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Abstract

Software testing is an important, well-researched field. With the majority of modern-
day applications using relational databases to manipulate their data, it is crucial that
database interactions are tested as well. This is a complex task to perform manually,
and thus researchers have been attempting to tackle this problem by means of auto-
mated test data generation. In their studies, they apply constraint-based techniques
using SAT solvers to generate the test data. However, these techniques have known
limitations such as solving subqueries.

In this thesis, we present a novel search-based approach that uses a Genetic Al-
gorithm to generate test data for SQL queries, which overcomes the limitations of
previous research. We provide an implementation of our approach, EvoSQL. In our
implementation, we instrument a real database to extract all the information necessary
for the fitness function. By doing so, we support all queries using standard SQL syn-
tax. We evaluate our approach on 2,135 queries from 4 real-world systems, of which
EvoSQL is able to cover over 96% fully.
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Chapter 1

Introduction

Database-centric applications are essential to modern-day society. Such applications range
from companies managing customer relations, to hospitals managing medical data. It is
therefore vital for software developers to carefully assure that these applications behave as
expected. One way of doing this is by means of testing.

In practice, these applications manage and manipulate large amounts of data that are
stored in a relational database. The program communicates with the database through SQL
queries. These queries allow developers to retrieve, insert, update, and delete data in several
different ways. As a consequence, important business rules are expressed as SQL queries.
Therefore, SQL queries should be as properly tested as program code, so that developers
can detect defects, perform regression testing, and apply safe refactoring.

To test SQL queries, developers need data that exercise all parts of a SQL query, such as
predicates or subqueries. However, the combination of multiple tables together with query
constraints, join operations, and subqueries makes the generation of such data a difficult
and time-consuming task.

There has been some research that attempt to tackle this problem. For example, Tuya
et al. [37] propose a coverage criterion for SQL queries that exercises all the different con-
straints of the query, similarly to a branch coverage criterion [15] in traditional software
testing. Suárez-Cabal et al. [35] present an constraint-based approach to generating test
databases that maximize the aforementioned coverage criterion. Shah et al. [32] take a dif-
ferent approach, and generate test databases with the purpose of killing SQL mutants, which
are also proposed by the authors. Other researchers [10, 29] focus on maximizing program
code coverage rather than SQL coverage, by means of generating test databases based on
SQL queries that are executed by the program under test.

However, these approaches are unable to generate test databases for a wide range of
SQL queries, such as queries with string constraints and subqueries. Their limitations come
from the fact that they use SAT solvers that are unable to model these query constraints,
such as Alloy [18] and Choco [20].

We present a novel search-based approach to generating test data for SQL queries that
overcomes these limitations. Instead of relying on SAT solvers, our approach collects data
from query executions in a fully-functioning database, and uses this data to guide a Genetic
Algorithm. In practice, using a real database enables our approach to support all SQL
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1. INTRODUCTION

constructs, such as string functions, subqueries, date/time operations, and aggregations.
We provide an implementation of our approach, named EvoSQL. Given a SQL query

and its respective database schema, EvoSQL generates test data that covers each coverage
rule. To evaluate our approach, we executed EvoSQL on 2,135 queries extracted from 4
real-world systems, one of them being from an industry partner. EvoSQL achieves full
coverage on 2,053 of these queries, i.e., 96.2%, completely outperforming a random search
baseline. For the queries that were not completely covered, we show that EvoSQL still
achieves high partial coverage, and that this increases when we give it a larger time budget.

We make the following contributions in this thesis.

• A novel search-based approach for generating test data for a given SQL query, which
supports all SQL constructs.

• EvoSQL, a Java tool that implements our approach, and it is available as open source.

• An empirical study on queries from 4 real-world systems showing that EvoSQL
achieves full coverage for 96% of them, and high coverage for the other queries.

• A replication package containing the queries and schemas used in our evaluation,
excluding one closed-source system.

The thesis is organized as follows. Chapter 2 contains background information. Chapter
3 explains our novel approach. Chapter 4 presents EvoSQL, our tool that implements the
approach. Chapter 5 contains the details on the empirical study performed, as well as the
results of the study. Chapter 6 contains discussions on the results and the state of EvoSQL.
Chapter 7 contains the conclusions.
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Chapter 2

Background

This section introduces the most important fields in background knowledge necessary with
regards to this thesis. Section 2.1 introduces search-based software testing, the field of
applying search-based algorithms to generate tests for software , in this thesis it is applied to
generate test data for SQL queries. Section 2.2 explains the syntax of a SQL SELECT query,
and how it applies constraints to data in the database. This definition is a crucial basis to the
fitness function. Section 2.3 presents SQLFpc, a coverage criterion that tests SQL queries’
constraints. In our implementation, SQLFpc is used to generate the coverage rules. Finally,
Section 2.4 discusses related work in the field of SQL test database generation, as well as
search-based test data generation.

2.1 Search-Based Software Testing

Search-based software engineering (SBSE) is an approach in which search-based optimiza-
tion (SBO) algorithms are used to address software engineering problems [17]. SBO algo-
rithms are used for search problems in which an optimal solution is sought in a search space
of candidate solutions.

In the case of software engineering, a prime example is searching for input to a method
so that a certain code branch is covered. This example brings us to the most researched field
in SBSE, search- based software testing (SBST). In this subfield, the goal of the algorithm
is automating a testing task [26]. Mostly, this involves generating test data, as is the goal
of this research, as well as test cases. EvoSuite is an example of generating test cases with
the goal of covering branches. More specifically, they generate whole test suites for Java
applications that aim to have full branch coverage, with a minimal amount of test cases [12].

Before applying SBSE to a search problem, there are two prerequisites often referred to
as the key ingredients of SBSE.

1. A representation for the problem’s candidate solutions.

2. A fitness function that measures the ‘goodness’ of a candidate solution.
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2. BACKGROUND

The representation of candidate solutions is often easily done in SBSE. If the goal is to
generate a Java test case, then a possible representation is a Java method with some lines of
code in it. The problem representation is also called the encoding scheme.

The fitness function is specific to the problem and must be defined so that a candidate
solution can be measured deterministically. It must be able to distinguish more optimal from
less optimal candidate solutions. For the Java test cases, an example fitness function would
be to calculate whether a branch is covered, and if not, how close it is to being covered
based on the evaluation of the if statement.

Coverage criteria

Branch coverage is a possible coverage criterion that the creator of a search algorithm might
find important. A coverage criterion is the goal of the algorithm and is represented through
the fitness function. Another example of a coverage criterion is execution time, where the
search algorithm should aim to keep execution time of test cases as short as possible.

On its own, this criterion would find empty test cases to be optimal. Therefore, it should
be combined with other criteria. This is called a multi-objective approach. In this approach,
the optimal solution is identified using multiple fitness functions, one per criterion. A popu-
lar way of comparing the candidate solutions when using multiple fitness functions is using
Pareto optimality. The Pareto optimal set contains all candidate solutions for which there
is no way of improving any fitness values of one criterion without decreasing the fitness of
another criterion [24]. In practice this means that when the search algorithm has found a
test case covering the desired code branch, it will continue searching for test cases that have
a shorter execution time.

In this thesis, we use a coverage criterion that focuses on covering constraints in a SQL
query, presented in Section 2.3.

Algorithms

With the two main ingredients in place, the next step in SBSE is selecting an algorithm.
The most widely used algorithms are Hill Climbing, Simulated Annealing, and Genetic
Algorithms.

The first two are local search algorithms. Hill Climbing starts by picking a random spot
in the search space. As the name suggests, it searches for a nearby spot to move to which
is higher (fitter) than the current spot. This repeats until no higher spot can be found and
the algorithm has found a local optimum. Because this may not be the global optimum,
the algorithm can use a restarting mechanism to find fitter solutions. Simulated Annealing
is similar to hill climbing, except that it is allowed to move to lower (less fit) spots. This
behavior is controlled by a probability value, the temperature, which decreases with time.
By doing this, some local optima can be avoided. Especially those that are not much fitter
than their surroundings.

The Genetic Algorithms are global search algorithms. They are inspired by Darwinian
evolution and the concept of survival of the fittest. Multiple candidate solutions are eval-
uated simultaneously. Each one of these is called an individual, and the set of individuals
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2.2. SQL Query Syntax

is called the population. Each individual represents a candidate solution and consists of
genes. Each gene can be altered by the evolutionary operators: crossover and mutation.
In crossover, two parent individuals are combined to create two new children individuals,
where both children have a mix of their parents genes. In mutation, a single child individual
has some genes altered.

In genetic algorithms, the population evolves generation after generation, with the aim
of finding the optimal individual. In each generation, new individuals are created by select-
ing parent individuals from the population using a selection operator. This could be done
randomly, or heuristically by giving fitter individuals a higher probability of being selected.
After selecting two parent individuals, two children are created and the crossover and muta-
tion operators are applied with some probability. After applying the evolutionary operators,
the fitness of each of the new children is calculated. Finally, now that the new children are
measured and added to the population, the next generation’s population is decided. This is
another selection process, where often the population’s fitness is taken into account, hence
survival of the fittest.

2.2 SQL Query Syntax

The goal of this thesis is to generate test data for SQL queries. A query specification, more
commonly referred to as a SELECT query, is used to request some view of the data in a
database. A SELECT query contains a SELECT keyword, a select list, and a table expression

[1]. The table expression is constructed through a set of clauses (FROM, WHERE, GROUP BY,
HAVING), and is a combination of data sources and predicates that may specify restrictions
on the output. Using the output of the table expression, the select list defines how to write
the data to output.

Thus, for the query to output at least one row, the table expression must output at least
one row. In this section each of its clauses (FROM, WHERE, GROUP BY, HAVING) and how they
affect the output is explained. First, the notion of SQL predicates is explained, as they are
used throughout the clauses.

Predicates

In SQL, a predicate is a combination of an operator and some operands. There are two types
of predicates: base and derived predicates. Base predicates are those that do not use any
other predicates (e.g., column1 = 5). Derived predicates have logical operators (AND, OR,

NOT) and use other predicates in their operands.(e.g., column1 = 5 AND column2 = 10).

Each predicate can be evaluated returning a three-valued logic result; TRUE, FALSE or
UNKNOWN. The UNKNOWN value occurs when the result is not defined by the operator (e.g.,
5 > NULL).

Definition 1. The result of a predicate evaluation pe is a three-valued logic value. res(pe)∈
TRUE,FALSE,UNKNOWN.
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2. BACKGROUND

FROM

The FROM clause specifies the table to take data from. It contains a FROM keyword followed
by a list of table references. Each table reference has one primary table and optionally a list
of joined tables. A joined table is a combination of a table and a join operator ( FULL, LEFT,
RIGHT, or INNER). The syntax for a JOIN clause is:

[FULL/LEFT/RIGHT/INNER] JOIN [<table>/(<subquery>)] AS <alias> ON predicate

Each join operator has a different functionality.

• INNER If the join operator is INNER, combining the table reference t up to this joined
table jt, the output of this joined table o only contains the combinations of rows
between t and jt for which the join predicate is satisfied. If the join predicate is never
satisfied, o is empty.

• FULL / LEFT If the join operator is FULL or LEFT, and joins the joined table jt onto
the table reference t up to this joined table, the output o contains at least one row for
each row r ∈ t. If for a row r ∈ t there are n rows in jt for which the join predicate is
TRUE and n > 0, the output o contains n rows with r and each of the matching rows in
jt.

• FULL / RIGHT If the join operator is FULL or RIGHT, a similar join is done as in
with the LEFT join. The difference is that t is now joined onto jt, which means that
the matching is done based from the rows in jt. Hence the output will have at least
all rows from jt, plus the possible joined rows from t.

When all table references in the FROM clause are processed they are cross-joined onto
each other into a single output. A cross join T,U has an output in which every row in T is
present in combination with every row in U , known as the cartesian product. If one of the
tables is empty, the output table is also empty.

WHERE

The optional WHERE clause contains a predicate and uses it to filter the output table from the
FROM clause. Only the rows for which the predicate evaluates to TRUE remain in the output
table.

GROUP BY

This optional GROUP BY clause specifies a grouped table by applying the given grouping

specification to the result of the previously specified clause.

HAVING

The optional HAVING clause contains a predicate and uses it on the grouped table from the
GROUP BY clause, and if there is none the implicit GROUP BY clause with an empty grouping
specification. The clause eliminates groups that do not satisfy the predicate.
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2.3. SQL Coverage Criteria

2.3 SQL Coverage Criteria

It is based on another criterion, Full Predicate Coverage [28], which is a form of masked
MC/DC (Modified Condition / Decision Coverage) [8]. SQLFpc generates multiple cover-

age rules, given a SQL query and a database schema. Each coverage rule is represented as
a SQL query. A coverage rule is covered by a database if there some output when the rule’s
query is executed on the database.

Definition 2. A coverage rule for the SQLFpc criterion is represented as a SQL query. It
is covered by some database if, when executing the query on it, there is at least one row of
output.

To collect the coverage rules, SQLFpc provides a web service, hence an internet con-
nection is required to use it. For the simple example query below, SQLFpc generates two
coverage rules:

Query:

SELECT * FROM Product WHERE Category = ’Toy’

Coverage rules:

1. SELECT * FROM Product WHERE (Category = ’Toy’)

2. SELECT * FROM Product WHERE NOT(Category = ’Toy’)

To cover rule 1, there should be a row in the table Product in which the column Category

is filled with the value ’Toy’. To cover rule 2, there should be a row in which the same
column is filled with any other value.

