked domain-specific models,
which in turn allows referring to specific parts of them and facilitates
understanding.

Additionally, in the proposal it is recognized that the product parameters/attributes/-
variables (called here ‘parameters’) used to represent characteristics of the product
in almost any specific model, are related to objects in all the previous groups and
thus it is useful to represent them as objects in their own right. Parameters provide
an additional mechanism to (indirectly) interrelate objects from the four groups
described above, and to maintain consistency. All the objects and relations from the
proposed language constitute a network that can be filtered and visualized,
presenting to the user the relevant information for the task at hand. As said in [36],
authors such as Levis [104] have identified concepts for the multiple-architecture

44

approach which are very similar to the first three groups. However, the fourth group
(which can be related to the viewpoints in Figure 11) are rarely explicitely addressed.

There are many possible implementations for a language with the characteristics
presented here using (meta)languages that allow creating formal classes and
instantiating models complying with such formalizations (e.g., UML). The next
section captures previous work of the authors [11] and provides a detailed
explanation of the implemented language and modeling method which have been
used to test the architecture-centric approach to design.

3.3 The Architecture Model (AM)

Though there is no globally agreed definition of system architecture, it can be said
that it should convey what the main parts of the product are and what they do
individually and as a group. As stated previously, this proposal considers the
definition presented in [88] (Figure 11). Similar perspectives considering multiple
views are shared by authors like Muller [117] and Browning [34]. The views in the
architecture represent relevant information to specific stakeholders. To obtain a
model of the product such views have to be organized and linked to each other. An
obvious choice is to place common software/hardware objects in the views and use
them as the integrating part. Nonetheless, using only the real objects to join the
views can be restrictive because (as Muller highlights in [117]) the architecture of a
product is fuzzy and contradictory, and therefore difficult to capture consistently in a
model. Using other abstract representations to overcome such problems is proposed
in Section 3.2.3 and next subsections.

The proposal consists of a high level representation, closer to conventional systems
engineering approaches that promote the use of system architecting. In spite of their
high-level nature, the abstract elements allow representing situations at any level of
detail. Functions are used in the model to amalgamate descriptions in different
domains and levels of detail.

Function

Type

Function

Type

Function

Type
function relation Type

Requirement

Type Value (Range)

Entity Entityentity relation

Parameter Value [Unit]

formula expression

Aspect
Link

Domain entity
Link

Synthesis method
Knowledge

View

User

'Composition' connector

Mapping connectors

'Start function' connector

MODEL CONVENTIONS

(dashed lines)

Figure 13. Conventions for the objects in the AM (all possible links not shown)

 45

As indicated earlier in this chapter, apart from the characteristics stated in Section
3.2.3, the language is inspired by the work of Umeda et al on the FBS model [176].
Figure 13 gives an overview of how the information of the architecture can be
modeled using the AM language, by instantiating several objects and placing
relations among them. The objects are used to clearly identify different types of
information, while allowing making descriptions using several object types (many
other languages, like SysML, separate object types in different diagrams).

General definitions for the main components are given next (ordered alphabetically).
The precise meaning and use of these objects will be explained in the following
pages. All the allowed mappings among elements have not been completely
specified, but some links and topologies will be suggested to represent several
pieces of information. It is also important to mention that the objects have several
attributes which allow embedding in them more information (cf. Section 3.3.6) but
that the use of many of these attributes has not been fully specified and may vary
between objects.

 Aspect - A: Represents a specific concern, which can link/group other related
objects (e.g., F, De, SM)
 Design task (referred in some publications as synthesis method - SM): A

representation of a design activity or process.
 Design task relation - DTR: Represents input/output information exchanged

between design tasks.
 Domain entity - De: Representation providing a link to an object in an external

model.
 Entity - E: A system object (software or hardware) which performs functions.
 Entity relation - Er: A relation among entities, entailing transfer of energy,

information, or mass.
 Formulae - fo: Mathematic representation (equation, inequality, etc.) of a relation

among parameters.
 Function - F: Description of an objective or function of the system from a

subjective point of view.
 Function relation - Fr: Transition among functions used to describe behavior (i.e.,

sequences of functions).
 Parameter - P: Representing any variable or parameter which can be used to

quantify a property. These objects can be mapped (directly or indirectly) to other
objects allowing to build concrete descriptions.
 Requirement - R: Description of an objective or constraint related to values of

parametric information.
 View - V: Used to arrange information in a pictorial representation to provide an

explanation.

46

P
a

ra
m

et
er

s
 What will it

do?
Functions

Function
relations

Requirements

How will it do
it?

Entities

Entity
relations

Formulae

Abstract AbstractConcrete

Subjective Objective

How is it designed and by whom?

Aspects

Design tasksViews

Domain entities

Figure 14. Relation of modeling elements to the architecture information spectrum

The AM language is an enabler to the uses presented in Section 3.2.1. In general, it
allows to its user modeling the answers to the questions:

 What will the system do? Or what will the stakeholders want the system to do?
 How will the system do what it is required? Or how is the design implemented?
 How is the system designed and by whom? Or which methods, models and tools
are used by the stakeholders?

These questions can be answered at an abstract (stated without reference to a
specific instance) or concrete (relating to an actual, specific thing) level as well as
with subjective (particular to a given person) or objective (presented factually)
information. As discussed in Section 3.2.2.1, capturing information through the
entire spectrum of these characteristics is necessary to provide a more complete
understanding of a system. Figure 14 represents how the modeling elements relate to
the questions above (one box for each question) and to the different information
characteristics (arrows at the bottom). The lower left box elements are used to build
a specification of the system corresponding to subjective needs. The lower right box
groups the elements used to describe directly how the system is formed and how it
behaves. The elements in the upper box represent particular points of view and a
direct relation to other external, domain-specific, models (i.e., different than the AM,
such as the documents presented earlier in the introduction).

A point of view similar to the one in Figure 14 is shown in Figure 15. However, for
practical issues and corresponding to the four object groups presented in Section
3.2.3, this latter perspective makes a clear distinction among information describing
the system and information describing the phenomena ruling its behavior. Under
such point of view, four layers compose the AM. A graph of functions and related
requirements constitutes one layer (Section 3.3.1). The function layer is mapped to a
second layer containing information about the structure of the product (Section

 47

3.3.2). In turn, the structure layer maps to a third layer containing information about
the continuous behavior of the system (Section 3.3.3). The mapping between the
behavioral and structural layers links the behaviors described in the domain-specific
models. The mapping between the structural and functional layers allows tracing
requirements data and providing a context to the implementation. The term
‘parameter’ is used indistinctively for all variables, attributes, and values that
represent characteristics of the product in the different domain-specific models.
Other indirect mappings (not shown in Figure 15) can also be found through
parameters. Parameters of the set 1 2{ , , , }NpP p p p are identified by their names
through the entire model. In all cases, ‘mappings’ refer to edges that form undirected
bipartite graphs. A prototype modeling tool that allows partitioning the model for
readability and that ensures its consistency has also been developed (Section 3.3.6).
A fourth layer of the model (Section 3.3.4) links its parameters to external models
and model creation methods used for specific purposes. This part of the model is
coined here as the external communications layer. A ‘complete AM’ contains
elements in these four layers, and ideally the mappings among them can be
represented as onto functions, i.e., there are not “loose” elements which lack direct
mappings (or to relax this condition, indirect ones) to other layers to which they can
map. In that way, every function will be implemented by some entities, and every
entity will have some behavioral representation. The ‘view’ nodes help organizing
the information according to the specific interests of a stakeholder (cf. Figure 16 to
Figure 19).

AM

Function layer Structure layer Behavior layerExt. Com. Layer

"implemented by" map "behavior" map

"parameters" map

"modeled by" map

Domain-Specific models

"correspondence" map

Figure 15. Structure of the AM depicting main objects and their mapping relations.

A commercial, configurable mobile robot platform known as Boe-Bot [127] is used
in this section to show examples of the proposed models. In this particular case, the
robot should move in an area and detect the position of obstacles in it. The data
captured by the robot is transformed into a map of the area using an external PC to
which the robot communicates as the exploration progresses.

48

3.3.1 Function Layer

Functions are used to describe what the product is expected to do. Much research
has been done regarding functional representation and its purpose [65]. Some (e.g.,
[176]) regard functions as subjective descriptions that link the personal human
intentions to the objective behaviors of the product. Other consider functions as
transformers of energy, material and information (e.g., [85], [126]), describing
almost directly what objects do. This work adheres to the first definition, with the
purpose of providing a common model for all stakeholders. This common model
reflects the design rationale and links desired characteristics of the product (i.e.,
requirements) to the domain specific models made by designers. This point of view
about functions helps separating the definition of view from the restrictive ordering
imposed by physical objects (i.e., software and hardware). Separating the functional
and structural layers allows to correctly define a design, differentiating its intended
use from its physical structure descriptions. For example, the differential drive of the
Boe-Bot achieves translation and rotation functionalities in an integrated manner
with a common structure, but decoupling at the same time translation and rotation
functionalities during operation (i.e., the robot can rotate without translating). An
implementation with additional direction wheels dedicates such components to the
rotation functionality.

Before defining functions more precisely it is in place to introduce ‘requirement’
nodes. Requirement nodes belong to the set 1 2{ , , , }NrR r r r , and represent
necessary or desirable characteristics of the product and its behavior (hence their
name), agreeing with the definition presented by Buede [36]. To maintain a clear
connection to the implementation and to allow verification, a requirement node
should always refer to a parameter. This can be done directly through a mapping to a
parameter node { } ()ijRp Rp R P , or indirectly, composing a requirement from
other existing requirements using decomposition links { } ()ijRd rd R R ,
eventually mapping to parameters. A requirement defines characteristics on a group
of parameters by constraining their values.

In Figure 16 the requirements are defined by decomposition or mapping to
parameters, also identifying their type and, when mapped directly to a parameter,
their value. The requirement of “obstacle is found” indicates a situation in which the
distance to an obstacle is less (type ’<’) than a quarter of a meter. The requirement
of “move straight forward” indicates that both, “remain in angle” AND “robot
moving forward”, are considered together. In turn, “robot moving forward” specifies
a situation where the value of “Boe-Bot speed” must be the same (type ’=’) as the
value of “robot maximum speed”.

The functional layer of the architecture has graphs where the node set
1 2{ , , , }NfF f f f corresponds to the ‘functions’ of the product (see Figure 17).

Functions are described freely by the designer, but as a guideline, function nodes are
named as actions in the form of “to do something”. The authors also explore
possible uses of a formal classification for functions, which facilitates computational

 49

processing of functional information, by adding a ‘type’ to each function. Mapping a
function and a requirement node { } ()ijRf rf F R indicates that the function
should try to obtain, maintain, or comply with the requirement. ‘Composition’ links

{ } ()ijFd fd F F model how a function is decomposed into subfunctions, as in a
function breakdown structure [108], adding more detail to its definition. The
decomposition relations ()Fd Gfd and the functions ()F Gfd form a directed acyclic
graph Gfd . Some guidelines for function decomposition can be found in [36] and
[181].

Requirements

BoeBot angle - -

Turn right in position

AND Value ()

Quarter turn completed

= Quarter turn angle ()

Quarter turn angle MAKE FORMULA! -BoeBot speed - -

Obstacle is found

< 0.25 ()

Robot maximum speed 0.05 -

Turn right

< 0 ()

Remain in position

= 0 ()

BoeBot angular speed - -

Robot moving forward

= Robot maximum speed ()

Remain in angle

= 0 ()

Distance to obstacle - -

Move straight forward

AND Value ()

BoeBot mass - -BoeBot width - -BoeBot input power - -

Maximum consumed power

< 20 ()

BoeBot height - - BoeBot length - -

BoeBot physical requirements

AND Value ()

Maximum height

< 0.15 ()

Maximum length

< 0.15 ()

Maximum width

< 0.15 ()

Size boundaries

AND Value ()

Maximum total weight

< 0.5 ()

Figure 16. A requirements definition view in the robot AM

explore moving in a sequence detail

to move forward until obstacle

ACTUATE

to aim in a new search direction

ACTUATE

to explore terrain in a sequence

CONTROL

explore moving in a sequence requirements

aalvarezcabrera

explore moving in a sequence structure

aalvarezcabrera

restart sequence Type

obstacle found Type

Quarter turn completed

= Quarter turn angle ()

Obstacle is found

< 0.25 ()

Turn right in position

AND Value ()

Move straight forward

AND Value ()

move forward until obstacle structure

aalvarezcabrera

aim in a new search direction structure

aalvarezcabrera

BoeBot physical requirements

AND Value ()

Figure 17. Navigation functionality view in the robot AM

50

‘Function relations’ of the set 1 2{ , , , }NfrFr fr fr fr , and their links to functions
{ } ()ijFrf frf F Fr document how a process should be carried out. The necessary

condition to perform a function is modeled by means of a mapping to a requirement
node { } ()ijFrr frr Fr R , indicating activating conditions for the function in the
arrow end. Function relations ()Fr Gfr and functions ()F Gfr form a bipartite digraph
Gfr , and add information of function activation criteria based on requirements data.
Function relations are used effectively to introduce a partial (temporal) ordering
among functions when describing a process that requires several steps under
different conditions; i.e. at different instants.

Figure 17 depicts how a function is decomposed into two subfunctions, how each of
these aims to achieve its requirements, and how the functions should activate under
certain requirements. To “explore moving in a sequence” the robot will first “move
forward until obstacle,” as indicated by “moving straight forward”. When the
condition “obstacle is found” is reached, it will “aim in a new search direction” as
specified in “turning right in position”. The sequence is repeated upon the
circumstances of a “quarter turn is completed”, reactivating the main exploration
functionality. Additionally, the exploration functionality and all its subfunctions
must adhere to the constraints imposed by “Boe-Bot physical requirements”, e.g.,
using less than the maximum allowed power (cf. Figure 16). The example shows the
three roles that a requirement node can play, namely, constraining the values of
parameters when performing a function, providing target values for the execution of
a function, and indicating a set of parameter values under which a function will
become active.

3.3.2 Structure Layer

Capturing the structure of the product is crucial to show how components relate to
each other. The structure layer corresponds to the intuitive view of the product as it
is seen through our eyes: a set of objects exchanging material, energy and/or data.
The structural layer contains a set of ‘entity’ nodes 1 2{ , , , }NeE e e e , representing
hardware or software components. Also, entities can be composed of other entities
using ‘composition links’ { } ()ijEd ed E E . Similar to the case of the functional
layer, decompositions form an acyclic directed graph Ged . The relevant parameters
of an entity node are mapped directly to it as { } ()ijEp ep E P .

Entities are related to each other through ‘entity relations’ 1 2{ , , , }NeEr er er er , and
their links { } ()ijEre ere E Er , which show the exchange of matter, energy and
information among them, as indicated by the parameters that can be mapped to the
relations { } ()ijErp erp Er P . The topology modeled in the structure layer does
not consider time. Thus, through the bipartite digraph Ger , entities ()E Ger and their
relations ()Er Ger form together a model of the possible topologies of the product on
different modes. In the AM, entities are mapped by { } ()ijFe fe F E to nodes in
the function layer, showing how the functions are implemented.

 51

explore moving in a sequence structure

to aim in a new search direction

ACTUATE

to explore terrain in a sequence

CONTROL

to move forward until obstacle

ACTUATE

Microcontrolle Local PCSensors

Locomotion devices

current motor angle data

move motors commands

current obstacle distance data

motor angle change

Environment

obstacle reaction

action to obstacle

sensor data

command to execute

Ultrasonic pulse - -

Measured obstacle distance signal - -Obstacle echo - -

Measured obstacle distance value - -

Right wheel angle change - -

Left wheel angle change - -
Left servo in signal - -

Right servo in signal - -

Measured compass position signal - -

Measured compass position value - -

Command to execute value - -

Figure 18. View presenting the structural description related to the navigation functionality in Figure 17

The example in Figure 18 shows some of the components of the robot and other
external components, together with the relations among them which result
interesting at the level described by the functional description in Figure 17. Sensors
provide data to detect the obstacles and robot facing to a software module in a
separate PC, which sends back the motion command to be executed back to the
robot.

3.3.3 Behavior Layer

To obtain an understanding of the behavior of the product it is necessary to obtain
information about its structure and combine it with information about the involved
phenomena. Phenomena can be physical or man-made, e.g., Newton’s second law or
input-output relations in a software program. The main goal of the behavior layer is
to contain a description of the behavior or phenomena that rule how the product
works and the relations between its parameters. Such information is present in
domain-specific models (e.g., state-space model of a system) because they can
describe part of the behavior in detail. The intention is not to store all these details of
the behavior in the AM, but to provide a “lite” version which can be shared and
analyzed easily. Like that, it is possible to see the relations between the domain-
specific models at a high level.

The behavioral layer is built from sets of relations (e.g., equations, causality)
represented as ‘formula’ nodes Nofo from the set 1 2{ , , , }NoFo fo fo fo , mapped
directly to the individual entities { } ()ijEf efo E Fo , entity relations

{ } ()ijErf erfo Er Fo , and/or to the functions { } ()ijFf ffo F Fo . Each
formula specifies relations among parameters, forming what is called here concrete
behavior. A set of formulae can thus be interpreted as a consistent set of parameter

52

relations defining a concrete behavior, for example, a system of differential
equations. Such concrete behavior (set of formulae) can be mapped to entities or to
functions, describing respectively the concrete behavior related to an object or to a
specific task.

Behavior formulae

Right whee
Right wheel traction force - -

Right servo torque - -

Right wheel mass - -

RW angle - -

RW angular acceleration - -

RW angular speed - -

BoeBot mass - -

rwf1 Right wheel mass{Right wheel mass}

rwf2 Right servo torque{Right wheel traction force}

rwf3 Right wheel traction force,Right wheel mass,BoeBot mass{RW angular acceleration}

rwf4 RW angular speed=INT(RW angular acceleration){RW angular speed}

rwf5 RW angle=INT(RW angular speed){RW angle}

Figure 19. View presenting formulae describing dynamics of a wheel

The language for writing such relations is not specified in the proposal. However,
depending on the use given to such information, additional specific information
and/or format may be required. Concrete examples of this will be presented in Part
II. Figure 19 depicts some formula definitions related with the global dynamics of
the robot.

3.3.4 External communications layer

The main task of the external communication layer is to link the model parameters
to external, domain-specific models. The AM parameters are directly linked to
parameters in external models. However, the AM also has objects to model views
that give an idea of the purpose and nature of the linked models.

Commonly, models are built during design to test whether the design will
accomplish a function or to help defining details in the design, i.e. verification or
synthesis. In both cases, the model refers to values that define the desired
performance of the product while carrying a function, represented here with
requirements. An ‘aspect’ node in 1 2{ , , , }NaA a a a acts as an envelope for a set of
external models (model fragments) which are used to evaluate a common concern
linked to a functionality, which may extend over several disciplines and stakeholders.
An aspect node maps by { } ()ijFa fa F A to a function node, linking it to its
purpose and to the involved requirements. The external models themselves are
represented with the ‘domain entity’ node set 1 2{ , , , }NdD d d d , which can be
mapped { } ()ijDp dp D P to parameters in the AM, forming a direct connection
to provide updated data to the external models. The domain entities can be mapped
directly to aspect nodes { } ()ijDa da A D . Domain entities may be composed

{ } ()ijDd dd D D to reflect the structure of external model fragments. Figure 20
depicts an example diagram in the external communications layer.

 53

External communications

Functionality mass
Applied to...

Weight of a function
Computes the total mass of components associates with a function

BoeBot Weight add sheet
Applied to...

Electronics board mass - -Ultrasonic sensor mass - -

Processor mass - -

Power on switch mass - -

Right encoder mass - -Left wheel mass - -

Locomotion devices mass - -

Chasis mass - -

Right servomotor mass - -

PC RF trasceiver mass - -

Power source mass - -

Sensors mass - -

BoeBot mass - -Left encoder mass - - Left servomotor mass - -

Right wheel mass - -

Compass sensor mass - -

Modular devices mass - -Support wheel mass - -Communication devices mass - -

BoeBot RF transceiver mass - -

to provide configurable robot platform

PROVISION

Figure 20. View representing the link between parameters of the robot and an external Matlab model

The objects above are used to represent the link to external models and their purpose.
Additionally, it results useful to represent how these external models are obtained or
computed. The ‘synthesis method’ node set 1 2{ , , , }NsS s s s represents operations
or data processing done with a set of domain entities and their mapped parameters.
Thus, the synthesis method node can be mapped to an aspect node

{ } ()ijAs as A S or directly to the involved domain entities { } ()ijDs ds D S .
The synthesis method object counts with methods that allow exporting/importing
data from/to the AM and identifying or executing the tools and process that handle
such data. Practically speaking, the external communications layer supports the
scenarios in which the AM has a direct link with an external modeling tool, by
providing means to identify or label the information and document its intended use.
There are several possibilities to perform what is coined here as labeling, e.g., direct
identification of nodes through attributes, mapping of nodes to external label data.
One mechanism considered here to be intuitive and close to actual design practices,
while remaining human and machine readable, is based on the aspect nodes ia and
their mappings to the function and domain entity nodes (resp. ijfa and ijda). Detail
concerning how the information is transferred among external models through the
AM falls out of the scope of this chapter. See[193]-[195] for more details or Part II
for specific examples.

54

AM tool

User A

Tool A User B

Tool B

User C

Tool C

shared dataA In

Shared dataA Out

Tool dataA In

Tool dataA Out

shared dataB In

shared dataB Out

Tool dataB In

Tool dataB Out

Shared dataC In

Shared dataC Out

Tool dataC In

Tool DataC OutOverview

C feedback data

Figure 21. Structure of AM usage scenarios

The structure for several usage scenarios supported by the AM is presented in Figure
21. The tool implementing the AM (see “AM tool” in the figure) can be directly
utilized by the users to edit the AM, which can be linked to models from specific
domains (“Tool n” in Figure 21). Shared data (e.g., requirements) and an overview
of the design process status are provided by the AM to the linked tools/users, so they
can execute simulations/verification with updated data. This approach supports itself
in the premise that designers use their “native” models and tools, and therefore, all
the design computations (simulations, optimizations, transformations, etc.) are
carried in the domain specific tools. Domain specific models are interlinked through
the AM mainly by the parameters, and entities and functions provide common
objects for discussion. The use of functional abstractions provides a base for
information reuse. Details about reuse of information are not treated in this thesis, as
they are mainly a contribution of Woestenenk et al [195]. However, some related
aspects are discussed here at following sections covering modeling and
implementation of the AM and in Part II and Section 3.3.7 when the objects in this
layer are used.

3.3.5 Model construction process

Building the model methodically is vital to streamline the modeling process and its
associated development process. Though layers of the AM do not need to be made
in any particular order (the data structure is “flat”, cf. Section 3.3.6), the proposed
method to build an AM uses the functional layer as a backbone. The purpose of is to
facilitate navigation by any user, by organizing the model based on the functional
information. Figure 22 depicts the arrangement of the layers. Each functional
diagram provides links (through ‘view’ nodes) to a requirements definition diagram,
structural layer diagrams, and to other function layer diagrams. The requirements
definition diagram models the mappings between requirements and parameters,
keeping the function diagram leaner. Mappings among functions and entities are
placed in the structural layer diagram; see the “Structure & Relations & (Function)”

 55

blocks in Figure 22. When mappings to functions clutter the structure diagram, the
user can make a separate diagram to map functions and entities, in which entity
relations and parameters are omitted. In turn, the structure diagram provides a link to
a behavior diagram showing the mappings between entities and formulae, and a link
to an external communications diagram.

Figure 22. Global organization for layer construction in the AM rooted on the function layer

3.3.5.1 Modeling process flow

In addition to the AM structure suggested in Figure 22, two sample modeling
process flows are depicted in Figure 23 and Figure 24. However, it must be
highlighted that the objective is to present examples of how to build an AM in an

56

orderly fashion and no statement suggests that any single modeling workflow is
convenient for every situation.

1. Add base
abstract

description

3. Refine base
description

4. Add
parameters

5. Add
concrete

information

2. relate base inf.

6. relate abstract and concrete information

Entities

Functions Function
relations

Entity
relations

Parameters

Requirements

Formulae

Figure 23. Model objects (italicized) and proposed modeling steps (iterations, not shown) to make an AM

by increasing concreteness

One way to build the model, which mainly corresponds to progressively increasing
the concreteness of the information, is presented in Figure 23. This process results to
be intuitive in many cases when the idea of a problem and a system solution are
being conceived. Additionally, in the first step, it is possible to select the function or
the structure layer as a basis for the model. Using the functional layer as a backbone
may be better when what wants to be achieved is known beforehand and structure is
designed around it, while the structure may also provide an appropriate backbone for
some descriptive models of existing solutions.

1. Add concerns
and related
functions

4. Link to
domain

models /
model parts

3. Identify
design

processes

2. relate base inf.

7. relate generic and domain models

Functions

Aspects

Domain
entities

Design tasks

5. Add
parameters

Parameters

6. Add generic
model

information

 Entities

Requirements

Figure 24. Model objects (italicized) and proposed modeling steps (iterations, not shown) to model an

aspect in the AM

Yet another modeling process flow can be taken when there is a particular concern
related to the system and an existing external model supports evaluations related to
the concern or synthesis based on the available information. From the perspective of
certain stakeholders, a model of the whole system might not be of interest. Modeling
the aspects is a way of contributing to the whole model of the architecture while at
the same time maintaining focus over a specific concern and its related models. This
approach to model is depicted in Figure 24, and can start by adding an aspect
hierarchy that roughly describes the main parts of the concern. On the one hand the
aspects must be associated to function hierarchy to enrich the description. This

 57

functional hierarchy will in turn be associated with requirements which provide
concrete information regarding the concern, and link it eventually to a group of
relevant parameters. On the other hand, the aspects will be associated with domain
entity and design task nodes which provide a direct link between the AM
information and the external models.

Figure 25. Technical processes in product life cycle, and main process tasks/activities (as specified by

INCOSE)

Examples of such concerns which can be identified in the model using aspects can
be found in prescribed development processes, such as the technical processes
presented in the INCOSE systems engineering handbook [90], which are used to
establish system requirements as a basis for development. As shown in Figure 25,
eleven technical processes are considered in this approach.

3.3.5.2 Additional considerations

Maintaining the uniqueness of elements is necessary to correctly capture the
relations between elements in different diagrams. Keeping track of the existing
nodes for a big model proves to be difficult and increases the chance of creating
redundant objects. There are different alternatives to aid keeping track of the
existing nodes in a model. These alternatives include among others, queries, auto-
completion and the use of specialized views. Queries work by allowing the user to
search for a node using different methods. Auto-completion can work, for instance,
by proposing a set of matching candidate objects upon object creation. Specialized
views allow constructing (automatically or manually) diagrams that show existing
nodes that fulfill specific requisites. Considering development simplicity, this last
alternative is the main one for the present tool implementation, which quickly shows
shortcuts of elements adjacent to a selection. The specialized views include a
diagram listing all the behavioral layer (parameters, formulae and related entities), a
hierarchical diagram showing all entities, a hierarchical diagram that shows all
functions, and a diagram that shows all requirements and related parameters.

58

Until now, the authors have explained how to expand the AM by directly
instantiating objects from the basic classes. The model has been designed with an
additional instantiation mechanism in mind to facilitate reuse of (multidisciplinary)
design knowledge. The main idea is to use functions as “wrappers” for information
independently from their domain of origin, as domain distinctions become irrelevant
at the functional level [3]. Functional information can then be used to index (with
the help of function types) whole pieces of information in the AM, named ‘building
blocks’, which later can be placed into libraries for reuse. More details and
additional ideas about this can be found in a previous work of the authors [195].
Reuse saves time when building the AM and can be used to reduce modeling errors
by promoting the use of automated modeling and transformations. A clear example
of a building block can be found for elements that work as (in many cases ideal)
connections between components, transporting data, information, or mater. The
related models require the designer to focus on the parameters transported through
the connector and in some other key parameters. Instead, in many cases the designer
focuses on other aspects, like routing, deviating his attention from the main function
the component should fulfill, and increasing the chance of creating errors. A
connector building block could be configured using the key parameters above, and
potentially, used together with a proper linking to external models to synthesize
other routinely details.

A final point worth highlighting is that when it is necessary to create a product
architecture usually the system engineer(s) or architect(s) develops a model and
attempts to communicate it to other stakeholders. Most literature related to product
architecture and system engineering tries to define models that the architect can use
for this purpose, showing a tendency to directly address only the architect as a
creator and other stakeholders are just shown the model or interviewed to gather
information. Other stakeholders are not banned from contributing directly to the AM,
but it becomes implicitly understood that “it is not their job”. On the other hand this
thesis proposes a model that can (and is meant to) be used and built through the
contributions of all stakeholders, including the architect. This is consistent with the
concept of the knowledge intensive design environment introduced by Tomiyama et
al [168], however, here it is argued that the presence of a guiding architecture model
is crucial to attain such a degree of cooperation.

3.3.6 Implementation

The authors developed a tool that facilitates creating correct models and enables
using data transfer mechanisms. The implementation has been made over the eclipse
framework [163] using the Graphical Modeling Framework (GMF). This platform
provided good mechanisms for class definition and a transformation to implemen-
tations [78] that allow creating correct models and a clean, standard eXtensible
Markup Language (XML) serialization.

 59

Figure 26. Class overview (top left), and specific class definitions in the architecture model. In the Eclipse

/ ecore class definition the ‘ ’ icon indicates a class. The tree expanded under it shows its attributes.

60

The information structure of the AM is a “flat” network of interconnected nodes
contained in a main ‘ArchitectureModel’ node. ‘View’ nodes provide a link to
diagrams where parts of the modes can be visualized and edited. In principle, views
do not provide any hierarchy for the information, but can provide an order for
construction as shown in Section 3.3.5. Figure 26 depicts the class definitions for the
AM. More recent work of Woestenenk [194] provides improved internal class
definitions for the AM from the programming viewpoint. It can be seen that almost
all classes extend the abstract ComposableObject class. This class defines a series of
common attributes such as name, user, and version, and also defines the possibility
of mapping the instances to Parameter and AMView instances. These attributes
result useful when analyzing model information and to “label” views interesting for
different stakeholders. Many of the attributes inherited from the ComposableObject
class still do not have a role for each specific class. This has been done on purpose
to provide some flexibility and future extensibility to the AM. The parameter class
has a similar set of attributes, and its dependency attributes can be used to represent
relations between parameters such as causal dependence.

The other class definitions are portrayed in Figure 26. The role of the non-inherited
attributes in the classes is clear from their names: they take care of defining specific
referencing (mappings) among the classes so that the AM gets the desired structure
defined in sections 3.3.1 to 3.3.4. The entity and function relation classes are not
defined as simple attributes because they need attributes of themselves. All
modeling elements use characteristic shapes and symbols to help the user identifying
the information in the diagrams (see Figure 13).

Elements of the external communications layer contain pointers to external
resources (data and models). The information reuse capabilities introduced in
Section 3.3.5 depend heavily on the external communications layer and its link to
the external models. At the moment, such tools have not yet been fully implemented
and form part of the work of Woestenenk et al ([194], [195]).

