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Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network 1 

!
Abstract 1 — The excitation and vibration triggered by the 

long-term operation of railway vehicles inevitably result in 
defective states of catenary support devices. With the massive 
construction of high-speed electrified railways, automatic defect 
detection of diverse and plentiful fasteners on the catenary 
support device is of great significance for operation safety and cost 
reduction. Nowadays, the catenary support devices are 
periodically captured by the cameras mounted on the inspection 
vehicles during the night, but the inspection still mostly relies on 
human visual interpretation. To reduce the human involvement, 
this paper proposes a novel vision-based method that applies the 
deep convolutional neural networks (DCNNs) in the defect 
detection of the fasteners. Our system cascades three 
DCNN-based detection stages in a coarse-to-fine manner, 
including� two detectors to sequentially localize the cantilever 
joints and their fasteners and a classifier to diagnose the fasteners’ 
defects. Extensive experiments and comparisons of the defect 
detection of catenary support devices along the 
Wuhan-Guangzhou high-speed railway line indicate that the 
system can achieve a high detection rate with good adaptation and 
robustness in complex environments. 

Index Terms— High-speed railway, catenary support device, 
fastener, automatic defect detection, deep convolutional neural 
network 

I.! INTRODUCTION 
N the electrified railway industry, the pantograph-catenary 
system plays an important role in transmitting power from 

the traction network to vehicles. Catenary support device (see 
Fig. 1) is utilized to maintain the height and stagger of the 
conductor line, namely the contact wire. However, 
sophisticated mechanical and electrical interactions exist 
between the pantograph and catenary, which inevitably cause a 
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high defect rate of the pantograph-catenary system and strongly 
influence operation safety [1]. Particularly, due to the vibration 
and excitation in long-term operation, fasteners serving as the 
connection of the cantilevers on the catenary support devices 
may loosen, break or are even missing.  
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Fig. 1 Structure of the catenary support device. (a) Structure overview. (b) 
Installation structure of the cantilever joints. Red, yellow, green, blue, orange 
and purple boxes indicate the positions of the nut, screw B, α pin, puller bolt, 
screw A and β pin. 
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As shown in Fig. 1(a), on the catenary support devices, the 
four joints (i.e., the double tube joint, clevis and two diagonal 
tubes) are installed to concatenate the horizontal cantilever, the 
oblique cantilever, the cantilever arm and the registration arm. 
According to the China Railway Standard [2], the cantilever 
joints are fixed by the six different fasteners (i.e., two screws, 
puller bolt, α-pin, β-pin, and nut), as shown in Fig. 1 (b).  

Non-contact detection is widely adopted with the great 
advances in imaging technology [3]. The railway personnel 
manually detect the defects by reading a large volume of data 
from captured images offline. Due to the installation structure, 
in the shooting angle, defects including the missing and the 
latent missing of screw A, the puller bolt and α-pin, β-pin, and 
missing of the big nuts and the top-view screws can be detected. 

However, with the massive construction of high-speed 
railways, the total mileage of China’s electrified railway is over 
74,000 kilometers. More than 1.03 billion catenary support 
components must be manually detected. Personnel can easily 
get vision fatigue and correspondingly miss some defects. 
Manual detection is performed infrequently, so defects may not 
be detected in time. Therefore, it is necessary to develop an 
automatic defect recognition method based on the catenary 
support device images. 

For the power supply system pantograph-catenary, some 
intelligent detection experiments have been accomplished, such 
as catenary geometry parameter measurement [4], surface wear 
diagnosis of the pantograph and contact wire [5] and insulator 
defects diagnosis [6], by image processing and machine 
learning. To realize the automatic defect detection of fasteners 
on the catenary support devices, this paper refers to the 
pioneering works on railroad track detection. For surface 
defects of rail heads, Li et al. [7] designed a visual detection 
system to capture the rail road images and extract the discrete 
defects based on a projection profile. In addition, researchers 
have proposed some methods for detecting railroad fasteners. 
Feng et al. [8] developed an automatic defect detection method 
using a probabilistic topic model. Marino et al. [9] used a 
multilayer perception neural classifier to detect missing 
hexagonal bolts. Aytekin achieved real-time railway fastener 
inspection using a high-speed laser range finder camera and 
pixel and histogram similarity analysis [10]. As Deep 
Convolutional Neural Network (DCNN) [11] prevails in object 
recognition, Gibert et al. [12] applied DCNN in railroad track 
detection. This multi-task learning system combined a 10-class 
track material classification detector (e.g., wood, concrete, and 
metal fasteners etc.) with a support vector machine 
(SVM)-based detector for fastener defects via a fully 
convolutional neural network and achieved a state-of-the-art 
result compared to shallow learning. Big data technologies 
include not only the image processing but also time delay 
prediction [13][14] and condition based maintenance [15], 
which make the machine learning technologies promising in 
the railway system. 