In practice, having a test suite in combination with a test database covering each cov-
erage rule is useful because it exposes the full functionality of the query, by returning each
combination of predicates that it can return, and similarly it is able to detect changes in the
functionality of the query. If some rule should not return data but the query has changed
and this data is now returned, the test suite is able to identify this, prompting the developer
to change either the query or the test data.

In this thesis, the coverage rules are used to generate data. Because of how SQLFpc
generates coverage rules, there are a few restrictions on what kind of queries appear in these
rules. These restrictions reduce the scope of queries to cover for our implementation and
removes ambiguities.

• Join operator For any join operator in a query, SQLFpc generates some rules such
that the join must be satisfied using an INNER JOIN in the coverage rule. Alterna-
tively, it generates rules such that the join must not be satisfied from either side using
a RIGHT JOIN in one coverage rule, and a LEFT JOIN in another. To make sure they
are not satisfied, SQLFpc adds predicates to the WHERE-clause that requires the val-
ues that are joined to be NULL. There may be some variations when there are multiple
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2. BACKGROUND

join operators in a query, or when the columns used in the join predicate are nullable,
but this concept remains. This means that whenever there is an INNER JOIN, the data
should satisfy this join. Likewise, whenever there is a RIGHT/LEFT JOIN, it should
not satisfy this join.

• Union operator If two or more SELECT queries are concatenated by means of a UNION
operator, SQLFpc generates rules for each SELECT query individually. This means
that a coverage rule query can never contain UNION operators in the outer query.

2.4 Related work

Our approach aims to generate test data for SQL queries, using a search algorithm. To this
end, we split the related work into two main subjects: Automated test data generation for
SQL databases, and search-based test data generation. We leave a comparison between our
proposed and related work to the discussion in Chapter 6 of this thesis.

2.4.1 Automated Test Data Generation for SQL Databases

Previous work on generating data for SQL databases follows different paths. Firstly, there
are studies that generate test databases dependent on the database schema only.

Gray et al. [14] aim to generate a large databases quickly, by using parallel algorithms
and execution. The authors accomplish this by generalizing sequential database generation
to a point where it can be executed in parallel. They state that by doing this, they turn a
two-day task into a one-hour task.

Bruno and Chaudhuri [5] present a flexible and scalable framework for database gen-
eration. They motivate their efforts as they see in research that data generators are often
developed ad-hoc. They introduce a special language DGL (Data Generation Language)
that can be used to generate synthetic data distributions. They conclude that the data gener-
ators run using DGL are efficient.

McMinn et al. [27] use a search-based approach to generate test data based only on a
relational database schema. This test data serves to increase confidence in the schema’s
correctness by being able to catch mutations. They use a test generator based on Korel’s
Alternating Variable Method [23].

Secondly, in other studies, they focus on generating data based on one or more SQL queries,
as well as the schema constraints.

Chays et al. [7] present the AGENDA tool set that generates tests for database appli-
cations. Based on the database schema, a query, and test heuristics selected by the user, it
fills the test database with boundary values or other values following the heuristics. Using
the expected behavior as stated by the user, they generate test data and tests to verify the
behavior.

A similar approach is taken by Khalek et al. [21, 22] with their tool ADUSA. They use
the Alloy SAT solver to populate test databases given a schema and a query. They also
generate a test with the expected result of the qiven query. The goal of these tests is to

8



2.4. Related work

test a database system, rather than a query as is done in this thesis. In their evaluation,
they introduce bugs in real database systems to test, and they state their generated tests are
effective at finding these bugs.

Another similar approach is taken by Binnig et al. [4] and their tool: QAGen. They
use symbolic execution to define constraints; given a query, a database schema, and some
preferences defined by the user. These constraints are then given to a constraint solver which
generates a test database. In their evaluation, the efficiency of their approach is analyzed for
different database sizes.

Shah et al. [32] use a constraint solver to generate test data with the goal of killing SQL
mutants. They limit their research to queries with WHERE-clauses and join operations. The
mutations considered are limited to the join type, comparison operators, and aggregation
operators. They state that the datasets they generate are small and easily analyzable, while
being able to effectively detect mutants.

Suárez-Cabal et al. [35] present an incremental approach to generating test databases
for multiple queries simultaneously with their tool QAGrow. They use the SQLFpc cov-
erage criterion, and incrementally generate data for each coverage rule. The constraints of
generating new data are a combination of the current database state and the constraints in
the next coverage rule. A constraint solver then generates the data which is added to the
database. They evaluate their effectiveness on a set of simple and complex queries, for
which they achieve 100% and 99%, respectively. However, they do not solve queries that
contain subqueries, or string constraints.

Pai et al. [29] use Dynamic Symbolic Execution (DSE) to reduce manual effort in test
generation for software applications. Their focus is on code coverage of the application, and
how database interactions are handled. Their approach aims to cover two criteria, BVC and
CACC, which implement using the DSE test-generation tool Pex[36]. In later research [30],
they bypass the use of database states to run the tests by synthesizing database interactions
in order to extract the environment constraints. They combine these with the program-
execution constraints and use Pex to generate data. From their evaluations, they conclude
their approach is able to achieve higher program code coverage than other approaches.

Binnig et al. [3] present a new take on generating test databases with their technique
called Reverse Query Processing. Given a query, a database schema, and a query result,
they generate a test database that produces this result. The goal of this test database to test
a DBMS. To generate this data, they build a reverse relational algebra tree and use it to
go backwards in the query flow, starting from the result table and ending up with the test
database. In their evaluation, they generate databases with up to 86 million rows.

2.4.2 Search-Based Test Data Generation

In the area of search-based test data generation, research is mostly focused on testing pro-
gram code. The goals of these tests range from straightforward code coverage, to causing
or replicating program crashes.

Korel [23] introduces the concept of using actual values and execution of the program
under test when generating test data. Function minimization search techniques are used
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to heuristically find a solution. These techniques are sped up by using dynamic data flow
analysis.

Wegener et al. [38] apply evolutionary algorithms to the field of structural testing, with
the goal of generating test data that maximizes a chosen coverage criterion (e.g., branch
coverage). They introduce the idea of an approximation level, which indicates how many
code branches still need to be executed as desired in order to reach the branch that is the
current goal of the evolutionary algorithm. They provide a tool environment which provides
test case automation for software. They evaluate their tool on some real-world examples and
are able to achieve 100% coverage on all of them, outperforming a random testing approach.

Fraser and Arcuri [11, 12] present a search-based approach for generating whole test
suites for Java applications, EvoSuite. They use a Genetic Algorithm that optimizes entire
test suites towards a chosen criterion (e.g., branch coverage), while minimizing their size.
They evaluate their whole test suite approach, in comparison with a single branch approach,
on a case study on 19 open source libraries, with a total of 3,165 classes. They conclude that
whole test suite generation achieves higher coverage, while producing smaller test suites.

Mao et al. [25] present a multi-objective search-based testing approach to exploratory
testing for Android applications, called Sapienz. In their approach, they are able to instru-
ment the app under test at multiple levels, depending on their accessibility. Their search
algorithm uses NSGA-II [9] to find solutions, maximizing code coverage and fault revela-
tion, while minimizing the size of the fault-revealing test sequences. They evaluate their
approach on several open source apps, and state Sapienz always outperforms its competi-
tors. Additionally, they evaluate the usefulness of their tool by executing it on the top 1,000
Google Play apps, in which they found 558 unique crashes in 329 of the apps.

Soltani et al. [34] use the EvoSuite approach to generate test cases that reproduce soft-
ware crashes with their tool, EvoCrash. Given a crash stack trace, they use a Guided Genetic
Algorithm to search for test cases that reproduce the crash and the stack trace. They evalu-
ate their approach on 50 bugs from three open source projects. They state their approach is
able to replicate 82% of these crashes, outperforming three other cutting-edge approaches.
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Chapter 3

Approach

The goal of this approach is to generate test data that maximizes test coverage on SQL
queries. Given a query and a database schema, data is generated to cover each coverage
rule as defined by the coverage criterion. A coverage rule is covered by some data if there
is output when executing the rule’s query on the data. For each coverage rule, a single-
objective Genetic Algorithm (GA) is used to find the data within a set time budget. The use
of a GA is chosen over other search algorithms because of the size and complexity of the
search space. After the GA is executed for each coverage rule, the test data for the given
query are the datasets for each covered coverage rule. In the rest of this chapter, the GA is
presented with the goal of finding data for a single coverage rule.

To find data that covers a rule, the GA uses evolutionary operators in combination with
the two main ingredients of any heuristic search algorithm: 1) a problem representation
(definition of an individual) and 2) a fitness function. As the objective is to find data such
that a query has output, each individual in the GA’s population represents a database state
on which the query can be executed.

Definition 3. An individual in the GA contains a set of tables T . This set contains all tables
used by the coverage rule’s query. Each table t ∈ T contains a non-empty set of rows. Each
row in t has a typed value for each column, where the type is taken from the schema of table
t in the supplied database schema. Nullable columns may also be set to NULL.

The overview of the GA is shown in Figure 3.1. The GA first initializes a population
of random individuals, scattered throughout the search space. It then uses a novel fitness
function that calculates how close an individual is to being a solution for the coverage rule.
Using the output of the fitness function, the GA narrows down the search space by selecting
fit individuals and altering them using crossover and mutation. The GA continues to narrow
down the search space until a solution is found, or the time budget is depleted.

To speed up the process of finding solutions, the GA applies guidance techniques.
Amongst these are seeding strategies, which use knowledge about the query to add likely
values (seeds) to a seeding pool.

In Section 3.1, the initialization procedure is explained. In Section 3.2, the fitness func-
tion is presented. Then, the selection operators and the evolutionary operators are presented
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3. APPROACH

in Section 3.3 and Section 3.4, respectively. Finally, the guidance techniques used to speed
up the GA are presented in Section 3.5.

Initialization
Fitness

Calculations

Out of Time
or

Solution
found

Time-out
or

Test Data

Elitism

Selection

Crossover

Mutation

no

yes

Figure 3.1: Overview of the GA

3.1 Initialization

At the start of the GA, the population is filled with the first generation of individuals. New
individuals are generated table by table. For each table, a random number of rows, between
1 and 4, is generated. These boundaries were chosen as we observed that, in practice, no
more than 4 rows are needed in one table. For many coverage rules, a single row per table is
enough for the GA to find a solution. However, when aggregate operations are used, more
than one row may be necessary for the solution to be found. Also, limiting the number of
rows in a table improves the runtime of the fitness function.

Within each row, a typed value for each column is generated. This typed value is ran-
domly generated. If the column is nullable, then the value generated may also be NULL. With
a constant probability α, a randomly selected value from the seeding pool for the column’s
type is used instead. This probability is chosen so that it is high enough to be effective by
seeding useful values, but not too high, which would cause an overrepresentation of seeded
values, which may cause the GA to converge in a local optimum. The seeding techniques
that fill the seeding pool are presented in Section 3.5.
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3.2. Fitness Function

3.2 Fitness Function

The fitness function serves to identify whether an individual is a solution, and to distinguish
the fitter individuals in a population. A solution is found if the coverage rule’s query has
some output when executed on the individual’s data. This is true when the last clause that
potentially removes data (FROM (including JOINs), WHERE or HAVING) is satisfied at least
once, following the definition of a query specification (see Section 2.2). In this case, clause
satisfaction means that, after applying all the predicates and other rules that come with this
clause, there is at least one row of output.

Definition 4. An individual is a solution to a coverage rule if, when executing the rule’s
query on the individual’s data, the following three statements are true:

• The FROM clause has some output. For this to happen, the tables, subqueries and joins
in the FROM clause must have output.

• If there is a WHERE clause, the combination of its predicates must evaluate to TRUE for
at least one row.

• If there is a HAVING clause, the combination of its predicates must evaluate to TRUE

for at least one row.

This brings us to the definition of the fitness function.

Definition 5. Given an individual i, the fitness function for the current coverage rule is as
follows:

f (i) = dFROM(i)+dWHERE(i)+dHAV ING(i) (3.1)

The fitness of the individual is the sum of the fitness of the three important clauses in the
query, where an individual with fitness 0 successfully covers the coverage rule. The fitness
for each of these clauses represent how close the clause is to being satisfied with a number
between 0 and 1. This way, none of the clauses can outweigh the other, and an individual
satisfying more clauses is always fitter than an individual satisfying less.

The rest of this section describes how query executions are compared, starting with
clause satisfaction in Section 3.2.1 and predicate satisfaction in Section 3.2.2.

3.2.1 Clause Satisfaction

The query is used by the fitness function to analyze how close individuals are to having
output and thus satisfying the query. A clause in the query can only be evaluated if the
previous clause has output. Therefore, if one individual has evaluated a clause further than
another individual, it is closer to the solution, hence fitter. If both individuals evaluate
up to the same clause, this clause’s evaluation must be analyzed further to find out which
individual is fitter. This subsection details how clause satisfaction is calculated for the three
important clauses: FROM, WHERE, and HAVING.
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FROM clause

If the FROM clause is not satisfied this means that the output table is empty. Because all
table references (a combination of tables, subqueries and joins; see Section 2.2) in the FROM
clause are cross-joined, each table reference must have output in order to satisfy the FROM

clause. The more table references have output, the fitter the individual.