3.3.7 Discussion on the capabilities of the AM

This section contains two discussions regarding contributions (Section 3.3.7.1) and
some research directions (Section 3.3.7.2) which correspond particularly to the
modeling language, tool, and building method proposed above, as an embodiment of
the necessary support for an architecture-centric approach.

3.3.7.1 Language contribution to design information representation

This discussion revolves around the fact that (as discussed in Chapter 2)
notwithstanding the existence of many methodologies related to representation of
multidisciplinary information, those methodologies and the related modeling
languages are not used extensively in industry. Several reasons (some of them
mentioned through this thesis) may be the cause of such behavior. However, in this
discussion it is pointed out that an important factor contributing to the acceptance

 61

and usefulness of “multi-domain” modeling languages lies in the nature of the
language itself and, more specifically, to characteristics related to its syntax,
semantics, and pragmatics. This section also clarifies related concepts expressed in
previous work of the author [7].

Before discussing the particular characteristics of the AM, it is necessary to define
what these characteristics describe. Referring to Fishwick [70], for a language the
syntax specifies the rules of construction (structure of a model), the semantics hold
the meaning of the symbols (meaning of models), and the pragmatics define the
contribution of context to meaning (interaction of an interpreter with models).
However, the limits between these definitions are not evident and may depend on
the point of view, i.e., what is considered as the model or language.

The AM contains simple semantics (few classes of data elements) and a well
structured and simple syntax (a few clear ways of linking the data elements)
combined with a strong representation power (the data elements allow representing
most aspects and details of a system) and the capability to focus on part of the
information (choose a view). It is argued that these characteristics help in making
unambiguous pragmatics, or interpretation of the models, while retaining the
necessary expressive power. Analyzing these characteristics it is possible to see that
the object groups defined in Section 3.2.3 roughly define data classes which can be
used independently of the domain, which greatly influences the representation
power of the proposal and its simplicity, addressing complexity in design.
Additionally, some of the basic concepts of the implementation (e.g., unique objects,
multiple views) facilitate access to the context described within the model, reducing
the chances of duplicating information and of creating multiple context descriptions
which disagree with each other. The stated characteristics are advantageous because
they promote that the users creating the model place in it all the relevant information
while at the same time information contributed by other users can be retrieved to
maintain an updated and detailed image of the context (and thus restricting the
possible interpretations). On the side of the disadvantages, promoting to model all
the relevant information also implies that the modeling effort is greater than the
required for other (more ambiguous) modeling languages. However, this is
considered by the author as a necessary price to pay for obtaining formal
descriptions of an extremely complex and diverse data set such as design knowledge.
It can also be added that the current state of the art in digital data management and
modeling tooling plays an important role in reducing such a disadvantage to a
minimum. Other important characteristic is that the language implementation is
intended for both human and artificial interpreters (resp. through graphical and
XML representations), allowing supporting discussions among human stakeholders
and automatic model transformations among design tools. To the best knowledge of
the author, these characteristics have not been explicitly used to describe any of the
studied implementations, nor have been they pointed out as advantageous for the
representation of design information supporting the development processes.

62

Going back to the example of text-based descriptions (see Section 3.2.2.1), it can be
appreciated that natural languages are characterized by very complex semantics
(many words) and syntax (many possible structures for sentences, paragraphs, etc.).
These characteristics provide an immense representation power to convey ideas,
feelings, context and many other types of information. However, mastering the
language to unambiguously and precisely represent all this information takes much
time and expertise, not only for the party creating the model (for example a poem)
but also for the party interpreting the model. Conversely, it is argued that the
proposed language (the AM) can be mastered with far less effort than a natural
language, and thus the users can convey information far more precisely than with
other languages while retaining much expressive power with the ability to use
different information types.

3.3.7.2 Unsolved representation limitations

As mentioned though this chapter, the AM allows representing information on
different levels of granularity and from different points of view. If the views are
chosen properly, a human interpreter may not have any problem in differentiating
such levels within the model. However, when dealing with an artificial interpreter
(e.g., a running program of some sort) these different levels of information cannot be
easily distinguished, interpreted, or exploited.

Therefore, additional considerations to build a model which influence the ease of
interpretation have to be mentioned. On the one hand, the proposal remains
practically usable because the issues of artificial interpretation are partially
addressed by making proper use of the external communications layer. In principle,
the objects in this layer can be used to “label” parts of the model providing a single,
completely unambiguous, description level which can be properly processed by an
artificial interpreter (see Section 3.3.4). On the other hand, a more elegant solution
which reduces the need for such labeling would contribute greatly to the
applicability of the proposal and increase its simplicity. At this point, such
considerations are taken as limitations of the proposed approach, and future work
should be carried out to address them.

Improper formula set

Representing a consistent concrete behavior (like the solvable system of differential
equations mentioned in Section 3.3.3) requires a complete (solvable) formula set to
be mapped to a single object. However, in many cases during design, such a
complete set may not be available, and instead an under- or over-constrained set
may exist due to lack of information, design freedom, or overly restrictive
requirements. For the purpose of this work (specially for Part II), it is considered
that every concrete behavior description in the behavior layer contains a complete
formula set.

 63

Active structure and functionality

The resulting concrete behavior is affected directly by the choices in the function
and structure layer because there is no restriction regarding the formulae and the
(relation and decomposition) topology of those layers.

For example, the structure layer may contain not just one, but multiple “static”
structural descriptions. This is possible because the structure layer does not consider
information about time or the current state of the system. The ‘active structure’ is
introduced to consider dynamic changes in the structure of the system. At a certain
level of detail, to perform a function it is required that the system finds itself in a
determined state and configuration. Therefore, the part of the structure layer mapped
to a specific functionality can be considered as the active structure that implements
the function. By extension, when looking at the evolution of the systems through
several states one can connect them to the course of time.

This work omits the evolution of the system trough these structurally relevant states,
and assume that all the structure in the AM is the active structure at any given point
in time.

Varying level of granularity

The AM language can be used to describe a system any level of granularity. A single
AM may contain several of such descriptions of a system, covering detailed (high
granularity) functionality and structure decomposition at the part or even feature
level, and concise (low granularity) descriptions at the machine level that describe
the main functionality.

Additionally, the different descriptions may contain substantially different
assumptions in the behavioral layer, which can lead to discrepancies among them.
As an example, at a low granularity level a car can be represented as a point mass
for the purpose of analyzing its motion on the road. The same car can be represented
with higher granularity as a rigid body containing several point masses
corresponding to the chassis and wheels. Also, the rigid body assumption can be
thrown away, and the car can be represented as a group of point masses joined by
elastic links, e.g., between the wheels and the chassis. As the reader can reason, the
three different descriptions use parameter sets of varying size in the behavioral layer,
and moreover, the different relations among the parameters can give birth to
different and inconsistent behaviors and values of the parameters; e.g., the elastic
assumption can introduce vibrations of the center of mass of the car that may be
relevant even at the level of the first description above.

Dealing with this consideration is very important to make the model much more
useful in practice because different stakeholders may be interested in modeling at
different granularity levels. Several ways of formally modeling more than one
granularity level in a single AM are possible. For example, different levels can be
modeled in different views, or objects corresponding to different levels may be

64

explicitly labeled. For the sake of simplicity in this work it is assumed a single
consistent behavioral description within a level of granularity, and thus no particular
way of dealing with multiple granularity level models is indicated.

3.4 Conclusions

The concept of an architecture-centric design approach is presented (see Section 3.2)
to address the challenges identified in the previous chapter by proposing a support
framework for cooperative multidisciplinary product development processes. The
framework includes a tool developed during this work (the AM tool) as well as
existing (domain-specific) tools currently used by development stakeholders.

The Architecture Model (AM) is a representation and tool proposal to capture design
information at the architecture level (cf. Section 3.3), intended to support an
architecture-centric design approach. Integration is supported by the model,
allowing to build simulation and verification models using the data in the AM and
the existing domain-specific design and analysis tools. The application of high-level
function models is of paramount importance to support communication and
integration. Thus, the main contributions of the AM implementation are:

 Enables building an expressive and lean representation of the product.
 A method to create and use such representation in the product development

process (e.g., to support communication).
 Association of the information that is shared among the designers during the

development process.
 A language and implementation which address two issues which may explain

why existing languages to support modeling and using product architectures have
not found a permanent place in industry. These issues are the lack of practical use
of models of the architecture, and existing language characteristics which prevent
the user from clearly documenting design information.
 A ‘view’ mechanism to model, filter, and retrieve the context of the information

in the model. However, maintaining the views as the model grows presents a
practical implementation issue. Future improvements for automated updating (e.g.,
through view subscription) and arranging of nodes in views will contribute to a
tool more apt for industrial implementation.
 A way of increasing the participation of stakeholders who, normally, marginally

take part in the construction of product architecture models, increasing the fidelity
and usability of the documented design information.
 A model which separates (in different layers and objects) time-related behavior

descriptions and exchange-related descriptions of processes (resp. functional and
structural layers). This is crucial to obtain readable and coherent models. At first
sight, modeling these aspects separately may seem obvious, but in practice
requires some experience from part of the modeler (see Section 4.2).

 65

4 Case Studies

The previous chapter described the central proposals of this thesis. This chapter
documents multiple case studies which support those proposals from the side of
development of the core ideas as well as from the side of testing those ideas in
several scenarios. Such case studies have been respectively organized in Section 4.1
and Section 4.2. The chapter ends with a conclusions section.

4.1 Development case studies

The architecture-centric approach to design and the AM proposals have been refined
from the lesions learned in several attempts to support different design processes.
This section presents such attempts in two main parts. Section 4.1.1 presents the
result of an industrial case study carried out to increase the understanding of product
development by studying a real product, additionally finding out and verifying some
of the challenges stated in the Chapter 2. Then, the germinal ideas of the proposed
approach to create high level models to support design integration and the first
attempts of implementation are presented and discussed in Section 4.1.2.

4.1.1 A practical study on design processes

The initial insights on the problems related to complex product design (see Chapter
2) motivated a first attempt to understand the design process and develop support
tooling for a case study ([3], [5]). The prevailing idea was to improve
communication among stakeholders by providing automated transfer of design data
used in different design processes, and clear traceability to design specifications.
Thus, the expected results were a description of the flow of data in a specific design
process (i.e., the workflow), and some custom-made tools which could automate
data transfer among stakeholders involved in such process in order to demonstrate
the correctness of the obtained workflows.

The study involved reading project documentation, interviewing key designers and
system architects, and studying the models used in the design process to follow how
the values of two parameters present in the final design were obtained from design
specifications and other sources of information. The practical results included two
simple tools which ensured consistency of some parameter values used in a
simulation model with relation to mechanical specifications, and a flowchart with an
overview of the specific design process. Analysis of the interview data and the
resulting flowchart lead to several conclusions which are resumed next (cf. Figure
27):

66

Figure 27. Evolution of quality at different stages of product development. The curves labeled ‘FUMO’,

‘PROTO’, and ‘Series’ correspond to prototypes present at different design stages.

 The studied process relied heavily on physical prototypes for testing modules
responsible for single functions (FUMO), integrated modules (PROTO), and
complete production concepts (Series).
 As shown in the figure, the incremental approach to testing reduces the required

afford to obtain products with greater quality.
 More optimal solutions to design problems may be found by considering domains

different to the one in which the problem was detected (e.g., increased
predictability trough control rather than tight manufacturing tolerances)
 Efficiently sharing design information directly among stakeholder within a

development processes for complex systems becomes unmanageable after the
initial stages of design, when the design team can no longer physically work side
by side. Afterwards, the available models and documentation do not efficiently
support sharing or transferring information.
 Parameters and their updated values are a meaningful and abundant part of design

information which can be automatically and efficiently transferred and
transformed among stakeholders once a clear design process has been identified.
 Tracing parameter values up to the design requirements and specifications is very

difficult if this correspondence is not documented explicitly, and such
documentation is rather scarce in practice.

4.1.2 Using high-level models for integration

This section contains the main aspects, results, and learned lesions from the first
implementations of high-level models for design support, resumed in sections
4.1.2.1 [4] and 4.1.2.2 ([193], [195]). The initial trial for support tooling (cf. Section
4.1.1) confirmed the feasibility of automatically exchanging information at the level
of parameters and values. At the same time, it allowed verifying that determining
how these values relate to design requirements and to design decisions is a
painstaking task, especially because such information is rarely documented in a
format which facilitates its (re)use. Additionally, the review of product development

 67

challenges indicated that the usage of high-level information such as functions has
potential to aid in the integration tasks, but that existing implementations still face
some implementation challenges. Also, these insights justify the need to implement
integrated (i.e., mechatronic) design approaches, as voiced by many authors ([28],
[55], [147], [172], [191]).

Based on the previous ideas, it was decided to attempt a modified implementation [4]
of one of the existing techniques to represent the high-level information. The chosen
method was Function-Behavior-State (FBS) ([170], [178]), as it seemed to have both
high-level and detailed information together in a single model (but using different
objects) while providing a link to external models (as in KIEF [199]).

4.1.2.1 An implementation of FBS using new representations

In this section the FBS model [170] is considered as a base for the function model
description in the proposed framework. The FBS model was designed to be part of
an integrated framework but it was not intended to be the backbone for the
integration activity, and thus, some adaptation was considered necessary. This
academic case-study was developed to try adapting the FBS representation to recent
languages and data formats aligned with graphical representations and standardized
exchange of information. Some advantages that lead to the choice of FBS are that it:

 Clearly separates design intention and objective relations between components.
 Is built to support external processing of information with other tools (e.g.,

qualitative reasoning [18]).
 Has been already implemented in a software tool and tested to some extent (cf.

FBS modeler in [171]).

Another important reason to support the choice of FBS is that it differs from most
system models developed at an early stage of design which are not aimed to
prescribe how the systems actually behave [60]. Instead, FBS also contains
information which can be used to simulate the behavior of the system from an
objective point of view.

The next section provides a description of the FBS model, followed by a section
explaining how the FBS primitives were represented using a recent modeling
language.

The FBS model

Function-Behavior-State is a function modeling scheme created to support
conceptual design in computer aided design (CAD) systems [170]. FBS aims to
build a functional concept ontology [65], that is, to allow its users in creating
descriptions of functions which can be reused in design. Most components of the
FBS model are based on a process ontology known as Qualitative Process Theory
(QPT) [71]. As specified in [65], process ontologies focus on the effects of

68

processes over the attributes of entities, and functional concept ontologies look to
develop models of devices from the subjective perspective of humans.

An FBS model (see Figure 28, left) can be divided in three parts: (1) the functions
layer, (2) the behaviors layer, and (3) the states layer. Each layer is connected to the
next one to form a framework that describes the functionality of a system and how
to attain such functionality. Behavior and state representations are based on QPT.
All the objects are stored in a knowledge base structured using the physical concept
ontology [200] implemented in the Knowledge Intensive Engineering Framework
(KIEF) [171], consisting of the following concepts which, with the exception of
physical laws, support inheritance, i.e., they belong to a class-structure in the
knowledge base.

 Entity: Represents an atomic physical object.
 Relation: Represents a relationship among entities to denote static structure.
 Attribute: It is a concept attached to an entity. It takes a value to indicate the state

of the entity.
 Physical phenomenon: Designates physical laws or rules that govern behaviors.
 Physical law: Represents a simple relationship between attributes.

The next part of this section contains a brief description of the concepts and main
ideas behind the three layers in FBS ([91], [170], [200]).

Functional Hierarchy

State Level

F-B Relationships

View
B-S Relationships

Super-Level Sub-Level

Behavior Level

Paper Weight

Paper

Mass: 1 kg

Volume: 100 cm3

Density: 10 g/cm3

Has
attribute

Has
attribute

Has
attribute

Relation: On

Figure 28. Scheme of FBS model (left) and state of paper weight (right). Adapted from [176]

State

To define state, first the concept of entity must be introduced. An entity corresponds
to an object like a solid, a gear, or a single tooth of a gear. The choice for an entity
depends on the level of detail being modeled. Entities possess attributes that
describe them. Lastly, entities are connected to other entities by relations.

For modeling proposes, in FBS states and entities are treated simultaneously. A state
is defined as “a set of attributes and relations between entities”, and thus a state
cannot be described without the use of entities. Figure 28 (right) depicts a state,
showing several attributes of the entity “Paper Weight” and how it relates to the
entity “Paper”.

 69

Behavior

First it is necessary to define physical phenomena in order to ease the explanation of
behavior in FBS. Physical phenomena link a group of entities and their relations to
physical laws (e.g., first law of Newton) that regulate the changes of attributes and
states. These changes are called state transitions. An example of a physical
phenomenon is “linear motion”, which connects an entity (e.g., a solid body) and its
attributes to a law (e.g., F m a). Physical phenomena are knowledge elements that
contain the Behavior-State (B-S) connections among the classes of the objects.
Physical phenomena become active or inactive according to a set of enabling
conditions specified by the presence of a set of entities, attributes, and relations.
Behaviors constitute objective representations of what a system does. A behavior is
defined in FBS as “a sequence of state transitions over time”.

To model behavior it is possible to directly instantiate physical phenomena or
groups of them. These instantiations are called physical features. Causality between
involved physical phenomena can also be specified inside a physical feature.
Another modeling option is to specify a behavior as a state transition table. Then
other tools (the qualitative process abduction system [91] and qualitative process
reasoner [176]) searches and propose candidate physical features that are able to
obtain such state transitions and provide qualitative simulations.

Function

The definition of function tends to vary in the field of functional modeling, but
many authors agree that the function is subjective in nature and carries the intention
of design or use ([39], [65]). In FBS, function is defined as “a description of
behavior abstracted by human through recognition of the behavior in order to
utilize the behavior.” Since the function is abstracted from the behavior, the function
alone is not meaningful for representing the system. Therefore, in FBS a function is
represented by a tuple of function symbol and behavior that can realize the function.
Function-Behavior (F-B) relations are established when a function is connected to a
physical feature.

The function symbol is a text that describes the function in the form of “to do
something.” No further restrictions or guidelines are necessary to describe the
function at this level because the function symbol itself is just intended for human
recognition. Functions form a hierarchical structure that results from the
decomposition of general functions into more specific subfunctions, forming a
function tree [67]. Decomposition of functions is classified as either causal
decomposition (i.e., into subfunctions whose execution is causally related) or task
decomposition (i.e., the subfunctions can be executed independently from each
other). When several functions and F-B relations have been placed in the model, the
designer can proceed to connect the entities of different physical features that
represent the same object. This is referred as unification of entities.

70

FBS in SysML

For this implementation test, the proposal mainly addresses definitional integration
(see Section 3.1.1). Two different approaches were followed to “update” FBS
through a re-implementation. This was possible because although FBS defines a
semantic structure for the knowledge base, it does not define any data structure for it
and it is not restrictive in that sense The first attempt was a very straightforward
mapping of FBS concepts to graphical objects modeled in Microsoft Visio, as the
use of such tools is really common in industrial practice. This allowed creating small
models (with around fifty concepts or less) with relative ease, even using different
files or sheets by associating the objects in different places using a unique naming
scheme. However, it soon became evident that building and managing larger models
became almost impossible without proper support of specialized tooling
implemented directly in the modeling software (i.e., Visio and its programming
interface). A less evident shortcoming was the lack of a precise definition of
modeling concepts and objects for the user that is not familiar with the physical
concept ontology. In other words, if the user does not have good knowledge about
the definition and use of the FBS language, the resulting model will be very difficult
to understand (almost meaningless) to a different user. This last point indicated the
need for precise explanations of the modeling concepts and additional tool support
which enforces basic syntax in the model.

With the experience of the attempt described above, the second approach started
with searching recent developments of formal data and model representations. After
studying approaches like the UML [124]. the related SysML [123] and STEP (ISO
10303), SysML was chosen as the base for representation. The main reason for this
choice is that SysML seemed suitable to represent most of the information used in
systems’ design. Additionally, SysML has been successfully applied as part of an
integrated design platform in works like [130] and [159]. It is also worth mentioning
that part of the developing group of SysML also belongs to the group that develops
STEP. Another technology related with all these representations in the eXtensible
Markup Language (XML): an extensible data serialization format which used
nowadays as a standard in many applications, which also promotes human
readability in exchange for some terseness. At this point it was concluded that
implementing FBS in SysML could get FBS in the path of standardization for both,
data representation and modeling language.

The implementation principally consisted on obtaining a formal description of how
FBS model concepts could be represented in SysML. Figure 29 depicts how an
example of the FBS concept of physical phenomenon corresponding to rotation with
one degree of freedom is represented using SysML. A discussion of the results of
this second implementation approach follows. Details of the proposed mappings and
other examples can be found reference [4].

 71

PhysicalPhenomena PhisicalPhenomena[Package] bdd []

<<block>>
1DOFRotation

parts
Object : SolidBody

constraints
Equation1 : SecondLawOfNewton_Rotation

<<block>>
PhysicalPhenomenon

1DOFRotation 1DOFRotation[Block] par []

<<block>>
Object : SolidBody

<<ValueType>>
MomentOfInertia : MomentOfInertia

<<ValueType>>
ExternalTorque : Torque

<<ValueType>>
Mass : Mass

<<constraint>>
Equation1 : SecondLawOfNewton_Rotation

{T=J*alfa}

alfa : AngularAcceleration

J : MomentOfInertiaT : Torque

<<BindingConnector>>
<<BindingConnector>>

Figure 29. Physical phenomenon representation. Block representation (left) and statements definition

(right)

This experience demonstrated that indeed SysML has great expressive power and
that it allows formally representing the FBS syntax as a metamodel. It also reassured
that FBS allows modeling the functionality, structure, and state-based representation
of behavior, while providing a link among the information represented through such
concepts. However, the results (i.e., resulting mappings and usage tests) also showed
characteristics of the approach which do not align well with the key aspects
presented earlier.

On the one hand, the FBS concepts did not contemplate explicitly and directly
capturing information related to other external models/modelers (this is done
through KIEF) or to requirements. Also, in FBS concept of class definition and
inheritance in the knowledge base becomes intrinsically related to the definition of
new knowledge and models. Though this last characteristic is not disadvantageous
per se, it implies that the effort of developing a new model for a system must be
coordinated with an effort to develop or maintain the class-structures in the
knowledge base. Coupling these development efforts can be counterproductive for
the design and modeling activities.

On the other hand, SysML also promotes the use of class structures and inheritance,
coupling directly with such characteristics of FBS. It is also necessary to mention
that the same variety of diagrams and objects which give flexibility and richness to
SysML, in spite of clear syntax descriptions for most cases, also contribute to
increase the required modeling effort by leaving to the user many choices with
respect to which and how SysML objects shall be used represent some particular
aspect of the system. This is also seen to a lesser extent with languages such as
UML, but in that particular case, most of the terminology corresponds with well
defined concepts from software engineering development. This characteristic can
also be evidenced by the discussions of many SysML users (e.g.,

72

http://groups.google.com/group/sysmlforum/) in which questions like “how do I
model X” or “can I represent X using Y” prevail. Besides this, like in the Visio
implementation, defining the allowed FBS syntax through the extension/constraint
mechanisms in SysML also requires a significant afford. A last point to discuss here
is that, to this date, the modeling tools implementing SysML focus on the meta-
model aspects (definition of class descriptions), while instantiation mechanisms
which allow representing the systems do not seem to be widely used or well defined.

4.1.2.2 Using functions to restructure design information

This section discusses another case-study of design support, this time in an industrial
context for information management ([193], [195]). The cooperating company uses
an automated system to support design, which provides detailed implementation
information through a set of libraries. This information was organized according to
the different domains (e.g., control, electronics, and mechanics) and could be used
by the designers to quickly build detailed models of systems with many components.
However, the implementation still presented some issues regarding the maintenance
of libraries, such as consistency verification (i.e., checking that a subsystem is not
only partially described and has all the necessary representations in the libraries) and
change propagation (that is, finding all the affected information when some part of
the libraries changes). The goal was to analyze a sample of the libraries and propose
improvements. After analyzing the data, it was found that all the libraries contained
a piece of coded information described by the company as a function number.
Further analysis showed that indeed these function codes related closely to the
functionality of parts and subsystems (i.e., what the things are intended do).

The researchers organized the library information according to the functional
information, resulting in an increased usability of the model. This was intuitively
demonstrated on the one hand because the instantiation and verification of the
models corresponded to the functions performed by the related components, and
computationally demonstrated on the other hand because the available unfeasible
choices present in the original library could be efficiently discarded, reducing the
computational effort needed to verify consistency of the resulting models and
providing usable choices to the designers.

This experience demonstrated the great practical value of functional information,
more specifically in cases (like the one under study) of evident system modularity,
that is, when functional information has almost a one-to-one correspondence with
the subsystems and parts of the system. Additionally, as stated by Suh [155], the
relation between functional information and the objects in the physical
decomposition of the system can also be used as a measure of modularity.
Nonetheless, as stated in Chapter 2, it must be highlighted that modularity is not
achievable or desirable in every design situation.

 73

4.2 Demonstration scenarios on architecture-centric design

This section addresses five generic product development usage scenarios concerning
the architecture-centric approach, and describes an example implementation which
covers three of these scenarios. The first two scenarios illustrate the explicit use of
the first three object groups (see 3.2.3). These two scenarios correspond to real
industrial implementations where text-based documentation prevails and it is not
possible to suddenly use model-based product development. Thus, these two
scenarios correspond to a necessary transition stage towards model-based product
development. The last three scenarios mainly demonstrate the practical use of the
fourth group of objects (cf. 3.2.3) after the design knowledge has been clearly
structured. These three scenarios were implemented using company data within an
academic context, supporting a model-based development process. The situations
supported by the tested implementation are compared to those where a “traditional”
development process is used.

 In the first scenario, an architecture modeling language is used to represent and
clarify information from text documents. This is useful to increase awareness
about the existence of the four object groups introduced above.
 In the second usage scenario, part of the AM is used as a backbone for text-based

design documentation. In this way, the structured model from the first scenario can
integrate documentation related to domain-specific design knowledge.
 The third scenario consists of representing information consistently. This case

involves modeling, referencing, querying, and updating unique information in a
model.
 The fourth usage scenario addresses the issue of creating different views on the

same product, modeling the concerns and rationale of several stakeholders. The
‘views’ mechanism is useful to manage complexity and support communication.
 The fifth and final scenario covers how to use a model of the architecture to

support the product development chain of domain-specific tools, and how the
model is expanded.

The scenarios have been ordered according to the required implementation effort/-
complexity, strengthening the point that arriving to model-based process
development in an industrial environment is envisioned as a gradual process. A
related video can be found in this link: http://youtu.be/kib4mMzzAxE

4.2.1 First scenario: Representing clearly design descriptions

Currently, textual descriptions like the one presented in the Section 3.2.2.1 provide
the base for design descriptions, sometimes, accompanying (excerpts of) domain-
specific models. This entails ambiguous descriptions because of the shortcomings of
textual information [179], and increases the required effort to extract shared data,
because the reader accessing the information in domain-specific models must first
learn the particularities of such models and domains.

74

Simplex-Simplified

Registration gudance plates

Upper traject

paper in fuse entrance

Type 5 ()
paper in preheater entrance

Type 4 ()

bulk format sheets

duplex trajectory part

paper in fuse exit

paper in VTU entrance

Type 1 ()

Lower paper path unitInternal feeder unit

paper in print path entrance

Type 2 ()

paper in fuse entrance

new sheets to print

input trajectory part

Ready to take out new paper

AND Value ()

paper in registration entrance

to move papert through fuse unit

Type

to take new paper sheet to registration unit

Type

Printer module FAKE

to take paper

Drive unit

Fuse unitRegistration unitLower tray unit

Skewedness sens

Paper is stored

Type Value ()

Preheater unit

registered sheets

ready and print simplex order received

printed paper flow

to transport paper through printing

Type

T

new bulk sheets to print

Front S sensor

Lower engine unit

Passive paper type switch unit

paper in preheater entrance

Front registration pinch

OPC process unit

Vertical transport unit

Upper tray unit

Take new sheet order issued

Type Value ()

mixed format sheets

Registration pinches

to store new paper

Type

to transport paper for simplex printing

Type

reprint sheets

to take new paper to VTU

Type

Back S

to move paper through registration unit until preheatin

Type

to take new paper to printing path

Type

paper in VTU entrance

paper in fuse exit

Type 6 ()

paper in print path entrance

Back registration pinch

preheated paper flow

paper in registration entrance

Type 3 ()

to move paper through preheater unit until fuse

Type

print path sheets

External control signal BPR_speed_value{BPR_speed_value}

B.Pinch motor speed BPRSpeed=FUNCTION(BPR_speed_value){BPRSpeed}

BPR_speed_value - []

BPRSpeed - [rpm]

Behavior
phenomena
group for

movement speed
at a pinch

Figure 30. Architecture-level representation of text information from the “fake” engine, using the AM (most

parameters are not shown).

A structured representation of the text description from the Section 3.2.2.1 can be
found in Figure 30. The object groups introduced in the Section 3.2.3, i.e.,
specifications, system components, and behavior phenomena, can be distinguished
clearly using the different graphic representations. In the AM, additional objects
have been differenced within the basic groups. For example, functions and
requirements, respectively, contain qualitative and quantitative data. Notice how in
Figure 30 the specifications group shows the required functionality for the paper
path during a single side printing operation, and the mapping identifies the relevant
components in the structure. Also, the phenomena that corresponds to setting the
rotation speed of a pinch is represented by two simple formulae relating a control
value and the corresponding rotational speed.

 75

per trajectory unit

printed sheet to finish path a printed sheet to finish path b

sheet to flipper

sheets to flip path

Upper engine unit

sheet at second entrance of finish path

Type 10 ()

paper at flip/finish switch

KE

ake paper to to flipper entrance

Type

t

sheet to print finish switch

to enable in to finisher path

Type

switch in finish position

Type 9 ()

dness sensors

sheet at second entrance of finish path

sheet to flip finish switch

in guidance plate part

TTF unit

passive flip switch uni

paper at flip/finish switch

Type 8 ()

paper in flipper entrance

sheet to passive flip switch

sheets to turn

flipper-in guidance plate par

switch in finish position

to move sheet through flipper entrance

Type

g

paper from fuse

active fliper-finisher switch un upper finisher guidance plate par

flipper trayectory unit

to move paper through finish path to finishe

Type

lower finisher trajectory uni

Flip unit

Back S sensor

paper in flipper entrance

Type 7 ()

active print-finish switch un

Control unit

to send paper to finisher

Type

to move sheet from flipper entrance to finish path

Type

fliped sheet to finish path

Specifications group for
single side printing

System
components

group

Figure 30 (cont.) Architecture-level representation of text information from the “fake” engine, using the AM

(most parameters are not shown).

This structured representation improves communication by reducing ambiguity. The
tests made the involved developers at the company more aware of the existence of
the different object groups (cf. Section 3.2.3) and their use. In particular, they could
recognize the importance of functions in the specifications group as a means to
introduce the purpose of designs, and of the system components group to refer to the
product itself. Additionally, addressing other specific groups allows specifying more
precisely how certain concerns can be verified. The language characteristics
discussed in Section 3.3.7.1 also contribute to the clarity of the models.