Automatic defect detection of fasteners on the catenary 
support device has not been achieved, to the best knowledge of 
the authors. The railway track fasteners are usually orderly 

arranged and firmly fixed on the rail. However, the railway 
catenary support devices are not uniform. The cantilevers are 
connected to the masts by hinges, which rotate the support 
devices into multiple shapes and angles. Due to the large scale 
and complexity of captured images, the segmentation method 
of fasteners via the rail material classification [16] cannot be 
used in the case of catenary support devices. Accordingly, a 
new DCNN based model is proposed to identify the 
components in the captured HD images and then judge their 
states. The system is based on the following pioneer work.  
1)! Object detection 

Recently, various object detection algorithms based on 
DCNN have become ubiquitous and achieved good results in 
the vision benchmark [17]. Based on region proposal, Girshick 
proposed a region convolutional neural network (R-CNN) [18] 
and Fast R-CNN [19]. Faster R-CNN unifies the region 
proposal generation and the object classification network into 
an end-to-end framework [20]. Based on regression, Redmond 
et al. [21] developed a fast single shot detection method named 
you only look once (YOLO). In the Pascal VOC dataset [17], 
YOLO can process 45 frames per second without sacrificing 
accuracy. Liu et al. [22] designed a single-shot multi-box 
detector (SSD) that produces the default boxes for object 
detection, which offers a speed up compared to the region 
proposal generation in Faster R-CNN. The DCNN architectures 
adopt feature learning instead of the traditional hand-crafted 
feature extraction [23] to improve robustness.  
2)! Object classification 
  For image classification, Krizhevsky et al. [24] designed 
AlexNet to classify 1.2 million ImageNet ILSVRC images that 
belong to 1000 classes. Szegedy et al. [25] developed a 
22-layer deep network named GoogleNet that achieved
state-of-the-art results in 2014. Training strategies such as
dropout and weight decay play important roles in preventing
overfitting.
3)! Cascaded DCNN

Cascaded DCNN has been proposed in scene text 
segmentation [26], face detection and finger detection [27], etc. 
to improve efficiency in a greedy manner. Particularly in face 
detection and the alignment field, cascaded DCNN is widely 
used. In reference [28], the DCNNs are cascaded to detect the 
facial points in the input face images. Zhang et al. [29] built a 
three-stage DCNN to detect the faces and facial points 
successively.  

It can be seen in Fig. 1 that the number and class of the 
fasteners are fixed in the cantilever joints. In analogy to face 
detection, the cascade structure can be adopted in our task to 
detect the cantilever joints and the fasteners, and classify the 
states of fasteners from coarse to fine.  

This paper is organized as follows. The overview of the 
defect detection system is given in Section II. The cascaded 
DCNNs are theoretically described and selected for the 
localization of the cantilever joints and their fasteners and the 
recognition of the defective fasteners in Section III. Section IV 
presents the adopted dataset of catenary support device images 
and analyzes the advantages of the detection method by several 
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experiments and comparisons. Section V draws some 
conclusions and outlines further improvements. 

II.! SYSTEM OVERVIEW

The catenary support device is captured by the roof-mounted 
cameras on the running vehicle (see Fig. 2). To avoid the 
interference of background buildings, the images are obtained 
during night work. The cameras continuously photograph the 
catenary support devices in global and local views from both 
the front and reverse sides. The size of the catenary support 
device images is 6600 4400×  pixels. The location 
information such as the number and mileage mark of the 
captured catenary support device are recorded in the vehicle 
database. The image processing consists of three major stages 
in a coarse-to-fine manner, component extraction, fastener 

extraction and the fastener state classification. Fig. 3 describes 
the pipeline of the detection module. Overviews of the three 
stages are as follows. 