Definition 6. The fitness of the FROM clause execution is the normalized sum of the fitness
of its table references. Normalization is done to bound the return value of dFROM(i) to 1. In
the following formula T RS is the set of table references in the FROM clause, and dT R is the
fitness function for a table reference.

dFROM(i) =
1

|T RS| ∑
tr∈TRS

dT R(tr, i) (3.2)

Table reference

The fitness of a table reference is based on it having some output, or otherwise how close it
is to having output. The output of a table reference depends on its primary table and joined
tables. Namely, the primary table and all inner join tables must have output. These tables
are referred to as the essential tables, and each of these tables is either a base table, i.e., a
table in the database schema, or a subquery. Another factor influencing the output of a table
reference are the predicates of the inner join operations. If an inner join predicate does not
evaluate to TRUE for any row, the table reference has no output. Thus, the fitness of a table
reference depends on the fitness of its essential tables as well as the fitness of its inner joins’
predicates.

Right join An exception to the rule is when there are right joins in the query. If there is
a right join, all rows from the right join’s table are always present in the output, joining the
tables up to this right join onto them. This means that only the last right join and the joined
tables afterwards can affect whether a table reference has output. Therefore, all tables up to
the last right join are not important for the fitness of the table reference. Furthermore, the
set of essential tables now starts from the last right joined table, and contains all inner joins
after it.

Our approach to not using the tables up to a right join is inspired by how SQLFpc
generates coverage rules (see Section 2.3).

Definition 7. In a table reference, the set of essential tables ET is a subset of the primary
table and all joined tables. If there is a right join in the query, the essential tables are the last
right joined table and all inner joined tables after it. If there are no right joins in the query,
the essential tables are the primary table and all inner joined tables after it. The inner joined
tables in the essential tables are referred to as the essential inner joins (EIJ).

For a table reference to have output, all essential tables must have output and the join
predicates of all essential inner joins must be satisfied for at least one row. A table is not
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evaluated if the table before it has no output. Therefore, fitter executions evaluate more
essential tables.

If two individuals evaluate up to the same table, the fitness of this last evaluated table is
used to distinguish the fitter individual. If the evaluated table is a subquery, the fitness of the
subquery execution is used. Also, if the evaluated table is part of an inner join, the fitness
of the join’s predicates is used. The fitness function for predicates is presented in Section
3.2.2.

Definition 8. The fitness of a table reference tr’s execution for an individual i is a combina-
tion of the essential tables ET having output, and the predicates of the essential inner joins
EIJ being satisfied. They are normalized to bound the return value of dT R between 0 and 1.

dT R(tr, i) =
1

2 |ET |

(

∑
et∈ET

dT (et, i)

)

+
1

2 |EIJ|

(

∑
j∈EIJ

dJ( j, i)

)

(3.3)

Definition 9. The fitness of a single table evaluation is one if it is not evaluated, because
the previous essential table has no output. The fitness is zero if it is a base table, and thus
always has output, and otherwise depends on the fitness of the subquery execution. The
fitness function f (i) is used recursively to calculate the fitness of the subquery, using only
the clauses of the subquery.

dT (et, i) =



















1, if et is not evaluated

0, if et is a base table
f (i)

1+ f (i)
, otherwise (et is a subquery)

(3.4)

Definition 10. The predicates of an essential inner join are only relevant if they are eval-
uated, which only happens if the inner join’s table has some output. If the predicates are
not evaluated, the fitness is one. Otherwise, it is the fitness of the evaluation of the join’s
predicates (join-pred), where dP is the fitness function for predicates.

dJ( j, i) =

{

1, if join-pred is never evaluated

dP(join-pred, i), otherwise
(3.5)

WHERE & HAVING clauses

A WHERE or HAVING clause is not satisfied if its combination of predicates does not evaluate
to TRUE for any row. The fitness of these clauses’ evaluations depends on whether it is
evaluated at all, and otherwise on the fitness of the predicates.

Definition 11. The fitness of the WHERE clause execution for an individual i is one if the
FROM clause is not satisfied, zero if there is no WHERE clause, or the fitness of the WHERE-
predicates otherwise. Again, dP is the fitness function for predicates.

dWHERE(i) =











1, if FROM clause has no output

0, if there is no WHERE clause

dP(WHERE-predicates, i), otherwise

(3.6)
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The fitness of the HAVING clause execution for an individual i is identical to the WHERE clause
except for requiring all clauses up to it to be satisfied.

dHAV ING(i) =











1, if FROM/WHERE/GROUP BY clauses have no output

0, if there is no HAVING clause

dP(HAVING-predicates, i), otherwise

(3.7)

3.2.2 Predicate Satisfaction

The calculation of a predicate’s fitness is based on its evaluations. A predicate is evaluated
once for each row in the table the predicate applies to. Each evaluation has an operator,
values of its operand(s) and a three-valued logic result (TRUE, FALSE, UNKNOWN, see Section
2.2). In this section, we define the fitness function for predicates by means of a distance
function.

The purpose of the distance function is, given a predicate evaluation, to return how
close it is to evaluating to TRUE. If the predicate evaluation result is TRUE, the predicate is
satisfied and there is no need for a distance. After the predicate has been evaluated on all
rows, the fitness of the predicate corresponds to the fittest row’s evaluation, i.e., with the
lowest distance.

To calculate the distance of derived predicates (AND, OR, or NOT, see Section 2.2), the
distance of their children is recursively calculated. These distances are then combined dif-
ferently depending on the operator, which we explain near the end of this section.

A derived predicate may have a NOT operator. If such a predicate’s child evaluates to
TRUE then the predicate itself evaluates to FALSE and thus, it is not satisfied. In this case,
the distance of the NOT to being TRUE is equal to the distance of its child to being FALSE.
Therefore, to be able to give a correct distance to the NOT predicate, the distance function
must also return a distance value when a predicate evaluates to TRUE. This way, if the parent
of a predicate evaluating to TRUE has a NOT operator, the parent will have the inverted value
of its child, so that the value represents how close this parent predicate is to evaluating to
TRUE.

To summarize, the result of the distance function, given a predicate evaluation, resem-
bles a two-way distance. If it is less than zero, the outcome of the evaluation is TRUE and
the distance function returns the distance to the evaluation outcome to being FALSE. On the
other hand, if it is greater than zero, the outcome of the evaluation is FALSE and the distance
function returns the distance to the evaluation outcome to being TRUE. The distance is never
zero, as negating it would have no effect on the boolean result value it represents.

Definition 12. The distance function dist takes a predicate evaluation pe and returns a num-
ber representing how far the result is from being TRUE or FALSE. Here, res(pe) returns the
result of the predicate evaluation, as described in Section 2.2.

• If res(pe) = TRUE, dist(pe)< 0 and the more negative it gets, the further the predicate
is from being FALSE.
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• If res(pe) = FALSE, dist(pe) > 0 and the higher it gets, the further the predicate is
from being TRUE.

Definition 13. The fitness of a predicate given an individual i is optimal if the distance of
one of the predicate evaluations PE is negative, i.e., the result of one of the evaluations is
TRUE. If not, the lowest distance of the evaluations is the best. This distance is normalized
to be bound between 0 and 1.

dP(predicate, i) =







0, if ∃pe ∈ PE dist(pe)< 0

min
pe∈PE

dist(pe)

1+dist(pe)
, otherwise

(3.8)

In case a base predicate is evaluated to UNKNOWN, e.g., when evaluating whether a nu-
meric value is larger than NULL, the distance of the operation is set to MAX_DISTANCE.

Definition 14. Given a base predicate evaluation bpe, if res(bpe)= UNKNOWN, then dist(bpe)=
MAX_DISTANCE.

Comparison operators

The comparison operators in SQL are EQUAL (=), NOT EQUAL (<>), GREATER THAN
(>), GREATER THAN OR EQUAL (>=), LESS THAN (<) and LESS THAN OR EQUAL
(<=). Each of these operators compares two values. lv and rv represent the left and right
value, respectively. If at least one of the two values is NULL, the result is UNKNOWN and the
distance returned is MAX_DISTANCE.

Each of the comparison operators rely on a function calculating the difference between
the two operands. The difference function is defined for four types: number, boolean, string,
and date.

Definition 15. The difference function diff(lv,rv) returns a number representing the dif-
ference between two values lv and rv of the same type. If the difference is negative, lv is
smaller than rv. If the difference is positive, lv is greater than rv. If the difference is zero,
they are equal.

• Number. The difference between two numbers is straightforward; the left value mi-
nus the right value.

• Boolean. Boolean values can only be 0 (FALSE) or 1 (TRUE). Their difference is the
same as with numbers.

• String. The difference between two string values is the absolute difference in length
plus the absolute ordinal character difference per position in the two strings. If the left
value is lexicographically smaller, the difference is negated to be a negative number.

• Date. The difference between two date values is the sum of the difference for each
numerical calendar part: year, month, day, hour, minute, second, millisecond.
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The following formulas calculate the distance per comparison operator using the difference
function.

EQUAL If the two values are equal, the outcome is TRUE and the distance is minus ε.
Here, ε is an arbitrarily small value, used to avoid zero. Otherwise the distance is the
absolute difference between the two values.

dist(lv = rv) =

{

−ε, if diff(lv,rv) = 0

|diff(lv,rv)| , otherwise
(3.9)

NOT EQUAL If the two values are not equal, the outcome is TRUE and the distance is the
negative absolute difference. If they are equal the distance is ε.

dist(lv <> rv) =

{

−|diff(lv,rv)| , if diff(lv,rv) 6= 0

ε, otherwise
(3.10)

GREATER THAN If the difference is positive, the outcome is TRUE and the distance is
the negative difference. Otherwise the difference is negative or zero, and the distance is ε

plus the absolute difference.

dist(lv > rv) =

{

−diff(lv,rv), if diff(lv,rv) > 0

ε+ |diff(lv,rv)| , otherwise
(3.11)

GREATER THAN OR EQUAL If the difference is positive or zero, the outcome is TRUE
and the distance is the negative difference minus ε. Otherwise the difference is negative and
the distance is the absolute difference.

dist(lv >= rv) =

{

−diff(lv,rv)− ε, if diff(lv,rv) ≥ 0

|diff(lv,rv)| , otherwise
(3.12)

LESS THAN If the difference is negative, the outcome is TRUE and the distance is the
same as the difference. If the difference is positive or zero, the outcome is FALSE and the
distance is ε plus the difference.

dist(lv < rv) =

{

diff(lv,rv), if diff(lv,rv) < 0

ε+diff(lv,rv), otherwise
(3.13)

LESS THAN OR EQUAL If the difference is negative or zero, the outcome is TRUE and
the distance is the difference minus ε. If the difference is positive, the outcome is FALSE

and the distance is the same as the difference.

dist(lv <= rv) =

{

diff(lv,rv)− ε, if diff(lv,rv) ≤ 0

diff(lv,rv), otherwise
(3.14)
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Subqueries in predicates

The operands predicates (lv, rv) may be subqueries. These subqueries can have two possi-
ble outcomes: 1) the subquery returns a single value, that is used by the predicate, 2) the
subquery returns no values, i.e., a NULL.

For the former case, the distance of the predicate evaluation is calculated as aforemen-
tioned. For the latter case, as the subquery returns NULL, the distance of the predicate evalu-
ation would be MAX_DISTANCE; however, the fitness function of the subquery can be used to
give a more representative distance to these predicate evaluations. Therefore, the distance
is calculated as the MAX_DISTANCE plus the fitness of the subquery execution.

This way, subqueries that do return values are fitter than subqueries that do not. Also,
by using the fitness function of the subquery, the distance of a predicate evaluation is lower
(i.e., closer to be evaluated to TRUE) when the subquery evaluation is fitter.

Definition 16. If either side of a comparison operator is a subquery, and this subquery has
no output, the distance of the predicate evaluation is based on the fitness of the subquery
evaluation.

dist(pe) = MAX_DISTANCE+ f (i),
where f (i) is the fitness function for the subquery,

given the current individual i

(3.15)

SQL operators

There are some special SQL operators that the distance function takes into account. More
specifically: BETWEEN, IS (NOT) NULL, IN, LIKE and EXISTS.

