

Delft University of Technology

Assessing the life-cycle sustainability of algae and bacteria-based wastewater treatment systems

High-rate algae pond and sequencing batch reactor

Kohlheb, Norbert; van Afferden, Manfred; Lara, Enrique; Arbib, Zouhayr; Conthe, Monica; Poitzsch, Christoph; Marguardt, Thomas; Becker, Mi Yong DOI

10.1016/j.jenvman.2020.110459

Publication date 2020 **Document Version** Accepted author manuscript Published in Journal of Environmental Management

Citation (APA)

Kohlheb, N., van Afferden, M., Lara, E., Arbib, Z., Conthe, M., Poitzsch, C., Marquardt, T., & Becker, M. Y. (2020). Assessing the life-cycle sustainability of algae and bacteria-based wastewater treatment systems: High-rate algae pond and sequencing batch reactor. Journal of Environmental Management, 264, Article 110459. https://doi.org/10.1016/j.jenvman.2020.110459

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

- Assessing the life-cycle sustainability of algae and bacteria-based wastewater 1
- treatment systems: high-rate algae pond and sequencing batch reactor 2
- Norbert Kohlheb¹, Manfred van Afferden^{1*}, Enrique Lara², Zouhayr Arbib², Monica Conthe³, Christoph 3

- 5 6 7 8 9 ⁴ - Abwasserzweckverband "Obere Röder", An den Dreihäusern 14, 01454 Radeberg, Germany
- ⁵ Bochum University of Applied Sciences, Lennershofstraße 140, 44801 Bochum, Germany
- 10

Keywords: High Rate Algae Pond, Sequencing Batch Reactor, life cycle assessment, life cycle 11

12 costing

Abstract 13

High Rate Algae Ponds (HRAPs) are a promising technology for the treatment of municipal 14 wastewater in locations with sufficient space and solar radiation. Algae-based processes do not 15 require aeration, and thus have the potential to be less energy-intensive than activated sludge 16 17 processes.

We used a combination of LCA and LCCA analysis to evaluate the sustainability of HRAP 18 systems, using data from the construction and operation of two demonstration-scale systems in 19 20 Almería and Cádiz, Spain. As a reference for comparison, we used data from an activated sludge-based Sequencing Batch Reactor (SBR) treatment system in operation in Leppersdorf, 21 Germany, which has comparable removal rates for a similar inflow. We focused solely on the 22 actual wastewater treatment aspect of these technologies, excluding sludge treatment from this 23 24 analysis.

Poitzsch⁴, Thomas Marquardt⁴, Mi-Yong Becker⁵ 4

¹ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany

² - FCC Servicios Ciudadanos, Av. del Camino de Santiago, 40, edificio 3, 4ª planta, 28050 Madrid, Spain

³ - TU Delft, Postbus 5, 2600 AA Delft, The Netherlands

^{*}Corresponding author: Manfred van Afferden, e-mail: manfred.afferden@ufz.de

Based on our analysis, the current HRAP technology is more energy-efficient than activated sludge-based SBRs and requires only 22% of its electricity consumption. In addition, HRAP is more advantageous both economically ($0.18 \notin m^3$ versus $0.26 \notin m^3$) and environmentally, with both lower global warming and eutrophication potentials ($146.27 vs. 458.27 x 10^{-3} kg CO_2$ equiv./m³; 126.14 vs. 158.01 x 10⁻⁶ kg PO₄ equiv./m³). However, the Net Environmental Benefit of SBR was more favorable than of HRAP because of the higher removal rate of the latter.

31 **1. Introduction**

Ensuring safe sanitation and protection of precious water resources for the world's growing population requires the development and implementation of decentralized solutions and sustainable wastewater treatment, especially in rural and suburban areas (Capodaglio, 2017; Eggimann et al., 2018; van Afferden et al., 2015).

At the moment, bacteria-based biological processes are the most common form of wastewater 36 (WW) treatment at all scales. In activated sludge-based systems, an aerated phase is used for the 37 38 removal of organic matter (measured as Chemical Oxygen Demand or COD) and nitrification, and an anoxic phase for denitrification. Phosphorus can be removed by means of chemical 39 dosing or the implementation of an anaerobic step for enhanced biological phosphorus removal 40 (or EBPR). Although efficient and robust, the activated sludge process in all technical 41 configurations - carrousel, Modified Ludzack-Ettinger (MLE), Sequence Batch Reactor (SBR), 42 etc. - is energy-intensive, primarily due to aeration requirements (Zhang et al., 2018). The 43 electricity consumption of bacteria-based systems varies between 0.36 and 1.26 kWh/m³ treated 44 wastewater (see Table 1.) according to size and technology (Garfi et al., 2017; Lorenzo-Toja et 45 al., 2016). 46

47

Source	Scope	Technology	Original functional unit*	Electricity consumption, kWh/m ³	GWP, kg CO ₂ equiv./m ³
Garfí et al.	WT and ST with	Algae-based HRAP	1 m ³ WW	0.25	0.57
(2017)	direct emissions	Activated sludge system	treated	1.26	1.27
	C+O	Constructed wetland		0.22	0.69
Maga (2017)	WT and ST with direct emissions and sludge disposal C+O	Algae-based HRAP	1 m ³ WW treated	-	0.280
Bao et al. (2016)	WT with direct emissions	SBR	1 m ³ WW treated	-	0.865
	Size 0.23-1.2 MPE* O	Anoxic/oxic process			0.405
Lorenzo-Toja et al. (2016)	WT and ST Size 5000-1M PE O	Pre-treatment, bioreactor, secondary and tertiary settling, dewatering	1 m ³ WW treated	0.360**	0.345-0.378
Cornejo et al. (2013)	WT and ST C+O 727 PE	Facultative pond with two maturation ponds with water reuse	1 m ³ WW treated	1.069	0.500
	WT and ST C+O	UASB with two maturation ponds with water reuse and energy		0.986	1.510
	1471PE Both with direct emissions	recovery			

51 52

 Table 1. Environmental impact of WW treatment technologies

 Abbreviations: C-Construction; O-Operation; WT-water treatment; ST-sludge treatment; PE-population equivalent; MPE –

 million population equivalent; UASB-upflow anaerobic sludge blanket reactor; WW-wastewater; SBR-sequencing batch reactor.

53	Clarifications: *To convert FU from PE to m ³ , 200 L/person*day WW production was assumed. **Average value for	or 22 WWTPs
54	in Spain ⁺ The ratio of m ³ potable water and WW was set to 1 ⁺⁺ from Amores et al. (2013).	