A.! Joint Localization 
The goal of the first DCNN is to localize and extract the 

three-class cantilever joints in the captured catenary support 
device images. From different shooting angles, the object joints 
have multiple scales. To localize the joints in the captured HD 
images, SSD framework that performs well in both speed and 
accuracy is introduced. The input 6600 4400×  pixels HD 
images are first resized to 660 440×  pixels in order to 
alleviate the memory footprint of the model. 

B.! Fastener Localization 
The output of Stage 1, namely, the extracted joints, is 

transmitted to Stage 2. In the extracted cantilever joints images, 
fasteners are relatively easy to distinguish since they cover a 
large area of the images and are usually not overlapped. Thus, a 
fast localization architecture based on the YOLO framework is 
cascaded in Stage 2. 

C.! Fastener State Classification and Defect Recognition 
The extracted fasteners are classified into normal, missing 

and latent missing states based on the likelihood via a third 
DCNN. Fasteners are of small sizes and hence a lightweight 
DCNN is built to recognize defects in case of computation 
burden in Stage 3. 

To be noted, since this paper focuses on the image processing 
of the captured catenary support device images, the details of 
the image acquisition steps will not be mentioned. In addition, 
the image processing-based detection is operated offline. 

III.! DETECTION MODULE 

A.! Localization of the Cantilever Joints Using SSD 
The core idea of the SSD framework [22] is to produce a 

collection of default bounding boxes and predict the object 
class from the default boxes. As shown in Fig. 4, the default 
boxes are produced from the feature maps in different 
convolutional layers with different aspect ratios and scales. For 
a default box in the m n×  feature map, the confidences of 
5-class object including the background categories and the 4
indicators ( , , , )x y w h  that specify the regression box’s
coordinates are calculated. Each cell in a feature map can
produce 4 default boxes by changing the ratio of the default

box’s length to width in the range of 
1
{ , 2}
2

. Thus, the output 

of a convolutional layer is a tensor of (4 5) 4m n× × + × ��

Fig. 2 Sketch map of the catenary support device image acquisition. 

dt_up
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Fig. 4 Default box production of the SSD framework. (a) Input with ground 
truth boxes. (b) 11 7× feature map. 
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Fig. 3 The pipeline of the detection system that includes a three-stage cascaded DCNN. 
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In the original SSD architecture, based on VGG-16 network 

[30], conv4_3, conv6, conv8_2, conv9_2, conv10_2, conv11_2 
are selected as the output layers. Accordingly, the default boxes 
are produced on the multi-scale feature maps in sizes of 
38 38× , 19 19× , 10 10× , 5 5× , and 3 3× . Since the input 
images of Stage 1 consist of many small objects, the lower 
conv3_3 is added to collect more low-level cues for detection 
(see Fig. 5). The size of input images is zoomed to 660 440×  
pixels. Thus, the modified SSD architecture includes the output 
layers conv3_3, conv4_3, conv7, conv6_2, conv7_2, conv8_2 
with feature maps at sizes of 165 110× , 83 55× , 42 28× , 
21 14× and 11 7× . 
Training Procedure: 

For object localization problems, training data are comprised 
of the images and the ground truth boxes of each object. The 
key of the training process in SSD framework is to match the 
ground truth boxes to a series of fixed-size default boxes. The 
default boxes that overlaps the ground truth for more than 50% 
or the best overlapped default box are determined as the 
positives. A hard negative mining strategy picks the 
non-matched default boxes with high confidence as the 

negative training samples to balance the ratio of the positives to 
negatives in 1:3. 

The object localization model is trained by minimizing a 
multi-task loss function (see Fig. 6) that sums the localization 
loss and the confidence loss. The localization loss is a Smooth 
L1 loss between the predicted box and the ground truth. The 
classification loss is a softmax class loss over the multiple 
classification confidences. 

 
To enhance the robustness of the proposed model, data 

augmentation, including random expansion, random crop and 
horizontal flip, is introduced to increase the training samples. 