Another point regarding the usefulness of the model is that, when creating a design
description using the AM, it is easy to distinguish when consensus has not been
achieved. Then the involved parties can iterate and refine the model until an
agreement is reached. The model facilitates this by promoting explicit representation
of knowledge, which entails sound descriptions of the context of the object under

76

discussion. For example, for the back registration pinch in Figure 30, it is possible to
request all the incoming entity relations and verify whether the speed command is
provided by any relation.

It must be noted that, though the separation of the information makes clearer
descriptions, the stakeholders involved in the tests required many attempts to
effectively perform such separation, especially between the functionality in the
specifications group and objects in the system components group. This situation
happens often when the model is used to describe subsystems where functionality
and implementation structure are decomposed in a very modular fashion. It was
concluded that, though the ability to separate functionality from implementation
objects is conceptually simple (i.e., what something should do is not what something
is), as our tests evidenced, some practice is needed to acquire it. In this respect,
besides practice, providing clear definitions of the meaning of modeling objects (in
this case, functions and entities) is a key factor to success.

4.2.2 Second scenario: Organizing design documentation

In the original design process under study, design information often refers to a
component “extracted” from a physical decomposition. Such decomposition obeys
to the assembly structure of the product, and it is used as a basis in most documents
and discussions. This view of the system is then polluted by directly associating to
these components properties that just partially relate to them. On the other hand, the
other domains have to deal with object definitions that barely correspond to their
interests and models. Use of the “views” addresses this situation. An intermediate
step has been taken to implement such views by using the object groups to index
design documentation in the existing Product Lifecycle Management (PLM)
software used at the company.

In the new implemented design process a hierarchical assembly decomposition is
still used as a basis in the PLM software. However, additional decompositions are
added for the functionality and other aspects (e.g., safety, stability) corresponding to
the views of other stakeholders. Objects in these views can be mapped to the objects
in the assembly decomposition (see Figure 31). The decompositions are represented
in a tree-like format already available in the PLM system (and familiar to the
company employees). The files of the geometry model in the assembly
decomposition are linked to the assembly representation in the PLM. Elements in
the other decompositions can be related to one or more detailing documents. This
approach does not imply replacing any of the existing documentation, but provides a
means of indexing documentation from different perspectives. Moreover, it provides
explicit recognition of the existence of other views on the system and their relation
to the components in the implementation.

 77

Assembly
decomposition

(other)
Safety

decomposition

(other)
Stability

decomposition

Functional
decomposition

PLM decompositions

Referenced documents

Figure 31. Organization of the multiple views to organize design documents using a PLM system

4.2.3 Third scenario: Documenting design information in a consistent model

Engineer 1

Paper path architect 1

Happy flow 1

Engineer 2

Engineer 3

process characteristics data

process order data
path geometric data

segmet activation order

process speed requirements

speed profile

paper movement data

path geometric data

path geometric data

segment activation order

Paper Path Timing Handoff Aspect
Applied to...

Excell Document
Applied to...

PDF Document
Applied to...

Matlab Code
Applied to...

XML Documents
Applied to...

Excell Document
Applied to...

Powerpoint?
Applied to...

numbers - []

numbers - []

numbers - []
numbers - []

numbers - []

numbers - []

Figure 32. Manual exchange of design information to develop timing information of a print engine

Many aspects of a print engine need the models from engineers working in multiple
domains to be developed. An ‘aspect’ makes reference to a common interest of a
group of stakeholders, and to the set of models used to describe and verify properties
in the context of such interest (see Section 3.3.4). The aspect handled in this
scenario is the paper flow through the engine.

The design of the paper path is a multidisciplinary design problem involving
mechanical, electronics, control, and thermal design issues. This aspect contains

78

domain-specific information on the customer functions (single/double sided
printing), customer requirements (throughput, paper sizes), geometry (component
topology), electrical components (motor profiles), simulation (real-time behavior)
and software (the timing algorithms and embedded software). The main
functionality provided by the paper path is handling the sheets to be printed. Sub-
functions include storing, feeding, positioning, heating, and transferring sheets. The
input for the timing performance analysis tool, a Matlab application developed in-
house named Happy Flow [19], contains data on the geometric shape of the paper
path, the type and position of sensors and pinches, and the various operation modes,
defined in terms of path segments through which the sheet should be moving.
Currently, this data is obtained from various disciplines (cf. Figure 32): a dedicated
two-dimensional drawing is transformed into an input file by manually indicating
which parts of the drawing belong to the paper path, the location of sensors and
pinches, and the start and end point of the path segments. Based on the latter
information, the operation modes can subsequently be defined. This is a time
consuming task that only involves data gathering and deterministic transformations.
Furthermore, these steps have to be performed after every noticeable design change.

During design, this domain information is captured in scattered models that follow
the sequence described in Figure 32. At each step, the models are made by
specialists (using their own languages and tools) based on constraints from a text
document (Microsoft Word, Visio or Excel mostly) supplied by the previous step.
After models are verified against the input constraints, the information is
summarized by hand in a text document and handed over to the next stage.

This approach has a number of disadvantages:

 There is no clear ownership of shared parameters, and therefore different values
can exist at a given point in time bringing ambiguity about constraints.
 Manually handing documentation over is prone to consistency errors coming from

transcription errors.
 The manual hand-over documentation is not versioned properly; at any stage an

engineer could use obsolete values.
 There is no clear (graphical) overview of the design information flow. Figure 32

is a result of interviews during our tests, and it was not present as a mental map
among the engineers at that moment. This hinders detecting the other
disadvantages.
 There is no common information on the context of the design. Which aspect or

functionality of the system relates to the exchanged information?
 Apart from these disadvantages, the step by step generation and interpretation of

manual documentation slows down the development process, while not adding any
information to the design. This issue will be handled in more detail in the section
about the fifth scenario.

The AM has a mechanism that captures an abstract version of the paper path aspect
described above. This is done by recognizing that the aspect is an architectural unit,

 79

as the described design process is applied for every print engine product multiple
times, iterating towards a positive validation of customer requirements in relation to
other aspects. The actual system perspective (behavioral and structural information)
of this aspect model is handled in more detail in the fifth scenario.

AMTool

Paper path architect

KBE tool

Layout generator

Paper path architecture

Movement sequence generator

process characteristics data

Happy-flow

path geometric data

process order data

segment activation order

paper movement data

Model Transformator

process speed requirements data

speed profile

path geometry data

segment activation order

path geometric data

Paper Path Architecture
FAKE Engine

Engine Topology
FAKEEngineAM.Topology

Engine Running Modes
FAKEEngineAM.Modes

Engine Components
FAKEEngineAM.Components

Engine Requirements
FAKEEngineAM.Requirements

HappyFlow XML
FakeEngineExports

HappyFlow Simulation
Applied to...

Engine Behavior
FAKEEngineAM.Behavior

Engine Architecture
FAKEEngineAM

Model Architecture

DesignProcess

Engineer Engine

DesignProcess

Paper Path Design
FAKE Engine

Simulate Engine

DesignProcess

not in toolchain

Design Processes Agents & InformationModels

Paper Path Simulation
FAKE Engine

Paper Path Aspect
FAKE Engine

Engine KBE Constraints
FAKEEngineAM.Constraints

Figure 33. Separation of models, design process and designers (or automatic equivalents).

KBE tool

Paper path architect

Happy-flow

Engine Requirements
FAKEEngineAM.Requirements

Throughput 120 [A4/min]Engine KBE Constraints
FAKEEngineAM.Constraints

HappyFlow XML
FakeEngineExports

owner model responsible agent

Figure 34. A parameter (center) shared among agents (right) and used in multiple models (left).

An information flow view of the aspect is shown in Figure 33. By modeling the
aspect, it is possible to define the required hand-over between models in a
parametric and reusable way. This, in effect, replaces the manual documentation by
(a set of) shared models. Each stakeholder provides some part to the aspect model,
and the information can be accessed on request without manual transfer. Because the
aspect information is kept in a single model, there is no duplicate information, but a
single updated version (this can be attained with the support of a versioning system,
e.g., SVN [14]). When a shared parameter value is changed, any engineer or tool can
update their models to the new value, keeping the whole aspect concurrently verified.
An example is given in Figure 34. The owner of the parameter for printer throughput
in this case is the engine requirements model. The parameter is stored there uniquely,

80

while the other models reference it by shortcut (this referencing is explained in the
next section). The paper path architect has ownership over the parameter value, so
the “KBE tool” and the “Happy Flow tool” may not change its value.

While this model of the aspect says nothing about validation of the values or the
knowledge inside the domain models, it structures the design process in such a way
that (automatic) validation becomes possible (see next subsection).

The amount of information (number of nodes and relations) inside the models can
grow very quickly. It is suggested to only model information exchanged between
designers and tools. Even then, the amount of information can be too large to be
evaluated by a single person. Therefore, the next section introduces a mechanism to
limit the information that a certain stakeholder sees based on his interests

4.2.4 Fourth scenario: Addressing stakeholder interests in a shared model

As explained before, the amount of information flowing in a design process can
increase very quickly. However, the figures here do not state much of the underlying
information exchanged between the models and agents. This is a result from our
approach to separate data from its representation. The AM is a ‘flat’ model, i.e., it is
a list of elements referencing each other through attributes (see the left of Figure 35).
Composition/decomposition attributes can be used to represent hierarchy without
changing the flat character of the model. As such it is very easy for a computer to
handle. As shown in Figure 35, stakeholders can select and create shortcuts to
elements from the AM to construct their own views on the architecture.
Manipulating the elements in this view will update the data in the all views based on
the same AM. Referencing external architecture models is also possible through the
shortcut mechanism. The AM Diagram is a representation of these elements in a
human-readable form (graphs as in the right of Figure 35). Figure 32 to Figure 34
show ‘views’ on the underlying AM, with selected elements to make a point clear to
the reader.

While the views are another element type of -and thus owned by- the AM, the
diagrams of the models can refer to other views using shortcuts. This is another
mechanism to keep the AM size manageable and manage complexity.

Because multiple views can reference one element of data, the views can be used for
negotiation between stakeholders. In Figure 34 one can see that the throughput
parameter is used by various stakeholders. If the Happy Flow simulation stakeholder
concludes that the throughput value is unattainable, he or she could find the affected
stakeholders through the attributes of the parameter object. He can then start a trade-
off meeting with those stakeholders to discuss a proper value. This mechanism can
be the starting point for impact analysis of design changes.

For the case study, views were facilitated to the stakeholders, such as the engineers
and automated design tools, which are involved in the paper path design process.
These views concern mainly behavioral (running modes, system processes) and

 81

structural (components, decompositions) views on the system, as this relates to the
daily work of the engineers. The views represent an abstraction of the domain-
specific models of those stakeholders, to keep a sense of familiarity with the
information. An example is the separation of the physical component decomposition
(used in production, assembly, and maintenance), and the functional decomposition
(used in software development and simulation). These views can be used by
automated tools to select a subset of the AM to work on. As such, tools can
automate parts of the design process of the paper path as seen in Figure 33.

Architecture Model

Flat View

Sub View1 Sub View2

Stakeholder1 Stakeholder2 Stakeholder3

Diagrams
XML file

manipulate Data Manipulate Representation

data - [] Other Architecture Model
Applied to...

Figure 35. Separated data and visualization.

4.2.5 Fifth scenario: Supporting automatic information exchange among

tools

The computer-readable format of the AM model allows for fast and safe model data
transfer, reducing the need to copy information. Furthermore, domain-specific tools
could directly use the model, allowing automated model transformations. The next
discussion illustrates this through a usage scenario that involves gathering and
transforming data from various design disciplines to create a simulation model used
to analyze the timing performance of the paper path in a printer (cf. third scenario).

Firstly, since the model of the architecture presents the shared data from the various
disciplines in a common format, it is much easier to automatically transform the
required data into a domain-specific format, such as the one needed for the Happy
Flow simulation. Secondly, the definition of the operation modes (e.g., two sided
flipped, two sided not flipped) needed to run the simulation can be considered to be
part of the specification of the product, and can thus be captured as a function
decomposition and ordering. Mappings to components of the system then provide
means to link the function ordering to the components the sheet is moving through
for a specific mode, assuming this mapping is complete and unambiguous.

Additionally, there is the opportunity to generate new models based on the desired
function specification and the actual components of the system. To this end,
knowledge-based engineering (KBE) methods [102] were used. Assuming that the
design rules of the involved disciplines are known, a software application
incorporating these rules can be created, which performs the task of engineering

82

(composing, sizing, positioning) the system defined in the product architecture. As
the application would be implemented in a software language, it is possible to not
only read and interpret the product architecture, but also:

 Create a possible implementation: Using stored function-component mappings,
the function model can be transformed into a possible schematic design solution
(see e.g., [35])
 Add new component objects: For example, if the application determines that there

are two components of type A and type B next to each other, and a rule describes
that there must therefore be an additional component of type C, this latter
component and its relations can be automatically added.
 Determine and substitute parametric values: Based on the requirements specified

in the product architecture, a possible solution to the design problem can be
generated, either deterministically or by using iterative optimization methods.
 Add domain-specific objects: Based on information in the AM, the application

can collect data and transform it into a model input. Similarly, the application can
add domain-specific objects and parameters of its internal model of the system to
the architecture, acting as another domain-specific model.

Depending on the specific problem, a combination of these approaches can be
implemented. In order to determine which objects in the AM are of interest to the
KBE application, each object has a ‘knowledge’ attribute, indicating the type of
information available in the object. In this way, the KBE application can identify
part of the AM as the input for model generation.

to print duplex, not turned, multi-forma

Type

to provide new multi-format sheet

Type

to transport through main loop

Type

to transport into flip

Type

to transport to finisher

Type

to transport from flip to main loop

Type

go into loop

direct to finisher

to flipper
to duplex

to close loop

Figure 36. Definition of an operation mode in terms of function objects in the AM.

For the current use-case scenario, a prototype KBE application for the design of the
paper path has been developed, which:

 Generates a conceptual geometry of the paper path, based on the component
specification in the AM and a restricted set of design and engineering rules and

 83

high-level design parameters. This assumes that the system is composed of
existing components, and that the set of design rules is complete.
 Determines the number and position of sensors and pinches, depending on the

current geometry of the paper path, taking into account design constraints with
respect to spacing and placement near junctions.
 Partitions the paper path in segments, following the specific segment definition

for the Happy Flow simulation tool.
 Determines segment ordering for various operation modes, which are defined

using function sequences and component mappings in the AM, see Figure 36.
 Exports component objects (sensors, pinches), domain-specific objects

(segments) and parameters (segment order, shape definition, pinch and sensor
positions) to the AM, containing all necessary data to generate the Happy Flow
input file.

The rule-based design of the geometry relies on a parametric decomposition of the
paper path in pre-defined modules, which is assumed to be common for various
printer types. The left-hand side of Figure 37 shows the generated three-dimensional
geometry, together with the 2D paper path split up in segments. These discipline-
specific segments cross and/or split between modules, in such way that it is not
possible to determine a fixed M to N mapping among them.

Figure 37. Generated geometry with segments (left) and snapshot of resulting animation (right) for the

operation mode defined in Figure 36.

The exported AM objects can be transformed into the Happy Flow-specific format
from within the AM tool using a custom plug-in which, again, relies on the
`knowledge' attribute to collect the necessary data. For the operation mode modeled
in Figure 36, a snapshot of the resulting animation is given on the right-hand side of
Figure 37, with highlighted lines indicating the position of the sheets within the
paper path.

84

Although this usage scenario relies on a specific commercial KBE modeling
platform, the approach shows how a model of the product architecture can not only
be used to document and communicate design decisions, but that it can also be
directly applied for design-level development and analysis. Any software tool
capable of handling XML-data can directly access or modify the data within the
model, ensuring consistency and eliminating the need for manual data
transformations.

With trends showing an increasing attention to formalized knowledge retention in
the form of custom software tools to support or automate engineering tasks, the
capability to capture the decisions and results of creative tasks (e.g., developing the
product architecture) , in computer-readable models is vital.

4.3 Conclusions

Most of the language in the AM is based on the FBS modeling scheme, modified to
better support modeling of behavior and requirements, as well as information
exchange and reuse without directly relying on domain-specific classes.

The experiences presented in Section 4.1 made clear to the author that the high-level
models expected to support the product development processes had a strong relation
to what is commonly known as product or system architecture. This lead to steer the
research efforts towards the central proposals presented in Chapter 3 of this thesis.

MBD is being offered nowadays by some commercial tools, however, its full
potential is not used because it is strongly related to DSM. It is shown in this chapter
that models of the product architecture can provide a backbone to integrate DSMs
and fully implement MBD.

It is hard to expect that the companies suddenly adopt radically different
development approaches such as migration from a document-based approach to a
MBD approach. Small, intermediate steps, like the “mixed” implementations
suggested in the first two usage scenarios, lead to steady changes.

PART II. APPLICATIONS TO CONTROL ARCHITECTURE
GENERATION

 87

5 Current Control Design Practices and Architecture-
Centric Control Design

As stated in the introduction of this book, there in much room for improvement in
support for control design practices. Part I of the thesis presents a proposal which
has been developed to support design processes, while considering more specifically
control design practices. Similar to [150], here the term control systems design/-
development is taken in a broad sense, covering the steps from the conception of its
architecture to its validation. However, the scenarios under study focus on the first
stages of control design, for which it is considered that there is a higher need of
supporting tools and methods. Thus, generation of control architecture,
configuration, or structure are addressed directly in this part of the book. In this
context, generation is understood as the transformation or synthesis of information
in the AM into other models used for (control) design. The main usage scenarios
supported by the tool are inspired by the area of control systems development. The
reason for this is that control systems development inherently profiles as a
multidisciplinary endeavor in which the benefits of improved stakeholder
communication and understanding can be immediately perceived.

Controller
architecture

Design
problem
/ R. spec.

C
h

o
o

se

Traditional Controller Design

M
u

lt
id

is
ci

p
lin

ar
y

in
fo

rm
at

io
n

It
er

at
e

Developed
tools

Manual
work

Design
methods

Requirements
& sequences

State machines
/ control rules

Controller type

Controller
parameters

Control
configuration

Control code Control
hardware

Controller

Figure 38. Elements in common control design process (left) and evolution of information (right, iterations

not shown)

In a general sense, the common process of design of a controller is depicted in
Figure 38 (also see Figure 12, pp. 42). After gathering information of the problem

88

(desired behavior), a control architecture is chosen. The controller architecture
contains information (see the right side of the figure) regarding the controller
configuration, the type of used controllers and associated control parameters, and the
behavior sequences (e.g., represented state machines by control specialists). With
that choice, a set of the most used design (i.e., analysis and synthesis) methods and
tools related to the specific architecture is used to manually generate a description of
the controller in a formal language (automaton, state-chart, etc.). At every step,
information from multiple disciplines gets added or updated, requiring to change or
adjust the current design. Within such an approach, any changes in the problem
specification require to regenerate the formal control description from scratch
(demanding an equivalent amount of work each time), or a manual rework of the
formal description (an error prone activity which also requires a considerable
amount of work).

The goal of this chapter is to present a general description of how “high-level”
models common to all the product development stakeholders can be used to
automatically provide to the control engineer the necessary input information for the
controller design task, while at the same time allows the control engineer to
communicate his results and findings to other stakeholders contributing to a
concurrent product development scheme. To the readers with a background in
control systems design, it must be clarified that Part II addresses many methods
which, many could say, do not belong to the common control systems design
practice. Therefore, several terms and concepts (e.g., controllability, state space
representation) can be used in rather unorthodox ways. Such situations are
highlighted as much as possible to avoid confusion by providing our particular
definitions in the text, which the author recommends reading carefully.

At this point, two well known control paradigms must be mentioned: centralized and
distributed. Distributed control is in general less optimal than centralized control,
but it is extensively used in industry because it usually requires less detailed
(expensive) plant models and it is easier to tune [150]. A distributed control system
can contain many layers with different purposes [145], but a general division
distinguishes a regulatory layer and a supervisory layer. The regulatory layer takes
care of maintaining a group of output variables under specified values (reference
values) with the implementation of a feedback or feedforward loop. In turn, the
supervisory layer is commonly implemented as a discrete event, timed, or state
based controller that encodes the process rules and activates/deactivates (groups of)
subordinate regulator loops. As there is a clear separation in design practices, these
parts of control related to the tasks of regulation and supervision are treated
respectively in chapters 6 and 7. Currently, formal techniques related to fully
centralized control are either more related to regulatory tasks or are not that
generally applicable, and therefore not addressed explicitly in this work.

After this introduction, the current practices in control design for mechatronic
products and the available support are discussed in Section 5.1, justifying the need

 89

for the current proposal. Then, Section 5.2 describes more specifically how the
architecture-centric approach can be applied to the generation of control architecture.
Conclusions are presented at the end of the chapter.

5.1 Controller software design for mechatronic products

Figure 39.Control law design life-cycle, adapted from [79]

The steps in a life-cycle for control law virtual design [79] are presented in Figure
39. The diagram in the figure basically covers the conceptual design phase up to a
point somewhere in the “synthesis” block. From that point on design continues until
obtaining “executable implementation specifications” (e.g., of the level of Simulink
block diagrams) that can be used for validation (e.g., hardware in the loop testing)
and code generation. As can be observed from the figure, control specifications on
the block diagram level are obtained somewhere after getting well founded ideas
about the workings of the product.

Often in practice the “target” system that should be controlled is already designed or
built before controller design begins [16]. Designing a process/product and its
controller concurrently as a unit is justified by the fact that the success of the design
depends on both of these parts. This point of view is not new to the control design
practitioners, as Ziegler and Nichols [201] commented already in 1943: “In the
application of automatic controllers, it is important to realize that controller and
process form a unit; credit or discredit for results obtained are attributable to one
as much as the other”. However formally practicing concurrent engineering is still a
challenge [133], among other reasons because concurrency requires quick and
accurate flow of information among the developers. To attain this concurrency,

90

relevant information from other disciplines must be transferred to the control
designer, not at the end of the hardware design, but dynamically as design evolves
[79]. Benchmark reports carried out on companies in the mechatronic industry
specifically conclude that controller design for mechatronic products can greatly
benefit from the implementation of an integrated product development process [28]
and that challenges in such development process relate strongly to getting
engineering disciplines to efficiently work together [92]. Working together implies
having some common understanding (consensus), but the abundance and variety of
design information hampers integration and thus arriving to a consensus.
Additionally, the origins of this information can be hard to trace and (especially at
early/conceptual design stages) the correlations can be unclear and fuzzy.

For controller design, the origin of some of these integration problems can partially
be traced back to education, which disregards what is called here ‘conceptual
controller design’ in favor of what is denoted as the ‘detailed design phase’ (cf.
Subsection 5.1.2). The outcome of the conceptual controller design is the ‘controller
structure’ [150] (i.e., the main components of the controller and their relations) and
its purpose. This outcome forms big part of the controller architecture. As stated in
Part I, architectural descriptions are a common base over which design information
can be structured, but their current practical use is limited.

The next two subsections consider separately the conceptual and detailed design
phases roughly follow the steps shown in Figure 39 and elaborating on the
information required for the design of the controller. Afterwards, Section 5.1.3
discusses on how existing methods and tooling support the design steps.

5.1.1 Information for conceptual design

The high fidelity model mentioned in Figure 39 refers to the models contributed
from the different engineering disciplines (including control), which represent the
dynamics of the system and the steps/rules of the performed processes. Integrating
all these different models into a single executable model of the system dynamics is
not an easy task [79]. In practice, most of the times the control engineer manually
obtains such models. Another important piece of information to consider is the
possible measurements and control actions that can be taken, as technological and
economic limitations play an important role in the selection/design of involved
equipment.

After attaining sufficient understanding of the system and the processes it carries out,
the designers have to gather requirements (see Figure 39) which specify necessary or
desired characteristics of the behavior and the structure of the product. These
requirements and constraints may be directly linked to controller performance (e.g.,
rising time, overshoot, stability), but in many cases their formulation needs a
“translation” to the control domain. Part of these requirements describes “irregular”
situations and disturbances (e.g., noise) under which the system should be able to

 91

perform as expected. Agreement on a requirement set and on tests to evaluate
conformity is crucial to the success of the design.

The actual design task (synthesis in Figure 39) begins after this point, defining the
controller architecture. The relevant phenomena involved in the system behavior and
the processes dictate many of the controller design decisions for synthesis, which at
this stage centers on the selection of the controller structure. Deciding which parts of
the behavior are “relevant” (i.e. must be modeled and considered) requires expertise
in controller design and analysis, and cooperation with other experts. The goal of
analysis at this point is to obtain simplified system models, representative of the real
behavior, that allow selecting suitable controller structures. At the conceptual level,
selecting the controller structure concerns partitioning which tasks will be managed
by different parts of the controller.

Obtaining the information mentioned above involves exchanging data among
designers and keeping track of the status of the project. These activities raise the
need for additional project-related functionality in the control design support tools
[182]. On a different front, support can be given to compensate for the lack of
expertise in controller design [107], but such an approach is not considered within
the scope of this work.

5.1.2 Information for detailed design

Detailed controller design follows after the conceptual phase, going back and forth
to improve the simplified models when they fail to represent important
characteristics of the behavior of the system, and to change controller structures that
do not result in the desired behaviors. This section provides an overview of the
detailed phase of controller design, following fairly well known guidelines from
literature ([15], [16], [125], [150]).

Classic control textbooks (e.g., Ogata [125], Astrom [15]) cover the ‘detailed
controller design’ phase. Controller design is mainly shown as the process of
modeling a physical system with well determined inputs and outputs, and then
adjusting a set of control parameters in a transfer function to achieve the
performance criteria. Other textbooks [16] explain how controller models (e.g.,
block diagrams, ladder diagrams) can be transformed into control software code that
can be used for implementation. The importance of concurrency to deal with the
challenges involved with the implementation on hardware and its
verification/validation lacks a deep treatment in most cases.

Normally, a well delimited system model is not available to begin. Obtaining it takes
several steps. The process requires iterating over the different steps, “jumping”
when rework on a specific step is necessary. Here they are arranged sequentially:

 Decide the used type of controllers and design methods.
 Determine the values of controller parameters, obtaining stability and desired

performance/robustness. This requires models that can be subject to analysis.

92

 Decide the type of hardware to implement the controller.
 Test and verify the controller against requirements. Controller/plant models

(including physical prototypes) that can be used for simulations and tests are
necessary.

The design of the controller progresses by adding the precise conditions that will
trigger the control transitions along the process. Many conditions concerning error
handling, safety, maintenance and other modes, etc, must be specified precisely to
obtain a working controller. For the feedback/feedforward controller loops, normally
the complexity of the (sub)system to be controlled and the required performance are
the main drivers for deciding the type of controller, though also the choice of
hardware can limit the complexity of the control algorithm. Once a regulator type is
chosen, the values of its parameters can be determined. The methods to set the
parameter values vary from heuristics to optimization algorithms, and often relate to
the type of controller chosen.

Test and verification can be done at every point in the design. Real time and
discretization requirements and constraints affect choices when designing the
controller, and sometimes manage to affect choices as far/early as at the conceptual
level.

5.1.3 Existing support tools/methods for controller design and discussion

This section contains an overview of the role of current tools and methods that
support the controller design activities. A deeper review and discussion of the
challenges to better support (conceptual) design of mechatronic products can be
found in Chapter 2. This section is supported on that part of the work and on some
insights by Maciejowski [107].

There is a recent awareness about the importance of concurrency in the conceptual
phase of controller design, but not much is provided in terms of implementable
methods and tools to support this kind of practice. CACE tools seem to focus on
supporting the detailed design phase. Supporting the conceptual design phase relates
strongly to the management of design activities, and as Maciejowski states, CACE
tools in the future may have to deal with how best to support the work-flow of
control engineers, which closely corresponds to conceptual controller design as
defined here.

5.1.3.1 Detailed design support

James et al. described in [93] the state of the art of CACE tools in 1995. That paper
reports the existence of software for comparing (PID) controllers, multi-objective
optimization, improving (tuning) control, support of symbolic and numerical
computation, hybrid systems representation and modeling are also mentioned [93].
Fifteen years later, most of these capabilities and other key contributions from the
last decade [107] are still the focus of CACE tools (e.g. Matlab, LabView),

 93

centering on what is described here as the detailed controller design phase by
supporting the (detailed) modeling and simulation of the system and controller. The
detailed models (block diagrams, state machines, etc.) used there can be transformed
later to code almost automatically. Challenges regarding the detailed phase of
controller design are still available (e.g., control of constrained systems, hybrid
systems), but still many complex systems can be controlled with the implemented
techniques, and seemingly, industry is still reluctant to absorb some of the new
control techniques [146] despite their value.

In spite of the view by which CACE design can usually be the first step in a systems
integration problem, which should entail computer support for the exchange of
information [94], many tools and methods do not provide such support. This
constitutes a development niche to support tool integration through information
exchange at the detailed phase, because creating a model of the system is expensive,
even with model identification [107]. The work of Varsamidis [182] addresses this
issue (even extending to conceptual design support), but focuses on the tight
integration of control tools, and does not consider the identified need to integrate
control with other disciplines. Tekin [161] also reports on such need.

Other desirable (not yet existing) characteristics of CACE tools are mentioned in [79]
and include:

 Consider directly multidisciplinary physics of the plant.
 Consistently address the varied controller requirements.
 Explore the trade-off potential of controller structures with multiple tuning

parameters more thoroughly.

5.1.3.2 Conceptual design support

There is a prevailing need to support the conceptual phase of controller development
not covered by the CACE tools used in industry nowadays [107]. Some claim that
block diagrams can be used to design the controller from scratch, but these models
may not constitute the natural form of description to begin the design process [94].
Also, the “toolbox” paradigm has not yet shown to satisfy the requirements for high-
level support [107]. Past efforts to produce tools that support the workflow of
controller design can be grouped as follows [107]:

 Searchable design databases that record the technical state of a project in a
model ensuring consistency, and allowing to query the model to check the current
state of work. Obstacles to implement these are the variety and complexity of data
and of possible queries to the model.
 Expert systems to capture design process knowledge and use it to guide the

designer. These systems ended up limiting the possible design actions and
problems.
 Optimization problem solvers in which design is seen as an optimization

problem, and which provide a “language” to specify such problem. The

94

“languages” in these tools mainly developed into a sequence of predefined steps
that narrowed the actions of the user.

To resume, it can be said that conceptual controller design support must overcome
the problem of representing the varied design information. Finding a representation
that accommodates to the design workflow is therefore crucial to build better CACE
tools. As reported by Varsamidis in 1999 [182], to that date no single CACE tool
addressed directly providing project-related functionality. To the best knowledge of
the authors, such functionality has only been partially addressed by other tools
outside of the scope of CACE tools [6]. In those cases, support for overview models
is provided but there is no direct link to the domain-specific models to allow
affordable integration [6]. It is necessary to explore the advantages of linking design
information from domain-specific models and to provide an architectural description
that enables understanding and navigating such links.

An interesting approach related to the use of architectures can be found in the work
of Hayes-Roth et al. [82], though it focuses purely on software development. The
related project sought to improve the coordination between disciplines for complex
software design [93] by providing: Task decomposition of process activities,
reference architectures of software models, and tools for architecture-based reuse of
design.