55	Algae systems, referred to as High Rate Algae Ponds (HRAPs, Vikrant et al. (2018)), have been
56	receiving increasing attention as a promising alternative to activated sludge systems for the
57	treatment of municipal WW, particularly for small- to medium-scale treatment plants (WWTPs)
58	serving between 200 and 15,000 population equivalents (PE) (Annavajhala et al., 2018). Algae
59	utilize solar energy for growth, assimilating nitrogen and phosphorus from wastewater, and
60	produce O ₂ by photosynthesis, thus making mechanical aeration unnecessary for aerobic
61	bacterial activity. When grown in a mixed culture, heterotrophic bacterial respiration provides
62	CO ₂ which serves as a carbon source for the algae while removing COD, thus avoiding the extra
63	CO ₂ supply that is required for cultivating algae in pure cultures (Posadas et al. 2017).
64	Consequently, HRAP systems require considerably less electricity (0.25 kWh/m ³ treated

wastewater (Garfi et al., 2017)), which has an advantage especially in small-scale systems. On the other hand, algal-ponds require much more space than bacteria-based systems (30 and 0.18-3 m^2/m^3 WW treated, respectively (Bao et al., 2016; Garfi et al., 2017)), which results in high material inputs and expensive investment. HRAPs are therefore an attractive option for smaller systems in locations with ample space, frost-free temperatures and year-round solar radiation, conditions needed for algae growth.

Life-cycle assessment (LCA) and life-cycle cost assessment (LCCA) are tools that can be used to 71 assess the sustainability of the HRAP process in economic and environmental terms and to 72 compare it to the more established activated sludge process. Previous studies have assessed the 73 life-cycle sustainability of both algae cultivation and activated sludge systems (Bao et al., 2016; 74 Cornejo et al., 2013; Garfí et al., 2017; Lorenzo-Toja et al., 2016; Maga, 2017). For the bacteria-75 76 based technology, these studies calculated Global Warming Potentials between 0.345 and 1.51 kg CO₂-equiv/m³ WW treated (see Table 1). The range of reported values is broad, likely due to 77 differences in life-cycle length, scope and technical details of WWTP operation. Direct 78 79 emissions, such as N₂O, CH₄ and NH₃, and chemical additives, e.g. poly-aluminium chloride (PAC) and poly-acrylamide (PAM), were often considered important factors influencing the 80 81 environmental impact of WWT systems.

However, the material and energy inputs used for the analysis in these studies often stem from models and hypothetical planning calculations rather than real data. Additionally, in recent years both HRAP and activated sludge technologies have advanced substantially (e.g. new mixing technology (Annavajhala et al., 2018)) with positive effects on their ecological and economic impacts, which so far have not been subject of sustainability analysis in a peer-reviewed journal. Consequently, a comparison of advanced HRAP and SBR technologies based on real planning data and empirical operational experience focusing on their treatment performance has beenabsent from the literature.

90 To address this gap, we based our calculations on empirical data for the two compared systems,91 HRAP and SBR.

92 2. Materials and methods

A cradle-to-gate LCA and LCCA of a demonstration scale HRAP-based wastewater treatment 93 plant (WWTP) treating municipal wastewater in Almería and Cádiz, Spain, was carried out 94 assuming a 40 year total lifespan (a 20-40 year period is a common value used to assess the life 95 cycle of a wastewater treatment plant (Corominas et al., 2013; Langeveld, 2015; van Afferden et 96 al., 2015) and a treatment capacity of 300 m³ wastewater/day. An LCA and LCCA of a SBR-97 based wastewater treatment plant in Leppersdorf, Germany, that treats the same quality and 98 amount of wastewater (WW) as the HRAP was performed in parallel as a reference for 99 100 conventional activated sludge treatment technology. Both wastewater treatment plants were open air functioning under the climatic conditions of their location. 101

Data from the construction and operation was used of two demonstration-scale HRAP systems in Almería and Cádiz, Spain. We chose to compare this system with an activated sludge system in a SBR configuration, because SBRs are widely implemented, flexible and increasingly used wastewater treatment technology at small scale (up to 5000 population equivalent) in densely populated regions (Dutta and Sarkar, 2015; Fernandes et al., 2013). For this, data from a SBR in Leppersdorf, Germany, with a population equivalent range comparable to that of the HRAP was collected.

In our analysis, we only focused on the wastewater treatment of both technologies. Neither thepotential for biomass production (algal or activated sludge) as a source for low- and high-value

products nor the sludge treatment were considered due to the complexity of these assessment options. When assessing the sustainability and economic performance of HRAP, we compared data from ponds with a novel type of submerged mixing system (as opposed to the more common paddle wheel).

The goal and scope, inventory development, and impact assessment of the LCA were defined and carried out according to the ISO 14040:2006 standard, using GaBi8 LCA software and the GaBi databases Professional, Construction materials, Food&Feed, and the ecoinvent3 database. Distinct modules of the wastewater treatment process (e.g. pretreatment, raceway, separator) and corresponding sub-modules (e.g. "agitator", "separator drum") were modeled individually and then integrated into a comprehensive LCA model.

In GaBi8, the software tool for creating and calculating life-cycle assessment models, parameter tables were used for data input in a form of diagonal matrix. These parameter tables enabled us to gain separate results for the different sections of the wastewater treatment process and identify environmental hot spots along the technology.

The most important environmental impact caused by WW is the eutrophication potential (EP) (Lorenzo-Toja et al. 2016). The concept of Net Environmental Benefit (NEB) (Godin et al. 2012) considers EP and captures the environmental impact of outflow differences of WWT technologies. We used this concept for our sensitivity analysis. The concept distinguishes between the EP of untreated water and treated water and the difference of them gives the environmental benefit. When the EP of the wastewater treatment plant is subtracted from the environmental benefit the net environmental benefit is gained.

For the LCCA, the investment, operation, and maintenance costs for the entire life cycle of both technologies were calculated from data of the HRAP demonstration sites in Almería and Cádiz, and from the planning and operational data of the SBR plant in Leppersdorf, Germany. In addition, our inquiry also focused on the role of different cost categories, such as chemicals and electricity. Consequently, the contribution of these categories to life-cycle costs and environmental impacts was also scrutinized.

138 2.1. Demonstration-scale HRAP and conventional SBR

The HRAP water line consists of (i) a pretreatment step for solids removal – including a storage 139 tank and rotary drum filter, (ii) a raceway algae pond and (iii) a separator, a conical drum in 140 which the algae sludge is separated from the treated water by flotation (Figure 1). The raceway 141 ponds have an active surface of 3000 m², a volume of 900 m³ each, and are designed to operate 142 with a 36-hour hydraulic retention time (HRT). The HRAP was calculated with two alternative 143 mixing constructions: the conventional paddle wheel and a submersed mixing system patented as 144 the "Low Energy Algae Raceway (LEAR)". This submersed mixing system consist of a flow 145 booster with propeller and motor, and a built channel for mixing. The treated wastewater from 146 the HRAP was led to the separator, where algae sludge was flocculated and separated from 147 cleaned water. At this stage chemicals, such as poly-aluminium chloride (PAC 18%) and 148 polyacrylamide (PAM), were added. The sludge concentration leaving the system after 149 separation was 4%. 150

The reference SBR system was set to treat the same inflow and achieve similar removal rates of biological and chemical oxygen demand (BOD, COD), total suspended solids (TSS), total Kjeldahl nitrogen (TKN), and total phosphorus (TP) as the HRAP. The SBR plant consists of a

pretreatment unit with a filter and sand trap, a buffer tank, an SBR tank, and a sludge tank(Figure 1).

