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Abstract

Clear communication in public address systems is
essential, especially in environments where safety
or information clarity is critical. Speech intelli-
gibility is often assessed using objective intelligi-
bility metrics (OIMs), which predict intelligibility
through mathematical models. These metrics per-
form well in non-highly reverberant conditions but
face challenges in highly reverberant environments
and with non-European languages like Mandarin.
This study examines the performance of three in-
trusive OIMs-ESTOI, HASPI, and SIIBGauss-in two
aspects: (1) how these metrics perform under dif-
ferent reverberation conditions for English, using
STIPA as a reference, and (2) how robust these met-
rics are by comparing the variances of scores be-
tween Mandarin and English. The results show that
the variances of predicted scores by the test metrics
are equal between Mandarin and English. HASPI,
ESTOI, and SIIBGauss demonstrate similar perfor-
mance across a broader range of reverberation con-
ditions (from a T60 of 0.05s to 7s) for English, con-
tradicting the theory that most intrusive intelligibil-
ity metrics struggle with severe reverberation con-
ditions [1]. The findings highlight the need for fur-
ther research to evaluate potential biases in OIMs
and their performance across languages. Incorpo-
rating listening tests could provide a more solid ex-
amination of these metrics under diverse conditions
for different languages.

1 Introduction
Public address (PA) systems are electronic systems that com-
bine a mixer, amplifier, and speakers to deliver messages to
a crowd. Effective communication in PA systems is critical,
especially in environments where safety or clarity of infor-
mation is paramount, such as transportation hubs, educational
institutions, and emergency settings. Measuring speech intel-
ligibility in these systems is an important task, ensuring that
messages are comprehensible across diverse conditions.

Speech intelligibility is commonly defined as the percent-
age of words a listener can accurately recognize [2], and its
assessment can be broadly categorized into subjective and ob-
jective methods. Subjective metrics rely on human listeners
who evaluate the intelligibility of speech in controlled con-
ditions, often in the form of word intelligibility tests and
sentence intelligibility tests. These methods directly reflect
human perception but are time-consuming and costly. Ob-
jective intelligibility metrics (OIMs), on the other hand, use
mathematical models to predict intelligibility. They can be
divided into intrusive and non-intrusive approaches. Intrusive
methods, also known as reference-based approaches, rely on
a clean speech or noise sample as a reference. These meth-
ods compare the degraded signal to the reference to calculate
the intelligibility score [3]. Non-intrusive metrics analyze
degraded signals without the need for reference signal. Re-
search shows that intrusive metrics are more correlated with

intelligibility than non-intrusive metrics[4], and non-intrusive
metrics are more advantageous in situations where reference
signal is not available or real-time monitoring is needed.

Early OIMs, such as the Articulation Index (AI) [5] and
later the Speech Intelligibility Index (SII) [6], focused on an-
alyzing the contribution of signal-to-noise ratios across fre-
quency bands to predict intelligibility. These models laid the
groundwork for the STI [7], which uses the modulation trans-
fer function (MTF) to account for distortions in time and fre-
quency caused by noise, reverberation, echo, and non-linear
effects like peak clipping [8]. Measuring STI involves a mod-
ulated Gaussian noise test signal to assess how well modula-
tion depth is preserved after passing through a transmission
channel or acoustic space. The STI has been validated for
English by comparing its scores with subjective speech intel-
ligibility scores across a range of conditions, including rever-
berant environments, using various intelligibility assessment
methods [9] [10]. However, STI takes 15 minutes [9] to cal-
culate, making it time-consuming. STIPA, which only takes
15 seconds [9] measurement time, was later developed as a
simpler and faster alternative, designed specifically for test-
ing public address systems [11].

Despite the outstanding performance of STI and STIPA
under reverberant conditions, this is not the case for other
speech-input based intrusive intelligibility metrics. T60 (re-
verberation time) is defined as the time it takes for a sound to
decay by 60 dB and reflects the severity of reverberant distor-
tion. A study showed that while intrusive metrics such as ES-
TOI (the Extended Short-Time Objective Intelligibility Mea-
sure) [12] and SIIB (Speech Intelligibility in Bits) [13] per-
formed well at low T60 values, all other metrics tested in that
study except HASPI (Hearing-Aid Speech Perception Index)
[14] demonstrated poor performance at a T60 of 1 second.
The author proposed that this occurs because many intrusive
intelligibility metrics rely on time alignment between clean
and degraded signals, making them overly sensitive to tem-
poral blurring caused by severe reverberant distortion [15].