5.2 Proposed approach

The previous section justifies the need for supporting the control development
process considering a more holistic point of view. The problem of designing a
control system can be misleadingly considered as a domain-specific problem.
However, as seen above, the design of a controller requires input information from
multiple disciplines in order to correctly implement the behavioral specifications.
The previous ideas are also supported by authors like Kindler [97], who reports that
the challenges for model-based software design in relation to modeling system
behavior do not come from a lack of models to represent behavior but are due to a
lack of concepts which allow integrating behavior models with other models (e.g.,
representing structure).

The proposals in chapters 6 and 7 are based on the architecture-centric approach
described in Part I. As depicted in Figure 40 (se also Figure 9), the AM is used to
model a formal controller specification which is machine readable and at the same
time remains understandable to all development stakeholders. The generic nature of
the AM does not constraint many modeling choices. In the course of the
development of the work for control architecture generation it was found that
additional “modeling constraints” (mainly regarding the syntax) are useful (and
sometimes necessary) to obtain correct controller specifications which can be used
for automatic generation of supervisory control design models. It is also worth
noting that the work follows the same considerations regarding having a complete
model defined in Section 3.3 and the modeling limitations as specified in Section

 95

3.3.7.2. These modeling limitations and the information labeling choice impose most
of the modeling constraints mentioned above.

Developed
automated

tools

AM

M
u

lt
id

is
ci

p
lin

ar
y

in
fo

.

Design
methods

Manual
work

Controller
architecture

design

Design
problem
/ R. spec.Ite

ra
te

 Developed
based on

Transform

DATA
exchange

Figure 40. Elements in the proposed supervisory control design process

AM

Control DesignerSystem Architect

Control design toolsOther users/tools

to make system architecture

PROVISION

to develop control concept

PROVISION

to test control concept

PROCESS

to refine system description

Type

system architecture

system and requirements data

tool feedback data

shared system data

shared control data

control structure

control structure data

system concept and requirements

Figure 41. Scenario for control design support

The scenario for control development support is presented in Figure 41. Using the
AM, system architects can provide a clear view of the system architecture which the
control designer can use as input to develop the controller structure. The resulting
AM can be transformed into formal representations that can be used by the control
design tools to analyze and verify the specifications. Feedback from the results of

96

the control design tool together with increasingly detailed information from other
domains can be used to refine the design. In the context of this scenario, design
information can be reused at almost every step to reduce required effort and time,
making this proposal scalable. Previously developed design knowledge can be
instantiated to describe repeated solutions, and data shared and updated through the
network reducing information delay and transcription errors.

5.3 Conclusions

This chapter explains in general terms how the proposals from Part I can be
implemented to specifically support controller design activities through the
interaction with controller design methods and tools.

The review of existing methods and tools which specifically support control design
(i.e., CACE) confirms the findings documented in Chapter 2, and shows that MBD
based on DSM implementations lacks the crucial integration component necessary
to properly support design activities for mechatronic systems.

 The proposed workflow fulfills the characteristics missing in the current CACE
approaches presented in Section 5.1.3, supporting conceptual design by providing
consistent and indexable information which can be used for searchable databases,
and supporting detailed design by facilitating the exchange and presentation of
multidisciplinary design information used to build the plant models and for
evaluating design tradeoffs.

 97

6 Regulatory control structure

A regulatory controller takes care of maintaining a group of variables under control
following a reference, and in general it is implemented as feedback and/or
feedforward control loop. Its structure comprises identifying the state variables and
selecting an appropriate group of measurements, manipulated variables and
controlled outputs. In general, an “appropriate group” allows obtaining a stable
behavior and following the references under the performance specifications.

This chapter focuses on the regulator layer of control, and more specifically, on its
configuration. The control configuration problem [150] refers to the task of selecting
appropriate inputs and measurements for the system and grouping them in individual
control loops that can attain the following goals:

 Stabilize an unstable plant
 Reject disturbances

Track reference changes

In this chapter, it is shown how the input information from the AM can be
(semi)automatically transformed to be used in powerful and light “linear structured
systems” (LSS) analysis and synthesis techniques ([48]-[52], [61]) which can be
used to tackle part of the control configuration problem, possibly extending to other
domains. Figure 42 depicts an overview of such transformation process, where the
behavior layer of the AM is parsed to extract a parameter network which in turn can
be transformed into a LSS representation (in graph or matrix form) using additional
information from the other AM layers.

Architecture Model Parameter Network
Linear Structured

System

Mass AppForce

Accel

Speed

Position

1

2

,

,

0 0
,

0

,

0

x

x

A

y

C

Speed

Position

Accel:d

Speed:d

Position:y

 =

Speed

Position

Accel:d

Speed:d

Position:y

Massive object

Mass - [kg]
AppForce - [N]

Accel - [m1s-2]

Speed - [m1s-1]

Position - [m]

Newton2nd AppForce=Mass*Accel{Accel,AppForce}

AccInt Speed=INT(Accel){Speed}

SpInt Position=INT(Speed){Position}

ExtM Mass{Mass}

ExF AppForce{AppForce}

External agent force

to move object

Type

Req. position

GREATER 1 ()

LSS-Graph LSS-Matrix

Figure 42. Overview of AM to LSS transformation (top) and the corresponding models for a simple

example (bottom)

98

The chapter is structured as follows: First, the general aspects of the control
configuration problem are explained in Section 6.1. Section 6.2 describes which
kind of information relevant for the regulator configuration problem can be
extracted from the AM. Section 6.3 briefly presents related techniques of LSS
analysis, and Section 6.4 explains how to extract the control-relevant information
from the AM and transform it into an LSS description which can be analyzed as
explained in Section 6.5. An example case study demonstrates the concepts from
previous sections in Section 6.6, while a second case study in Section 6.7 is used to
discus how the results may extend to other domains (for co-design). Section 6.8
finishes the chapter with a brief discussion of the results and conclusions.

6.1 The controller configuration or I/O problem

This section gathers material from the work of Skogestad et al [150] and from the
experience of the authors, dealing with the most general aspects of the control
configuration problem. The purpose is to quickly introduce the most general
audience into the control domain and the configuration problem. The terminology
from [150] has been modified in order to better match some of the terms in the
works of Commault et al [49], used in section 6.5.

6.1.1 The regulator and its parameters

The regulatory controller configuration problem seeks to define the structuring/-
decomposition of each regulator. First a model for the regulator is described. Each
regulator can be generically described as shown in Figure 43. Five important signal
types that relate to the regulator can be distinguished:

Figure 43. Generalized plant model

 Controlled outputs, y t , consist of those signals of the plant which are to be kept
under certain values to achieve the system goals.
 Control inputs, u t , are the signals which are manipulated by the regulator

through actuators.
 Measured outputs, z t , refer to signals coming from the plant which are

measured and sent to the controller.
 Feedback controllers typically take in consideration reference signals, r t , that

can be compared to some of the (measured or estimated) controlled outputs to

 99

compute the control inputs based on the comparison (i.e., error, e y rt t t);
in this sense, feedforward regulators do not use such reference signals.
 Plant disturbances, q t , include all input parameters to the plant which are not

part of the control inputs. Thus, q t includes process inputs which are not under
direct control of the regulator and may be subject to variability. If present, plant
model uncertainties and measurement noise are modeled explicitly in the AM and
therefore are not considered in this category.

The ‘signals’ above are represented by ‘parameters’ in our models. Of course, the
models also require a representation of the plant itself. A sixth type of parameters
not mentioned above are the state variables, denoted by x t . State variables are
used to identify the current state of the system and are inherent to it, though state
variables can be represented in different reference frames.

The first problem to tackle when dealing with the control configuration problem is
the selection of such parameters. A big part of the Input/Output (I/O) selection
problem [180] can be included within such scope. This problem is often solved by
using the experience of the designer or using methods that rely heavily on the
analysis (e.g., by simulation) of numerical data to quantify the interactions among
parameters and other properties like observability and controllability. These
techniques try to formalize more “general” solution guidelines. As an example, refer
to the guidelines from Chapter 10 in [150], which uses methods based on the
computation of condition numbers and the relative gain array. In this context one
can pose the question: how to solve the control configuration problem at an early
stage of design (where it should be initially posed) in which normally no (detailed)
values are available and possibly many design alternatives are still under discussion?
The techniques discussed in the sections ahead address this challenge.

Normally, y t , r t , q t , and x t form part of a well posed configuration
problem. Surely, posing the problem may also be considered part of the problem
itself, as it involves important decisions that affect how the whole system is
constituted. Such parameters act as the input information to select z t and u t . In
general, the selection of the latter parameters should achieve the following:

 Ideally, vales in y t should be independent of values in q t . If this is not the
case, the problem of disturbance rejection must be tackled and a part of u t
should affect the system (x t) in such way that changes of values in q t affect
as little as possible the values in y t .
 Values in x t , y t , and q t should be known, either directly from z t or

indirectly by computation from a part of z t . The part of z t used for a purpose
should, ideally, be robust and reliable, e.g., the part of z t used to quantify y t
should be independent from q t and other disturbances.
 Changes (within range) of values in specific parts of u t should efficiently affect

values in y t in a specific way, i.e., complying to r t .

100

6.1.2 Control configuration elements

In addition to selecting the right parameters for the regulator, it is necessary to
determine how these parameters relate to each other by selecting the links inside the
controller and which will be the role of the regulator in the control scheme, possibly
also conveying a design sequence. This is done before specifying the controller type
(PI, PID, LQG, etc.) and gain values. Based on different properties of the problem,
several choices with different uses can be mentioned at this point:

 The level of knowledge of the system and the disturbances: One has “good
knowledge” when one can accurately predict system behavior. Feedforward
(feedback) control elements can be used when very good (not so good) knowledge
of the system and the disturbances is available.
 The coupling of systems: When subsystems are coupled (physically or by

knowledge or measurement limitations), decoupling elements are used to be able
to control a subsystem independently from other subsystems. In some cases, this
structure appears as if the controlled outputs of a subsystem are considered as
disturbances in another subsystem.
 The coupling of dynamics in time: When a system shows dynamics at

significantly different time scales (the significance depends on the problem),
configurations such as cascade control can be used to handle and tune the control
of the dynamics separately. In cascade control the controllers responsible for the
faster dynamics are “tuned” first, and subsequently considered as part of the plant
for the following, slower, controller.
 The system dynamics can be accurately represented with linear models or not:

These affect the configuration choices in multiple ways. However, here it is noted
that together with our level of knowledge of the system, the nature of the
dynamics affect the choice (including all the range in between) of using more
simple regulators managed by a supervisor or selector, or using more complex
regulators without any supervisor. Having multiple control objectives can also be
considered a non linearity, as the controlled plant “changes” depending on the
objective.

As it can be seen, the different regulators could need to be designed (tuned) in a
certain order according to the chosen configuration. This is especially true in the
case of cascade controllers (though it can happen in other configurations), where the
regulators in the “inner loops” should be tuned before the regulators in the outer
loops.

6.2 Parameter network

The parameter network is a causal dependencies graph [121] between parameters of
a system. It is composed of parameter vertices and directed causal relation edges (cf.
Figure 42, bottom-middle). An edge between two parameters indicates that the
parameter at the beginning of the edge influences the value of the parameter at the

 101

end of the edge. The concept of causality taken in this work is explained in detail by
Nayak [121].

The parameter network can be modeled directly, but this is an error prone activity
when many parameters and relations must be considered. Therefore here the
information in the behavior layer is used to facilitate modeling and allow reusing the
information. The behavior layer contains ‘formula’ objects representing the effects
of (natural or artificial) phenomena. In this work, the formulae are used to define
causality relations among parameters. Therefore, the formulae only need to capture
which parameters affect the value of every parameter in the behavior layer and, as
done by Nayak in [121], do not necessarily specify more detail regarding how
(proportional, inverse, exponential, etc.) they affect each other.

To be able to build the parameter network from formulae, the latter must be causally
oriented [121]. In the context of building a linear structured system description,
causal orientation obeys to the causality that explains the behavior of the system.
Considering as a simple example Newton’s second law “Force equals mass times
acceleration”, the value of the mass is not determined by the other terms and thus the
corresponding formula can only cause the force or the acceleration. See formula
‘Newton2nd’ in Figure 42 (bottom-left) to see how this information is represented in
the AM. Each formula can be chosen to cause a single parameter, and therefore, in
cases where several parameters could be caused, causality can be determined by
analyzing a complete set of equations. This analysis can be done using the causal
ordering algorithm presented by Nayak [121], where a perfect bipartite matching is
searched between the set of parameters and the set of equations that can cause them.
Such algorithm has been implemented in Matlab together with an algorithm to read
the data from the serialized AM.

In the AM, a complete formula set is mapped to each individual entity or entity
relation (see Figure 42, bottom-left), allowing to build a parameter network for each
object in the structure layer. Then, the individual parameter networks can be joined
simply by using the shared unique parameters. To reduce the modeling effort, it is
possible to implement more complex algorithms to build the parameter network by,
for example, simultaneously ordering the equations of several entities, which
reduces the number of equations needed to indicate that parameters are just ‘passed’
to an entity and caused by another one. The simple parameter network in Figure 42
shows how straightforward is the process to extract the parameter network from the
formula sets: for the entity ‘Massive object’, the mass and the applied force are
determined externally, then the acceleration becomes caused by those two
parameters as formula ‘Newton2nd’ indicates, and the two formula specifying
integration relations cause the speed and position parameters.

The parameter network can also be obtained from other physical models which are
able to represent the causal orientation of parameters, e.g., bond graphs [95] (see
also [58] for direct structural analysis using bond graphs). The main reason to
choose using the information of the structural layer in the AM instead of other

102

existing models is the ease of use and implementation. That is, the AM language is
very simple and implementing a modeler that allows filtering and querying the
information in the AM format did not require much effort. In that way it was easier
to build the model of the structure natively and connect it to the other information in
the AM rather than using an external model that had to be parsed and connected.
Other important reasons are:

 It is possible directly to add requirements and other relevant information coming
from different disciplines in the AM to define the control problem
 The AM structure representation is more flexible (though less formal) than other

representations.
 Some existing models are easily understood mainly just by domain experts.
 Unnecessary details pertaining to domain-specific models (e.g., detailed

mathematic equations) can be easily filtered out from the AM.
 To the best knowledge of the authors, very few models are intended to seamlessly

represent behavior coming from both, natural/physical phenomena (as in
mechanics or electrics), and from man-made/artificial phenomena (as it is present
in software systems). This also translates into a breach between the representation
of continuous and discrete behavior. Bond graph models [95] as used in physics-
based control [149] and some models for hybrid systems [158] partially address
these representation gaps.

6.3 Linear Structured Systems

A LSS corresponds to the ‘structure’ of a state-space description of a linear
continuous-time time-invariant system [61]. To refer to the LSS this chapter adopts
the form x Ax Bu Eq , z Hx , y Cx , and u Fz , where the capital
letters indicate the structure matrices relating the parameter vectors. By structure, it
is implied that, for each matrix, it is only known which elements of the matrices are
fixed to zero and which ones are not (also called free parameters), i.e., except for
zero, the values inside the matrices are not known! Such representation allows
analyzing a system and obtaining well founded guidelines about which control
configurations lead to desirable control properties (cf. Section 6.1.1), though
normally they do not allow obtaining a direct answer about which configuration
should be chosen. An important advantage of LSS over other (value-dependent)
techniques is that it requires substantially less detailed data, analytical effort, and
computational power [180]. It is common that the structure matrices are represented
as graphs and that graph theory tools (e.g., path finding algorithms) are used to
verify the structural properties. This facilitates visualization and interpretation of the
results. These characteristics make the method a good candidate to match control-
related information even at the early stages of design, where architectural
descriptions start developing.

It follows a presentation of the desirable control properties that can be structurally
verified using the LSS analysis, including a simplified description of how each test
is performed. A more complete description will be given in Section 6.5. Though

 103

these methods do not coincide with the common methods to determine these
properties numerically, they are funded over equivalent (but less detailed)
theoretical basis (e.g., zero structure at infinity). For more tests (invariant zeros,
fixed modes, fault detection, etc.) and further details the reader is referred to the
comprehensive work on the topic by Dion et al [61], to the earlier work of
Reinschke[140], and other available papers ([48]-[52]).

Observability: Determines whether one can find out the state of the system with the
current sensors (measuring z t). It is verified by checking paths between
parameters representing state variables and measured outputs.

Controllability: Verifies if it is possible to affect the state of the system with the
current actuators (affecting u t). It is tested by checking paths between parameters
representing control inputs and state variables.

Disturbance rejection: More specifically refers to the problem of disturbance
rejection by measurement feedback and the test documented by Commault et al in
[49]. It basically deals with detecting whether the disturbances can be detected fast
enough (i.e., are dynamically close, cf. Section 6.1.1) and the controlled inputs can
correct such disturbances before they reach the controlled outputs.

I/O grouping and pairing: Consists of trying to pair inputs that are better fit to
control certain outputs with such outputs, and of grouping inputs and outputs meant
to perform similar control tasks.

The subsequent section details how the information in the AM can be matched and
transformed into an LSS description, performing what is coined here as parameter
classification, and gives some examples of the tests mentioned above.

6.4 Parameter classification process

The LSS description necessary for analysis can be obtained directly from models
such as the state space description of the system or its equivalent system of
equations. Normally, the control engineer either receives such models from other
stakeholders or has to develop it by himself. In the first case, the control engineer
can treat the model mainly as a black box, and little communication will be present
among the stakeholders. While this may be acceptable when dealing with well
known systems, for systems under development it can mean that the modeling
considerations are not transmitted effectively to the control engineer, reducing his
ability to detect and solve many problems. On the other hand, the second case
implies that the control engineer will have to look for the model information and
assumptions by himself. This situation can be acceptable when dealing with simple
systems, but more complex systems can demand much effort from the control
engineer, not only to get enough understanding for building an acceptable model,
but also to update the model when changes from other disciplines affect its validity.

The approach followed here is an important contribution of this work. It is proposed
to let each stakeholder build his /her part of the model, using a simple modeling

104

language common to all stakeholders (that is, the AM). Then the control engineer
can query for the necessary data and automatically obtain a model suitable for LSS
analysis, with the additional advantage that he can gain better insight on the system
by querying the modeling platform to the extent he wishes. This section describes
the process to query and identify the relevant data in the AM and to generate an LSS
description (see Section 6.3) from it.

Regulator goal
(Function + Requirement layer)

Parameter network

Controlled outputs

 LSS matrix form , , , x Ax Bu Eq z Hx y Cx u Fz

State Variables

x uz

A BC F

Measured outputs Controlled inputsDisturbances

E

q

Formula set

Causality

“Control function”
Formula labels

“Integral”
Formula labels

Behavior layer

“Environment”
Formula labels

y

H

Figure 44. AM (top) and LSS (bottom) data correspondence for the parameter classification process

Figure 44 provides a more detailed view of the last step of the transformation
process introduced in Figure 42. For this case, each formula is labeled directly by
identifying certain keywords in it (e.g., ‘INT’ in some of the formula in Figure 42,
bottom-left) which identify the appropriate parameter type in the context of LSS.
Then, the parameter network is used to find how the relevant parameters causally
relate to each other. First it is useful to focus on the ‘plant’ or the portion of the
system that does not include the controller. Thus, the formulae corresponding to the
controllers (labeled as ‘CONTROL FUNCTION’) are not used. The state variables
present in a dynamic system can always associate with the presence of their
corresponding derivatives. Therefore, from the formulae labeled as ‘INT’ one can
identify the parameters corresponding to the state variables and their derivatives,
respectively as the caused and causing parameters. The simple case from Figure 42
(bottom-left) depicts how some formulae are labeled with ‘INT’. As seen in Figure
42 (bottom-right), position and speed are identified as state variables, and speed and
acceleration as their derivatives. The parameters corresponding to derivatives of
other parameters have been named ending with a ‘:d’ for the sake of convenience (cf.
Figure 42, bottom-right).

From the control perspective, disturbances correspond to all the system inputs which
will not be controlled by the regulator. A set of disturbances can be identified as the
causing parameters from the formulae labeled as ‘ENVIRONMENT’. Considering
only the formulae labeled as ‘CONTROL FUNCTION’ it is possible to obtain the
measured outputs as the set of causing parameters, and the controlled inputs as the

 105

set of caused parameters. For simplicity our simple example in Figure 42 does not
contain a suggested controller structure. Since the parameter ‘AppForce’ is not
caused by a formula labeled as a control function, the system does not identify it as a
control input. Identifying the controlled outputs is based on the premise that it is not
possible to control any parameter without specifying some desired characteristics
about how it should behave. Therefore, the model must contain the required
characteristics for all such parameters as requirements mapped to them. The set of
parameters constrained by valid requirement objects determines the potential
controlled outputs. However, since requirements are also used to specify acceptable
characteristics of disturbances (i.e., the operation conditions), one must subtract
from the previous set those parameters that belong to the disturbances set. For our
simple example in Figure 42, the position is correctly identified as a controlled
output. For clarity, when a state variable is both a measured and a controlled output,
dummy nodes have been created for the controlled output case, adding ‘:y’ to the
original state parameter name. The requirements definition for set of controlled
outputs can be effectively used as the description of the reference values for control.

At this point, the implemented tool has identified all the different types of
parameters required for the LSS model. However, the structure matrices also have to
be built. To do this, the network has been simplified so that it contains only the
classified parameters and their connections, i.e., each node corresponding to a
parameter not present in the sets found with the labeling shown above is replaced by
direct connections among its adjacent nodes. In this implementation, it has been
decided to traverse the network to find each path connecting a pair of parameters,
and then simplify it as a single causal relation. The results for our simple example
can be seen in Figure 42 (bottom-right).

Section 6.6.3 illustrates how the parameter classification was done for the bigger
example case, giving further detail about the parameter classification process. The
analysis of control properties is explained in Section 6.5.

6.5 LSS analysis

From above it can be seen that the result is that, starting from an AM, the developed
tool is able to interpret the data and generate a LSS description. The resulting LSS is
used here to analyze a prototype controller regarding controllability, observability,
and disturbance rejection. Afterwards, the tool also presents some advice to modify
and improve the prototype controller regarding I/O pairing. Examples of this
analysis are provided in Section 6.6.

Several equivalent approaches can be used to test the different control properties,
and in this work uses some of the most recent methods ([49], [51], [61]) which
transform the original LSS into bipartite graph descriptions which can be efficiently
traversed to perform the tests introduced in Section 6.3.

The observability and controllability tests respectively verify each state variable
reaches at least one measurement (output connected) and can be reached by at least

106

one control input (input connected). This can be verified by tracing paths from/to
each state variable to/from the nodes marked as outputs/inputs in the LSS graph.
Additionally, the controllability and observability tests include verifying whether the
system is irreducible. Irreducibility of the system matrix can be proven using LSS
techniques as shown by Reinschke in [140].

The measurement feedback disturbance rejection test can result positive or it can
indicate that, with the selected configuration, the problem is not solvable because
not enough measurements to appropriate state variables are available. This
“appropriate” set of state variables (called here ‘I*’) is such that, an inaccessible
disturbance affecting directly these states can be rejected by state feedback, provided
that the disturbances do not affect directly the outputs [49]. Unfortunately, the test
does not indicate exactly which measurements set should be taken.

The analysis of the I/O pairing can be addressed by solving the problem of non-
interacting control [61] for the cases where equal size sets of inputs and outputs have
been defined. The pairing of inputs and outputs is done by finding minimum length
paths connecting inputs and outputs. The existence of such implies that the non-
interacting control problem is solvable.

6.5.1 Additional experimental methods

Additional clues for measured outputs and controlled inputs have been found during
the tests and are presented here as part of our contributions. However, no formal
proof has been developed yet. Furthermore, from the practical point of view, the
output suggestions may contain unfeasible solutions for the implementation (e.g.,
because of cost, or implementation difficulty).

Some I/Os can be suggested depending on the state variables relations and the
identified controlled outputs. The first step consists on finding minimum-weight
paths from the state variables to the controlled outputs in a similar fashion to that of
the observability test. The resulting paths (resp. ‘Pso’) can be used to suggest
possible measured outputs at the end of them, and possible control inputs at the
beginning of them. For our simple example from Figure 42, the system suggests to
measure the position and to actuate through the acceleration. Checking for the
parameters that affect the suggested input in the parameter network (for our simple
example, the mass and applied force) can provide more clues to select the control
inputs.

If disturbances are known, this suggestion can be further expended to cope with the
disturbance rejection problem. Each of the suggested set of control inputs can be
expanded along the Pso paths to the state variables which are right after the state
variables affected by the disturbances. The measured output combinations can also
be expanded. The minimum-weight paths (resp. Pqi) are defined as going from the
disturbances to the nodes of the set I* that connect to state nodes out of such set (this

 107

subset is called ‘I*f’). New measured outputs can be taken from the states in such
paths.

Boarding the I/O matching problem through the non-interacting control approach
can help pairing single inputs and outputs. However, following the same lines of
thought as our previous suggestions, inputs or outputs can be clustered in bigger
groups according to the metrics of path length (i.e., inputs with similar path lengths
to a certain output can be considered similar) or other heuristics like coincidence
with a path affected by a certain disturbance (i.e., an I/O path with a Pqi path). Other
possible suggestions to cluster inputs and outputs may come from the subjective
definition of the function nodes and their attached requirements by, for example,
treating controlled outputs as a group when they must comply with requirements
mapped to a single function. Thus, the latter suggestion would take into account the
desired configuration proposed by the designer.

6.5.2 Control configuration interpretation of the LSS analyses

In addition to the previous analyses, which mainly deal with selecting an appropriate
set of inputs and outputs (see Section 6.1.1), some light can also be shed over the
problem of choosing certain control configuration elements like the ones introduced
in Section 6.1.2.

 Feedforward elements can be implemented for complete rejection of disturbances
which can be quickly measured or whose behavior is known in advance. This can
include, for example, inertial or gravitational effects over a known mass. In this
sense, the specific measurements and control inputs added for the disturbance
rejection problem may be implemented as feedforward controllers.
 In general, decentralized/decoupling control elements can be implemented

whenever the non-interacting control problem can be generically solved.
 Use of a cascade control is greatly affected by the speed of its composing parts,

therefore, LSS techniques do not seem appropriate to aid in the selection of
cascade controllers.
 The supervisors (selectors) are meant to deal with specific nonlinear

particularities or different operation modes depending on specific values. Since
these details cannot be appreciated in the LSS representation studied here, the
analysis methods presented in this chapter do not support such choices.

6.6 Example case study: demonstration of transformation to LSS

The sample case studied here corresponds to the well known problem of control of a
distillation column ([61], [150]), in this particular case, with thirteen stages. This
section documents on the creation of an AM suitable for the extraction of a
parameter network and the resulting LSS representation. The obtained LSS model is
analyzed to make several suggestions for the design of the regulatory control
structure.

108

6.6.1 AM for a distillation column

Functionality

to evaporate part of component mixture

SEPARATE

to recirculate condensed liquid

GUIDE

to provide binary liquid mixtur

IMPORT

to

to separate binary liquid mixture (process)

SEPARATE

to gradually condensate vapor at decreasing temperatures

CONVERT

condensate is formedinputflow present mixture vapor is formed purified vapor is left

Nominal feed flow

EQUAL 1 (-0.1_+0.1)

Nominal feed liquid fraction

EQUAL 1 (-0.05_+0)

Nominal feed composition

EQUAL 0.5 (-0.1_+0.2)

Nominal feed conditions

AND Value ()

F - [kmol1min-1] q_F - [Fract] z_F - [MolFract]

Figure 45. Functional decomposition for distillation column

to maintain distiller operating leve

REGULATE

to keep constant presure under safe levels

REGULATE

condensed liquid

IDE

to obtain specified purity in distille

REGULATE

to recirculate part of distilled

GUIDE

to control separation process

CONTROL

to condensate all remaining vapor

CONVERT

ss)

eratures

mixture vapor is condensedpurified vapor is left

Required distilled purity

EQUAL 0.9 (-0_+0.02)

Nominal distiller operation levels

AND Value ()

Nominal reboiler stage holdup

EQUAL 0.5 (-0.05_+0.05)

Nominal condenser stage holdup

EQUAL 0.5 (-0.05_+0.05)

y_D - [MolFract]

M_D - [Kmol] M_B - [Kmol]

Figure 45. (cont.) Functional decomposition for distillation column

This section contains a sample AM consisting of a distillation column with thirteen
stages and a prototype controller, from which it is possible to derive a ‘parameter
network’ that provides the raw material for control structure analysis. Initially, a
brief description of the functionality may be sketched by a stakeholder such as the
process designer or the system architect. Figure 45 documents that the purpose of
the process is to separate a binary liquid mixture, with a certain required purity

 109

specified by the distillate concentration parameter ‘y_D’. The main functionality
decomposes to describe in more detail how it is achieved, for example, by
evaporating part of the mixture and gradually condensing the vapor. More detailed
requirements specify the required conditions for the feed flow and operation levels.

Structure

Stage10

Stage6

Condenser(stage13)

Stage11

Composition contro

Stage9

Stage4

B level contro

Stage8

Environment

Stage12

Feedstage(stage7)

Stage3

Stage5

Stage2

D level contro

Reboiler(stage1)

condenser measurements

distiller level measurement

liquid from 13

distiller level control signal

condenser commands

vapor from 12

liquid from 6

liquid from 12

liquid from 9

liquid from 7

liquid from 4

liquid from 5

liquid from 10

liquid from 11

liquid from 8

liquid from 3

liquid from 2vapor from 1

vapor from 10

vapor from 2

vapor from 3

vapor from 4

vapor from 5

vapor from 6

vapor from 7

vapor from 8

vapor from 9

vapor from 11

reboiler commands

reboiler level measurement

B control signal

botoms light fraction measurement

Feed stage flow inputs

Figure 46. Separation column structure (parameters are not shown)

A stakeholder in charge of developing the implementation concept (e.g., process
engineer) can model the structure diagram of the column (see Figure 46), which
shows that the environment provides an inflow of mixture to be separated, while the
stages orderly exchange vapor and fluid. Three separate regulators that exchange
signals with the column take care of maintaining the levels at the reboiler and

110

condenser stages, as well as of guaranteeing the composition of the distillate. At this
point it is possible to indicate which parts of the structure take care of implementing
the functionality by creating mapping links between the function and entity nodes.
For space reasons all these mappings are not shown in here, and an example is
presented later in Figure 48.

Condenser stage formulae

Condenser(stage13)

D - [kmol1min-1]

x_D - [MolFract]

dx_D - [MolFract1min-1]

L_D - [kmol1min-1]

M_D - [Kmol]

y_D - [MolFract]

L - [kmol1min-1]

L_Value - []

D_Value - []

M_D_Value - []

y_D_Value - []

dM_D - []

alpha 1.5 [RelVol]

V_12 - [kmol1min-1]

y_12 - [MolFract]

s13_Light component mass balance M_D*dx_D+x_D*dM_D=V_12*y_12-L_D*x_D-D*x_D{dx_D,dM_D

s13_liquid amount L=L_D{L_D,L}

s13_mass balance dM_D=V_12-L_D-D{dM_D}

s13_M derivative M_D=INT(dM_D){M_D}

s13_vapor-liquid compositions y_D=alpha*x_D/(1+(alpha-1)*x_D){x_D,y_D

s13_x derivative x_D=INT(dx_D){x_D}

mixture relative volatility alpha{alpha}

s13_measured level M_D_Value=M_D{M_D_Value}

s13_measured composition y_D=y_D_Value{y_D_Value}

s13_produced distillate L=L_Value{L}

s13_recirculated liquid D=D_Value{D}

condenser measurements

distiller level measurement

liquid from 13

distiller level control signal

condenser commands

vapor from 12

Figure 47. Diagram containing the formulae for an entity, and its relation to parameters and entity

relations.