The SBR tank was modelled to operate in 8h cycles with the following schedule: filling 57.47 min., anaerobic mixing 120 min., react – aerobic mixing 120 min., anoxic mixing 30 min, settle 90 min., decant 57.47 min., idle 4.8 min. This timing achieves the elimination rates of COD, TN, and TP that are indicated in Table 2.

		Inflow WW	Outflow HRAP	Outflow SBR	EU requirements
BOD ₅	mg O ₂ /L	350	9	6.75	25
COD	$mg O_2/L$	800	80	28.68	125
TSS	mg TSS/L	500	20	10	60
TKN	mg N/L	67	15	(TN) 12,35	(TN) 15
ТР	mg P/L	10	1	1.43	2

160 Table 2. Typical values for BOD, COD, TSS, TKN, and TP in wastewater and in HRAP or SBR outflow.

161 The inflow and outflow values of HRAP were empirically defined by FCC AQUALIA, Spain

162 The inflow and outflow values of SBR were calculated as an average value of the years 2014-17 from the reporting

163 protocol provided by the SBR plant in Leppersdorf, Germany

164 EU requirements are specified in the European Directive (91/271/EEC)

165 Conventional wastewater parameters including biochemical oxygen demand over five days (BOD₅), chemical

166 oxygen demand (COD), total suspended solids (TSS), total Kjeldahl nitrogen (TKN), total nitrogen (TN) and total

167 phosphorus (TP) were analyzed by approved wastewater laboratories in Spain and Germany that are accredited

according to DIN EN ISO / IEC 17025.

170 Downstream of the SBR tank, a sludge tank is provided where the settled sludge is treated with

the addition of PAM (Praestol) to thicken it and to obtain a dry matter content of the sludge

172 comparable to the dry matter content of the algal biomass after separation (i.e. approx. 3.5-

173 4.8%).

174 The two alternative routes of wastewater treatment and the relevant flows per day are presented

in Figure 1. The outflow parameters – obtained from operation of the HRAP in Cádiz and from

¹⁶⁹

the SBR, fulfilling the EU requirements for both systems – are presented in Table 1. For more
information on the WWTPs, see SI-1 in the supplementary information.

178

180

179 Figure 1. Defined system boundaries of the HRAP system and the reference system (SBR)

The functional unit (FU) was set to "1 m^3 of treated wastewater". The shorter lifespan of some of the equipment (e.g. 20 years for drum filters, 10 years for pumps) was taken into consideration,

as shown in the LCA inventory (Table SI-1).

184 2.2. Inventories

185 The data necessary for the LCA was taken from the construction and operational data of the 186 demonstration HRAP plants in Almería and Cádiz, Spain, and of the SBR WWTP in 187 Leppersdorf, Germany. Whenever suitable unit processes were available in the databases, these188 were included in the LCA model.

Otherwise, proxies were calculated based on material composition, weight, and type and amount of energy consumption. Table SI-1 presents all the relevant material and energy inputs used in modeling the wastewater treatment process.

The LCCA data also covered a 40 year lifespan of the WWTP. Capital expenditures (CAPEX) included every investment necessary for implementing the infrastructure, including foundations, structural work, land, and equipment. Additional investments were added to the initial CAPEX for replacement of equipment. Prices for materials, land, transport, and electricity were taken from the Spanish case in order to avoid price differences and make the two cases as comparable as possible. Please see Table SI-2 for details in the supplementary information.

Operating expenditures (OPEX) per year of WWTP operation included the cost of personnel, electricity, spare parts and materials necessary for maintenance, as well chemicals, including iron-chloride sulfate, polyacrylamide (PAM) and poly-aluminum chloride (PAC18%) – with costs of 154.7 \notin /t, 2,413 \notin /t, and 241.3 \notin /t, respectively (http1, http2).

The present value CAPEX and OPEX dependency on (i) discount rate, (ii) land cost, and (iii) personnel workload was assessed using the same criteria for both the HRAP and SBR technologies. Two extreme scenarios were considered for the discount rate: 0.25% (the typical interest rate of the European Central Bank (European Central Bank – http3 in 2017) and 3% (a typical risk-free interest rate in the Eurozone – and close to the interest rate of new loans up to $250,000 \in$, 2.43% (European Central Bank – http4). These numbers provided a wide enough range to incorporate the opportunity costs of low-risk investments. We used the average land cost value in Spain in 2016: 1.05 €/m² (http5). The cost of personnel for the HRAP was estimated by assuming a need of 43 working h/month (Pogade et al., 2015), which corresponds to 0.29 of the total working hours of a full-time job in Spain (gobex, -) and a salary of 3,161 €/month (gobex, -). This results in personnel costs of 917 €/month for the HRAP. The personnel cost of the SBR was set to 1,418 €/month. A price of 0.1 €/kWh was assumed for the cost of electricity.

215 2.3. Impact assessment

The environmental impact of the inventory data was calculated using the characterization $model^{1}$

217 CML2001 - Jan. 2016 (Hischier et al., 2010) to assess the global warming potential (GWP) and 218 eutrophication potential (EP) (Lorenzo-Toja et al., 2016). Direct emissions of the greenhouse 219 gases N₂O and CH₄ were estimated based on values found in literature for N₂O (1.8 kg CO₂ 220 equiv./m² yr in HRAP; 0.5% of the N removed in SBRs) and CH₄ (0.85% of COD treated in

SBRs, negligible in HRAP) (Béchet et al., 2017; Campos et al., 2016).

To assess the economic impact of the HRAP and SBR WWT plants, a dynamic cost comparison with net present value calculation for the entire lifetime (40 years) was carried out. The discounted costs are summed and expressed per m³ treated WW, giving the unit production costs of the wastewater treatment technology.

3. Results

227 3.1. Economic impact of HRAP versus SBR: CAPEX and OPEX

¹ A characterization model consist of characterization factors that transform the value of the different flows into and from the environment to environmental impacts. Characterization factors for this model can be downloaded from https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors.

Based on our analysis, the HRAP operating costs are nearly half of those of the SBR to treat 1 m³ of wastewater (Table 3). The high electricity consumption required to operate a sequencing batch reactor, including filling, mixing, aeration, and emptying, compared to the low energy requirements of the HRAP, accounts for most of the difference. Since HRAP does not require aeration, this system saves a lot of energy, which makes it more cost-effective than the SBR.

Costs	CAPEX without cost of land, €	Land, €	CAPEX total, €	OPEX without personal cost, €/year	Personal costs, €/year	OPEX total, €/year
HRAP	291,407	3,392	294,799	2,369	11,000	13,369
SBR	208,772	3,150	211,922	6,455	17,773	24,229

233 234

235 3.2. Additional cost saving potential

Additionally, we identified two major areas with potential to decrease HRAP operating costs even further: (i) the chemical additives used for coagulation and flocculation during the algae harvesting step (i.e. PAC18% and PAM) – which made up 52% of the operating costs when personnel costs are not considered – and (ii) personnel costs, which accounted for 82% of the total operating costs.