Another notable aspect is that, despite their widespread
use, challenges persist in applying OIMs to languages that
were not considered during their development phase. These
metrics were primarily developed using linguistic and pho-
netic properties specific to non-tonal European languages [5].
For example, an improved STI method proposed by Lin,
which takes characteristics of Mandarin speech into account,
shows better correlation with subjective intelligibility com-
pared to original speech-input based STI method [16].

A study on the intelligibility of English, Polish, Arabic,
and Mandarin using subjective tests showed that, under the
same room acoustic conditions, English was the most in-
telligible language in both noisy and reverberant environ-
ments. The study also found that significant differences in
subjective intelligibility can arise between languages, par-
ticularly in acoustically challenging spaces [1]. This raises
the question of whether OIMs developed based on European
languages can accurately assess the speech intelligibility of
other languages. Mandarin, as a tonal language, relies on
pitch and tonal variation for meaning. These linguistic dif-
ferences could influence how intelligibility is perceived and
interpreted, raising concerns about potential linguistic bias in



metrics like ESTOI, SIIBGauss and HASPI, which have not
been tested for Mandarin under severely reverberant condi-
tions.

This research is an exploratory examination of objective in-
telligibility metrics, focusing on the following main research
question and subquestions:

Research Question: How do ESTOI, SIIBGauss and
HASPI perform under different reverberant conditions?

• Sbquestion 1: How do ESTOI, SIIBGauss and HASPI per-
form under different reverberant conditions for English?

• Subquestion 2: How robust are ESTOI, SIIBGauss and
HASPI, for Mandarin compared to English under rever-
berant conditions?

As part of the methodology, we use STIPA, which has been
thoroughly tested for English under reverberation [9], as a
reference metric to evaluate how other test OIMs correlate
with it under different reverberation conditions for English.
To assess robustness across languages, variances of predicted
scores at each T60 are compared to identify any differences
between Mandarin and English.

2 Objective Intelligibility Metrics
As mentioned earlier, the study [15] suggested that the rea-
son HASPI performed well at a T60 of 1 second, while other
metrics such as ESTOI and SIIBGauss only performed poorly,
is due to the severe distortion caused by longer reverbera-
tion times. To investigate this claim, we selected ESTOI,
SIIBGauss, and HASPI as test metrics for comparison with
STIPA at a broader T60 range for English.

2.1 Reference Metric for English: STIPA
The traditional STI process [9] revolves around analyzing the
degradation of modulated test signals designed to replicate
the spectral and temporal characteristics of human speech.
These test signals, passed through the communication chan-
nel or environment under evaluation, experience modifica-
tions due to the system’s characteristics. By examining how
the modulation in these signals is altered using Modulation
Transfer Function. The measurement process considers seven
octave frequency bands and evaluates modulation frequencies
within these bands. By computing the effective signal-to-
noise ratio (SNR) for each combination of octave band and
modulation frequency, the STI aggregates the results through
a weighted summation process. This ensures that the method
reflects the cumulative impact of frequency-specific degrada-
tions and their contributions to speech intelligibility. STIPA
[9]is a simplified version of STI tailored for public address
systems. Instead of analyzing 14 modulation frequencies per
octave band as in full STI, STIPA focuses on a smaller sub-
set, reducing the measurement time to approximately 15 sec-
onds without significantly compromising accuracy. This effi-
ciency is particularly valuable when evaluating PA systems in
real-world environments, such as transportation hubs, audito-
riums, and open public spaces. The STIPA implementation
from this GitHub page [17] is used, and it is distributed under
GPL-3.0 License.

2.2 Test Metrics
The Extended Short-Time Objective Intelligibility
(ESTOI)
ESTOI [12] is an enhancement of the Short-Time Objec-
tive Intelligibility (STOI) [18] algorithm, designed to pre-
dict speech intelligibility in environments with highly mod-
ulated noise sources or non-linear distortions. While STOI
assumes that frequency bands contribute to intelligibility in-
dependently, ESTOI extends STOI by incorporating spectral
correlations between frequency bands and accounting for cor-
relations between the temporal envelopes of clean and noisy
speech signals. ESTOI has been shown to perform well un-
der reverberant conditions where T60 is less than 1 second
[15]. The ESTOI implementation used is from this Github
page [19], which has MIT License.