D level contro

M_D_Value - []

D_Value - []

to maintain distiller operating leve

REGULATE

distiller level control signal

distiller level measurement

D lev loop D_Value=CONTROL FUNCTION(M_D_Value){D_Value}

Condenser(stage13)

Function
 layer

Structure
layer

Behavior layer

Figure 48. View spanning over several model layers, showing objects directly related to the distilled level

controller (“D level control”)

 111

For each entity and entity relation one can define a set of parameters, and formulae
to define the relations among parameters. An example of this part of the model can
be seen in Figure 47. At the modeled level of granularity, fifteen parameters define
the state of this entity, and only a few constant values (e.g., the relative volatility
‘alpha’) have been set. Eleven formulae have been modeled explicitly to relate these
parameters, while other four formulae are implicitly modeled for the parameters that
relate to incoming entity relations, specifying that the values of these parameters are
defined externally to the entity, and completing the formulae set. The derived
formulae could also be modeled explicitly, and this implicit mechanism has been
implemented to reduce the modeling effort. The formulae for each stage of the
distillation column are similar from stage to stage, and the detailed formulation for
the can be found in [150]. This information will be transformed into the parameter
network. Other entities are described in a similar fashion.

An example of how stakeholders (such as the control engineer) can view parts of the
model is depicted in Figure 48. The controller is meant to maintain the operating
level in the distiller (mapped requirement is shown in Figure 45) by taking a
measurement of the current distiller holdup and returning a control input that
regulates the distilled reflow ‘D’, to the condenser stage valve (the detail of the
valve is not modeled here). The formula ‘D lev loop’ indicates that the two
parameters relate to each other through a generic control function, and that the
parameter ‘D_Value’ is the caused parameter.

6.6.2 Obtaining the parameter network

Considering the limitations explained in Section 3.3.7.2, the distillation column
system offers a single, fixed active structure that does not vary with its state (it is
considered that the structure does not change during operation), and it is possible to
focus on a description on a single level of granularity corresponding to a consistent
set of equations. Since a fixed active structure is considered, the required behavior
specified by the functions and function relations will not be used. After verifying
that all entities count with a complete formula set and appropriate relations, the
model can be parsed as explained in Section 6.2 to build the parameter network (cf.
Figure 49), containing 120 parameters and their causal relations. As it can be seen in
the figure, many intertwined causal relations exist in this fairly simple system.

112

z_F

alpha

D

x_D

L_D

dx_D

M_D

y_D

x_B_Value

B

x_B

dx_B

dM_B

M_B

V_B

y_B

L_7

x_7

V

B_Value

M_B_Value

M_D_Value
D_Value

V_Value

y_D_Value

L_Value

V_7

y_7

L

dM_D
tau_L lambda

q_F

F
dx_7

M_7
dM_7

L0bV0

M0_7

dx_6

L_6

x_6

M_6

V_6

y_6

dM_6

M0_6

dx_5
L_5

x_5

M_5

V_5

y_5

dM_5
M0_5

dx_4

L_4

x_4

M_4

V_4

y_4

dM_4

M0_4

dx_3L_3

x_3

M_3

V_3

y_3

dM_3
M0_3

dx_2
L_2

x_2

M_2

V_2

y_2

dM_2
M0_2

dx_12

L_12

x_12

M_12

V_12

y_12

dM_12
M0_12

dx_11

L_11

x_11

M_11

V_11

y_11

dM_11

M0_11

dx_10

L_10

x_10

M_10

V_10

y_10

dM_10
M0_10

dx_9

L_9

x_9

M_9

V_9

y_9

dM_9

M0_9

dx_8

L_8

x_8

M_8

V_8

y_8

dM_8
M0_8

Figure 49. Parameter network for the 13 stage distillation column. Thick continuous lines represent

relations coming from formulae in the controller definition.

 113

6.6.3 Parameter classification

Starting from the parameter network (cf. Figure 49) and the formula type
information classify the interesting parameters (see Section 6.4). Twenty six
parameters are correctly identified as state variables, corresponding to the mass
holdups ‘M_#’ and the liquid compositions ‘x_#’ for each of the thirteen stages
(identified here with ‘#’). With a different set of equations, the vapor compositions
‘y_#’ could be used instead of ‘x_#’ because these variables are coupled
(algebraically related). To avoid wrongly identifying coupled variables as
independent ones (in case their respective derivatives figure in the formulae) the
implemented algorithm checks for the existence of algebraic relations among state
variables by looking for any path between them which does not contain a parameter
that is the derivative of the other state variable. For our example, the input feed flow
‘F’, its composition ‘z_F’, and its liquid fraction ‘q_F’ are placed in the disturbances
set, based on the ‘ENVIRONMENT’ labels.

Figure 50. Block diagram representation of the original prototype controller structure in a domain-specific

tool

Using the control formulae labels, the measured outputs are identified as the
parameters corresponding to the measured values of the boiler and condenser mass
holdups (‘M_B_Value’ and ‘M_D_Value’), and to the boiler and condenser
compositions (‘x_B_Value’ and ‘y_D_Value’). The plant is to be controlled with the
control inputs of reflux ‘L_Value’, boilup ‘V_Value’, distillate ‘D_Value’, and
bottoms ‘B_Value’, which determine the value of the corresponding physical flow
parameters ‘L’, ‘V’, D’, and ‘B’. The controlled outputs correspond to the
parameters of condenser and reboiler holdups (‘M_D’ and ‘M_B’), and to the
distillate composition ‘y_D’. A block diagram representation of the modeled
controller structure can also be built automatically (see Figure 50). This is a simple
transformation from the AM to a domain-specific tool.

114

M_B

x_B

M_D

x_D

M_7

x_7

M_6

x_6

M_5

x_5

M_4

x_4

M_3

x_3

M_2

x_2

M_12

x_12

M_11

x_11

M_10

x_10

M_9

x_9

M_8

x_8

dM_B:d

dx_B:d

dM_D:d

dx_D:d

dM_7:d

dx_7:d

dM_6:d

dx_6:d

dM_5:d

dx_5:d

dM_4:d

dx_4:d

dM_3:d

dx_3:d

dM_2:d

dx_2:d

dM_12:d

dx_12:d

dM_11:d

dx_11:d

dM_10:d

dx_10:d

dM_9:d

dx_9:d

dM_8:d

dx_8:d

B_Value:u

D_Value:u V_Value:u L_Value:u

z_F:q

q_F:q F:q

M_D:y

y _D:y

M_B:y

x_B_Value:z

M_B_Value:z

M_D_Value:z

y _D_Value:z

DisturbancesInputs Outputs Measurements

Conventions

Figure 51. Graph representation of the LSS model of the distillation column. It shows the state variables,

their derivatives (:d), disturbances (:q), measured outputs (:z), controlled outputs (:y), and control inputs

(:u). Dashed lines represent influences from disturbances.

 115

The result of the parameter classification process (cf. Section 6.4) is shown in Figure
51, which can be interpreted as the equivalent set of structure matrices in the LSS.

6.6.4 LSS analysis

The prototype controller structure is shown in Figure 50, and the corresponding LSS
appears in Figure 51. The result of the measurement feedback disturbance rejection
test is that, with the prototype configuration, the problem is not solvable because not
enough measurements to appropriate state variables (belonging to I*) are available.
In the current situation, two disturbances (‘q_F’ and ‘F’) affect directly the reboiler
and condenser level outputs, and thus, should be measured directly for effective
action. For the purpose of continuing the analysis this last fact is ignored from this
point on. The algorithm indicates that at least two different measurements (sensors)
have to be taken from the I* set, whose nodes are marked in Figure 51 with a dot ‘ ’
on their top-left corner. It is possible to see that only one measurement is taken from
the suggested set (over ‘X_B’). As in the last example provided in [49], the
necessity for another measurement may rise from the fact that the original sensors
measure states under the combined effect of the disturbances, and thus, enough
measurements need to be taken to discern which disturbance is acting and in which
amount in order to respond accordingly.

For the I/O pairing in our example, the minimum length paths indicate the following
matching: ‘V’ to ‘y_D’; ‘L’ to ‘M_D’; ‘B’ to ‘M_B’. Since there are more control
inputs than controlled outputs, the unmatched input are simply not considered. There
are no shorter paths connecting inputs and outputs, though there are other possible
paths of the same length, which means that the non-interacting control problem is
solvable.

The additional tests presented in section 6.5.1 are performed in our example to
suggest a controller. The Pso paths indicate a suggested controller in which
measuring the state variables ‘M_B’, ‘M_D’, and ‘X_D’ provides observability,
while controllability is attained by actuating through the derivatives of state
variables ‘M_B’, ‘M_D’, and ‘M_12’. Therefore, the suggestion is to control the
levels at the distiller and reboiler directly, while the composition is controlled by
affecting the holdup at the stage right before the distiller.

Considering the disturbances, it can be proven that there is no need for any
additional control inputs to solve the DR problem in the case of the original
prototype structure. For the new suggested controller, the control inputs set
suggested previously from Pso paths would require an input to affect directly
derivative of the output ‘X_D’. To expand the measured outputs the Pqi pats suggest
that it suffices to measure the mass holdup in stage two ‘M_2’ and the composition
at stage twelve (‘X_12’) in the original prototype controller. The same
measurements also have to be added in the suggested controller.

116

6.7 Example case-study: Co-design using analysis results

A co-design (or concurrent design) approach between the different disciplines is
important to efficiently attain integration, and companies struggle to achieve
designing through such an approach [28]. Co-design [59] is enabled when the
influences of the different subsystems among one another are made evident to the
eyes of the designers. This section, complements is the proposal earlier in this
chapter by defining a design workflow which assumes a common representation
scheme of the physical and control architectures of a system in addition to the
availability of LSS analysis methods, and which also features an external tool to
specify the physical architecture of the system. Therefore, the results of such
analysis may suggest modifications of either physical or control architecture (or both
architectures) to improve the system performance. With help of design and analysis
tools along with the workflow, a designer could systematically improve the original
sensor-actuator configurations by modifying either the physical architecture or
control architecture (or combination of them). The section also briefly explains the
employed tools and algorithms, which are extension of the work by the authors
about computational supports for system architecting ([11], [99]).

The next section explains in more detail the proposed design workflow, the
employed representation of the physical and control architectures of a system, and
tools to build a system model following the representation and support the workflow
with the model, ending with an explanation of how the analysis results can be
applied to physical decomposition. After that, a section demonstrates the
implemented method through the example case study, where physical and control
architectures are co-designed. More details on this specific approach can be found in
the original source [8]

6.7.1 Proposed Design Workflow and Modeling

Figure 52 shows the proposed design workflow and tools to support co-design of the
physical and control architectures of a system. The workflow mainly consists of
iteration of the design and analysis of the architecture of a system described in
physical and control domains.

First the initial physical architecture of a system is described using the SA-CAD as a
set of subsystems, which realize desired behaviors at the system level in order to
meet required functions [100]. The SA-CAD system is used to assist developing the
physical architecture and its decomposition. After modeling these concepts, it is
possible to import them into the AM. Then, the control architecture of a system is
defined as specified in the previous sections. At this point, the proposed LSS
analysis can be performed, but additionally, some insights regarding the physical
decomposition can also be gained.

On the one hand, the insight gained from the LSS analysis may not only have effect
on the controller architecture, but also on the physical architecture of the system. In

 117

the most common scenario, the analysis results show that the current actuators or
sensors are not appropriate to obtain desirable control properties. In this case, a
change on the physical architecture has to be considered and assessed.

Design of physical
architecture

Analysis of physical
and control

architectures

Design of control
architecture

SA-CAD

AM Tool

Analysis tool
(e.g., MATLAB)

(a)

(b)

(c)

(a) The architecture of physical system

(b) Integrated architecture of physical and control systems
(c) Suggestions of modifications about physical and control architectures

Workflow Support tools

Figure 52. The proposed Workflow and support tools

On the other hand, it is evident that changes originating from the physical
architecture can also affect the design of the controller. Deciding to change, add, or
merge any component may have an immediate effect on the system (model) used as
a base for controller design.

6.7.2 Architecture co-design example

Figure 53. Schema showing the main components of the wire-drawing machine (top left) as well as the

main parameters describing the heat flow. The thick arrows depict the heat flow.

118

The case study shown in this section concerns the structural property of sensor-
actuator configurations (also known as Input/Output configurations in control theory
[180]) of a simplified wire drawing machine. It is required that the changing
temperature of the environment does not affect the quality of the production. The
basic parts and the main parameters describing the heat flow in the machine are
presented in Figure 53. The heater takes care of warming up the metal bar to be
drawn, while the roller heater warms-up the drawing rollers. Some heat flows are
modeled based on first principle equations (see underlined parameters in Figure 53),
i.e., using differential equations to describe the dynamics. Other parameters are
modeled with mathematical relations based on experimental data. The heat power
transferred between the drawing rollers and the metal bar is not modeled. The
original physical decomposition and phenomena that explain the different flows are
modeled in SA-CAD using several entities and expressions, as shown in Figure 54.
As explained in the section “parameter network and system structure”, for the
purpose of our analysis, the expressions relating parameters to each other (cf. Figure
54,) only require capturing the concept of causal relations which enable constructing
our parameter network. More detail of the case study will be explained when
necessary to illustrate the co-design process. Other details of the case study, which
do not contribute to such explanations, are omitted to maintain the focus.

Figure 54. Fragment of physical decomposition model made in KIEF-SA-CAD

The SA-CAD model is then parsed and loaded as part of an AM model. As can be
seen in Figure 55 and , SA-CAD entities are assigned to AM entity objects, SA-
CAD expressions are assigned to AM-formula objects, and SA-CAD parameters are
assigned to AM-parameters. The mappings among the objects are preserved. The
AM tool is used to further expand the model by adding functions and requirements
that indicate those parameters which are of interest fro the drawing process (cf.

 119

Figure 55). In this case, it is required to maintain the quality of the drawing process
by estimating a ‘DrawQualEstimation’ parameter that has to be kept within certain
values. Other parameters to keep under control are the speeds of bar feed ‘Vin’ and
drawing ‘VRol’. Additionally, knowledge about an initial controller architecture is
added by modeling a controller object, labeling its attached formulae nodes (i.e.
behavior equations), and labeling parameters from the environment that act as
disturbances (e.g., the environment temperature).

FragmentForPaper

Controller

DrawQualReference - []DrawQualEstimation - []

PHeat_Val - [V]

QualityCt - []

PHeatR_Val - [V]

VRol_Val - [V]

VIn_Val - []

TR_Measure_Val - []

DrawingMachine

Control drawing process

Type

HeatComm

HeatRComm

RolSpeedComm

DrvComm

Temp measurement val

QualRef DrawQualReference=VIn_Val*QualityCt{DrawQualReference}

ActualQuali DrawQualEstimation=TR_Measure_Val-PHeat_Val{DrawQualEstimation}

ExConRH DrawQualReference,DrawQualEstimation,VIn_Val,PHeatR_Val{PHeatR_Val}

ExConH DrawQualReference,DrawQualEstimation,VIn_Val,PHeat_Val{PHeat_Val}

ExQual QualityCt{QualityCt}

ExConV DrawQualReference,DrawQualEstimation,VIn_Val{VIn_Val}

ExConVR DrawQualReference,DrawQualEstimation,VIn_Val{VRol_Val}

Ensure drawing quality

Type

Draw steel bar

Type

Required drawing quality

EQUAL DrawQualReference (+1_-0)

TempSensor

DrawingRolle

TemperatureMeasurement

Figure 55. Fragment of AM with additional requirements and control information

The resulting AM is then parsed by the external tool to perform the LSS analysis.
The first step includes an interpretation of the parameter network (see Figure 56),
and its subsequent reduction to an LSS graph (cf. Figure 57).

The resulting LSS graph (cf. Figure 57) contains the state variables and derivatives
corresponding to the parameters modeled using first principles (see Figure 53). The
graphical representation of this simple system allows seeing some of its
characteristics at a glance. The state variables form two independent clusters
because, as explained earlier, the modeling equations do not consider the heat
transfer interaction between the drawing rollers and the metal bar. Variables from
both clusters form loops. The LSS does not contain one the specified control inputs,
‘VRol_Val’, corresponding to the speed of the drawing rollers. This happens
because ‘VRol_Val’ does not affect any parameters corresponding to state variables,
as it can be seen in Figure 56. All the outputs and the measurement depend on a
single state variable from ‘cluster1’, ‘TRBefore’, corresponding to the temperature
of the roller at a point before heating, because all the outputs are actually values
computed from the single measurement of such state variable.

120

PHeatR_Val

VRol_Val

PRolInternal

PHeatR_Rol

VRol

PRCore

PRCore_Before

TRCore

TRBefore

alpha

beta

TRDraw

TR_MeasurePRol_MountPRol_Env

TEnv

TMount

PHeatR Eff_HeatR

PHeat_Val

PHeat

THeat

PHeatInternal

PHeat_Env PHeat_Bar

TBarInitialBarDiamIn

VIn

TBarIn

BarHeatCapacity

DrawQualReference

DrawQualEstimation

QualityCt VIn_Val

TR_Measure_Val

Figure 56. Parameter network extracted from

the AM. Controller edges are dashed.

TRBefore

TRCore

TMount

THeat

TBarIn

PRCore_Before:d

PRCore:d

PRol_Mount:d

PHeatInternal:d

PHeat_Bar:d

PHeatR_Val:u PHeat_Val:u VIn_Val:uTEnv:q

VRol:y VIn:y DrawQualEstimation:y TR_Measure_Val:z

Figure 57. LSS graph depicting the state variables, their derivatives (:d), disturbances (:q), measured

parameters (:z), controlled outputs (:y), and manipulated parameters (:u). Left state variable cluster is

‘cluster1’, and the right one is ‘cluster2’.

Running the LSS analysis it is possible to verify that the system is generically
controllable, but that it is not generically observable. This can be intuitively verified
in Figure 57, as the inputs are able to affect all the state variables, and as the only
measurement just captures the information from one of the clusters (‘cluster1’).
From the side of disturbance rejection, the result indicates that it cannot be achieved

 121

unless the value of the disturbance is known a priori, that is, measured directly. It
can be seen that the disturbance directly affects the same state variable as it does the
control input in ‘cluster1’, and therefore, if the disturbance is not known, the
controller has to wait until the disturbance reaches the measurement and the outputs
before it can act through the ‘PHeatR_Val’ input.

Another model of the drawing machine is built following the same procedure as
before, to increase the physical insight in the analysis. This time, the physical
phenomena models are modified to include first-principles descriptions for the
measured temperature ‘TR_Measure’ and the temperature of the drawing roller at
the drawing point ‘TRDraw’. This resulting LSS graph is shown in Figure 58. This
illustrates how changes in the model of the physical plant (or our modeling
assumptions) can affect the design of the controller.

TRBefore

TRCore

TMount

THeat

TBarInTRDrawTR_Measure

PRCore_Before:d

PRCore:d

PRol_Mount:d

PHeatInternal:d

PHeat_Bar:dPRDraw:dPR_Measure:d

PHeatR_Val:u VRol_Val:u PHeat_Val:uVIn_Val:uTEnv:q

VRol:y VIn:y DrawQualEstimation:y TR_Measure_Val:z

Figure 58. LSS graph of the modified model where some experimental relations are replaced by first-

principles explanations. Conventions are as in Figure 57.

The new LSS shows again state variable structure forming two clusters. The new
model shows the influence of ‘VRol_Val’ on the temperatures. Also, the outputs and
measurement are related to the new state variable corresponding to the measured
temperature value. The results of the LSS analysis for observability and
controllability are the same. The result for disturbance rejection is the same, i.e.,
disturbance rejection is not generically possible, but analysis differs. The system
suggests to measure of ‘TRCore’ to obtain the generic disturbance rejection property,
so direct knowledge of the disturbance is not required.

An obvious change from the physical decomposition point of view is the existence
of sensors. Both models suggest that taking different measurements is required to
obtain outputs which are completely resilient to the changes in the temperature of
the environment.

As the example shows, changes in the physical architecture (model) can be reflected
immediately in the control analysis using the proposed method. For example, the
actuators could be merged to have a single heater that radiates over the metal bar
and the drawing rollers, or to have the drawing rollers alone moving the bar. For the
sake of brevity, such changes will not be explored in this work.

122

6.8 Conclusions

This chapter explains and shows through examples how to capture relevant
information for the regulatory control structure definition problem in an
architecture-level model that can be used by other design stakeholders.

The proposed approach aims to improve communication practices for design
information by allowing each stakeholder to contribute with the information from
his/her field of expertise to a common model that, in this case, can be used by the
control engineer to perform design activities early in the product development
process.

Specifically, it is also explained how information in the AM can be automatically
interpreted by an external tool, and proposed a method to transform that information
into a structural (LSS) representation. The transformation and mapping does not
serve only the practical purpose of automation, but also shows how information
from a specific domain maps to a model representing the interests of multiple
stakeholders. That information is highly valuable for the purpose of development
process understanding, improvement, and management.

The LSS representation is used to verify the existence of important control
properties in the system under study, such as controllability and observability, using
existing methods from literature. Extensions to the analysis of the LSS
representation are proposed and tested, which allow making suggestions for the
solution to the regulatory control configuration problem. A brief interpretation of the
LSS analysis is extended to advice on the selection of control configuration elements.
The proposed extensions are based on the authors’ experiences and preliminary tests,
and no formal theoretical support is provided in the present chapter. Future work
should address formalization of such proposals.

A method for co-design of physical and control architectures of mechatronic
systems at the early stage of product development is proposed. Section 6.7 explains
and demonstrates through an example how the proposed method of explicit
modeling of system relations can be used to perform co-design in two different
domains. The method is supported by an implementation on a set of tools that allow
modeling the physical architecture and the control architecture, as well as analyzing
data extracted for such models to support the co-design activities. Future work
includes verification of the proposed method in industrial cases, and possibly,
further integration of the tools on which the method has been implemented.

The performed analysis used in this work is based on parametric information. This
information does not depend exclusively to any domain, but rather can represent
information from all domains. In this specific case, the analysis can be used to
support both, control stakeholders and physical decomposition stakeholders.
Furthermore, the work shows that the used analysis technique effectively supports
design activities from both disciplines, and retains an intuitive level that makes it
generally applicable.

 123

7 Supervisory control structure

This chapter revolves around the design of supervisory controllers. The goal of
supervisory control is to ensure a designed process behavior within constraints (e.g.,
safety or cost), embedding the process rules. It can be built hierarchically ([15],
[150]), reflecting the structure of the processes it coordinates. The supervisory task
is separated from the regulatory task by defining the regulatory task only as directly
ensuring that a controlled variable or parameter remains close to a desired reference
value, in the context of a single set of continuous system dynamics declared as a
state or operation mode. The supervisor can take care of providing the reference
signals for the regulatory controllers, but in many cases the references are computed
by a separate optimization layer [150], or internally by the regulatory controllers.
The supervisory controller structure is a representation of the hierarchy and process
rules mentioned before. In resume, the supervisory task involves deciding which
actions (including regulatory actions) should be activated according to a well
defined system state to arrive to another state.

This work proposes formal transformations from an AM specification to other
models used for supervisory controller design. The target models were chosen
because of their potential applicability using information available from the first
stages of controller design. Heemels et al note [84] that not many design
methodologies for hybrid systems controllers exist. The chosen transformations
support a proposed design process flow which constitutes another contribution in
this chapter. In addition, these transformations impose additional constraints to the
syntax of the function layer of the AM model (cf. Section 5.2), which appear to
ensure an unambiguous and complete specification of the desired behavior.

This chapter is structured as follows: Section 7.1 documents the analysis that led to
the chosen target models for controller design. Section 7.2 walks through the process
of building a correct problem and design specification using the AM. Section 7.3 has
proposals for algorithms to perform the transformation from the AM to the chosen
target models. Some conclusions are presented at the end of the chapter.

7.1 Supervisory and hybrid control methodologies

The goal of this section is to highlight the main characteristics of a few methods that
cover a wide spectrum of representations and techniques related to for supervisory
controller design available in literature, and not to perform an exhaustive review of
literature (for that see [84]). Based on such review, target models for which to
develop transformations from the AM are chosen. The methods in literature cover
different aspects related to the control of mechatronic systems (which for us implies

124

the need for hybrid system models). Our interest falls over the techniques that
present a combination of the following characteristics:

 Formal representation
 Controller verification
 Controller synthesis
 Available implementation

The next subsections resume the reviewed methods, and section 7.1.5 discuses on
the selection of appropriate target models.

7.1.1 Hybrid automatons

From a point of view, many systems can be seen as continuously evolving on a
certain mode, and when certain conditions are met, it changes to another continuous
mode. Such a view can be modeled by a mixture of differential equations for the
continuous modes and an automaton ruling the transition among modes. Though
different formal descriptions exist, this work considers the one proposed by Tabuada
in [158] as a sextuple consisting of: (1) a set of states; (2) a set of initial states; (3) a
set of inputs (events); (4) a transition relation which determines the change between
states under a certain input; (5) a set of outputs; (6) an output map which determines
the output that corresponds to each state.

Though many analysis techniques simply simulate the model [114], Tabuada [158]
also covers a rather popular view of controller synthesis and analysis when hybrid
automata are chosen for representation. The techniques under this view mainly use
the concept of bisimulation. Bisimulation is based on the principle that some system
models can be found to have equivalent states and events. Then, this equivalence is
extended to other properties of the system models such as being non-blocking. Thus,
design parts from a description of the system and a description of the behavior
specification in terms of automata which will be later compared and analyzed for
controller synthesis.

7.1.2 Behavior-based control

A fast way of defining behavior based control is to compare it to other controller
architectures as done by Mataric ([109], [110]), who distinguishes three types of
control architectures with different characteristics:

 Purely reactive: Direct coupling between sensors and actions. No world model.
Look-up for each set of sensor readings.
 Planned: Centralized world model to verify sensory information. This includes

mixing of planed actions for decision making and reactive actions for low level
behavior (hybrid architecture).
 Behavior based (in the middle): A collection of concurrent behaviors without a

central arbiter that decides when to execute them. A similar definition, called
subsumption architecture, is provided as well by Brooks [32].

 125

From the applications described in literature, this methodology poses as a good
candidate for problems including control in unstructured environments. The paper
[122] presents an architecture which allows specifying sequences of actions in
addition over other. The lowest level goals take care of basic safety and motion tasks
such as avoiding obstacles and moving ahead. These low level tasks are used or
inhibited to perform more complex tasks.

A global design strategy for is defined in three steps: (1) specify behaviors as the
goals of the system; (2) break-down behaviors into observable disjoint actions that
serve as sub-goals which reduce the current distance of the system to the goal; (3)
define the actions in terms or system actuation, in which the change in state
(actuation) must be smaller when the required precision is high. However, no
algorithmic methods seem to be available for controller synthesis, as the research in
this matter is mainly aimed at learning systems.

7.1.3 State-tree structures

Discrete-event models consider that the system can be represented by a discrete set
of states and transitions that take place at discrete points in time (events) [38].
Cassandras and Lafortune [38] have documented some of the best known design
methods associated with these models, including some algorithm developed after the
work of Ramadge and Wonham [136]. The basis of such techniques is the analysis
of the model topology using graph-based techniques which are used to design
supervisory controllers by verifying the (co)reachability of states. A recent approach
to these methods developed by Ma et al [106] called State-Tree Structures (STS) is
discussed next.

Figure 59. STS model (left) and its state tree (right) [106]

STS is based on the work of Ramadge and Wonham, but additionally proposes a
leaner representation of the state space. The model (see Figure 59) uses a
hierarchical and concurrent representation of the states of a system through the
combination of state trees (which resume the possible states of the system) and the
corresponding automata representing local behavior, denoted “holons”. Starting on a
root state (“R” in the figure) the state tree (Figure 59 right) is composed of nodes

126

representing either composite parallel/serial superstates (AND/OR, indicated
respectively by /) and simple states which do not decompose (the leafs of the
tree). The only constraints to construct correct state trees are that it should be a tree,
and that the simple states should be components (children) of OR superstates [106].
This last constraint just reflects that “AND sub-trees” (a sub-tree containing just
AND superstates) can be assimilated as simple states related to many parameters or
as additional descriptions of other OR states. The leafs of the tree represent partial
state descriptions, and the complete state of the system is defined by having one
“active” simple state node for each OR superstate at the top (wide end) of the tree. A
holon is declared for each OR super-state (a state composed of mutually exclusive
states). In other words, a holon represents the transition structure of sub-tree rooted
on an OR superstate (cf. Figure 59 left). The holon contains nodes which represent
the states and directed edges representing transitions between the simple states under
a certain event. Events (and their associated transitions) are either controllable
(depending on the output of the controller) or uncontrollable (only depending on the
plant). The control functions resulting from the synthesis literally specify the states
that should correspond to enabling the controllable events in order to obtain the
desired behavior. We do not detail about additional constraints related to the events
as these can be obtained by construction or circumvented through event renaming
[106]. Additionally, it is worth mentioning that Ma has developed a tool available to
the public (STSLib), which allows reading STS descriptions in a certain format and
provides the basic rules of the synthesized controller.

7.1.4 Hybrid programs

The research visited in this section again considers the “modes and events” point of
view introduced in section 7.1.1. However, in this case the approach for
representation and, foremost, for design is based on logical analysis and theorem
proving. This relatively new work by Platzer is called logical analysis of hybrid
programs [132].

Systems are modeled using the Hybrid Program (HP) language (called “differential
dynamic logic”) which can be used to represent discrete and continuous dynamics,
aggregated as sets. These in turn can be composed with a “control structure” using
other operators. The resulting model looks much like a computer program, thus the
hybrid programs can represent hybrid systems directly. Hybrid programs have been
designed to formally prove system properties that can be modeled via logic formulae
of the type , where is a starting precondition for execution (or guard) and
the formula can take a rich structure. Platzer presents formulae γ that includes
state dependent modes of operation “ ” and “ ”, temporal operators “�” and
“◇”, and universal “ ” and existential “ ” quantifiers. Below are a number of
examples with a corresponding interpretation [132]:

 , represents that holding implies that all states reachable by system
 satisfy formula .

 127

 , for the post condition, there is at least one state reachable by α that
satisfy formula .
 � , formula is satisfied for every point of the trace of every run of

system .
 ◇ , formula is satisfied for at least one point of the trace of every

run of system .
 p , there exists a parameter p such that for all possible behaviors of

system there is an action of system such that holds.

1

2

n

Figure 60. Graphical representation of traces in hybrid programs (adapted from [132])

Figure 60 illustrates various combinations of these operators, where each jagged
path leaving (arriving to) the state () represents a trace of evolving . The
process of proving the formula , may simply lead to verify its validity, but
may also provide conditions (value ranges of parameters) under which the formulae
remains valid. This is very interesting from the point of view of control synthesis
and requirements refinement. Therefore, Platzer suggests the following design
approach called iterative refinement process:

 Find a controllable state region by symbolic decomposition of the uncontrolled
system dynamics.
 Successively add partial control laws and again use symbolic decomposition to

add parametric constraints. Repeat this step until the system can be proven safe.