The total CAPEX for the HRAP was more similar to the SBR than the OPEX (Tables 2 and SI-2). The CAPEX of HRAP was only $82,876 \in$ more expensive than the SBR plant. The temporal distribution of life cycle costs (CAPEX + OPEX) and the difference between the two technologies is presented in Figure 2, showing a considerable advantage of HRAP at discount rates of 0.25% (0.182 vs 0.258 \in per m³ of wastewater treated with the HRAP and SBR, respectively) and 3% (0.125 vs 0.167 \in per m³ of wastewater treated).

247 248

249

Figure 2. LCC of HRAP and SBR at 0.25% and 3% discount rates

According to these results, current HRAP technology – even before upscaling and optimization – is more cost-efficient than the referenced activated sludge-based SBR, especially in terms of operating costs.

253 3.3. Reducing power consumption of HRAP through efficient mixing systems

According to our data, HRAP systems can consume just 22% of the total energy needed by their SBR equivalent (0.10 vs. 0.45 kWh/m³ WW treated, Figure 3) when using a novel type of submersed mixing technology, the "Low Energy Algae Raceway" (LEAR). With the

conventional paddle wheel mixing it is $0.17 \text{ kWh/m}^3 \text{ WW}$ treated. For the SBR system, 74% of

259 260 261

Mixing in algae ponds, typically by means of a simple paddle wheel mechanism, represents the second most power-consuming process of HRAP treatment systems, surpassed only by the algae harvesting step. However, we found that LEAR systems require less than half the power consumption for mixing of the paddle wheel equivalent (0.0375 vs. 0.103 kWh/m³ WW treated, respectively).

267 3.4. Environmental impact of the HRAP vs. SBR: GWP and EP

According to our analysis, WW treatment in HRAP systems has a lower environmental impact than the SBR in terms of GWP and EP (146.27 vs. 458.27 x 10^{-3} kg CO₂ equiv./m³ and 126.14 vs. 158.01 x 10^{-6} PO₄ equiv./m³) (Table SI-2 and Figure 4-5). Electricity consumption accounts for more than 40% of the CO₂ equiv./m³ and 27% of PO₄ equiv./m³ in SBR operation. Furthermore, direct greenhouse gas emissions (primarily in the form of N₂O) are presumed to be higher in this type of bacterial nitrification-denitrification system than in an algae-dominated system.

277

275 276

278 279

The relatively high contribution of infrastructure to the total GWP of HRAP systems (45.3 as 280 compared to 55.7 x 10⁻³ kg CO₂ equiv./m³ during operation) is unusual given that it typically 281 282 accounts for less than 10% of the environmental impact of operation in other industrial processes (Choi et al., 2018). This is a characteristic of HRAP systems due to the large amounts of material 283 284 needed to construct raceways with a large surface area. Direct greenhouse gas emissions from 285 the raceway (in the form of N₂O and CH₄) relative to the indirect emissions of infrastructure are also notably high (45.3 x 10^{-3} kg CO₂ equiv./m³) for these systems. Nonetheless, the relatively 286 high GWP related to infrastructure (45.3 vs. 17.8 x 10⁻³ kg CO₂ equiv./m³ in SBRs) is 287 compensated in the long term by lower emissions (direct and indirect) over 40 years of operation 288 in HRAP. 289

290 The algae separation step during WWT in HRAP systems accounts for 30% of the total 291 environmental impact of the wastewater treatment process, and roughly 80% of the operation 292 part in terms of GWP and even more of the EP. This is mainly due to power consumption and the 293 use of the chemical additives, PAM and PAC18%, which are necessary for flocculation and 294 coagulation of the biomass. In addition, the environmental impact of these additives may go beyond GWP and EP: PAM degradation in the environment, for example, can lead to emissions 295 296 of hazardous compounds including acrylamide (Kay-Shoemake et al., 1998; Smith et al., 1996, 1997), which are not reflected in our model since they are not yet available in LCA databases. 297 This highlights the necessity of further research to improve this part of operation, not only for 298 economic purposes, i.e. the high cost of chemicals, but also to reduce environmental impacts. 299

300 3.5. Sensitivity analysis of nutrient removal potential in the LCA

The eutrophication potential (EP) values presented above reflect the environmental impact of construction and operation of the HRAP and SBR facilities, but neglects the environmental benefit that comes from removing nutrients (P, N) from wastewater before discharging it to the environment. We considered the Net Environmental Benefit (NEB) (Godin et al., 2012) – the difference in EP of treated and untreated water – to assess how fluctuations in nutrient removal performance may affect the environmental impact of HRAP and SBR technologies.

Assuming that both systems may change their performance to the same extents, we performed a 307 sensitivity analysis that considered satisfactory and unsatisfactory nutrient removal rates for 308 309 HRAP and SBR. Inflow and outflow values for the well-performing HRAP and SBR systems (referred to as "good") were taken from our data (Table 5), while effluent values of HRAP and 310 SBR performing non-satisfactorily were calculated using values 20% higher than the values of 311 good performance. The EP of the two scenarios in Figure 6 shows that the nutrient removal 312 313 performance of WWT technologies plays a much more important role than the environmental impact of facility infrastructure and operation. An SBR performing satisfactorily has a slightly 314 higher NEB (0.0459 kg phosphate equivalent/m² WW) than the good performing HRAP (0.0442) 315 kg phosphate equivalent/ m^2 WW) because of the slightly lower concentrations in the effluent of 316 the well-performing SBR that can overcompensate the considerably higher adverse effects of the 317 infrastructure and operation of SBR. Additionally, the 20% deterioration in performance 318 decreased NEB only by 3% for the SBR and 4% for the HRAP which means SBR is slightly less 319 320 sensitive to performance changes than HRAP.

mg/L	Inflow	Outflow	Outflow	Outflow	Outflow
		HRAP good	HRAP bad	SBR good	SBR bad
COD	800	good 80	96	28.68	34.42
TKN	67	15	18	12.35	14.82

ТР	10	1	1.2	1.43	1.72

321 Table 4. Effluent values for sensitivity analysis

324 325

323

326 **4. Discussion**

Our study compared two rather small-scale WWT plants, a conventional bacteria-based SBR and 327 an algae-based HRAP system. According to our results, the OPEX of HRAP is ca. half of the 328 SBR's and the infrastructure of HRAP is slightly more expensive to be built than that of the 329 SBR. These results are somewhat different from the numbers given in the literature. Meanwhile, 330 our operation costs are 0.12 and 0.22 \notin /m³ WW treated for HRAP and SBR, respectively, these 331 values are in Garfi et al. (2017) much higher: 0.42 \notin /m³ for HRAP and 0.79 \notin /m³ for a 332 conventional bacterial-based WWTP. This difference might be caused by the inclusion of 333 maintenance costs, i.e. the replacement of worn out parts, as a reinvestment within CAPEX; and 334 335 our calculations do not contain the personnel costs of building. Our CAPEX is also slightly 336 higher than given in this literature: 294,799 and 246,225 €, respectively. In fact, the difference in 337 operation costs is roughly 50% lower for HRAP than for conventional WWTPs, both according to the literature and our results. For these two systems, personnel costs of operation took about
 50% of OPEX, which indicates the need for automatization, especially for small systems.