Speech Intelligibility in Bits (SIIB) Gaussian
SIIB [13] is an information-theoretic metric that estimates
speech intelligibility by quantifying the amount of informa-
tion shared between clean and distorted speech signals, mea-
sured in bits per second. It stands out for its conceptual
simplicity, solid theoretical foundation, and strong perfor-
mance. SIIBGauss [15] simplifies the mutual information es-
timation process in SIIB by leveraging the information ca-
pacity of a Gaussian communication channel. It is compu-
tationally faster while maintaining performance levels com-
parable to SIIB. Similar to ESTOI, SIIB and SIIBGauss have
demonstrated strong performance in reverberant conditions
with T60 values below 1 second. In the experiments, we use
the SIIBGauss implementation from the pySIIB library, which
is distributed under the MIT License.

The Hearing-Aid Speech Perception Index (HASPI)
HASPI [20] predicts speech intelligibility for both normal-
hearing and hearing-impaired individuals using an auditory
model that accounts for hearing loss. It compares the enve-
lope and temporal fine structure outputs of a reference signal
to those of a test signal. In this study, HASPI was the only
tested intrusive intelligibility metric that performed well un-
der T60 of 1 second, which is considered to be rather severe
reverberant distortion. Version 2 [14] of HASPI also demon-
strated significantly better performance compared to version
1 for speech in reverberation. In our experiments, we use
the HASPI version 2 implementation included in the Clarity
Python library, which has MIT License [21].

3 Experimental Setup
In this section, we discuss the datasets used, the process of
generating degraded signals, and the experimental procedures
in our data-driven approach to address the research questions.

3.1 Materials
To ensure that the types of clean signals are similar to those
played on PA systems, the clean signals should be meaningful
monologues. Additionally, to allow for the meaning compar-
ison of score variances at each T60, the clean signals should
be of high recording quality. Based on these two criteria, we
selected the following two datasets for Mandarin and English,
respectively.



For the English dataset, the TIMIT Acoustic-Phonetic
Continuous Speech Corpus (TIMIT) is used. TIMIT con-
tains recordings from 630 speakers (70 percent male and 30
percent female), each reading phonetically rich sentences of
approximately three seconds. The speakers are from eight
dialect regions in the USA. These sentences are designed to
provide speech data for acoustic-phonetic studies and the de-
velopment and evaluation of automatic speech recognition
systems. Each speech utterance is a single-channel waveform
file with a 16 kHz sampling rate and 16-bit depth.

For Mandarin, the AISHELL-3 dataset [22] is used, which
includes recordings from 218 speakers (42 male and 176 fe-
male) reading smart home voice commands, news reports, ge-
ographic information, and number strings in Mandarin Chi-
nese of various lengths. Regarding the speakers’ accents,
165 have a northern accent, 51 have a southern accent, and 2
have other accents. Each speech utterance is a single-channel
waveform file with a 44.1 kHz sampling rate and 16-bit depth.

Although the content of the sentences in TIMIT and
AISHELL-3 may differ, they are all emotion-neutral, mean-
ingful monologues of high recording quality, ensuring consis-
tency between the two datasets. The difference in sampling
rates is addressed by resampling the 44.1 kHz waveform files
to a 16 kHz sampling rate.

From each of the TIMIT and AISHELL-3 datasets, 84
speakers (42 male and 42 female) were selected, and for
each speaker, three utterances of three seconds in length were
chosen. This resulted in one Mandarin subset and one En-
glish subset, each containing 84×3=252 clean utterances. For
STIPA, a 15 second long test signal was generated using the
and resampled to 16 kHz to match the sample rate of the
datasets. Because AISHELL-3 only has 42 male speakers and
we wanted to ensure a balance of sexes in our samples, we se-
lected an equal number of male and female speakers. Despite
not fully representing the entire population of Mandarin and
English speakers, these signals should largely mitigate the ef-
fects of individual variation.