128

 Proof liveness by demonstrating that the system is not overconstrained.

At this point is also worth noting that Platzer has developed a software
implementation of the logical analysis algorithms, called KeyMaera, and that this
tool is available to the public.

7.1.5 Analysis and choice of target methodologies

The previously reviewed approaches provide interesting possibilities. By looking at
their characteristics and their potential to fit our purposes one can highlight that:

 The trend for design using hybrid automata is tightly related to the concept of
bisimulation, by which the hybrid system is approximated to a finite-state system
for which analysis techniques can be applied and then extrapolated to get and/or
refine a controller for the hybrid system.
 Behavior based control approaches do not provide a clear set of formal analytical

methods which enable proving properties of the controlled system. However, they
may be good candidates for synthesis of controllers using other techniques which
relate more to artificial intelligence, such as learning algorithms. Also it is worth
noting that architectures like the one presented in [122] start resembling hybrid
automatons of hierarchical controllers with an intense communication among the
controller components.
 STS provides powerful design techniques which have been implemented in a tool

allowing synthesis of non-blocking supervisors. However, the methods do not
address most concerns related to the hybrid nature of systems.
 Hybrid program techniques provide allow verifying properties of a hybrid model

and refining transition conditions, and also have been made available in a tool.
However, the potential for synthesis of supervisors is not apparent.

From there, it is possible to arrive to some conclusions discussed next. The line of
thought related to hybrid automata is tightly dependent on much numeric analysis
and information, thus drifting apart from our purpose to support controller design
from the first stages of the development process. Behavior-based control methods
lack much of the necessary formalism for automatic generation. Although the STS
and HP techniques do not provide complete solutions, they seem to complement
each other. Therefore, here it is chosen to implement transformations which support
design process described in Figure 61. The proposed design process starts with an
AM that can be transformed to an STS model from which a non-blocking supervisor
can be synthesized. The result is placed back in the AM by adding the synthesized
transition conditions (i.e. the control laws). The model then requires a more specific
description of the system dynamics so that it can be transformed to the HP
representation for further analysis and refinement of transition conditions. In other
words, the idea is to integrate the chosen design methods by using the AM tool as a
base model, under the premise that the AM allows representing multidisciplinary
design information in an orderly fashion. It must be added that the tools provided by

 129

the authors of the two chosen methods also present an advantage to implement the
proposed approach.

STS model AM

Controller
architecture

design

Design
problem /
R. spec.

Iterate

Transformation 1
Non-blocking

supervisor synthesis
Control laws

HP model
Transformation 2

Transition conditions
refinement through

verificationRefined requs.

Figure 61. Proposed design process for supervisory control generation

The reader may notice that Petri net methods have not been considered in this small
review. Petri nets are not considered here because though they provide a good set of
analysis algorithms [119], supervisory control synthesis based on Petri nets must
still overcome fundamental challenges. As explained by Cassandras and Lafortune
in [38], Petri nets constitute a more powerful modeling formalism than finite-state
automata but do not pose as good candidates for extending the algorithmic
component of supervisory control theory to non-regular languages. Thus,
automaton-based methods (i.e., STS) are considered here to be a valid equivalent
subset of Petri nets for which synthesis is more clearly defined.

7.2 Modeling supervisory control architecture

In general terms, the supervisory control architecture is part of the system
architecture and can be modeled as presented in Chapter 3.Furthermore, specifically
for the subject of interest of this chapter, it is pointed out that other authors [45] also
report that techniques for analysis and control of hybrid systems are quite limited at
present and that many important problems, including modeling problems, remain to
be addressed. The questions introduced in Figure 14 (pp. 46), “what will the system
do?, “how will the system do what it is required?”, and “How is the system designed
and by whom?”, have to be addressed for the particular case of supervisory control.

7.2.1 Basic information and modeling objects

“What” the system aims to achieve is described as a goal in terms of an abstract state,
which can be made concrete by adding parametric information. The state itself is
represented by means of a requirement node (since it is a required goal) which
specifies (either directly or through its requirement sub-tree) a set of parameters and
constraints over the values of such parameters. The intended behavior of a system
can unambiguously be represented by a sequence of transitions (triggered by events)
between a set of states, modeled through ‘function relations’ and their related
requirements. When a function reaches a goal, this implies a change in the parameter

130

values which entails a change of state in the system or its perceived environment.
Therefore, starting from a specific state, a new reached state can be determined.

“How” goals are achieved is specified by represent the things that implement the
functionality and how they are related. Concrete representation of the entities is
achieved when their properties are unambiguously described by parameters and their
values. The objective description of behavior is achieved through the use of
formulae and their associated structure. Each formula specifies a relation among
specific parameters, making the description concrete. The language for writing such
relations is not specified in our proposal. However, in this chapter it corresponds to
expressions used in the differential temporal dynamic logic (dTL) [132].

More specifically, besides the previous description, the supervisory control
architecture mainly involves deciding which parameters and events are visible to a
controller or directly affected by a controller. This also includes deciding how
controllers relate to each other through events or parameters. In normal conditions, a
supervisor must be able to identify all relevant system states through its inputs, and
affect all relevant system parameters in order to achieve the desired sequence of
states in the system. Thus, for the discussions we assume that each particular
supervisor is responsible for an observable and controllable system or subsystem.

Turning again our attention to Figure 14, the question regarding how the system is
designed remains to be addressed. As explained in Section 3.3.5.1, in this chapter
also aspects and domain entities related to the design of supervisory control are
defined. Specific examples are given in the following sections.

Base

to take part in

Type

to process piece

Type

to place part out

Type

to stop machine

Type

to control process for one part

Type

Controller Machine

Factory

Figure 62. Basic architecture for a small factory

7.2.2 Modeling architecture

The aspect-based modeling scheme introduced in Figure 24 (pp. 56) is used as a
reference to build the AM in this use case. The first step to model the architecture as
stated above requires specifying the system components as entity nodes and the

 131

things these components do as function nodes. Both object types can be decomposed
to add more detail to the architectural description. In step two, links are added
between the two object types to show how functions and entities relate. The
resulting model is shown in Figure 62. As shown next, more detail can be added to
the model, following steps three through six in Figure 24, either from the side of the
entities or from the side of the functions.

As part of step three, entity relations are added to further detail the structure of the
system. In our example, we realize how the system also relates to the environment,
and add this to the model. At this point, the model contains mostly subjective
information. In step four, objective information is added by introducing some
parameters that can be used to characterize the state of the system. The parameters
must be mapped to the corresponding entities and entity relations. The resulting
structure is depicted in Figure 63. The parameters indicate the number of pieces
sensed at the machine (“Load”), the current status of the processing (“Progress” and
“Speed”), and the control command (“LoadCommand”) used to force a new part in
the line. Other parameters of interest for the behavior include the capacities of the
physical systems represented by the entities. It can be seen how the model
unambiguously describes, for example, that the loading command is handled by the
machine once the controller has set it. Specifying such details in text form requires
detailed descriptions and good writing skills [7]. Continuing to step five on the side
of entities, formulae can be added to represent the relations among parameters, as
shown in Figure 63 (top-right corner). The modeling is completed on the structural
side performing step six, by mapping the formulae to the entities and entity relations.
Here, it is specified how the value of parameter “Progress” changes according to the
value of the parameter of “Speed” of the process. The AM formalism does not place
any particular restriction to the syntax used in the formulae with the exception that
formulae can be interpreted as relations among parameters. More details regarding
formatting of these formulae will be given in the section explaining the model
transformations.

Structure

ControllerMachineEnvironment
measurements

commands

processed part

raw part

Speed - [bin] Progress - [Pro] Load - [#]Capacity - [#]

LoadCommand - [bin]

active dynamics In({Progress''=Speed, Speed = 1})

Figure 63. System structure and relevant parameters

132

Desired behavior
Desired behavior

Applied to...
Control

Applied to...

to control process for one part

Type

Controller
Applied to...

to take part in

Type

to process piece

Type

to place part out

Type

Machine process status

AND Value ()

take new part NINT

initialized INT

Initial state

AND Value ()

to set process initial condition

Type

Take part in commanded

= 1 ()

ready to process INT

load Entry(Load:= Load + 1; LoadCommand:= 0; Progress:=0)

ready to put out INT

active dynamics In({Progress''=Speed, Speed = 1})

Machine is empty

= 0 ()

unload Entry(Load:= Load - 1)

passive dynamics In({Progress''=Speed, Speed = 0})

LoadCommand - [bin]

to stop machine

Type

Machine is idle

= 0 ()

process is over INT

stop Entry(Speed := 0)

Process over

>= 4.13 ()

End of processing

AND Value ()

Machine ready to start

AND Value ()

Speed - [bin]

Figure 64. Processing sequence for the small factory

Up to this point the modeling has focused in rather static descriptions from the
system and what it does. However, the intended behavior of the system remains to
be modeled. For that matter we carry out steps three to six from the side of functions.
The functions are used to explain the order of the processes that the system must
implement, together with requirements which will provide objective goal
descriptions for the functions. As indicated at the start of this section, the
mechanism for ordering the functions is to place function relations between them
describing function execution precedence (step three form the side of functions in
Figure 24). The parameters modeled in step four can be used together with
requirements to specify objective descriptions of the functionality, completing step
five. The state descriptions are just partial, because specifying the complete state of
the system potentially requires defining value (ranges) for many parameters, which
entails much modeling effort (later we explain how we deal with this issue). The
label in the bottom-left corner of each requirement indicates either the type of
constraint over a parameter (e.g., =, <, >) relative to the value specified in the label
at the bottom-middle (possibly in terms of other parameters), or the type of relation
among children requirements (i.e., OR, AND) for composite requirements. By
mapping requirements to functions and function relations step six is carried and the
modeling process is completed. The resulting diagram specifying the function of
carrying the desired processing sequence (and the related formulae) is depicted in
Figure 64. In this example, the (partial) state related to “stop machine” is specified

 133

in terms of parameter “Speed” by the requirement “machine is idle”. The behavior
under study is specified by a main function node “to control process for one part”.
The sub-tree of this node contains all the functions that have to be executed in order
to carry out the process. The function “to set process initial conditions” ensures a
well defined initial condition or state from which the behavior under study can be
analyzed. To indicate which children function(s) should start executing when their
parent is activated, it is possible to use the ‘start function’ connector represented by
the gray circle on top of the function node in Figure 64.

Send to buffer

to send to buffer

Type

State after unload machine 1

AND Value ()

to load into empty buffer

Type

to load and fill buffer

Type

One piece in buffer

= BCapacity-1 ()
Buffer loaded full

AND Value ()

Bufer loaded from empty

AND Value ()

Buffer is empty

= 0 ()

operation 1 done INT start operation 2 command INT

m1 unloaded to empty buffer INT

m1 unloaded to loaded buffer INT

Figure 65. Use of open function relations as preconditions

Yet another way of using the function relations is to have them connected only from
one end or ‘open’, i.e., connected only incoming/outgoing to/from a function node.
Through this construct, it is possible to add detail to incoming/outgoing function
relations associated to the parent of the present function, working effectively as an
additional precondition for transition in/out of it. This can be used to represent a
choice upon starting the execution of a composite function as shown for example in
Figure 65 (this example does not correspond to the previous example), where the
requirements associated as an event to the function relation “operation 1 done” are
complemented by (united to) the requirements associated to the open input
transitions “m1 unloaded to empty buffer” (requirement “buffer is empty”) or “m1
unloaded to loaded buffer” (requirement “one piece in buffer”). This solution is

134

preferred over the use of a “dummy function” (which could not be mapped to any
entity) preceding both children which would act as a choice point in the model.

As demonstrated by the works on formal language identification [57], specifying
desired (allowable) and undesired (forbidden or constraining) situations helps
reducing the detail of a description based on only one type of situations, as
enumerating all the desired or undesired evolutions may be too cumbersome. From a
more strict control perspective, desired behaviors partially specify the sets of
allowed states the system can reach, while undesired behaviors specify the sets of
states the system should not reach. Thus, we also model desired and undesired
behaviors in the model by using several descriptions like the ones in Figure 64.
Following this view, functions (together with requirements) can be used to represent
system “invariants”, or conditions (partial states) that the system should never reach
or that should always comply to (in the case of desired behaviors).

The complete state space is represented in a compact way by using the hierarchical
structure of requirements (cf. Figure 66) in the same manner as done by the state tree
in section 7.1.3. In this way, the full state space of a system can be represented very
economically. Requirements in the STS can also be used as part of the description of
other requirements (see Figure 66). The modeled requirements can be used
efficiently to link the subjective functional description to objective goals, states, and
events. The main function node maps to a main requirement node which is parent to
all the requirements that can be used to specify the behavior under study. For our
example, the main requirement node is “machine process status” (see Figure 64 and
Figure 66)

Requirements

Work status

OR Value ()

Machine is full

= 1 ()

Load status

OR Value ()

Busy load failure status

AND Value ()

Take part in commanded

= 1 ()

Machine process status

AND Value ()

Machine is overloaded

> 1 ()

Machine is working

> 0 ()

Machine is empty

= 0 ()

Overflow conditions

AND Value ()

Initial state

AND Value ()

Machine is idle

= 0 ()

Progress - [Pro]Speed - [bin]LoadCommand - [bin] Load - [#]

Process not over

< 4.13 ()

Process over

>= 4.13 ()

Process status

OR Value ()

End of processing

AND Value ()

Machine ready to start

AND Value ()

Figure 66. State-tree structure for the processing sequence (tree on left) and other requirements (lined up

at right). Mappings to parameters not shown.

 135

Behavior primitives

F1

Type

F2

Type
FR1 INT

F1

Type

FR1 NINT F2

Type

F1

Type

FR1 INT
F2

Type

F3

Type
FR2 INT

R1

Type Value ()
R1

Type Value ()

F1

Type

FR1 NINT
F2

Type

FR2 NINT
F3

Type

R1

Type Value ()
R1

Type Value ()

R2

Type Value ()

F1

Type

FR1 INT

R1

Type Value ()

F11

Type

FR2 INT
R2

Type Value ()
F12

Type

Figure 67. Some possible transition structures used to model intended behavior: (a) interrupting transition

after R1; (b) non-interrupting transition on R1; (c) non-interrupting synchronized transition on R1; (d)

interrupting transition choice on R1 or R2; (e) “reset” of F1 on R1. Note that the goal requirements of

functions are only show for F1 in a and c to simplify this view, but other requirement goals still should be

present in the model.

Now follows a more detailed explanation of how function relations can be used
together with requirements to precisely indicate transition conditions and the effects
of such transitions, including parallelism and choice. Some of the possible transition
structures for the model are represented in Figure 67. The combinations come from
representing a transition under an event:

 associated with a goal requirement of the function preceding a function relation
(as in Figure 67 a and c), or associated with a separate requirement (as in Figure
67 b, d, and e)
 defined as interrupting (“INT” in Figure 67 a, d and e) or non interrupting

(“NINT” in Figure 67 b and c)

136

If several function relations are associated with the same requirement node, then the
activation of the subsequent functionality will be synchronized by the event (cf.
Figure 67 c). Association with different requirements implies a choice (see Figure
67 d). Additionally, we allow placing a function relation as a self-loop of a function
(Figure 67 e). The multiple descriptions covering desired and undesired behaviors
and the non interrupting transitions allow specifying concurrency in the behavior.

It is necessary to ensure consistency as the different objects are decomposed. For the
purpose of the transformations proposed in this paper is particularly important that
the events involved in transitions between functions at different decomposition
levels are not conflicting, i.e., do not include conflicting requirements with
constraints such as “A>0” and “A<0”. More generally, a parameter may be
constrained by several goal requirements of functions. To decide on the possible
range of values that it can take, simply determine it from the different requirements.
To be consistent, no two requirements can constrain it to be equal to more than one
value; neither can two requirements point it to be both greater and smaller than a
certain value.

F11

Type

F12

Type

F2

Type

F21

Type

F22

Type

F111

Type

F112

Type

F221

Type

F222

Type

F223

Type

F0

Type
FR .

D .

I .

C .

A .

E .

J .

B .

F .

H .

G .

F224

Type

Relations topology

F1

Type

K .

L .

Different levels of sub-tree rooted in
F1 involved. Leave either A or C.

Relation closes
illegal loop
between siblings.

Relation points to non-
start, non-sibling and
should be ignored.

Figure 68. Relation topologies in the AM. Conflicts are indicated with notes and dotted lines.

Considering the language tradeoffs established before, we introduce some additional
constraints to the modeling. To simplify parsing the model part representing the

 137

desired behavior, we do not allow placing function relations which form loops
between children of the same function. This facilitates identifying the “end sub-
functions” among the children of a single function and entails more readable
graphical models. Another simplifying modeling constraint involves disallowing to
place (function and entity) relations among different “detail levels” in a hierarchy.
This corresponds to only allowing relations among children of the same parent
(siblings), and among non-siblings under the condition that no two nodes in the
same decomposition sub-tree at different levels relate to elements in the same level
of another sub-tree. Examples of these constraints are depicted in Figure 68. Similar
rules also apply for entities, but detailing this part is out of the current scope.
Additionally for the functions, there must be consistency with relation to the labeled
start functions.

7.3 Model transformations

After presenting all the necessary information to model using the AM towards
designing a supervisory control, we proceed to detail how this information
corresponds to the one in the chosen target models: STS and HP. For both
transformations we first make a better description of some points in the target
models and the related design methods. For complete descriptions the reader can
consult the original works of Ma [106] for STS and Platzer [132] for HP. Then, we
explain the mappings and transformation process starting from an AM. For space
reasons, we emphasize on the description of the transformations and mappings
rather than showing the detailed development for our example case.

7.3.1 AM-STS mappings

Recalling Section 7.1.3, we can identify two main parts in the STS model: the state
tree and the holon. Though in fact the holon contains all the information from a
certain state tree, we treat them separately to facilitate identifying the
correspondence to the information in the AM. The synthesis problem takes as inputs
the STS model and the list of states we do not want to the system to reach. The
result is a set of control functions or rules, specified as binary decision diagrams
(Boolean functions). Once available, these results can be directly represented
through the requirements corresponding to the controllable transitions in the AM.

Though represented graphically in Figure 59, the STS model is serialized as two
formatted text files for the STSLib software which describe the system (“sts”) and
the control problem, called the logical specification (“spec”). These forms provide
additional information. The spec file contains lists of undesired behaviors and illegal
states which are used to pose the control problem. The sts file contains a description
of the state tree, the holons, the initial state, the marker states, and the memories.
The last two terms are further explained here. Marker states reflect important states
of the system (e.g., marking the state of completion of a task), and are relevant
because from them depend the results of reachability and coreachability tests used in
the methodology. Normally holons are constructed to represent the full or

138

uncontrolled behavior of the system; memories are simply holons which are
interpreted as specifying fully desired or controlled behavior of the system (i.e.,
specification automata in [136]), entailing that all the unspecified transitions will be
considered as part of the undesired behavior.

Control aspects

to overload machine

Type

Control
Applied to...

to load busy machine

Type

Undesired behavior
Applied to...

Controller
Applied to...

LoadCommand - [bin]

Desired behavior
Applied to...

to control process for one part

Type

Controller

Take part in commanded

= 1 ()

Figure 69. Labeling of AM information for the proposed transformations

Passing to the AM-STS correspondence, first we define the aspects to label the AM
information relevant to the transformation. That is, we declare aspects which map
directly to the top functions specifying desired and undesired behavior. From these
function nodes the rest of the information can be identified in the model. One
possible way of modeling this in our example is depicted in Figure 69. The figure
also shows how the domain entity “controller” (top-right), corresponding to the
controller we intend synthesizing using our STS model, is mapped to the control
aspects and at the same time to the parameters relevant to this end. This last
mapping allows correctly identifying which states and events depend from the
controller being synthesized. For this synthesis approach, we declare as controllable
events those related with requirement nodes which map to the controllable
parameters (requirement “take part in commanded”). Since observability is assumed
in our STS synthesis, there is no need to identify the parameters related to sensing. It
may seem like the choices for aspects in the example do not cover every possible
situation, as for example, there could be other physical constraints relevant to
supervisory control such as a machine capacity or a maximum carrying weight. A
possible way to address those situations is to add more aspects which specifically
label such conditions. For the example of the capacity of the plant components, the
information could be labeled in the AM using an additional child aspect, which in
turn maps to a domain entity and to the capacity parameters. Nonetheless, a better
approach seems to be adding such conditions as undesired behavior descriptions. In
such way, the aspects of desired and undesired behavior can cover all constraints
over the behavior without the need for many aspects. In this case, the undesired
situation of overloading the machine covers the plant capacity consideration.

 139

An evident relation can be seen between the state tree in STS and the requirements
tree which represents the system states in the AM. As shown in Figure 70, the
requirements tree from Figure 66 can actually be directly parsed as a valid state tree
if the constraints introduced in this section are respected, or it can be preprocessed to
eliminate the “redundant” AND-component-simple states. For simplicity, the figure
uses the initials in the names of the referred requirements (e.g., MW for “machine in
working”)

MPS

WS PS LS

MW MI PNO PO ME MF MO

Figure 70. State tree for the factory example

We now describe how to form the transition structure in the holons. This is
accomplished by matching the transition requirements associated to the function
relations in the desired behavior descriptions to the transition events used in the
holons. This can be done because the requirements mapped to the function nodes
correspond to partial states in the state tree. Yet, one must be careful and consider
the possible complete states of the system when a certain function is active so that a
true trace of the system can be reconstructed. To do this and to correctly capture the
modeled concurrency, we interpret the desired behavior specifications as Petri nets
in which each function node is a place, and the function relations can be translated to
several transitions according to their characteristics (see next paragraph). The
capacity information can be added directly to the places of the resulting Petri net,
effectively bounding and reducing the number of states it represents. The initial
marking of the net is obtained from the requirement which sets initial conditions
associated to the main function(s). The reachability graph of the Petri net contains
all the possible system states and transitions. One possibility to obtain this
reachability graph is to use transformation tools such as those developed within the
Compositional Interchange Format project [46].

Figure 71 depicts the equivalent Petri net transitions for the transition structures
presented before in Figure 67. The cases (a)-(e1) correspond directly, while the case
(e2) in this figure corresponds to the situation in which the looping function relation
“FR1” in (e1) is considered as non-interrupting. In the case in which FR1 in Figure
67-e corresponds to a transition after F1 stops executing (e.g., is not mapped to a
requirement), the Petri net transition in Figure 71-e labeled R1 would correspond to
the appropriate end-event of F1. Such event would probably be a combination of the
end-events of the children of F1. Notice that some transitions in Figure 71 do not
follow the standard Petri-net representation and are depicted with a hollow rectangle;
here we call these ‘OR transitions’. An OR transition fires with any (largest possible)
marking of the places attached to its incoming arcs. If the OR transition is
interrupting, it will have an outgoing arc to each start children function of F1 and
will add a token to those places when firing. If the OR transition is non-interrupting,

140

it will not consume the tokens of the incoming places (this has been represented in
Figure 71 by placing additional outgoing arcs to F11 and F12). Therefore, and OR
transition is in fact representing multiple transitions on the same event which cover
all the possible markings of the places of the incoming arcs. The resulting Petri net
for the desired behavior of the small factory example it shown in Figure 72 (names
of nodes represented by their initials). The Petri net can represent multiple levels of
functionality simultaneously by, for example, adding a place and corresponding
links to transitions for the “control process for one part” function node. Only the
most detailed level is presented in Figure 73 for simplicity.

(a) (b)

(c) (d)

(e1) (e2)

OR OR

Figure 71. Equivalent Petri net transitions for function relations in Figure 67. The “white” transitions in (e1)

and (e2) correspond to an OR transition. For simplicity, input/output transitions to each Petri net are not

depicted (without them the nets are blocking).

OR

Figure 72. Resulting Petri net for the desired behavior in the small factory

The forbidden states to build the logical specification can be obtained from the
undesired behavior specifications in a similar manner to the holon’s transition

 141

structure, taking care of joining both reachability graphs and extracting the illegal
states as the nodes of the undesired behavior specifications which do not mach
nodes in the desired behavior. The concept of memories is not used in the proposed
transformation, but it could also be included. Other sources of information for the
forbidden states can be found on the capacities of the subsystems and the invariants
related to undesired behavior (cf. section 7.2.2), as these directly indicate illegal
states due to physical constraints.

Figure 73. Resulting automaton for the factory example

The resulting reachability graph is shown in Figure 73 (again, just the initials of the
referred nodes are used), where the numbered circles indicate the active functions in
each state, with the attached symbols indicating the corresponding goal-state
requirements. The transitions correspond to the function relations. The “END”
transition indicates the change to a state where no functions are active. The
horizontal line crossing states zero to five is obtained from the desired behavior
graph, while the “primed” states correspond to the undesired behavior. It can be seen
that all the transitions leading out of the desired behavior are controllable (crossed
by a bar in the figure), because their requirements relate to the controllable
parameter “LoadCommand”. A note regarding the use of plant capacities here is
necessary at this point. In this work, we used a rather simple algorithm to obtain the
reachability graph of the resulting automaton which only handles bounded Petri nets.
Adding place capacities allows us to ensure such property by construction,
simplifying the present implementation. However, here the restriction in the
overflow undesired behavior can also be used to this end, detecting the violating
states and bounding the reachability graph of the Petri-net. Thus here, the resulting
holons would not include the illegal states which violate the plant capacities.
Therefore, to deal with this issue in the STS framework, we would have to include
in the holon the descriptions the states and transitions specified in the undesired
behavior. The logical specification will then ensure that these states are not reached.

The only remaining input information for synthesis through STS methods is the list
of marked states. A simple and safe approach includes considering every state a
marked state. However, here we also propose marking those states related to end
sub-functions at the lowest level (adjacent to the leafs) of functional decomposition
in the desired behaviors. This is justified because these states effectively represent

142

the completion of the different functions at the highest level of detail available. For
the case of self-looping functions, the states associated to the starting functions
should also be added, ensuring that the non-blocking property of the system can be
checked properly. To finish, the result of the STS synthesis is that a new part should
be fed when the machine is idle becomes empty. This result can be taken back to the
AM by complementing the requirement of taking a part in with these two
requirements.

7.3.2 AM-HP mappings

As the design using HP will be used to verify and refine the parameter values
(possibly associated with events) in the controlled system, we assume that the AM
has been updated with the results of the STS design step explained in the previous
section, that is, the rules for the controllable events are modeled in the AM. Also,
the labeling of the AM information is the same as the one specified for the STS
transformations.

At this point we recall the definitions from Section 7.1.4 to define the basic concepts
in HP. The remaining information on the model mainly concerns the description of
the possible structures of a hybrid program that can be interpreted by the KeyMaera
tool. The formula ‘ ’ introduced in Section 7.1.4 sets the first level of the
structure in the HP. The initial conditions of the system indicated as the precondition
‘ ’ are placed in the first section, the dynamic system description ‘ ’ is placed in
the subsequent section, and the postcondition ‘ ’ holding the properties we wish to
verify is placed in the last section. All the information in the sections is represented
as HP formulae, for which Platzer provides a precise description. Next we provide a
short account of the basic syntax. Discrete dynamics are represented by
instantaneous assignments ‘:=’, and continuous dynamics are modeled using
differential or differential-algebraic equation systems ‘=’ and evolution constraints
‘>’, ‘<’, ‘¥’, ‘§’. The sets of such statements are built using a conjunction operator
‘⁄’. The available operators for modeling the control structure include: ‘;’ for
sequential composition,’*’ for repetitive execution, ‘¤’ for nondeterministic choice,
and ‘?’ for tests.

While ‘ ’ and ‘ ’ have a relatively straightforward structure, ‘ ’, which contains
all the system dynamics, can be structured in many possible ways. One of such
structures (and our choice for this work) is precisely a direct representation of hybrid
automata. Now we describe the mappings between information in the AM and the
HP. The resulting HP for the presented example is shown in Figure 74, and the next
explanations can be followed through the figure.

The preconditions ‘ ’ in the HP hold a direct relation to the initial conditions
specified for our desired behaviors in the AM. It suffices to take all the leafs in the
requirements tree which compose the initial state, translate them to instantaneous
assignments, and join them through a conjunction. The postcondition ‘ ’
information can be found directly on the invariants declared in the AM (cf. section

 143

7.2.2), taking care of adding a negating operator to the ones related to undesired
behavior descriptions. The whole formula for ‘ ’ can be constructed similarly to the
one for ‘ ’, but there is also the possibility to verify each invariant independently if
desired.

For simplicity, we have chosen to structure ‘ ’ as a hybrid automaton. Thus, the
transition structure can be obtained from a Petri net built as explained for the STS
transformation, greatly simplifying this transformation. The resulting reachability
graph can be directly associated to active/inactive states and their associated
functions. However, we also have to attach the corresponding dynamics associated
with the AM formulae mapped to every function. Depending on the syntax used to
describe the formula, we may need parse the formulae information and transform it
into valid HP statements. To simplify this, and as the AM does not restrict the
formatting in the formulae, here we chose that our AM formulae descriptions abide
the HP syntax, adding some labels for entry, in, and exit, which indicate when the
dynamics should be executed.

\problem {
 \[R Load, MaxLoad, LoadCommand, State, Progress, Speed; \]
 (
 (Load = 0 Ÿ LoadCommand = 1 Ÿ Progress < 4.13 Ÿ Speed = 0 Ÿ State = 0) /* Initial condition */
 ->
 \[
 (/* Automaton */
 (?(State = 0); /* Initial state INIT*/
 ({Progress' = Speed, Speed = 0, !(Progress < 4.13 Ÿ Speed = 0) })/*Passive
 dynamics*/
 ⁄
 (?(Load = 0 Ÿ LoadCommand = 1 Ÿ Progress < 4.13 Ÿ Speed = 0); State := 1;
 Load := Load + 1; LoadCommand := 0; Progress := 0) /* Transition to State 1 */
)
 ⁄
 (?(State = 1); /* State Take Part In*/
 /*No internal dynamics, entry executed in State 0 transition*/
 (?(Load = 1 Ÿ Progress < 4.13); State := 2)/* Transition to State 2 */
)
 ⁄
 (?(State = 2); /* State Process Piece*/
 ({Progress' = Speed, Speed = 1, !(Progress >= 4.13) }) /* Internal dynamics:
 Processing piece */
 ⁄
 (?(Progress >= 4.13); State := 3; Speed := 0)/* Transition to State 3 */
)
 ⁄
 (?(State = 3); /* State Stop Machine*/
 /*No internal dynamics, entry executed in State 2 transition*/
 (?(Speed = 0); State := 4; Load := Load - 1)/* Transition to State 4 */
) ⁄
 (?(State = 4); /* State Place Piece Out*/
 /*No internal dynamics, entry executed in State 3 transition*/
 (?(Load = 0); State := 5)/* Transition to State 5 */
)
 ⁄
 (?(State = 5); /* Default end state after 4... nothing happens here*/
 ?0 = 0 /* This always evaluates to true */
)
)* /* The dynamics are repeated indefinetly */
 \]
 (!(Load > 1) Ÿ !((Speed > 0) Ÿ (LoadCommand = 1))) /* Forbidden situations of machine
 overflow and loading busy machine*/
)

Figure 74. Resulting HP code (comments enclosed in ‘/**/’)

It can be seen in Figure 74 how the states numbered from zero to five in Figure 72
have their proper place in the automaton, separated from each other by or symbols.