ConvNet

Box Regression
Multi-Class
Probabilities

 
Fig. 6 Multi-task Loss of SSD. 
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Fig. 5 DCNN architectures of SSD framework. (a) The SSD architectures in Ref [22]. (b) The modified architectures. The main optimization of the two SSD 
architectures is the different configurations for the detection layers.  
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B.! Localization of the Fasteners Using YOLO 
As shown in Fig. 7, the core idea of the YOLO framework 

[21] is to predict multi-class bounding box candidates directly 
from the grids in the full input images. The combination of the 
class probabilities and bounding box confidence provides the 
resulting detection. 

In Stage 2, the input images are divided into 7 7×  grids. In 
the shooting angle, the nut and α-pin captured in front and 
reverse views are considered as different classes. Thus, each 
grid predicts classification probabilities for eight-class 
fasteners and two candidate bounding boxes with the 
confidence score. Each bounding box contains 5 position 
indicators, including the box coordinates ( , , , )x y w h  and the 
position confidence. Overall, the net’s output is a tensor of 
7 7 (2 5 8)× × × + . 

 

 
Inspired by the GoogleNet [25], original YOLO network has 

24 convolutional layers followed by two fully connected layers. 
Since the task in Stage 2 is relatively simple, a light YOLO 
architecture with 8 convolutional layers and two fully 
connected layers is introduced in Stage 2 as shown in Fig. 8. 
Training Procedure: 

The sizes of the joints are in the range of 300 300×  
to 600 600×  pixels. To make good use of computational 
resources and to maintain the precise information of joints, the 
output of Stage 1 is resized to 448 448×  pixels.  

The training loss of Stage 2 is based on sum-squared error 
and comprised of five parts, i.e., the regression-weighted 

 
Fig. 7 YOLO framework. 
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Fig. 8 DCNN architecture of YOLO framework. The original DCNN architecture (a) in [21] is based on the GoogleNet, while the architecture in this paper (b) 
is simplified to a light network. 
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sum-squared error of each cell’s bounding box center x and y, 
the square root of each bounding box width and height, the 
sum-squared error of the saliency probability of whether 
objects exist in a bounding box, the classification-weighted 
sum-squared error of the saliency probability of whether an 
object does not exist in a bounding box, and the class 
probabilities of each cell. Dropout and random crops are 
introduced to reduce overfitting. 

C.! Defect Judgment of the Fasteners 
The fasteners include three basic states: the normal working, 

missing and latent missing states. The goal of Stage 3 is to 
categorize the extracted fasteners into three classes and 
correspondingly recognize the defect states. Fig. 9 lists the 
states for each type of fastener. For the nut and α-pin, a defect 
cannot be judged on the reverse side images. Hence the 
extracted nut and α-pin in reverse side will not be input into 
Stage 3. 

For some of the missing states, the fasteners cannot be 
localized in Stage 2. Since the number and class of the fasteners 
in these joints are fixed, the defect can be judged by the absence 
of the fasteners in Stage 2, as shown in Fig. 10. In addition, an 
image classification network is built to categorize the 
installation states. The architecture of the state classification 
network is summarized in Fig. 11. It contains a total of four 
convolutional layers and two fully connected layers between 
the input and output layer. 

To unify the training process, the output layer is connected to 
a 16-way softmax that produces the probabilities for 16-class 
fastener states. This network will provide a probability for the 
states that the fasteners belong to and judge the states by a 
threshold. 
Training Procedure: 

The fasteners are tiny objects, with sizes of approximately 
70 70×  pixels. Due to the limited samples of defect images, 

 

 
data augmentation is introduced. For the sake of balancing the 
training, the number of the normal input samples is limited to 
balance the defective samples. 

In Stage 3, the training loss is no longer multi-task. Since it is 
a multi-label classification problem, softmax class loss is also 
used to compute the confidence of the classification. 
Meanwhile, dropout is also adopted here by 50% at conv5 layer 
to reduce overfitting. 

IV.! EXPERIMENT AND RESULTS 
The above analysis of the proposed cascaded detection 

system provides the feasibility to automatically localize the 
cantilever joints of the catenary support device and recognize 
the defects of their fasteners.  