BETWEEN The BETWEEN operator returns TRUE when with value v and bounds lb and
ub (lower and upper, respectively), lb <= v <= ub. In SQL this is equivalent to lb <=
v AND v <= ub.

dist(v BETWEEN lb AND ub) = dist(lb <= v AND v <= ub) (3.16)

IS NULL The IS NULL operator returns TRUE when the value v under inspection is NULL,
and FALSE otherwise.

dist(v IS NULL) =

{

−1, if v is NULL

1, otherwise.
(3.17)

IS NOT NULL The IS NOT NULL operator is equivalent to NOT ( IS NULL ).

dist(v IS NOT NULL) = dist(NOT (v IS NULL)) (3.18)
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IN The IN operator compares a single value on the left lv with a list of values on the right
RVS. This list of values may be a constant list written in the query or a subquery result. It
returns TRUE if at least one of the values in RVS is equal to lv. If the list is empty due to
an empty subquery result, the fitness of the subquery evaluation defines the distance. If the
list is not empty and the result is FALSE, the distance is the minimum absolute difference
between lv and all values in RVS. This difference is normalized so that it is always lower
than the case of an empty subquery result.

dist(lv IN RVS) =























−1, if ∃rv ∈ RVS | rv = lv

1+ f (i),
if |RV S|= 0, where f (i) is the fitness of the

subquery for the current individual i

min
∀rv∈RVS

|diff(lv,rv)|

1+ |diff(lv,rv)|
, otherwise

(3.19)

LIKE The LIKE operator performs pattern matching on a string. The pattern supports
using wildcards: % for matching a string of any length (including zero) and _ for matching
a single character. If the pattern matches the string completely, it returns TRUE. Otherwise,
it performs a recursive calculation of the distance between the string and the pattern. This
distance is the sum of characters left in both the string and the pattern after the furthest
possible matching.

dist(v LIKE pattern) =

{

−1, if pattern is matched, and v has no characters left

n+m, otherwise, pattern has n characters left to match, and v has m left

(3.20)

EXISTS The EXISTS operator takes a subquery as a parameter. This subquery is ex-
ecuted and if the subquery returns a value the operator evaluates to TRUE. Otherwise it
evaluates to FALSE with a distance equal to the fitness of the subquery execution for the
current individual i.

dist(EXISTS(subquery)) =

{

−1, if subquery has output

f (i), otherwise
(3.21)

Logical operators

SQL has three logical operators, AND, OR and NOT. The predicates using these operators are
derived predicates as they have 2, 2, and 1 child predicates respectively. To calculate the
predicate evaluation’s distances, they use the distance(s) of their children.
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AND An AND evaluation has two children, c1 and c2. If both evaluate to TRUE (with
negative distances) then the AND evaluates to TRUE. The distance to become FALSE is the
distance closest to zero (smallest negative) of the children, as only one of them has to be
FALSE. If the AND evaluates to FALSE or UNKNOWN, the distance is the sum of distances of
the children evaluating to FALSE or UNKNOWN, as they must all be TRUE.

dist(c1 AND c2) =























max(dist(c1),dist(c2)), if res(c1) = TRUE and res(c2) = TRUE

dist(c2), if res(c1) = TRUE and res(c2) 6= TRUE

dist(c1), if res(c1) 6= TRUE and res(c2) = TRUE

dist(c1)+dist(c2), otherwise

(3.22)

OR An OR evaluation has two children, c1 and c2. If both evaluate to FALSE (with positive
distances) then the OR evaluates to FALSE. If neither evaluate to TRUE and at least one
evaluates to UNKNOWN, the OR evaluates to UNKNOWN. In either of these cases, the distance
to become TRUE is the distance closest to zero of the children, as only one of them has to
be TRUE. If the OR evaluates to TRUE, the distance is the sum of distances of the children
evaluating to TRUE.

dist(c1 OR c2) =























min(dist(c1),dist(c2)), if res(c1) 6= TRUE and res(c2) 6= TRUE

dist(c2), if res(c1) 6= TRUE and res(c2) = TRUE

dist(c1), if res(c1) = TRUE and res(c2) 6= TRUE

dist(c1)+dist(c2), otherwise

(3.23)

NOT A NOT evaluation has a single child c. The distance of the NOT is the inverted
distance of the child, unless the child result is UNKNOWN, in which case the NOT result will
also be UNKNOWN and the distance is the same as that of the child.

dist(NOT c) =

{

dist(c), if res(c) = UNKNOWN

−dist(c), otherwise
(3.24)

3.3 Selection Operators

The initial population may not contain a solution. In this case, as Figure 3.1 shows, the GA
evolves a new population until a solution is found, or the time budget is depleted. To make
sure new generations improve their fitness, selection operators are applied to select which
individuals may stay and reproduce.

At the beginning of each new generation, the old (parent) population and the new (chil-
dren) individuals are redivided to the new population, so that the population size remains
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the same as the original population size N. Elitism performs the division, with the aim of
maintaining a fit population. With this (partially) new population, Tournament Selection is
applied N times to select parent individuals for reproduction.

It is important to balance these operators so that the convergence rate is not too slow,
causing the GA to take longer at finding the solution, nor too fast, causing the GA to con-
verge prematurely to a local optimum [33]. To this end, the two selection operators com-
bined must ensure that while converging to a solution, thus prioritizing fitter individuals,
they must also make sure to give the lesser fit individuals a fighting chance.

3.3.1 Elitism

Given an old population of size N and an equally sized set of new individuals, elitism
decides which individuals survive. The elitism applied by our GA selects the N fittest
individuals from the combined set of new individuals and the old population. Since all old
and new individuals are included, elitism is ensured [9].

This approach to elitism differs from typical implementations, where elitism makes sure
to keep some of the fittest individuals from the old population in the new population. By
using our proposed approach, the fittest individuals are never lost.

3.3.2 Tournament Selection

To select parent individuals for reproduction, the GA applies Tournament Selection. In this
operator, a tournament with size n selects n individuals randomly from the population to
compete in a tournament competition [13]. The individuals are paired up, and the fitter one
wins each pairing. The winner of the tournament is the fittest individual in the n selected
individuals, and is added to the mating pool, to reproduce with other individuals in the
mating pool. This is repeated until the mating pool is filled with N individuals, as many as
are in the population.

We chose Tournament Selection over other selection operators (e.g., Rank Selection)
for its simplicity and its ability to slow down the convergence rate. This balances out with
the elitism applied by the GA.

3.4 Evolutionary Operators

Using the individuals selected for reproduction, N new individuals (children) are created
using the crossover and mutation evolutionary operators. From the mating pool, two parent
individuals are taken at a time. The GA may apply the crossover operator to the parents,
generating two children that have some combination of their parents data. If the crossover
operator is not applied, the parents are copied to create two children that are identical to
their relative parent. Afterwards, the GA applies mutation to both new children.
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3.4.1 Crossover

The crossover operator generates two children individuals C1 and C2 based on two parents
P1 and P2. Given each individuals has a set of tables T , a random number x is chosen
from

[

1, |T |
]

. The first child C1 is then created containing all tables but the xth from the
first parent P1, plus the xth table from the second parent P2. Likewise, the second child C2

contains all tables but the xth from parent P2, plus the xth table from parent P1.
By swapping tables between individuals, predicates comparing columns between the

swapped table and the other tables could be closer to evaluating to TRUE. Such predicates
typically appear in SQL join operations.

3.4.2 Mutation

The mutation operator is applied to each individual. In this operator, mutation is applied at
table level, as well as row level. Each table in an individual is mutated with a probability
based on the amount of tables in the individual. If a table is mutated, there are four actions
that may be applied to the table, in the given order.

1. Delete. Delete a random row from the table. This action aims to remove unneces-
sary rows, so that further mutation is more likely to be applied to the rows that are
necessary.

2. Duplicate. Duplicate a random row in the table. This action is useful when the query
applies a grouping, and needs multiple rows for a group.

3. Add. Add a newly generated row to the table. This action keeps the GA from getting
stuck in local optima.

4. Mutate. Mutate a row in the table. This action serves to change the data in a row to
satisfy the query’s predicates. The paragraph below describes the process of mutating
a row.

Row mutation When mutating a row, each mutable column is mutated with a probability
based on the amount of mutable columns in the row. If there are seeded values available for
this column it will seed a value with probability β. Column values that are NULL mutate to
a random value for its type. If the column is nullable it mutates to NULL with probability γ.
Like in initialization (see Section 3.1), the probabilities are chosen so that they are effective,
but do not cause convergence to a local optimum. Finally, if none of the previous mutations
are done, a linear typed mutation is applied.

Typed column mutation The typed mutation changes a column value to a new value
nv that is close to the old value ov such that the difference diff(ov,nv) between these two
values is small. This is small to prevent oscillations around optima, and to ensure that
fitter individuals are closer to the solution. Like the difference function, column mutation is
defined for four types: number, boolean, string, and date.
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• Number. If the number is an integer, a random value between 0 and 10 is added or
subtracted. If the number is a real number, a small value from a gaussian distribution
with mean 0 is multiplied with ov. The result of this multiplication is added to ov.
Finally, the real number is truncated to a random amount of decimals between 0 and
16.

• Boolean. For boolean values, the new value is the negated old value.

• String. For string values, each character is mutated with some small probability. For
each character, one of three actions is taken.

1. A random character is added after the character

2. The character is removed

3. The character’s ordinal value is changed. A random value between 0 and 10 is
added or subtracted.

• Date. For date values, each calendar part is mutated with some small probability. A
calendar part is mutated by adding or subtracting a random value between 0 and 10.

3.5 Guidance Techniques

To speed up the GA, domain knowledge is applied to guide the GA to finding fitter indi-
viduals sooner. Before the initialization phase, static query analysis is performed extracting
metadata for the GA to use.

Mutable columns Each individual contains data for each column in each table used in the
query. However, not all columns are relevant for finding the solution. The GA can limit its
search space by ignoring columns that are not used by any predicates. A naive approach is
used to decide which columns are used: if a column is used anywhere in the query’s impor-
tant clauses (FROM, WHERE, GROUP BY, HAVING), it is added to the list of mutable columns.

Seeding strategies

Seeding is the technique of inserting values from a seeding pool into the population with
some probability. The values in the seeding pool are extracted using knowledge about the
coverage rule’s query. The GA uses two seeding pools, one for values to seed into columns,
and the other for seeding individuals from the previous GA’s population.

Constants In a query, there may be predicates comparing a column value to a constant
value. Each constant in the query is added to the column seeding pool for the value’s type.

Column equalities A typical SQL predicate for joining two tables together is an equality
between two columns. Each predicate of the form column1 = column2 adds a logical link
between the two columns. When seeding for column1, the values in column2 are added to
the seeding pool, and vice versa.
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Previous population The coverage rules generated for a query are all similar to the origi-
nal query and to each other. This indicates that the data covering the rules may look similar
as well. Therefore during the initialization phase of the GA, some individuals from the pre-
vious coverage rule’s execution are cloned before the new individuals are generated. If at
least one solution was found for the previous rule, one of them is always cloned. The rest
of the previous population is cloned with some probability. This random sampling of the
previous population is chosen over weighted sampling because it is less susceptive to local
optima.
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Chapter 4

EvoSQL

We provide an implementation of the approach, EvoSQL. EvoSQL takes a query, a database
schema, and a time budget, and returns test data for each coverage rule of the query. First,
the tool collects the coverage rules for this query and schema by invoking the SQLFpc web
service. EvoSQL then distributes its time budget to each obtained coverage rule fairly, and
proceeds to execute the GA on each coverage rule consecutively. Each coverage rule’s GA
executes until either a solution is found, or its time budget is depleted. If a solution is found
for one coverage rule, the remaining time budget is distributed across the coverage rules
that have not yet been solved. This continues until all coverage rules are covered, or the
time budget is depleted.

Our approach requires the query for each coverage rule to be completely interpreted
and executed against an individual. Such functionalities are already present in any SQL
relational database. Therefore, we instrument an existing, open source database and follow
its execution flow to extract all the necessary data for the fitness function.

In this chapter, we present how we instrumented our database of choice, HSQLDB,
and what challenges we encountered while instrumenting it. In Section 4.1 we describe
the implementation of the fitness function into the database. In Section 4.2 we present
database optimizations techniques that we encountered and disabled. Finally, in Section 4.3
we present how we handle exceptions that are thrown by the database, and how this may
influence the fitness function.

4.1 Implementation of the Fitness Function

The database we instrument is HSQLDB1, a Java relational database engine that supports
the latest SQL standards. HSQLDB can be executed completely in-memory, which is ideal
as an individual in EvoSQL has little data and the fitness for it is only calculated once, after
which the data is removed from the database.

Firstly, because EvoSQL uses the SQLFpc criterion, it can benefit from using the char-
acteristics of SQLFpc coverage rules. In Section 4.1.1, we present how the fitness function
is adapted to make better use of these characteristics. Secondly, the way HSQLDB executes

1HSQLDB - http://hsqldb.org/
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queries is slightly different from how our fitness function interprets queries. In Section 4.1.2
we clarify these differences and how we adapted our implementation to match.

4.1.1 Coverage Rule Restrictions

Our instrumentation takes advantage of how SQLFpc handles join operations. In general,
if there is a left or right join in a query, it is complex to decide whether the join should
be satisfied or not. Although these joins are not part of the fitness function, it could be that
some predicate in the WHERE clause requires the join to be satisfied, or the opposite. Without
knowing which to do, the best option for our implementation would be to try both satisfying
the join and not. This causes a split in the search space which may cause convergence in a
local optimum.

Fortunately, as presented in Section 2.3, the coverage rules SQLFpc generates always
have inner joins if the join must be satisfied, and left or right joins when it must not be
satisfied. This is enforced by a predicate in the WHERE clause that requires the joined table’s
columns to be NULL, meaning the join must not be satisfied. In our implementation we
explicitly aim to never satisfy any left or right join operations by attaching negative fitness
if such a join is satisfied.