The difference in operation costs of SBR and HRAP is due to the higher energy efficiency of the 340 HRAP. The power consumption values we obtained for the HRAP were slightly lower than for 341 the modelled HRAP system in Garfi et al. (2017), 0.17 and 0.25 kWh/m³, respectively, but 342 considerably less than that of the conventional SBR (0.45 kWh/m³). This is the other reason for 343 higher OPEX in Garfí et al. (2017). While the largest share of the energy consumption in the 344 SBR system relates to aeration and mixing (74%), the largest share of energy consumption in the 345 HRAP relates to the requirements of the algae separation step followed by the mixing of the 346 347 ponds.

The energy consumption of SBR can be changed, however, very quickly because the plant treats 348 WW in a batch mode, i.e. the SBR tank has to be filled up with WW in an ordered sequence. In 349 contrast, the HRAP works in a continuous mode and the influent WW is added to the raceway 350 351 pond as it enters the plant. This mode of functioning makes the SBR plant more susceptible to changes in WW amounts and the scheduling of the reactor has to be adjusted, which may result 352 in a higher energy consumption. If the inflow rate of WW does not allow the reactor to be run in 353 354 the defined sequences, the time for filling the reactor and mixing of WW will increase significantly, while the time and energy required for aeration can be minimized. Although energy 355 can be saved in this way, the longer mixing periods and the decreased WW amount compensate 356 for the reduction in energy for aeration. In case of Leppersdorf, for example, the drop in flow 357 rate from 300 to 192 m³/day led to a proportional increase in electricity consumption from 0.45 358 to 0.70 kWh/m^3 . 359

360 The introduction of a more effective mixing system (the LEAR) to the HRAP can further 361 increase the difference of energy consumption between SBR and HRAP since it more than halves the energy demand for mixing with the paddle wheel. This results in a 22% lower energy 362 363 consumption for the HRAP system. This difference has an important effect on GWP too: HRAP creates only one third of SBR's GWP (0.146 and 0.458 kg CO₂-equiv/m³). Previous studies 364 calculated higher values: 0.28-0.57 and 0.405-1.27 kg CO_2 -equiv/m³ for HRAP and for 365 conventional systems, respectively partly because of less effective mixing and bigger systems. 366 Especially in the case of electricity consumption, the size of the WWTP is critical: the bigger the 367 plant, the smaller the electricity consumption (Lorenzo-Toja et al., 2015). This is why HRAP 368 systems are particularly effective in small-scale (Garfi et al., 2017). 369

Meanwhile the environmental impact of infrastructure for SBR was only 5% of the impacts from operation, the impact of infrastructure for HRAP was 3.5 times bigger than that of the operation. This is because impacts from operation are almost negligible but the space requirement and the connected material input to establish the infrastructure are rather high for HRAP systems, e.g. concrete and plastic layers for the raceway. Consequently, the environmental and economic impact of building materials is considerable and the choice to select environmentally friendly and cheap construction alternatives is fundamental.

Another important source of environmental impacts was direct emissions. N_2O is a natural emission of algae metabolism and an important greenhouse gas. In addition, CH_4 and NH_3 are also emitted during WWT processes. 50% of GWP was created by direct N_2O and CH_4 emissions in SBR and 30% by direct N_2O emission in HRAP. Although direct emissions play a very important role in shaping environmental performance of WWT, their values are complicated to measure and are within wide ranges in the literature (Alcántara et al., 2015; Bao et al., 2016; Garfi et al., 2017). Thus, a reliable assessment of direct emissions requires much
more detailed research.

Besides GWP, results of EP are also very important aspects of evaluating the performance of WWTPs. Our sensitivity analysis for calculating NEB highlighted the importance of cleaning performance. Our study proved that a higher removal rate of components bringing about eutrophication can in turn overcompensate less favorable results of infrastructure and operation, e.g. in the case of an effective SBR.

Finally, chemical additives, such as PAC and PAM, also result in environmental impacts, e.g. it was the second most important cost category for HRAP after personnel costs. Unfortunately, nature-based flocculants or coagulants are less effective and can be even more expensive than conventional chemicals. Consequently, research for finding effective but environmentally friendly and cheap chemicals for WWT is indispensable.

395 **5.** Conclusions

This study shows the advantages of a combined LCA and LCCA methodology to comparativelyevaluate WWT technologies and identify their strengths and weaknesses.

Overall, the HRAP WWT technology proved to be more efficient both in economic and environmental terms than the SBR. In economic terms (CAPEX and OPEX) and in terms of energy balance:

The large area requirement of algae-based systems is the greatest drawback of HRAP
 technology, as the economic viability/benefit of this process is dependent on land
 availability and cost.

The relatively high cost and environmental impact of building HRAP infrastructures is
 compensated by the relatively low cost and environmental impact during operation of the
 wastewater treatment facility, primarily due to the higher power consumption required to
 operate in sequencing batch mode (and the environmental impact associated with this).
 The energy consumption of the HRAP system with a submerged mixing system is 22% of
 that of the SBR.

410 In terms of environmental impact (global warming and eutrophication potential):

The GWP and EP of SBR is higher than the GWP of the HRAP. Indirect emissions
 linked to the higher power consumption contribute to the higher GWP of SBRs.
 Additionally, direct greenhouse gas emissions (primarily in the form of N₂O) are
 presumed to be higher in a bacteria-dominated activated sludge system than in an algae dominated system.

With regard to the net environmental benefit from the removal rate on EP, the HRAP was
slightly less favorable than the SBR because of better removal rates of the latter.

418 Just like any technology, algae-based wastewater treatment has its limitations (reviewed extensively in (Posadas et al., 2017)) and is most suitable for specific environmental 419 420 conditions and WW characteristics: i.e. conditions optimal for algae growth: mild temperatures, large areas for harvesting of solar radiation, a specific range of C:N ratio, 421 etc. Furthermore, HRAP systems have direct emissions of N₂O (Alcántara et al., 2015). 422 423 Finally, harvesting algae from a highly diluted suspension (ca. 0.5 g/L) is costly and often involves the use of environmentally harmful chemicals (e.g. PAM) as discussed above 424 (Béchet et al., 2017; Muylaert et al., 2017). 425

426 Further research will be required

- To optimize savings in material and energy flows in the building and operation of
- 428 HRAPs
- To better evaluate direct emissions from both technologies.
- To include other forms of environmental impact (e.g. hazardous emissions that come
- 431 from environmental degradation of chemical additives used, e.g. acrylamide).

432 Acknowledgements

- 433 This work was supported by the H2020 Framework Program EU project INCOVER, Innovative
- 434 Eco-Technologies for Resource Recovery from Wastewater (Project No. 689242).