A.! Dataset 
The dataset used in the experiments consists of the catenary 

support device images captured from an approximately 

100-kilometer line along the Ju-Yue section of the 
Wuhan-Guangzhou high-speed railway, in which 2000 catenary 
support devices and 40000 fasteners exist. The images are 
collected by the XLN4C-01 imaging inspection vehicle (see 
Fig. 12) during the night. The dataset contains the catenary 
support devices in various challenging environments, such as 
tunnels, turnouts and viaducts, to evaluate the robustness of the 
proposed method.  

To build the training set for Stage 1, we manually draw the 
bounding boxes and assign the labels of approximately 8,563 

Stage 3
( States classification )

Stage 2
(YOLO Stage )

Double tube joint Clevis Diagonal tube

Missing Nut ScrewB PinB PinA ScrewA Puller Bolt

Normal

Missing

Latent Missing

 
Fig. 9 Categories for the defects of fasteners in Stage 3. The loosening of 
the screws and puller bolts and the open lack of the pins are defined as 
latent missing. 

 
Fig. 10 Detection of the missing puller bolt by YOLO in Stage 2. 
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Fig. 11 DCNN architecture of the fastener states classification. 
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catenary support device images, in which 6,371 images are in 
the training set and 2,192 images are in the validation set. 

The training loss guides the training process and the accuracy 
indicates the reliability of the trained model. To avoid 
overfitting, the validation set is built to choose the trained 
model. The accuracy of the validation set is calculated in a 
defined interval, and the model with the highest accuracy is 
chosen as the testing model. 

A testing dataset is generated to evaluate the proposed 
method. To prove the adaptability of the model, the testing 
dataset consists of the images collected from a different section 
Heng-Zhu, 67 km in total. In total, the testing dataset consists of 
4,487 images. 

B.! Training Process 
The dataset is employed to validate the proposed system. The 

experimental environment is described as follows: Deep 
learning open source framework Caffe [31], Ubuntu 14.04, 
32GB RAM, CPU clocked at 3.2 Hz, and GTX 1080 GPU with 
8GB memory. 
  The joints on the 6,371 images in the training set are 
manually labeled. Since the task of Stage 2 is much simpler, 
Stage 2 can be considered as a semi-supervised training. Only 
1500 cantilever joint images are manually labeled. Then when 
the model trained by 1500 images reaches an adequate accuracy, 
it is used to detect and generate the label information of the rest 
of cantilever joint images in the training set. The training label 
generation and training are alternatively conducted when the 
label information of 2000 images are generated.  
 Due to the limitations of the defect fastener images, the 
training dataset in Stage 3 contains 35 images for each defect 
state and normal states of six-class fasteners, for a total of 560 
images for 16 types of states. With the data augmentation 
strategy, the training datasets are expanded. 

Each of the three DCNN stages is end-to-end trained using 
back-propagation and stochastic gradient descent (SGD) solver 
with momentum (0.9) and weight decay of -45 10× . Due to the 
limitation of GPU memory and training samples, the training 
batch sizes of the three stages are set to 16, 8 and 1. The 
learning rate is used to control the rate of gradient descent of the 
training loss. In Stage 1, the learning rate is set to 0.0001 
initially and then tuned to 0.001 after 4000 iterations. Stage 2 
and Stage 3 employ fixed learning rates of 0.0005 and 0.01. 

C.! Experiment Result and Discussion 
The testing images are collected from a different route but 

are tested under the same computation environment as training. 
The proposed method displays good results in localizing the 

joints and fasteners, and recognizing their defects in the three 
stages. Fig. 13 shows several visualized detection examples and 
results.  

To verify the effectiveness of the proposed method, three sets 
of experiments are conducted to evaluate the method in terms 
of the average precision and the processing time costs (frames 
per second, FPS), including the effects of the modified DCNN 
structures, the comparison with other underlying DCNN 
architectures and shallow learning algorithms and the 
effectiveness of the three-stage cascade architecture. 

The true positive (TP), false negative (FN) and false positive 
(FP) are counted to compute the following statistical indicators 
precision and recall. The mAP (mean average precision) is 
computed according to the relationship P(R) of precision (P) 
and recall (R). 