4.1.2 HSQLDB Query Execution Flow

To implement the fitness function, we use the HSQDLB query execution flow as a guideline.
In HSQLDB, predicates from the WHERE clause are evaluated while processing the FROM

clause, rather than after evaluating the entire FROM clause. When a table in the FROM clause
is processed, HSQLDB evaluates all predicates that can be evaluated using the data that is
gathered so far, and have an individual effect on removing rows. For example, in the query
below, the predicate t1.value = 50 is evaluated before the inner join operation.

SELECT *

FROM t1

INNER JOIN t2 ON t1.id = t2.id

WHERE t1.value = 50

For the fitness function this means that the fitness calculations of the FROM and WHERE

clauses are intertwined, and that when calculating the fitness for a table reference, the pred-
icates evaluated by HSQLDB are also taken into account.

Our implementation of the fitness function adds the fitness of these predicates to the
fitness calculation of the corresponding essential table, and removes their fitness from the
fitness calculation of the WHERE-clause. If the predicate belongs to a table that is not an
essential table, these can only be predicates that require left or right joined table’s columns
to be NULL, as discussed in the previous section.
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4.2 Database Optimizations

Typically, databases are optimized to minimize the processing power used when executing a
query. HSQLDB is no exception. To assert no data evaluations are skipped when executing
a query, we disabled these optimizations.

Indexing Databases allow tables to be indexed so that some queries may be optimized.
The index is used to reduce the set of rows that will be evaluated by the query, as it is able
to exclude the rows that do not satisfy predicates of indexed columns without individually
evaluating them. Excluding rows in the instrumented database causes the execution to be
incomplete. Therefore, we disable indexing so that all rows are always evaluated.

AND/OR optimization In many programming languages programmers can rely on lazy
evaluations of the logical operators AND and OR. In lazy evaluation, when the left expression
in an AND operation evaluates to FALSE, the right expression will not be evaluated. Likewise
with an OR, when the left expression evaluates to TRUE. In languages such as Java, this is
often used to check if objects exist before attempting to access them. In SQL there is no
such thing as objects and lazy evaluation is solely an optimization. If lazy evaluation is
used it prevents the fitness function from extracting all predicate evaluations. Therefore,
we disable lazy evaluations in the instrumented database so that both sides of AND and OR

operations are always evaluated.

4.3 Exception Handling

Databases may throw exceptions when executing a query. Most exceptions are either database
or query related. These indicate that the database cannot execute the query and for the GA,
there is no point in trying other individuals, as the individual is not the cause of the excep-
tion. In this case, our implementation informs the user of the exception.

There are also exceptions that are related to the data not matching the query. Thus, they
are caused by the individual, and are important when calculating a fitness value. Namely,
if an individual causes an exception to be thrown, it is worse than any other individual that
does not throw an exception.

To handle these exceptions, we expand the fitness function so that individuals that cause
exceptions to be thrown are less fit than those that don’t:

f (i) =

{

4, if an exception is thrown

dFROM(i)+dW HERE(i)+dHAV ING(i), otherwise
(4.1)

The exceptions caused by the individual that we encountered and handle accordingly
are the following two:

• Division by zero If the query being executed contains a division, in which the de-
nominator depends on at least one column value, there is a chance that the data in
this column causes the denominator to evaluate to 0. When this happens a division
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by zero occurs, throwing an exception. Because this exception is caused by the data
in the column, and other data may not cause this exception, the individual is unfit.

• Cardinality violation A cardinality violation occurs when there is a subquery in the
query which should return a single value, but returns multiple. This could be a field
in the SELECT clause, or one of the values in a comparison operator. This requires
the subquery to select a single column which is not aggregated, and is valid (yet
unsafe) SQL syntax as the subquery may be designed to only return 1 row of data.
A cardinality violation is the result of such an unsafe query in combination with data
that causes the subquery to return multiple values. Therefore, the individual is unfit
for this query.
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Chapter 5

Empirical Study

The goal of this study is to evaluate the effectiveness of EvoSQL. To do this we have col-
lected 2,135 queries from 4 software systems, one of them being from one of our industry
partners. We investigate the query coverage that EvoSQL is able to achieve across these
systems. We compare our results to a pure random search algorithm as the baseline in this
study. To evaluate our approach we formulate four research questions.

• RQ1: What is the difference in the query coverage achieved by EvoSQL and the base-

line? In this research question, we evaluate the effectiveness of EvoSQL compared
to the baseline.

• RQ2: What are the causes when EvoSQL does not achieve 100% coverage? In this
research question, we search for key attributes that are difficult for EvoSQL to achieve
full coverage on.

• RQ3: What is the performance of EvoSQL? In this research question, we analyze the
performance of EvoSQL on our evaluation set.

• RQ4: How do different time budgets impact the effectiveness of EvoSQL? In this
research question, we investigate how much coverage can be achieved with different
time budgets. Also, we investigate whether there are queries for which EvoSQL
cannot improve the coverage, and what may be the cause.

The rest of this chapter is organized as follows. We describe how the queries are gathered
and analyze some of their SQL properties in Section 5.1. In Section 5.2 we explain what
the random search baseline is. We describe the experimental procedure for each research
question in Section 5.3. Finally, we present and discuss the results in Section 5.4, followed
by the threats to validity in Section 5.5.

5.1 Context of the Study

We evaluate our approach on 2,135 queries taken from four real world software systems:
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1. Alura1 is a closed source e-learning platform. It uses Hibernate as a layer between ap-
plication and database. Hibernate generates SQL queries based on the data requested
by the application.

2. EspoCRM2 is an open source web application to manage customer relationships
(CRM). It uses a REST API backend written in PHP which communicates with a
MySQL database.

3. SuiteCRM3 is another open source CRM. It is a fork of the SugarCRM Community
Edition, and is written in PHP. The database it uses can be either MySQL, MariaDB
or SQL Server. For our evaluation, we used MySQL.

4. ERPNext4 is an end-to-end business solution that manages business information (ERP:
enterprise resource planning). It is built on top of the Python & JavaScript framework
Frappé and uses MariaDB.

To collect the queries for evaluation, we execute the test suites of each system, and
extract the queries directly from the database logs. Table 5.1 shows the total amount of
queries collected per system. In this table, we also describe the amount of queries as we
prepare the set for evaluation. This preparation is a cleaning procedure ensuring that each
query is executable, and that no repetitive work is done.

1. Usable queries. Not all queries can be executed, as some may have bad syntax, or
syntax that is specific to the system’s database. The usable queries are the queries
that both SQLFpc as well as HSQLDB can execute.

2. Unique queries. Many of the queries are very similar to each other, only differing by
some constant values. This can be the result of a method being executed with different
parameters. For example, the queries SELECT * FROM t WHERE a = 1 and SELECT

* FROM t WHERE a = 2 are similar, as their only difference is a constant. There is
no difference in solving these queries for the GA, as column a is either randomly
filled, or taken from the seeding pool, which changes depending on the constant. To
get the unique queries, we group all usable queries by the query strings excluding
constants and randomly select one query per group.

3. Evaluation queries. Finally, some of the unique queries may have no predicates or
other constraints. These are queries that request some view on all data from a table.
For such a query, there are no coverage rules and there is nothing for EvoSQL to do.
The queries for which SQLFpc generates no coverage rules are removed to form the
final set of queries being used in the evaluation, the evaluation queries. We evaluate
2,135 queries in total.

1Alura - https://www.alura.com.br
2EspoCRM - https://www.espocrm.com
3SuiteCRM - https://suitecrm.com
4ERPNext - https://erpnext.com
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5.1. Context of the Study

Application Total queries Usable queries Unique queries Evaluation queries

Alura 554 494 258 249

EspoCRM 151 149 40 40

SuiteCRM 709 704 280 279

ERPNext 18,454 17,761 1,631 1,567

Total 19,868 19,108 2,209 2,135

Table 5.1: Queries collected per application

5.1.1 Query properties

The query properties of the evaluation queries are presented in Table 5.2. The first four
properties represent the amount of occurrences of this property in the query. The used
columns property is the amount of columns used by the predicates of a query, as defined
in Section 3.5. Finally, the coverage rules property is the amount of coverage rules that
SQLFpc generates for a query.

Property 0 1 - 2 3 - 4 5 - 6 7 - 8 9 - 10 11 - 15 16 - 20 21+

Predicates 58 1389 495 100 33 11 27 16 6

Joins 1890 189 32 3 17 2 - 1 1

Subqueries 2052 78 3 1 - - 1 - -

Functions 1796 291 12 16 2 6 12 - -

Used columns 60 1369 457 127 43 26 20 13 20

Coverage rules - 656 382 408 346 114 107 51 71

Table 5.2: Number of queries with a certain amount of a property

There is a correlation between the coverage rules and the other query properties, mean-
ing that the amount of coverage rules is a good measure of the amount of constraints to
solve, and thus a measure of general complexity of a query. To show the correlation, we
compare amount of coverage rules with the sum of the other query properties in Figure 5.1.
In this figure, we also show a regression line making the correlation clear. The Spearman
correlation is 0.95 (p-value < 0.01). Most of the data points are in the left bottom corner
with few coverage rules and properties. From this distribution, we may conclude that most
of the queries generate few coverage rules, hence have few constraints to solve.
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Figure 5.1: Scatterplot of the correlation between the amount of SQLFpc coverage rules
and the sum of the other query properties.

5.2 Baseline

To be able to quantify the effectiveness of EvoSQL, we compare it to pure random search.
This is a common randomized search heuristic to compare against in which each generated
individual is completely random [19]. This means that while adhering to the encoding
scheme, the data in each column is a random value. Random search is commonly used as
a baseline to compare to more advanced algorithms with the aim of beating it, although
in areas of testing it has been shown that random search can be more effective than some
advanced algorithms [16]. To make the comparison fair, this algorithm has the same time-
based termination criterion as EvoSQL.

5.3 Experimental Procedure

To answer the research questions, both EvoSQL and the baseline are executed multiple
times. The systems are split up into many processes, of which 5 are executed concurrently.
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The machine the experiment runs on has 40 cores @ 2.30GHz from 4 Intel Xeon E5-2650
v3 CPUs, and 125GB RAM.

The parameter settings used to run EvoSQL are based on default parameter values used
in the field of evolutionary algorithms [12, 31]. These default values are shown to give
reasonable results for the entire search space [2].

• Population size. We use a population size of 50.

• Tournament size. We use a tournament size of 4.

• Mutation. We mutate any table t ∈ T in an individual with probability 1/ |T |. For
each table mutation the probability is 1/6 for the mutation actions; deleting, duplicat-
ing, and adding a row. Because we have found in practice that rows in one table are
not often combined, row mutation is always applied.

• Row mutation. In row mutation, each mutable column mc ∈ MC in the row is mu-
tated with probability 1/ |MC|.

• NULL. The probability of setting a column value to NULL is 0.01.

• Crossover. The probability of applying crossover is 0.75.

• Population cloning. The probability of an individual from the population of the pre-
vious execution (i.e., the previous coverage rule) to be cloned into the next execution’s
population is 0.6.

• Seeding.

– The probability of seeding on initialization is 0.5.

– The probability of seeding during mutation needs to be very low as otherwise it
is likely to overrule the smaller mutations. It is set to 0.01 so that there is some
small probability of getting a value from the seed pool.

• Termination criterion. Besides stopping when all coverage rules are covered, the
algorithm has a time budget of 30 minutes for one query.

To answer RQ1, both EvoSQL and the baseline are executed on all evaluation queries
10 times. We execute them 10 times to have higher confidence in the results, given the
randomized nature of the algorithms. Collecting the rules from SQLFpc requires a constant
internet connection as well as the SQLFpc web service to be online. To ensure no errors
occur due to a faulty connection or SQLFpc downtime, we store the coverage rules before-
hand. During evaluation, we mock the web service so that the correct coverage rules are
returned whenever they are requested.

Throughout the research, we have experienced that some of the coverage rules that
SQLFpc returns are infeasible. In most of these cases this is caused by some combination
of predicates that cannot be satisfied. Because detecting these programmatically is out of
scope for this study, we manually analyze each rule that EvoSQL can not solve across all
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10 executions, which are 429 rules from 101 queries. All coverage rules that are found to
be infeasible are removed from the results.

Across the 10 executions, the query coverage is averaged for each query. We say a
query is successfully covered if the average query coverage is 100%, which means that all
coverage rules were covered in each execution. If one rule was not covered in any of the 10
executions, we say that EvoSQL failed to cover that query. For each system, we investigate
the query coverage achieved, as well as the number of successes and failures. By using the
failed queries as they are defined, we have a worst-case view on the results. Because the
coverage rule distribution is skewed, we also analyze the queries grouped by the amount of
coverage rules. This shows how the algorithms handle tougher queries with more coverage
rules.

To answer RQ2, we use the results from RQ1 and analyze the coverage rules that
EvoSQL failed to cover at least once in the 10 executions. Similar to the queries, we use
the terminology of a success only if a rule is covered in all 10 executions.

We programmatically extract query properties from each rule and use them to fit a deci-
sion tree classifying whether a rule is likely to fail or not. The properties we extracted and
their descriptions are listed in Table 5.3. We chose these properties as they are important
SQL constructs. The last few properties that are more specific are chosen from our experi-
ence with EvoSQL and solving queries with these properties. Each of these properties are
extracted from the FROM clause onwards, as the items in the SELECT clause are not relevant
to covering a coverage rule (see Section 2.2). We use Weka5, a machine learning toolkit, to
create the decision tree. From the decision tree, we extract the important query properties
to conclude what makes EvoSQL fail a coverage rule.