435 **References**

- 436 91/271/EEC, Directive of the Council of December 21, 1991 concerning urban waste water treatment,
- 437 Brussels, p. 40.
- 438 Alcántara, C., Muñoz, R., Norvill, Z., Plouviez, M., Guieysse, B., 2015. Nitrous oxide emissions from high
- 439 rate algal ponds treating domestic wastewater. Bioresource Technology 177, 110-117.
- 440 Amores, M.J., Meneses, M., Pasqualino, J., Anton, A., Castells, F., 2013. Environmental assessment of
- 441 urban water cycle on Mediterranean conditions by LCA approach. Journal of Cleaner Production 43, 84-442 92.
- 443 Annavajhala, M.K., Kapoor, V., Santo-Domingo, J., Chandran, K., 2018. Comammox Functionality
- 144 Identified in Diverse Engineered Biological Wastewater Treatment Systems. Environmental Science &
- 445 Technology Letters 5, 110-116.
- 446 Bao, Z.Y., Sun, S.C., Sun, D.Z., 2016. Assessment of greenhouse gas emission from A/O and SBR
- wastewater treatment plants in Beijing, China. International Biodeterioration & Biodegradation 108,108-114.
- 449 Béchet, Q., Plouviez, M., Chambonnière, P., Guieysse, B., 2017. 21 Environmental impacts of full-scale
- 450 algae cultivation A2 Gonzalez-Fernandez, Cristina, in: Muñoz, R. (Ed.), Microalgae-Based Biofuels and
- 451 Bioproducts. Woodhead Publishing, pp. 505-525.
- 452 Campos, J.L., Valenzuela-Heredia, D., Pedrouso, A., R, V.d., #xed, o, A., Belmonte, M., Mosquera-Corral,
- A., 2016. Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment,
 and Prevention. Journal of Chemistry 2016, 12.
- 455 Capodaglio, A.G., 2017. Integrated, Decentralized Wastewater Management for Resource Recovery in
- 456 Rural and Peri-Urban Areas. Resources 6.
- 457 Choi, S., Johnston, M., Wang, G.S., Huang, C.P., 2018. A seasonal observation on the distribution of
- 458 engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO2 and ZnO.
- 459 Science of the Total Environment 625, 1321-1329.

- 460 Cornejo, P.K., Zhang, Q., Mihelcic, J.R., 2013. Quantifying benefits of resource recovery from sanitation
- 461 provision in a developing world setting. Journal of Environmental Management 131, 7-15.
- 462 Corominas, L., Foley, J., Guest, J.S., Hospido, A., Larsen, H.F., Morera, S., Shaw, A., 2013. Life cycle
- 463 assessment applied to wastewater treatment: State of the art. Water Res 47, 5480-5492.
- 464 Dutta, A., Sarkar, S., 2015. Sequencing Batch Reactor for Wastewater Treatment: Recent Advances.
- 465 Current Pollution Reports 1, 177-190.
- 466 Eggimann, S., Truffer, B., Feldmann, U., Maurer, M., 2018. Screening European market potentials for
- small modular wastewater treatment systems an inroad to sustainability transitions in urban watermanagement? Land Use Policy 78, 711-725.
- 469 Fernandes, H., Jungles, M.K., Hoffmann, H., Antonio, R.V., Costa, R.H.R., 2013. Full-scale sequencing
- 470 batch reactor (SBR) for domestic wastewater: Performance and diversity of microbial communities.
- 471 Bioresource Technology 132, 262-268.
- 472 Garfí, M., Flores, L., Ferrer, I., 2017. Life Cycle Assessment of wastewater treatment systems for small
- 473 communities: Activated sludge, constructed wetlands and high rate algal ponds. Journal of Cleaner474 Production 161, 211-219.
- 475 gobex, -. Estudio de Puesta en Servicio. E.D.A.R. Y Colectores en Segura de León (Badajoz). Anejo No. 12:
- 476 Estudio de Explotación. Gobierno de Extramadura (gobex) and Inyges Consultores S.L., p. 23.
- 477 Godin, D., Bouchard, C., Vanrolleghem, P.A., 2012. Net environmental benefit: introducing a new LCA
- 478 approach on wastewater treatment systems. Water Science and Technology 65, 1624-1631.
- 479 Hischier, R., Weidema, B., Althaus, H.-J., Bauer, C., Doka, G., Dones, R., Frischknecht, R., Hellweg, S.,
- 480 Humbert, S., Jungbluth, N., Köllner, T., Loerincik, Y., Margni, M.a., Nemecek, T., 2010. Implementation of
- Life Cycle Impact Assessment Methods. ecoinvent report No. 3, in: Roland Hischier, Weidema, B. (Eds.).
- 482 Swiss Centre for Life Cycle Inventories, St. Gallen, p. 176.
- 483 Kay-Shoemake, J.L., Watwood, M.E., Lentz, R.D., Sojka, R.E., 1998. Polyacrylamide as an organic nitrogen
- source for soil microorganisms with potential effects on inorganic soil nitrogen in agricultural soil. Soil
- 485 Biology & Biochemistry 30, 1045-1052.
- Langeveld, J., 2015. Comment on "Life cycle assessment of urban wastewater systems: Quantifying the relative contribution of sewer systems". Water Res 84, 375-377.
- 488 Lorenzo-Toja, Y., Vazquez-Rowe, I., Amores, M.J., Termes-Rife, M., Marin-Navarro, D., Moreira, M.T.,
- 489 Feijoo, G., 2016. Benchmarking wastewater treatment plants under an eco-efficiency perspective.
- 490 Science of the Total Environment 566, 468-479.
- 491 Lorenzo-Toja, Y., Vazquez-Rowe, I., Chenel, S., Marin-Navarro, D., Moreira, M.T., Feijoo, G., 2015. Eco-
- 492 efficiency analysis of Spanish WWTPs using the LCA plus DEA method. Water Res 68, 651-666.
- 493 Maga, D., 2017. Life cycle assessment of biomethane produced from microalgae grown in municipal
- 494 waste water. Biomass Conversion and Biorefinery 7, 1-10.
- 495 Muylaert, K., Bastiaens, L., Vandamme, D., Gouveia, L., 2017. 5 Harvesting of microalgae: Overview of
- 496 process options and their strengths and drawbacks A2 Gonzalez-Fernandez, Cristina, in: Muñoz, R.
- 497 (Ed.), Microalgae-Based Biofuels and Bioproducts. Woodhead Publishing, pp. 113-132.
- 498 Pogade, F., Lee, M.-Y., van Afferden, M., Müller, R., 2015. O&M of Decentralized Wastewater Treatment
- 499 Plants in Jordan based on International and German Standards and Practical Experiences. National
- 500 Implementation Committee for Effective Decentralized Wastewater Management and Helmholtz Centre 501 for Environmental Research, Germany, p. 46.
- 502 Posadas, E., Alcántara, C., García-Encina, P.A., Gouveia, L., Guieysse, B., Norvill, Z., Acién, F.G., Markou,
- 503 G., Congestri, R., Koreiviene, J., Muñoz, R., 2017. 3 Microalgae cultivation in wastewater, Microalgae-
- 504 Based Biofuels and Bioproducts. Woodhead Publishing, pp. 67-91.
- 505 Smith, E.A., Prues, S.L., Oehme, F.W., 1996. Environmental degradation of polyacrylamides .1. Effects of
- 506 artificial environmental conditions: Temperature, light, and pH. Ecotoxicology and Environmental Safety
- 507 35, 121-135.