 Precision 100%
TP

TP FP
= ×

+
 (1) 

 Recall 100%
TP

TP FN
= ×

+
 (2) 

 
1

0
mAP ( )P R dR= ∫  (3) 

  To be noted, the evaluation of effects of the modified DCNN 
architectures is designed to prove that the DCNN architecture is 
correctly selected and modified for each stage. To give a fair 
evaluation, the experiment of Stage 2 leverages the human 
verified outputs of Stage 1 thus the false positive outputs will 
be ignored. Moreover, some of the joints are severely occluded 
(See Fig. 14). The missing of these components will not be 
counted when calculating precision. 
1)! Effects of the modified DCNN architectures: 
Accuracy of using multiple output layers in Stage 1: 

The modified architecture for SSD framework is compared 
with the original SSD architecture to analyze the effects of 
using multiple output convolutional layers. TABLE I shows the 
detection results of different configurations of the output layers. 
The performance is increased when the outputs are predicted 
from multiple layers. The comparison of the proposed model 
and the original model shows that accuracy is improved when 
using the low-level convolutional layers. This is not surprising 
since the proposed system consists of many small objects. 
Pruning conv8_2 at output will also improve the accuracy 
because the feature maps in this layer contain very coarse 
information. 

The proposed architecture is based on VGG-16 and is also 
compared with that based on Resnet-50 in the experiments. 
Since 2015, the residual network has been very successful in 
the ImageNet classification. The results are summarized in 
TABLE II. For each of the joints, the detection result is of low 
accuracy on the validation set and shows it is overfitting.  
This is not surprising since the number of the training data 
cannot satisfy training a Resnet-50 and since the objects are 
not as complex as the ImageNet. 

 
 
 

 
Fig. 12 XLN4C-01 inspection vehicle. 
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TABLE I EFFECTS OF DIFFERENT OUTPUT LAYER OPTIONS 

Configuration 
Prediction from the following layers 

mAP 
conv3_3 conv4_3 conv7 conv6_2 conv7_2 conv8_2 

Proposed SSD √ √ √ √ √  92.16 

Original SSD[20]  √ √ √ √  82.73 

Alternative 1 √ √ √ √ √ √ 88.78 

Alternative 2  √ √ √ √  79.26 

Alternative 3 
!

√ √ 
! ! !

70.52 

 
(a) 

 
(b) 

 
(c) 
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(e) 

Fig. 13 Four examples of defect detection. (a). The captured catenary support device images. (b). Cantilever joints localization using the SSD framework. 
(c). Crop and resize of the cantilever joints. (d). Fasteners localization using the YOLO framework. (e). Fastener state classification. The four examples 
contain the fasteners all in the normal states.  
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TABLE II THE BASIC NETWORK COMPARISON OF STAGE 1 

network Resnet-50 VGG-16 

mAP 17.19 89.16 

dt up 12.01 87.88 

dt down 17.5 83.21 

joint 22.24 92.16 

clevis 23.91 91.74 

Running efficiency of the light DCNN architecture in Stage 2: 
To evaluate the running efficiency of the light network, we 

compare it with the original YOLO architecture under the same 
environment and the results are listed in TABLE III. It can be 
seen that both of the DCNN architectures have good 
performance, but the proposed light YOLO offers a speed up. It 
should be noted that experiments are processed using 
GTX1080. The improvement of GPU will accelerate the model 
by a large margin.  

 

TABLE III COMPARISON TO THE ORIGINAL YOLO 

method mAP FPS Training time 
consumption 

The proposed fast 
architecture 96.72 83 133 min 

Original YOLO network 96.85 12 251 min 

Comparison of the multiple DCNN architecture in Stage 3: 
The proposed DCNN architecture in Stage 3 is compared 

with a light architecture that refers to a vehicle logo recognition 
system [33] and a large architecture AlexNet [24]. The light 
network contains two convolutional layers, two pooling layers 
and a fully connected layer to classify 11-class logos. AlexNet 
contains five convolutional layers, three max-pooling layers 
and three fully connected layers to classify 1000-class objects 
in the ImageNet competition. In the comparative experiment, 
the three DCNNs are trained and tested using the same dataset. 