3.2 Generating Degraded Signals
To simulate real-world acoustic degradation in public spaces,
each clean audio signal (1 STIPA test signal, 252 Mandarin
sentences, and 252 English sentences) was convolved with
40 Room Impulse Responses (RIRs) of the same T60 value
to generate reverberation-degraded signals. Each T60 value
corresponds to one room type, with T60 values ranging from
0.05s, 0.17s, 0.31s, 0.48s, 0.71s, 1.17s, 1.92s, 3.15s, and
7.00s, resulting in a total of 40 x 9 = 360 different conditions.
The T60 values are denser in the lower range because the hu-
man ear is more sensitive to changes in lower T60 ranges.
This range was chosen to reflect T60 conditions similar to
those described in [9], where STIPA was tested. These de-
graded signals are crucial for testing as they simulate a vari-
ety of real-world environments in which we intend to com-
pare test metrics with STIPA. Public spaces vary significantly
in their acoustic properties, and these degraded signals aim to
reflect this diversity. The T60 values cover typical acoustic
conditions found in various spaces, ranging from classrooms
and offices (smaller T60 values) to larger, more reverberant
spaces such as airports, stations, and tunnels (larger T60 val-

ues). The RIRs were generated using the Room Impulse Re-
sponse Generator [23], and T60 values were estimated using
Schroeder’s backward integration equation. RIRs with micro-
phone and sound source positions less than 0.5 m from room
surfaces or closer than 0.2 m to each other were excluded in
accordance with the standards [24] [25].

However, several caveats should be considered. First, al-
though 40 RIRs are used at each T60, there is only one room
type for each T60. This may not fully reflect real acoustic
environments, where room types can vary even for the same
T60. Additionally, due to time and computational constraints,
we used only 40 RIRs at each T60. Ideally, the number of
RIRs should be as large as possible to improve robustness.

Despite these potential limitations, we believe that the
reverberation-degraded signals are sufficiently representative
of real-world acoustic challenges to provide meaningful in-
sights for our research questions.

3.3 Procedure and Performance Criteria
After applying the test objective intelligibility metrics to the
degraded signals and averaging the scores of signals degraded
with the same RIR, we obtain 40 intelligibility scores for each
T60 value for each test metric. For STIPA, since only one test
signal was degraded, the averaging step is omitted, resulting
in 40 scores for each T60. In addition to the degraded signals,
we also ran STIPA and the test metrics on the clean speech
signals and clean test signal to observe how they predict in-
telligibility in the absence of reverberation.

Levene’s Test
To evaluate whether the robustness of test metrics differs be-
tween Mandarin and English, we used Levene’s test [26] to
assess the equality of variances for each test metric across the
two languages. Levene’s test is robust even when the distri-
butions are not normal, making it suitable for our situation,
as the distribution of the predicted scores at each T60 is un-
known. The null hypothesis of Levene’s test is that the pop-
ulation variances are equal. In our experiments, we used a
significance level of 0.05. Therefore, if the resulting p-value
is less than 0.05, we reject the null hypothesis.

Kendall’s tau coefficient
Kendall’s tau coefficient [27], τ , is used to measure the or-
dinal association between two measured quantities. It re-
quires a smaller sample size to reliably detect correlations
compared to other statistical measures, such as Spearman’s
correlation coefficient [28]. To evaluate how the test met-
rics perform under low and high reverberation conditions for
English, Kendall’s tau correlation coefficient is calculated be-
tween STIPA and each metric for low T60s, high T60s, and
all T60s. We define T60 values of 0.05s, 0.17s, 0.31s, 0.48s,
and 0.71s as low reverberation conditions, and 1.17s, 1.92s,
3.15s, and 7.00s as high reverberation conditions. Since each
T60 condition includes 40 scores, the sample sizes are 200,
160, and 360 for low reverberation conditions, high reverber-
ation conditions, and the entire range, respectively. Using
the method described in [28], detecting correlations stronger
than τ = 0.6 with a 95% two-sided confidence interval (CI)
and a CI width of 0.2 requires a sample size of approximately
90–100. On the other hand, detecting correlations stronger



than τ = 0.7 with a 95% CI and a CI width of 0.1 requires
sample size of about 200–250. Therefore, in all three ranges,
we can detect correlations stronger than 0.6 with a CI width
of 0.2. For the entire range, which has sample size of 360,
we can detect correlations stronger than 0.7 with a CI width
of 0.1. The null hypothesis of Kendall’s tau is that there is no
correlation (τ = 0). If the resulting p-value is smaller than
the significance level of 0.05, we reject the null hypothesis.

4 Results
In this section we analyze test metric performance under
varying reverberation conditions for English and compares
scores between Mandarin and English.