- 508 Smith, E.A., Prues, S.L., Oehme, F.W., 1997. Environmental degradation of polyacrylamides .2. Effects of
- 509 environmental (outdoor) exposure. Ecotoxicology and Environmental Safety 37, 76-91.
- van Afferden, M., Cardona, J.A., Lee, M.-Y., Subah, A., Müller, R.A., 2015. A new approach to
- 511 implementing decentralized wastewater treatment concepts. Water Sci Technol 72, 1923-1930.
- 512 Vikrant, K., Kim, K.H., Ok, Y.S., Tsang, D.C.W., Tsang, Y.F., Giri, B.S., Singh, R.S., 2018.
- 513 Engineered/designer biochar for the removal of phosphate in water and wastewater. Science of the
- 514 Total Environment 616, 1242-1260.
- 515 Zhang, Z.Z., Cheng, Y.F., Xu, L.Z.J., Bai, Y.H., Xu, J.J., Shi, Z.J., Zhang, Q.Q., Jin, R.C., 2018. Transient
- 516 disturbance of engineered ZnO nanoparticles enhances the resistance and resilience of anammox
- 517 process in wastewater treatment. Science of the Total Environment 622, 402-409.
- 518 Internet references
- 519 http 1: https://www.alibaba.com/product-detail/Polyacrylamide-
- 520 <u>price_60657407133.html?spm=a2700.7724857.main07.11.255a752eeZh7Di&s=p</u>. Date of download:
- **521** 05.11.2017
- 522 http 2: https://www.alibaba.com/product-detail/GB-15892-2009-water-treatment-
- 523 <u>chemicals_60669823722.html?spm=a2700.7724857.main07.12.1a214dd2rzKNY2&s=p</u>. Date of
- **524** download: 05.11.2017
- 525 http 3: <u>http://sdw.ecb.europa.eu/browseTable.do?node=9691107</u>. Date of download: 30.01.2018
- 526 http 4: Euro area bank interest rate statistics: November 2017.
- 527 https://www.ecb.europa.eu/press/pdf/mfi/mir1711.pdf?75d979235949e5fef6754687f01b69bf.
- 528 Date of download: 30.01.2018
- 529 http 5: http://www.mapama.gob.es/es/estadistica/temas/estadisticas-agrarias/economia/encuesta-precios-
- 530 <u>tierra/</u>. Date of download: 05.11.2017
- 531

Supplementary Information

Is the future of wastewater treatment algae-based or bacteria-based? Assessing the life cycle sustainability of high rate algae ponds

Norbert Kohlheb¹, Manfred van Afferden^{1*}, Enrique Lara², Zouhayr Arbib², Monica Conthe³, Christoph Poitzsch⁴, Thomas Marquardt⁴, Mi-Yong Becker⁵

¹ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany

² - FCC Servicios Ciudadanos, Av. del Camino de Santiago, 40, edificio 3, 4ª planta, 28050 Madrid, Spain

³ - TU Delft, Postbus 5, 2600 AA Delft, The Netherlands

⁴ - Abwasserzweckverband "Obere Röder", An den Dreihäusern 14, 01454 Radeberg, Germany

⁵ - Bochum University of Applied Sciences, Lennershofstraße 140, 44801 Bochum, Germany

SI-1. Description of the WW treatment facilities in Almería and in Leppersdorf

The WW treatment plant in Leppersdorf, Germany, started to operate in 1994 and was designed to treat a WW inflow of max. 300 m³/day, (1,600 PE). The WW treated is solely of municipal origin and first passes a filter where larger solid particles are filtered out. Subsequently, the WW passes through a sand trap (7 m³) and a buffer tank (110 m³) with a WW pump. The WW is stored in the buffer tank for the next cycle in the SBR. The phase up to the buffer tank is considered pretreatment. Next, WW is treated in the 884 m³ SBR tank. In this tank, three cycles of WW treatment are carried out per day, each lasting for 8 hours. However, these three cycles per day can be carried out only if there is enough WW. Currently, the plant has only 190 m³ WW per day, so it can run only one cycle per day, which significantly reduces the efficiency of the WW treatment plant. To improve the settling phase, Ferriflock (iron chloride sulfate) is used. The treated WW from the SBR tank is fed to a pond and from there to the effluent nearby. The decanted sludge goes to the sludge tank (318 m³) where it is mixed and settled with the addition of Praestol (polyacrylamide) until the sludge achieves a dry matter content of 3.5-4.8%. The settled sludge is then delivered from the plant and the treated WW is skimmed and fed back to the buffer tank.

The HRAP in the WW plant in Almería, Spain, was designed to treat 300 m³ WW per day. The municipal WW first passes a rotary drum filter that removes solid particles bigger than 1 mm. This pretreatment phase also has two pumps and an open tank to store solid wastes. From here, the filtered WW is continuously fed to the HRAP with an average flow of 12.5 m³/hour. The HRAP treats WW with a HRT of 3 days. The HRAP uses a new, less energy-intensive patented mixing system (LEAR) with an effective pumped flow of 0.49 m³/s. In the next step, the treated WW from the HRAP is fed to the separator (DAFAST), where the algae sludge is flocculated and separated from the water fraction. The separator consists of a conical flotation tank, a clear water tank, a collection tank, an agitator, three pumps, and a polymer dosing unit. In this phase, the coagulant polyaluminum chloride and the flocculant polyacrylamide are added. After separation, the treated WW is fed to the effluent, and sludge with 4% dry matter is delivered from the plant.

^{*}Corresponding author: Manfred van Afferden, e-mail: manfred.afferden@ufz.de

Figure SI-1: Photo and layout drawing of the SBR WW treatment plant in Leppersdorf, Germany

Figure SI-2: Photo and layout drawing of the HRAP WW treatment plant in Almería, Spain

Table SI-1. Life cycle inventory of WWTPs for the total lifespan of the facilities. Abbreviations: PE: polyethylene, GF: glass fiber, HDPE: high density polyethylene; PAC18%: poly-aluminium chloride