Confusion matrices are used to evaluate the classification 
accuracy. It can be seen from Fig. 15 that the proposed system 
and AlexNet perform better on accuracy than the light network. 
However, according to TABLE IV, the large network decreases 
the speed of the task compared to the proposed network. 
TABLE IV COMPARISON OF THE THREE SCALE CLASSIFICATION NETWORK 

Method mAP FPS Training time 
consumption 

light 83.64 634 55 min 

medium 94.72 420 74 min 

large 94.88 83 93 min 

According to the confusion matrices, for the latent missing 
states, the proposed classifier shows a relatively higher 

accuracy on the puller bolts and two screws. However, some of 
the fasteners in normal states are considered as latent missing 

(a) (b)  
Fig. 14 The severe occluded joints. 

 
(a) 

 
(b) 

 
(c) 

Fig. 15 Confusion matrices of fastener state classification. (a), (b), (c) use the light, medium and large network respectively. The rows of the confusion matrices 
respond to the correct class while the columns display the predicted classes. Latent missing is simplified as “latent”. 
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(see Fig. 13 (e)). The latent missing of fasteners sometimes 
appears as the normal state and it is a close call. Since the most 
important task is to prevent the absence of defect recognition, a 
small amount of the false prediction of the normal as defects is 
allowed to some extent. 
2)! Comparison with other underlying DCNN architectures and 
shallow learning algorithms: 

The proposed localization and classification networks are 
compared with the following learning algorithms considering 
accuracy and speed. 
Localization Comparison: 
!! SSD architecture: SSD framework has been explained in 

Section III.A. 
!! YOLO architecture: YOLO framework has been 

explained in Section III.B. 
!! Faster R-CNN: Based on ZF net, the conv_5 feature is 

input into a region proposal network to generate ~2K 
region proposals. Then, the region proposals are reflected 
to the conv_5 and are classified by two fully connected 
layers and a softmax. Finally, the predicted bounding 
boxes are slightly adjusted to fit the objects. 

!! HOG features with AdaBoost classifiers: Histogram of 
gradient [23] is a local hand-craft feature descriptor that is 
invariant to light and rotation. Object detection is 
achieved by sliding windows on the input images. For 
each window, the HOG feature is calculated and then 
classified by a series of cascaded two-category classifiers. 
The classifier is trained by an AdaBoost algorithm [34] 
that highly weights the wrong prediction in the previous 
classifier by an adaptive boost training mechanism.  

!! Deformable Part Models (DPM): DPM [35] is also 
based on HOG features but it calculates multi-scale 
pyramid features of the input images. Objects are modeled 
by the part and root filters in coarse-to-fine resolution. A 
latent SVM is used to train the part models and are 
combined with a margin-sensitive approach for data 
mining hard negatives.  

A precision-recall (PR) curve is drawn to visualize the 
performance for different detection algorithms. It can be seen 
from Fig. 16 that the SSD architecture and Faster R-CNN 
perform better than YOLO and DPM in terms of accuracy.  

The statistical results are summarized in TABLE V. In 
particular, the SSD and Faster R-CNN have relatively higher 
accuracy in Stage 1 than the others. However, the SSD network 
runs 3x faster than the Faster R-CNN. 

Since the proposed system has a great capacity of HD images 
to process, the SSD framework should be accepted as the 
extractor of the cantilever joints. In Stage 2, the proposed deep 
learning algorithms (including SSD, YOLO and Faster 
R-CNN), and even DPM, have good performances in accuracy 
since Stage 2 is not as complex as Stage 1. However, the 
proposed fast YOLO network has a huge superiority in 
detection speed and training time consumption. 

 
TABLE V COMPARISON OF THE JOINTS AND FASTENERS EXTRACTION RESULTS 

method mAP of 
Stage 1 

mAP of 
Stage 2 

detection FPS of 
Stage 1 

training time consumption of 
Stage 1 

SSD framework 92.16 97.41 12 107 h 
YOLO framework 74.32 95.56 84 31 h 

Faster R-CNN 90.03 96.24 4 132 h 
DPM 80.51 94.69 0.47 124 h (Input size: 200 images) 

HOG+AdaBoost 57.92 73.28 1.42 82 h (Input size: 200 images) 

Defect recognition comparison: 
In addition to the proposed methods of object localization, 

DCNN in Stage 3 is also compared with several image 
classification methods. 
!! The proposed DCNN architecture: The proposed 

architecture has been explained in Section III.C. 
!! HOG features with SVM: The input images are 

calculated of HOG features and classified by the 
two-category classifier SVM [36]. 