4.1 Examining Differences Between Mandarin and
English Scores for Test Metrics

Under zero-reverberation conditions, the STIPA score is 0.98,
while ESTOI, HASPI, and SIIBGauss scores are 1.0, 1.0, and
1335.76, respectively, for both Mandarin and English. Since
SIIBGauss values above 150 indicate perfect intelligibility, all
test metrics predicted perfect intelligibility.

For other reverberation conditions, Figure 1 shows the
mean score and standard deviation of the 40 scores at each
T60.

For HASPI, it can be observed that its standard deviation
becomes significantly larger at 1.17s and 1.92s compared to
other T60 values. Overall, the standard deviations of Man-
darin and English scores are very close, except at 1.92s,
where it is slightly smaller for Mandarin (0.20) compared to
English (0.22).

For ESTOI, the standard deviations at each T60 are more
consistent, but compared to the mean standard deviation of
STIPA (0.02), the standard deviation is still 0.06 larger for
both English and Mandarin. The difference between Man-
darin and English is minimal, and at the T60 where the stan-
dard deviation is largest, the difference is only 0.002.

For SIIBGauss, the standard deviation is largest at T60 val-
ues of 0.05s and 0.17s, decreasing as the T60 value increases.
Regarding the differences between languages, at a T60 of
0.05s, English shows a slightly larger standard deviation of
167.22, while for Mandarin, it is 148.38. However, we also
need to take into consideration the large magnitude of mean
values at that T60.

Table 1 presents the p-values of Levene’s test results be-
tween Mandarin and English for the test metrics at each T60.
We observe that no p-value is smaller than the significance
level of 0.05. Therefore, we do not reject the null hypothe-
sis of Levene’s test and conclude that there is no difference in
variances between Mandarin and English for each test metric.

It is worth noting that while ESTOI and STIPA performed
consistently across T60 values, HASPI showed weaker sta-
bility at 1.17s and 1.92s, and SIIBGauss is less stable at 0.05s
and 0.17s. HASPI and ESTOI also had higher average stan-
dard deviations compared to STIPA. By combining figure 1
and figure 2, we observe that the means and standard devi-
ations do not differ significantly between Mandarin and En-
glish, which aligns with the results of Levene’s test.

Table 1: P-Values of Levene’s Test Results for Test Metrics Between
Mandarin and English at Each T60

ESTOI HASPI SIIBGauss

0.05s 0.89 0.33 0.68
0.17s 0.86 0.76 0.86
0.31s 0.78 0.43 0.99
0.48s 0.93 0.12 0.90
0.71s 0.95 0.28 0.88
1.17s 0.95 0.90 0.90
0.92s 0.93 0.72 0.95
3.15s 0.97 0.84 0.84
7.0s 0.82 0.72 0.83

4.2 Performance of Test Metrics Under Different
Reverberation Conditions for English

Table 2: The Kendalls’s tau correlation coefficients between STIPA
scores and test metrics scores for English at different T60 ranges

τLow τHigh τAll

ESTOI 0.78 0.68 0.85
HASPI 0.76 0.80 0.87

SIIBGauss 0.75 0.71 0.84

Table 3: The p-values of Kendalls’s tau correlation coefficients be-
tween STIPA scores and test metrics scores for English at different
T60 ranges

p-valueLow p-valueHigh p-valueAll

ESTOI 1.760e-60 1.222e-37 3.868e-127
HASPI 1.425e-56 3.909e-50 1.171e-134

SIIBGauss 3.409e-55 3.672e-40 2.673e-123

Table 2 presents the Kendall’s tau coefficients between
STIPA and test metric scores for English across different
ranges, while Table 3 provides the corresponding p-values for
τ . All p-values are significantly smaller than the significance
level of 0.05, allowing us to reject the null hypothesis and
conclude that STIPA scores and test metric scores are corre-
lated.

As mentioned in the previous section, the low range in-
cludes T60 values of 0.05s, 0.17s, 0.31s, 0.48s, and 0.71s,
while the high range includes 1.17s, 1.92s, 3.15s, and 7.00s.
The ’all ranges’ category encompasses all these T60 values.
In the low reverberation range, performance is similar, with
ESTOI achieving the best result, with a τ of 0.78, closely fol-
lowed by HASPI at 0.76 and SIIBGauss at 0.75. In the high re-
verberation range, HASPI has higher τ than the other metrics,
achieving a τ of 0.80, while ESTOI and SIIBGauss reached τ
values of 0.68 and 0.71, respectively. However, since the con-
fidence interval (CI) width in the high reverberation range is
0.2, it is insufficient to conclude that HASPI outperforms the