We take the following steps to select useful data and generate a decision tree that clas-
sifies whether a coverage rule is likely a failed rule or a successful rule, given its properties:

1. Because our classes, failed rules and successful rules, are not evenly balanced, we
apply SMOTE (Synthetic Minority Over-sampling TEchnique) to generate extra data
points for the smaller class [6]. This way, both classes have equal size for a better
classification.

2. We select the top 5 properties ranked by information gain to the class. This limits the
properties that the decision tree will use to those that are important, which prevents
overfitting.

3. In the last step we create a decision tree on the top 5 properties using the J48 classifier,
which generates a pruned C4.5 decision tree. We use 10-fold cross-validation to
calculate the accuracy of the decision tree.

To answer RQ3, we analyze EvoSQL’s execution time per query. Once more, we group
the queries by their coverage rules to analyze whether this has an effect on the execution
time. For the execution time, we analyze the mean, the standard deviation, as well as the
quantiles.

5Weka - http://www.cs.waikato.ac.nz/ml/weka/
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Property Explanation

Tables Number of tables used

Predicates Number of base predicates, this does not include AND, OR, and NOT

operators

Inner Joins Number of inner joins

Left Joins Number of left joins

Right Joins Number of right joins

Subqueries Number of subqueries

Aggregate Functions Number of aggregate functions (MIN, MAX, SUM, AVG, COUNT)

Other Functions Number of non-aggregate functions (e.g., DATENOW, IFNULL)

Used Columns Number of used columns, as described in Section 3.5

WHEREs Number of WHERE clauses

GROUP BYs Number of GROUP BY clauses

HAVINGs Number of HAVING clauses

StringEQs Number of string equality predicates

DateEQs Number of date equality predicates

EXISTs Number of EXIST predicates

LIKEs Number of LIKE predicates

CASEs Number of CASE expressions

IFNULLs Number of IFNULL functions

Outcome Success if the coverage rule was covered each evaluation, Failure
otherwise

Table 5.3: Query properties retrieved from the coverage rules’ queries

To answer RQ4, we re-evaluate the failed queries with a time budget of two hours instead
of half an hour. Like in RQ1, this evaluation is executed 10 times. We compare the coverage
rates between the two evaluations. Then, we manually inspect the coverage rules of queries
that did not improve, to inspect why EvoSQL may be unable to solve them.

We then combine the results of the evaluations run with a half an hour time budget and
a two hour time budget. We use the average time budget used per coverage rule in a query
to calculate how many coverage rules would be covered on average, given a different time
budget. If a query was re-evaluated with a two hour time budget, those results are used in
favor of the evaluation with a half an hour time budget. This is done because we have more
information about these queries, and the queries that were not evaluated in this re-evaluation
were already fully covered by EvoSQL in half an hour.

We calculate the query coverages per time budget from 1 to 120 minutes (i.e., 2 hours).
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Using this data, we present the average query coverage progression against an increasing
time budget grouped by coverage rules as done in Section 5.1.1.

Replication package

We provide an open source replication package6. This package contains our implementa-
tions of both algorithms, EvoSQL and the baseline. It also contains the queries and schemas
from all systems but the closed-source application Alura, which opens up for a comparison
with other tools.

5.4 Results

We concluded from the manual analysis on these rules that 127 out of the total 12,991
coverage rules are infeasible, and they are excluded from the results. Throughout the results,
we group queries by their number of coverage rules. For comparison reasons, we still
group queries based on their initial number of coverage rules, as we showed the correlation
between them and the other query properties in Section 5.1.1. For example, a query which
had 9 coverage rules of which 8 are feasible still appears in the group with 9 - 10 coverage
rules.

RQ1. What is the difference in the query coverage achieved by EvoSQL and the

baseline?

The high level results of both algorithms are shown in Figure 5.2. Overall, EvoSQL achieves
100% coverage for the vast majority of the queries. The only system for which this is not
true is EspoCRM. We show a more detailed insight into the results in Table 5.4 and Table
5.5. In these tables, we grouped queries based on the amount of coverage rules like in
Section 5.1.1. For each system and algorithm (B = baseline, E = EvoSQL) we show two
metrics. The first table contains the number of successful queries ns vs the number of failed
queries n f written as ns/n f . As mentioned before, a query is only successful if all its rules
are covered in all executions. The second table contains the average query coverage of the
queries which the approaches could not fully cover at least once.

From this data we conclude that EvoSQL outperforms the baseline. With regards to
successfully covering queries, the baseline has low effectiveness with few rules, and never
succeeds with more than 8 rules. This contrasts with EvoSQL, where up to 8 rules it gets
very few failed queries. While the number of successful queries starts dropping for EvoSQL
after 10 rules, the average coverage of the failed queries remains high. The lowest being
57% on the group of 12 EspoCRM queries with at least 21 coverage rules. This means that
on average, many coverage rules are still covered for these complex queries. Notably, base-
line achieves close to 25% average coverage on the same EspoCRM queries. The relatively
high coverage by the baseline for this amount of rules only occurs with EspoCRM queries.

6Available as soon as this thesis is published as a paper (est. December 2017)
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Figure 5.2: Boxplot of the average query coverage per system, baseline vs EvoSQL

Coverage Rules 1 - 2 3 - 4 5 - 6 7 - 8

B E B E B E B E

Alura 2/12 14/0 11/40 51/0 0/33 33/0 0/38 37/1

EspoCRM 0/0 0/0 0/2 2/0 0/18 18/0 0/3 3/0

SuiteCRM 0/21 21/0 7/59 66/0 1/116 116/1 1/44 45/0

ERPNext 61/560 621/0 34/229 263/0 21/219 240/0 2/258 260/0

Coverage Rules 9 - 10 11 - 15 16 - 20 21+

B E B E B E B E

Alura 0/24 23/1 0/46 35/11 0/25 19/6 0/18 8/10

EspoCRM 0/1 1/0 0/1 1/0 0/3 3/0 0/12 0/12

SuiteCRM 0/19 18/1 0/7 3/4 0/2 0/2 0/2 2/0

ERPNext 0/70 70/0 0/53 49/4 0/21 13/8 0/39 18/21

Table 5.4: Successful / failed queries, grouped by the amount of coverage rules, per algo-
rithm and system. B: Baseline, E: EvoSQL
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Coverage Rules 1 - 2 3 - 4 5 - 6 7 - 8

B E B E B E B E

Alura 45.8% - 25.8% - 13.4% - 17.0% 75.0%

EspoCRM - - 66.7% - 30.0% - 4.8% -

SuiteCRM 50.0% - 31.2% - 35.1% 86.7% 6.3% -

ERPNext 50.0% - 62.6% - 18.6% - 2.0% -

Coverage Rules 9 - 10 11 - 15 16 - 20 21+

B E B E B E B E

Alura 17.2% 88% 8.7% 98.3% 4.2% 97.0% 7.9% 74.5%

EspoCRM 11.1% - 18.2% - 26.5% - 24.9% 57.1%

SuiteCRM 9.8% 90.0% 6.6% 86.4% 8.9% 70.0% 4.5% -

ERPNext 10.3% - 5.2% 63.5% 6.8% 88.1% 3.8% 67.0%

Table 5.5: Average coverage of the failed queries, grouped by the amount of coverage rules,
per algorithm and system. B: Baseline, E: EvoSQL

RQ1: EvoSQL is more effective than the baseline. It is able to fully cover 2,053 out of
2,135 queries, while the baseline only covers 140 queries. When not fully covering a
query, EvoSQL still achieves high coverage.

RQ2: What are the causes when EvoSQL does not achieve 100% coverage?

Out of the 12,864 coverage rules in total, 932 were not covered by EvoSQL at least once.
Throughout all coverage rules, the top 5 properties ranked by information gain are: Used
Columns, Predicates, StringEQs, Inner Joins, and Tables. In Figure 5.3, we show the deci-
sion tree generated using these properties. If the leaf value is FAILURE, it classifies coverage
rules with these properties likely to fail. If the leaf value is SUCCESS the coverage rules are
likely to be covered successfully. The percentage in a leaf is the percentage of failing cov-
erage rules that are classified by this leaf’s properties. Using 10-fold cross-validation, the
weighted average of the accuracy is 92.0%.

The Used Columns property does not appear as a decision variable. From the tree, we
can conclude on common properties of failed coverage rules:

• At least 6 predicates. Only a small portion of the failing rules appears in the group
with less than 6 predicates.
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Figure 5.3: Decision tree generated by Weka. The percentage in the leafs indicates the
fraction of failed coverage rules that this leaf classifies. The percentages sum up to 100%.

• Many string equality predicates. It appears in two decision rules, where the larger-
than side classifies as failure for a large portion of the failing coverage rules.

• Many inner joins. While only appearing near the bottom of the tree, a portion of the
failing coverage rules can be distinguished based on having many inner joins.

RQ2: Coverage rules with few predicates are almost always successfully covered. The
difficulties for EvoSQL lie in satisfying coverage rules with many string equality pred-
icates, as well as inner joins.
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Coverage Rules 1 - 2 3 - 4 5 - 6 7 - 8 9 - 10 11 - 15 16 - 20 21+

Mean 0.1 0.2 43.8 41.7 194.1 501.3 710.9 1,412.5

Standard deviation 0.1 0.3 273.6 253.5 537.9 732.7 756.1 612.4

0% (Minimum) 0.0 0.0 0.0 0.1 0.2 0.2 8.3 13.4

25% 0.1 0.1 0.1 0.6 1.1 5.1 31.3 964.3

50% (Median) 0.1 0.1 0.2 1.2 2.9 24.3 192.8 1,800.0

75% 0.1 0.2 0.4 1.2 10.8 954.2 1,604.5 1,800.0

100% (Maximum) 1.5 3.4 1,800.0 1,800.0 1,800.0 1,800.0 1,800.0 1,800.0

Table 5.6: EvoSQL execution time per query in seconds; mean, standard deviation, and 4
quantiles, grouped by the amount of coverage rules.

RQ3: What is the performance of EvoSQL?

In Table 5.6 we show characteristics of the EvoSQL execution time in seconds per query,
grouped by the amount of coverage rules of the query. In these results, the maximum
execution time of a query is 30 minutes (1,800 seconds). Infeasible coverage rules are
included in these results, to represent the time that users would have to wait, as they do not
know beforehand whether a query will be infeasible.

For queries with 5 to 20 coverage rules, the median execution time is clearly lower than
the mean. This is the result of failed queries in the set. These take the maximum execution
time (i.e., 1,800 seconds), dragging up the mean. This is especially true for queries with up
to 10 coverage rules, where the 75% is a lot lower than the 100%. As there are no failed
queries in the queries with 1 to 4 coverage rules (see Table 5.4), the mean is closer to the
median, and the maximum execution time is low.

For queries with at least 21 coverage rules, the mean is lower than the median. This is
because the median of the execution time of these coverage rules is actually the maximum
execution time for a query, as the majority of these queries do not achieve 100% coverage,
and thus deplete the time budget.

RQ3: EvoSQL has good performance for the majority of the queries, taking no longer
than 11 seconds for 75% of the queries with up to 10 coverage rules. EvoSQL takes
longer for queries with more coverage rules.

RQ4: How do different time budgets impact the effectiveness of EvoSQL?

In Table 5.7 we show the coverage delta achieved by EvoSQL after running the 82 failed
queries from the first evaluation with a larger time budget. The time budget is increased
from half an hour to two hours. In general, the increased time budget increases coverage,
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Coverage Rules 1 - 2 3 - 4 5 - 6 7 - 8 9 - 10 11 - 15 16 - 20 21+

Alura - - - ±0.0% +12.0% +0.5% +1.2% +7.2%

EspoCRM - - - - - - - +22.1%

SuiteCRM - - +5.0% - ±0.0% +11.0% +22.1% -

ERPNext - - - - - +12.2% +9.0% +25.7%

Table 5.7: Average coverage deltas between the failed queries of RQ1 and the new evalua-
tion, in which the time per query is increased to two hours.

especially for queries with more coverage rules. For the Alura queries it seems to have the
least effect, except for those with 9 to 10 or at least 21 coverage rules.

EvoSQL achieved 100% coverage for 12 of the queries. There are 19 queries where
no improvement is made (with a delta < 2%). The average coverage of these queries is
94.7%. Manual inspection of the coverage rules in these queries shows that for 14 out of
the 19 queries, the cause is a combination of complex predicates that need multiple rows as
output from the FROM clause. These coverage rules are hard to cover for EvoSQL, because
the fitness function satisfies the FROM clause with a single row of output. We discuss these
cases in Section 6.2. The remaining 5 queries had no distinguishing features, but seem to
suffer from local optima.

In Figure 5.4, we show the average query coverage that EvoSQL would achieve for
queries with at least 9 coverage rules, set out against the available time budget. In this
figure, infeasible coverage rules are not excluded, as they also consume the time budget.

As for the queries with up to 8 coverage rules, that are not in the figure, all have between
98% and 100% average coverage, even on a time budget of one minute. For these queries,
the time budget hardly impacts query coverage. The only group that benefits from a slightly
larger time budget (1 → 3 minutes, 98.1% → 99.5%) is the queries with 7 to 8 coverage
rules.