144

In each state, the internal dynamics are evaluated, followed by the possible
transitions in that state (this order could be reversed as well). The first section of the
code provides a variable declaration followed by the specification of the initial
conditions. The last part of the code contains the negated (marked by “!”) undesired
states as the invariants to be verified. After loading the resulting file in the
Keymaera tool, it can be successfully verified that the forbidden situations are not
reached.

7.4 Conclusions

Though this work just deals with transformations to two models, the choice of these
models was done attempting that the basic information placed in the proposed AM is
sufficient for transforming into any other model that requires the same kind of input,
i.e., supervisory control design models. As shown in the European research initiative
MULTIFORM [118], albeit differences in representation power, many formalisms
for the description of behavior have equivalent transformations among each other.

The representation of behavior addressed through the architecture model is a
valuable contribution to the field of formal behavioral representation, and can be
used in other developments, e.g., the work of Cheung et al [42].

It must be emphasized that the current proposal for modeling of behavior does not
pretend to replace the multiple formal behavior specifications found in literature and
practice such as Petri nets and hybrid automata. The current proposal rather looks to
fill the gap between data modeled with such representations and other sources of
information which are relevant to the control design process, while at the same time
searches to remain human and machine readable and understandable to (and thus
usable by) a wide variety of stakeholders.

Concepts modeled here through the AM such as “state” and “behavior” may be
perceived as specific to the domain of control. However, it is argued that these
concepts are shared among many stakeholders, though probably using different
names like “behavior” and “process flow”, depending on the context in which they
are addressed. Modeling such information is thus of great added value for the whole
design process and not only for controller design.

 145

Discussion

Apart from the intensive review of literature which led to identify more clearly
several challenges in current complex product development practices, this thesis
contains three main contributions: (1) a framework concept for supporting product
development, (2) a language proposal for the representation of design information at
the architecture level, and (3) an controller design workflow which can be supported
by automation and considers the early stages of development. Additionally, the
concepts in the proposals are proven through implementations. The next paragraphs
support these contributions pointing out advantages, comparing to existing work,
and highlighting limitations of this work while showing possible research directions
for the future.

Using the classification in [190], the AM and its implementation could be defined as
a model-based, awareness tool and a collaboration infrastructure. It also addresses
indirectly the searchable design databases efforts (see Section 5.3). One
differentiating factor with respect to previous efforts is the successful use of
functional information and other abstract objects to build an architectural description
that integrates dissimilar design information and cross-cutting concerns.
Representation of cross cutting concerns cannot be properly done in component
oriented architectural descriptions [73]. Additionally, the AM formalizes design
practice information to allow systematic analysis from the point of view of
engineering design research, effectively contributing to bridge the practice/research
gap that exists in design [139].

The proposed model and implementation (that is, the AM and AM tool) cover other
desirable characteristics lacking in current tools (cf. sections 2.3, 3.2.2.1, and 5.1.3):

 An architecture-level representation of the system to navigate information and
identify its creators and stakeholders.
 Based on the use of functions (cf. Chapter 3), it allows associating multi-domain,

varied, dissimilar information, identifying units of reusable knowledge, and
representing decomposition of processes (the things the system should do).
 Modeling of physics and other behavioral concerns through parameters and

parameter relations (formulae) (see Section 3.3.3).
 Permits requirement definitions from all stakeholders, which can be related to

external models and traced back to associated functionality or implementing
entities (see Section 3.3.1).
 Supports control software generation parting from high-level information (cf. Part

II), which also opens perspectives for more “intelligent” control implementations
that can deal with irregular situations and changing operation environments.

146

Figure 75. Classification of engineering information exchange, adapted from [188]. Underlined concepts

are addressed by the AM through the elements inside parenthesis. For the terms preceded by an asterisk

(*), the AM provides a definition basis (i.e. input information) and computations are performed by external

models/tools.

 147

To focus on the information exchange, we come back to the discussion in Section
1.2. Figure 75 presents an overview of the developed classification terminology in
the work of Wasiak et al. [188], and how these communication aspects are
addressed by the AM. In that way, the AM proposal can be used to represent most
information covering:

 The “what” topics regarding the product and the involved stakeholders, also
adding a link to the knowledge resources, tools and methods, and practices.
 The “why” purpose of the designed product used for problem solving.

“How” the content is expressed falls out of the scope of the AM, as it does not
represent (neither pretends to replace) in any form the socio-emotional aspects of
communication.

The next points detail how the objects in the architecture model map to the pieces of
exchanged information in Figure 75.

 Function nodes clearly show what the product must do, corresponding to the
“functions”. The functional description is enriched progressively by decomposing
functionality, and function relations allow specifying composite behaviors.
 Requirement nodes and descriptions represent the “specification” and desired

“performance” of the product. Requirement nodes can also be used to constraint
any resource (e.g., “cost”), and the actual resource usage of a unit or part can be
represented straightforwardly by parameters attached to the entities that represent
such parts.
 “Features” that specify what achieves a “function” are defined by the entities and

the structural layer, together with its mappings to the functional layer.
 “Materials” and other characteristics of the product or process can be represented

using parameters.
 The “operating environment” can be modeled in the structural layer.
 The “ergonomics” which cover user interaction with the product, are defined

partially as functions and partially as the relations between the entities of the
product and the entities that identify the user.
 “Stakeholders” can be identified in the model by finding the creating users of the

objects (including views) through attributes (such as the user attribute).
 “Company and process related” information such as “Knowledge resources”,

“tools and methods”, and “practices and procedures” are not represented directly
in the architecture model. However, as long as there are external models
containing such information, the external communications layer can provide links
to such models. It is worth noting that, in any case, the AM can provide as an input
(or receive as output) shared data related to the external models, but does not
provide any means of computing or processing such data natively.
 The architecture model itself represents the “developing solutions”, as the

implementations residing in the structural layer, for the functional layer, evolve.
Attributes such as version or modification date can help managing such aspect.

148

 Other information related to provide reasons within the “problem solving
behavior”, can also be represented in the architecture model. The progress and
aims of the design termed as “goal setting” can be seen in the model when
analyzing the functions which have and have not been achieved, i.e., mapped to
the structure layer.
 “Constraining”, “evaluating”, and “decision making” are covered by the link to

external models (which allow evaluation by the stakeholders) through the external
communications layer, passing through the parameters, to the entities they belong,
to the functions they fulfill, and ending in the requirement nodes that map to those
functions. Another path to the requirements can be found through analysis of the
parameter network and the direct relation of causing parameters to the
requirements.
 Most of the “transactions” are handled directly through the architecture model by

direct request of the user.

It must be added that the implemented tool is a prototype intended to prove the
proposed concepts, and that even though it has been used on industrial case-studies,
a more robust implementation would be necessary to handle models at industrial
scale, specially because the implemented tool shows issues regarding memory usage
and fast visualization of large graphs. Other developments that would improve the
tool relate to query and instantiation mechanisms which speed up the process of
search and retrieval of design information. At this point, besides manual creation of
shortcuts, the tool mainly provides one automated mechanism to shortcut data which
is directly related to a certain object (data nodes adjacent to a selection), which
allows visualizing the general concept with relative ease. Another aspect to
investigate is the choice of appropriate visualization methods for the model.
Visualization of models is important to facilitate understanding and appeal of the
model, which strongly influence the decision of using a model or not using it.

Capturing the architecture information requires additional work from all stake
holders. The goal is that designers use the model to consider and share their first
(and subsequent) design assumptions before developing detailed domain-specific
models. Afterwards, time can be saved by allowing reuse of previously modeled
designs and by speeding up data updates and model synthesis on domain-specific
models. It must me noted that, the required effort to build an AM is justified by the
need to have common information in a “stakeholder-neutral” format, and that these
effort may not be paid back if the intention is to document and use knowledge
within a closed (domain-specific) audience which already shares well established
and formal means of communication. For example, it makes no sense to create an
AM that will be used only by the control specialists when they already count with
specialized means of communication and models understood unambiguously by all
their members.

Since the proposed approach proposes the integration of other models, caution must
be taken not to confuse it with multi-modeling approach (see chapter 14 of [77]),

 149

which focuses on integrated model execution and simulation and maintains a
domain-specific focus. Differences among the current proposal and the seminal
work of FBS have been already commented in Chapter 3. Other related works are
presented in [36], [37], [157], and [183].

The modeling philosophy in this work is close to that one described by the fine
systems engineering material by Buede [36]. However, both works disagree at
several points. Buede insists that decompositions to describe the architecture (for the
equivalents to requirements, functions, and entities) should form directed trees, so
that each new decomposition level forms a partition (the implications are analyzed
in [36]). That restriction is not imposed here, as it is considered that it limits the
ability of the AM to represent different views. Additionally [36] seems to make use
of the “transformation” point of view for functions rather than the “intention”
description point of view taken here.

A related work has been developed at the University of Padeborn ([37], [75]). That
work uses similar constructs to the ones presented in this proposal, but offers more
constrained applications as it specifically focuses on a controller architecture for
self-optimizing systems. This is evident in the larger amount of specific modeling
diagrams (more complex syntax) and the use of, what is consider here, domain-
specific elements such as disturbance parameters and shape. Another important
point is that there, contrary to our work, functions seem to play an accessory role for
documentation.

The work of Szykman et al [157] also proposes and shares many valuable ideas with
the proposals in Part I. Although it has relatively simple semantics for its core, it is
specifically stated that the purpose was not aiming to a minimal core representation
and that the set of object classes (including, e.g., shape and material) tries to follow
some traditional representations in design. Though it is not argued that the AM
proposal is minimal, it has been made evident (see Section 3.3.7.1) that there is a
conscious strife for the simplification of the representation language to increase its
applicability and popularize it use. An additional difference is the device-centric [65]
focus of this model, in which most information revolves around the representation of
the real objects and the function has a smaller role.

The proposed framework has many similarities with the CORE tool [183]. One
fundamental difference is that the proposed framework aims at the integration of
software tools used by the designers for design (in addition to representing
multidisciplinary information), supported on the AM implementation. Another
fundamental difference is that the proposed framework leaves analysis, verification,
and simulation to the specialized tools that can be integrated instead of dealing with
such computations directly as in the case of CORE.

The use of SysML has been promoted in works such as the one of Peak et al ([129],
[130]), showing many advantages of integrating information. However, our
experiences with SysML (see pp.70) showed certain characteristics that do not align

150

well with the proposed architecture-centric approach, such as direct implementation
of inheritance in the language, and lack modeling guidance and simplicity.

It can also bee seen that the architecture centric approach has common ideas with
service-oriented architectures (SOA) [192], and may have certain applicability in
that area. For example, the proposed representation may be tested as the shared
format necessary for SOA, providing links to services through the external
communications layer.

As stated in Section 3.3.7, the proposed language implementation does not consider
class descriptions in order to reduce the modeling effort by simplifying the intrinsic
language semantics. This has an immediate repercussion in the capacity to reduce
modeling effort using the concept of inheritance in the instantiated data elements.
However, this does not influence the capacity to use class information or “typing” in
the data (i.e., creating a specific ontology), because this information can be placed
outside the AM (with more appropriate tools such as OWL [186]) and indexed in the
AM data elements using attributes such as “type” (cf. Section 3.3.6). This also
expands the possibility to interpret the data in external tools, while keeping a lean
shared information model, and may and help coping with the identified
representation limitations of the language (cf. 3.3.7.2) by, for example, helping to
identify different detail levels using external ontological information. Other possible
uses of the class information can be seen in works like [80] and [157], and exposed
are placed as future research directions in [11] and [195], e.g., explicit use of
functional information in computational synthesis of (control) design knowledge.

A clear research direction is to make more extensive use of the representation
proposal to create many examples representing different kinds of systems (e.g.,
agent-based systems) and situations and, linked to an increase in formalization and
refinement of the required modeling steps (as done with control design in Part II), to
gradually build a knowledge base of reusable models. Refining the modeling steps
requires special attention must in the way design processes are carried by analyzing
how the user places information into the model and the relation to the specific
design processes. This research can also help identifying what level of proficiency
and knowledge of the system is required to build and maintain an appropriate
architecture-model, as it is evident that a user with no connection to the development
or use of a certain system (not a stakeholder) can have many problems in these
regard.

Ulrich [174] has identified architecture analysis and comparison as an important
research direction. However, first it is necessary to have a common modeling
language to represent the product architecture. A model with the characteristics
proposed here can constitute a basis for such research.

A possibility to be explored lies on the function’s potential to carry the design
intention of systems, which could be used to guide or filter the results of a
qualitative reasoning process towards the interesting alternatives, thus, increasing

 151

the potential of qualitative reasoning and naïve physics techniques. References [1]
and [170] propose to carry out the task of defining the function by using the physical
principles (or physical phenomena) that are intentionally used to achieve the
function; then, the identified basic principles could be used to do some filtering by
choosing the results in which they appear in action.

From the side of control design, besides obvious implementations to use other
design methodologies and formal representations, an open research question remains
for defining in detail the integration of regulatory and supervisory synthesis
approaches. However, studying both procedures it can be seen that they mainly hold
in common information in the behavioral layer, and that since the formulae syntax
used in the HP for the supervisory control can also be interpreted from the point of
view of causality, as it is required for the analysis carried out for regulatory control.
Thus, both proposed design methods are not incompatible but further research has to
look for deeper relations and interactions to form a unified design approach.

 153

Conclusions

Current development practices of complex and multidisciplinary products face many
challenges to produce truly integrated systems in an efficient way. The challenges
relate to integration of the work of stakeholders, which can be partially supported by
integration of the information they share. However, the variety and amount of
multidisciplinary information involved in design make of its integration a complex
problem.

The reviews and discussions show that most current supporting tools and methods
just address the challenges partially, and that the domain-specific models supporting
such methods have intrinsic handicaps when stakeholders from different domains
have to work together.

The architecture-centric approach to design seeks overcoming the reviewed
challenges by proposing the use of architecture-level information to handle the
complexity of the information integration problem. The proposal provides greater
insight into why product architecture can effectively support design, and what are
the desirable characteristics of a model which allows representing architecture and
using such representation in design. These characteristics respond mainly to the need
for providing an overview of the current state and goals of design, separating
different types of information, and interlinking the shared information in design. An
integral part of the proposal is the need to consider systems architecting activities
while taking into account that all stakeholders provide valuable knowledge to them.

The proposed AM language and tool offer support for the architecture-centric
approach. This is challenging because it requires representing information from a
wide variety of sources and models. To capture such information, the AM is built
with abstract, high-level representations, such as functions and behaviors, which by
virtue of their (generic) nature, can accommodate to a wide range of modeling
situations. Additional contributions from these proposals relate to the characteristics
of the AM language and tool, which aim to simplify the semantics and syntax of
common representation and allow retrieving and reusing modeled data to maintain
an overview of the design context. This is partially possible because the domain-
specific semantics for the modeled information (corresponding to classes, ontology,
or taxonomy) are kept separate of the proposed common model to represent
architecture. Developing such domain-specific semantics can greatly improve the
usability of the modeled information, but does not form part of the research
documented in this thesis.

The main concepts in the proposals have been tested in cases inspired by the control
design domain, taken as a representative example of the need to integrate
information from many domains. This book also compiles contributions to the
control domain, including the identification of the need and the available methods to
support controller design starting at the conceptual phases, and providing an

154

implementation framework based on the architecture-centric approach which allows
integrating design processes.

As seen through the thesis, the external communications layer provides key elements
for the connectivity of the architecture model to the design practice (also necessary
for automation), by enabling formal representation of the exchange channels.
However, these developments do not belong the focus of the present thesis and are
part of the work of Woestenenk ([193], [194], [195]).

 155

References

[1] Akman V, P. J. W. ten Hagen, and T. Tomiyama, “A fundamental and theoretical
framework for an intelligent CAD system,” in Computer-Aided Design archive,
Volume 22, Issue 6 (July/August 1990), pp. 352-367.

[2] Alink T, Eckert C, Ruckpaul A, Albers A, 2011. Different Function Breakdowns for
One Existing Product: Experimental Results. In Design Computing and Cognition ’10,
Gero JS (Ed.), Springer, pp. 405-424.

[3] Alvarez Cabrera AA, Erden MS, Foeken MJ, Tomiyama T, 2008. High level model
integration for the design of mechatronic systems. In proceedings of IEEE/ASME
International Conference on Mechatronic and Embedded Systems and Applications.
Beijing, China. pp. 387-392.

[4] Alvarez Cabrera AA, Erden MS, Tomiyama T. On the potential of Function-Behavior-
State (FBS) methodology for the integration of modeling tools. Proceedings of the
CIRP design conference, 2009: 412.

[5] Alvarez Cabrera AA, Foeken MJ, 2008. Introductory study on automated data transfer
between modeling tools for controller design. Internal project report, internship at
Phillips Applied Technologies.

[6] Alvarez Cabrera AA, Foeken MJ, Tekin OA, Woestenenk K, Erden MS, De Schutter
B, van Tooren MJL, Babuška R, van Houten FJAM, Tomiyama T. Towards
Automation of Control Software: A Review of Challenges in Mechatronic Design.
Mechatronics, 20(8), pp. 876-886. <http://dx.doi.org/10.1016/j.mechatronics.2010.05.
003>

[7] Alvarez Cabrera AA, Foeken MJ, Woestenenk K, Stoot G, Tomiyama T, 2011.
Modeling and Using Product Architectures in Industrial Mechatronic Product
Development: Experiments and Observations. In Proceedings of the ASME 2011
International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference IDETC/CIE 2011. August 28-31, 2011,
Washington D.C.

[8] Alvarez Cabrera AA, Komoto H, Tomiyama T, 2011. Supporting co-design of
physical and control architectures of mechatronic systems. In Proceedings of the
ASME 2011 International Design Engineering Technical Conferences & Computers
and Information in Engineering Conference IDETC/CIE 2011. August 28-31, 2011,
Washington D.C.

[9] Alvarez Cabrera AA, Lopes GD, Tomiyama T. An Architecture-Level Supervisory
Controller Specification for Automatic Generation, DRAFT to be submitted for
publication. August 2011.

[10] Alvarez Cabrera AA, Tomiyama T. Architecture-Level Representation and Analysis
of Regulatory Controller Configuration for Complex Mechatronic Systems, DRAFT to
be submitted for publication. June 2011.

[11] Alvarez Cabrera AA, Woestenenk K, Tomiyama T, 2011. An Architecture Model to
Support Cooperative Design for Mechatronic Products: A Control Design Case.
Mechatronics, 21(3), pp. 534-547. Online <http://dx.doi.org/10.1016/j.mechatronics.
2011.01.009>

[12] Amerongen J van, Breedveld P. Modeling of Physical Systems for the Design and
Control of Mechatronic Systems. Annual Reviews in Control 2003; 27: 87–117.

156

[13] Amerongen J van. Mechatronic Design. Journal of Mechatronics 2003; 13(10): 1046-
166.

[14] Apache, “Apache Subversion”. On the WWW, January 2011. <http://subversion.
apache.org/>.

[15] Astrom, K., and Hagglund, T., 1995. PID Controllers: Theory, Design, and Tuning. 2nd
ed. Instrument Society of America.

[16] Auslander DM, Ridgely JR, Ringgenberg JD. Design and Implementation of Real
Time Software for Control of Mechanical Systems. 2002.

[17] Avigad G, A. Moshaiov, and N. Brauner, “Towards a general tool for mechatronic
design,” [online] in Proceedings of 2003 IEEE Conference on Control Applications,
2003, CCA 2003, Vol. 2, pp. 1035-1040.

[18] Barr A, Cohen PR. The Handbook of Artificial Intelligence. Vol. 4, Chapter 21. Los
Altos, CA, USA: William Kaufmann, Inc.; 1989.

[19] Beckers JMJ., Heemels, W.P.M.H., Bukkems, B.H.M. and Muller, G.J., 2007,
“Effective Industrial Modeling for High-Tech Systems: The Example of Happy Flow,”
In Proceedings of 17th Annual Symposium of INCOSE, San Diego, CA, US.

[20] Berends JPTJ, Tooren MJL van, Schut EJ. Design and implementation of a new
generation multi-agent task environment framework. In: 49th AIAA/ASME/
ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4th
AIAA Multidisciplinary Design Optimization Specialist Conference. Schaumburg, IL,
USA; 2008.

[21] Bishop RH Ed. The mechatronics Handbook: Mechatronic system control, logic, and
data acquisition. CRC press. 2nd Ed, 2008.

[22] Blessing LTM, Chakrabarti A. DRM, a design research methodology. London, UK:
Springer-Verlag; 2009.

[23] Boehm B. A Spiral Model of Software Development and Enhancement. ACM
SIGSOFT Software Engineering Notes 1986; 11(4):14-24.

[24] Bonnema GM. FunKey architecting - An integrated approach to system architecting
using functions, key drivers and system budgets. Ph.D. thesis. University of Twente.
Enschede, The Netherlands, 2008.

[25] Borches, P.D., 2010, A3 Architecture overviews. Ph.D. thesis, University of Twente.
Enschede, The Netherlands.

[26] Bosch J, 2002. Architecture-centric software engineering. In ICSR-7. Gacek C. (Ed.),
Lecture Notes in Control Science 2319, pp. 347-248.

[27] Boucher M, 2009, System Engineering: Top Four Design Tips to Increase Profit
Margins for Mechatronics and Smart Products,” Aberdeen Group, Boston, MA.

[28] Boucher M, Houlihan D. System design: new product development for mechatronics.
Boston, MA, USA: Aberdeen Group; 2008.

[29] Bracewell R, Sharpe J. Functional descriptions used in computer support for
qualitative scheme generation - “Schemebuilder”. AI EDAM Journal - Special Issue:
Representing Functionality in Design 1996; 10: 333-346.

[30] Bradley DA, “The what, why and how of mechatronics’” in Engineering Science and
Education Journal, Apr. 1997, Vol. 6, Issue 2, pp. 81-88.

[31] Braspenning NCWM, Boumen R, Mortel-Fronczak JM van de, Rooda JE, 2011.
Estimating and quantifying the impact of using models for integration and testing. In
Computers in Industry, 62(1), pp. 65–77.

 157

[32] Brooks RA, 1986. A robust layered control system for a mobile robot. In IEEE journal
of robotics and automation, RA-2(1), pp. 14-23.

[33] Brown SL, Eisenhardt, K.M., 1995, “Product Development: Past Research, Present
Findings, and Future Directions,” Academy of Management Review, 20(2), pp. 343-
378.

[34] Browning TR. The many views of a process: Toward a process architecture
framework for product development processes. Systems Engineering 2009; 12 (1):69-
90.

[35] Bryant CR, McAdams, D.A., Stone, R.B., Kurtoglu, T., Campbell, M.I., 2005, “A
Computational Technique for Concept Generation,” In Proceedings of IDETC/CIE
2005, Longbeach, CA, US.

[36] Buede DM, 2000. The engineering design of systems: Models and methods. Wiley.

[37] Burmester S, Giese H, Munch E, Oberschelp O, Klein F, Scheideler P, 2008. Tool
support for the design of self-optimizing mechatronic Multi-agent systems. Int J Sfttw
Tools Technol Transfer; 10:207-222.

[38] Cassandras CG, Lafortune S, 2008. Introduction to discrete event systems. Springer.

[39] Chakrabarti A., Bligh, T. “An approach to functional systhesis in mechanical
conceptual design. Part I: Introduction and knowledge representation,” Research in
engineering design, 6(3), pp. 127-141.

[40] Chandrasekaran B. “Representing function: Relating functional representation and
functional modeling research streams,” AIEDAM, 19(2), pp. 65-74.

[41] Chandrasekaran B. Functional representation: A brief historical perspective. Applied
Artificial Intelligence 1994; 8: 173-197.

[42] Cheung KS, Chow PKO, 2008. A Petri-net approach to refining object behavioral
specifications. In Informatica; 33, pp. 221-232.

[43] Childers SR, Long JE. A concurrent methodology for the system engineering design
process. Unpublished green paper; 1994. < http://www.vitechcorp.com/support
/papers.php>

[44] Chmarra M, Alvarez Cabrera AA, Van Beek TJ, D’Amelio V, Erden MS, Tomiyama
T, 2008. Revisiting the Divide and Conquer Strategy to Deal with Complexity in
Product Design. In proceedings of the MESA08 conference, 2008.

[45] Christofides PD, El-Farra NH, 2005. Control of nonlinear and hybrid process systems.
Springer.

[46] CIF project, 2011. CIF: The Compositional Interchange Format for Hybrid Systems.
Project website < http://se.wtb.tue.nl/sewiki/cif/start >

[47] Citherlet S, Clarke JA, Hand J. Integration in building physics simulations. Energy and
Buildings 2001: 33; 451-461.

[48] Commault C, Dion JM, Benachene M, 1993. Output feedback disturbance decoupling
graph interpretation for structured systems. Automatica 29 (6) 1463-1472.

[49] Commault C, Dion JM, Do TH. The disturbance rejection by measurement feedback
problem revisited. In proceedings of the American Control Conference, 2010.

[50] Commault C, Dion JM, Hovelaque V, 1997. A geometric approach for structured
systems: Application to disturbance decoupling. Automatica 33 (3) 403-409.

[51] Commault C, Dion JM, Van der Woude JW, 2002. Characterization of generic
properties of linear structured systems for efficient computations. Kybernetika 38(5)
503-520.

158

[52] Commault C, Dion JM, Yacoub Agha S, 2008. Structural analysis for the sensor
location problem in fault detection and isolation. Automatica 44, 2074-2080.

[53] Controllab Products B.V. 20-sim. <http://www.20sim.com>.

[54] Craig K, De Vito M, Mattice M, La Vigna C, Teolis C. Mechatronic integration
modeling,” [online] in International Conference on Advanced Intelligent
Mechatronics, 1999. Proceedings. 1999 IEEE/ASME, Sept. 1999, pp.1032 – 1037,
Atlanta, GA.

[55] Craig K. Mechatronic system design. ASME newsletter; 2009. <http://files.asme.org
/asmeorg/NewsPublicPolicy/Newsletters/METoday/Articles/17845.pdf>

[56] Cutkosky MR, Engelmore RS, Fikes RE, Genereseth MR, Gruber TR, Mark WS, et al.
PACT: An experiment in integrating concurrent engineering systems. Computer 1993;
26(1), pp. 28-37.

[57] Damas C, Lambeau B, Dupont P, van Lamsweerde A, 2005. Generating annotated
behavior models from end-user scenarios. In IEEE transactions of software
engineering, 31(12), pp. 1056-1073.

[58] Dauphin-Tanguy G, Rahmani A, Sueur C, 1999. Bond graph aided design of
controlled systems. Simulation practice and theory 7: 493-513.

[59] De Michielli, G., Gupta, R.k., 1997, “Hardware/Software Co-design,” Proceedings of
the IEEE, 85(3), pp. 349-365.

[60] Derelöv M., 2008, “Qualitative modeling of potential failures: On evaluation of
conceptual design,” Journal of Engineering Design, 19(3), pp. 201-225.

[61] Dion JM, Commault C, Van der Woude J, 2003. Generic properties and control of
linear structured systems: a survey. Automatica 39 (7) 1125-1144.

[62] Dolk DR, 1993. An introduction to model integration and integrated modeling
environments, [online] in Decision Support Systems, 10(3), pp. 249-254.

[63] Dolk DR, Kottemann, JE, 1993, Model integration and a theory of models, Decision
Support Systems, 9(1), pp. 51-63.

[64] Dynasim A.B. Dymola – Dynamic modeling laboratory; 2008. <http://www.dynasim.
se/index.htm>.

[65] Erden MS, Komoto H, Van Beek TJ, D'amelio V, Echavarria E, Tomiyama T, 2008. A
review of function modeling: Approaches and applications. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing; 22(2), pp. 147-169.

[66] Erixon G., von Yxkull, A., Arnstrom, A., 1996, “Modularity–the Basis for Product and
Factory Reengineering,” Annals of the CIRP, 45(1), pp. 1–6.

[67] European Cooperation for Space Standardization. Space engineering – Functional
analysis (E-10-05A); 1999. <http://esapub.esrin.esa.it/pss/ecss-ct05.htm>.

[68] Ferrarini L, Carpanzano E. A structured methodology for the design and
implementation of control and supervision systems for robotic applications. IEEE
Journal of Control Systems Technology 2002; 10(2): 272–9.

[69] Ferretti G, Magnani GA, Rocco P. Virtual Prototyping of Mechatronic Systems.
Annual Reviews in Control 2004; 24: 192–206.

[70] Fishwick PA, 2007. The languages of dynamic system modeling. Chapter in
Handbook of Dynamic Systems. Ed. Fishwick PA. Taylor & Francis Group

[71] Forbus KD, 1984. Qualitative process theory, Artificial Intelligence, 24(3), pp. 85-168.

[72] Friedenthal S, Moore A, Steiner R. A practical guide to SysML: The systems
modeling language. Morgan Kaufmann OMG press. 2008.

 159

[73] Fuentes L, Pinto M, Sanchez P, 2008. Generating CAM aspect-oriented architectures
using Model-Driven Development. Information and Software Technology 50: 1248-
1265.

[74] Fujita K., Yoshida, H., 2004, “Product Variety Optimization Simultaneously
Designing Module Combination and Module Attributes,” Concurrent Engineering,
12(2), pp. 105–118.

[75] Gausemeier J, Frank U, Donoth J, Kajl S, 2009. Specification technique for the
description of self-optimizing mechatronic systems. In Res. Eng. Design; 20, pp. 201-
223.

[76] Geoffrion AM, 1989. Reusing structured models via model integration, Proceedings of
the Twenty-Second Annual Hawaii International Conference on System Sciences, 1989,
Vol.III: Decision Support and Knowledge Based Systems Track, pp. 601-611.

[77] Gray J, Tolvanen JP, Kelly S, Gokhale A, Neema S, Sprinkle J, 2007. Domain-specific
modeling. Chapter in Handbook of Dynamic Systems. Ed. Fishwick PA. Taylor &
Francis Group.

[78] Gronback RC, 2009. Eclipse Modeling project: a domain-specific language (DSL)
toolkit. The eclipse series. Adison-Wesley.

[79] Grübel G. Perspectives of CACSD: embedding the control system design process into
a virtual engineering environment. IEEE International Symposium on Computer Aided
Control System Design, 1999.

[80] Güroğlu S, 2005. An evolutionary methodology for conceptual design. PhD thesis,
Midel East Technical University.

[81] Harel D. From play-in scenarios to code: an achievable dream. IEEE Computer 2001;
34(1): 53–60.

[82] Hayes Roth F, Erman LD, Terry A, Hayes Roth B. Domain-specific software
architectures: distributed intelligent control and management. IEEE Symposium on
CACSD, 1992.

[83] Heck B, Wills L, Vachtevanos G. Software technology for implementing reusable,
distributed control systems. IEEE Control Systems Magazine 2003; 23(1): 21-35.