Figure 1: mean scores and standard deviations of test metrics and STIPA. The x-axes are not even step sized



Figure 2: A mapping of test metrics score to STIPA scores for 40 scores at each T60. Scores of same T60 values are of same colors

other two metrics. When all T60 values are included in the
τ calculation, HASPI performed best, with a τ of 0.87, fol-
lowed by ESTOI and SIIBGauss. With a CI width of 0.1, due
to the higher sample size in this range, we can claim that the
performance is similar between the test metrics. These results
contradict the theory presented in the study by [15], which
found that intrusive metrics perform poorly under high re-
verberation conditions—except for HASPI—due to temporal
blurring caused by severe reverberant distortion, as intrusive
metrics rely on temporal alignment. In that study, a T60 of
1.0s was considered strong reverberation. However, as our
experimental results demonstrate, this does not hold true for
higher T60 values.

4.3 Summary

Summarizing the results, we found that under zero-
reverberation conditions, STIPA scores 0.98, while the test
metrics indicate perfect intelligibility. Regarding differences
in variances at each T60 between English and Mandarin
for test metrics, no statistically significant differences were
found. In terms of performance under reverberation, all test
metrics demonstrate good and similar performance under low
reverberation conditions. HASPI appears to outperform the
other metrics under high reverberation, but we cannot draw
a definitive conclusion due to the CI width of 0.2. When all
T60 values are considered, the test metrics all showed strong
correlations with STIPA. This finding contradicts the theory
proposed in [15].

5 Discussion

Although the test metrics showed no differences in variances
between Mandarin and English according to the results of
Levene’s test, it is also worth noting that there are minimal
differences in mean scores at each T60 for the two languages.
This finding contradicts the study by [1], which suggests that
subjective intelligibility differs under the same room acoustic
conditions for different languages, especially in challenging
environments. This indicates that there is still room to exam-
ine potential biases in the selected test metrics under varying
conditions.

By comparing the τ values between STIPA and the test
metrics across different T60 ranges, we found that the results
do not align with the study by [15], as all test metrics showed
similarly strong correlations with STIPA when all T60 values
were considered. However, it should be noted that, despite
being thoroughly tested for English under reverberant condi-
tions [9], STIPA cannot replace subjective intelligibility tests,
which require significantly more time and resources.

Due to time limitations, only 9 T60 values and 40 RIRs per
T60 were used to apply degradation, and at each T60 there
was only one room type. As a result, we were unable to draw
definitive conclusions based on Kendall’s tau in the high re-
verberation range, although differences in τ values were ob-
served. Incorporating a greater variety of RIRs, room types,
and additional T60 values would have improved the robust-
ness of the Kendall’s tau correlation coefficients and Levene’s
test results. Furthermore, as mentioned in the previous sec-



tion, due to dataset limitations, we selected only 84 speakers
per dataset. Including more speakers would enhance the ro-
bustness of our experimental results.

6 Conclusions and Future Work
Based on our experiment, we found that ESTOI, HASPI, and
SIIBGauss show little difference in terms of score variances be-
tween Mandarin and English. HASPI, ESTOI, and SIIBGauss
also demonstrate similar performance in reverberant condi-
tions (from a T60 of 0.05s to 7s) for English. Due to time and
resource limitations, we did not incorporate listening tests in
our experiments. However, to obtain more robust results, fur-
ther research could explore the potential biases of the selected
test metrics for different languages and evaluate their perfor-
mance under reverberant conditions using listening tests.

7 Responsible Research
This research was conducted with a commitment to ethical
practices, transparency, and responsibility.

Publicly available datasets, TIMIT and AISHELL-3, were
used in this study. These datasets are widely recognized in
the speech research community, ensuring their relevance and
compliance with licensing agreements. The libraries used in
this study are open-source. The implementations of STIPA,
ESTOI, HASPI, and SIIBGauss were acquired from publicly
available repositories under appropriate licenses. The scripts
used to apply OIMs, the resulting .csv files, and the scripts to
visualize results can be found on this GitHub page [29]. A
README document has been created to explain each file.

The RIRs were generated and applied with the help of su-
pervisors. ChatGPT was used to check for grammar mistakes
and to generate templates for running objective metrics and
plotting graphs. However, no content in this paper was gen-
erated directly using ChatGPT.
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