In Figure 5.4 we can clearly see that, for the queries with 11+ coverage rules, coverage
does increase with a higher time budget. The coverage achieved does flatten out eventually.
The only group of queries that has not shown to flatten out yet, is those with at least 21
coverage rules.

RQ4: For failed queries with more than 10 coverage rules, the time budget has a sub-
stantial effect on query coverage. With a time budget of 2 hours, EvoSQL is able to
increase coverage of these queries from 76.6% (in half an hour) to 90.2%.

5.5 Threats to Validity

While performing the study, we observed multiple threats to the validity of our study. In
this section we present these threats, and what approach we took to mitigate them.
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Figure 5.4: Average query coverage achieved by EvoSQL, dependent on time budget, for
queries with at least 9 coverage rules.

External

With respect to external validity, the biggest threats are related to the representability of the
study, and the correctness of the results. The evaluation queries were selected from four
different applications to increase the diversity of the queries. Still, more research needs to
be conducted to generalize our results to any SQL query possible.

The queries were collected through the applications’ test suites, so that the queries are
real queries that are used by the applications. This may mean that not all queries in the
system are extracted, if their test suites do not execute all queries.

A limitation of our study is that not all queries from the original set of extracted queries
were executable by SQLFpc or HSQLDB. Database specific syntax prevented this. This
means that our evaluation set does not contain all of the business logic from the applications.
Because the number of unusable queries was not very high, we argue that the evaluation set
is still representative.

Both EvoSQL and the random baseline rely on the random function to generate data. A
single evaluation may be ’lucky’ and get higher results than the average evaluation. While
there are already many queries that are evaluated, we also run the evaluation set 10 times.

The last external threat is that the coverage rules we use are generated by the SQLFpc
web service. It could be possible that for some queries, the web service returns the wrong
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coverage rules, which implies that the data we generate does not cover the SQLFpc criterion.

Internal

With respect to internal validity, the first threat we observe is the infeasibility analysis per-
formed on the results. This analysis on the 429 coverage rule queries is performed manually.
Common SQLFpc constructions were identified to more easily decide whether a query is
infeasible. To reduce the risk of classifying a feasible query as infeasible, two researchers
analyzed the queries.

Another internal threat is the correctness of our implementation of EvoSQL and our
instrumentation of HSQLDB. For EvoSQL, we maintain a test suite that preserves the cor-
rectness. For HSQLDB, we made sure not to harm any existing database functionalities by
constantly executing its original test suite against our changes.

Finally, when we generate the decision tree for RQ2, we start with many properties
extracted from the coverage rules. A threat could arise when these properties can not suc-
cessfully describe the class. Therefore, we included as many crucial parts of a SQL query
we could think of, and then added other properties that we thought may be important, such
as string equalities and EXIST expressions. Using all these properties, we selected the top 5
by applying an information gain evaluator. These 5 attributes have shown that they are good
at classifying the coverage rules.
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Chapter 6

Discussion

Throughout the study, we have encountered ideas and opportunities for future work. These
derive from findings in the results, to choices that we made in the approach. In this section
we discuss how we could do things differently, and what effects these different approaches
may have. We also compare EvoSQL to other tools that share the goal of generating test
data for SQL queries.

First, we evaluate the findings from the results. We discuss what makes string equality
predicates hard, and how EvoSQL could improve on them in Section 6.1. We also discuss
how we may have to generate multiple rows per clause in Section 6.2. In Section 6.3 we
discuss for which coverage rules the baseline is good enough, and whether EvoSQL may
benefit from incorporating the baseline for these coverage rules. Next, we compare EvoSQL
to other tools with similar goals to ours in Section 6.4. We discuss how EvoSQL may
be improved by tuning the GA in Section 6.5. Further, in Section 6.6 we argue that our
approach is not limited to the SQLFpc coverage criterion, and what may change when using
other criteria. We discuss how EvoSQL may be used in Section 6.7. Finally, the future work
in Section 6.8 contains our ideas on improving and extending EvoSQL.

6.1 String Equality Predicates

In the results, we saw that string equality predicates are one of the most important factors
of EvoSQL failing to cover a coverage rule in a decent time-frame. There are two forms of
string equality predicates that we may see in queries:

1. <column1> = ’value’.

2. <column1> = <column2>, where both columns have a string type.

The first is more likely to appear in a WHERE predicate, while the latter is more likely to
appear in a JOIN predicate. Examples of the effect of these predicates are the EspoCRM
queries with more than 20 coverage rules (see Table 5.4). These queries each had about 7
inner joins with string equality predicates.

The reason that string equalities are so hard, is that the search space is enormous. Even
though the fitness function gives fitter values to individuals that are closer to the solution, it
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is a long search and there are a lot of different mutations that can be applied to one string
value. There is however one thing that both of the predicates above have in common, they
are both added to the seeding pool. A possible solution could be to tune the probability
of seeding values during mutation. This may however have an adverse effect on queries
that do not need a higher seeding probability. Another solution could be to have a higher
probability of generating small strings. String equality predicates are easier to solve if both
are short strings, as less mutations are possible. This could help when solving joins, but
may have an adverse effect if there are predicates requiring long string values.

6.2 Clause Multi-Satisfaction

The fitness function we present focuses on each clause having some output. Once there is at
least one row of output, it is satisfied. However, as we have seen in the results of RQ4, some
coverage rules require a clause with difficult constraints to return multiple rows, as a later
clause may contain predicates that need this. An example of such a query is as follows. To
successfully cover such a coverage rule, there must be multiple t1.id values that match a
t2.id value.

SELECT *

FROM t1

INNER JOIN t2 ON t1.id = t2.id

HAVING COUNT(DISTINCT t1.id) > 1

In our current implementation a single match will be made, at which point the FROM

clause is satisfied. Then, when the fitness of HAVING clause is calculated it compares the
number of distinct t1.id values (i.e., 1) to be greater than 1.

This results in the GA getting stuck in a local optimum where it believes the HAVING

clause is close to being satisfied, however the FROM clause should be targeted to return
multiple rows.

Although the amount of queries this affected is small (0.7% of our evaluation set) and
the query coverage achieved on these queries is still 95% on average, this issue should be
investigated in future work.

6.3 Performance of the Baseline

Although we concluded that EvoSQL is superior to the baseline, the baseline still achieves
decent average coverage for some queries. We will now analyze these queries to see why
some of their coverage rules are easily covered, and whether the baseline could outperform
EvoSQL on them.
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Coverage rules

1 2 3 4 5 6 7

98.2% 50.5% 68.0% 33.3% 22.0% 38.6% 5.7%

Table 6.1: Average coverage for the baseline

Queries with 1 to 7 coverage rules

Table 6.1 contains the average coverage for the baseline for queries with 1 to 7 rules. An
interesting pattern can be seen here, namely that for queries with 2 rules, 1 is covered on
average. For queries with 3 rules, 2 are covered on average. With more rules, the coverage
gradually goes down, only peaking up once at 6 rules. From 7 rules onwards, the average
coverage remains low. The reason behind this pattern is the way SQLFpc generates coverage
rules.

All queries with 1 coverage rule have syntax like: SELECT MAX(<column>) FROM <table>.
The rule generated for such a query tests the column aggregation, and requires some data
such that there are at least two equal values and at least one other value in the used column.
This is not hard to achieve randomly.

The queries with 2 or 3 rules are almost all queries with a single predicate (874/881). If
the predicate pred uses a comparison operator and both values (lv, rv) are numeric, SQLFpc
generates three rules with boundary values.

1. lv = rv+1

2. lv = rv

3. lv = rv−1

Each of these rules is easy to cover for the baseline, as long as this is the only predicate to
satisfy. If they are not numeric or using another operator, SQLFpc generates two rules.

1. pred is TRUE

2. pred is FALSE

These two rules together cover the entire search space except for the smaller case resulting
in UNKNOWN. If one of them is difficult to cover, the other is easy to cover. This is because
almost any data that does not satisfy one rule, will satisfy the other rule. This is where the
50% comes from for queries with two rules. If the predicate uses a column c that is nullable,
SQLFpc adds one rule.

1. c is NULL.

This rule is easy to cover, as the NULL value will likely appear in one of the random individ-
uals. With this rule added, we can see that the 68% for queries with 3 coverage rules is due
to a large amount of them having this rule in combination with the prior two.
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For the queries with 4 to 6 coverage rules, the rules are a combination of the rules above,
but often with multiple predicates. With more predicates, there are more rules in which a
base predicate (as it was in the original query) must be TRUE and fewer in which it must be
FALSE or UNKNOWN. Therefore, the average coverage goes down. The upwards spike for 6
rules is caused by 20 out of the 142 queries having two base predicates that are easy to solve
by the baseline (e.g., c1 <= 1 AND c2 >= 6). These all achieve 100% coverage, lifting the
average coverage.

EspoCRM queries with 10+ coverage rules

In Table 5.5 the baseline achieves decent coverage on the EspoCRM queries with more than
10 coverage rules, especially when compared to the other systems. Specifically, it gets up
to around 25% average coverage on queries with at least 16 coverage rules. The reason
for this is similar to the cases with few coverage rules. Namely, some of the generated
coverage rules are easy to cover. Each of these EspoCRM queries have many inner joins
in the original query. A portion of the coverage rules generated by SQLFpc transform
these joins into combinations of left and right joins. This could for instance be a right join
followed by many left joins. Because by definition of SQLFpc none of these joins have to
be satisfied, it is very easy for the baseline to cover, as almost any data can.

To conclude, the random baseline is only able to solve trivial coverage rules, and pred-
icates such as c1 = ’value’ can hardly ever be satisfied. For the trivial coverage rules,
we could choose to apply the random search rather than EvoSQL, to reduce complexity
and execution time. The advantage here would be that there is no overhead of applying
the fitness function on the initial population of the GA, as the GA will also very likely find
the solution in the first population. The downside is that each coverage rule would have to
be analyzed in order to detect whether random search can be applied, or alternatively start
each coverage rule in queries with few rules with a short execution of random search. We
argue that the advantage does not outweigh the downsides, so there is no need to ever apply
random search instead of EvoSQL. Still, for a conclusive answer, future research needs to
be conducted.

6.4 Comparison to Tools

In the research field, multiple tools have been introduced with similar goals to EvoSQL,
generating test data or test databases based on one or more SQL queries. Each of these
tools use constraint solvers to generate data. Because they use solvers, they have to de-
scribe the SQL query so that the solver can generate data for it. This introduces limitations
in their solutions, namely that they have to be able to describe the entire SQL syntax (which
they have not done so far), and the solver itself may not be able to satisfy the necessary
constraints. Common limitations include subqueries and string predicates, which are com-
mon constructions in SQL queries (in our evaluation set, 84.1% of queries contained such
constructions). EvoSQL benefits from using an existing, fully functioning SQL database.
This way, all queries using standard SQL syntax are supported.
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Unfortunately, to the best of our knowledge, none of the tools discussed in this section
are available for download. This prevents us from doing an empirical comparison between
us and them. In the following subsections, we discuss existing approaches and highlight the
differences with our approach.

QAGrow

The QAGrow tool presented by Suárez-Cabal et al. [35] generates test databases for a set
of queries, using the SQLFpc coverage criterion. QAGrow generates test databases rather
than test data, making it a more complete solution for testing purposes.

• Approach: The approach generates test databases by formulating the problem of
generating data for a query as a constraint satisfaction problem, in which the current
database state is also taken into account. They then use a SAT solver, Choco, to gen-
erate the test data. They evaluate their tool on 215 queries taken from a closed-source
system, having 1,339 coverage rules. From these coverage rules, they state they have
removed the infeasible ones before execution. On these queries, they achieved 99.0%
SQLFpc coverage, in about 2 minutes time.

• Limitations: QAGrow is not able to solve string constraints, although they state they
generate integers when the column type is string. They also do not solve queries with
subqueries. The queries that they evaluate are not available.

• Comparison to EvoSQL: EvoSQL is able to cover more types of SQL queries, most
importantly string constraints. Unfortunately, besides the known restrictions, the QA-
Grow evaluation set is not defined in fine detail, nor is it publicly available. This
prevents us from doing a real comparison.

ADUSA

The ADUSA tool presented by Khalek et al. [21] also generates test databases. The goal of
their tests is, however, to test database management systems (DBMS). The generated test
databases contain data for a single test query.

• Approach: The approach generates tests by rewriting SQL queries (the schema
queries and the test query) into Alloy specifications. Alloy is a language for rela-
tional models, and comes with a tool, the Alloy Analyzer, which is a SAT solver that
generates data satisfying the specified relational model. For one query, it can gener-
ate many test cases. For each test generated by the Alloy Analyzer, the authors also
generate a test oracle, i.e., the correct result of the test. They do this by executing
the test on a trusted DBMS, that supports the features under test. They evaluate their
approach by inserting bugs in existing databases, and running the generated tests on
the buggy databases. In these case studies, their tests are able to find the bugs.
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• Limitations: They support FROM, WHERE, GROUP BY and HAVING clauses. As for
joins, they only support natural joins (an implicit join between two tables, using com-
mon column names) and cross joins (which have no predicates). The Alloy solver is
unable to solve string constraints.