!! SIFT features with template matching: Scale-invariant 
feature transform [37] is a local feature descriptor that 

calculates the interest points in multi-scale space and 
collects the key interest points of the two images to be 
matched. 

The comparative results are summarized in TABLE VI. 
Apparently, the proposed DCNN-based method outperforms 
the shallow learning in both accuracy and speed. 
TABLE VI COMPARISON OF THE DEFECTS RECOGNITION RESULTS 

Method mAP FPS Training time 
consumption 

The proposed DCNN 92.78 636 55 min 
HOG+SVM 71.66 12 62 min 

SIFT+template matching 65.32 59 !

(a) (b)

(c) (d)  
Fig. 16 PR curves for the localization results. (a) (b) plot the result of the 
clevis and the upper diagonal tube in Stage 1. (c) (d) plot that of the nut 
and the ἀ-pin in Stage 2.  
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3)! Effectiveness of the three-stage cascade architecture: 
To investigate the impact of the three-stage cascade 

architecture, two comparative experiments are conducted by 
the combination of Stage 1, 2 and Stage 2, 3. 

Stage 1 and Stage 2 are combined into a single DCNN that 
can directly localize the tiny fasteners in the captured HD 
images. The proposed SSD framework in Stage 1 is used as the 
single DCNN in the comparative experiment. Fig. 17 (a) lists 
the result of localizing the six-class fasteners. Unfortunately, 
the single DCNN shows very poor performance in terms of 
accuracy. This is not surprising as it is difficult to distinguish 
the 20 20×  pixels objects in the 6600 4400×  pixels raw 
input images. Even conv3_3’s receptive field is still too large to 
predict the tiny fasteners. The low-level layers such as conv2_3 
have less semantic information about the objects, which does 
not help in detecting small objects. Due to the limited 
computation resource, the re-scaling of the input also 
eliminates the precise information of tiny fasteners. 

Owing to the disadvantage of the DCNN architecture caused 
by the large receptive fields, one of the best shallow learning 

DPM replaces the single DCNN to be compared with the 
two-stage DCNN. The shallow learning algorithm uses the 
sliding windows on the raw input images. The size of the 
sliding windows can be adjusted to fit the objects. However, 
DPM also shows a low performance because the hand-craft 
feature is not as robust as the feature learning, especially for the 
fasteners with simple structures. Overall, it is better to localize 
the joints and the fasteners separately in two stages. 

Stage 2 and Stage 3 are also combined to output the states of 
the fasteners in the extracted joints. The defective states of 
fasteners are labeled in the joint images to train a DCNN 
architecture based on the YOLO framework in Stage 2. To 
balance the training, 35 images are selected for each type of 
fastener in all states. However, the absence of adequate defect 
samples and the minor discrepancy between the normal and 
defective states can result in poor accuracy. Fig. 17 (b) lists the 
mAP for the three states and shows that the normal and latent 
missing states are easily missed using the single network. 

Overall, the cascaded three-stage DCNN is necessary to 
accurately recognize the defect states of tiny fasteners from the 
HD catenary support devices. 

V.! CONCLUSION 
This paper presents a method to detect the defective fasteners 

of the cantilever joints on the catenary support devices. The 
proposed three-stage architecture can automatically localize the 
three cantilever joints and the six fasteners and judge the 
missing and latent missing states of the fasteners in the captured 
images. All stages are accomplished by deep convolutional 
neural networks, which benefit the detection due to the 
superiority in robustness and adaptability. Overall, the 
proposed approach shows a promising application and accuracy 
in the fasteners’ defect recognition. The reduced time 
consumption makes it feasible to periodically detect the 
enormous quantity of the catenary fasteners in a large railway 
network. Nevertheless, the results suggest some further 
improvements. 

(1) The catenary support device has many more items than 
the defective fasteners to detect, such as cracks on the joints, the 
loosening of bracing wires and the flashover of insulators. 

(2) The latent missing of nut and screw B cannot be judged 
due to the blind angle of cameras. Thus, detection based on 
RGB-D data can be attempted to build a DCNN-based 
tridimensional model to address it. 
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