]	HRAP						SBR						
					1)		2)				(3)				(1)			(2)	al 1	(3)
		-			atment Rotary drum		eway Submersed			ſ	parator Static	Separator	PAC	Ŀ	Buffer tan	Sand	SB	R tank Aeration	Slud	ge tank Agitator
				tank	filter		mixer		PDU	Agitator	mixer	drum	18%		Filter	trap		turbine		Agitatol
		-		(x1)	(x2)		(x4)		(x4)	(x4)	(x1)	(x4)			(x2)	(x1)		(x2)		(x4)
Land area		10 ³ m ² *year	0.2			120		1.2						2			2.12			
Lifetime		Lifetime in years	40	40	20	40	10	40	10	10	40	10		40	20	40	40	20	40	10
Electricity		10 ⁶ MJ per lifetime	0.078			0.268	0.148	0.693					0.0118	0.482	0.11		5,957		2,812	
Foundations/ Construction	Excavation Transport Gravel Cradling Concrete blocks Concrete working GF reinforced plastic Steel Geotextile PE PVC film Polyurethane foam Iron Metal working PVC pipe	m ³ tkm kg kg kg kg kg kg kg kg	35.3 1.7 90.84	24 5 5	70	1,109 94,854 1,110,960 14 41,724 714,297 714,297 17,292 1,143 6,858 1.2 121,23	910 81 991	34 4,235 35,784 0.3 44,615 44,615 864 14 208.57	20 20 50	30	10 10 11	223 365 365 42		64.6 3,665 20,621 2.52 49,704 49,704 2,485	4.25 70 70	4.14 487 856 8,262 8,262 413	269 25,675 69,162 9.63 177,060 177,060 8853	708 472 1108	102 7,061 26,275 5,86 100,128 100,128 5006	30
	Steel pipe HDPE pipe	kg kg				12		11	80								19.7			
Pumps Mixing/agitation	Pump Electric motor Grease Nitrile rubber sealing		457		15	195	9.3 29 3	208		10				294	15		560		266	10
Harvesting/ Thickening	Polyacrylamide FeClSO ₄ 41% PAC 18%	kg kg						12,264 82,052					20				255,063		9217	
Per ton PAC18%	Compressed air Hydrochloric acid (30%) Al ₂ O ₃ (62%) Steam Water	Nm ³ kg kg L											20 700 330 250 20,615							
N ₂ O direct emissions CH ₄ direct emissions		kg kg				747											1,197 28,716			

				HRA	P				SBR									
	(1) Pre-treatn	nent	F	(2) Raceway		(3) Separator		-	(1) e-treatn buffer		(2) SBR tank		(3) Sludge tank					
✓ Capital ex	penditure (CA)	PEX) - €																
Land ¹ *			3,23	0 m ² , €1.0	5/m ² : 3,39	2							3,000 n	n², €1.05/n	n ² : 3,150			
Foundation/ Construction *	0			130,458		5,560				7,621			27,397			12,886		
Tanks *	400																	
Piping*	236			614		,	747			2,049			807			569		
Flow Pumps	Pump (x4 Pump (x4) Pump) Pump	(x4) (x4)	650 650	Screw pump	(x4)	863	Pump	(x4)	2,984	Pump Pump	(x4) (x4)	2,984 2,929			(x4)	2,929
Mixing			Submersed mixer	(x4)	9,500	Static mixer		2,000				Aeration turbine	(x2)	25,000	Agitator		(x4)	5,000
Other	Rotary drum (x2 filter) 2,570				Polymer dosing un Agitator Separator Bubble generator pump Membrane pump	(x4) (x4) (x4)		Rotary drum filter	(x2)	2,570	Control system	(1x)	35,000				
		16,976)		174,272			100,159			26,746			136,856				45,171
Total	<u>294,799</u>		. I						211 <u>,9</u>	923								
✓ Operating	, expenditure ((OPEX) -	€/year															
Personnel ² *				11,00	00									17,773				
Electricity *	55			597		48	2			414			4,137			94		
Flocculants						yacrylamide C18%		740 495				FeClSO ₄		986	Polyacrylam	ide		556
Total	13,369 (x40 years = $534,760$) → CAPEX + OPEX = 829,559							24,228 (x 40 years = $969,120$) \rightarrow CAPEX + OPEX = $1,181,043$										

Table SI-2. LCCA inventory data. CAPEX: capital expenditure; OPEX: operating expenditure.

¹ Encuesta de Precios de la Tierra 2016 (Base 2011) – http1 ² Assuming a similar workload is necessary for operation of the HRAP and SBR – i.e. 0.29 (Pogade *et al.* 2015) - and an average monthly wage of \in 3,161 (gobex -)

GWP		Infrastructure	Operation	Emissions	Sum					
			10^{-3} kg CO ₂ -equiv./m ³							
HRAP	Pretreatment	0.744	2.086	0	2.83					
	Raceway	38.289	11.018	45.22	85.004					
	Separator	6.288	42.625	0	48.913					
	Sum	45.321	55.729	45.22	146.27					
SBR	Pretreatment	3.255	25.989	0	29.244					
	SBR tank	9.365	166.846	237.96	414.17					
	Sludge tank	5.221	9.633	0	14.855					
	Sum	17.842	202.468	237.96	458.27					
EP		Infrastructure	Operation	Emissions	Sum					
			10 ⁻⁶ kg PO ₄ -	-equiv./m ³						
HRAP	Pretreatment	0.65	0.55	0	1.21					
	Raceway	20.30	2.92	46.07	59.72					
	Separator	5.45	50.2	0	55.65					
	Sum	26.4	53.67	46.07	126.14					
SBR	Pretreatment	1.36	6.88	0	8.24					
	SBR tank	7.36	45.85	73.78	123.41					
	Sludge tank	3.42	19.37	0	22.79					
	Sum	12.14	72.09	73.78	158.01					

Table SI-3. GWP and EP of the water treatment train with HRAP and SBR. Sources: Key: GWP – Global Warming Potential; EP – Eutrophication Potential

- gobex (-). Estudio de Puesta en Servicio. E.D.A.R. Y Colectores en Segura de León (Badajoz). Anejo No. 12: Estudio de Explotación (Study of Service Updates for E.D.A.R. Y Colectores en Segura de León (Badajoz)), Gobierno de Extramadura (gobex) and Inyges Consultores S.L.
- Pogade F., Lee M.-Y., van Afferden M. and Müller R. (2015). *O&M of Decentralized Wastewater Treatment Plants in Jordan based on International and German Standards and Practical Experiences*, National Implementation Committee for Effective Decentralized Wastewater Management and Helmholtz Centre for Environmental Research, Germany.

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Credit Author Statement

Activity	Authors name
Conceptualization	Norbert Kohlheb, Manfred van Afferden, Monica
	Conthe, Mi-Yong Becker
Methodology	Norbert Kohlheb, Mi-Yong Becker
Validation	Enrique Lara, Zouhayr Arbib, Christoph Poitzsch,
	Thomas Marquardt, Manfred van Afferden
Formal analysis	Norbert Kohlheb, Manfred van Afferden
Investigation	Norbert Kohlheb, Enrique Lara, Zouhayr Arbib,
	Christoph Poitzsch, Thomas Marquardt
Resources	Enrique Lara, Zouhayr Arbib, Christoph Poitzsch,
	Thomas Marquardt
Writing - Original Draft	Norbert Kohlheb, Manfred van Afferden, Monica
	Conthe, Mi-Yong Becker
Writing - Review & Editing	Norbert Kohlheb, Manfred van Afferden, Monica
	Conthe
Supervision	Manfred van Afferden, Mi-Yong Becker
Project administration	Mi-Yong Becker
Funding acquisition	Mi-Yong Becker