• Comparison to EvoSQL: As the goal of their tool is to test databases, rather than a
query, a comparison to EvoSQL is not easily made. One difference is the SQL syntax
that is not supported as described in the limitations. EvoSQL, on the other hand,
supports all joins, as well as subqueries and string predicates.

QAGen

The QAGen tool presented by Binnig et al. [4] also generates test databases with the goal
of testing a DBMS, based on a single query.

• Approach: As in the previous tools, the approach uses a constraint solver to generate
test data. The model is built using symbolic query processing, their extension of
symbolic execution. They also allow the user to set so-called knobs, for instance
output size. In their evaluation, they generate databases of different sizes, 10MB,
100MB and 1GB, and analyze the efficiency of their approach.

• Limitations: They do not support subqueries, and solely support joins that just use
foreign key constraints in the join predicate.

• Comparison to EvoSQL: The tool presented by the authors aims to test databases
rather than queries. Therefore, a comparison to EvoSQL is not easily made. Their
study also does not evaluate the effectiveness of their tests. As for limitations, EvoSQL
does support subqueries and other joins, which QAGen does not.

Dynamic Test Input Generation for Database Applications

In this paper by Emmi et al. [10], they describe an algorithm to automatically generate test
input for database applications, with the goal of maximizing branch coverage. The test input
consists of input data for the program as well as a filled database to cover all paths of the
program.

• Approach: The approach also uses a constraint solver, where the constraints are
a combination of the path constraints in the program and the database constraints.
They evaluate their approach with a case study of one method in which they argue
they are successful.

• Limitations: Although they do handle string constraints (equality, inequality and
LIKE), they support only FROM and WHERE clauses, excluding joins.

• Comparison to EvoSQL: This research has more similar goals to EvoSQL as the
previous works, as they generate data with the aim of covering certain rules, albeit
in this case the path constraints in a program. However, they do not evaluate their
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effectiveness. In terms of limitations, they are very limited in the SQL syntax they
support, contrary to EvoSQL.

6.5 Tuning the GA

Throughout Chapter 3 we presented the specifics of our GA. Many of the operators and
probabilities we chose for our study were chosen through practice and by selecting default
values for GAs. While they could be improved, by experimenting and tuning the parameters,
it has been shown that default values will always give reasonable results [2]. Also, tuning
could only improve the effectiveness of EvoSQL, even though it is already very high. In
this section, we present our views on some of the operators we chose, and other options that
are available. We also discuss how we picked some of the less trivial probabilities.

Crossover operator

In our approach, the crossover operator is straightforward: swapping a random table be-
tween two individuals. Although this has worked in our implementation, it may be inter-
esting to investigate different, more fine-grained operators. Examples are: swapping one or
more rows between two individuals, or going as deep as swapping column values between
two rows from the individuals. We chose not to experiment with different crossover oper-
ators as the one we chose is also the simplest one to implement, and certain to affect the
fitness value of the individuals. We also deemed this operator to be logically sound. When
joining two tables, it seems more valuable to swap entire tables than just a few rows, as the
new individual will have more rows that possibly are a better match for the join.

Mutation probabilities

In Section 3.4.2 we introduced the four different actions that may be applied onto a table
by the mutation operator: deleting, duplicating, adding or mutating a row. Because in
practice we found that deleting, duplicating or adding a row is not often required, we set
their probabilities relatively low with 1/6 for each of them. At the same time, we chose to
always apply row mutation to each row. We made these choices because we saw that the
GA spent most of its time needing column value mutations, creeping towards the correct
value.

Let’s say for instance that there is some join between two string columns c1 = c2 that
needs to be satisfied. At some point, the GA will generate two values that bring this join
close to being satisfied, c1 = ‘abcde’ and c2 = ‘abcdz’. Without taking seeding into account,
there is no point for the GA to add or delete any rows now. Duplicating a row may make
sense so that there are multiple rows that are close to satisfying the join. However, the most
important mutation to be done here is changing the column values.

Clearly, the other mutation operators are still necessary. It may be interesting to see if
this thought process can be executed by the GA. It could use data from the query execution
to decide whether row mutation is needed, or whether other actions should take priority.
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Previous population cloning

During initialization, we re-use some individuals from the previous coverage rule’s popu-
lation, if any. Deciding on the probability of this action is not straightforward, as there is
no known default value for it. A different seeding technique that has been researched is the
cloning of previous solutions [31]. This is slightly different as in our implementation we
may clone any individual from the population, not just solutions. We do this because these
individuals are all closer to the previous solution than the initial random set of individuals,
by definition of elitism. In the research done on cloning previous solutions, a probability of
0.9 was found to be the best. We do not want to hurt the global search aspect of our genetic
algorithm by seeding any individual with such a high probability, which is why we chose
0.6 instead (also one of the better options in the aforementioned study [31])

6.6 Coverage Criteria

In our implementation, we used the SQLFpc coverage criterion to generate coverage rules.
However, the approach we present is not limited to the SQLFpc criterion and should work
on any criterion so long as the coverage rules can be represented as SQL queries. One of the
benefits of using SQLFpc is that solving left and right joins is not ambiguous, the algorithm
can aim to never satisfy these joins. If another criterion is used, our implementation of
the fitness function may have to be adapted. If the left and right joins in this criterion are
ambiguous, the implementation would have to adapt accordingly. A solution could be to
use static query analysis to determine whether a joined table’s data requires some matching
data, or must be NULL.

6.7 Applicability of EvoSQL

We have successfully created a tool that generates test data for SQL queries, named EvoSQL.
We argue this tool could be integrated into the testing pipeline seamlessly. Before this be-
comes reality, more work still has to be done. We see two directions to be worked on to
make this happen.

1. Using the test data, test cases can be written in which methods are called that execute
SQL queries. By using the test data from EvoSQL in these test cases, these test
cases will check whether the query behavior is still correct. These test cases could be
automatically generated.

2. Another use for the test data is for developers to help them understand their queries.
As queries get more complex, mistakes are more easily made, as the amount of di-
mensions in the data grows with each join. By inspecting the generated data, as well
as which rows of data appear in the output, the developer may spot mistakes and
choose to modify the query. These mistakes could either be in the form of rows that
appear in the output but shouldn’t, or rows that should appear in the output but don’t.
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6.8 Future Work

We split the future work into two sections, improving EvoSQL, in which we discuss how
we could improve the effectiveness, and extending EvoSQL, where we discuss how the next
steps for EvoSQL could be implemented.

6.8.1 Improving EvoSQL

There are several ideas for improving EvoSQL, which we discuss below.

Using schema constraints Currently, the test data we generate does not adhere to all
schema constraints of the given database. The unique constraint, specifying there can be
only distinct values in a column, as well as primary and foreign keys are not used. While
the unique constraint may be counterproductive during search, it should still be satisfied by
the final individual. As for key columns, this can definitely be used by the GA, as it will
improve the speed of solving joins. In implementation, a mutation on a column that is a
primary key could automatically also mutate each linked foreign key, and vice versa.

String equality predicates The biggest problem that we see EvoSQL face is the string
equality predicates, as we discussed in Section 6.1. While string mutation itself is hard,
we believe that improving and tuning the seeding strategies may result in these predicates
being solved more easily. A possible solution could be to tune seeding probabilities based
on the type of a column, so that string types are more likely to use seeded values. If the
supplied schema is well defined and joins are done using foreign key columns, using the
schema constraints as suggested in the previous paragraph will also help solve these.

Clause multi-satisfaction As we discussed in Section 6.2, clauses may sometimes have
to return multiple rows. To implement this, the fitness function would need to be adapted so
that it can 1) detect when multiple rows are needed and 2) target a clause to make it return
more rows.

This is difficult to pull off, because it is difficult to analyze the SQL and detect how
many rows should be returned, and how these rows should be different. However, as we
have seen how the coverage rules with these constraints are constructed, a first step may be
to generate 2 rows of output with different values in the columns in the join predicates.

Guided mutation We conjecture adding more guidance to the GA will improve the per-
formance of EvoSQL. One possibility could be extending the database instrumentation to
also tell the GA which columns are currently problematic, so that the mutation can be di-
rected to these columns. Doing this does add risks; if the instrumentation wrongly informs
the GA, it will focus mutation on the wrong columns, causing the GA to take longer than it
otherwise would. Also, extracting this data will slow down the fitness function.

Another possibility is to retrieve more information through static analysis. Because the
SQL grammar is well-defined, more information could be extracted through static analysis
than is currently done. Symbolic execution techniques as presented in other work could be
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applied to limit the search space of certain column values. If a constraint is found specifying
what value a certain column should be (e.g., <column> = ’TU Delft’), and this constraint
has to evaluate to TRUE, then during mutation or even initialization, this value can be set.
This could reduce the total search time while only adding a constant amount of time of static
query analysis.

We argue that for both of these ideas the downsides do not outweigh the improvement,
however future research needs to be conducted to assess this.

Multi-objective algorithm EvoSQL uses a single-objective genetic algorithm to generate
test data. This means that one fitness function is used at a time, namely one for a single
coverage rule. An interesting alternative is implementing a multi-objective approach (see
Section 2.1) by using fitness functions for multiple coverage rules simultaneously. This
approach may benefit from the idea that many solutions lie close to each other, and will
detect when a solution is found for one of the coverage rules, while being able to continue
on afterwards.

Improving data interpretability The data generated by EvoSQL is derived from random
values. Therefore, many column values in the output test data are obscure, and not easy to
interpret by a human. To improve on this, we could use dictionaries that are derived from
either the table and column names, or user input. Doing this during test data generation may
harm the speed and effectiveness of the GA, as less of the search space will be explored. A
better alternative is to apply post-processing on test data, only altering column values if the
coverage rule remains covered.

6.8.2 Extending EvoSQL

As we discussed earlier, there are multiple ways the data generated by EvoSQL can be used.

Generating test cases Using the test data, software tests can be written. The input to
EvoSQL could be a method that executes a query, as well as parameters for this method.
This input could be provided by a developer, or a test case generator, such as EvoSuite.
Given the input, EvoSQL could extract the SQL query, generate test data, and generate a
test case. This test case would then load up the test data, execute the method with the given
parameter and test if the query output is what is expected. In this case, the expected output
is the output that the original query would have. Issues that could arise here is that not
all test data may fit in the same database, due to schema constraints. Even if it does fit in
the same database, putting the data together may cause coverage rules with aggregations to
no longer be covered. A possible solution to this problem is to execute the query on each
coverage rule’s data one by one. While this is a safe and easy solution, it does impact the
runtime of the test.

Generating query data visualizations The other use for the test data is granting develop-
ers insights into their queries. The simplest approach to visualizing this is by presenting the
test data in a database to look at, and the output of the developers’ query. This is a hard task

56



6.8. Future Work

when many tables are involved, especially when all data is randomly generated. Therefore,
the data interpretability should be improved first, as suggested in the previous section.

SQL Exceptions In Section 4.3 we discussed SQL exceptions and how the fitness func-
tion deals with them. Even if the individual is the cause of the exception, the query syntax
is unsafe if it allows for these exceptions to be thrown. This information is also interesting
for developers, and EvoSQL could also generate test data that throw exceptions. Ideally, the
coverage criterion would generate coverage rules for which the data throws exceptions on
the original query.
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Chapter 7

Conclusion

With database-centric applications being central to modern-day life, and important business
rules being applied through SQL queries, testing SQL queries is just as important as testing
any other software code. As writing these tests manually is a difficult task, automated test
data generation is necessary for developers to be able to test their queries. There has been
other research aiming to do this, however they share common limitations like being unable
to generate data for SQL queries with subqueries, or string constraints.

To this end, we have presented our novel search-based approach to generating test data
for SQL queries, that does not suffer these limitations. Our approach collects data from all
constraints of a SQL query, and we instrumented a real database to realize this. In our study,
we evaluated the effectiveness of our approach on 2,135 queries from 4 real-world systems,
and were able to fully cover 2,053 of them.

We presented the following research questions, and answered them accordingly:

• RQ1: What is the difference in the query coverage achieved by EvoSQL and the

baseline? EvoSQL is more effective than the baseline. It is able to fully cover 2,053
(i.e., 96.2%) out of 2,135 queries, while the baseline only covers 140 queries. When
not fully covering a query, EvoSQL still achieves high coverage.

• RQ2: What are the causes when EvoSQL does not achieve 100% coverage? Coverage
rules with few predicates are almost always successfully covered. The difficulties for
EvoSQL lie in satisfying coverage rules with many string equality predicates, as well
as inner joins.

• RQ3: What is the performance of EvoSQL? EvoSQL has good performance for the
majority of the queries, taking no longer than 11 seconds for 75% of the queries with
up to 10 coverage rules. EvoSQL takes longer for queries with more coverage rules.

• RQ4: How do different time budgets impact the effectiveness of EvoSQL? For failed
queries with more than 10 coverage rules, the time budget has a substantial effect on
query coverage. With a time budget of 2 hours, EvoSQL is able to increase coverage
of these queries from 76.6% (in half an hour) to 90.2%.

59



7. CONCLUSION

We conclude that our approach is highly effective, yet needs time to achieve full cov-
erage, especially for queries with many coverage rules. Using the results of our study, we
discuss possibilities for improving EvoSQL in terms of effectiveness, performance and us-
ability. We conjecture that, with these improvements, EvoSQL can be integrated into the
testing pipeline seamlessly.
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