[84] Heemels WPMH, De Schutter B, Lunze J, Lazar M, 2010. Stability analysis and
controller synthesis for hybrid dynamical systems. In Phil. Trans. R. Soc. A13,
368(1930), pp. 4937-4960.

[85] Hirtz J., Stone, R., McAdams, D., Szykman, S., Wood, K., 2002, “A functional basis
for engineering design: Reconciling and evolving previous efforts,” Res. Eng. Des.,
13(2), pp. 65–82.

[86] Huckle T. Software Bugs – Software Glitches: Collection of software bugs. (Website)
2010. <http://www5.in.tum.de/~huckle/bugse.html> consulted in June 2011.

[87] Hunt J. MACE: A system for the construction of functional models using case-based
reasoning. Expert Systems with Applications 1995; 9(3): 347-360.

[88] IEEE, 2007. International standard (ISO/IEC 42010 - IEEE 1471): Systems
engineering and software engineering – recommended practice for architectural
description of software-intensive systems.IEEE.

[89] INCOSE. Survey of Model-Based Systems Engineering (MBSE) Methodologies.
Technical report number INCOSE-TD-2007-003-01. 2008. Online in <
http://www.incose.org/ProductsPubs/pdf/techdata/MTTC/MBSE_Methodology_Surve
y_2008-0610_RevB-JAE2.pdf >

160

[90] INCOSE. Systems Engineering Handbook: A guide for system lifecycle processes and
activities. Cecilia Haskins (Ed.). INCOSE-TP-2003-002-03. Version 3. June 2006.

[91] Ishii M., Tomiyama, T., Yoshikawa, H., 1993, “A synthetic reasoning method for
conceptual design,” IFIP World Class Manufacturing ’93, Amsterdam, pp. 3-16.

[92] Jackson CK, 2006. Simulation Driven Design Benchmark Report. Boston, MA, USA:
Aberdeen Group; 2006.

[93] James J, Cellier F, Pang G, Gray J, Erik Mattsson E. The state of computer-aided
control system design (CACSD). IEEE Control Systems; 15(2): 6-7. 1995.

[94] Jobling CP, 1996. Advances in computer aided control systems design. IEE
Colloquium on Advances in Computer-Aided Control System Design (Digest No:
1996/061).

[95] Karnopp DC, Margolis DL, Rosenberg RC, 2006. System Dynamics: Modeling and
Simulation of Mechatronic Systems, 4th ed. New York, NY, USA: Wiley.

[96] Kelly S, Tolvanen J-P. Domain-Specific Modeling: Enabling Full Code Generation.
Hoboken, NJ, USA: Wiley-IEEE Computer Society Press; 2008.

[97] Kindler E. Model-based software engineering: the challenges of modeling behaviour.
In proceedings of BMFA’10, June 2010, Paris, France.

[98] Knowledge Based Systems Inc. IDEF Family of Methods website.
<http://www.idef.com/>

[99] Komoto H, Tomiyama T, 2010. Computational support for system architecting,
Proceedings of International Design Engineering Technical Conferences & Computers
and Information in Engineering Conference. ASME, DETC 2010–28683.

[100] Komoto H, Tomiyama T, 2011. Multi-disciplinary system decomposition of complex
mechatronics systems, Annals of the CIRP, 60(1), (provisionally accepted)

[101] Krishnan V., Ulrich, K.T., 2001, “Product Development Decisions: A Review of the
Literature,” Management Science, 47(1), pp. 1-21.

[102] La Rocca G, Van Tooren MJL, 2007. Enabling distributed multi-disciplinary design of
complex products: A knowledge-based engineering approach. Journal of Design
Research 2007; 5(3): 333–352.

[103] Lattanze AJ, 2005. The architecture-centric development method. School of Computer
Science Technical Report CMU-ISRI-05-103, Carnegie Mellon University.

[104] Levis A, 1993, “National Missile Defense Command and Control Methodology
Development,” contract data requirements list A005 report for US Army contract
MDA 903-88-0019, delivery order 0042. George Mason University, Center of
Excellence in Command, Control, Communications, and Intelligence, Fairfax, VA.

[105] Lu RX, De Silva CW, Ang Jr. MH, Poo JAN, Corporaal H, 2005. A new approach for
mechatronic system design: Mechatronic design quotient (MDQ), in Conference on
Advanced Intelligent Mechatronics, Proceedings, 2005 IEEE/ASME International,
July 2005, pp. 911-915, Monterey, CA.

[106] Ma C, Wonham WM, 2005. Nonblocking supervisory control of state tree structures
In the series Lecture Notes in Control and Information Sciences. Springer.

[107] Maciejowski JM. The changing face and role of CACSD. In proceedings of the 2006
IEEE conference on CACSD. 2006.

[108] Martin JN. Systems Engineering Guidebook – A Process for Developing Systems and
Products. Boca Raton, FL, USA: CRC Press; 1997.

 161

[109] Matarić MJ, 1992. Behaviour-based control: main properties and implications. In
Proceedings, IEEE International Conference on Robotics and Automation, Workshop
on Architectures for Intelligent Control Systems.

[110] Matarić MJ, 1997. Behaviour-based control: examples from navigation, learning, and
group behavior. In J. Expt. THeor. Artif. Intell. 9, pp. 323-336.

[111] Mathur N. Mechatronics – Five design challenges and solutions for machine builders.
Instrumentation Newsletter 2007; 19 (2): 6-7. < http://zone.ni.com/devzone/cda/pub/
p/id/145>

[112] McDonough, W., 2005, On Cradle to Cradle Design. In TED2005 (speech
transcription). On the WWW, May 2011. <http://www.ted.com/talks/william_
mcdonough_on_cradle_to_cradle_design.html>

[113] McMahon CA, Caldwell NHM, Darlington MJ, Culley SJ, Giess MD, Clarkson PJ.
The Development Of A Set Of Principles For The Through-Life Management Of
Engineering Information. 2009. <http://www.bath.ac.uk/idmrc/themes/projects/kim/
kim40rep007mjd10.doc>

[114] Mosterman PJ, 2007. Hybrid dynamic systems: modeling an execution. Chapter in
Handbook of Dynamic Systems. Ed. Fishwick PA. Taylor & Francis Group.

[115] Mosterman PJ. HyBrSim – A Modeling and Simulation Environment for Hybrid Bond
Graphs. <http://moncs.cs.mcgill.ca/people/mosterman/papers/ jsce01/p.pdf>

[116] Muller G. System Architecting. Eindhoven, The Netherlands: Embedded Systems
Institute; 2009.

[117] Muller GJ. CAFCR: A multi-view method for embedded systems architecting, Ph.D.
thesis. Delft University of Technology. Delft, The Netherlands. 2004.

[118] MULTIFORM consortium, 2008. Integrated multi-formalism tool support for the
design of networked embedded control systems MULTIFORM. Project website
<http://www.multiform.bci.tu-dortmund.de/>

[119] Murata T, 1989. Petri nets: Properties , analysis and applications. In proceedings of the
IEEE, 77(4), pp. 541-580.

[120] National Institute of Standards and Technology (NIST), 1993. Integration definition
for function modeling (IDEF0). <http://www.idef.com/pdf/idef0.pdf>.

[121] Nayak PP, 1995. Automated Modeling of Physical Systems. In the series Lecture
Motes in Artificial Intelligence. Springer.

[122] Nicolescu M, Matarić MJ. A hierarchical architecture for behavior-based robots. In
proceedings of AAMAS’02, July 2002, Bologna, Italy, pp., 227-233.

[123] Object Management Group. OMG Systems Modeling Language, V1.0; 2001.
<http://www.omg.org/cgi-bin/apps/doc?formal/07-09-01.pdf>.

[124] Object Management Group. Unified Modeling Language, V2.2; 2009.
<http://www.omg.org/spec/UML/2.2/>

[125] Ogata K. Modern Control Engineering. 3rd edition. Prentice Hall. 1997.

[126] Pahl G, Beitz W, Feldhusen J, Grote KH, 2007. Engineering Design: A Systematic
Approach, 3rd ed. London, UK: Springer London Limited.

[127] Parallax Inc. The Boe-Bot robot. <http://www.parallax.com/tabid/411/Default.aspx>.
Website consulted in June 2010.

[128] Paredis C, Diaz-Calderon A, Sinha R, Khosla PK. Composable models for simulation-
based design. Engineering with Computers 2001; 17: 112-128.

162

[129] Peak RS, Burkhart RM, Friedenthal SA, Wilson MW, Bajaj M, Kim I, 2007.
Simulation-based design using SysML: A parametrics primer. In: Proceedings of
INCOSE International Symposium, San Diego, CA, USA.

[130] Peak RS, Burkhart RM, Friedenthal SA, Wilson MW, Bajaj M, Kim I, 2007.
Simulation-based design using SysML: Celebrating diversity by example. In:
Proceedings of INCOSE International Symposium, San Diego, CA, USA.

[131] Perrin K. Digital prototyping in mechatronic design. Project Mechatronics (website);
2009. <http://www.projectmechatronics.com/2009/07/13/digital-prototyping-in-
mechatronic-design/>

[132] Platzer A, 2010. Logical analysis of hybrid systems. Springer.

[133] Portioli-Staudachera A, Van Landeghemb H, Mappellic M, Redaelli CE.
Implementation of concurrent engineering: a survey in Italy and Belgium. ROBOT
CIM-INT MANUF; 19: 225–238. 2003.

[134] Process Systems Enterprice Limited. gPROMS Advanced Process Modeling and
Process Simulation. <http://www.psenterprise.com/gproms/index.html>

[135] QFD Institute. QFD Institute home page. <http://www.qfdi.org/>

[136] Ramadge PJ, Wonham WM, 1989. The control of discrete event systems. In
Proceedings of the IEEE, 77(1), pp. 81-98.

[137] Ramos-Hernandez DN, Fleming PJ, Bass JM. A novel object-oriented environment for
distributed process control systems. Control Engineering Practice 2005; 13: 213–230.

[138] Rash JL, Hinchey MG, Rouff CA, Gracanin D, Erickson J. A requirements-based
programming approach to developing a NASA autonomous ground control system.
Artificial Intelligence Review 2006; 25(4): 285–297.

[139] Reich Y, 2010. My method is better! Res Eng Design 21: 137-142.

[140] Reinschke KJ, 1988. Multivariable control, a graph-theoretic approach. In the series
Lecture notes in control and information sciences 108. Springer-Verlag.

[141] Ridley MW, 2010, When Ideas Have Sex. In TEDGlobal2010 (speech transcription).
On the WWW, January 2011. URL <http://www.ted.com/talks/matt_ridley_when_
ideas_have_sex.html>

[142] Rodenacker W., 1971, Methodisches Konstruieren, Springer-Verlag, Berlin.

[143] Rzevski G. On conceptual design of intelligent mechatronic systems. Mechatronics
2003; 13: 1029-1044.

[144] Sakao T, Umeda Y, Tomiyama T, Shimomura Y. Generation of sequence-control
programs from design information. IEEE Expert, 1997; 12.

[145] Scattolini R, 2009. Architectures for distributed and hierarchical model predictive
control – a review. Journal of Process Control 19, 723-731.

[146] Schlacher K, Kugi A, 2001. Automatic control of mechatronic systems. Int. J. Appl.
Math. Comput. Sci. 11(1): 131-164.

[147] Schöner HP. Automotive mechatronics. Control Engineering Practice 2004; 12: 1343-
1351.

[148] Shapiro J. Mechatronics design faces two challenges – and two solutions. Electronic
design (website); 2008. < http://electronicdesign.com/Articles/Index.cfm?AD=1&
ArticleID=18068 >

[149] Sharon AK, Hogan N, Hardt DE, 1991. Controller design in the physical domain.
Journal of the Franklin Institute 328(5-6), 697-721.

 163

[150] Skogestad S, Postlethwaite I. Multivariable feedback control. Wiley. 1996.

[151] Sohlenius G. Concurrent Engineering. CIRP Annals 1992; 41 (2): 645-655.

[152] Sosa ME, Eppinger, S.D., Rowles, C.M., 2004, “The Misalignment of Product
Architecture and Organizational Structure in Complex Product Development,”
Management Science, 50(12), pp. 1674-1689.

[153] Stevens R, Brook P, Jackson, 1998. System Engineering: Coping With Complexity.
Prentice Hall Europe.

[154] Stone R, Wood K, 2000. Development of a functional basis for design. ASME Journal
of Mechanical Design, 122(4): 359–370.

[155] Suh NP, 1990, The Principles of Design, Oxford University Press, Oxford.

[156] Synopsys. Saber Mixed-Signal, Mixed-Technology Simulation. <http://www.synopsys.
com/Tools/SLD/MECHATRONICS/Saber/Pages/default.aspx >

[157] Szykman S, Fenves SJ, Keirouz W, Shooter SB, 2001. A foundation for
interoperability in next-generation product development systems. In Computer-Aided
Design, 33, pp. 545-559.

[158] Tabuada P, 2009. Verification and control of hybrid systems. Springer.

[159] Tactical Science Solutions Inc., 2007, Quicklook final report, [online]
(http://www.tacticalsciencesolutions.com/files/05-30-07%20Quicklook%20Final
%20Report%20v1.19.pdf)

[160] Technical University of Berlin. SMILE - The Simulation Environment for Scientific
Computing. <http://www.smilenet.de>

[161] Tekin OA, Babuska R, Tomiyama T, De Schutter B. Toward a flexible control design
framework to automatically generate control code for mechatronic systems. In
proceedings of the American Control Conference, June 2009.

[162] Thane H. Safe and Reliable Computer Control Systems: Concepts and Methods.
Technical report No. TRITA-NMK. Mechatronics Laboratory; The Royal Institute of
Technology, Sweeden, 1996.

[163] The Eclipse Foundation. Eclipse modeling project main
page.<http://www.eclipse.org/home/categories/index.php?category=modeling>

[164] The MathWorks. Simscape; 2009. < http://www.mathworks.com/products/simscape/
?s_cid=HP_FP_SL_Simscape>

[165] The Modelica Association. Modelica and the Modelica Association; 2008.
<http://www.modelica.org>.

[166] Thompson HA, Ramos-Hernandez DN, Fu J, Jiang L, Choi I, Cartledge K, et al. A
flexible environment for rapid prototyping and analysis distributed real-time safety-
critical systems. Control Engineering Practice 2007; 15: 77–94.

[167] Tomiyama T, Kirayama T, Takeda H, Xue D, Yoshikawa H, 1989. “Metamodel: A
key to intelligent CAD systems,” in Research in Engineering Design, 1(1) , pp. 19-34

[168] Tomiyama T, Kiriyama T, Umeda Y, 1994. “Towards Knowledge Intensive
Engineering,” In Computer aided conceptual design, proceedings of the 1994
Lancaster international workshop on engineering design CACD '94, Sharpe, J., Oh, V.,
eds., Lancaster University, Lancaster, UK, pp 319-337

[169] Tomiyama T, M. Bonnema, First workshop on complex systems architecting, best
practices and new development, unpublished.

[170] Tomiyama T, Umeda Y, 1993. A CAD for functional design,” in Annals of the
CIRP'93, 42(1) pp. 143-146.

164

[171] Tomiyama T, Umeda Y, Ishii M, Yoshioka M, Kirayama T, 1996. Knowledge
systematization for a knowledge intensive engineering framework. In: Tomiyama T,
Mantyla M, Finger S, editors. Knowledge Intensive CAD: Volume 1, Chapman & Hall,
p. 55-80.

[172] Tomizuka M. Mechatronics: from the 20th to the 21st century. Control Engineering
Practice 2002; 10: 877-886.

[173] Toom A, Naks T, Pantel M, Gandriau M, Indrawati. Gene-Auto: an automatic code
generator for a safe subset of Simulink/Stateflow and Scicos. In: 4th European
Congress on Embedded Real Time Software. Toulouse, France; 2008.

[174] Ulrich KT, 1995, “The Role of Product Architecture in the Manufacturing Firm,”
Research Policy, 24(3), pp. 419-440.

[175] Ulrich KT., Eppinger, S.D., 2000, Product design and development, 2nd ed., Irwin
McGraw-Hill.

[176] Umeda Y, Ishii M, Yoshioka M, Shimomura Y, Tomiyama T, 1996. Supporting
conceptual design based on the function-behavior state modeler. AIEDAM 10(4): 275-
288.

[177] Umeda Y, Tomiyama T, Yoshikawa H, Sakao T, Shimomura Y, Tanigawa S; Mita
Industrial Co., Ltd., assignee. Method of automatically creating control sequence
software and apparatus therefore. US patent 194,064. 1994 Feb 9.

[178] Umeda Y, Tomiyama T. FBS modeling: Modeling scheme of function for conceptual
design. In: Workshop on Qualitative Reasoning about Physical Systems. Amsterdam,
The Netherlands; 1995, p. 271–278.

[179] Van de Laar P, Punter, T., Eds., 2011, Views on Evolvability of Embedded Systems,
Springer.

[180] Van de Wal M, De Jager B, 2001. A review of methods for input/output selection.
Automatica, 37, 487-510.

[181] Van Eck D, McAdams, D., Vermaas, P., 2007, “Functional decomposition in
engineering: A survey,” Proceedings of the ASME 2007 IDETC/CIE, Las Vegas,
Nevada, USA.

[182] Varsamidis T, Hope S, Jobling CP. Use of a prototype CACE integration framework
based on the unified information model. IEEE Int. Symposium on Computer Aided
Control System Design, 1999.

[183] Vitech corporation. CORE software website. <http://www.vitechcorp.com/products/
Index.html>

[184] Voskuijl M, La Rocca G, Dircken F. Controllability of blended wing body aircraft. In:
Proceedings ICAS of the Intern.council of the Aronaut.Sciences including the 8th
AIAA Aviation Techn., Integr. and Operations Conf. Edinburg, UK: 2008.

[185] VRS ROPAX. Virtual Reality Ship systems project webpage. <http://www.vrs-
project.com/index.phtml>

[186] W3C, 2004. OWL web ontology language recommendation. < http://www.w3.org/TR/
owl-features/>

[187] Wang L, Shen W, Xie H, Neelamkavil J, Pardasani A. Collaborative conceptual
design - state of the art and future trends. Computer-Aided Design 2002; 34: 981-996.

[188] Wasiak J, Hicks B, Newnes L, Dong A, Burrow L, 2010. Understanding engineering
email: the development of a taxonomy for identifying and classifying engineering
work. Res Eng Design 21: 43-64.

 165

[189] Weilkiens T. Systems engineering with SysML/UML: Modeling, analysis, design.
Morgan Kaufmann OMG press. 2007.

[190] Whitehead J. Collaboration in software engineering: A roadmap. In Proceedings of the
International Conference on Software Engineering 2007, Future of Software
Engineering (FOSE’07), p. 214-225.

[191] Wikander J, Törngren M, Hanson M. The science and education of mechatronics
engineering. IEEE Robotics & Automation Magazine 2001; 8(2): 20-26.

[192] Wikipedia. Service-oriented architecture. Online in < http://en.wikipedia.org/wiki/
Service-oriented_architecture>. Consulted in January 2011.

[193] Woestenenk K, Alvarez Cabrera AA, 2009. Vanderlande case study report. Internal
project report, cooperation with Vanderlande Industries.

[194] Woestenenk K, Alvarez Cabrera AA, Bonnema GM, Tomiyama T, 2011. Capturing
design process information in complex product development. In Proceedings of the
ASME 2011 International Design Engineering Technical Conferences & Computers
and Information in Engineering Conference IDETC/CIE 2011. August 28-31, 2011,
Washington D.C.

[195] Woestenenk K, Alvarez Cabrera AA, Tragter H, Bonnema GM, FJAM van Houten,
Tomiyama T, 2010. Multidomain design: integration and reuse. In Proceedings of the
ASME 2010 International Design Engineering Technical Conferences & Computers
and Information in Engineering Conference IDETC/CIE 2010. August 15-18, 2010,
Montreal, Quebec, Canada.

[196] Wood W, Dong H, Dym C, 2004. Integrating functional synthesis. AIEDAM; 19(3):
183-200.

[197] Xu Y, Zou H, “Design principles for mechatronic systems based on information
content,” [online] in Proc. IMechE, Vol. 221, Part B, pp. 1245-1254, March 2007.

[198] Yen JY, and R. J. Lee, “A solid modeling based mechatronics approach to machine
tool servo design,” [online] in Proceedings of the 2004 IEEE International Conference
on Control Applications, 2004, Vol. 1, pp. 730-735.

[199] Yoshioka M, Sekiya T, Tomiyama T, 2001. An integrated design object modeling
environment - pluggable metamodel mechanism -. Turkish Journal of Electrical
Engineering and Computer Sciences; 9(1): 43-62.

[200] Yoshioka M, Umeda Y, Takeda H, Shimomura Y, Nomaguchi Y, Tomiyama T, 2004.
Physical concept ontology for the knowledge intensive engineering framework.
Advanced Engineering Informatics; 18(2): 69-127.

[201] Ziegler JG, Nichols NB, 1943. Process lags in automatic control circuits. Transactions
of the ASME 1943; 65: 433-444.

[202] Zieliński C, W. Szynkiewicz, K. Mianowski, and K. Nazarczuk, “Mechatronic design
of open-structure multi-robot controllers,” [online] in Mechatronics, 11(8), December
2001, pp. 987-1000.

 167

Index

AM See architecture model

Architecture.................................6, 39

Architecture Model44

aspects..52
attributes45, 60
behavior layer51
conventions..................................45
design tasks..See synthesis methods
domain entities.............................52
entities..50
entity relations50
external communications layer52
formulae.......................................51
function layer48
function relations50
functions48
implementation58
layers..46
limitations62
model construction.......................54
parameters....................................47
requirements48
structure layer50
synthesis methods53
tool ...58
usage scenarios54
views......................................47, 60

Architecture-centric approach.....2, 36

CACE..................................19, 25, 92

Components43

Concurrent design15

Configuration problem....................97

Consensus38

Controller architecture88

Controller design...............................6

Design...1

Distributed control88

Domain ...5

Domain-specific language1

Domain-specific model.....................5

Domain-specific tool16

DSL..... See domain-specific language

DSM.........See domain-specific model

FBSSee Function-Behavior-State

Function modeling32, 35, 67

Function-Behavior-State.................67

Generation87

Mappings ..43

MBDSee Model-Based Design

Mechatronic system....................1, 11

Mechatronics See Mechatronic system

Model..2

Model-Based Design1

Parameters43

Phenomena......................................43

Regulation...................................7, 88

Specifications..................................43

Stakeholders......................................2

Supervision7, 88

Supervisory controller structure ...123

System architecture.. See Architecture

Validation18

Verification18

 169

Curriculum vitae and list of publications

Professional profile

Mechanical engineer interested and focused on the areas of systems design,
automation and control, manufacturing processes planning and analysis. Research
experience on problems in industrial design processes. Experience with CAD/CAE
software and programming in various languages.

Studies

PhD Delft University of Technology (TUDelft), Intelligent Mechanical Systems
(IMS) group, Department of Biomechanical Engineering (BioMechE), Faculty of
Mechanical, Maritime, and Materials Engineering (3mE),.

Start date, October 2007 – End date, October 2011

Thesis: Architecture-Centric Design: Modeling and Applications to Control
Architecture Generation

Topics: Systems design and control theory, methods, and applications; architecture
modeling; mechatronic design.

Project: Automatic generation of control software for mechatronic systems

Erasmus Mundus Master of Mechanical Engineering (EMMME) scholarship,
Universidad Politécnica de Catalunya (ETSEIB) and INSA Lyon

Start date, September 2005 - End date, July 2007

Thesis: Position and force control in a didactic test bench of a hydraulically
powered airplane’s aileron

Topics: Automation, robust control, PID control, hydraulic system's modeling

Mechanical engineering, Universidad Nacional de Colombia

Start date, February 1999 - End date, October 2004

Thesis: Adaptation of the manufacture for a functional silk screen printing
automatic carousel press prototype

Topics: Automation, manufacturing, QFD, silk screen printing

Professional experience

Finished product plant engineer

Organization: ALFAGRES S.A..

Webpage: http://www.alfagres.com/

Start date 4/2005 end date 6/2005

Functions: As a new member in the engineering crew, my duties consisted on
collaborating in the design and development of improvements and new procedures,

170

mainly in the area of finished products, for the ALFAGRES plant. Early retirement
to dedicate myself to study with the EMMME scholarship award.

Development engineer

Organizations: Universidad Nacional de Colombia, CEIF, COLCIENCIAS, Ind.
Derjor Ltda.

WebPages: http://www.unal.edu.co/, http://www.ceif.unal.edu.co/,

http://www.colciencias.gov.co/, http://www.empresario.com.co/derjor/

Start date 7/2003 end date 10/2004

Functions: Development and construction of an automated station for a multi-
station silk-screen printing press, as a part of the investigation project “Technologic
design and development of the automation for multi-station silk-screen printing
press, thermoforming machine and UV curing machine.” (COLCIENCIAS code:
1101-08-11032). Project awarded with the second place at the IV symposium of
industrial automation (Pontificia Universidad Javeriana, Bogotá, Colombia, August
27 / 2004).

Development Engineer

Organization: Universidad Nacional de Colombia.

Webpage: http://www.unal.edu.co/

Start date 2/2003 end date 11/2003

Functions: The work consisted in the design and construction of a braking device
that uses the parasitic currents (Eddy currents) phenomenon, conceived for its use in
testing equipment for small motors (less than 3hp). This work was carried along
other two students, in the class of “Machine Design” of the “Universidad Nacional
de Colombia”. Project awarded with the first place under the category of scientific
contribution in the XIV MACHINE AND PROTOTYPE SHOW (Universidad
Nacional de Colombia, February 2004).

Publications

 Alvarez Cabrera AA, Erden MS, Foeken MJ, Tomiyama T. High level model
integration for design of mechatronic systems. In: Proceedings of IEEE/ASME
International Conference on Mechatronic and Embedded Systems and
Applications, Beijing, China; 2008, p. 387-392. (http://dx.doi.org/10.1109/
MESA.2008.4735736).
 Chmarra MK, Alvarez Cabrera AA, Van Beek T, D'Amelio V, Erden MS,

Tomiyama T. D&C vs. C&D: The Divide and Conquer Strategy to Deal with
Complexity in Product Design. In: Proceedings of IEEE/ASME International
Conference on Mechatronic and Embedded Systems and Applications, Beijing,
China; 2008, p. 393-398. (http://dx.doi.org/10.1109/MESA.2008.4735679).

 171

 Foeken MJ, Voskuijl M, Alvarez Cabrera AA, Van Tooren MJL. Model
Generation for the Verification of Automatically Generated Mechatronic Control
Software. In: Proceedings of IEEE/ASME International Conference on
Mechatronic and Embedded Systems and Applications, Beijing, China; 2008, p.
275-280. (http://dx.doi.org/10.1109/MESA.2008.4735662).
 Alvarez Cabrera AA, Erden MS, Tomiyama T. On the Potential of Function-

Behavior-State (FBS) Methodology for the Integration of Modeling Tools. In:
Proceedings of CIRP design 09 conference: competitive design, Cranfield, UK;
2009, p. 412-419. (http://www.cranfield.ac.uk/sas/cirp-design/).
 Alvarez Cabrera AA, Foeken MJ, Tekin OA, Woestenenk K, Erden MS, De

Schutter B, Van Tooren MJL, Babuška R, Van Houten FJAM, Tomiyam T.
Towards automation of control software: A review of challenges in mechatronic
design. In: Mechatronics. (http://dx.doi.org/10.1016/j.mechatronics.2010.05.003).
 Foeken M, Alvarez Cabrera AA, Voskuijl M, Van Tooren MJL. Applying

Knowledge-Based Engineering to Control Software Gereration. In: Proceedings of
the ASME 2010 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference IDETC/CIE 2010. August
15-18, 2010, Montreal, Quebec, Canada. (http://www.asmeconferences.org/
IDETC2010/index.cfm).
 Woestenenk K, Alvarez Cabrera AA, Tragter H, Tomiyama T, Bonnema GM.

Multi Domain Design: Integration and Reuse. In: Proceedings of the ASME 2010
International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference IDETC/CIE 2010. August 15-18, 2010,
Montreal, Quebec, Canada. (http://www.asmeconferences.org/IDETC2010/
index.cfm).
 Alvarez Cabrera AA, Foeken MJ, Woestenenk K, Stoot G, Tomiyama T, 2011.

Modeling and Using Product Architectures in Industrial Mechatronic Product
Development: Experiments and Observations. In Proceedings of the ASME 2011
International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference IDETC/CIE 2011. August 28-31, 2011,
Washington D.C.
 Alvarez Cabrera AA, Komoto H, Tomiyama T, 2011. Supporting co-design of

physical and control architectures of mechatronic systems. In Proceedings of the
ASME 2011 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference IDETC/CIE 2011. August
28-31, 2011, Washington D.C.

Certified knowledge

 Technische Universitat Munchen, spring school of systems engineering (2010)
 ECQA certified European innovation manager trainer course (2009)
 The University of Tokyo Global Center of Excellence for Mechanical System

Innovation (GMSI), summer camp - engineering and its role in society (2009)
 Presentation skills course (2008)

172

 TOEFL score 270/300
 ECAES (Colombian higher education quality examination) test score 71/100

(2003)
 Basic knowledge of LabVIEW 7 Express and data acquisition (National

Instruments seminary)
 Data storing with LabVIEW and Field Point supervisory control (National

Instruments seminary)
 Basic pneumatics, electro-pneumatics and industrial communications knowledge

(Festo seminary)
 Basic PLC programming (Festo seminary)
 Positioning systems basic knowledge (Festo seminary)
 Basic sensors knowledge (SENA course)
 Piping design with PDS 3D (TIPIEL/TECHNIP course)
 Quality management and ISO 9000 standards (SENA course)
 Virtual course for creation of technology-based industries (SENA course)

 173

Acknowledgements

First and I’d like to thank my dear project colleagues, Aydin, Krijn, Maarten, and
Mohsen. Together we developed, searched, wrote, and proofread most of the
original material which has been compiled in Part I of this book. Then, I’d like to
thank my promoter, Professor Tomiyama, first for providing the opportunity to
participate in the project, second for his cunning insights on key research decisions
which undoubtedly have shaped my work, and third for providing a consistent work
environment in so many different ways. Also thanks to my office colleagues, Erika,
Hitoshi, Magda, Suphi, Thom, and Valentina, which not only provided valuable
discussions and advice, but also their friendly support through this journey. I also
extend my gratitude to all other office colleagues in TUDelft, and to all the project
members in academia and industry who provided additional advice and feedback on
the multiple case studies. Without all your contributions this work would have not
been fruitful, nor finished on time.

Last, I would like to thank all my family and my “extended family” back at my
home country, in Delft, and through the entire globe: the amazing network of family,
friends, and acquaintances which I have been so lucky to count on through all my
life. Just to mention some, thanks to all of you, mom, dad, and siblings, Marta,
Angelita, Pablo, Friedy, Ivan, Jorge, Steffie, Layla, Juan, Liz, Aurelie, Marcelo, Bea,
Sergio, Claudia, Andreia, Donata, Fabiola, Alberto, Patrice, Milene… and to anyone
whom I may forget to mention ;-)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

